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OF CONVEX BODIES

QI GUO, JINFENG GUO AND XUNLI SU

In previous work, we introduced a family of p-measures of asymmetry for
convex bodies, which have the well-known Minkowski measure of asymme-
try as a particular case. We now reveal more properties of 1-measure and
∞-measure and give some calculating formulas of p-measures, in particular,
for the so-called coproducts of convex bodies.

The measures of asymmetry for convex bodies, which in principle can be traced
back to an early paper by Minkowski [1897], have been studied for a long time
[Asplund et al. 1962; Besicovitch 1948; Chakerian and Stein 1964; Eggleston 1952;
Klee 1953; Rogers and Shephard 1958; Stein 1956]. In particular, after B. Grünbaum
formulated in his well-known paper [1963] a general definition of measures of
(central) asymmetry (or symmetry), many mathematicians have contributed their
efforts to this topic: studying the properties/applications of those known measures
of asymmetry [Böröczky 2010; Dziechcińska-Halamoda and Szwiec 1985; Ekström
2000; Gluskin and Litvak 2008; Groemer 2000; Groemer and Wallen 2001; Guo
2005; Guo and Kaijser 1999; 2003; 2002; Hug and Schneider 2007; Kaiser 1996;
Petitjean 2003; Schneider 2009; Soltan 2005; Mizushima 2000; Toth 2009; 2008],
looking for new ones or studying other types of measure of asymmetry [Tuzikov
et al. 2000; Tuzikov et al. 1997; Zouaki 2003]. Several such measures, most of
which are related to extremal problems, are proposed and investigated.

In [Guo 2012], we found a family of measures of asymmetry asp(·) for convex
bodies, called the p-measures of asymmetry (1≤ p ≤∞) (see definition below),
which have the well-known Minkowski measure as a particular case. It turns out
that p-measures do share some nice properties with the Minkowski measure and
might be useful for further research.

As shown in [Guo 2012], for any convex body C and 1 ≤ p <∞, we have
asp(C)≤ as∞(C) in general, and equality holds if C is a symmetric convex body
or a simplex. Equality also holds for some nontrivial (i.e., neither symmetric nor a
simplex) convex bodies (see examples in Remark 2.3 below). Since, in some sense,
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as∞(C) is a maximal value and as1(C) is a mean of a certain function related to
C , defined on the unit sphere, it is interesting to consider the following question:
Under what conditions is it true that as1(C)= as∞(C) (and therefore that all asp(C)
coincide)?

In this article, we reveal more properties of 1-measure and∞-measure and give
some calculating formulas of p-measures, in particular, for coproducts of convex
bodies (see definition below). We will also formulate some questions related to the
question above. From now on, we will simply write asymmetry instead of central
asymmetry.

1. Preliminary

Let Rn denote the usual n-dimensional Euclidean space and 〈·, ·〉 the canonical
inner product on Rn . Denote by Kn the class of all convex bodies (compact
convex sets with nonempty interior) in Rn , by Aff(Rn) the family of all affine
maps from Rn to Rn , and by aff(Rn) the family of all affine functionals on Rn ,
which forms an (n+ 1)-dimensional linear space under the ordinary addition and
scalar multiplication of functions.

We adopt the following notation and terms from [Schneider 1993].
For C1, . . . ,Cn ∈Kn , denote by V (C1, . . . ,Cn) the mixed volume of C1, . . . ,Cn

and let V (C[k]) be an abbreviated notation for

V (C, (k). . .,C,−C, (n−k). . . ,−C), 0≤ k ≤ n.

Similarly, denote by S(C1, . . . ,Cn−1, ·) the mixed area measure (of C1, . . . ,Cn−1)
on Sn−1, the (n− 1)-dimensional unit sphere. It is stated in [Schneider 1993] that
V (C[0])= V ([n])= Vn(C), where Vn(·) denotes the n-dimensional volume, and
S(C, (n−1). . . ,C, ·)= Sn−1(C, ·), the surface area measure of C on Sn−1.

For α ∈ R and u ∈ Sn−1, set Hu,α = {x ∈ Rn
| 〈x, u〉 = α} and notice that Hu,α

is a hyperplane.
For C ∈ Kn and x ∈ Rn , we define the support function of C based at x by

hx(C, u) := sup
x∈C
〈y− x, u〉, for all u ∈ Sn−1.

Denote F(C, u) :=C∩Hu,hx (C,u), which is independent of x and called the support
set (of C) in the direction u.

It is shown in Theorem 5.1.6 of [Schneider 1993] that, for each x ∈ Rn ,

(∗)
V (C[n− 1])=

1
n

∫
Sn−1

hx(C,−u) d Sn−1(C, u),

Vn(C)=
1
n

∫
Sn−1

hx(C, u) d Sn−1(C, u).



THE MEASURES OF ASYMMETRY FOR COPRODUCTS OF CONVEX BODIES 403

Given C ∈ Kn , for x ∈ int(C), we write

µp(C, x) :=

{(∫
Sn−1 αx(C, u)p dmx(C, u)

)1/p if 1≤ p <∞,

supu∈Sn−1 αx(C, u) if p =∞,

where αx(C, u) := hx(C,−u)/hx(C, u) and, for measurable ω ⊂ Sn−1,

mx(C, ω) :=

∫
ω

hx(C, u) d Sn−1(C, u)
nVn(C)

=

∫
ω

hx(C, u) d Sn−1(C, u)∫
Sn−1 hx(C, u) d Sn−1(C, u)

,

which is a probability measure on Sn−1.

Remark 1.1. If C is a polytope with (all) facets F(C, ui ), i =1, 2, . . . ,m, where ui

are outer normal vectors, then the measures Sn−1(C, ·) and mx(C, ·) are linear com-
binations of m Dirac measures δui , i = 1, 2, . . . ,m, and so the integrals appearing
above are just finite sums.

Definition [Guo 2012]. For C ∈ Kn , we define its p-measure of asymmetry
(1≤ p ≤∞) asp(C) by

asp(C) := inf
x∈int(C)

µp(C, x).

A point x ∈ int(C) satisfying µp(C, x)= asp(C) is called a p-critical point of C .
The set of all p-critical points is called the p-critical set (of C), denoted by Cp(C).

Remark 1.2. (i) The measure

as∞(C)= inf
x∈int(C)

sup
u∈Sn−1

hx(C,−u)
hx(C, u)

is nothing else but the Minkowski measure of asymmetry (of C). The mea-
sure as1(C) is the (minimal) mean of hx(C,−u)/hx(C, u) (against mx(C, ·))
among all x ∈ int(C), which is in fact independent of x (i.e., µ1(C, x)= as1(C)
for all x ∈ int(C); see (*)).

(ii) It is shown in [Guo 2012] that if defining, for any ε ≥ 0,

φ(ε) :=

(
Vn(C − εC)

Vn(C)

)1/n

,

then as1(C)=φ′+(0) (in fact, this is the definition of 1-measure in [Guo 2012]).

(iii) By definition 1 and (*) above, we see that as1(C)= V (C[n− 1])/Vn(C).

(iv) It is proved in [Guo 2012] that, for 1< p <∞, Cp is a singleton.

One of the main results in [Guo 2012] is the following theorem.
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Theorem 1.3. For any 1≤ p, q ≤∞, the following statements are true:

(i) asp(·) is affinely invariant, i.e., asp(C)= asp(T(C)) for any C ∈ Kn and any
invertible T ∈ Aff(Rn).

(ii) asp(C)≤ asq(C), for any C ∈ Kn and 1≤ p < q ≤∞.

(iii) 1≤ asp(C)≤ n, asp(C)= 1 if and only if C is symmetric, and asp(C)= n if
and only if C is a simplex.

2. The 1-measure of asymmetry for coproducts of convex bodies

In [Guo 2012] we showed that p-measures do share some nice properties with
Minkowski’s measure. Here we will present more.

We first recall a conclusion in [Guo and Kaijser 2002]: for any (n−1)-dimensional
convex set C ⊂ Rn , as∞(Ĉz)= as∞(C)+ 1, where Ĉz := conv(C, z) is the convex
hull of C ∪ {z} (called the cone with vertex z and base C) and z is not in the
affine hull of C (where as∞(C) is computed in the (n − 1)-dimensional space).
Furthermore, all∞-critical points x∗ of Ĉz are of the form

x∗ =
1

2+ as∞(C)
z+

(
1+ as∞(C)
2+ as∞(C)

)
x ′,

where x ′ is an∞-critical point of C .
We show that a similar conclusion holds for 1-measure but not for 2-measure.

Further, we extend the result to the so-called coproducts of subsets which are a
generalization of cones (see definition below).

Let us start with cones.

Theorem 2.1. Let C , z be as above. Then

(i) as1(Ĉz)= as1(C)+ 1.

(ii) as2(Ĉz)
2
= as2(C)2+ 2

√
as2(C)2+ 2as1(C)+ 1− 1. Consequently we have

as2(Ĉz)≤ as2(C)+ 1, where equality holds if and only if as2(C)= as1(C).

To prove Theorem 2.1, the following lemma is needed.

Lemma 2.2. Let C, z be the same as in Theorem 2.1. For x in ri(C), the relative
interior of C , if zλ = λz+ (1− λ)x (0< λ < 1), then, for any 1≤ p <∞,

µp(Ĉz, zλ)p
= λ

(1− λ
λ

)p
+

1
(1− λ)p−1

∫
Sn−2

(λ+αx(C, u))p dmx(C, u).

Proof. Since the family of (n − 1)-dimensional polytopes is dense in Kn−1, and
Ci → C implies Ĉi → Ĉ (with respect to the Hausdorff metric), and Sn−1(C, ·) is
weakly continuous, we may assume, without loss of generality, that

C = conv(v1, . . . , vl)
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is an (n− 1)-dimensional polytope, where vi are (all) vertices of C .
Thus

Ĉ = conv(v1, . . . , vl, z)

is the n-dimensional polytope with vertices v1, . . . , vl and z. Furthermore, if all
facets of C are Fi (1≤ i ≤m), then all facets of Ĉ are F̂i = conv(Fi , z) (1≤ i ≤m)
and C . We denote by ũ0 ∈ Sn−1 the outer normal vector of C (as a facet of Ĉ),
by ũi ∈ Sn−1 the outer normal vector of F̂i , and by ui ∈ Sn−2

≡ H∗ ∩ Sn−1,
where H∗ denotes the (n− 1)-dimensional subspace parallel to the affine hull H
of C , the outer normal vector of Fi (as a facet of C).

Use the fact that 〈z− x, ũi 〉 = hx(Ĉ, ũi ) to observe that

hzλ(Ĉ, ũi )= sup
y∈Ĉ
〈y− zλ, ũi 〉 = sup

y∈Ĉ
〈(y+ x − zλ)− x, ũi 〉

= sup
y′∈Ĉ+x−zλ

〈y′− x, ũi 〉 = hx(Ĉ + x − zλ, ũi )

= hx(Ĉ + λ(x − z), ũi )= hx(Ĉ, ũi )− λ〈z− x, ũi 〉

= (1− λ)hx(Ĉ, ũi ).

This, together with the fact that hx(Ĉ, ũi )+ hx(Ĉ,−ũi ) is just the width of Ĉ
along ũi and does not depend on the choice of x , in turn leads to

hzλ(Ĉ,−ũi )= λhx(Ĉ, ũi )+ hx(Ĉ,−ũi ).

Finally we get

(2-1)
αzλ(Ĉ, ũi )=

hzλ(Ĉ,−ũi )

hzλ(Ĉ, ũi )
=

λ

1− λ
+

1
1− λ

hx(Ĉ,−ũi )

hx(Ĉ, ũi )

=
λ

1− λ
+

1
1− λ

hx(C,−ui )

hx(C, ui )
=

λ

1− λ
+

1
1− λ

αx(C, ui ).

Furthermore,
(2-2)

hzλ(Ĉ, ũi )Vn−1(F̂i )= (1− λ)hx(Ĉ, ũi )Vn−1(F̂i )= (1− λ)nVn(Ĉi )

= (1− λ)(hzλ(Ĉ, u0)+ hzλ(Ĉ,−u0))Vn−1(Ci )

= (1− λ)(hzλ(Ĉ, u0)+ hzλ(Ĉ,−u0))
hx(C, ui )

n− 1
Vn−2(Fi ),

where Ĉi and Ci denote, respectively, the n-dimensional body conv(z, x, Fi ) and
the (n− 1)-dimensional body conv(x, Fi ).

Now, by (2-1), (2-2) and the fact that

nVn(Ĉ)= (hzλ(Ĉ, u0)+ hzλ(Ĉ,−u0))Vn−1(C),
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it follows that

µp(Ĉ, zλ)p

=

∫
Sn−1

αzλ(Ĉ, u)p dmzλ(Ĉ, u)

=
αzλ(Ĉ, u0)

phzλ(Ĉ, u0)Vn−1(C)+
∑m

i=1 αzλ(Ĉ, ũi )
phzλ(Ĉ, ũi )Vn−1(F̂i )

nVn(Ĉ)

=
αzλ(Ĉ, u0)

phzλ(Ĉ, u0)

hzλ(Ĉ, u0)+ hzλ(Ĉ,−u0)
+

1−λ
n−1

∑m
i=1 αzλ(Ĉ, ũi )

phx(C, ui )Vn−2(Fi )

Vn−1(C)

= λ
(1− λ

λ

)p
+

1
(1− λ)p−1

∫
Sn−2

(λ+αx(C, u))p dmx(C, u),

where we used the equalities hzλ(Ĉ, u0)/(hzλ(Ĉ, u0) + hzλ(Ĉ,−u0)) = λ and
αzλ(Ĉ, u0)= (1− λ)/λ. �

Proof of Theorem 2.1. (i) In Lemma 2.2, taking p = 1, we have, for any x ∈ ri(C),
0< λ < 1,

as1(Ĉz)= 1− λ+
∫

Sn−2
(λ+αx(C, u)) dmx(C, u)

= 1+
∫

Sn−2
αx(C, u) dmx(C, u)= 1+ as1(C).

(ii) In Lemma 2.2, taking p = 2 and noticing µ1(C, x)= as1(C), we have

µ2(Ĉ, zλ)2 =
(1− λ)2

λ
+

1
1− λ

∫
Sn−2

(λ+αx(C, u))2 dmx(C, u)

=
(1− λ)2

λ
+

λ2

1− λ
+

2λ
1− λ

as1(C)+
1

1− λ
µ2(C, x)2 =: A(λ).

Letting

A′(λ)=
(µ2(C, x)2+ 2as1(C))λ2

+ 2λ− 1
λ2(1− λ)2

= 0,

we get λ0 =
(√
µ2(C, x)2+ 2as1(C)+ 1+ 1

)−1. Thus, with an elementary compu-
tation, it follows that

min
0<λ<1

µ2(Ĉ, zλ)2 = A(λ0)= µ2(Ĉ, zλ0)
2

= µ2(C, x)2+ 2
√
µ2(C, x)2+ 2as1(C)+ 1− 1.

Therefore

as2(Ĉz)
2
= min

x∈ri(C)
min

0<λ<1
µ2(Ĉ, zλ)2 = as2(C)2+ 2

√
as2(C)2+ 2as1(C)+ 1− 1.
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Since as1(C)≤ as2(C) by Theorem 1.3, we get

as2(Ĉz)
2
≤ as2(C)2+ 2

√
as2(C)2+ 2as2(C)+ 1− 1= (as2(C)+ 1)2

which implies that as2(Ĉz) ≤ as2(C)+ 1 and that equality holds if and only if
as2(C)= as1(C). �

Remark 2.3. Theorem 2.1 indicates that there are nontrivial C ∈ Kn (n ≥ 4) such
that as1(C)= as∞(C): in Rn , taking a symmetric D∈Kn−2 and forming D̂y ∈Kn−1,
for each C := conv(z, D̂y) ∈ Kn , we have, by Theorems 1.3 and 2.1 and Theorem
2 in [Guo and Kaijser 2002], as1(C) = as2(C) = as∞(C) = 3, while clearly C is
neither a symmetric convex body nor a simplex.

Now we introduce the so-called coproduct of subsets in different spaces and then
generalize Theorem 2.1.

Definition. Given C ⊂ Rm and D ⊂ Rn (m, n ≥ 0), we define the coproduct body
C q D ⊂ Rm+n+1 as

CqD :=
⋃

0≤λ≤1

(1−λ)C×λD×{λ}= {((1−λ)x, λy, λ) | x ∈C, y ∈ D, 0≤ λ≤ 1}.

Remark 2.4. (i) If both C and D are convex, then CqD = conv(C ∪ D̃), where
D̃ = {0}× D×{1} = {(0, y, 1) | y ∈ D} (in particular, C q D is convex). For
example, [−1, 1]q [−1, 1] = conv{(1, 0, 0), (−1, 0, 0), (0, 1, 1), (0,−1, 1)},
a 3-dimensional simplex. In general, [a, b]q[c, d] is a 3-dimensional simplex.

(ii) If C = {v} is a singleton and D is convex, then C q D reduces to the cone
with vertex v and base D.

The next proposition, which may be checked easily, shows that, in a sense, the
coproduct operation is the dual of product operation. For C ∈ Kn , denote

C A
= { f ∈ aff(Rn) | f (C)⊂ [−1, 1]}.

Proposition 2.5. For any C ∈ Km and D ∈ Kn under the correspondence

(C q D)A
3 f ←→ ( f|C , f|D) ∈ C A

× D A,

where ( f|C , f|D)
(
((1− λ)x, λy, λ)

)
:= (1− λ) f|C(x)+ λ f|D(y), we have

(C q D)A
= C A

× D A.

Now we can generalize (i) in Theorem 2.1 to the coproduct bodies.

Theorem 2.6. For any C ∈ Km and D ∈ Kn (m, n ≥ 0),

as1(C q D)= as1(C)+ as1(D)+ 1,

where we take the convention that as1(C) (or as1(D))= 0 if C (or D) ∈ K0.
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In order to prove Theorem 2.6, more lemmas are needed. For any λ ∈ R, ε ≥ 0
and A ⊂ Rm+n+1, denote

Hλ := Rm
×Rn

×{λ}, Aλ := A∩Hλ, Aλ,ε := [A− εA]λ.

Lemma 2.7. For any C ∈ Km and D ∈ Kn (m, n ≥ 1),

Vm+n+1(C q D)= B(m+ 1, n+ 1)Vm(C)Vn(D),

where B(·, ·) is the Beta function.

Proof. Since [C q D]λ = (1− λ)C × λD×{λ} for 0≤ λ≤ 1, we have

Vm+n([C q D]λ)= Vm+n((1− λ)C × λD)= (1− λ)mλnVm(C)Vn(D).

Hence

Vm+n+1(CqD)=
∫ 1

0
(1−λ)mλnVm(C)Vn(D) dλ= B(m+1, n+1)Vm(C)Vn(D).

�

Lemma 2.8. If o ∈ C and o ∈ D, then for any 0≤ ε < 1 and 0≤ λ≤ 1− ε,

Vm+n([C q D]λ,ε)= Vm+n
(
((1− λ)C − εC))× ((λ+ ε)D− εD)

)
− ε2 P∗(λ, ε),

where P∗(λ, ε) is a polynomial of λ and ε.

Proof. Since

C q D− ε(C q D)

=

⋃
0≤µ,ν≤1

((1−µ)C ×µD×{µ}− ε(1− ν)C × ενD×{εν})

=

⋃
0≤µ,ν≤1

((1−µ)C − ε(1− ν)C)× (µD− ενD)×{µ− εν},

we have

[C q D]λ,ε =
⋃

µ−εν=λ

((1−µ)C − ε(1− ν)C)× (µD− ενD)×{λ}.

Thus,

(2-3) [C q D]λ,ε ⊃ ((1− (λ+ ε))C)× ((λ+ ε)D− εD)×{λ} =: E1

(the set when ν = 1 and so µ= λ+ ε) and

(2-4) [C q D]λ,ε ⊃ ((1− λ)C − εC)× (λD)×{λ} =: E2

(the set when ν = 0 and so µ= λ). We also have

(2-5) [C q D]λ,ε ⊂ ((1− λ)C − εC)× ((λ+ ε)D− εD)×{λ} =: E3,
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since, for 0≤ µ, ν ≤ 1 with µ− εν = λ (notice that λ≤ µ≤ λ+ ε and that o ∈ C ,
o ∈ D),

(2-6) (1−µ)C − ε(1− ν)C ⊂ (1− λ)C − εC,

µD− ενD ⊂ µD− εD ⊂ (λ+ ε)D− εD.

Now, setting

P(λ, ε) := Vm+n(E3)− Vm+n([C q D]λ,ε),

which is a polynomial of λ and ε, we have by (2-3), (2-4), (2-5) and the fact that
(1− λ− ε)C ⊂ (1− λ)C − εC , λD ⊂ (λ+ ε)D− εD,

0≤ P(λ, ε)

≤ Vm+n(E3)− Vm+n(E1 ∪ E2)

= Vm+n(E3)− Vm+n(E1)− Vm+n(E2)+ Vm+n(E1 ∩ E2).

By the polynomial expansion of the Minkowski sum (see Theorem 5.1.6 in
[Schneider 1993]),

(2-7) Vm+n(E3)= Vm((1− λ)C − εC)Vn((λ+ ε)D− εD)

= ((1− λ)m Vm(C)+mε(1− λ)m−1V (C[m− 1])+ ε2 P ′1(λ, ε))

×((λ+ ε)nVn(D)+ nε(λ+ ε)n−1V (D[n− 1])+ ε2 P ′′1 (λ, ε))

= (1− λ)m(λ+ ε)nVm(C)Vn(D)

+nε(1− λ)m(λ+ ε)n−1Vm(C)V (D[n− 1])

+mε(1− λ)m−1(λ+ ε)nV (C[m− 1])Vn(D)+ ε2 P1(λ, ε),

Vm+n(E1)= Vm((1− λ− ε)C)Vn((λ+ ε)D− εD)

= (1− λ− ε)m Vm(C)

×((λ+ ε)nVn(D)+ nε(λ+ ε)n−1V (D[n− 1])+ ε2 P ′2(λ, ε))

= (1− λ− ε)m(λ+ ε)nVm(C)Vn(D)

+nε(1− λ− ε)m(λ+ ε)n−1Vm(C)V (D[n− 1])+ ε2 P2(λ, ε),

Vm+n(E2)= Vm((1− λ)C − εC)Vn(λD)

= ((1−λ)m Vm(C)+mε(1−λ)m−1V (C[m−1])+ε2 P ′3(λ, ε))λ
nVn(D)

= (1− λ)mλnVm(C)Vn(D)

+mε(1− λ)m−1λnV (C[m− 1])Vn(D)+ ε2 P3(λ, ε),

Vm+n(E1 ∩ E2)= Vm((1− λ− ε)C)Vn(λD)= (1− λ− ε)mλnVm(C)Vn(D),
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where P ′i , P ′′i , Pi are polynomials of λ and ε, and

(1− λ)m(λ+ ε)n − (1− λ− ε)m(λ+ ε)n − (1− λ)mλn
+ (1− λ− ε)mλn

= ((1− λ)m − (1− λ− ε)m)(λ+ ε)n − ((1− λ)m − (1− λ− ε)m)λn

= ((1− λ)m − (1− λ− ε)m)((λ+ ε)n − λn)

= ε2 Q1(λ, ε),

nε(1− λ)m(λ+ ε)n−1
− nε(1− λ− ε)m(λ+ ε)n−1

= nε((1− λ)m − (1− λ− ε)m)(λ+ ε)n−1

= ε2 Q2(λ, ε),

mε(1− λ)m−1((λ+ ε)n − λn)= ε2 Q3(λ, ε),

where Qi are polynomials of λ and ε. Thus

Vm+n(E3)− Vm+n(E1)− Vm+n(E2)+ Vm+n(E1 ∩ E2)= ε
2 Q(λ, ε)

for some polynomial Q(λ, ε), and in turn P(λ, ε)=ε2 P∗(λ, ε) for some polynomial
P∗(λ, ε). �

Lemma 2.9. For any C ∈ Km and D ∈ Kn with o ∈ C, o ∈ D (m, n ≥ 1),

d
dε

(∫ 1−ε

0
Vm+n([C q D]λ,ε) dλ

)
|ε=0

= (m+ n+ 1)B(m+ 1, n+ 1)

×(Vm(C)Vn(D)+ V (C[m− 1])Vn(D)+ Vm(C)V (D[n− 1])).

Proof. By Lemma 2.8 and (2-7), we have

Vm+n([C q D]λ,ε)

= Vm+n(E3)− ε
2 P∗(λ, ε)

= (1−λ)m(λ+ε)nVm(C)Vn(D)+mε(1−λ)m−1(λ+ε)nV (C[m−1])Vn(D)

+nε(λ+ ε)n−1(1− λ)m Vm(C)V (D[n− 1])+ ε2 P1(λ, ε)− ε
2 P∗(λ, ε).

Thus, since

d
dε

(∫ 1−ε

0
(1− λ)m(λ+ ε)ndλ

)
|ε=0
= nB(m+ 1, n),

d
dε

(
ε

∫ 1−ε

0
(1− λ)m−1(λ+ ε)ndλ

)
|ε=0
= B(m, n+ 1),



THE MEASURES OF ASYMMETRY FOR COPRODUCTS OF CONVEX BODIES 411

d
dε

(
ε

∫ 1−ε

0
(1− λ)m(λ+ ε)n−1dλ

)
|ε=0
= B(m+ 1, n),

d
dε

(
ε2
∫ 1−ε

0
(P1(λ, ε)− P∗(λ, ε))dλ

)
|ε=0
= 0,

and because m B(m, n+ 1)= nB(m+ 1, n)= (m+ n+ 1)B(m+ 1, n+ 1), we get

d
dε

(∫ 1−ε

0
Vm+n([C q D]λ,ε) dλ

)
|ε=0

= nB(m+ 1, n)Vm(C)Vn(D)+m B(m, n+ 1)V (C[m− 1])Vn(D)

+nB(m+ 1, n)Vm(C)V (D[n− 1])

= (m+ n+ 1)B(m+ 1, n+ 1)

×(Vm(C)Vn(D)+ V (C[m− 1])Vn(D)+ Vm(C)V (D[n− 1])). �

The following simple fact will be needed in the proof of Theorem 2.6.

Fact 2.10. Suppose 0≤ u(t)≤ v(t) and u(0)= v(0)= 0. If

dv(t)
dt+ |t=0

= 0,

then

0≤ lim
t→0+

u(t)− u(0)
t − 0

≤ lim
t→0+

v(t)− v(0)
t − 0

= 0,

i.e.,
du(t)
dt+ |t=0

= 0
(

or
du(t)

dt |t=0
= 0 if it exists

)
,

where d/dt+ denotes the right derivative.

Proof of Theorem 2.6. If m= n= 0, then as1(C)= as1(D)= 0 and CqD is just the
segment with ends o and (0, 0, 1). Hence as1(C q D)= 1= as1(C)+ as1(D)+ 1.

If m = 0, n ≥ 1 (or m ≥ 1, n = 0), it reduces to (i) in Theorem 2.1 (see (ii) in
Remark 2.4).

Now we assume m, n ≥ 1 and o ∈ C, o ∈ D (since as1(·) is affine invariant).
Notice that C q D− ε(C q D) is located in between H−ε and H1 since C q D is
located in between H0 and H1.

By the polynomial expansion of the Minkowski sum, we have that

(2-8) (m+ n+ 1)V ((C q D)[m+ n])

=
d
dε

Vm+n+1(C q D− εC q D)|ε=0

=
d
dε

[(∫ 0

−ε

+

∫ 1−ε

0
+

∫ 1

1−ε

)
Vm+n([C q D]λ,ε) dλ

]
|ε=0

.
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In order to compute

d
dε

(∫ 0

−ε

Vm+n([C q D]λ,ε) dλ
)
|ε=0

,

we observe that if −ε ≤ λ≤ 0 and µ− εν = λ, then

((1−µ)C − ε(1− ν)C)× (µD− ενD)⊂ (C − εC)× ((λ+ ε)(D− D)+ λD),

since (1−µ)C − ε(1− ν)C ⊂ C − εC and

µD− ενD = µD− (µ− λ)D = µ(D− D)− λD ⊂ (λ+ ε)(D− D)+ λD

(notice that −λ≥ 0, o ∈ D− D and that µ− εν = λ implies µ≤ λ+ ε). So
(2-9)

0≤
∫ 0

−ε

Vm+n([C q D]λ,ε) dλ≤
∫ 0

−ε

Vm(C − εC)Vn((λ+ ε)(D− D)+ λD) dλ.

Denote f (λ, ε) := Vm(C−εC)Vn((λ+ε)(D−D)+λD), which is a polynomial
of λ and ε by the polynomial expansion of the Minkowski sum, and f (0, 0)= 0.
Thus

d
dε

(∫ 0

−ε

f (λ, ε) dλ
)
|ε=0
= f (0, 0)= 0,

which, together with (2-9) and Fact 2.10, leads to

(2-10)
d
dε

(∫ 0

−ε

Vm+n([C q D]λ,ε) dλ
)
|ε=0
= 0.

Similarly, we have

(2-11)
d
dε

(∫ 1

1−ε
Vm+n([C q D]λ,ε) dλ

)
|ε=0
= 0.

Now, (2-8), (2-10), (2-11) and Lemma 2.9 show that

(m+ n+ 1)V ((C q D)[m+ n])

=
d
dε

(∫ 1−ε

0
Vm+n([C q D]λ,ε) dλ

)
|ε=0

= (m+ n+ 1)B(m+ 1, n+ 1)

×(Vm(C)Vn(D)+ V (C[m− 1])Vn(D)+ Vm(C)V (D[n− 1])),
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which, together with (iii) in Remark 1.2 and Lemma 2.7, leads to

as1(C q D)=
V ((C q D)[m+ n])

Vm+n+1(C q D)

=
Vm(C)Vn(D)+ V (C[m− 1])Vn(D)+ Vm(C)V (D[n− 1])

Vm(C)Vn(D)
= 1+ as1(C)+ as1(D). �

3. The Minkowski measure of coproducts of convex bodies

In this section, we will show that Theorem 2.6 also holds for the well-known
Minkowski measure as∞.

First, given C ∈ Kn , for any fixed x ∈ int(C), define

γ (C, x) := sup{ f (x) | f ∈ Ca
},

where Ca
:= { f ∈ aff(Rn) | f (C)= [−1, 1]}. It is easy to check (see [Guo 2005])

that µ∞(C, x)= (1+ γ (C, x))/(1− γ (C, x)). Defining a measure of asymmetry
As(C) of C by

As(C)= inf
x∈int(C)

γ (C, x),

we have 0≤ As(C)≤ (n− 1)/(n+ 1) for C ∈ Kn and

As(C)=
as∞(C)− 1
as∞(C)+ 1

or as∞(C)=
1+As(C)
1−As(C)

.

Then x is an ∞-critical point if and only if it is an As-critical point, and it is
reasonable to study the Minkowski measure as∞(C) in terms of γ (C, x) and As(C).

Definition. For C ∈Km and D ∈Kn , we define the affine direct sum of Ca and Da ,
Ca � Da

⊂ aff(Rm)× aff(Rn), by

Ca � Da
:= ({1C}× Da)∪ (Ca

×{1D}),

where 1C and 1D denote the constant function 1 respectively on Rm and Rn .

Under the same correspondence as in Proposition 2.5, Ca � Da can be identified
with a subset of (C q D)a , and it is easy to check that

Ca � Da ( (C q D)a ( (C q D)A.

Lemma 3.1. Given C ∈ Km and D ∈ Kn , for any fixed z = ((1− λ)x, λy, λ) in
int(C q D) (i.e., x ∈ ri(C), y ∈ ri(D) and 0< λ < 1),

γz := γ (C q D, z)= sup
( f,g)∈(CqD)a

( f, g)(z)= sup
( f,g)∈Ca�Da

( f, g)(z),

where f ∈ aff(Rm), g ∈ aff(Rn) and ( f, g)(z) := (1− λ) f (x)+ λg(y).
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Proof. By a standard compactness argument, there is ( f0, g0) ∈ (CqD)a such that

(3-1) γz = ( f0, g0)(z)= (1− λ) f0(x)+ λg0(y).

Now we will show that f0 = 1C and g0 ∈ Da or g0 = 1C and f0 ∈ Ca .
To see this, we observe first that f0(C)⊂ [−1, 1], g0(D)⊂ [−1, 1] and

(3-2) ( f0, g0)(C q D)= conv( f0(C)∪ g0(D)),

which can be easily checked by the definition of C q D (in fact, this holds for any
( f, g) ∈ (C q D)a).

Then we claim that 1 ∈ f0(C) and 1 ∈ g0(D). Suppose it is not true that, say,
1 /∈ f0(C). Then (3-2) implies that 1 ∈ g0(D) since ( f0, g0)(CqD)= [−1, 1], and
either −1 is in f0(C) or g0(D). However, we will see that in either case there is a
contradiction.

If −1 ∈ g0(D), then g0 ∈ Da . Thus (1C , g0) ∈ (C q D)a and we have the
inequality (1C , g0)(z) > ( f0, g0)(z), which contradicts (3-1).

If −1 ∈ f0(C), then we can find f1 ∈ Ca such that { f1 = −1} = { f0 = −1},
which implies that f1(x) > f0(x) (since 1 /∈ f0(C)). Thus ( f1, g0) ∈ (Cq D)a and
( f1, g0)(z) > ( f0, g0)(z) which contradicts (3-1) too. Hence we have confirmed
our claim.

Now, with a similar argument, we can show that −1 is in f0(C) or g0(D).
If−1∈ g0(D), then g0∈Da , and we must have f0=1C since (1C , g0)∈ (CqD)a

and (1C , g0)(z) > ( f, g0)(z) for all f 6= 1C . Thus ( f0, g0)= (1C , g0) ∈ Ca � Da .
Similarly, if −1∈ f0(C), then g0= 1D and so ( f0, g0)= ( f0, 1D)∈Ca �Da . �

Now we can prove the following generalization of Theorem 2 in [Guo and Kaijser
2002].

Theorem 3.2. For any C ∈ Km and D ∈ Kn (m, n ≥ 0),

as∞(C q D)= as∞(C)+ as∞(D)+ 1,

where we take the convention that as∞(C)= 0 for C ∈K0. Moreover, all∞-critical
points z∗ of C q D have the form

z∗ =
1− γy

2− γx − γy
x∗+

1− γx

2− γx − γy
y∗,

where x∗ = (x, 0, 0) with x being an∞-critical point of C , and y∗ = (0, y, 1) with
y being an∞-critical point of D, and γx := γ (C, x), γy := γ (D, y).

Proof. If m = n = 0, the same argument as in the proof of Theorem 2.6 can be
applied.

If m = 0, n ≥ 1 or m ≥ 1, n = 0, it reduces to Theorem 2 in [Guo and Kaijser
2002].
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Now assume m ≥ 1, n ≥ 1. We first prove a general result: for any x̄ := (x, 0, 0)
with x ∈ ri(C) and ȳ := (0, y, 1) with y ∈ ri(D),

(3-3) min
z∈(x̄,ȳ)

γ (C q D, z)= γ (C q D, z0)=
1− γxγy

2− γx − γy
,

where (x̄, ȳ) is the open interval with x̄, ȳ as ends and

z0 =
1− γy

2− γx − γy
x̄ +

1− γx

2− γx − γy
ȳ.

In fact, for any (1, g), ( f, 1) ∈ Ca � Da ,

(1, g)(z0)=
1− γy

2− γx − γy
+

1− γx

2− γx − γy
g(y)

≤
1− γy

2− γx − γy
+

1− γx

2− γx − γy
γy =

1− γxγy

2− γx − γy
,

( f, 1)(z0)=
1− γy

2− γx − γy
f (x)+

1− γx

2− γx − γy

≤
1− γy

2− γx − γy
γx +

1− γx

2− γx − γy
=

1− γxγy

2− γx − γy
,

with equality in the first formula if g ∈ Da such that g(y) = γy and equality in
the second formula if f ∈ Ca such that f (x) = γx . So by Lemma 3.1, we have
γz0 = (1− γxγy)/(2− γx − γy).

Now, for z = λx̄ + (1− λ)ȳ ∈ [x̄, ȳ], if λ > (1− γy)/(2− γx − γy), we choose
g0 ∈ Da such that g0(y)= γy . Then

(1, g0)(z)= λ+ (1− λ)γy = (1− γy)λ+ γy

> (1− γy)
1− γy

2− γx − γy
+ γy =

1− γxγy

2− γx − γy
= γz0,

which implies that γz > γz0 .
If λ < (1− γy)/(2− γx − γy), then, noticing that γx − 1< 0, we have

( f0, 1)(z)= λγx + (1− λ)= (γx − 1)λ+ 1

> (γx − 1)
1− γy

2− γx − γy
+ 1=

1− γxγy

2− γx − γy
= γz0,

which also implies that γz > γz0 . Hence (3-3) is confirmed.
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Finally, since it is easy to check that µ∞(C, x)= (1+ γ (C, x))/(1− γ (C, x)),
we can use the fact that the function (1+ t)/(1− t) is increasing on [0, 1), to get

µ∞(C q D, z0)= min
z∈(x̄,ȳ)

µ∞(C q D, z)=
1+ γz0

1− γz0

=

(
1+

1− γxγy

2− γx − γy

)(
1−

1− γxγy

2− γx − γy

)−1

=
3− γx − γy − γxγy

1− γx − γy + γxγy
=

1+ γx

1− γx
+

1+ γy

1− γy
+ 1

= µ∞(C, x)+µ∞(D, y)+ 1.

It follows that

as∞(CqD)= min
x∈ri(C),y∈ri(D)

(µ∞(C, x)+µ∞(D, y)+1)= as∞(C)+ as∞(D)+1

and all∞-critical points z∗ of C q D have the form

z∗ =
1− γy

2− γx − γy
x∗+

1− γx

2− γx − γy
y∗,

where x∗ = (x, 0, 0) with x being an∞-critical point of C and y∗ = (0, y, 1) with
y being an∞-critical point of D. �

Remark 3.3. Let A := {C ∈ Kk
| as1(C)= as∞(C), k = 0, 1, 2, . . . } be the class

of convex bodies whose p-measures coincide for all p, in all dimensions. Then A
is closed under invertible affine transformations and coproducts of convex bodies,
as follows from Theorems 2.6 and 3.2. Observe also that a simplex in k dimensions
can be considered as the (k+ 1)-fold coproduct of its vertices (trivially symmetric
convex bodies in 0 dimensions). Thus, we have naturally the following questions:

Question 1. Is the class of symmetric convex bodies a generating set for A under
invertible affine transformations and coproducts?

Question 2. Does as1(C) = as∞(C) hold if as1(C) = as2(C) (or, generally, if
asp1(C)= asp2(C) for distinct p1, p2)?
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