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ON THE DENSITY THEOREM FOR THE SUBDIFFERENTIAL
OF CONVEX FUNCTIONS ON HADAMARD SPACES

MINA MOVAHEDI, DARYOUSH BEHMARDI

AND SEYEDEHSOMAYEH HOSSEINI

We introduce a dual space for any geodesically complete Hadamard space.
By using this notion we give a new definition of the subdifferential of convex
functions on geodesically complete Hadamard spaces. Some properties of
this subdifferential, such as a density theorem, are proved.

1. Introduction

Nondifferentiability appears naturally in different areas of mathematics and arises
explicitly in the description of various modern technological systems. Nonsmooth
analysis studies the local behavior of nondifferentiable functions and sets lacking
smooth boundaries. Generalized gradients or subdifferentials refer to several set-
valued replacements for the usual derivative which are used in developing differential
calculus for nonsmooth functions.

Nondifferentiable functions are often considered on finite-dimensional or infinite-
dimensional Banach spaces. Here, the linear structure plays a central role. Attempts
have been made to replace Banach spaces with Riemannian manifolds and develop
a subdifferential calculus; see [Hosseini and Pouryayevali 2011; 2013a; 2013b;
2013c]. Shafrir [1992] gave a definition of the coaccretive subdifferential of a
convex function defined on a Hilbert ball. His approach involves the structure
of (B, ρ) as a Hilbert manifold, where ρ is the hyperbolic metric on B; see also
[Kopecká and Reich 2010, p. 188].

Unlike Riemannian manifolds, Hadamard spaces are not equipped with a Rie-
mannian metric. Hence, we need new tools to construct a suitable dual space
in order to define subdifferentials of functions on Hadamard spaces. B. Ahmadi
Kakavandi and M. Amini [2010] defined a dual space for an Hadamard space using
the concept of bound vectors. They defined a pseudometric D on R×X ×X , where
X is an Hadamard space, and considered the pseudometric space (R×X ×X , D)
as a subspace of the pseudometric space (Lip(X ,R), L) of all real-valued Lipschitz
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functions. Then, they defined an equivalence relation on R×X ×X , where the
equivalence class of (t, a, b) is

[t
−→
ab] :=

{
s
−→
cd : t〈

−→
ab,
−→
xy〉 = s〈

−→
cd ,
−→
xy〉 for x, y ∈ X

}
.

After introducing a dual metric space to X ,

X ∗ :=
{
[t
−→
ab] : (t, a, b) ∈ R×X ×X

}
,

they defined a notion of the subdifferential for a proper function on an Hadamard
space.

Here we present a new dual for any Hadamard space and prove a density theorem
for the subdifferential of lower semicontinuous convex functions on Hadamard
spaces, generalizing the classical one for Hilbert spaces [Clarke et al. 1998]. Our
approach differs from the one in [Ahmadi Kakavandi and Amini 2010]: we use
the notion of geodesics, defining the dual X ∗ as the disjoint union of the sets X ∗x
over x ∈ X , where X ∗x contains all unit speed geodesics of X starting at x . The
subdifferential of a function f at a point x is defined as a subset of X ∗x . This property
is not visible in Ahmadi Kakavandi and Amini’s definition of the subdifferential.
This leads us to the claim that the subdifferential of convex functions defined in
this paper is an analogue of the concept of the subdifferential of convex functions
in Riemannian manifolds and Hilbert balls.

We assume that X is a geodesically complete Hadamard space with a metric d.
Recall that a geodesic in X is a curve of constant speed which is locally minimizing.
We say X has nonpositive curvature (in the sense of Alexandrov) if every point
p ∈ X has a neighborhood U with the following properties:

(i) For any two points x, y ∈U there is a geodesic σ y
x : [0, 1] →U from x to y

of length d(x, y).

(ii) For any triple of points x, y, z ∈U , we have

d2(z,m)≤ 1
2(d

2(z, x)+ d2(z, y))− 1
4 d2(x, y),

where σ y
x is as in (i) and m = σ y

x
( 1

2

)
is the point halfway between x and y.

We say X is an Hadamard space if X is complete and the assertions (i) and (ii)
above hold for all points x, y, z ∈ X . Hadamard spaces are uniquely geodesic, i.e.,
there exists a unique geodesic between any pair of points.

In this paper, we assume that X is a geodesically complete Hadamard space,
meaning that every geodesic in X is a subarc of a geodesic which is parametrized
on the whole real line. Let E2 be the Euclidean space equipped with the metric

dE2((x1, x2), (y1, y2))= ((x1− y1)
2
+ (x2− y2)

2)1/2.
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A geodesic triangle 4(x, y, z) in X is the union of three points x, y, z ∈ X and
the geodesic segments joining them. The comparison triangle for 4(x, y, z), is
a triangle 4(x̄, ȳ, z̄) in E2 such that d(x, y) = dE2(x̄, ȳ), d(x, z) = dE2(x̄, z̄) and
d(z, y) = dE2(z̄, ȳ). According to this notation: if a is a point on the geodesic
segment joining x, y, then ā is its comparison point provided that d(x, a)=dE2(x̄, ā).
Also, the comparison angle 6 x̄(ȳ, z̄) is the interior angle of the comparison triangle
4(x̄, ȳ, z̄) at x̄ .

The first step in defining a subdifferential for a function defined on an Hadamard
space X is to introduce a dual space X ∗ for X . We denote by X ∗ the set of all unit
speed geodesics of X , i.e., X ∗ =

∐
x∈X X ∗x where X ∗x is the set of all unit speed

geodesics of X starting at x . Consider the map 〈 · , · 〉 : X ∗x ×X ∗x → R defined by

〈γ y
x , γ

z
x 〉 =

1
2 [d

2(x, z)+ d2(x, y)− d2(y, z)].

It is clear that (〈γ y
x , γ

y
x 〉)

1/2
= d(x, y); see [Berg and Nikolaev 2008] for more

details. Let γ y
x ∈ X∗x , σwz ∈ X∗z and D := dom(σwz )= dom(γ y

x ). Then we say that
γ

y
x is parallel to σwz if there exists C ∈ R with d(σwz (t), γ

y
x (t))= C for all t ∈ D.

2. The subdifferential of a convex function

In this section, we present a new definition of the subdifferential of a convex function
on an Hadamard space. Note that the function f :X→R is called convex if, for any
geodesic γ , the composition f ◦ γ is convex (in the usual sense). Let us start with
the definition of the directional derivative for functions on geodesically complete
Hadamard spaces.

Definition 2.1. Let f :X→R be a real-valued function. The directional derivative
D f (x; γ z

x ) of f at x ∈ X in the direction γ z
x ∈ X ∗x for some z ∈ X is defined as

(2-1) D f (x; γ z
x ) := lim

t↓0

f (γ z
x (t))− f (x)

t
.

We will use the following remark in the proof of Theorem 2.4.

Remark 2.2. In the case X =R, the directional derivative of f at x in the direction
of γ x+b

x is defined by

D f (x; γ x+b
x )= lim

t↓0

f (x + t)− f (x)
t

for every b ∈ (x,∞). This is the same as the usual directional derivative of f at x
in the direction 1, denoted by D f (x; 1).

Theorem 2.3. Let f : X → R be a convex function on X and consider γ z
x ∈ X ∗x .
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(i) The function Q : dom(γ z
x )∩ (0,∞)→ R defined by

Q(t)=
f (γ z

x (t))− f (x)
t

is increasing.

(ii) D f (x; γ z
x ) exists and is equal to inft Q(t).

(iii) D f (x; γ x
x )= 0.

Proof. (i) Since f is convex, the function g(t)= f (γ z
x (t)), defined on dom(γ z

x ),
is convex. If 0< t1 < t2, we have

g(t1)− g(0)
t1

≤
g(t2)− g(0)

t2
.

This implies that

f (γ z
x (t1))− f (x)

t1
≤

f (γ z
x (t2))− f (x)

t2
,

which means that Q is increasing.

(ii) Assertion (i) implies that for any decreasing sequence of positive numbers {tn}
which converges to zero, the sequence {Q(tn)} is increasing. Hence, {Q(tn)} has a
limit, namely D f (x; γ z

x )= inft Q(t).

(iii) For every x ∈ X and t , we have γ x
x (t)= x . Hence

D f (x; γ x
x )= lim

t↓0

f (γ x
x (t))− f (x)

t
= 0. �

Theorem 2.4 (mean value theorem). Suppose that x, y ∈ X , and that f : X −→ R

is convex. Then there exists t0 ∈ (0, d(x, y)) such that

f (y)− f (x)
d(x, y)

≤ D f (γ y
x (t0); σ

y
γ

y
x (t0)

).

Proof. Let γ y
x be the unit speed geodesic joining x to y. Then, f ◦γ y

x is a real-valued
convex function on [0, d(x, y)]. By the mean value theorem for convex functions
from R to R, there exist t0 ∈ (0, d(x, y)) and z ∈ ∂ f ◦ γ y

x (t0) such that

f ◦ γ y
x (d(x, y))− f ◦ γ y

x (0)
d(x, y)

= z,

where ∂ f ◦ γ y
x (t0) denotes the subdifferential of the real-valued function f ◦ γ y

x

at t0. We set w = γ y
x (t0). For the unit speed geodesic σ y

w,

D f (w; σ y
w)= lim

t↓0

f ◦ σ y
w(t)− f ◦ σ y

w(0)
t

= D f ◦ σ y
w(0; 1).

Since the geodesic connecting w and y is unique, we have σ y
w(t)= γ

y
x (t0+ t) for
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every t ∈[0, d(w, y)]. Hence, D f ◦σ y
w(0; 1)=D f ◦γ y

x (t0; 1) and z≤D f ◦γ y
x (t0; 1).

Therefore,
f (y)− f (x)

d(x, y)
≤ D f (γ y

x (t0); σ
y
γ

y
x (t0)

). �

Definition 2.5. Let f : X →R be a convex function. A geodesic γ z
x ∈ X ∗x is called

the subgradient of f at x if

f (y)≥ f (x)+〈γ z
x , σ

y
x 〉, ∀y ∈ X , ∀σ y

x ∈ X
∗

x .

The set-valued map ∂ f : X → X ∗ is called the subdifferential of f and we call
∂ f (x) the subdifferential of f at x : it is the set of all subgradients of f at x .

It is worth pointing out that ∂ f (x)⊂ X ∗x for every x ∈ X . A roughly analogous
concept of subdifferential is introduced and investigated on the Hilbert ball in [Reich
and Shafrir 1990].

Theorem 2.6. Let f : X → R be a convex function. Then γ x
x ∈ ∂ f (x) if and only if

x is a minimum point of f .

Proof. We know that 〈γ x
x , σ

y
x 〉 = 0 for every x, y ∈ X and σ y

x ∈ X ∗x . Hence, if
γ x

x ∈ ∂ f (x), then

f (y)≥ f (x)+〈γ x
x , σ

y
x 〉 = f (x), ∀y ∈ X , ∀σ y

x ∈ X
∗

x ,

which means that x is a minimum point of f .
Now assume that x is a minimum point of f , so f (y)≥ f (x) for every y ∈ X .

Then
f (y)≥ f (x)+〈γ x

x , σ
y
x 〉 = f (x), ∀y ∈ X , ∀σ y

x ∈ X
∗

x ,

and the proof is complete. �

Theorem 2.7. Let f : X → R be a convex function. If D f (x; σ y
x ) ≥ 〈γ

z
x , σ

y
x 〉 for

all y ∈ X and σ y
x ∈ X ∗x , then γ z

x ∈ ∂ f (x).

Proof. The relations D f (x; σ y
x )≥ 〈γ

z
x , σ

y
x 〉 and

f (y)− f (x)≥
f (σ y

x (s))− f (x)
s

≥ D f (x; σ y
x )

imply f (y)− f (x)≥ 〈γ z
x , σ

y
x 〉, and hence γ z

x ∈ ∂ f (x). �

Corollary 2.8. Let f : X → R be a convex function. Then x is a minimum point of
f if and only if D f (x; γ z

x )≥ 0 for each γ z
x ∈ X ∗x .

Proof. If x is a minimum point, then f (γ z
x (t))≥ f (x) for each z ∈X and t ∈ domγ z

x .
Hence, D f (x; γ z

x )≥ 0. The converse is obvious by Theorem 2.7. �
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Lemma 2.9. For each triple of points x, y, z ∈ X , there exists w ∈ X such that
d(x, y)= d(z, w) and γ y

x is parallel to σwz .

Proof. Since X is geodesically complete, there is a unit speed geodesic ray γx

connecting x and y. By Proposition 9.2.28 in [Burago et al. 2001], there exists a
unique unit speed geodesic ray σz starting at z, parallel to γx . Define w ∈ X by
w = σz(d(x, y)). Then: d(x, y)= d(w, z) and γ y

x is parallel to σwz . Suppose that
σ vz is another geodesic segment parallel to γ y

x . Since it is also parallel to σwz and
d(σwz (0), σ

v
z (0))= 0, we have d(σwz (t), σ

v
z (t))= 0 for each t ∈ [0, d(x, y)]. �

We use the notation γ y
x ‖ γ

w
z when γ y

x is parallel to γwz for x, y, z, w ∈ X . We
also denote by xy the line segment between x, y ∈ E2.

Definition 2.10. (i) The function Pxy : X ∗x −→ X ∗y defined by Pxy(γ
w
x )= γ

v
y is

called the parallel translation of γwx along γ y
x . Here, v is selected such that

d(x, w)= d(y, v) and γwx is parallel to γ vy .

(ii) To define the sum of γ a
x and γ b

x , we pick a point c such that by Pxa(γ
b
x )= γ

c
x

and put γ a
x + γ

b
x := γ

c
x .

(iii) We define
−γ y

x := Pyx(γ
x
y ),

γ a
x − γ

b
x := γ

a
x + (−γ

b
x ).

Theorem 2.11. Suppose that γ y
x = Pax(γ

b
a ) and γ z

x = Pax(γ
c
a ). Then:

(i) d(b, c)= d(y, z),

(ii) 6 a(b, c)= 6 x(y, z),

(iii) 〈γ b
a , γ

c
a 〉 = 〈γ

y
x , γ

z
x 〉,

(iv) 〈−γ y
x , γ

z
x 〉 = 〈γ

y
x ,−γ

z
x 〉.

Proof. Let 4(ā, b̄, c̄) and 4(x̄, ȳ, z̄) be the comparison triangles for 4(a, b, c) and
4(x, y, z) respectively. By definition, d(γ b

a (t), γ
y

x (t)) = dE2(γ b
a (t), γ

y
x (t)) = C

where C is constant for each t . We can assume that āb̄ ‖ x̄ ȳ and āc̄ ‖ x̄ z̄.
This means that 6 ā(b̄, c̄) and 6 x̄(ȳ, z̄) are two angles with parallel sides. They

are therefore congruent or supplementary. But since dE2(γ b
a (t), γ

y
x (t)) is constant

for each t , the two angles are congruent.
By a similar argument, we get 6 ā(γ b

a (t), γ c
a (t)) = 6 x̄(γ

y
x (t), γ z

x (t)) for each t .
Thus, by definition, 6 a(b, c) = 6 x(y, z). Moreover, 4(ā, b̄, c̄) is congruent to
4(x̄, ȳ, z̄). Then: dE2(b̄, c̄) = dE2(ȳ, z̄) and hence d(b, c) = d(y, z). Now by (i)
and the definition of 〈 · , · 〉, (iii) is obvious.

To prove (iv), suppose that −γ z
x = γ

z′
x and −γ y

x = γ
y′

x . Let 41 = 4(x1, y′, z)
and 42 =4(x2, y, z ′) be the comparison triangles for 4(x, y′, z) and 4(x, y, z′)
respectively. Since γ y′

x ‖ γ
x
y and γ z′

x ‖ γ
x
z , we can consider 41 and 42 such that
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x1 y′ is parallel to yx2 and x2z ′ is parallel to zx1. Then: 6 x1(z, y′) = 6 x2(y, z′).
Therefore, 41 and 42 are congruent. Hence, dE2(z′, y)= dE2(y′, z). It means that
d(z ′, y)= d(y′, z). Now we have

〈−γ y
x , γ

z
x 〉 = 〈γ

y′
x , γ

z
x 〉 =

1
2 [d

2(x, z)+ d2(y′, x)− d2(y′, z)]

=
1
2 [d

2(x, z′)+ d2(x, y)− d2(z′, y)] = 〈γ y
x , γ

z′
x 〉 = 〈γ

y
x ,−γ

z
x 〉. �

Lemma 2.12. Let f :X→R be a convex function. Then ∂ f :X→X ∗ is monotone;
that is

〈γ y
x , σ

z
x − Pyx(η

n
y)〉 ≤ 0, ∀x, y ∈ X , ∀ηn

y ∈ ∂ f (y), ∀σ z
x ∈ ∂ f (x).

Proof. Suppose that ηn
y ∈ ∂ f (y) and σ z

x ∈ ∂ f (x). Thus f (y)− f (x)≥ 〈γ y
x , σ

z
x 〉 and

f (x)− f (y)≥ 〈γ x
y , η

n
y〉. Note that

〈γ x
y , η

n
y〉 = 〈Pyx(η

n
y), Pyx(γ

x
y )〉 = 〈−Pyx(η

n
y), γ

y
x 〉.

Therefore

〈γ y
x , σ

z
x − Pyx(η

n
y)〉 ≤ 0, ∀x, y ∈ X , ∀ηn

y ∈ ∂ f (y), ∀σ z
x ∈ ∂ f (x). �

Let S be a nonempty closed convex subset of X and πS : X −→ S be the nearest
point map onto S.

Now we need some lemmas to prove the density theorem for the subdifferential
of a convex lower semicontinuous function on X .

Lemma 2.13. Let f :X →R∪{∞} be a proper, convex and lower semicontinuous
function. Suppose that (e, re) ∈ (epi( f ))c and X0 = (x0, f (x0)) = πepi( f )(e, re)

with f (x0)− re = 1. Then: ∂ f (x0) 6=∅.

Proof. Set E = (e, re). By Proposition 2.4 in [Bridson and Haefliger 1999], for
each A= (a, ra) ∈ epi( f ) not equal to X0, we have 6 X0(E, A)≥ π

2 . Consequently:
ρ2(A, X0)+ ρ

2(X0, E) ≤ ρ2(A, E), where ρ is the metric of the space X × R

defined by
ρ2((x1, r1), (x2, r2))= d2(x1, x2)+ (r2− r1)

2.

Thus

d2(a, x0)+ d2(x0, e)+ ( f (x0)− ra)
2
+ ( f (x0)− re)

2
≤ d2(a, e)+ (re− ra)

2.

Therefore, we can easily find

(2-2) 1
2 [d

2(a, x0)+ d2(x0, e)− d2(a, e)] ≤ (ra − f (x0))( f (x0)− re).

Since f (x0)− re = 1, we get

〈γ e
x0
, γ a

x0
〉 ≤ ra − f (x0)
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for all a ∈ dom f . Put ra = f (a). Clearly, the above inequality holds for each
a /∈ dom f . Hence, γ e

x0
∈ ∂ f (x0). �

It is worth pointing out that since ra in (2-2) (in the proof of Lemma 2.13) can
be selected large enough, we get f (x0)≥ re.

Remark 2.14. The notation (1−t)a⊕tb is used for some results on Hilbert balls in
[Shafrir 1992], on hyperbolic spaces in [Goebel and Reich 1984; Reich and Shafrir
1990] and on Hadamard spaces in [Dhompongsa and Panyanak 2008] to denote the
unique point at such that d(a, at)= td(a, b) and d(at , b)= (1− t)d(a, b). Now,
if (x0, y0) and (x1, y1) are two points in X ×Y and (x, y) is a point on the unique
geodesic joining them, (x, y) is the unique point satisfying the equations

ρ((x0, y0), (x, y))= tρ((x0, y0), (x1, y1)),

ρ((x1, y1), (x, y))= (1− t)ρ((x0, y0), (x1, y1))

for some t ∈ [0, 1]. The point

(γ x1
x0
(td(x0, x1)), γ

y1
y0
(td(y0, y1)))= ((1− t)x0⊕ t x1, (1− t)y0⊕ t y1)

has the same property. Hence

(1− t)(x0, y0)⊕ t (x1, y1)= ((1− t)x0⊕ t x1, (1− t)y0⊕ t y1)

for all t ∈ [0, 1].

If x, y ∈ X , we denote by [[x, y]] the set {γ y
x (t) : t ∈ domγ y

x }.

Lemma 2.15. Let f :X →R∪{∞} be a proper, convex and lower semicontinuous
function. Suppose that (y0, r0)∈ (epi( f ))c and X0= (x0, f (x0))=πepi( f )((y0, r0))

and x0 ∈ int(dom f ), where dom f = {x ∈ X | f (x) <∞}. Then: r0 6= f (x0).

Proof. Assume by contradiction that r0 = f (x0). Put Y0 = (y0, r0). Let r be
a positive number so that B(x0, r) ⊆ dom f . There is a λ0 ∈ [0, 1] such that
γ

y0
x0 (λd(x0, y0)) ∈ B(x0, r) for the unit speed geodesic γ y0

x0 and for each λ ∈ [0, λ0].
First suppose that there exists x1 ∈ B(x0, r)∩ [[x0, y0]] such that f (x0) < f (x1).
Hence, x1 = γ

y0
x0 (λ1d(x0, y0)) for some λ1 ∈ (0, λ0). Put X1 = (x1, f (x1)) ∈ epi f .

Then,
ρ2(X1, X0)+ ρ

2(X0, Y0)≤ ρ
2(X1, Y0).

Putting α = ( f (x1)− f (x0))
2, we have

ρ2(X0, X1)= d2(x0, x1)+α = λ
2
1d2(x0, y0)+α,(2-3)

ρ2(Y0, X1)= d2(y0, x1)+α = (1− λ1)
2d2(x0, y0)+α,(2-4)

ρ2(X0, Y0)= d2(x0, y0).(2-5)
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Hence, by (2-3), (2-4) and (2-5), we have

λ2
1d2(x0, y0)+α+ d2(x0, y0)≤ (1− λ1)

2d2(x0, y0)+α.

Thus λ2
1+ 1≤ (1− λ1)

2, and we get the contradiction λ1 ≤ 0. Next, consider the
case that f (x)≤ f (x0) for each x ∈ B(x0, r)∩ [[x0, y0]]. Let

Yn = (1− 1
n )X0⊕

1
n Y0 = (yn, rn).

By Proposition 2.4 in [Bridson and Haefliger 1999], X0 is the nearest point of
epi( f ) to each Yn , and {Yn} is a sequence converging to X0. If y0 ∈ B(x0, r), then
f (y0) ≤ f (x0). Thus (y0, r0) = (y0, f (x0)) ∈ epi( f ), which is a contradiction.
Therefore, y0 ∈ (B(x0, r))c. By Remark 2.14 we have rn = f (x0) for every n,
so a similar argument for each Yn shows that yn ∈ (B(x0, r))c. This means that
{yn} is a sequence in (B(x0, r))c converging to x0. Thus we get the contradiction
x0 /∈ B(x0, r). �

Lemma 2.16. Let E ′ ∈ (epi( f ))c and X0 = (x0, f (x0))= πepi( f )(E ′). Then there
exists E = (e, re) ∈ (epi( f ))c such that f (x0)− re = 1 and X0 = πepi( f )(E).

Proof. Let γ be the geodesic joining X0 to E ′. Put E ′ = (e′, re′). First suppose
that f (x0)− re′ ≥ 1. Since γ is continuous by the intermediate value theorem, the
assertion is obvious.

Next, suppose that f (x0)− re′ < 1. Put

l = ρ(X0, E ′) and s =
l

f (x0)− re′
.

Let γ be the extension of γ to [0,∞) that is the unit speed geodesic ray emanating
from X0. Put E = γ (s). We claim that E is the desired point. If E = (e, re),
then one has E ′ = (1− l

s )X0 ⊕
l
s E . By Remark 2.14, e′ = (1− l

s )x0 ⊕
l
s e and

re′ = (1− l
s ) f (x0)+

l
s re. Hence, f (x0)− re′ =

l
s ( f (x0)− re). Therefore,

f (x0)− re =
s
l
( f (x0)− re′)= s×

f (x0)− re′

l
= 1.

Now we prove that πepi( f )(E)= X0. Suppose for a contradiction that πepi( f )(E)=
X ′ and X0 6= X ′. Then 6 X0(X

′, E ′)≥ π
2 and 6 X ′(X0, E)≥ π

2 . Then the sum of the
angles of 4(X ′, X0, E) is more than π , which is a contradiction. �

The next theorem is a generalization of the density theorem on geodesically
complete Hadamard spaces. For a density theorem on Hilbert spaces see [Clarke
et al. 1998].

Theorem 2.17. Suppose that f is a proper, convex and lower semicontinuous
function. Then dom(∂ f (x)) is dense in int(dom f ).
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Proof. Given x0 ∈ int(dom f ), the point X0 = (x0, f (x0)) is a boundary point of
epi( f ). So, there exists a sequence Yn = (yn, rn) in the complement of epi( f ) that
converges to X0. Since epi( f ) is convex and closed in X ×R there exists a unique
point Xn = (xn, f (xn)) ∈ epi( f ) such that πepi( f )(Yn)= Xn for each Yn . Moreover,

ρ(Xn, X0)≤ ρ(Xn, Yn)+ ρ(Yn, X0)≤ 2ρ(Yn, X0),

which implies that Xn converges to X0. Therefore, the sequence {xn} converges to
x0 and for every neighborhood U of x0, there exists xn ∈U . By Lemma 2.16, one
can assume that f (xn)− rn = 1, so by Lemma 2.13, ∂ f (xn) 6=∅. �
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