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L p REGULARITY OF WEIGHTED SZEGŐ PROJECTIONS
ON THE UNIT DISC

SAMANGI MUNASINGHE AND YUNUS E. ZEYTUNCU

We present a family of weights on the unit disc for which the corresponding
weighted Szegő projection operators are irregular on L p spaces. We further
investigate the dual spaces of weighted Hardy spaces corresponding to this
family.

1. Introduction

1.1. Classical setting. Let D denote the unit disc in C and T the unit circle. Let
O(D) denote the set of holomorphic functions on D. For 1≤ p <∞, the ordinary
Hardy space is defined as

Hp(T)= { f ∈O(D) and ‖ f ‖Hp <∞},

where

‖ f ‖p
Hp = sup

0≤r<1

∫ 2π

0
| f (reiθ )|p dθ.

It is known (see [Duren 1970]) that functions in Hp(T) have boundary limits
almost everywhere, i.e., for almost every θ ∈ [0, 2π ]

f (eiθ )= lim
r→1−

f (reiθ )

exists. Moreover,
‖ f ‖L p(T) = ‖ f ‖Hp(T),

where L p(T) is defined using the standard Lebesgue measure (denoted by dθ) on
the unit circle. It is also known that Hp(T) is a closed subspace of L p(T). In
particular, for p= 2, the orthogonal projection operator, called the Szegő projection
operator exists;

S : L2(T)−→H2(T).
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The operator S is an integral operator with the kernel S(z, w) (called the Szegő
kernel), and for f ∈ L2(T),

S f (z)=
∫

T

S(z, w) f (w) dθ.

It follows from the general theory of reproducing kernels that for any orthonormal
basis {en(z)}∞n=0 for H2(T), the Szegő kernel is given by

S(z, w)=
∞∑

n=0

en(z)en(w).

1.2. Weighted setting. Let g(z) be a holomorphic function on D that is continuous
on D and has no zeros inside D. We set µ(z)= |g(z)|2 and define weighted Hardy
spaces and weighted Szegő projections using the function µ(z) as a weight on T.

For 1≤ p<∞, we define the weighted Lebesgue and Hardy spaces with respect
to µ as

L p(T, µ)= { f measurable function on D and ‖ f ‖p,µ <∞},

where

‖ f ‖p
p,µ =

∫
T

| f (w)|pµ(w)dθ =
∫

T

| f (w)(g(w))2/p
|

p dθ,

and

Hp(T, µ)= { f ∈O(D) such that ‖ f ‖Hp,µ <∞},

where

‖ f ‖p
Hp,µ = sup

0≤r<1

∫ 2π

0
| f (reiθ )(g(reiθ ))2/p

|
p dθ.

Note that, f ∈ Hp(T, µ) implies f (z)(g(z))2/p
∈ Hp(T), which in turn gives

that f (z)(g(z))2/p has almost everywhere boundary limits. Hence so does f (z).
Additionally, ‖ f ‖Hp,µ = ‖ f ‖p,µ. Furthermore, L p(T, µ) is a Banach space and
Hp(T, µ) is a closed subspace of L p(T, µ).

In particular, again when p = 2, we obtain the weighted Szegő projection

Sµ : L2(T, µ)−→H2(T, µ).

Following the similar theory, we note that Sµ is an integral operator

Sµ f (z)=
∫

T

Sµ(z, w) f (w)µ(w) dθ.
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If { fn(z)}∞n=0 is an orthonormal basis for H2(T, µ) then

Sµ(z, w)=
∞∑

n=0

fn(z) fn(w).

We are interested in the action of Sµ on L p(T, µ). By definition, Sµ is a bounded
operator from L2(T, µ) to L2(T, µ). The problem we investigate is the boundedness
of Sµ from L p(T, µ) to L p(T, µ) for other values of p ∈ (1,∞). Note that for any
given weight µ as above, we can associate an interval Iµ ⊂ (1,∞) such that Sµ is
bounded from L p(T, µ) to L p(T, µ) if and only if p ∈ Iµ. By definition, 2 ∈ Iµ,
and by duality and interpolation, Iµ is a conjugate symmetric interval around 2.
Namely, if some p0 > 2 is in Iµ, so is q0 where 1/q0+ 1/p0 = 1.

In the classical setting, i.e., µ ≡ 1, the Szegő projection operator is bounded
from L p(T) to L p(T) for any 1< p <∞, see [Zhu 2007, page 257].

The purpose of this note is to construct weights µ on T for which the corre-
sponding interval Iµ can be any open interval larger than {2} but smaller than
(1,∞).

Theorem 1. For any given p0 > 2, there exists a weight µ on T such that Iµ =
(q0, p0) where 1/q0+ 1/p0 = 1, i.e., the weighted Szegő projection Sµ is bounded
on L p(T, µ) if and only if q0 < p < p0.

Our proof of this theorem is similar to the proof of the analogous statement
for weighted Bergman projections in [Zeytuncu 2013] with modifications from
Bergman kernels to Szegő kernels. The main ingredient is the theory of Ap weights
on T.

When the weighted Szegő projection Sµ is bounded on L p(T, µ) for some p,
one can identify the dual space of the weighted Hardy space Hp(T, µ). However,
when Sµ fails to be bounded, a different approach is needed to identify the dual
spaces. In the third section, we address this issue and describe the dual spaces of
weighted Hardy spaces.

The following notation is used in the rest of the note. We write f (z) ' g(z)
when c · g(z) ≤ f (z) ≤ C · g(z) for some positive constants c and C which are
independent of z. Similarly we write f (z). g(z) when f (z)≤ C · g(z) for some
positive constant C . We use dθ for the Lebesgue measure on the unit circle T.
When we integrate functions (that are also defined on the unit disc) on T, instead
of writing eiθ , we keep z and w as the variables.

2. Proof of Theorem 1

2.1. Relation between weighted kernels. The particular choice of µ(z) indicates
the following relation between the weighted Szegő kernels Sµ(z, w) and the ordinary
Szegő kernel S(z, w).
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Proposition 2. For µ(z)= |g(z)|2 as above, the following relation holds

(1) S(z, w)= g(z)Sµ(z, w)g(w).

Proof. Let {en(z)}∞n=0 be an orthonormal basis for H2(T). Since g(z) does not vanish
inside D, each en(z)/g(z) is a holomorphic function on D and is in H2(T, |g|2) by
construction. Following the orthonormal properties of the en(z) we have〈

en(z)
g(z)

,
em(z)
g(z)

〉
µ

= 〈en(z), em(z)〉 = δn,m,

where δn,m is the Kronecker delta.
Also for any f in H2(T, |g|2), ( f · g) is in H2(T) and hence can be written

as a linear combination of the en(z). Consequently so can f , using the quotients
en(z)/g(z). Hence, {en(z)/g(z)}∞n=0 is an orthonormal basis for H2(T, |g|2).

Therefore, using the basis representation of the Szegő kernels we obtain

S(z, w)=
∞∑

n=0

en(z)en(w)= g(z)
( ∞∑

n=0

en(z)
g(z)

en(w)

g(w)

)
g(w)

= g(z)Sµ(z, w)g(w). �

2.2. A p weights on T. For p ∈ (1,∞), a weight µ on T is said to be in Ap(T) if

sup
I

I⊂T

(
1
|I |

∫
I
µ(θ) dθ

)(
1
|I |

∫
I
µ(θ)

−1
p−1 dθ

)p−1

<∞,

where I denotes intervals in T.
These weights are used to characterize the L p regularity of the ordinary Szegő

projection on weighted spaces. The following result appears in [Garnett 1981] and
is used in [Lanzani and Stein 2004, Equation (2.3)] in connection with a conformal
map based approach to the investigation of the unweighted Szegő projection for a
general domain.

Theorem 3. The ordinary Szegő projection S is bounded from L p(T, µ) to L p(T, µ)

if and only if µ ∈ Ap(T).

Proof. This result is an immediate consequence of the fact that the Szegő kernel of
the unit disc agrees with the Cauchy kernel (see [Kerzman and Stein 1978]) together
with the classical weighted theory for the latter, see also [Garnett 1981]. �

The following theorem follows from Equation (1) and Theorem 3.

Proposition 4. For 1 < p <∞ and µ(z) = |g(z)|2 as above, the following are
equivalent.

(1) Sµ is bounded from L p(T, |g|2) to L p(T, |g|2).
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(2) S is bounded from L p(T, |g|2−p) to L p(T, |g|2−p).

(3) |g|2−p
∈ Ap(T).

Proof. Theorem 3 gives the equivalence of (2) and (3). We show the equivalence of
(1) and (2). Using the relation between the kernels from the previous proposition,
we obtain the following relation between the corresponding operators:

g(z)
(
Sµ f

)
(z)=

(
S( f · g)

)
(z) for f ∈ L2(T, |g|2).

Indeed, suppose (2) is true. Then

‖Sµ f ‖p
p,|g|2 =

∫
T

|(Sµ f )(w)|p|g(w)|2 dθ

=

∫
T

|
(
S( f · g)

)
(w)|p|g(w)|2−p dθ = ‖S( f · g)‖p

p,|g|2−p

. ‖ f · g‖p
p,|g|2−p = ‖ f ‖p

p,|g|2 ,

which proves (1).
Now when (1) is true,

‖S f ‖p
p,|g|2−p =

∫
T

|(S f )(w)|p|g(w)|2−pdθ

=

∫
T

|(Sµ( f/g))(w)|p|g(w)|2dθ = ‖Sµ( f/g)‖p
p,|g|2

. ‖ f/g‖p
p,|g|2 = ‖ f ‖p

p,|g|2−p

and hence (2) is true. �

We can now present a family of weights that behave as claimed in Theorem 1.

Theorem 5. For α ≥ 0, let gα(z) = (z − 1)α and µα(z) = |gα(z)|2. Then the
weighted Szegő projection operator Sµα is bounded on L p(T, µα) if and only if
p ∈

( 2α+1
α+1 ,

2α+1
α

)
.

Remark 6. Theorem 5 is a quantitative version of Theorem 1 and therefore we
obtain a proof of Theorem 1 when we prove Theorem 5.

Remark 7. Note that as α → 0+ the interval
( 2α+1
α+1 ,

2α+1
α

)
approaches (1,∞)

and as α→∞ the interval
( 2α+1
α+1 ,

2α+1
α

)
approaches {2}. Hence, any conjugate

symmetric interval around 2 can be achieved as the boundedness range of a weighted
Szegő projection.

Proof of Theorem 5. First note that on intervals I with θ = 0 /∈ I , the weight
|gα(z)|2−p

= |z− 1|α(2−p)
' C . Therefore, both integrals in the Ap(T) condition

are finite and hence so is the supremum over all such intervals when p is in the
given range. On intervals that contain z = 0 we have the following.
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Step 1. We show that for the weights ω(z)= |gα(z)|2−p
= |z−1|α(2−p), the second

integral in the Ap(T) condition diverges for arcs I = (−ε, ε) if and only if p is
outside the given region.

For intervals I = (−ε, ε) with small ε and p ≤ 2α+1
α+1 ,∫

I
ω(z)

1
1−p dθ =

∫ ε

−ε

|eiθ
− 1|

α(2−p)
(1−p) dθ

=

∫ ε

−ε

(√
2(1− cos(θ))

) α(2−p)
(1−p) dθ

'

∫ ε

−ε

θ
α(2−p)
(1−p) dθ =∞,

because α(2− p)/(1− p)≤−1. Hence ω 6∈ Ap(T) for such p.
Also, when p ≥ 2α+1

α
,∫
I
ω(z) dθ '

∫ ε

−ε

θα(2−p) dθ =∞,

because α(2− p)≤−1. Hence ω 6∈ Ap(T) for p ≥ 2α+1
α

either.
The same calculations show convergence of all integrals for p in the desired

range.

Step 2. We show that for p ∈
( 2α+1
α+1 ,

2α+1
α

)
the integrals in the Ap condition are

finite over any (general) interval I = (θ0− R, θ0+ R) with θ0 6= 0. We consider
two cases.

Case 1. I ∩Arc(0, 2R)=∅.
On such intervals I , 3R<θ0 and so 2θ0/3≤ θ0− R ≤ θ ≤ θ0+ R ≤ 4θ0/3 giving

θ ' θ0. So, ω = |z− 1|α(2−p)
' θ

α(2−p)
0 . Therefore,

1
|I |

∫
I
ω(z) dθ .

1
2R

∫
I
θ
α(2−p)
0 dθ = θα(2−p)

0 .

and (
1
|I |

∫
I
ω(z)

1
1−p dθ

)p−1

.

(
1

2R

∫
I
θ
α(2−p)

1−p
0 dθ

)p−1

= θ
−α(2−p)
0 .

Hence the supremum over all such intervals is finite.

Case 2. I ∩Arc(0, 2R) 6=∅.
In this case, since I ⊂ Arc(0, 4R) and α(2− p)+ 1 > 0 when 2α+ 1/α > p,

we have

1
|I |

∫
I
ω(z) dθ '

2
8R

∫ 4R

0
θα(2−p) dθ =

1
4R

θα(2−p)+1

α(2− p)+ 1

∣∣∣4R

0
=

4Rα(2−p)

α(2− p)+ 1
.
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Also since α(2− p)/(1− p)+ 1> 0 when 2α+ 1/(α+ 1) < p,(
1
|I |

∫
I
ω(z)

1
1−p dθ

)p−1

'

(
2

8R

∫ 4R

0
θ
α(2−p)

1−p dθ
)p−1

=

(
1

4R
θ
α(2−p)

1−p +1

α(2−p)
1−p + 1

)p−1

'

(
R
α(2−p)

1−p

α(2−p)
1−p + 1

)p−1

=
2R−α(2−p)(

α(2−p)
1−p + 1

)p−1 .

Therefore, the supremum over all intervals of the type in case 2 are also finite
and ω = |g|2−p

∈ Ap(T) if and only if p ∈
( 2α+1
α+1 ,

2α+1
α

)
. �

Remark 8. The analog of Theorem 1 for domains in Cn (n≥ 2) is an open problem.
See [Békollé and Bonami 1995] for a partial result. Also see [Lanzani and Stein
2013] for the regularity on strongly pseudoconvex domains.

3. Duality

In this section, we investigate the duals of Hardy spaces corresponding to weights
from the previous section. For α ≥ 0 and µα(z) = |z − 1|2α, a consequence of
Theorem 5 is the following.

Theorem 9. Let α ≥ 0 and µα(z) = |z − 1|2α. For any p ∈
( 2α+1
α+1 ,

2α+1
α

)
, the

dual space of the weighted Hardy space Hp(T, |z − 1|2α) can be identified with
Hq(T, |z− 1|2α), where 1/p+ 1/q = 1, under the pairing

〈 f, h〉 =
∫

T

f (z)h(z)|z− 1|2α dθ.

Proof. This is a standard argument; however, we present a proof here for complete-
ness. For a given function h ∈Hq(T, |z− 1|2α), we define a linear functional on
Hp(T, |z− 1|2α) by

G( f )=
∫

T

f (z)h(z)|z− 1|2α dθ.

It is clear that, by Hölder’s inequality, G is a bounded functional with operator
norm less than ‖h‖Hq (T,|z−1|2α).

Conversely, let G be a bounded linear functional on Hp(T, |z− 1|2α). By the
Hahn–Banach theorem, G extends to a bounded linear functional on L p(T, |z−1|2α).
Now using the duality of L p spaces, we find a function h ∈ Lq(T, |z− 1|2α) such
that

G( f )=
∫

T

f (z)h(z)|z− 1|2αdz for f ∈ L p(T, |z− 1|2α).
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When we restrict G to L p(T, |z− 1|2α)∩H2(T, |z− 1|2α) and use self-adjointness
of Sµα we get the following.

G( f )=
∫

T

f (z)h(z)|z− 1|2α dθ

=

∫
T

(Sµα f )(z)h(z)|z− 1|2α dθ

=

∫
T

f (z)(Sµαh)(z)|z− 1|2α dθ

for f ∈ L p(T, |z− 1|2α)∩H2(T, |z− 1|2α).
Since the intersection of these two spaces is dense in Hp(T, |z− 1|2α), we note

that G is represented by the function (Sµαh)(z) and Sµαh ∈ Hq(T, |z − 1|2α) by
Theorem 5. �

A natural question arises after this statement. How can we identify the dual
space of the weighted Hardy space, Hp(T, |z− 1|2α), when p /∈

( 2α+1
α+1 ,

2α+1
α

)
?

The answer to this question follows from the following result on the boundedness
of the weighted Szegő projection, Sµα . Similar results for weighted Bergman
projections have been presented recently in [Arroussi and Pau 2014] and [Constantin
and Peláez 2015].

Proposition 10. Let α ≥ 0 and µα = |z− 1|2α. For any 1< p <∞, the weighted
Szegő projection Sµα is bounded on L p(T, |z− 1|αp).

Remark 11. Note that as p varies, changes occur not only in the integrability scale
but also in the measure.

Proof. The proof follows from the relation between the kernels in Proposition 2 and
the fact that the unweighted Szegő projection S is bounded on L p(T) for 1< p<∞.

Let us take f (z) ∈ L p(T, |z− 1|αp) and set

f̃ (z)= f (z)
|z− 1|2α

(z− 1)α
,

then we have f̃ ∈ L p(T). Using this notation, we notice

Sµα f (z)=
∫

T

Sµα (z, w) f (w)|w− 1|2α dθ

=
(z− 1)α

(z− 1)α

∫
T

Sµα (z, w)(w− 1)α f (w)
|w− 1|2α

(w− 1)α
dθ

=
1

(z− 1)α

∫
T

S(z, w) f̃ (w) dθ

=
1

(z− 1)α
S
(

f̃ (w)
)
(z),
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where we invoke Proposition 2 when we pass from the second to the third line.
Next by using the fact that the unweighted Szegő projection operator S is bounded
on L p(T), we obtain the following.

‖Sµα f ‖L p(T,|z−1|αp) =

∫
T

|z− 1|αp 1
|z− 1|αp

∣∣S( f̃ (w)
)
(z)
∣∣p dθ

=
∥∥S
(

f̃ (w)
)∥∥p

L p(T)
. ‖ f̃ (w)‖p

L p(T)

=

∥∥∥∥ f (w)
|w− 1|2α

(w− 1)α

∥∥∥∥p

L p(T)

= ‖ f ‖p
L p(T,|z−1|αp).

This finishes the proof of the proposition. �

Now we can answer the duality question by using Proposition 10. Following the
same argument as in the proof of Theorem 9, we obtain the following statement.

Theorem 12. Let α≥ 0 and µα=|z−1|2α . Then for any p∈ (1,∞), the dual space
of the weighted Hardy space Hp(T, |z−1|αp) can be identified with Hq(T, |z−1|αq),
where 1/p+ 1/q = 1, under the pairing

〈 f, h〉 =
∫

T

f (z)h(z)|z− 1|2α dθ.

At first, the two duality results in Theorem 9 and Theorem 12 may seem confusing
for p ∈

( 2α+1
α+1 ,

2α+1
α

)
. However, the main point is to note the difference in the

exponents of the weights and the way the pairing is defined. We illustrate these two
results in the following example.

Example 13. Let us take α = 1/2. Then S|z−1| is bounded on L p(T, |z− 1|) for
p ∈ (4/3, 4). In particular, for any p ∈ (4/3, 4), the dual space of Hp(T, |z− 1|)
can be identified with Hq(T, |z− 1|), where 1/p+ 1/q = 1, under the pairing

〈 f, h〉|z−1| =

∫
T

f (z)h(z)|z− 1| dθ.

On the other hand, using the second duality result for any p > 1, the dual space
of Hp(T, |z − 1|) can be identified with Hq(T, |z − 1|q/p) when 1/p+ 1/q = 1,
under the pairing

〈 f, h〉|z−1|2/p =

∫
T

f (z)h(z)|z− 1|2/p dθ.
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