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TOPOLOGY OF COMPLETE FINSLER MANIFOLDS
ADMITTING CONVEX FUNCTIONS

SORIN V. SABAU AND KATSUHIRO SHIOHAMA

We investigate the topology of a complete Finsler manifold (M, F) admit-
ting a locally nonconstant convex function.

1. Introduction

Let (M, F) be an n-dimensional Finsler manifold. The well-known Hopf–Rinow
theorem (see for example [Bao et al. 2000]) states that M is complete if and only if
the exponential map expp at some point p ∈ M (and hence for every point on M)
is defined on the whole tangent space Tp M to M at that point. This is equivalent to
saying that (M, F) is geodesically complete with respect to forward geodesics at
every point on M . Throughout this article we assume that (M, F) is geodesically
complete with respect to forward geodesics.

A function ϕ : (M, F)→R is said to be convex if and only if along every (forward
and backward) geodesic γ : [a, b]→ (M, F), the restriction ϕ ◦γ : [a, b]→ R is a
convex function, that is,

(1-1) ϕ ◦ γ ((1− λ)a+ λ b)≤ (1− λ)ϕ ◦ γ (a)+ λϕ ◦ γ (b), 0≤ λ≤ 1.

If the inequality in the above relation is strict for all γ and for all λ ∈ (0, 1),
then ϕ is called strictly convex. If the second order difference quotient, namely
the quantity {ϕ ◦ γ (h)− ϕ ◦ γ (−h)− 2ϕ ◦ γ (0)}/h2 is bounded away from zero
on every compact set on M along all γ , then ϕ is called strongly convex. In the
case where ϕ is at least C2, its convexity can be written in terms of the Finslerian
Hessian of ϕ, but we do not need to do this in the present paper.

If ϕ ◦ γ is a convex function of one variable, then the function ϕ ◦ γ̄ is also
convex, where γ̄ is the reverse curve of γ . We recall that in general, if γ is a
Finslerian geodesic, it does not mean that the inverse curve γ̄ is also a geodesic.

Every noncompact manifold admits a complete (Riemannian or Finslerian) metric
and a nontrivial smooth function which is convex with respect to this metric (see
[Greene and Shiohama 1981b]).
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If a nontrivial convex function ϕ : (M, F)→ R is constant on an open set, then
ϕ assumes its minimum on this open set and the number of components of a level
set Ma

a (ϕ) := ϕ
−1({a}), a ≥ infM ϕ is equal to that of the boundary components of

the minimum set of ϕ. Here we denote infM ϕ := inf{ϕ(x) | x ∈ M}.
A convex function ϕ is said to be locally nonconstant if it is not constant on any

open set of M . From now on we always assume that a convex function is locally
nonconstant.

The purpose of this article is to investigate the topology of complete Finsler
manifolds admitting (locally nonconstant) convex functions ϕ : (M, F)→R. Convex
functions on complete Riemannian manifolds have been fully discussed in [Greene
and Shiohama 1981b] and elsewhere. Although the distance function on (M, F) is
not symmetric and the backward geodesics do not necessarily coincide with the
forward geodesics, we prove that most of the Riemannian results in [Greene and
Shiohama 1981b] have Finsler extensions, as stated below.

We first discuss the topology of a Finsler manifold (M, F) admitting a convex
function ϕ.

Theorem 1.1 (compare [Greene and Shiohama 1981b, Theorem F]). Assume we
have a convex function ϕ : (M, F)→ R all of whose level sets are compact.

(1) If infM ϕ is not attained, there exists a homeomorphism

H : Ma
a (ϕ)× (infM ϕ,∞)→ M,

for an arbitrary fixed number a ∈ (infM ϕ,∞), such that

ϕ(H(y, t))= t, ∀y ∈ Ma
a (ϕ), ∀t ∈ (infM ϕ,∞).

(2) If λ := infM ϕ is attained, then M is homeomorphic to the normal bundle over
Mλ
λ (ϕ) in M.

Next, we discuss the case where ϕ has a disconnected level.

Theorem 1.2 (compare [Greene and Shiohama 1981b, Theorem A]). Assume the
convex function ϕ : (M, F) → R has a disconnected level set Mc

c (ϕ) for some
c ∈ ϕ(M).

(1) The infimum infM ϕ is attained.

(2) If λ := infM ϕ, then Mλ
λ (ϕ) is a totally geodesic smooth hypersurface which is

totally convex without boundary.

(3) The normal bundle of Mλ
λ (ϕ) in M is trivial.

(4) If b> λ, then the boundary of the b-sublevel set Mb(ϕ) := {x ∈ M | ϕ(x)≤ b}
has exactly two components.
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The diameter function δ : ϕ(M)→ R+ plays an important role in this article and
is defined by

(1-2) δ(t) := sup{d(x, y) | x, y ∈ M t
t (ϕ)}.

Sharafutdinov [1978] had proved earlier the existence of a distance nonincreasing
map Mb

b (ϕ)→ Ma
a (ϕ), b ≥ a, between two compact levels of a convex function ϕ

on a complete Riemannian manifold (M, g).
It is known from [Sharafutdinov 1978] and [Greene and Shiohama 1981b] that

the diameter function δ of a complete Riemannian manifold admitting a convex
function is monotone nondecreasing. However it is not certain if it is monotone on
a Finsler manifold. In Theorem 1.1, we do not use the monotone property but only
the local Lipschitz property of δ which is proved in Proposition 3.3.

We finally discuss the number of ends of a Finsler manifold (M, F) admitting a
convex function ϕ. As stated above, the diameter function δ, defined on the image of
the convex function ϕ, may not be monotone. It might occur that a convex function
defined on a Finsler manifold (M, F) may simultaneously admit both compact and
noncompact levels. This fact makes it difficult to study the number of ends of the
manifold (M, F). However, we shall discuss all the possible cases and prove:

Theorem 1.3 (compare [Greene and Shiohama 1981b, Theorems C, D and G]). Let
ϕ : (M, F)→ R be a convex function.

(A) Assume that ϕ admits a disconnected level.

(A1) If all the levels of ϕ are compact, then M has two ends.
(A2) If all the levels of ϕ are noncompact, then M has one end.
(A3) If both compact and noncompact levels of ϕ exist simultaneously, then M

has at least three ends.

(B) Assume that all the levels of ϕ are connected and compact.

(B1) If infM ϕ is attained, then M has one end.
(B2) If infM ϕ is not attained, then M has two ends.

(C) If all the levels are connected and noncompact, then M has one end.

(D) Assume that all the levels of ϕ are connected and that ϕ admits both compact
and noncompact levels simultaneously. Then we have:

(D1) If infM ϕ is not attained, then M has two ends.
(D2) If infM ϕ is attained, then M has at least two ends.

(E) Finally, if M has two ends, then all the levels of ϕ are compact.

Remark 1.4. The supplementary condition that all of the levels of ϕ are simultane-
ously compact or noncompact in the hypothesis of Theorem 1.1 is necessary because
we have not proved that the diameter function δ is monotone nondecreasing for a
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Finsler manifold. If this property of monotonicity were true, then this assumption
could be removed.

We summarize some historical background of convex and related functions on
manifolds, G-spaces and Alexandrov spaces. Locally nonconstant convex functions,
affine functions and peakless functions have been investigated on complete Rie-
mannian manifolds and complete noncompact Busemann G-spaces and Alexandrov
spaces in various ways. The topology of Riemannian manifolds admitting convex
functions was investigated in [Bangert 1978; Greene and Shiohama 1981b; 1981a;
1987], and that of Busemann G-surfaces in [Innami 1982a; Mashiko 1999b]. It
should be noted that convex functions on complete Alexandrov surfaces are not
continuous.

A weaker notion than convex functions similar to quasiconvex functions, namely
peakless functions, has been introduced by Busemann [1955], and studied later on
in [Busemann and Phadke 1983] and [Innami 1983]. The topology of complete
manifolds admitting locally geodesically (strictly) quasiconvex and uniformly lo-
cally convex filtrations have been investigated by Yamaguchi [1986a; 1986b; 1988].
The isometry groups of complete Riemannian manifolds (N , g) admitting strictly
convex functions have been discussed in [Yamaguchi 1982] and other places. A well
known classical theorem due to Cartan states that every compact isometry group on
an Hadamard manifold H has a fixed point. This follows from the simple fact that
the distance function to every point on H is strictly convex. Peakless functions and
totally geodesic filtrations on complete manifolds have been discussed in [Innami
1983; Busemann and Phadke 1983; Yamaguchi 1986a; 1986b; 1988] and others.

A convex function is said to be affine if and only if the equality in (1-1) holds for
all γ and for all λ∈ (0, 1). A splitting theorem for Riemannian manifolds admitting
affine functions has been investigated in [Innami 1982b], while Alexandrov spaces
admitting affine functions have been studied in [Innami 1982b; Mashiko 1999a;
Mashiko 2002]. An overview on the convexity of Riemannian manifolds can be
found in [Burago and Zalgaller 1977].

The properties of isometry groups on Finsler manifolds admitting convex func-
tions will be discussed elsewhere. For basic facts on Finsler and Riemannian
geometry, we refer to [Bao et al. 2000; Chern et al. 1999; Cheeger and Ebin 2008;
Sakai 1992].

2. Fundamental facts

We summarize some fundamental facts on convex sets and convex functions on
a Finsler manifold (M, F). Most of these are trivial in the Riemannian case, but
we consider it useful to formulate and prove them in the more general Finslerian
setting.
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Let (M, F) be a complete Finsler manifold. At each point p ∈ M , the indicatrix
6p ⊂ Tp M at p is defined by 6p := {u ∈ Tp M | F(p, u) = 1}. The reversibility
function λ : (M, F)→ R+ of (M, F) is given as

λ(p) := sup{F(p,−X) | X ∈6p}.

Clearly, λ is continuous on M and

λ(p)=max
{F(p,−X)

F(p, X)
∣∣ X ∈ Tp M \ {0}

}
.

Let C ⊂ M be a compact set. There exists a constant λ(C) > 0 depending on C
such that if p ∈ C and X ∈6p, then

1
λ(C)

F(p, X)≤ F(p,−X)≤ λ(C) · F(p, X).

In particular, if σ : [0, 1] → C is a smooth curve, then the integral length

L(σ ) :=
∫ 1

0
F(σ (t), σ̇ (t)) dt

of σ satisfies
1

λ(C)
L(σ )≤ L(σ−1)≤ λ(C) · L(σ ).

Here we set σ−1(t) := σ(1− t), where t ∈ [0, 1] is the reverse curve of σ .
It is well known that the topology of (M, F) as an inner metric space is equivalent

to that of M as a manifold. For a compact set C ⊂M , the inner metric dF of (M, F)
induced from the Finslerian fundamental function has the property

1
λ(C)

dF (p, q)≤ dF (q, p)≤ λ(C) · dF (p, q), ∀p, q ∈ C.

Let inj : (M, F)→ R+ be the injectivity radius function of the exponential map.
Namely, for a point p ∈ M , inj(p) is the maximal radius of a ball, centered at the
origin of the tangent space Tp M at p, on which expp is injective.

A classical result due to J. H. C. Whitehead [1935] states that there exists a
convexity radius function r : (M, F)→ R such that if

B(p, r) := {x ∈ M | d(p, x) < r}

is an r -ball centered at p, then for every q ∈ B(p, r(p)) and for every r ′ ∈ (0, r(p)),
B(q, r ′)⊂ B(p, r) is strongly convex. Namely, the distance function to q is strongly
convex along every geodesic in B(q, r ′) with r ′ ∈ (0, r(p)) if its extension does
not pass through q .

A closed set U ⊂ M is called locally convex if and only if U ∩ B(p, r) is convex
for every x ∈U and for some r ∈ (0, r(p)). Notice that this definition is stated only
for closed sets, since every open set is obviously locally convex.
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ϕ ◦ γxy

ϕ ◦ γyx

ϕ(x)

ϕ(y)

d(x, y) d(y, x)
1 1

Figure 1. A convex function is locally Lipschitz.

A set V ⊂ M is called totally convex if and only if every geodesic joining two
points in V is contained entirely in V . A closed hemisphere in the standard sphere
Sn is locally convex and an open hemisphere is strongly convex, while Sn itself is
the only totally convex set in it. If it exists, the minimum set of a convex function
on (M, F) is totally convex.

Proposition 2.1. A convex function ϕ : (M, F)→ R defined as in (1-1) is locally
Lipschitz.

Proof. Let C ⊂M be an arbitrary fixed compact set and C1 := {x ∈M | d(C, x)≤ 1}.
Here we set d(C, x) :=min{d(y, x) | y ∈ C}. For points x, y ∈ C1 we denote by

γxy : [0, d(x, y)] → M, γyx : [0, d(y, x)] → M

minimizing geodesics with

γxy(0)= x, γxy(d(x, y))= y,

γyx(0)= y, γyx(d(y, x))= x .

The slope inequalities along the two convex functions ϕ ◦ γxy|[0,d(x,y)+1] and
ϕ ◦ γyx |[0,d(y,x)+1] imply that, if 3 := supC1

ϕ and λ := infC1 ϕ (see Figure 1),
then

ϕ(y)−ϕ(x)
d(x, y)

≤3− λ,
ϕ(x)−ϕ(y)

d(y, x)
≤3− λ.

It follows that there exists a constant L = L(C) > 0 such that

sup
{d(x, y)

d(y, x)

∣∣ x, y ∈ C
}
≤ L ,
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and therefore we have∣∣∣ϕ(x)−ϕ(y)
d(x, y)

∣∣∣, ∣∣∣ϕ(y)−ϕ(x)
d(y, x)

∣∣∣≤ L(3− λ). �

Proposition 2.2. If C ⊂ (M, F) is a closed locally convex set, then there exists a
k-dimensional totally geodesic submanifold W of M contained in C , and its closure
coincides with C.

Proof. Let r : (M, F)→ R be the convexity radius function. For every point p ∈ C
there exists a k(p)-dimensional smooth submanifold of M which is contained
entirely in C and such that k(p) is the maximal dimension of all such submanifolds
in C , where 0≤ k(p)≤ n. At least {p} is such a submanifold, with dimension 0.

Let K ⊂ M be a large compact set containing p and r(K ) the convexity radius
of K , namely r(K ) :=min{r(x) | x ∈ K }. We also put k :=max{k(p) | p ∈ C}.

Let W (p) ⊂ C be a k-dimensional smooth submanifold of M . Suppose that
W (p)∩ B(p; r)$ C ∩ B(p; r) for a sufficiently small r ∈ (0, r(K )). Then there
exists a point q ∈ B(p; r)∩ (C \W (p)). Clearly γ̇pq(0) is transversal to TpW (p),
and hence a family of minimizing geodesics

{γxq : [0, d(x, q)] → B(p; r) | x ∈W (p)∩ B(p; r)}

with γxq(0)= x , γxq(d(x, q))= q has the property that every γ̇xq(0) is transversal
to Tx W (p). Therefore, this family of geodesics forms a (k + 1)-dimensional
submanifold contained in C , a contradiction to the choice of k. This proves
W (p)∩ B(p; r) = C ∩ B(p; r) for a sufficiently small r ∈ (0, r(K )). We then
observe that

⋃
p∈C W (p)=: W ⊂ C forms a k-dimensional smooth submanifold

which is totally geodesic. Indeed, for any tangent vector v to W , there exists p ∈ C
such that v ∈ TpW (p), and due to the convexity of C , the geodesic γv : [0, ε]→ M
cannot leave the submanifold W .

We finally prove that the closure SW of W coincides with C . Indeed, suppose
that there exists a point x ∈ C \ SW . We then find a point y ∈ SW \W such that
d(x, y)= d(x, SW ) < r(K ). If

γ̇xy(d(x, y)) ∈ Ty SW := lim
y j→y

Ty j M,

then γxy(d(x, y)+ ε) ∈W for a sufficiently small ε > 0. Let U ⊂W ∩ B(x, r(K ))
be an open set around γxy(d(x, y)+ ε).

Then a family of geodesics

(2-1) {γxz : [0, d(x, z)] → B(x; r(K )) | z ∈U }

forms a k-dimensional submanifold contained in W and hence y∈W , a contradiction
to y ∈ SW \W . Therefore, γ̇xy(d(x, y)) does not belong to Ty SW , and (2-1) again
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x

B(x, r(K ))SW

z

U ⊂W

y

Figure 2. The closure SW of W coincides with C .

forms a (k+ 1)-dimensional submanifold in C , a contradiction to the choice of k
(see Figure 2). �

Let C ⊂ M be a closed locally convex set and p ∈ C . There exists a totally
geodesic submanifold W ⊂ C as stated in Proposition 2.2. We call W the interior
of C and denote it by Int(C). The boundary of C is defined by ∂C := C \ Int(C),
and the dimension of C is defined by dim C := dim Int(C). The tangent cone
Cp(C)⊂ Tp M of C at a point p ∈ C is defined by

(2-2) Cp(C) := {ξ ∈ Tp M | expp tξ ∈ Int(C) for some t > 0}.

Clearly, Cp(C)= Tp Int(C) \ {0} for p ∈ Int(C).
We also define the tangent space TpC of C at a point p∈ ∂C as limq→p Tq Int(C).

We claim that there exists for every point p ∈ ∂C an open half space TpC+ ⊂ TpC
containing Cp(C):

(2-3) Cp(C)⊂ TpC+ ⊂ TpC := lim
q→p

Tq Int(C), q ∈ Int(C).

Indeed, for any points p ∈ ∂C and q ∈ B(p; r(K ))∩ Int(C), consider a minimizing
geodesic γqp : [0, d(q, p)]→ B(p; r(K )). Suppose that there is a point q ∈ Int(C)
such that z := γqp(d(q, p)+ ε) ∈ C for a sufficiently small ε > 0. We then have
γ̇qp(d(q, p)) ∈ TpC , and hence the tangent cone Cp(C) as obtained in (2-2) is
contained entirely in TpC , a contradiction to the choice of p ∈ ∂C . From the above
argument we observe that if p ∈ ∂C , then there exists a hyperplane Hp ⊂ TpC such
that Cp(C) is contained in a half space Tp(C)+ ⊂ TpC bounded by Hp.
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expp(Hp)B(p, r(p))

(M, F)

p

q

γqp

Ma(ϕ)

x

Ma
a (ϕ)

γqx (t (x))

γqx

Figure 3. An atlas of local charts at an arbitrary point p ∈ Ma
a (ϕ).

Proposition 2.3. Let ϕ : (M, F)→ R be a convex function. Then, Ma
a (ϕ) is an

embedded topological submanifold of dimension n− 1 for every a > infM ϕ.

Proof. Let p ∈ Ma
a (ϕ) and q ∈ B(p; r(p))∩ Int(Ma(ϕ)). There exists a hyperplane

Hp ⊂ Tp M such that

Hp = ∂Tp(Ma(ϕ))+ and Cp(Ma(ϕ))⊂ Tp(Ma(ϕ))+.

Every point x ∈ expp(Hp) ∩ B(p; r(p)) is joined to q by a unique minimizing
geodesic γqx : [0, d(q, x)] → M such that γqx(0) = q, γqx(d(q, x)) = x . Then
there exists a unique parameter t (x) ∈ (0, d(q, x)] such that Ma

a (ϕ)∩ B(p; r(p))
contains γqx(t (x)). Let BH (O; r(p)) be the open r(p)-ball in Hp centered at the
origin O of Mp. We then have a map αp : BH (O; r(p))→ Ma

a (ϕ) such that

αp(u) := γqx(t (x)), u ∈ BH (O; r(p)), expp u = x .

Clearly, αp gives a homeomorphism between BH (O; r(p)) and its image in
Ma

a (ϕ). Thus the family of maps {(BH (O; r(p)), αp) | p ∈ Ma
a (ϕ)} forms an atlas

of Ma
a (ϕ) (see Figure 3). �

3. Level sets configuration

We shall give the proofs of Theorems 1.2 and 1.3. The following lemma is elemen-
tary and useful for our discussion.

Lemma 3.1. Let ϕ : (M, F)→ R be a convex function. If Ma
a (ϕ) is compact, then

so is Mb
b (ϕ) for all b ≥ a. If Ma

a (ϕ) is noncompact, then so is Mb
b (ϕ) for all b ≤ a.
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Proof. First of all we prove that if Ma
a (ϕ) is compact, then so is Mb

b (ϕ) for all
b ≥ a.

Suppose that Mb
b (ϕ) is noncompact for some b> a. Take a point p ∈Ma

a (ϕ) and
a divergent sequence {q j } j≥1 on Mb

b (ϕ). Since Ma
a (ϕ) is compact, there is a positive

number L such that d(p, x) < L for all x ∈ Ma
a (ϕ). Let γ j : [0, d(p, q j )] → M be

a minimizing geodesic with γ j (0)= p, γ j (d(p, q j ))= q for j ≥ 1. Compactness
of Ma

a (ϕ) implies that each ϕ ◦ γ j |[L ,d(p,q j )−L] is monotone and nondecreasing for
all large numbers j .

Choosing a subsequence {γi } of {γ j } if necessary, we find a ray γ∞ : [0,∞)→M
emanating from p such that ϕ ◦γ∞ is monotone, nondecreasing and bounded above,
and hence is identically equal to a. This contradicts the assumption that Ma

a (ϕ) is
compact. �

The following Proposition 3.2 is the basic piece in the proof of Theorem 1.1.
Under the assumptions in Theorem 1.1, we divide M into countable compact sets
such that

M =
∞⋃

j=−∞
ϕ−1
[t j−1, t j ],

where {t j } is monotone increasing and lim j→−∞ t j = infM ϕ (if infM ϕ is not
attained) and lim j→∞ t j =∞. In applying Proposition 3.2 to each ϕ−1

[t j−1, t j ],
the undefined numbers bk+1 and b0 appearing in the proof of the proposition play the
role of margins to be pasted with ϕ−1

[t j , t j+1] (using bk+1) and with ϕ−1
[t j−2, t j−1]

(using b−1), respectively.

Proposition 3.2. Let Ma
a (ϕ)⊂ M be a connected and compact level set and b > a

a fixed value. Then there exists a homeomorphism 8b
a : M

b
b (ϕ)×[a, b] → Mb

a (ϕ)

such that

(3-1) ϕ ◦8b
a(x, t)= t, (x, t) ∈ Mb

b (ϕ)×[a, b].

Proof. Let K ⊂ M be a compact set with Mb
a (ϕ) ⊂ Int(K ) and r := r(K ) the

convexity radius over K . We define two divisions as follows. Let a = a0 < a1 <

· · · < ak = b and b−1 < b0 < · · · < bk be given such that ϕ−1
[b−1, bk] ⊂ Int(K )

and

(1) b−1 < a0 < b0 < a1 < · · ·< ak−1 < bk−1 < ak = b < bk ,

(2) b j :=
1
2(a j + a j+1), j = 0, 1, . . . , k− 1,

(3) ϕ−1({a j−1})⊂
⋃{

B(x, r) | x ∈ ϕ−1({a j+1})
}
, j = 1, . . . , k− 1,

(4) ϕ−1({b−1})⊂
⋃{

B(y, r) | y ∈ ϕ−1({a1})
}
,

(5) ϕ−1({ak−1})⊂
⋃{

B(z, r) | z ∈ ϕ−1({bk})
}
.
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ϕ−1(b−1)

ϕ−1(a0)= ϕ
−1(a)

ϕ−1(b0)

ϕ−1(a1)

ϕ−1(ak−2)

ϕ−1(bk−2)

ϕ−1(ak−1)

ϕ−1(bk−1)

ϕ−1(ak)= ϕ
−1(b)

ϕ−1(bk)

...

pk

p′k−1

pk−1

p′k−2

pk−2

qk

pk−3

qk−1

p1

p′0

p0

q1

q ′0

q0

Figure 4. The broken geodesic T (pk).

Obviously we have [a, b] ⊂ (b−1, bk).
For an arbitrary fixed point p′j ∈ ϕ

−1({a j+1}), we have a minimizing geodesic
T (p′j , q j ) realizing the distance d(p′j , ϕ

−1(−∞, a j−1]) and q j the foot of p′j on
ϕ−1(−∞, a j−1]. Then the family of all such minimizing geodesics emanating from
all the points on ϕ−1({a j+1}) to the points on ϕ−1({a j−1}) simply covers the set
ϕ−1
[b j−1, b j ], j = 1, 2, . . . , k. We define p j := T (p′j , q j )∩ϕ

−1({b j }) and p j−1 :=

T (p′j , q j )∩ϕ
−1({b j−1}). With this point p j−1, we then choose p′j−1 ∈ ϕ

−1({a j })

and q j−1 ∈ ϕ
−1({a j−2}) in such a way that T (p′j−1, q j−1) realizes the distance

d(p′j−1, q j−1) = d(p j−1, ϕ
−1(−∞, a j−2]) and contains p j−1 in its interior. We

thus obtain the inductive construction of a sequence {T (p′j , q j ) | j = 1, . . . , k} of
minimizing geodesics.

We finally choose a point p′0∈ϕ
−1({a1}) and q0∈ϕ

−1({b−1}) such that T (p′0, q0)

is a unique minimizing geodesic, with q0 being the foot of p′0 on ϕ−1(−∞, b−1].
If we set q ′0 := ϕ

−1({a0})∩ T (p′0, q0), then d(p0, q1)≤ d(p0, q ′0) follows from the
fact that q1 is the foot of p0 on ϕ−1(−∞, a0]. Therefore the slope inequality along
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T (p′0, q0) implies

a0− b0

d(p0, q1)
≤

a0− b0

d(p0, q ′0)
≤

b−1− a0

d(q ′0, q0)
,

and hence there exists a positive number

1b
a(K ) :=min

{ a− b−1

d(q ′0, ϕ
−1(−∞, b−1])

∣∣ q ′0 ∈ ϕ
−1({a})

}
with the property that all the slopes of ϕ ◦ T (p′j , q j ) for every j = 0, 1, . . . , k are
negative and bounded above by −1b

a(K ).
Next, we define a broken geodesic T (pk) := T (pk, pk−1)∪ · · · ∪ T (p1, p0) for

pk ∈ ϕ
−1({bk}) with its break points at p j ∈ ϕ

−1({b j }), j = 0, 1, . . . , k−1 in such
a way that each T (p j , p j−1) is a proper subarc of a unique minimizing geodesic
T (p′j , q j ), where q j is the foot of p′j on ϕ−1(−∞, a j−1] (see Figure 4). Then
T (p j−1, p j−2) is a proper subarc of T (p′j−1, q j−1). Clearly, the convex function
along T (pk) is monotone strictly decreasing, since the slopes along ϕ◦T (pk) are all
bounded above by −1b

a(K ). We then observe from the construction that the family
of all the broken geodesics emanating from all points on ϕ−1({bk}) and ending at
points on ϕ−1({b−1}) simply covers ϕ−1

[a, b]. The desired homeomorphism 8b
a is

now obtained by defining 8b
a(x, t) as the intersection of a T (x) emanating from x :

8b
a(x, t)= T (x)∩ϕ−1({t}). �

Proposition 3.3. Assume that all the levels of ϕ are compact. Then the diameter
function δ : ϕ(M)→ R defined by

δ(a) := sup{d(x, y) | x, y ∈ ϕ−1({a}), a ∈ ϕ(M)}

is locally Lipschitz.

Proof. Let infM ϕ < a < b < ∞, and let r = r(Mb
a (ϕ)) be the convexity ra-

dius over Mb
a (ϕ). Let x, y ∈ ϕ−1({s}) for s ∈ [a, b) be such that d(x, y) =

δ(s). Proposition 3.2 then implies that there are points x ′, y′ ∈ Mb
b (ϕ) such that

8b
a(x
′, s)= x and8b

a(y
′, s)= y. Moreover, we have8b

a(x
′, t)= T (x ′)∩M t

t (ϕ) and
8b

a(y
′, t)=T (y′)∩M t

t (ϕ), and the length L(T (p)|[s,t]) of T (p)|[s,t], for p∈Mb
b (ϕ)

and for every a ≤ s < t ≤ b, is bounded above by

(3-2) L(T (p)|[s,t])≤ |t − s|/1b
a(M

b
a (ϕ)).
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Therefore, by setting λ = λ(Mb
a (ϕ)) the reversibility constant on Mb

a (ϕ), we
have

δ(s)= d(x, y)≤ d(x,8b
a(x
′, t))+ d(8b

a(x
′, t),8b

a(y
′, t))+ d(8b

a(y
′, t), y)

≤ λ|t − s|/1b
a(M

b
a (ϕ))+ δ(t)+ |t − s|/1b

a(M
b
a (ϕ))

= (1+ λ)|t − s|/1b
a(M

b
a (ϕ))+ δ(t).

Similarly, by choosing x, y ∈ ϕ−1({t}), d(x, y)= δ(t), we obtain

δ(t)= d(x, y)≤ d(x,8b
a(x
′, s))+ d(8b

a(x
′, s),8b

a(y
′, s))+ d(8b

a(y
′, s), y)

≤ (1+ λ)|t − s|/1b
a(M

b
a (ϕ))+ δ(s),

and hence,
|δ(t)− δ(s)| ≤ (1+ λ)|t − s|/1b

a(M
b
a (ϕ)). �

Proof of Theorem 1.1. We first assume that infM ϕ is not attained. Let {a j } j∈Z be
a monotone increasing sequence of real numbers with lim j→−∞ a j = infM ϕ and
lim j→∞ a j = ∞. We then apply Proposition 3.2 to each integer j and obtain a
homeomorphism 8

j+1
j : ϕ−1({a j+1})× (a j , a j+1] → Ma j+1

a j such that

ϕ ◦8
j+1
j (x, t)= t, x ∈ ϕ−1({a j+1}), t ∈ (a j , a j+1].

The composition of these homeomorphisms gives the desired homeomorphism
ϕ : ϕ−1({a})× (infM ϕ,∞)→ M .

If λ := infM ϕ is attained, then Mλ
λ (ϕ) is a k-dimensional totally geodesic sub-

manifold which is totally convex with 0≤ k ≤ dim M − 1. A tubular neighborhood
B
(
Mλ
λ (ϕ), r(M

λ
λ (ϕ))

)
around the minimum set is a normal bundle over Mλ

λ (ϕ)

in M and its boundary ∂B
(
Mλ
λ (ϕ), r(M

λ
λ (ϕ))

)
is homeomorphic to a level of ϕ.

Therefore M is homeomorphic to the normal bundle over the minimum set in M .
This proves Theorem 1.1. �

Remark 3.4. Under the assumption in Theorem 1.1, it is not certain whether or
not limt→infM ϕ

δ(t)=∞. It might happen that every level set above the infimum is
compact but the minimum set is noncompact. However, we do not know such an
example on a Finsler manifold.

Remark 3.5. The basic difference of treatments of convex functions between
Riemannian and Finsler geometry can be interpreted as follows.

In the case where ϕ : (M, g)→ R is a convex function with noncompact levels,
on a Riemannian manifold, the homeomorphism 8b

a : Mb
b (ϕ)× [a, b] → Mb

a (ϕ)

is obtained as follows. Fix a point p ∈ Ma
a (ϕ) and a sequence of R j -balls cen-

tered at p, {B(p, R j )} j≥1 with lim j→∞ R j = ∞. Setting K j to be the closure
of B(p, R j ), for j ≥ 1, we find a sequence of constants 1 j := 1b

a(K j ). If
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x ∈ K j ∩ Mb
b (ϕ) is a fixed point, we then have a broken geodesic T (x) :=

T (xk, xk−1) ∪ · · · ∪ T (x1, x0) as obtained in the proof of Proposition 3.2, where
x0 ∈ Ma

a (ϕ). The properties of the Riemannian distance function now apply to
T (x j , x j−1) : [0, d(x j , x j−1)]→ (M, g). Consequently, the distance function from
p ∈ Ma

a (ϕ), namely t 7→ d(p, T (x j , x j−1))(t), is strictly monotone decreasing.
Here T (x j , x j−1) is parameterized by arc-length such that T (x j , x j−1)(0)= x j and
T (x j , x j−1)(d(x j , x j−1))= x j−1. Therefore, T (x) is contained entirely in K j , and
moreover, the length L(T (x)) of T (x) satisfies

L(T (x))≤ (b− a)/1 j , ∀x ∈ K j ∩Mb
a (ϕ).

If y0 ∈Ma
a (ϕ)∩K j is an arbitrary fixed point, then Proposition 3.2 again implies that

there exists a point y = ym ∈ Mb
b (ϕ) such that T (y)= T (yk, yk−1)∪· · ·∪T (y1, y0)

has length at most (b− a)/1 j . Hence we have

d(p, y) < R j + (b− a)/1 j + 1.

We therefore observe that the correspondence x 7→ x0 between Mb
b (ϕ) and Ma

a (ϕ)

through T (x) is bijective, and the desired homeomorphism is constructed.
However, in the Finslerian case where all the levels of a convex function

ϕ : (M, F)→ R are noncompact, the correspondence x 7→ x0 between Mb
b (ϕ) and

Ma
a (ϕ) through T (x)= T (xk, xk−1)∪ · · · ∪ T (x1, x0) may not be obtained. In fact,

the monotone decreasing property of t 7→ d(p, T (x j , x j−1)) might not hold for a
Finsler metric. Therefore, for a point x ∈ K j ∩Mb

b (ϕ), T (x) may not necessarily
be contained in K j . Hence, we may fail in controlling the length of T (x) in terms
of 1 j . By the same reason, we cannot prove the monotone nondecreasing property
of the diameter function for compact levels of a convex function ϕ : (M, F)→ R.

4. Proof of Theorem 1.2

We take a minimizing geodesic σ : [0, `] → M such that σ(0) and σ(`) belong to
distinct components of Mc

c (ϕ).
For the proof of (1), we assert that infM ϕ = inf0≤t≤` ϕ ◦ σ(t). Suppose that

b := inf0≤t≤` ϕ ◦ σ(t) > infM ϕ. Since ϕ is locally nonconstant, we may assume
without loss of generality that b := inf0≤t≤` ϕ ◦ σ(t) is attained at a unique point,
say, q = σ(`0).

Setting r = r(σ (`0)), we find a number a ∈ (infM ϕ, b) such that there is a unique
foot p ∈ Ma

a (ϕ) of q on Ma
a (ϕ), namely d(σ (`0),Ma

a (ϕ))= d(σ (`0), p).
Let α : [0, d(q, p)] → M be the unique minimizing geodesic with α(0) = q,

α(d(q, p)) = p. The points on α(t), for 0 ≤ t ≤ d(q, p), can be joined to q± :=
σ(`0 ± r) by a unique minimizing geodesic γα(t)q± : [0, d(α(t), q±)] → B(q; r)
with γα(t)q±(0)= α(t), γα(t)q±(d(α(t)), q±)= q±.



COMPLETE FINSLER MANIFOLDS ADMITTING CONVEX FUNCTIONS 473

Since ϕ(q±)>b, the right-hand derivative of ϕ◦γα(t)q± at d(α(t), q±) is bounded
below by

(ϕ ◦ γα(t)q±)
′

+
(ϕ ◦ γα(t)q±(d(α(t)), q±)) >

ϕ(q±)− b
2r

> 0.

Thus, for every t ∈ [0, d(q, p)], γα(t)q± meets Mc
c (ϕ) at γα(t)q±(u

±(t)) with

u±(t)≤
2r(c− a)
ϕ(q±)− b

+ 2r,

and hence there are curves C±0 : [0, d(q, p)] → Mc
c (ϕ) with

C+0 (0)= σ(`), C−0 (0)= σ(0),

C+0 (d(q, p))= γpq+(u
+(d(q, p))), C−0 (d(q, p))= γpq−(u

−(d(q, p))).

Let τt : [0, d(p, σ (t))] → M for t ∈ [`0 − r, `0 + r ] be a minimizing geodesic
with τt(0)= p, τt(d(p, σ (t)))= σ(t). Every τt meets Mc

c (ϕ) at a parameter value
≤ 2rc/(b−a), and hence we have a curve C1 : [`0− r, `0+ r ]→ Mc

c (ϕ) such that

C1(t)= τt [0, 2rc/(b− a)] ∩Mc
c (ϕ).

Thus, considering the union C−0 ∪C1 ∪ (C+0 )
−1, it follows that σ(0) can be joined

to σ(`) in Mc
c (ϕ), a contradiction. This proves (1) (see Figure 5).

We next prove (2). Let λ := infM ϕ. Clearly Mλ
λ (ϕ) is totally convex, and hence

Proposition 2.2 implies that Mλ
λ (ϕ) carries the structure of a smooth totally geodesic

submanifold.
Suppose that dim Mλ

λ (ϕ) < n− 1. Then the normal bundle is connected, and at
each point p∈Mλ

λ (ϕ) the indicatrix6p⊂Tp M has the property that6p\6p(Mλ
λϕ))

is arcwise connected. Here, 6p(Mλ
λ (ϕ)) ⊂ 6p is the indicatrix at p of Mλ

λ (ϕ).
Choose points q0 and q1 on distinct components of Mc

c (ϕ), and an interior point
p ∈ Mλ

λ (ϕ). If γi : [0, d(p, qi )] → M for i = 0, 1 is a minimizing geodesic
with γi (0) = p, γi (d(p, qi )) = qi , then γ̇0(0) and γ̇1(0) are joined by a curve
0 : [0, 1] → 6p \6p(Mλ

λ (ϕ)) such that 0(0) = γ̇0(0), 0(1) = γ̇1(0). The same
method as developed in the proof of (1) yields a continuous 1-parameter family
of geodesics γt : [0, `t ] → M with γt(0) = p, γ̇t(0) = 0(t) and γt(`t) ∈ Mc

c (ϕ)

for all t ∈ [0, 1]. Thus we have a curve t 7→ γt(`t) in Mc
c (ϕ) joining q0 to q1, a

contradiction. This proves dim Mλ
λ (ϕ)= n− 1.

We use the same idea to prove that Mλ
λ (ϕ) has no boundary. In fact, supposing

that the boundary is nonempty, the tangent cone of Mλ
λ (ϕ) at a boundary point x is

contained entirely in a closed half space of Tx Mλ
λ (ϕ), and hence 6x \6x(Mλ

λ (ϕ))

is arcwise connected. A contradiction is derived by constructing a curve in Mc
c (ϕ)

joining q0 to q1. This proves (2).
The triviality of the normal bundle over Mλ

λ (ϕ) in M is now clear, giving (3).
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q = σ(l0)

p = α(d(q, p))

B(q, r)

C−0 (d(q, p))= C1(l0− r)

Mb
b (ϕ)

Ma
a (ϕ)

Mc
c (ϕ)Mc

c (ϕ)

C+0 (0)= σ(l)

C+0 (t)

C−0 (0)= σ(0)

q+ = σ(l0+ r)q− = σ(l0− r)

α(t)

C−0 (0)= α(0)

Figure 5. The proof of Theorem 1.2.

To prove (4), suppose that Ma
a (ϕ) for some a ∈ ϕ(M) has more than two com-

ponents. Let q1, q2, q3 ∈ Ma
a (ϕ) be in distinct components, and take p ∈ Mλ

λ (ϕ).
Let γi : [0, d(p, qi )] → M for i = 1, 2, 3 be minimizing geodesics with γi (0)= p,
γi (d(p, qi )) = qi . Since the normal bundle over Mλ

λ (ϕ) in M is trivial by (3), it
follows that 6p \6p(Mλ

λ (ϕ)) has exactly two components. Two of the three initial
vectors, say γ̇1(0) and γ̇2(0), belong to the same component of 6p \6p(Mλ

λ (ϕ)).
Then the same technique as developed in the proof that dim Mλ

λ (ϕ)= n−1 applies,
and q1 is joined to q2 by a curve in Ma

a (ϕ). This contradiction proves (4). �

5. Ends of (M, F)

An end ε of a noncompact manifold X is an assignment to each compact set K ⊂ X a
component ε(K ) of X \K such that ε(K1)⊃ ε(K2) if K1⊂ K2. Every noncompact
manifold has at least one end. For instance, Rn has one end if n > 1 and two ends
if n = 1.

In the present section we discuss the number of ends of (M, F) admitting a
convex function, namely we will prove Theorem 1.3. As is seen in the previous
section, it may happen that a convex function ϕ : (M, F)→ R has both compact
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K

γ j

V
U \M+

M−

Mλ
λ (ϕ)

Mb1
b1
(ϕ) Mb1

b1
(ϕ)

pq j

Figure 6. The proof of Theorem 1.3 (A2).

and noncompact levels simultaneously. In this section let {K j } j≥1 be an increasing
sequence of compact sets such that lim j→∞ K j = M .

Proof of Theorem 1.3. We first prove (A1).
Theorem 1.2 (1) implies that ϕ attains its infimum λ := infM ϕ. Given an arbitrary

compact set A ⊂ M , there exists a number a ∈ ϕ(M) such that Ma
a (ϕ) has two

components and A ⊂ ϕ−1
[λ, a]. Then M \ A contains two unbounded open sets

ϕ−1(a,∞), proving (A1).
We next prove (A2). Suppose that M has more than one end. There is a compact

set K ⊂ M such that M \ K has at least two unbounded components, say U and V .
Setting a :=minK ϕ and b :=maxK ϕ, we have

λ≤ a < b <∞.

We assert that

Mλ
λ (ϕ)∩U 6=∅, Mλ

λ (ϕ)∩ V 6=∅, Mλ
λ (ϕ)∩ K 6=∅.

In order to prove that Mλ
λ (ϕ)∩K 6=∅, we suppose that λ<a. Once Mλ

λ (ϕ)∩K 6=∅
has been established, it will turn out that Mλ

λ (ϕ) intersects all the unbounded
components of M \ K .

Suppose the contrary, namely Mλ
λ (ϕ)∩K =∅. Without loss of generality we may

assume Mλ
λ (ϕ)⊂U . From Theorem 1.2 (3) it follows that M \Mλ

λ (ϕ)= M−∪M+
(a disjoint union with ∂M+ = ∂M− = Mλ

λ (ϕ)).
Setting M− ⊂U , we observe that K ∪ V ⊂ M+.
If b1 > b, then M− contains a component of Mb1

b1
(ϕ) and another component of

Mb1
b1
(ϕ) is contained entirely in V . We then observe that if supU\M− ϕ =∞, then

U \M− contains a component of Mb1
b1
(ϕ), for ϕ takes values ≤ b on ∂(U \M−) and

Mb1
b1
(ϕ) does not meet the boundary of U \M−. This contradicts Theorem 1.2 (4),

for ∂Mb1
b1
(ϕ) has at least three components. Therefore we have supU\M− ϕ <∞.
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Let {q j } ⊂ Mb1
b1
(ϕ) be a divergent sequence of points, and fix p ∈ Mb1

b1
(ϕ)⊂ V .

Let γ j : [0, d(p, q j )] → M \ M− be a minimizing geodesic with γ j (0) = p,
γ j (d(p, q j )) = q j for j = 1, 2, . . . . Clearly γ j passes through a point on K
and ϕ ◦ γ j is bounded above by b1. If γ : [0,∞) → M \ M− is a ray with
γ̇ (0) = lim j→∞ γ̇ j (0), then ϕ ◦ γ is constant on [0,∞) and ϕ ◦ γ (t) = b1 for all
t > b1. This is a contradiction to the choice of b =maxK ϕ, for γ passes through a
point on K at which ϕ takes the value b1. This proves the assertion (see Figure 6).

We next assert that if b1 > b is fixed, then Mb1
b1
(ϕ) has at least four compo-

nents. In fact, we observe from Mb1
b1
(ϕ)∩ K =∅ that each unbounded component

of (M \ Mλ
λ (ϕ)) ∩ (M \ K ) contains a component of Mb1

b1
(ϕ). This contradicts

Theorem 1.2 (4), and (A2) is proved.
The proof of (A3) is a consequence of (D2), and given after the proof of (D2).
We now prove (B1). From the assumption that infM ϕ is attained, it follows from

Lemma 3.1 that ϕ−1
[infM ϕ, b j ] is compact for all j , where {b j } is a monotone diver-

gent sequence. Then K j :=ϕ
−1
[λ, b j ] is monotone increasing and lim j→∞ K j =M .

Clearly M \K j contains a unique unbounded domain ϕ−1(b j ,∞) for every j . This
proves Theorem 1.3 (B1).

For (B2), if infM ϕ is not attained, we have monotone sequences {a j } and {b j }

such that

lim
j→∞

a j = infM ϕ, lim
j→∞

b j =∞,

[a j , b j ] = ϕ(K j ), j = 1, 2, . . . .

Then for all large numbers j , M \ K j contains two unbounded domains

M \ K j ⊃ ϕ
−1(b j ,∞)∪ϕ

−1(infM ϕ, a j ).

This proves that M has exactly two ends.
We first prove (C) under an additional assumption that λ := infM ϕ is attained.

Suppose that M has more than one end. Using the same notation as in the proof
of (A2),

λ := infM ϕ, a :=minK ϕ, b :=maxK ϕ,

where K ⊂ M is a compact set such that M \ K has at least two unbounded
components U and V .

We first assert that K ∩Mλ
λ (ϕ) 6=∅. In fact, supposing that K ∩Mλ

λ (ϕ)=∅ we
find a component V of M \ K such that if b′ > b then Mb′

b′ (ϕ)⊂ V and Mλ
λ ⊂U .

Here the assumption that all the levels of ϕ are connected is essential. As is seen in
the proof of (A2), there exist at least two components of Mb′

b′ for b′ > b such that
one component lies in U and another in V . This contradicts the assumption in (C),
and the first assertion is proved.
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The same proof technique as developed in (A2) implies that Mλ
λ (ϕ) passes

through points on K , U and V . Fix a point p ∈ V ∩Mλ
λ (ϕ), a divergent sequence

{q j } of points in U \ Mλ
λ (ϕ) and γ j : [0, d(p, q j )] → M a minimizing geodesic

with γ j (0)= p, γ j (d(p, q j ))= q j .
From the construction of γ j , we observe that ϕ ◦ γ is strictly increasing, and

hence we find a number t j > 0 such that γ j (t j ) ∈ Mb′
b′ (ϕ) ∩U . More precisely,

γ j [0, d(p, q j )] meets Mλ
λ (ϕ) only at the origin, for Mλ

λ (ϕ) is totally convex and
hence if γ (t0)∈Mλ

λ (ϕ), for some t0∈[0, d(p, q j )), then γ j [0, d(p, q j )] is contained
entirely in Mλ

λ (ϕ).
Therefore Mb′

b′ (ϕ) has more than one component (one in U and another in V ), a
contradiction to the assumption in (C). This concludes the proof of (C) in this case.

We next prove (C) in the case where infM ϕ is not attained. Assume again that
M has more than one end. We then have

infM ϕ < a < b <∞, a :=minK ϕ, b :=maxK ϕ.

Since all the levels are connected, we find infM ϕ < a′ < a and b < b′ such that
Ma′

a′ (ϕ) ⊂ U and Mb′
b′ (ϕ) ⊂ V . Let {y j } ⊂ Mb′

b′ (ϕ) be a divergent sequence of
points and fix a point x ∈ Ma′

a′ (ϕ). Let γ j : [0, d(x, y j )] → M for j = 1, 2, . . .
be a minimizing geodesic with γ j (0) = x and γ j (d(x, y j )) = y j . There exists a
ray γ : [0,∞)→ M emanating from x such that γ̇ (0) = lim j→∞ γ̇ j (0). Clearly,
every γ j passes through a point on K and hence, so does γ . From construction,
ϕ◦γ : [0,∞)→R is bounded from above by b′, and therefore is constant. However
it is impossible, for ϕ(x) = a′ and ϕ ◦ γ (t0) ≥ a > a′ at a point γ (t0) ∈ K . This
completes the proof of (C).

For the proof of (D1), suppose that M has more than two ends.
Let K ⊂ M be a connected compact subset such that M \ K contains at least

three unbounded components, say U , V and W . We may consider that U contains
ϕ−1
[b′,∞), for all b′ > b. Since all the levels of ϕ are connected, we have

sup
M\U

ϕ ≤ b.

In fact, suppose that there exists a point x ∈ M \U such that ϕ(x)= b′ for some
b′ > b. Then Mb′

b′ (ϕ)∩ K =∅ and hence Mb′
b′ (ϕ) is disconnected, a contradiction

to the assumption of (D).
Let {x j } ⊂ V and {y j } ⊂ W be two divergent sequences of points, and let

γ j : [0, d(x j , y j )] → M \U be a minimizing geodesic joining x j to y j . Since γ j

passes through a point on K , there exists a straight line γ : R→ M \U such that
γ̇ (0) is obtained as the limit of a converging sequence of vectors γ̇ j (t j ) ∈ K for
j = 1, 2, . . . . Clearly, ϕ ◦ γ : R→ R is bounded above, and hence constant taking



478 SORIN V. SABAU AND KATSUHIRO SHIOHAMA

Mb′
b′ (ϕ)

Mb′
b′ (ϕ)

Mλ
λ (ϕ)

Figure 7. The proof of Theorem 1.3 (D1).

a value µ= ϕ ◦ γ (0) ∈ [a, b]. We therefore observe that

Mµ
µ (ϕ)∩ K 6=∅, Mµ

µ (ϕ)∩W 6=∅ and Mµ
µ (ϕ)∩ V 6=∅.

We next choose a value a′ ∈ (infM ϕ, a). We may assume without loss of
generality that Ma′

a′ (ϕ) ⊂ V . Let {z j } ⊂ Mµ
µ (ϕ)∩W be a divergent sequence of

points and x ∈ Ma′
a′ (ϕ) an arbitrary fixed point. Let σ j : [0, d(x, z j )] → M \U

be a minimizing geodesic with σ j (0) = x , σ(d(x, z j )) = z j for all j = 1, 2, . . . .
Clearly, ϕ ◦ σ j is monotone increasing in W . Let σ : [0,∞)→ M be a ray such
that σ̇ (0)= lim j→∞ σ̇ j (0). We then observe that ϕ ◦ σ is monotone increasing on
an unbounded interval [b̄,∞) for some b̄> 0, and bounded above by µ. Thus, it is
identically equal to a′. Recall that ϕ ◦σ(0)= ϕ(x)= a′. However this is impossible
since a′ < minK ϕ = a and σ [0,∞) passes through a point on K . We therefore
observe that M \ (K ∪U ) has exactly one end. This proves (D1).

The proof of (D2) is now clear and omitted.
The proof of (A3) is now a straightforward consequence of (D2). See Figure 8.

If Mb
b (ϕ) is compact for some b ∈ ϕ(M), then ϕ−1

[b,∞) has two ends. From the
assumption and Theorem 1.2 (1), we observe that Mλ

λ (ϕ) is noncompact. Therefore
Mb(ϕ)= ϕ−1

[λ, b] is noncompact and so has at least one end. This proves (A3).
Finally, we prove (E). Suppose that ϕ admits both compact and noncompact levels

simultaneously. The same notation as in the proof of (D) will be used. If ϕ admits
a disconnected level, then ϕ−1

[b′,∞) consists of two unbounded components for
all b′ > b.

Then Theorem 1.2 (1) and Lemma 3.1 imply that λ := infM ϕ is attained and
Mλ
λ (ϕ) is connected and noncompact. Therefore, every compact set K containing
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Mb′
b′ (ϕ)

Mb′
b′ (ϕ)

Mλ
λ (ϕ)

Figure 8. The proof of Theorem 1.3 (A3).

Mb′
b′ (ϕ) has the property that M \ K has more than two unbounded components.

In fact, two components of M \ K contain ϕ−1
[b′,∞) and the other component

intersects with Mλ
λ (ϕ) outside K . This proves that M has at least three ends, a

contradiction to the assumption of (E).
If all the levels of ϕ are connected and noncompact, then M has one end by (C),

a contradiction to the assumption of (E). This completes the proof of (E) and hence
of Theorem 1.3. �
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