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CATEGORIES OF SPECTRA

F. LUKE WOLCOTT

We investigate several versions of the telescope conjecture on localized cat-
egories of spectra and implications between them. Generalizing the “finite
localization” construction, we show that, on such categories, localizing away
from a set of strongly dualizable objects is smashing. We classify all smash-
ing localizations on the harmonic category, HF p-local category and I-local
category, where I is the Brown–Comenetz dual of the sphere spectrum;
all are localizations away from strongly dualizable objects, although these
categories have no nonzero compact objects. The Bousfield lattices of the
harmonic, E(n)-local, K (n)-local, HF p-local and I-local categories are de-
scribed, along with some lattice maps between them. One consequence is
that in none of these categories is there a nonzero object that squares to
zero. Another is that the HF p-local category has localizing subcategories
that are not Bousfield classes.

1. Introduction

The telescope conjecture, first stated by Ravenel [1984, Conjecture 10.5], is a claim
about two classes of localization functors in the p-local stable homotopy category
of spectra. First, one can localize away from a finite type n+ 1 spectrum F(n+ 1);
the acyclics are the smallest localizing subcategory containing F(n+ 1), and we
denote this functor by L f

n . Second, one can localize at the wedge of the first n+ 1
Morava K -theories K (0)∨ · · · ∨ K (n); the acyclics are all spectra that smash with
K (0) ∨ · · · ∨ K (n) to zero and this is denoted Ln . Both these localizations are
smashing, i.e., they commute with coproducts. The telescope conjecture (TCn)
claims that L f

n and Ln are isomorphic. In fact, here we consider three slightly
different versions, TC1n , TC2n , and TC3n , of the telescope conjecture. In Section 3
we articulate them carefully and show implications between them.

The conjecture is known to hold for n = 0 [Ravenel 1992, p. 79] and for n = 1
when p = 2 [Mahowald 1982] and p > 2 [Miller 1981]. A valiant but unsuccessful
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effort at a counterexample, for n ≥ 2, was undertaken by Mahowald, Ravenel, and
Shick, as outlined in [Mahowald et al. 2001]. Since then little progress has been
made, and the original conjecture remains open.

A generalization of the telescope conjecture can be stated for spectra, as well
as other triangulated categories. Localization away from a finite spectrum, i.e,
a compact object of the category, always yields a smashing localization functor
(see, e.g., [Bousfield 1979a, Proposition 2.9] or [Miller 1992] or [Hovey et al.
1997, Theorem 3.3.3]). The Generalized Smashing Conjecture (GSC) is that every
smashing localization arises in this way. If true, then every smashing localization is
determined by its compact acyclics; if the GSC holds in spectra, then so must the
TCn for all n.

The GSC, essentially stated for spectra decades ago by Bousfield [1979b, Conjec-
ture 3.4], has been formulated in many other triangulated categories, in many cases
labeled as the telescope conjecture, and in many cases proven to hold. Neeman
[1992] made the conjecture for the derived category D(R) of a commutative ring R
and showed that it holds when the ring is Noetherian. See also [Hovey et al. 1997,
Theorem 6.3.7] or [Krause and Št’ovíček 2010] for a generalization. On the other
hand, Keller [1994] gave an example of a non-Noetherian ring for which the GSC
fails. Benson, Iyengar, and Krause have shown that the GSC holds in a stratified
category [Benson et al. 2011a], such as the stable module category of a finite group
[Benson et al. 2011b]. Balmer and Favi [2011] showed that in a tensor triangulated
category with a good notion of support, the GSC is a “local” question.

It is worth noting that there are further variations of the GSC that we will not
consider here. Krause [2000] formulated a variation of the GSC, in terms of
subcategories generated by sets of maps, that makes sense (and holds) for any
compactly generated triangulated category. Krause and Solberg [2003] gave a
variation for stable module categories, stated in terms of cotorsion pairs. See also
[Krause 2005; Angeleri Hügel et al. 2008; Brüning 2007; Št’ovíček 2010].

To date, Keller’s ring yields the only category where the GSC is known to fail.
In this paper we give several more examples. Incidentally, each is a well generated
triangulated category that is not compactly generated.

One of our main results is the following. We weaken the assumptions for “finite
localization” and show that, in many categories, localization away from any set of
strongly dualizable objects yields a smashing localization. (Recall that an object
X is strongly dualizable if F(X, Y )∼= F(X,1)∧ Y for all Y , where 1 is the tensor
unit and F(−,−) the function object bifunctor.) Let loc(X) denote the smallest
localizing subcategory containing X . We prove the following as Theorem 3.5.

Theorem (A). Let T be a well generated tensor triangulated category such that
loc(1)= T. Let A = {Bα} be a (possibly infinite) set of strongly dualizable objects.
Then there exists a smashing localization functor L : T→ T with Ker L = loc(A).
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Thus we are led to conjecture the following.

Conjecture (Strongly Dualizable Generalized Smashing Conjecture (SDGSC)).
Every smashing localization is localization away from a set of strongly dualizable
objects.

We give several examples of categories where the GSC fails but the SDGSC
holds. In fact, we consider a topological setting, where one can also formulate a
version (or versions, rather) of the original telescope conjecture.

Specifically, we consider localized categories of spectra. Let S be the p-local
stable homotopy category, and let ∧ denote the smash (i.e., tensor) product. Take Z
to be an object of S, and let L = L Z : S → S be the localization functor that
annihilates Z∗-acyclic objects. The full subcategory of L-local objects, that is,
objects X for which X→ L X is an equivalence, has a tensor triangulated structure
induced by that of S. Let L denote this category; the triangles are the same as in S,
the coproduct is X

∐
L Y = L(X

∐
Y ) and the tensor is X ∧L Y = L(X ∧ Y ).

In Definition 3.6, we define localization functors l f
n and ln on L that are lo-

calized versions of L f
n and Ln . The localized telescope conjecture (LTC) claims

that l f
n and ln are isomorphic. In fact, we give three versions of the LTC and in

Theorems 3.12 and 3.13 establish implications between them. Then, examining
specific examples of localized categories of spectra, we conclude the following in
Theorems 4.3, 5.11, 6.1, 6.5 and 6.9 and Corollary 5.6.

Theorem (B). All versions of the localized telescope conjecture, LTC1i , LTC2i ,
and LTC3i hold for all i ≥ 0, in the

∨
n≥0K (n)-local (i.e., harmonic), K (n)-local,

HFp-local, BP-local, and I -local categories, where I is the Brown–Comenetz dual
of the sphere spectrum.

In order to consider the GSC and SDGSC in L, we must classify the smashing
localizations on L. We are able to do this in several examples.

Theorem (C). In the harmonic category, the GSC fails but the SDGSC holds, and
likewise in the HFp-local and I -local categories. In the BP-local category the GSC
fails but the SDGSC is open. In the E(n)-local and K (n)-local categories the GSC
and SDGSC both hold.

Proof. This theorem is concluded from Theorems 4.4 and 5.11, Propositions 6.3
and 6.10, and Corollaries 5.6 and 6.7. �

One novelty in our approach is our use of Bousfield lattice arguments. Given an
object X in a tensor triangulated category T, the Bousfield class of X is defined by
〈X〉 = {W |W ∧X = 0}. It is now known [Iyengar and Krause 2013] that every well
generated tensor triangulated category has a set of Bousfield classes. This set has the
structure of a lattice and is called the Bousfield lattice of T. One can now attempt to
calculate the Bousfield lattices of categories of localized spectra. Furthermore, every



486 F. LUKE WOLCOTT

smashing localization yields a pair of so-called complemented Bousfield classes.
Information about the Bousfield lattice of a category gives information about its
complemented classes, which gives information about the smashing localization
functors on the category.

Moreover, the first version of the telescope conjecture TC1n is that two spectra
T (n) and K (n) have the same Bousfield class. In the localized version this becomes
(LTC1n) the claim that 〈LT (n)〉 = 〈L K (n)〉 in the Bousfield lattice of L. One is
thus led to investigating Bousfield lattices of localized spectra.

Corollary 2.7 gives an upper bound, 22ℵ0 , on the cardinality of such lattices.
Jon Beardsley has calculated the Bousfield lattice of the harmonic category to
be isomorphic to the power set of N; we give this calculation in Proposition 4.2.
In Corollary 5.4 and Proposition 5.7 we show that one can realize this lattice as
an inverse limit of the Bousfield lattices of E(n)-local categories, as n ranges
over N. Then in Corollary 5.10 and Propositions 6.2 and 6.6, we show that the
K (n)-local, HFp-local, and I -local categories all have two-element Bousfield lat-
tices. In Proposition 6.11 we give a lower bound, 2ℵ0 , on the cardinality of the
Bousfield lattice of the BP-local category.

One immediate object-level application of these Bousfield lattice calculations is
the following. Call an object X square-zero if it is nonzero but X ∧ X = 0. Then
Proposition 2.9 shows that there are no square-zero objects in the harmonic, E(n)-,
K (n)-, HFp-, or I -local categories.

We are also able to answer the analogue of a conjecture by Hovey and Palmieri,
originally stated for the stable homotopy category. Conjecture 9.1 in [Hovey
and Palmieri 1999] is that every localizing subcategory is a Bousfield lattice.
Proposition 6.4 demonstrates that this fails in the HFp-local category by giving two
localizing subcategories that are not Bousfield classes.

Section 2 establishes the categorical setting, and provides background on local-
ization, Bousfield lattices, and stable homotopy theory. Section 3 defines the various
versions of the telescope conjecture, for spectra and for localized spectra, and estab-
lishes implications among them. The remainder of the paper is devoted to examining
specific examples: the harmonic category (Section 4), the E(n)-local and K (n)-local
categories (Section 5), and the HFp-local, I -local, BP-local, and F(n)-local cat-
egories (Section 6). All results are new unless cited. Most of the results on the
E(n)-local and K (n)-local categories in Section 5 follow in a straightforward way
from Hovey and Strickland’s work [1999] and are included for completeness.

2. Preliminaries

2A. Categorical setting. We start with the notion of a tensor triangulated cate-
gory C, i.e., a triangulated category with set-indexed coproducts and a closed



VARIATIONS OF THE TELESCOPE CONJECTURE 487

symmetric monoidal structure compatible with the triangulation [Hovey et al. 1997,
Appendix A]. Let 6 : C→ C denote the shift and [X, Y ] the morphisms from X
to Y , and let [X, Y ]n = [6n X, Y ] for any n ∈ Z.

Let−∧− denote the smash (tensor) product, 1 the unit, and F(−,−) the function
object bifunctor; F(X,−) is the right adjoint to X ∧−. Recall that an object X
in C is said to be strongly dualizable if the natural map DX ∧ Y → F(X, Y ) is
an isomorphism for all Y , where DX = F(X,1) is the Spanier–Whitehead dual.
Since F(1, X)∼= X for all X , the map F(1,1)∧ Y → F(1, Y ) is an equivalence
and 1 is always strongly dualizable.

For a regular cardinal α, we say an object X is α-small if every morphism
X→

∐
i∈I Yi factors through

∐
i∈J Yi for some J ⊆ I with |J |<α. If X is ℵ0-small

we say X is compact ([Hovey et al. 1997] calls this small); this is equivalent to the
condition that the natural map

⊕
i∈K [X, Zi ] → [X,

∐
i∈K Zi ] is an isomorphism

for any set-indexed coproduct
∐

i∈K Zi . We say C is α-well generated if it has a set
of perfect generators [Krause 2010, Section 5.1] which are α-small, and C is well
generated if it is α-well generated for some α. See [Krause 2010] for more details.

A localizing subcategory is a triangulated subcategory of C that is closed under
retracts and coproducts; a thick subcategory is a triangulated subcategory that is
closed under retracts. Given an object or set of objects X , let loc(X) (resp. th(X))
denote the smallest localizing (resp. thick) subcategory containing X . We say that
loc(X) is generated by X .

Notation 2.1. Throughout this paper let T be a well generated tensor triangulated
category such that loc(1)= T.

In the language of [Hovey et al. 1997], such a T is almost a “monogenic stable
homotopy category”, except that we do not insist that the unit 1 is compact.

In practice, in this paper T will always be either the p-local stable homotopy
category of spectra S or the category LZ of L Z -local objects derived from a lo-
calization functor L Z : S→ S. The former satisfies Notation 2.1 by [Hovey et al.
1997, Example 1.2.3(a)], and the latter by Theorem 2.3 and Lemma 2.4 below.

2B. Background on localization. Recall that a localization functor (or simply
localization) on a tensor triangulated category C is an exact functor L : C→ C,
along with a natural transformation η : 1→ L such that Lη is an equivalence and
Lη = ηL . We call Ker L the L-acyclics. It follows that there is an exact functor
C : C→ C, called colocalization, such that every X in C fits into an exact triangle
C X→ X→ L X , with C X L-acyclic. An object Y is L-local if it is in the essential
image of L , and this is equivalent to satisfying [Z , Y ] = 0 for all L-acyclic Z . See
[Hovey et al. 1997, Chapter 3] or [Krause 2010] for further background.

We also recall two special types of localizations. A localization L : C→ C is said
to be smashing if L preserves coproducts, equivalently if L X ∼= L1∧ X for all X .
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Given a set A of objects of C, we say that a localization functor L : C→ C

is localization away from A if the L-acyclics are precisely loc(A). If such a
localization exists, we also say it is generated by A. When C= S, it is well known
(e.g., [Miller 1992; Mahowald and Sadofsky 1995]) that localization away from a set
of compact objects exists and yields a smashing localization functor. As mentioned
in the introduction, this result has been generalized to other categories as well
(e.g., [Hovey et al. 1997, Theorem 3.3.3], [Balmer and Favi 2011, Theorem 4.1]).
We present a further generalization in Theorem 3.5.

In this paper we will restrict our attention to homological localizations, which we
now describe. Given an object Z in a tensor triangulated category C, the Bousfield
class of Z is defined to be

〈Z〉 = {W ∈ C |W ∧ Z = 0}.

Extending a classical result of Bousfield’s for S, Iyengar and Krause recently
showed [2013, Proposition 2.1] that for every object Z in a well generated tensor
triangulated category C, there is a localization functor L Z : C→ C with L Z -acyclics
precisely 〈Z〉. We call such an L Z a homological localization at Z .

Notation 2.2. Let T be as in Notation 2.1, with tensor unit 1. For an object Z in T,
let L Z : T→ T be homological localization at Z . Let LZ denote the category of
L Z -local objects, the essential image of L Z .

Theorem 2.3 [Hovey et al. 1997, 3.5.1, 3.5.2]. Let L= L Z :T→T be a localization,
and LZ the category of L Z -local objects. Then LZ has a natural structure as a
tensor triangulated category, generated by L Z 1, which is the unit. Considered
as a functor from T to LZ , L preserves triangles, the tensor product and its unit,
coproducts, and strong dualizability. Furthermore, L preserves compactness if and
only if L is a smashing localization.

Explicitly, for L-local objects X , X i and Y , in L we have
∐

L X i = L
(∐

T X i
)

and X ∧L Y = L(X ∧T Y ) and FL(X, Y ) = F(X, Y ). Note that L Z 1 is strongly
dualizable but may not be compact in LZ .

Lemma 2.4. The category LZ is well generated.

Proof. By Proposition 2.1 of [Iyengar and Krause 2013], the L Z -acyclics 〈Z〉 form a
well generated localizing subcategory of T. Then by [Krause 2010, Theorem 7.2.1],
the Verdier quotient T/〈Z〉, which is equivalent to the local category LZ , is well
generated. �

We conclude this subsection with a lemma containing four useful well-known
facts. Recall that a ring object in a tensor triangulated category is an object R with
an associative multiplication map µ : R ∧ R→ R and a unit ι : 1→ R, making the
evident diagrams commute. If R is a ring object, then an R-module object is an



VARIATIONS OF THE TELESCOPE CONJECTURE 489

object M with a map m : R ∧M→ M along with evident commutative diagrams.
Note that R ∧ X is an R-module object for every X . A skew field object is a ring
object such that every R-module object is free, i.e., isomorphic to a coproduct of
suspensions of R [Hovey et al. 1997, Definition 3.7.1].

Lemma 2.5. Let C be a tensor triangulated category with loc(1)=C, and L :C→C

a localization.

(1) Every localizing subcategory S of C is tensor-closed; that is, if X ∈ S and
Y ∈ C, then X ∧ Y ∈ S.

(2) For all X and Y in C, L(X ∧ Y )= L(L X ∧ LY ).

(3) Considered as a functor from C to L, L also preserves ring objects and module
objects.

(4) If R is a ring object and M is an R-module object (in particular, if M = R),
then M is R-local.

Proof. For (1), note that Y ∈ loc(1)= C, so X ∧ Y ∈ loc(X ∧ 1)= loc(X)⊆ S.
For (2), consider the exact triangle X ∧ CY → X ∧ Y → X ∧ LY . Since

CY is L-acyclic and these form a localizing subcategory, L(X ∧ CY ) = 0, so
L(X ∧Y )= L(X ∧ LY ). Using the same reasoning with the triangle C X ∧ LY →
X ∧ LY → L X ∧ LY , the result follows.

If R∈C is a ring object, then L(µ) : L(R∧R)= L(L R∧L R)= L R∧LL R→ L R,
and all the localized diagrams commute. A similar argument applies to module
objects, completing part (3).

Part (4) is [Ravenel 1984, Proposition 1.17(a)]. �

2C. Background on Bousfield lattices. Every well generated tensor triangulated
category, and hence every localized category of spectra, has a set (rather than a
proper class) of Bousfield classes [Iyengar and Krause 2013, Theorem 3.1]. This
was also recently shown for every tensor triangulated category with a combinatorial
model [Casacuberta et al. 2014]. This set is called the Bousfield lattice BL(T) and
has a lattice structure which we now recall. Refer to [Hovey and Palmieri 1999;
Wolcott 2014] for more details.

The partial ordering is given by reverse inclusion: we say 〈X〉 ≤ 〈Y 〉 when
W ∧ Y = 0 implies W ∧ X = 0. It is also helpful to remember that, unwinding
definitions, 〈X〉 ≤ 〈Y 〉 precisely when every L X -local object is also LY -local.
Clearly 〈0〉 is the minimum and 〈1〉 is the maximum class. The join of any set of
classes is

∨
i∈I 〈X i 〉 =

〈∐
i∈I X i

〉
, and the meet is defined to be the join of all lower

bounds.
The smash product induces an operation on Bousfield classes, where 〈X〉 ∧ 〈Y 〉

is equal to 〈X ∧Y 〉. This is a lower bound, but in general not the meet. However, if
we restrict to the subposet DL= {〈W 〉 | 〈W ∧W 〉 = 〈W 〉}, then the meet and smash
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agree. Since coproducts distribute across the smash product, DL is a distributive
lattice.

We say a class 〈X〉 is complemented if there exists a class 〈X c
〉 such that

〈X〉∧ 〈X c
〉 = 〈0〉 and 〈X〉∨ 〈X c

〉 = 〈1〉. The collection of complemented classes is
denoted BA. For example, every smashing localization L : T→ T gives a pair of
complemented classes, namely 〈C1〉 and 〈L1〉. Because every complemented class
is also in DL, BA is a Boolean algebra.

Proposition 2.6. Let T be as in Notation 2.1, and L Z :T→T a localization functor
as in Notation 2.2. Then L Z induces a well-defined order-preserving map of lattices
BL(T)→ BL(LZ ), where 〈X〉 7→ 〈L Z X〉. This map is surjective and sends DL(T)
onto DL(LZ ) and BA(T) onto BA(LZ ).

Proof. Most of this is proved in Lemma 3.1 of [Wolcott 2014]. For 〈X〉 ∈ DL(T),
using Lemma 3.10 we get

〈L X〉 = 〈L(X ∧ X)〉 = 〈L(L X ∧ L X)〉 = 〈L X ∧L L X〉.

Likewise, one can check that for 〈X〉 ∈ BA(T), the class 〈L X〉 ∈ BL(L) is comple-
mented by 〈L(X c)〉, keeping in mind that 〈L1〉 is the top class in BL(L). �

Corollary 2.7. For any Z ∈ S, we have |BL(LZ )| ≤ 22ℵ0 .

Proof. Observe that |BL(LZ )| ≤ |BL(S)| ≤ 22ℵ0 , where the second inequality is
proved in [Ohkawa 1989]. �

Lemma 2.8. Let T be as in Notation 2.1, and X and Y objects of T. Then 〈X〉≤〈Y 〉
if and only if L X = L X LY = LY L X and in this case the following diagram commutes
(also with BL replaced by DL or BA).

BL(T)
LY

yyyy

L X

%% %%

BL(LY )
L X

// // BL(LX )

Proof. The first equivalence is straightforward; it follows from [Ravenel 1984,
Proposition 1.22] and the observation that 〈X〉 ≤ 〈Y 〉 precisely when all L X -locals
are LY -locals. The last remark follows from Proposition 2.6. �

Here we mention one object-level application of the Bousfield lattice calculations
of Sections 5 and 6.

Proposition 2.9. There are no square-zero objects in the harmonic, E(n)-, K (n)-,
HFp-, or I -local categories.

Proof. In Corollary 2.8 of [Wolcott 2014], we show that in a well generated tensor
triangulated category, there are no square-zero objects if and only if BA=DL=BL.
The claim follows from Corollaries 5.4 and 5.10 and Propositions 6.2 and 6.6. �
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2D. Background on spectra. We quickly review some relevant background on the
stable homotopy category. See [Ravenel 1992; 1993; Hovey 1995a; Mahowald
and Sadofsky 1995] for more details. Fix a prime p and let S denote the p-local
stable homotopy category of spectra. Let S0 denote the sphere spectrum. The finite
spectra F are the compact objects of S, and F = th(S0). The structure of F is
determined by the Morava K -theories K (i). For each i ≥ 0, K (i) is a skew field
object in S, such that K (i)∧ K ( j)= 0 when i 6= j . If X is a finite spectrum and
K ( j)∧ X = 0, then K ( j − 1)∧ X = 0. We say a finite spectrum X is type n if n is
the smallest integer such that K (n)∧ X 6= 0. Define Cn = 〈K (n− 1)〉 ∩F . Then
every thick subcategory of F is Cn for some n. It follows that any two spectra of
type n generate the same thick subcategory, and hence Bousfield class; let F(n)
denote a generic type n spectrum.

Given a type n spectrum X , there is a vn self-map f : 6d X → X for which
[S0, K (n)∧ f ]i is an isomorphism for all i and for which [S0, K (m)∧ f ] j = 0 for
all j and m 6= n. We define f −1 X to be the telescope, i.e., sequential or homotopy
colimit, of the diagram X→6−d X→· · · . By the periodicity theorem, any choice
of vn self-map f yields an isomorphic telescope. The telescopes of different type n
spectra are Bousfield equivalent; denote this class by 〈T (n)〉.

As mentioned above, localization away from a finite spectrum F(n+1) exists and
is smashing. This localization functor is denoted L f

n and is the same as homological
localization at T (0)∨ · · · ∨ T (n).

Let E(n) denote the Johnson–Wilson spectrum; this is a ring spectrum with
〈E(n)〉 = 〈K (0)∨ · · · ∨ K (n)〉. Define Ln : S→ S to be homological localization
at E(n). A deep theorem of Ravenel [1992, Theorem 7.5.6] shows that Ln is smash-
ing for all n. The functors L f

n and Ln are the only known smashing localization
functors on S.

The L f
n -acyclics are given by loc(F(n+ 1))= loc(Cn+1)= loc(〈K (n)〉 ∩F)=

loc(〈E(n)〉 ∩F). The Ln-acyclics are 〈E(n)〉= loc(〈E(n)〉). Thus every L f
n -acyclic

is Ln-acyclic, and we have 〈K (0)∨ · · · ∨ K (n)〉 ≤ 〈T (0)∨ · · · ∨ T (n)〉 for all n. It
follows that there is a natural map L f

n → Ln .
For convenience later, we collect some calculations in S.

Lemma 2.10. In BL(S) we have the following.

(1) 〈F(m)〉 ≤ 〈F(n)〉 if and only if m ≥ n. For all n and m, 〈F(m)∧ F(n)〉 6= 〈0〉.
Furthermore, 〈F(n)∧ F(n)〉 = 〈F(n)〉 for all n.

(2) 〈F(m)∧ T (n)〉 = 〈0〉 when m > n, and 〈F(m)∧ T (n)〉 = 〈T (n)〉 when m ≤ n.

(3) 〈T (m)∧ T (n)〉 = 〈0〉 when m 6= n, and 〈T (n)∧ T (n)〉 = 〈T (n)〉.

(4) 〈F(m)∧ K (n)〉 = 〈0〉 when m > n, and 〈K (n)〉 = 〈F(m)∧ K (n)〉 ≤ 〈F(m)〉
when m ≤ n.



492 F. LUKE WOLCOTT

(5) 〈T (m)∧ K (n)〉 = 〈0〉 when m 6= n, and 〈K (n)〉 = 〈T (n)∧ K (n)〉 ≤ 〈T (n)〉.

(6) 〈K (m)∧ K (n)〉 = 〈0〉 when m 6= n, and 〈K (n)∧ K (n)〉 = 〈K (n)〉.

Proof. Part (1) is Theorem 14 of [Hopkins and Smith 1998], along with the
observation that 〈F(n)〉 is complemented by 〈L f

n−1S0
〉, and hence is in DL.

Part (2) is in [Ravenel 1993, 2.8(i)], [Mahowald and Sadofsky 1995, 6.2], and
[Hovey and Palmieri 1999, Section 5]. Part (3) is also in [Hovey and Palmieri 1999,
Section 5].

Part (4) follows from the definition of type m spectra. Since each K (i) is a skew
field object, F(m)∧ K (i) 6= 〈0〉 implies this K (i)-module object F(m)∧ K (i) is a
wedge of suspensions of K (i).

From the periodicity theorem, T (m) has nonzero K (m) homology, and therefore
T (m)∧ K (m) 6= 0. The rest of Part (5) is in [Ravenel 1992, Proposition A.2.13].
Finally, Part (6) is well known. �

Let I denote the Brown–Comenetz dual of the sphere spectrum. Recall that a
harmonic spectrum is one that is local with respect to

∨
i≥0K (i). The following

theorem plays a large role in the results in this paper.

Theorem 2.11. There are no nonzero compact objects in the following categories.

(1) The BP-local category

(2) The harmonic category

(3) The HZ-local category

(4) The HFp-local category

(5) The I -local category

Proof. This is Corollary B.13 in [Hovey and Strickland 1999]. �

3. Local versions of the telescope conjecture

In this section, let L = L Z : S→ S be a localization functor for some Z ∈ S, and
let L= LZ denote the category of L-locals. First we state the various versions of
the original telescope conjecture on S.

Definition 3.1. Fix an integer n ≥ 0. On S, we have the following versions of the
telescope conjecture.

TC1n 〈T (n)〉 = 〈K (n)〉.
TC2n L f

n X→∼ Ln X for all X .
TC3n If X is type n and f is a vn self-map, then Ln X ∼= f −1 X .
GSC Every smashing localization is generated by a set of compact objects.
SDGSC Every smashing localization is generated by a set of strongly dual-

izable objects.
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Theorem 3.2. On the category S, we have the following statements.

(1) TC1n holds if and only if TC3n holds.

(2) TC2n holds if and only if TC1i holds for all i ≤ n.

(3) If TC2n−1 and TC1n hold, then TC2n holds.

(4) GSC holds if and only if SDGSC holds, and this implies TC2n for all n.

Remark 3.3. Note that if we quantify over all n, the first three versions of the
telescope conjecture are equivalent. That is,

TC1n for all n ⇐⇒ TC2n for all n ⇐⇒ TC3n for all n.

Remark 3.4. TC2n holds if and only if L f
n S0
→
∼ Ln S0. Indeed, since both L f

n

and Ln are smashing, the subcategory of objects W such that L f
n W →∼ LnW is

localizing. Thus if it contains S0, it contains loc(S0)= S.

Proof. First we show the equivalence of TC1n and TC3n . This is also sketched in
[Mahowald et al. 2001, 1.13]. For any type n spectrum Y , th(Y )= th(F(n)) and so
we have th(LnY )= th(Ln F(n)), and 〈LnY 〉=〈Ln F(n)〉. A construction in [Ravenel
1992, 8.3] gives a type n spectrum Y with LnY ∈ th(K (n)). Thus 〈LnY 〉 ≤ 〈K (n)〉,
and 0 6= 〈Ln F(n)〉=〈K (n)〉. Suppose TC3n holds. Then 〈LnY 〉=〈 f −1Y 〉=〈T (n)〉,
and so 〈T (n)〉 = 〈K (n)〉.

If X is type n and f is a vn self-map, then [Mahowald and Sadofsky 1995,
Proposition 3.2] implies that L f

n X ∼= LT (n)X ∼= f −1 X . Thus assuming TC1n , we
have L K (n)X ∼= f −1 X , and to prove TC3n it suffices to show that Ln X ∼= L K (n)X .
This is known (see, e.g., [Hovey 1995a]), but we will give a proof that extends well
to the localized setting. Since 〈K (n)〉 ≤ 〈E(n)〉, localization at K (n) gives a map
Ln X → L K (n)X . It suffices to show that this is an Ln-equivalence. The fiber is
K (n) acyclic, so Ln X∧K (n)→ L K (n)X∧K (n) is an isomorphism. Consider i < n.
The triangle Cn X∧K (i)→ X∧K (i)→ Ln X∧K (i) shows that Ln X∧K (i) is zero,
because X is type n and Cn X is K (i) acyclic. Lemma 3.3.1 in [Hovey et al. 1997]
states that LW = L S0

∧W for any localization L and strongly dualizable W . Since
every finite spectrum is strongly dualizable, L K (n)X∧K (i)= L K (n)S0

∧X∧K (i)=0.
Thus Ln X ∧ K (i)→ L K (n)X ∧ K (i) is an isomorphism for all i ≤ n, and hence
Ln X→ L K (n)X is an Ln-equivalence.

For the second statement, we note that TC2n is equivalent to the statement
〈T (0)∨· · ·∨T (n)〉= 〈K (0)∨· · ·∨K (n)〉. Smashing this with 〈T (i)〉, for 0≤ i ≤ n,
and using Lemma 2.10, yields TC1i for each i . The third statement is also clear
from this observation.

Finally, GSC holds if and only if SDGSC holds because objects in S are compact
if and only if they are strongly dualizable. Given GSC, consider Ln . The GSC
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would imply that the Ln-acyclics are loc(〈E(n)〉 ∩F). As observed earlier, this is
the same as loc(F(n+1)), the L f

n -acyclics. Therefore we would have L f
n ∼= Ln . �

The SDGSC is new, and we will discuss it first. As mentioned in the above
proof, in S compactness is equivalent to strong dualizability. It is well known that
localization away from a set of compact objects is smashing. The GSC is precisely
the statement that the converse holds. However, as we will show next, one only
needs strong dualizability to generate a smashing localization functor. We will state
our result in slightly more general terms.

Theorem 3.5. Let T be a well generated tensor triangulated category such that
loc(1)= T, as in Notation 2.1. Let A = {Bα} be a (possibly infinite) set of strongly
dualizable objects. Then there exists a smashing localization functor L : T→ T

with Ker L = loc(A).

Proof. Let E = ∨αBα and note that loc(E) = loc(A). The category T is well
generated by hypothesis. The localizing subcategory S = loc(E) is also well
generated, by [Iyengar and Krause 2013, Remark 2.2], and is tensor-closed by
Lemma 2.5.

By [Iyengar and Krause 2013, Proposition 2.1] there exists a localization functor
L : T→ T with Ker L = S. We will show that L is a smashing localization.

First we claim that the L-locals are tensor-closed. For any Y ∈ T, we have

Y is L-local ⇐⇒ [W, Y ]n = 0 for all W ∈ S and all n ∈ Z

⇐⇒ [E, Y ]n =
∏
[Bα, Y ]n = 0 for all n ∈ Z

⇐⇒ [Bα, Y ]n = 0 for all α and n ∈ Z

⇐⇒ DBα ∧ Y = 0 for all α.

The second equivalence follows from the fact that {X | [X, Y ]n = 0 for all n ∈Z}

is a localizing subcategory containing E , and hence all of S. The final equivalence
uses the fact that the Bα are strongly dualizable.

Now suppose Y is L-local and X is arbitrary. Then DBα ∧ Y = 0 for all α, so
DBα∧Y ∧ X = 0 for all α, and thus Y ∧ X is L-local. This shows that the L-locals
are tensor-closed.

Consider the localization triangle C1→ 1→ L1, where L1 is L-local and
C1 ∈ S. For arbitrary X ∈ T, tensoring gives an exact triangle,

C1∧ X→ X→ L1∧ X.

The object L1 ∧ X is L-local, since the locals are tensor-closed. Likewise,
C1∧X ∈ S, since S is tensor-closed and so L(C1∧X)= 0. Therefore X→ L1∧X
is an L-equivalence from X to an L-local object, and it follows that L X ∼= L1∧ X .
This shows that L is a smashing localization. �
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In the stable homotopy category, and more generally whenever 1 ∈ T is compact,
this gives nothing new; by [Hovey et al. 1997, Theorem 2.1.3(d)] compact and
strongly dualizable are equivalent. Consider, however, the harmonic category,
which has no nonzero compact objects. In Section 4 we classify all smashing
localizations on the harmonic category; they are indexed by N. Thus the GSC fails
in the harmonic category but, as we show in Theorem 4.4, the SDGSC holds. In
fact, in the following sections we will give several examples of categories where
the GSC fails but the SDGSC holds.

On the other hand, we do not expect the SDGSC to hold in complete generality,
since Keller’s counterexample [1994] to the GSC is also a counterexample to the
SDGSC; in the derived category of a ring R, the unit R is compact and strongly
dualizable, so the GSC and SDGSC are equivalent.

The GSC and SDGSC make sense in any localized category, but TC1n , TC2n ,
and TC3n may not, since T (n) and K (n) may not be objects in L. Instead we
present the following definitions.

Definition 3.6. Let L : S→ S be a localization, and L the category of L-locals.

(1) Let l f
n : L→ L denote localization at 〈LT (0)∨ LT (1)∨ · · · ∨ LT (n)〉.

(2) Let ln : L→ L denote localization at 〈L K (0)∨ L K (1)∨ · · · ∨ L K (n)〉.

Before stating and proving a local version of Theorem 3.2, we establish some
results about l f

n and ln . First we make an observation about calculations in BL(L).

Lemma 3.7. All the calculations in Lemma 2.10 are valid in BL(L) if we replace
F(n), T (n), and K (n) with L F(n), LT (n), and L K (n).

Proof. This follows from Theorem 2.3 and the statements in Lemma 2.10. �

Proposition 3.8. The functor l f
n is localization away from L F(n+ 1), and hence is

smashing.

Proof. By Theorem 3.5 we know that there is some smashing localization functor
l : L→ L that is localization away from L F(n+ 1); we wish to show l= l f

n . Let
1= L S0 for simplicity of notation, and let c denote the colocalization corresponding
to l. We claim that the l-acyclics are precisely loc(c1). Clearly c1 is l-acyclic, and
these are a localizing subcategory, so loc(c1) ⊆ {l-acyclics}. On the other hand,
suppose W is l-acyclic. Because l is smashing, LW =W ∧ l1= 0, so W =W ∧c1.
Then since W ∈ loc(1)=L, we have W =W ∧c1∈ loc(1∧c1)= loc(c1), proving
the claim.

By definition, the l-acyclics are also given by loc(L F(n+ 1)). Therefore, we
have 〈L F(n+ 1)〉 = 〈c1〉.

The class 〈F(n+ 1)〉 is complemented by 〈T (0)∨ · · ·∨ T (n)〉 in BL(S) [Hovey
and Palmieri 1999, Section 5], and therefore 〈L F(n + 1)〉 is complemented by
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〈LT (0) ∨ · · · ∨ LT (n)〉 in BL(L). At the same time, 〈c1〉 is complemented
by 〈l1〉, and complements are unique. We conclude that {l-acylics} = 〈l1〉 =
〈LT (0)∨ · · · ∨ LT (n)〉. Since l and l f

n are two localizations on L with the same
acyclics, they are equal. �

Lemma 3.9. If L is smashing, then l f
n = L L f

n = L f
n L and ln = L Ln = Ln L , and

both are smashing.

Proof. Smashing localization functors always commute, and they compose to give
a smashing localization. The functor L Ln : S→ S, sending X 7→ L(Ln S0

∧ X)=
L S0
∧ Ln S0

∧ X is a smashing localization. Since L Ln-locals are L-local, it also
gives a smashing localization on L. The acyclics of this functor are 〈L Ln S0

〉

in BL(L), which is 〈L K (0) ∨ · · · ∨ L K (n)〉. Thus L Ln and ln are localizations
on L with the same acyclics, and hence isomorphic. The same proof works for
l f
n = L L f

n . �

In the category S, for a type n finite spectrum X with a vn map f :6d X→ X and
telescope f −1 X , it is known [Mahowald and Sadofsky 1995, Proposition 3.2] that
L f

n X ∼= LT (n)X ∼= f −1 X . The following proposition shows that the local version
of this result holds as well.

Lemma 3.10. Let L : S → S be a localization, and l f
n , X and f −1 X as above.

Then
l f
n (L X)∼= L LT (n)(L X)∼= L( f −1 X).

Proof. The proof parallels the [Mahowald and Sadofsky 1995] result; one must only
check that everything works when localized. If L LT (n)(L X)∼= L( f −1 X) holds for
a single type n spectrum, then it holds for all type n spectra. So without loss of
generality, we can choose X to be a type n spectrum that is a ring object in S. Then
for any vn self-map f , the telescope f −1 X is also a ring object [Mahowald and
Sadofsky 1995, Lemma 2.2]. By Lemma 2.5, L( f −1 X) is a ring object in L, and
hence is local with respect to itself.

Lemma 2.2 in [Mahowald and Sadofsky 1995] shows that we have X ∧ f −1 X ∼=
f −1 X ∧ f −1 X in S, so L X ∧L L( f −1 X) ∼= L( f −1 X) ∧L L( f −1 X) in L and
the canonical map L X → L( f −1 X) is an L( f −1 X)-equivalence. It follows that
L LT (n)(L X)∼= L( f −1 X).

Since 〈LT (n)〉 ≤ 〈LT (0) ∨ · · · ∨ LT (n)〉, we have that L( f −1 X) is l f
n -local.

One then uses Lemma 3.7 to see that L X→ L( f −1 X) is a l f
n -equivalence, and so

l f
n (L X)= l f

n (L( f −1 X))= L( f −1 X). �

Definition 3.11. Let L : S→ S be a localization, and consider the category L of
locals. Fix an n ≥ 0. We have the following versions of the telescope conjecture
on L.
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LTC1n 〈LT (n)〉 = 〈L K (n)〉.
LTC2n l f

n X→∼ ln X for all X .
LTC3n If X ∈ S is type n and f is a vn self-map, then ln(L X)∼= L( f −1 X).
GSC Every smashing localization is generated by a set of compact objects.
SDGSC Every smashing localization is generated by a set of strongly dual-

izable objects.
Theorem 3.12. On the category L, we have the following statements.

(1) LTC1n implies LTC3n .

(2) LTC2n holds if and only if LTC1i holds for all i ≤ n.

(3) If LTC2n−1 and LTC1n hold, then LTC2n holds.

Proof. Note that LTC2n is equivalent to the statement 〈LT (0)∨ · · · ∨ LT (n)〉 =
〈L K (0)∨ · · · ∨ L K (n)〉, so the last two statements are clear. We will show that
LTC1n implies LTC3n by mimicking the proof in Theorem 3.2.

If X is type n and f is a vn self-map, Lemma 3.10 shows that l f
n (L X) ∼=

L LT (n)(L X) ∼= L( f −1 X). Then LTC1n implies L L K (n)L X ∼= L( f −1 X). So it
suffices to show that ln(L X) = L L K (n)L X . Now we must show that the map
L L K (n) : ln(L X)→ L L K (n)L X is an ln-equivalence. The same reasoning as in
Theorem 3.2, along with the computations of Lemma 3.7 and some definition
unwinding, gives us that ln(L X)∧ L K (i)→ L L K (n)L X ∧ L K (i) is an equivalence
for all i ≤ n; we only need to notice that Lemma 3.3.1 in [Hovey et al. 1997] applies
to strongly dualizable objects, and that L X is strongly dualizable. �

Theorem 3.13. If, furthermore, L : S→ S is a smashing localization, then on the
category L of locals we have that LTC3n implies LTC1n , and

GSC⇐⇒ SDGSC ⇒ LTC2n for all n.

Remark 3.14. In this case, LTC2n is equivalent to l f
n (L S0)→∼ ln(L S0), since by

Lemma 3.9 both l f
n and ln are smashing, so the argument in Remark 3.4 applies.

Proof. By [Hovey et al. 1997, Theorem 2.1.3(d)], the compact objects and strongly
dualizable objects in L coincide. Thus GSC holds if and only if SDGSC holds, and
this implies LTC2n just as in Theorem 3.2.

Suppose X has type n and LTC3n holds. As in the proof of Theorem 3.2,
〈Ln F(n)〉 = 〈K (n)〉 in BL(S), and so 〈L Ln L F(n)〉 = 〈L K (n)〉 in BL(L). By
Lemma 3.9, we have 〈ln L F(n)〉 = 〈L K (n)〉. Then LTC3n implies that 〈LT (n)〉 =
〈L( f −1 X〉 = 〈ln(L X)〉 = 〈ln L F(n)〉, so LTC1n holds. �

Question 3.15. Is ln : L→ L always a smashing localization?

This is the case in all the local categories investigated in this paper, whether or
not L : S→ S is a smashing localization. If one could show ln is always smashing,
then most likely on L one would have that SDGSC implies LTC2n for all n.
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We would of course like to know if and when information on localized telescope
conjectures can help with those in the original category S, where all versions remain
open.

Proposition 3.16. Let L : S→ S be a localization, with localized category L.

(1) If TC1n holds on S, then LTC1n holds on L.

(2) If TC2n holds on S, then LTC2n holds on L.

(3) If TC3n holds on S, then LTC3n holds on L.

Furthermore, if L is a smashing localization, then we have the following.

(4) If GSC holds on S, then GSC holds on L.

(5) If SDGSC holds on S, then SDGSC holds on L.

Proof. Part (1) follows immediately from Proposition 2.6. So does Part (2), since
TC2n is equivalent to the statement 〈T (0)∨· · ·∨T (n)〉 = 〈K (0)∨· · ·∨K (n)〉, and
similarly for LTC2n . From this and Theorems 3.2 and 3.12 we have

TC3n⇐⇒ TC1n ⇒ LTC1n ⇒ LTC3n.

Now suppose L is smashing and the GSC holds on S. Let l : L → L be a
smashing localization. Thus l is defined by l(LY )= l(L S0)∧L LY = lS0

∧L S0
∧Y .

We can therefore extend l to be a smashing localization on all of S, with the map
X 7→ lS0

∧ L S0
∧ X = lL S0

∧ X . Since the GSC holds on S by assumption, the
acyclics of this functor are 〈lL S0

〉 = loc(A), for some set of compact objects A in
S. Here 〈lL S0

〉 refers to the Bousfield class in BL(S).
We must show that 〈lL S0

〉 in BL(L) is generated by a set of objects that
are compact in L. Note that 〈lL S0

〉 in BL(L) is {LW | LW ∧L lL S0
= 0} =

{LW | LW ∧S lL S0
= 0} = 〈lL S0

〉 ∩ L, where the latter 〈lL S0
〉 is in BL(S).

Therefore 〈lL S0
〉 in BL(L) is loc(A)∩L. We claim that this is loc(L(A)). Since L

sends compacts to compacts, this will show that l is generated by a set of compacts.
If X ∈ loc(A), then L X ∈ loc(L(A)). If X ∈ L in addition, then we have

X ∼= L X ∈ loc(L(A)). For the other inclusion, note that the intersection of two
localizing subcategories is a localizing subcategory, and L is a localizing subcategory
of S because L is smashing. For Y ∈ A, LY is in L, and LY = L S0

∧Y ∈ loc(Y )⊆
loc(A). Therefore L(A)⊆ loc(A)∩L, and loc(L(A))= loc(A)∩L.

Part (5) follows immediately, since if L is smashing then GSC holds if and only
if SDGSC in both S and L. �

Balmer and Favi [2011, Proposition 4.4] have also recently proved Part (4) in
the slightly more general setting of a smashing localization on a unital algebraic
stable homotopy category; the above proof would apply there as well. One would
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like to prove Part (5) without the assumption that L is smashing, but it’s not clear
if this is possible.

Letting L = L Z , for Z =
∨

i≥0K (i), E(n), K (n), BP , HFp, or I provides inter-
esting examples of categories L on which to investigate these telescope conjectures.
Furthermore, LTC1n suggests the relevance of Bousfield lattices to understanding
these questions. In the remaining sections, we focus on specific localized categories.

4. The Harmonic category

Let Q =
∨

i≥0K (i) and L = L Q : S→ S, and consider the harmonic category H of
L-locals. Harmonic localization is not smashing. An object is called harmonic if it
is L-local and dissonant if it is L-acyclic. For example, finite spectra, suspension
spectra, finite torsion spectra, and BP are known to be harmonic [Hovey 1995a;
Ravenel 1984]. On the other hand, I and HFp are dissonant.

In order to answer the telescope conjectures in H, we will first calculate the
Bousfield lattice of H. In this section all smash products are in H unless otherwise
noted. Given any set P , let 2P denote the power set of P .

Definition 4.1. Given X ∈H, define the support of X to be

supp(X)= {i | X ∧ K (i) 6= 0} ⊆ N.

The following result and proof was pointed out to us by Jon Beardsley.

Proposition 4.2. The Bousfield lattice of H is 2N.

Proof. Each K (n) is a ring object, and hence K (n)-local by Lemma 2.5. Because
〈K (n)〉 ≤ 〈Q〉, K (n)-locals are harmonic, thus each K (n) is harmonic. The argu-
ment hinges on the fact that K (n) is a skew field object in H: for X = L X in H, if
X ∧K (n) 6= 0 then X ∧K (n)= L(X ∧S K (n)) so X ∧S K (n) 6= 0, and X ∧S K (n)
must be a nonempty wedge of suspensions of K (n)s. Thus

X ∧ K (n)= L(X ∧S K (n))= L(∨6i K (n))= L(∨6i L K (n))

=
∐
L
6i L K (n)=

∐
L
6i K (n).

It follows that L X ∧ K (n)= 0 if and only if L X ∧S K (n)= 0. Furthermore, if
L X ∧ K (n) 6= 0, then 〈L X ∧ K (n)〉 = 〈K (n)〉, where these are Bousfield classes
in BL(H).

By the definition of L , for any W ∈ S, if W ∧S K (n)= 0 for all n, then LW = 0.
Combining this with the above observation, we get that a local object W = LW
has W ∧ K (n)= 0 in H for all n if and only if W = 0.

Therefore, for any X, Y ∈H, we have

Y∧X =0⇐⇒ Y∧X∧K (n)=0 for all n ⇐⇒ Y∧K (n)=0 for all n ∈ supp(X).
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We conclude that there is a lattice isomorphism F : BL(H)→ 2N, given by

〈X〉 =
∨

supp(X)〈K (i)〉 7→ supp(X), N ⊆ N 7→
∨

i∈N 〈K (i)〉. �

Theorem 4.3. On H, for all n ≥ 0, we have that LTC1n,LTC2n , and LTC3n hold.

Proof. By Lemmas 2.10 and 3.7, LT (n) and L K (n)= K (n) have the same support.
The above theorem then implies that 〈LT (n)〉 = 〈L K (n)〉. Thus LTC1n holds for
all n, and the claim follows from Theorem 3.12. �

Next, we classify all smashing localizations on H, and show that the GSC fails
but the SDGSC holds. The proof is based on that of [Hovey and Strickland 1999,
Theorem 6.14], which classifies smashing localizations in the E(n)-local category.

Theorem 4.4. If L ′ :H→H is a smashing localization functor, then L ′ = l f
n for

some n ≥ 0, or L ′ = 0 or L ′ = id. Therefore the GSC fails but the SDGSC holds
on H.

Proof. Let L ′ : H→ H be a smashing localization functor, and let 1 = L S0 be
the unit in H. The acyclics of L ′ are given by 〈L ′1〉. From Proposition 4.2, 〈L ′1〉
is equal to the wedge of 〈K (i)〉 for all i ∈ supp(L ′1). If supp(L ′1) = ∅ then
〈L ′1〉 = 〈0〉 and L ′ = 0.

Assume now that supp(L ′1) is not empty, and take j ∈ supp(L ′1). We will show
that 〈L ′1〉 ≥ 〈K (0)∨ · · · ∨ K ( j)〉. It follows that either 〈L ′1〉 =

∨
i≥0〈K (i)〉 = 〈1〉

and L ′ = id, or L ′ = ln = l f
n for n =max(supp(L ′1)).

Since 〈K ( j)〉 ≤ 〈L ′1〉, from Lemma 2.8 we have L K ( j)L ′ = L ′L K ( j) = L K ( j).
Therefore 〈L K ( j)1〉 = 〈L ′1 ∧ L K ( j)1〉 ≤ 〈L ′1〉. Proposition 5.3 of [Hovey and
Strickland 1999] shows that, in S, L K ( j)S0

∧S K (i) is nonzero for 0≤ i ≤ j and zero
for i > j . Note that L K ( j)S0

= L K ( j)L S0
= L K ( j)1 and, as remarked in the proof of

Proposition 4.2, L X∧K (i)= 0 if and only if L X∧S K (i)= 0. Therefore, in BL(H)
we have 〈L K ( j)1〉 = 〈K (0) ∨ · · · ∨ K ( j)〉, and so 〈L ′1〉 ≥ 〈K (0) ∨ · · · ∨ K ( j)〉
as desired.

Each l f
n is localization away from L F(n+1) by Proposition 3.8, which is strongly

dualizable by Theorem 2.3. The identity is localization away from zero, and the zero
functor is localization away from L S0; these are both strongly dualizable. Therefore
the SDGSC holds. On the other hand, Corollary B.13 in [Hovey and Strickland
1999] shows that there are no nonzero compact objects in H, so the GSC fails. �

Question 4.5. Classify localizing subcategories of H.

It seems likely that every localizing subcategory of H is a Bousfield class, and
so these are in bijection with 2N, but we have been unable to prove this.
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5. The E(n)- and K (n)- local categories

5A. The E(n)-local category. Recall that 〈E(n)〉 = 〈K (0)∨ K (1)∨ · · · ∨ K (n)〉.
In this section, fix L = Ln = L E(n) : S→ S and let Ln denote the local category.
The functor Ln is smashing, and so by Notation 2.1 each L F(i) is compact in Ln .
Hovey and Strickland [1999] have studied Ln in detail and determined the localizing
subcategories, smashing localizations, and Bousfield lattice of Ln . We begin by
recalling these results.

Lemma 5.1. For 0≤ i ≤n we have L K (i)=K (i), and for i>n we have L K (i)=0.

Proof. This follows from 〈E(n)〉 = 〈K (0)∨ K (1)∨ · · · ∨ K (n)〉. �

Theorem 5.2 [Hovey and Strickland 1999, Theorem 6.14]. The lattice of localizing
subcategories of Ln , ordered by inclusion, is in bijection with the lattice of subsets
of the set {0, 1, . . . , n}, where a localizing subcategory S corresponds to

{i | K (i) ∈ S}.

Corollary 5.3. Every localizing subcategory of Ln is a Bousfield class, in particular
a localizing subcategory S is the Bousfield class∨

〈K ( j) | K ( j) /∈ S, 0≤ j ≤ n〉.

Corollary 5.4. For every n ≥ 0, there is a lattice isomorphism

fn : BL(Ln)−→
∼ 2{0,1,...,n}.

Proof. The isomorphism is given by

〈X〉 =
∨

X∧K (i) 6=0〈K (i)〉 7→ {i | X ∧ K (i) 6= 0},

N ⊆ {0, 1, . . . , n} 7→
∨

i∈N 〈K (i)〉. �

Theorem 5.5 [Hovey and Strickland 1999, Corollary 6.10]. If L ′ : Ln→ Ln is a
smashing localization, then L ′ = L i = L f

i for some 0≤ i ≤ n or L ′ = 0. Thus the
GSC holds on Ln .

Corollary 5.6. On Ln , all of LTC1i , LTC2i , LTC3i hold for all i , and GSC and
SDGSC also hold.

Proof. This follows from Theorems 5.5 and 3.13. Note that for i > n, we have
LT (i)= 0= L K (i) by Lemma 2.10, and so li = ln = l f

n = l f
i . �

Recall that there is a natural map Ln X→ Ln−1 X for all X in S and n, and by
Proposition 2.6 this induces a surjective lattice map BL(Ln)→ BL(Ln−1) and an
inverse system of lattice maps.

· · · → BL(Ln)→ BL(Ln−1)→ · · · → BL(L1)→ BL(L0)
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Proposition 5.7. The lattice isomorphisms F and fn from Proposition 4.2 and
Corollary 5.4 realize BL(H) as the inverse limit of the maps BL(Ln)→BL(Ln−1).

Proof. By Lemma 2.8 and the facts that L Q K (i)=K (i) for all i , and Ln K (i)=K (i)
for i ≤ n and Ln K (i)= 0 for i > n, we get the following diagram for all n. The
map 2{0,1,...,n}→ 2{0,1,...,n−1} is induced by sending m 7→ m for m < n but n 7→ 0,
and the maps 2N

→ 2{0,1,...,i} are defined similarly.

BL(H)

yyyy

����

oo

F
// 2N

xxxx

����

BL(Ln)

%% %%

oo

fn

// 2{0,1,...,n}

&& &&

BL(Ln−1) oo fn−1

// 2{0,1,...,n−1} �

5B. The K (n)-local category. Although an incredibly complicated category in its
own right, the K (n)-local category is quite basic from the perspective of localizing
subcategories, Bousfield lattices, and telescope conjectures. In this subsection, let
L = L K (n) : S→ S be localization at K (n), and let Kn denote the category of locals.
Hovey and Strickland classify the localizing subcategories of Kn , and there are not
many of them.

Proposition 5.8 [Hovey and Strickland 1999, Theorem 7.5]. There are no nonzero
proper localizing subcategories of Kn .

This Proposition implies that the Bousfield lattice of Kn is the two-element lattice
{〈0〉, 〈K (n)〉}. We will prove a slightly more general result that will be used again
in Section 6A.

Proposition 5.9. Consider a category T as in Notation 2.1, an object Z in T, and
localization L Z : T→ T with localized category LZ .

(1) If Z is a ring object, then 〈L Z Z〉 = 〈Z〉 is the maximum class in BL(LZ ).

(2) If Z is a skew field object, then BL(LZ ) is the two-element lattice {〈0〉, 〈Z〉}.

Proof. For (1), note that Lemma 2.5 implies L Z Z = Z . Consider 〈Z〉 in BL(LZ ).
By definition, this is the collection of all W ∈LZ with L(Z∧T W )= 0. But Z∧T W
is a Z -module object in T, and hence L Z -local. The only object that is both local
and acyclic with respect to any localization is zero, so Z∧TW = 0. But this says that
W is L Z -acyclic, and hence zero in LZ . Therefore, in BL(LZ ) we have 〈Z〉 = {0}.

Now suppose Z is a skew field object in T. In particular, it is a ring object, so
〈Z〉 is the maximum class in BL(LZ ). Consider 〈L X〉 in BL(LZ ), for arbitrary
X ∈ T. If X ∧T Z = 0, then L X = 0. Otherwise, X ∧T Z is a wedge of suspensions
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of Z , so 〈Z〉 = 〈X∧T Z〉 ≤ 〈X〉 in BL(T). Then 〈Z〉 = 〈L Z Z〉 ≤ 〈L Z X〉 in BL(LZ ),
so 〈L Z X〉 = 〈Z〉. �

Corollary 5.10. The Bousfield lattice of Kn is {〈0〉, 〈K (n)〉}.

Theorem 5.11. In Kn , all of LTC1i , LTC2i , LTC3i hold for all i , and GSC and
SDGSC also hold.

Proof. In light of Theorem 3.12, we will show that LTC1i holds for all i . This
follows from Lemma 2.10: for i 6= n we have LT (i)= 0= L K (i), but LT (n) 6= 0
so by the last corollary 〈LT (n)〉 = 〈K (n)〉 = 〈L K (n)〉.

There are exactly two smashing localizations on Kn . The identity functor is
smashing and is localization away from 0, which is compact and strongly dualizable.
The zero functor is smashing and is localization away from L S0, which is strongly
dualizable. It is not compact, but by Theorem 7.3 in [Hovey and Strickland 1999]
L F(n) is compact in Kn and loc(L F(n)) = loc(L S0) = Kn . Therefore the zero
functor is also generated by a compact object. This shows that both the GSC and
SDGSC hold. �

6. Other localized categories

In this section we will consider several other localized categories. In each case, let
L Z : S→ S denote the localization functor that annihilates 〈Z〉, and let LZ denote
the category of L Z -locals.

6A. The HFp-local category. The Eilenberg–MacLane spectrum HFp is a skew
field object in S; in fact, every skew field object in S is isomorphic to either HFp or
a K (n). Unlike the 〈K (n)〉, it is not complemented; for example, 〈I 〉 ≤ 〈HFp〉 but
I ∧ HFp = 0. So 〈HFp〉 ∈ DL\BA. Hovey and Palmieri [1999] have conjectured
several results about the collection of classes less than 〈HFp〉 in BL(S). The
telescope conjectures and Bousfield lattice of LHFp are quite simple.

Theorem 6.1. In LHFp , all of LTC1n , LTC2n , LTC3n hold for all n.

Proof. For all n, K (n)∧ HFp = 0 and T (n)∧ HFp = 0, by [Hovey and Palmieri
1999, p. 16]. Therefore L K (n)= 0= LT (n) and LTC1n holds for all n. Note that
ln = l f

n is the zero functor for all n. �

In order to discuss the GSC and SDGSC in this category, we must classify the
smashing localizations. We will do this by using what we know about the Bousfield
lattice.

Proposition 6.2. The Bousfield lattice of LHFp is the two-element lattice {〈0〉,〈HFp〉}.

Proof. This follows immediately from Proposition 5.9 because HFp is a skew field
object in S. �
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Recall that every smashing localization gives a pair of complemented classes in
BA ⊆ BL. Thus in LHFp there are exactly two smashing localizations, the trivial
ones given by smashing with zero and with the unit.

Proposition 6.3. In LHFp , the GSC fails but the SDGSC holds.

Proof. The identity functor is smashing and is localization away from 0, which is
compact and strongly dualizable. By [Hovey and Strickland 1999, Corollary B. 13],
there are no nonzero compact objects in LHFp . So the zero functor, which is
localization away from L S0, is generated by a strongly dualizable object but not a
compact one. �

One application of this Bousfield lattice calculation is to the question of classi-
fying localizing subcategories. Every Bousfield class is a localizing subcategory.
Hovey and Palmieri [1999, Conjecture 9.1] suggest that the converse holds in the
p-local stable homotopy category. The original conjecture is still open, but the
question can be asked in any well-generated tensor triangulated category. For
example, in a stratified category every localizing subcategory is a Bousfield class.
The question is interesting, since in general localizing subcategories are hard to
classify. In many cases, including S, it is not even known if there is a set of
localizing subcategories. Recently Stevenson [2014] found the first counterexample,
in an algebraic setting: in the derived category of an absolutely flat ring that is not
semiartinian, there are localizing subcategories that are not Bousfield classes. Now
we show that LHFp provides another counterexample.

Proposition 6.4. In LHFp there are localizing subcategories that are not Bousfield
classes.

Proof. The following counterexample was suggested to us by Mark Hovey. The
Bousfield lattice of LHFp has only two elements: 〈0〉 =LHFp and 1= {0}. It suffices
to find a proper nonzero localizing subcategory in LHFp .

Consider the Moore spectrum M(p), defined by the triangle S0 p
→ S0

→ M(p);
this spectrum is HFp-local. Consider the following full subcategory in LHFp .

A= {X ∈ LHFp | [X,M(p)]n = 0 for all n ∈ Z}.

This is a localizing subcategory, called the cohomological Bousfield class of M(p)
and denoted 〈M(p)∗〉 in [Hovey 1995b]. The spectrum HFp is a ring object, and
hence local with respect to itself. As mentioned in Section 4, it is known that HFp

is dissonant and M(p) is harmonic, so [HFp,M(p)]n = 0 for all n, and HFp ∈A.
On the other hand, the identity on M(p) is nonzero, so M(p) /∈A. This shows that
A is a localizing subcategory that is not a Bousfield class.

Another example comes from Z = L HFp(BP). Clearly Z /∈ 〈Z∗〉. But BP is also
harmonic, so [HFp, BP]n = 0 and [HFp, Z ]n = 0 for all n, and HFp ∈ 〈Z∗〉. Since
Z ∈ 〈M(p)∗〉, we know that 〈M(p)∗〉 6= 〈Z∗〉. �
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Both these counterexamples are cohomological Bousfield classes. It would be
interesting to find a localizing subcategory in LHFp that is not a cohomological
Bousfield class, or show there are none. Also, it is not clear what, if anything, the
previous proposition might tell us about the original conjecture in S. For example,
as localizing subcategories in S, we have that 〈M(p)∗〉 = 〈I 〉 [Hovey 1995b, 3.3].

6B. The I-local category. Recall that by I we mean the Brown–Comenetz dual of
the sphere spectrum. It is a rare example of a nonzero spectrum that squares to zero.
Hovey and Palmieri [1999, Lemma 7.8] conjecture that 〈I 〉 is minimal in BL(S).

Theorem 6.5. On LI , for all n we have that LTC1n , LTC2n , and LTC3n all hold.

Proof. By Lemma 7.1(c) of [Hovey and Palmieri 1999], T (n)∧ I = 0 for all n,
so LT (n) = 0. Since K (i) is a BP-module, and BP ∧ I = 0 by [Hovey and
Strickland 1999, Corollary B.11], we also have K (n)∧ I = 0 for all n. Therefore
〈LT (n)〉 = 〈0〉 = 〈L K (n)〉 for all n, and the rest follows from Theorem 3.12. �

Proposition 6.6. The Bousfield lattice of LI is the two-element lattice {〈0〉, 〈L I S0
〉}.

Proof. By [Hovey and Palmieri 1999, 7.1(c)], 〈I 〉< 〈HFp〉. Then Proposition 2.6
implies that there is a surjective lattice map from BL(LHFp) = {〈0〉, 〈HFp〉} onto
BL(LI ). Note that, by Lemma 2.8, we have 〈L I HFp〉 = 〈L I L HFp S0

〉 = 〈L I S0
〉.

It remains to show that 〈L I S0
〉 6= 〈0〉. But any X in S with X ∧ I 6= 0 in S

will have L I X 6= 0 and L I X /∈ 〈L I S0
〉 in BL(LI ); this is due to the fact that

L I X ∧LI L I S0
= L I (L I X ∧S L I S0) = L I (X ∧S S0) = L I (X). For example,

F(n)∧ I 6= 0 for all n [Hovey and Palmieri 1999, 7.1(e)]. �

Corollary 6.7. In LI , the GSC fails but the SDGSC holds.

Proof. Corollary B.13 of [Hovey and Strickland 1999] also shows that LI has no
nonzero compacts, so the proof is the same as for LHFp . �

Hovey states the Dichotomy Conjecture in [1995a, Conjecture 3.10]: In S, every
spectrum has either a finite local or a finite acyclic. In [Hovey and Palmieri 1999]
the authors discuss several equivalent formulations and some implications. We
briefly point out a relationship between this conjecture and Proposition 6.6.

Proposition 6.8. If the Dichotomy Conjecture holds, then the cardinality of BL(LI )

is at most two.

Proof. Lemma 7.8 of [Hovey and Palmieri 1999] shows that if the Dichotomy
Conjecture holds, then 〈I 〉 is minimal among nonzero classes in BL(S). This is the
case if and only if a〈I 〉 is maximal among non-top classes in BL(S), where a(−)
denotes the complementation operation first studied by Bousfield [1979b]. Let a〈I 〉↑
denote the sublattice {〈X〉 | 〈X〉≥a〈I 〉}⊆BL(S). In [Wolcott 2014, Proposition 3.2]
we show that there is a surjective lattice map from a〈I 〉↑ onto BL(LI ). Thus, if the
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Dichotomy Conjecture holds, a〈I 〉↑ has cardinality two and BL(LI ) has cardinality
at most two. �

As for classifying localizing subcategories of LI , or at least perhaps finding a
proper nonzero localizing subcategory, we must get around the fact that so many
spectra are I -acyclic. We know that L F(n) 6= 0 for all n, however loc(L F(n)) is
the acyclics of l f

n−1 : LI → LI and Theorem 6.5 shows that l f
n = 0 for all n. Thus

loc(L F(n))= loc(L S0) in LI for each n.

6C. The BP-local category.

Theorem 6.9. On LBP , for all n we have that LTC1n , LTC2n , and LTC3n all hold.

Proof. We will show that LTC2n holds for all n, and the rest follows from
Theorem 3.12. Since each K (i) is a BP-module spectrum, 〈K (i)〉≤〈BP〉, and since
K (i) is local with respect to itself this implies that K (i) is BP-local. Furthermore,
this implies 〈E(n)〉 ≤ 〈BP〉, so from Lemma 2.8 Ln = Ln L = L Ln as functors on S.

We claim that Ln : LBP → LBP , taking LY 7→ Ln LY = LnY , is a smashing
localization functor on LBP . We have Ln(LY ) = L(LnY ) = L(Ln S0

∧S Y ) =
L(L Ln S0

∧S LY )= L(Ln L S0
∧S LY )= (Ln L S0)∧LBP (LY ). This shows that on

LBP the localization functor Ln is also given by smashing with the localization of
the unit, Ln L S0, and thus is smashing.

We know that Ln and ln are isomorphic since both are localization functors
on LBP that annihilate 〈K (0)∨ · · · ∨ K (n)〉 = 〈L K (0)∨ · · · ∨ L K (n)〉.

On S, the natural map L f
n X→ Ln X is a BP-equivalence [Ravenel 1993, The-

orem 2.7(iii)]. This means that L L f
n X = L Ln X for all objects X in S, in particular

for all BP-local objects. Therefore L L f
n = Ln= ln is a smashing localization functor

on LBP . The acyclics are 〈L L f
n (L S0)〉= 〈L L f

n S0
〉= 〈LT (0)∨· · ·∨LT (n)〉. These

are the same acyclics as for l f
n , and so we conclude that l f

n and ln are isomorphic,
and the natural map l f

n X→ ln X is an isomorphism. �

Proposition 6.10. The GSC fails in LBP .

Proof. The proof of the last theorem showed that Ln : LBP → LBP is a (different)
smashing localization for each n. However, by [Hovey and Strickland 1999, Corol-
lary B.13] the category LBP has no nonzero compact objects. �

Note that the SDGSC could still hold, since all the smashing localizations we
have identified on LBP are of the form Ln= ln= l f

n , and so are generated by strongly
dualizable objects. The question of finding any other smashing localizations on
LBP is probably at least as hard as doing so on S, in light of Proposition 3.16.

All of 〈E(n)〉, 〈K (n)〉, 〈HFp〉, and 〈I 〉 are “small” in BL(S), so by Lemma 2.8
it is not surprising that the Bousfield lattices of their localized categories are not
very large; this is not true of 〈BP〉 in BL(S). We have the following bounds on the
Bousfield lattice of the local category.
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Proposition 6.11. The Bousfield lattice of LBP has 2ℵ0 ≤ |BL(LBP)| ≤ 22ℵ0 .

Proof. The second inequality is Corollary 2.7. Since 〈K (i)〉 ≤ 〈BP〉 for all i ,
we have 〈Q〉 = 〈

∨
i≥0K (i)〉 ≤ 〈BP〉, and so by Propositions 2.6 and 4.2 we have

|BL(LBP)| ≥ |BL(H)| = 2ℵ0 . �

6D. The F(n)-local category. We conclude with a discussion of the F(n)-local
category.

Any smashing localization L : S→ S gives a splitting of the Bousfield lattice

BL(S)−→∼ BL(LL S0)×BL(LC S0),

where 〈X〉 7→ (〈X ∧ L S0
〉, 〈X ∧C S0

〉). See [Iyengar and Krause 2013, Proposi-
tion 6.12] or [Wolcott 2014, Theorem 5.14] for more details. Taking L= L f

n :S→S,
we have 〈L S0

〉 = 〈T (0)∨· · ·∨T (n)〉 and 〈C S0
〉 = 〈F(n+1)〉. Of course, the rela-

tionship between LT (0)∨···∨T (n) and LE(n) of Section 5A is immediately related to the
original TC1n in S. However, this suggests that LF(n) is worth investigating further.

By Lemma 2.10, in BL(S) there is a chain

〈S0
〉 = 〈F(0)〉 ≥ 〈F(1)〉 ≥ 〈F(2)〉 ≥ · · · ,

and by Lemma 2.8 this gives a chain of lattice surjections

BL(S)= BL(LF(0))� BL(LF(1))� BL(LF(2))� · · · .

From the above observations, we expect BL(LF(n)) to be about as complicated
as BL(S). For example, F(n)∧ I 6= 0 for all n, and so L F(n) I is a square-zero
object in LF(n). This means that, unlike in most of the localized categories discussed
throughout this paper, we know that BA(LF(n)) 6= BL(LF(n)).

Acknowledgements

We would like to thank Dan Christensen for extensive discussions and suggestions
and Jon Beardsley for Proposition 4.2.

References

[Angeleri Hügel et al. 2008] L. Angeleri Hügel, J. Šaroch, and J. Trlifaj, “On the telescope con-
jecture for module categories”, J. Pure Appl. Algebra 212:2 (2008), 297–310. MR 2008m:16015
Zbl 1141.16010

[Balmer and Favi 2011] P. Balmer and G. Favi, “Generalized tensor idempotents and the telescope con-
jecture”, Proc. Lond. Math. Soc. (3) 102:6 (2011), 1161–1185. MR 2012d:18010 Zbl 1220.18009

[Benson et al. 2011a] D. Benson, S. B. Iyengar, and H. Krause, “Stratifying triangulated categories”,
J. Topol. 4:3 (2011), 641–666. MR 2012m:18016 Zbl 1239.18013

[Benson et al. 2011b] D. J. Benson, S. B. Iyengar, and H. Krause, “Stratifying modular representations
of finite groups”, Ann. of Math. (2) 174:3 (2011), 1643–1684. MR 2846489 Zbl 1261.20057

http://dx.doi.org/10.1016/j.jpaa.2007.05.027
http://dx.doi.org/10.1016/j.jpaa.2007.05.027
http://msp.org/idx/mr/2008m:16015
http://msp.org/idx/zbl/1141.16010
http://dx.doi.org/10.1112/plms/pdq050
http://dx.doi.org/10.1112/plms/pdq050
http://msp.org/idx/mr/2012d:18010
http://msp.org/idx/zbl/1220.18009
http://dx.doi.org/10.1112/jtopol/jtr017
http://msp.org/idx/mr/2012m:18016
http://msp.org/idx/zbl/1239.18013
http://dx.doi.org/10.4007/annals.2011.174.3.6
http://dx.doi.org/10.4007/annals.2011.174.3.6
http://msp.org/idx/mr/2846489
http://msp.org/idx/zbl/1261.20057


508 F. LUKE WOLCOTT

[Bousfield 1979a] A. K. Bousfield, “The Boolean algebra of spectra”, Comment. Math. Helv. 54:3
(1979), 368–377. MR 81a:55015 Zbl 0421.55002

[Bousfield 1979b] A. K. Bousfield, “The localization of spectra with respect to homology”, Topology
18:4 (1979), 257–281. MR 80m:55006 Zbl 0417.55007

[Brüning 2007] K. Brüning, “Thick subcategories of the derived category of a hereditary algebra”,
Homology, Homotopy Appl. 9:2 (2007), 165–176. MR 2009d:18018 Zbl 1142.18008

[Casacuberta et al. 2014] C. Casacuberta, J. J. Gutiérrez, and J. Rosický, “A generalization of
Ohkawa’s theorem”, Compos. Math. 150:5 (2014), 893–902. MR 3209799 Zbl 1300.55007

[Hopkins and Smith 1998] M. J. Hopkins and J. H. Smith, “Nilpotence and stable homotopy theory,
II”, Ann. of Math. (2) 148:1 (1998), 1–49. MR 99h:55009 Zbl 0927.55015

[Hovey 1995a] M. Hovey, “Bousfield localization functors and Hopkins’ chromatic splitting conjec-
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