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1. Introduction

An operator algebra is a closed subalgebra of B(H ) for a complex Hilbert space H .
Blecher and Read [2011; 2013a; 2014] and Read [2011] recently introduced and
studied a new notion of positivity in operator algebras (see also [Blecher and
Neal 2012a; 2012b; Bearden et al. 2014; Blecher et al. 2008]), with an eye to
extending certain C *-algebraic results and theories to more general algebras. Over
the last several years, we have mentioned in lectures on this work that most of
the results of those papers make sense for bigger classes of Banach algebras, and
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that many of the tools and techniques exist there. In the present paper we initiate
this direction. Thus we generalize a number of the main results from the series
of papers mentioned above, and some other facts, to a larger class of Banach
algebras. In the process we give simplifications of several facts in these earlier
papers. We will also point out some of the main results from the series of papers
mentioned above which do not seem to generalize, or are less tidy if they do.
(We will not spend much time discussing aspects from that series concerning
noncommutative peak interpolation, or generalizations of noncommutative topology
such as the noncommutative Urysohn lemma; these seem unlikely to generalize
much farther.)

Before we proceed we make an editorial/historical note: the preprint [Blecher
and Read 2013b], which contains many of the basic ideas and facts we use here,
has been split into several papers, which have each taken on a life of their own (e.g.,
[Blecher and Read 2014] which focuses on operator algebras, and the present paper
in the setting of Banach algebras).

In this paper we are interested in Banach algebras A (over the complex field)
with a bounded approximate identity (bai). In fact, often there will be a contractive
approximate identity (cai), and, in this case, we call A an approximately unital
Banach algebra. A Banach algebra with an identity of norm 1 will be called
unital. Most of our results are stated for approximately unital algebras. Frequently
this is simply because algebras in this class have an especially nice “multiplier
unitization” A!, defined below, and a large portion of our constructs are defined in
terms of A!. Also, approximately unital algebras constitute a strong platform for
the simultaneous generalization of as much as possible from the series of papers
referenced above. However, as one might expect, for algebras without any kind of
approximate identity it is easy to derive variants of a large portion of our results
(namely, almost all of Sections 3, 4, and 7), by viewing the algebra as a subalgebra
of a unital Banach algebra (any unitization, for example). We will discuss this point
in more detail in Section 9 and in a forthcoming conference proceedings survey
article [Blecher 2015].

Indeed many of our results are stated for special classes of Banach algebras, for ex-
ample, for Banach algebras with a sequential cai or which are Hahn—Banach smooth
in a sense defined later. Several of the results are sharper for M -approximately unital
Banach algebras, which means that A is an M -ideal in its multiplier unitization Al
(see Section 2). This is equivalent to saying that A is approximately unital and for
all x € A™*, we have |1 —x||(41)= = max{|le — x| 4+, 1}. Here e is the identity
for A**, if it has one (otherwise it is a “mixed identity” of norm 1 —see below
for the definition of this). However, as will be seen from the proofs, some of the
results involving the M -approximately unital hypothesis will work under weaker
assumptions, for example, strong proximinality of A in A! at 1 (that is, given € > 0,
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there exists a 6 > 0 such that if y € A with |1 —y|| <1+ § then thereisaz € A
with |[1—z|| =1and ||y —z| <e€).

We now outline the structure of this paper, describing each section briefly. Be-
cause our paper is rather diverse, to help the readers focus we will also mention
at least one highlight from each section. In Section 2 we discuss unitization and
states, and also introduce some classes of Banach algebras. A key result in this
section ensures the existence of a “real positive” cai in Banach algebras with a
countable cai satisfying a reasonable extra condition. We also characterize this
extra condition, and the related property that the quasistate space be weak* closed
and convex. In the latter setting, by the bipolar theorem, there exists a “Kaplansky
density theorem”. (Conversely, such a density result often immediately gives a real
positive approximate identity by weak* approximating an identity in the bidual by
real positive elements in A, and using, e.g., Lemma 2.1 below.) Section 3 starts by
generalizing many of the basic ideas from the papers of Blecher and Read cited above
involving cais, roots, and positivity. With these in place, we give several applications
of the kind found in those papers; for example, we characterize when x A is closed in
terms of the “generalized invertibility” of the real positive element x, and show that
these are the right ideals g A for a real positive idempotent g in A. We also list several
examples illustrating some of the things from the cited series of papers that will
break down without further restrictions on the class of Banach algebras considered.
The main advance in Section 4 is the introduction of the concept of hereditary
subalgebras (HSAs), an important tool in C *-algebra theory, to Banach algebras,
and establishing the basics of their theory. In particular, we study the relationship
between HSAs and one-sided ideals with one-sided approximate identities. Some
aspects of this relationship are problematic for general Banach algebras, but it works
much better in separable algebras, as we shall see. We characterize the HSAs, and
the associated class of one-sided ideals, as increasing unions of “principal” ones;
and indeed in the separable case they are exactly the “principal” ones. Indeed it is
obvious that in a Banach algebra A, every closed right ideal with a real positive left
bai is of the form EA for a set E of real positive elements of A. Section 4 contains
an Aarnes—Kadison-type theorem for Banach algebras, and related results that use
the Cohen’s factorization proof technique. Some similar results and ideas have been
found by Sinclair (in [Sinclair 1978], for example), but these are somewhat different,
and were not directly connected to “positivity”. It is interesting though that Sinclair
was inspired by papers of Esterle based on the Cohen’s factorization proof technique,
and one of these does have some connection to our notion of positivity [Esterle 1978].

In Section 5 we consider the better behaved class of M -approximately unital
Banach algebras. The main result here is the generalization of Read’s theorem [Read
2011] to this class. That is, such algebras have cais (e;) satisfying |1 —2e;|| < 1.
This may be the class to which the most results from our previous operator algebra
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papers will generalize, as we shall see at points throughout our paper. In Section 6
we show that basic aspects and notions from the classical theory of ordered linear
spaces correspond to interesting facts about our positivity for our various classes of
approximately unital Banach algebras (for example, for M -approximately unital
algebras, or certain algebras with a sequential cai). Indeed the highlight of this
section is the revealing of interesting connections between Banach algebras and
this classical ordered linear theory (see also [Blecher and Read 2014] for more, and
clearer, such connections if the algebras are in addition operator algebras). In the
process we generalize several basic facts about C *-algebras. For example, we give
the aforementioned variant of Kaplansky’s density theorem, and variants of several
well-known order-theoretic properties of the unit ball of a C *-algebra and its dual.

In Sections 7 and 8 we find variants for approximately unital Banach algebras of
several other results about two-sided ideals from [Blecher and Read 2011; 2013a;
2014]. In Section 7 we assume that A is commutative, and in this case we are able
to establish the converse of the last result mentioned in our description of Section 4
above. Thus closed ideals having a real positive bai, in a commutative Banach
algebra A, are precisely the spaces E A for sets E of real positive elements of A. In
Section 8 we only consider ideals that are M -ideals in A (this does generalize the
operator algebra case at least for two-sided ideals, since the closed two-sided ideals
with cais in an operator algebra are exactly the M -ideals [Effros and Ruan 1990]).
The lattice theoretic properties of such ideals behave considerably more like the
C *-algebra case and are related to faces in the quasistate space. Section 8 may
be considered to be a continuation of the study of M -ideals in Banach algebras
initiated in [Smith and Ward 1978; 1979; Smith 1979] and, e.g., [Harmand et al.
1993, Chapter V]. At the end of this section, we give a “noncommutative peak
interpolation” result reminiscent of Tietze’s extension theorem, which is based
on a remarkable result of Chui, Smith, Smith, and Ward [Chui et al. 1977]. This
solves an open problem from [Blecher and Read 2013b], or earlier, concerning
real positive elements in a quotient. Finally, in Section 9 we discuss which results
from earlier sections generalize to algebras without a cai; more details on this are
given in [Blecher 2015]. The latter is a survey article which also contains a few
additional details on some of the material in the present paper, as well as some
small improvements found after this paper was in press.

We now list some of our notation and general facts: We write Ball(X) for the
set {x € X : ||x|| < 1}. If E, F are sets then EF denotes the span of products xy
for x € E,y € F. If x € A for a Banach algebra A, then ba(x) denotes the closed
subalgebra generated by x. For two spaces X, Y which are in duality, for a subset £
of X, weuse the polar E°={y €Y : (x,y) > —1forall x € E}.

For us, Banach algebras satisfy ||xy| < [|x]||||v]l. We recall that a nonunital
Banach algebra A is Arens regular if and only if its unitization is Arens regular (any
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unitization will do here). In the rest of this paragraph, we consider an Arens regular
approximately unital Banach algebra A. For such an algebra, we will always write e
for the unique identity of A**. Indeed if A is an Arens regular Banach algebra
with cai (e;), and e;,, — n weak* in A**, then e;,a — na weak* for all a € A. So
na = a, and similarly an = a. Therefore 7 is the unique identity e of A**, and
e; — e weak™. We will show at the end of this section that the multiplier unitization
A is isometrically isomorphic to the subalgebra A + Ce of A**.

If A is a Banach algebra which is not Arens regular, then the multiplication we
usually use on A** is the “second Arens product” (¢ in the notation of [Dales
2000]). This is weak* continuous in the second variable. If A is a nonunital, not
necessarily Arens regular, Banach algebra with a bai, then A** has a so-called
“mixed identity” [Dales 2000; Palmer 1994; Doran and Wichmann 1979], which
we will again write as e. This is a right identity for the first Arens product, and a
left identity for the second Arens product. A mixed identity need not be unique;
indeed, mixed identities are just the weak™ limit points of bais for A.

We will also use the theory of M -ideals. These were invented by Alfsen and
Effros, and [Harmand et al. 1993] is the basic text for their theory. We recall, a
subspace E of a Banach space X is an M-ideal in X if E-++ is complemented in
X** via a contractive projection P so that X ** = E-+L @ Ker P. In this case,
there is a unique contractive projection onto E-. M-ideals have many beautiful
properties, some of which will be mentioned below.

We will need the following result several times:

Lemma 1.1. Let X be a Banach space, and suppose that (x;) is a bounded net
in X with x; — n weak* in X**. Then

Inll = liminf{]|y] : y € conv{x; : j = 1}}.

Proof. 1t is easy to see that ||n|| <lim, inf{||y | :y €econvix;:j > z}}, for example,
by using the weak* semicontinuity of the norm, and noting that for every ¢ and any
choice y; € conv{x; : j > t}, we have y; — n weak*. By way of contradiction,
suppose that

Inll < C < litminf{||y|| 1y €convix; 1 j > t}}.

Then there exists ¢y such that the norm closure of conv{x; : j > ¢} is disjoint from
C Ball(X) for all ¢ > ty. By the Hahn—Banach theorem, there exists ¢ € X * with

Clloll < K <Reg(xj), j=t,
so that C ||¢|| < K <Re@(n). This contradicts ||n| < C. d

Any nonunital operator algebra has a unique operator algebra unitization (see
[Blecher and Le Merdy 2004, Section 2.1]), but of course this is not true for Banach
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algebras. We will choose to use the unitization that typically has the smallest norm
among all unitizations, and which we now describe. If A is an approximately unital
Banach algebra, then the left regular representation embeds A isometrically in B(A).
We will always write A for the multiplier unitization of A; that is, we identify A!
isometrically with A + CI in B(A). Fora € A, A € C, we have

la + Al = sup{||ac +Ac|:ce Ball(A)} =sup |lae; + Aes|| = li{n laes + Aes,
t

(see [loc. cit., A.4.3], for example). If A4 is actually nonunital then the map yo(a +
A1) = A on Al is contractive, as is any character on a Banach algebra. We call
this the trivial character. Below, 1 will almost always denote the identity of A!, if
A is not already unital. Note that the multiplier unitization also makes sense for
the so-called self-induced Banach algebras, namely those for which the left regular
representation embeds A isometrically in B(A).

If A is a nonunital, approximately unital Banach algebra then the multiplier
unitization A' may also be identified with a subalgebra of A**. Indeed if ¢ is a
mixed identity of norm 1 for A** then A 4 Ce is then a unitization of A (by basic
facts about the Arens product). To see that this is isometric to 4! above, note that
for any ¢ € Ball(A),a € A, A € C, we have

lac + Ac|l < la + Aellg= = [le(@ + A1) || a1yes < lla + Al 41.

Thus by the displayed equation in the last paragraph, ||a + Ae|[g++ = ||a + A1| 41
as desired.

2. Unitization and states

If A is an approximately unital Banach algebra, then we may view A in its multiplier
unitization A!, and write

Sa={acA:|l—a|<l}={acAd:|e—a| <1},
where e is as in the last paragraph (or set e = 1 if A is unital). So
%3A:{aeA:||1—2a|| <1j.

If x € %SA then x, 1 —x € Ball(A!). Also, §4 = $41 N A, and §4 is closed under
the quasiproduct a + b —ab. (It is interesting that cones containing §4 were used
to obtain nice results about “order” in unital Banach algebras and their duals in
Section 1 of the historically important paper [Kelley and Vaught 1953], based on a
1951 ICM talk. Slightly earlier, §4 also appeared in a memoir by Kadison.)

If n € A** then an expression such as A1 + n will usually need to be interpreted
as an element of (41)**, with 1 interpreted as the identity for A' and (4!)**. Thus
[1—n|| denotes |[1 —n[(41)=<. We define

Sae ={ne A [I-n| <1} = A" O F 41y
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We write t4 for the set of a € A whose numerical range in A! is contained in the
right half-plane. That is,

ty={aecA:Rep(a)>0forall p € S(A")},

where S(A!) denotes the states on A!. Note that t4 is a closed cone in A, but it
is not proper (hence it is what is sometimes called a wedge). We write a < b if
b —a € ty. Itis easy to see that RTF4 Cty. Conversely, if A is a unital Banach
algebra and a € t4 thena+€1 € RTF4 forevery € > 0. Indeed a+€ 1 € CF4, where
C = ||a||?/€ + ¢, as can be easily seen from the well-known fact that the numerical
range of a is contained in the right half-plane if and only if |1 —ta| < 1 + ¢?||a||?
for all £ > 0 (see, e.g., [Magajna 2009, Lemma 2.1]).

One main reason why we almost always assume that A is approximately unital
in this paper is that §4 and t4 are well-defined as above. However, as we said in
the introduction, if A4 is not approximately unital, it is easy to see how to proceed
in a large number of our results (namely in almost all of Sections 3, 4, and 7), and
this is discussed briefly in Section 9.

The following is no doubt in the literature, but we do not know of a reference
that proves all that is claimed. It follows from it that mixed identities in A™* are
just the weak™* limits of bais for A, when these limits exist.

Lemma 2.1. If A is a Banach algebra, and if a bounded net x; € A converges
weak* to a mixed identity e € A**, then a bai for A can be found with weak* limit e,
and formed from convex combinations of the x;.

Proof. Given € > 0 and a finite set ' C A*, there exists ¢f ¢ such that

lp(x;) —e(p)| <€, t>tpe, @€F.

Given a finite set £ = {ay,...,a,} C A, we have that x;a; — ay and apx; — aj
weakly. So there is a convex combination y of the x; for ¢ > tf  with

lyar —al + laxy —ar| <e.

We also have |¢(y) —e(@)| <€ for ¢ € F. Write this y as y,, where A = (E, F, ¢).
Giveneg>0anda € A,if e <€p and {a} C E, then |yja—a| +|lay)—al <€ <e€o
for A= (E, F,e) withany F. So (y,) isabai. Alsoif ¢ € F then |p(yy)—e(p)| <e€.
So y, — e weak*. O

Remark. The “sequential version” of the last result is false. For example, consider
the usual cai (n)[—1/(2n),1/(2n)]) Of L'(R) with convolution product. A subnet of
this converges weak* to a mixed identity e € L1 (R)**. However, there can be no
weak* convergent sequential bai for L!(R), since L!(R) is weakly sequentially
complete.
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For a general approximately unital nonunital Banach algebra A with cai (e;), the
definition of “state” is problematic. There are many natural notions, for example:
(i) a contractive functional ¢ on A with ¢(e;) — 1 for some fixed cai (e;) for A4,
(ii) a contractive functional ¢ on A with p(e;) — 1 for all cai (e;) for A, and (iii) a
norm 1 functional on A that extends to a state on A', where A! is the multiplier
unitization above. If A is not Arens regular then (i) and (ii) can differ; that is,
whether ¢(e;) — 1 depends on which cai for A we use. And if e is a mixed identity
then the statement ¢(e) = 1 may depend on which mixed identity one considers.
In this paper, for simplicity, and because of its connections with the usual theory of
numerical range and accretive operators, we will take (iii) above as the definition of
a state of A. We shall also often consider states in the sense of (i), and will usually
ignore (ii) since in some sense it may be treated as a “special case” of (i) (that is,
almost all computations in the paper involving the class (i) are easily tweaked to
give the “(ii) version”). We define S(A) to be the set of states in the sense of (iii)
above. This is easily seen to be norm closed, but will not be weak™ closed if 4 is
nonunital. We define

cax ={p € A" :Reg(a) > 0forall a € vq},

and note that this is a weak* closed cone containing S(A4). These are called the
real positive functionals on A. If ¢ = (e;) is a fixed cai for A4, define

S.(A) = {p € Ball(4™) : li;n(p(et) =1}

(this corresponds to (i) above). Note that S,(A) is convex but S(A) may not be (as
in, e.g., Example 3.16). An argument in the next proof shows that S.(A4) C S(A).
Finally we remark that for any y € A of norm 1, if ¢ € Ball(A*) satisfies ¢(y) =1,
then x — ¢(yx) is in S,(A) for all cais ¢ of A.

We recall that a subspace E of a Banach space X is called Hahn—Banach smooth
in X if every functional on E has a unique Hahn—Banach extension to X. Any M -
ideal in X is Hahn—Banach smooth in X. See [Harmand et al. 1993] and references
therein for more on this topic.

Lemma 2.2. For approximately unital Banach algebras A which are Hahn—Banach
smooth in A, and therefore for M -approximately unital Banach algebras, and
@ € A* with norm 1, the following are equivalent:

(i) @ is a state on A (that is, extends to a state on AV).
(ii) ¢(er) — 1 for every cai (e;) for A.
(iii) p(e;) — 1 for some cai (e;) for A.

(iv) ¢(e) = 1 whenever e € A** is a weak* limit point of a cai for A (that is,
whenever e is a mixed identity of norm 1 for A**).
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Proof. Clearly (ii) implies (iii). If ¢ € Ball(A*), write ¢ for its canonical weak*
continuous extension to A**. If (e;) is a cai for A with weak* limit point e and
¢(er) — 1, then ¢(e) = 1. It follows that @ 41 is a state on A'. So (iii) implies (i).
To see that (i) implies (iv), suppose that A is Hahn—Banach smooth in A', and that
¢ is a norm 1 functional on A that extends to a state ¥ on A!. If (e;) is a cai for A
with weak* limit point e, then also ¢| 44 c. is a norm-1 functional extending ¢ so
that ¢| 4 +ce = ¥, and for some subnet,

ple) =limgp(ey,) = ¢(e) =y(1) = L.

We leave the remaining implication as an exercise. O

Under certain conditions on an approximately unital Banach algebra A, we shall
see in Corollary 2.8 that S(A!) is the convex hull of the trivial character yo and
the set of states on A! extending states of A, and that the weak* closure of S(A)
equals {4 : ¢ € S(AYH).

The numerical range W(a) (or Wy(a)) of a € A, if A is an approximately unital
Banach algebra, will be defined to be {¢(a) : ¢ € S(A4)}. If A is Hahn—Banach
smooth in A! then it follows from Lemma 2.2 that S(A) is convex, and hence so
is W(a). We shall see in Corollary 2.8 that under the condition mentioned in the
last paragraph, we have Wy (a) = conv{0, Wy(a)} = W1 (a).

The following is related to results from [Smith and Ward 1979] or [Harmand
et al. 1993, Section V.3] or [Arias and Rosenthal 2000; Davidson and Power 1986].

Lemma 2.3. If A is an approximately unital Banach algebra, if A is the uni-
tization above, and if e is a weak* limit of a cai (resp. bai in §4) for A then
|1 —2e|[(41y« < 1 if and only if there is a cai (resp. bai in F4) (e;) with weak*
limit e and limsup; |1 —2e; |41 < 1.

Proof. One direction follows from Alaoglu’s theorem. Suppose |1 —2e/| 41+ <1
and there is a net (x;) which is a cai (resp. bai in §4) for A with x; — e weak*.
Then 1 —2x; — 1 —2e weak* in (41)**. By Lemma 1.1, for any n € N, there
exists a t, such that for every ¢t > 1,

inf{||1 —2y|l:y €convix; : j > t}} <1+ %
For every ¢ > 1, choose such a y} econv{x; : j >t} with |[1-2y7 | <1+1/n. Ift
does not dominate 7, define y;' = y7 . So for all 7, we have [|[1 —2y7 || <1+ 1/n.
Writing (n, ¢) as i, we may view (y}') as anet (e;) indexed by i, with [|[1-2y}|| — 1.
Given € >0 and ay,...,am € A, there exists a #; such that | x;ar —ag|| < € and
lagx;—ag|| <eforallt >¢; and all k =1, ..., m. Hence the same assertion is true

with x; replaced by y}'. Thus (y}') = (e;) is a bai for A with the desired property. [

We recall from the introduction that if A is an approximately unital Banach
algebra which is an M -ideal in the particular unitization A! above, then A is an
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M -approximately unital Banach algebra. Any unital Banach algebra is an M-
approximately unital Banach algebra (here A! = A). By [Harmand et al. 1993,
Proposition 1.1.17(b)], examples of M -approximately unital Banach algebras in-
clude any Banach algebra that is an M -ideal in its bidual, and which is approximately
unital (or whose bidual has an identity). Several examples of such are given in
[loc. cit.], for example, the compact operators on £ for 1 < p < co. We also recall
that the property of being an M -ideal in its bidual is inherited by subspaces, and
hence by subalgebras. Not every Banach algebra with a cai is M -approximately
unital. By [loc. cit., Proposition I1.3.5], L!(R) with convolution multiplication
cannot be an M -ideal in any proper superspace.

We just said that any unital Banach algebra A is M -approximately unital; hence,
any finite dimensional unital Banach algebra is Arens regular and M -approximately
unital (if one wishes to avoid the redundancy of A = A! in the discussion below,
take the direct sum of A with any Arens regular M -approximately unital Banach
algebra, such as cp). Thus any kind of bad behavior occurring in finite-dimensional
unital Banach algebras (resp. unital Banach algebras) will appear in the class of
Arens regular M -approximately unital Banach algebras (resp. M -approximately
unital Banach algebras). This will have the consequence that several aspects of the
Blecher—Read papers will not generalize, for instance, conclusions involving “near
positivity”. This can also be seen in the examples scattered through our paper, for
instance, Examples 3.13-3.16 below.

Suppose that (e;) is a cai for a Banach algebra A with weak* limit point e € A™*.
Then left multiplication by e (in the second Arens product) is a contractive projection
from (A1)** onto the ideal AL of (A1)** (note that (A1)** = AL + C1 =
A1+ 4+ C(1 —e)). Thus by the theory of M -ideals [loc. cit.], A is an M -ideal in
A' if and only if left multiplication by e is an M -projection.

Lemma 2.4. A nonunital approximately unital Banach algebra A is M -approxi-
mately unital if and only if for all x € A**, we have

1=l (a1yer = max{fle — xlaex, 15.

Here e is a mixed identity for A** of norm 1. If these conditions hold then there is a
unique mixed identity for A** of norm 1, it belongs in %S Axx, and

T=nll=1 <= le—nl=<1neA™.

Proof. By the statement immediately above the lemma, and by the theory of M-
ideals [Harmand et al. 1993], A is an M -ideal in A" if and only if left multiplication
by e is an M -projection, that is, if and only if

7+ A1)l g1y = max{|ln+ Ae|Lg==, [A[[[1—ell}, neA™ AeC.
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If this holds then setting A = 1 and n = 0 shows that |1 —e|| < 1. However, by the
Neumann lemma we cannot have |1 —e|| < 1. Thus ||1 —e|| = 1 if these hold. The
statement is tautological if A = 0, so we may assume the contrary. Dividing by |A|
and setting x = —n/|A|, one sees that A is M -approximately unital if and only if

IT— x| 41y« = max{lle — x[lg==, 1}, x €A™,

In particular, ||1 —2e| 41y« = max{||e|[, 1} = 1. The final assertion is now clear
too. The uniqueness of the mixed identity follows from the next result. O

Remark. Indeed if B is any unitization of a nonunital approximately unital Banach
algebra A, and if A is an M-ideal in B, then the first few lines of the last proof,
with A! replaced by B, show that B = A, the multiplier unitization of A.

Thus A is M -approximately unital if and only if |1 —x|[( g1y« = ||e —x || 4+ for
all x € A™*, unless the last quantity is less than 1, in which case [|[1 — x| 41y = 1.

We will show later that for M -approximately unital Banach algebras, there is a
cai (e;) for A with ||[1 —2e;||41 <1 forall 7.

Lemma 2.5. Let A be a closed ideal, and also an M -ideal, in a unital Banach
algebra B. If e and f are two weak* limit points in A** of two cai for A, then
e = f. Thus A** has a unique mixed identity of norm 1. In particular, if A is
M -approximately unital then A** has a unique mixed identity of norm 1.

Proof. As in the discussion above Lemma 2.4, left multiplications by e or f, in the
second Arens product, are contractive projections onto the ideal A11 of (41)**.
So these maps equal the M -projection [Harmand et al. 1993], and hence are equal.
So e = f. Thus every cai for A converges weak* to e, so that A** has a unique
mixed identity. O

If A is an approximately unital Banach algebra, but A** has no identity then
we define tg++ = A™* Nr(41)«+. If A is an approximately unital Banach algebra
then §4++ and tg++ are weak™® closed. Indeed the F4++ case of this is obvious. By
[Magajna 2009], v(41)«« is weak* closed, hence $0 is tg=+ = A™* Nt g1)ex.

Remark. Note that if A** has a mixed identity of norm 1 then we can define
states of A™* to be norm-1 functionals ¢ with ¢(e) = 1 for all mixed identities e
of A** of norm 1. Then one could define t4++ to be the elements x € A** with
Re ¢(x) > 0 for all such states of A**. This coincides with the definition of tqxx
above the remark if A is M -approximately unital. Indeed such states ¢ on A**
extend to states ¢(e -) of (A!)**. Conversely if A is an M -approximately unital
Banach algebra, then given a state ¢ of (41)**, we have

L= el =llg-el+lle-(1-e) = lp(e)|+lp(1—e)| = o(1) = 1 =p(e) +¢(1—e).
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It follows from this that ||pe|| = |@(e)| = ¢(e). Hence if n € Ball(A**) then
le(m| = lpem] < llgel = ¢(e),

so that the restriction of ¢ to A** is either zero or is a positive multiple of a state
on A**. Thus for M -approximately unital Banach algebras, the two notions of tqxx
under discussion coincide.

Let Q(A) be the quasistate space of A, namely Q(A)={tp:t€[0,1], p € S(A)}.
Similarly, Q.(4) ={tp:t €[0,1], ¢ € S.(A)}. We set
ty ={xe€A:Rep(x)>0forall p € S.(4)},
¢« ={p € A :Re(x) > 0 for all x € t%;}.
Note that t4 C tf since S.(4) C S(A).
Lemma 2.6. Let A be a nonunital Banach algebra with a cai e.

(1) Then 0 is in the weak™ closure of S.(A). Hence 0 is in the weak* closure of
S(A). Thus Q(A) is a subset of the weak* closure of S(A), and similarly
0:(4) C S:(A)™.

(2) The weak* closure of S.(A) is contained in ¢§. NBall(4¥). It is also contained
in S(A1)|A, and both of the latter two sets are subsets of c4+ N Ball(4™).

Proof. (1) For every t, there exists s(¢) > ¢ such that |leg;) —e;|| > 1/2 (or
else taking the limit over s > ¢, we get the contradiction |1 —e;| < 1, which
is impossible by the Neumann lemma, or since the trivial character y¢ is con-
tractive). Take a norm-1 ¥, € A* such that V¥, (esr) — e;) = |les) — er||. Let
D (x) = Y ((es@r) —er)x)/lles@) —etll. Then &, € S.(A) because it has norm 1
and limg ®;(e5) = 1. One has lim; ®;(x) = 0 for all x € A. To see this, given
€ > 0, choose f¢ such that |e;x — x|| < € for all ¢ > to. For such ¢, we have

[V ((esq) —er)x)|

lesq) — el

<2[[¥¢llll(es@) —er)x|| < 4e.

Thus ®; — 0 weak*. The rest is obvious.

(2) The first assertion is clear by the definitions and since ¢f. N Ball(A*) is weak*
closed. Similarly, that the weak™* closure is contained in S (Al)‘ 4 follows since
S.(A) C S(A) as we saw above, and because S(A!) and hence S (A1)| 4, are weak*
closed. We leave the rest as an exercise using t4 C tj. O

We will say that an approximately unital Banach algebra A is scaled (resp. e-
scaled) if every f in cgq« (resp. in c%;.) is a nonnegative multiple of a state, that is,
if and only if ¢4+ = R S(A) (resp. e = R*S.(A)), equivalently, if and only if
¢4+ NBall(4™) = Q(A) (resp. ¢ NBall(4™) = Q.(A4)). Examples of scaled Banach
algebras include M -approximately unital Banach algebras (see Proposition 6.2)
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and L'(R) with convolution product. One can show that L!(R) is not e-scaled if e
is the usual cai (see the remark after Lemma 2.1 and Example 3.16).

Lemma 2.7. Let A be an approximately unital Banach algebra.

(1) Suppose that ¢ = (e;) is a cai for A. Then Q.(A) is weak* closed in A* if and
only if A is e-scaled. If these hold then Q.(A) is a weak™ compact convex set
in Ball(A™*), and S.(A) is weak* dense in Q.(A).
(2) If S(A) or Q(A) is convex then Q(A) is weak* closed in A* if and only if A is
scaled.
Proof. (1) By the bipolar theorem, ¢ = IRJFse(a)w*. So RT S, (A) is weak* closed
if and only if ¢}, = R*S.(A), that is, if and only if A is e-scaled. By the Krein—
Smulian theorem this happens if and only if Ball(RTS.(4)) = Q.(4) is weak*
closed. The weak* density assertion follows from Lemma 2.6.

(2) This follows by a similar argument to (1) if Q(A) is convex (and this is implied
by S(A) being convex). d
Corollary 2.8. If A is a nonunital approximately unital Banach algebra, then the
following are equivalent:

(1) A is scaled.

(ii) S(AV) is the convex hull of the trivial character xo and the set of states on Al
extending states of A.

(i) O(4) ={pj4:¢ € S(A"}
(iv) Q(A) is convex and weak* compact.

If these hold then Q(A) = S (A)W*, and the numerical range satisfies
W4(a) = conv{0, Wy(a)} = Wyi(a), acA.

Proof. (i) = (ii): Clearly the convex hull in (ii) is a subset of S(A!). Conversely, if
¢ € S(AY) then @4 is real posmve so that by (i) we have ¢4 =ty for ¢ € (0, 1]
and ¥ € S(A). Then ¢ = tw + (1 —1) 0, where w is the state extending .

(i1)) = (iii): We leave this as an exercise.

(iii) = (iv): Suppose that (¢;) is a net in S(A!) whose restrictions to 4 converge
weak* to 1 € A*. A subnet (¢;,) converges weak* to ¢ € S(A'), and ¢ = @4
clearly. This gives the weak* compactness in (iv), and the convexity is easier.

(iv) = (1): This follows from (2) of the previous lemma.

Assume that these hold. Since S(A4) C Q(A4), that oA)=S (A)W* is now clear
from the fact from Lemma 2.6 that Q(A) C S (A) . Since A is nonunital, we have
0 € Wyi(a). Clearly Wq(a) C Wyi(a), so that conv{0, Wy(a)} C Wyi(a). The
converse inclusion follows easily from the above, so conv{0, W4 (a)} = Wyi1(a).



14 DAVID P. BLECHER AND NARUTAKA OZAWA

Also, clearly W4 (a) C W41 (a), and the converse inclusion follows since S (Al)‘ A=
0(4) =SA)". O

Remark. (1) Thus if S(A) = S.(A) for some cai ¢ of A, then A is scaled if and
only if Q(A) is weak* closed.

(2) In particular, if A4 is unital then conditions (i) and (iv) in the previous result
are automatically true. Indeed S(A) is weak™* closed, and hence Q(A) is too,
and the rest follows from Lemma 2.7. Item (i) also follows from the proof of
[Magajna 2009, Theorem 2.2].

Theorem 2.9. Let ¢ = (ey,) be a sequential cai for a Banach algebra A. If Q.(A)
is weak* closed, then A possesses a sequential cai in vy. Moreover, for every a € A
with inf{Re ¢(a) : ¢ € S.(A)} > —1, there is a sequential cai ( fy) in v} such that
Jn+aex foralln.

Proof. We first state a general fact about compact spaces K. If ( f;,) is a bounded
sequence in C (K, R) such that lim,, f, (x) exists for every x € K and is nonnegative,
then for every € > 0, there is a function f € conv{ f,} such that f > —e on K.
Indeed if this were not true, then conv{ f,,} and C(K)+ would be disjoint. By
a Hahn-Banach separation argument and the Riesz—Markov theorem, there is a
probability measure m such that sup,, [ fn dm < 0. This is a contradiction since
lim, || x Jndm >0 by Lebesgue’s dominated convergence theorem.

Set K to be the weak* closure of S.(A) in A* (so that K = Q.(A) by Lemma 2.6),
and let £, (¢) =Re ¢(e,) for ¢ € K. Since lim, Re ¢(e,,) >0 forallp € Q,(A), we
can apply the previous paragraph to find an x € conv{e, } such thatinf,e g ¢ (x) > —e.
Similarly, choose y; € conv{e,} such that inf,eg ¢(x + €y1) > —€/2. Continue
in this way, choosing y, € conv{e,} such that

n
inf 217k gy ) > —e/2m.
wngw(kaX_:l yk) ¢/

Setu=73 o, 2%y e conv{e,}, and z = x +2¢u. This is in th,and [z —x| <2e.
Choose a subsequence (e, ) of (e;) such that

”ek,,en —enll + ”enekn —enll <27

For each m € N, apply the last paragraph to (eg, )n>m, With € replaced by 27, to
find X, up, € CONV{eg, :n > my with z,, = Xy + 21-my. € t. Then

[Xmem —em || + llemXm —em| <27.

From this it is easy to see that (x,) is a cai for A. It is also easy to see now that
ey, = (1/]1zmll)zm is a bai (hence also a cai) for A in ;.
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The case for the “moreover” is similar. Suppose that
inf{Rep(a) : ¢ € S.(A)} > —1.

We may assume the infimum is negative, and choose ¢ > 1 so that the infimum is
still greater than —1 with a replaced by ra. We now begin to follow the argument
in previous paragraphs, with the same K, but starting from a cai (ej,) in t5. Since
lim, Re ¢(ta+e,,) >0 for all ¢ € Q.(A), we can apply the above to find an element
x € conv{e, } C t§ such that inf,cg ¢(ta + x) > —e. Continue as above to find
u € convie,} C t§ so that z = ta + x + 2eu is in v, with ||z —x —ral| < 2e.
For each m € N, there exists such x,,, u,, € tf4 so that z,,, = ta + xm + 217" u,,
is in t§, with ||z — xm —tal < 217m " and such that (x,,) is a cai for A. Note
that z,, —ta € t§, and hence fy, = (1/||zm —ta||)(zm — ta) € t§. Also (fm) is
a bai (hence a cai) for 4 in tj. There exists an N such that ¢/||z;, —tal| > 1 for
m > N. Thus fp, +a €t form > N, since this is a convex combination of f,
and fm +ta/|zm —ta| = zm/|lzm —tal. O
Corollary 2.10. Let ¢ = (e) be a sequential cai for a Banach algebra A. Assume
that S(A) = S¢(A) (Which is the case, for example, if A is Hahn—Banach smooth).
If Q(A) is weak* closed, then A possesses a sequential cai in t4. Moreover, for
every a € Awithinf{Re p(a) : ¢ € S(A)} > —1, there is a sequential cai (f,) in t
such that f, > —a for all n. If, in addition, A has a sequential cai in §4 then the
sequential cai ( f,) in the last line can also be chosen to be in §4.

Proof. By the last result, A has a sequential cai in vy satisfying the first two
assertions. Suppose that A has a sequential cai, (e;,) say, in F4. One then follows
the last paragraph of the last proof. Now x,,, u;, € §4. Define f, as before, but

the desired cai is
[l + 21_m“m |

1 21=m
which is easy to see is a convex combination of x,, and u,,, and hence is in §4.
Moreover a tiny modification of the argument above shows that the sum of this cai
and a is in t4 for m large enough. O

n-

Remark. Under the conditions of Corollary 2.10, and if A has a sequential approx-
imate identity in %S 4 (resp. §4), then a slight variant of the last proof shows that
for any a € A with inf{Re ¢(a) : ¢ € S(A)} > —1, there is a sequential bai ( f) in
%S 4 (resp. §4) such that f;, > —a for all n. By Corollary 3.9 (and the remark after
it) below, if A has a sequential bai in t4 then A does have a sequential bai in §g4.

We also remark that Corollary 3.4 of [Blecher 2015] generalizes the first assertion
of Corollary 2.10 above to nonsequential cais.

Proposition 2.11. If A is a scaled approximately unital Banach algebra then the
weak* closure of t4 is tq*x.
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Proof. 1t is easy to see from the definitions that t4 C vg=+. Clearly ‘CZ = ¢4+, SO the
result will follow from the bipolar theorem if we can show that

(CA*)O = tA** = t(Al)** ﬂ A**

Since t4 C tg**, it is clear that (tg++)o C cgq*. If ¢ € ¢g* then ¢ =ty for ¢ > 0,
¥ € S(A). Then v extends to a state 1 on A!, and to a weak* continuous state p
on (A)** . If n € tg++, we have

Ren(¥) = Ren(y) = Re p(n) > 0.

That is, ¢ € (t4*+)o. Then (tg+x)o = c¢4*, and hence by the bipolar theorem,
(CA*)O :tA**_ |:|

We remark that if an approximately unital Banach algebra A is scaled then any
mixed identity e for A** of norm 1 is lower semicontinuous on Q(A). For if
@ — ¢ weak® and @;(e) = ||@¢|| < r for all ¢, then ||¢| = ¢(e) < r. A similar
assertion holds in the e-scaled case.

3. Positivity and roots in Banach algebras

Proposition 3.1. If B is a closed subalgebra of a nonunital Banach algebra A,
and if A and B have a common cai, then B C Al isometrically and unitally,
S(B') = Ui f € S(AYY, and g = BN F4 and tg = B Nty. Moreover, in
this case, if A is M -approximately unital then so is B.

Proof. We leave the first part of this as an exercise. The last assertion follows using
[Harmand et al. 1993, Proposition 1.1.16], since in this case multiplying by e leaves
(BY)* invariant inside (A')**. O

Remark. Similarly, in the situation of Proposition 3.1 we have t; = B Nt if e is
the common cai.

Proposition 3.2. Suppose that J is a closed approximately unital ideal in an ap-
proximately unital Banach algebra A, and that J is also an M -ideal in A. Then:

(1) §7 =J NFaandry = J Ny, and states on J extend to states on A.

(2) If J is nonunital then J' C AY isometrically and unitally, and
SUY={figi:feSAh}.

(3) If A is M -approximately unital, then so is J .

(4) Ife=(e;j) isacaiof A, thenthere is a cai b = (h;) of J such that ¢y € Qy(J)
whenever ¢ € S.(A).
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Proof. (2) Fora € J and A € C, we have
lla + Alll41 = sup{|lax + Ax |4 : x € Ball(A)} > [la + A1] ;1.

Let f be a mixed identity of J** of norm 1, which is the limit of a cai (f;). For
every x € Ball(A4), one has

llax + Ax|l4 = max{]| fax + Afx[l, IA(1 = f)x|}.

Setting a = 0 temporarily, we see that ||[A(1 — f)x| <|A| < |la + Al|| ;1. For any
a € J,wehave fax =ax and ax + Afx = w*lim; af;x + A f; x, so that

I fax +Afx| <liminfllafix +Afix| < la 4+ Al] 1.
1

Thus f|a + A4 = [la + AL]| 1.

(1) If J is nonunital then by (2) and the Hahn-Banach theorem, we have S(J!) =
iy f € S(A')}, and so states on J extend to states on A. If J is unital, an
extension of states is given by ¢ > ¢ (1 -). It also is clear from (1) that § 7 = J NF 4
in the nonunital case, and we leave the unital case as an exercise (using the fact that
multiplication by the identity of J is an M -projection). The identity tj = J Nty
is handled similarly. Indeed, clearly J Nt4 C v since states on J extend to states
on A!. We leave the converse inclusion as an exercise (for example, it follows from
S7=J NF4 CJ Ny, and Proposition 3.5 below).

(3) We can assume J is nonunital. It follows from [Harmand et al. 1993, Proposi-
tion 1.17(b)] that if J is an M -ideal in A, and A is an M -ideal in A!, then J is an
M -ideal in A!. By the same result, J is an M -ideal in J!.

(4) Let e denote a weak* limit point in A** of (e;). Let (gx) be any cai for J, with
weak’* limit point g in J-1. Then (h;) = (gxe;) (indexed first by i and then j) is
acai for J. Then h = ge is a weak* limit point of (/;). We have (1 —g)e = e —h.
Since left multiplication by g is the M -projection of A** onto J1-1, as we have
seen several times above, one has |e — | < 1. Let ¢ € S.(A) be given. We claim
that if ¢(h) = 0 then ¢|; = 0; and if @(h) # O then @(h-)/@(h) is a state on JL.
Note that if ¢(h) # 0 then

I=g(e)=¢h)+o((1-g)e) <lp(h)|+|p((1-g)e)| < lp(g ) +Ile((1=g) ),

which equals 1 due to the L-decomposition in A*. Thus we must have ¢(h) > 0.
Let a + A1 € Ball(J !) be given. Then for any unimodular scalar y, one has

ly(ha + Ah) + e — h| 4=+ = max{||ha + Ah|. |le —h||} < 1.

Therefore,

}(p(y(ha +kh)+e—h)‘ = ‘yga(ha +Ah)+1—<p(h)| <1
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for all such y. So for some such y,
lp(ha + Ah)|+1—@(h) = p(y(ha + Ah) +e—h) <1,
so that |@(ha + Ah)| < ¢(h). O

Proposition 3.3 (Esterle). If A is a unital Banach algebra then §4 is closed under
(principal) t-th powers for any t € [0,1]. Thus if A is an approximately unital
Banach algebra then T4 and Rt 4 are closed under t-th powers for any t € (0, 1].

Proof. This is in [Esterle 1978, Proposition 2.4] (see also [Blecher and Read 2011,
Proposition 2.3]), but for convenience we repeat the construction. If |1 — x| <1,

define -
X = Z(li)(—l)k(l 0k, >0
k=0

For k > 1, the sign of (,tc)(—l)k is always negative, and Y po; (,tc)(—l)k =—1.
It follows that the series for x’ above is a norm-limit of polynomials in x with
no constant term. Also, 1 —x' = Y 22, (,’C) (=1)k(1 — x)*, which is a convex
combination in Ball(41). So x’ € F4.

Using the Cauchy product formula in Banach algebras in a standard way, one
deduces that (x!/")" = x for any positive integer 7. |

From [Esterle 1978, Proposition 2.4], if x € §4 then we also have (x)" = x!" for
t € [0, 1] and any real r, and that if ax, — a, where a € A and (x,) is a sequence
with ||x, — 1|| < 1, then ax’, — a with n for all real .

If A is a unital Banach algebra then we define the §-transform to be §(x) =
x(14+x)"!=1—(1+4x)"! for x € vy. Then F(x) € ba(x). The inverse transform
takes y to y(1 —y)~L.

Lemma 3.4. If A is an approximately unital Banach algebra then §(t4) C S4.

Proof. This is because by a result of Stampfli and Williams [1968, Lemma 1],
N=—x@+0)7 =0+ =d™" <1,

where d is the distance from —1 to the numerical range of x. O

If A is also an operator algebra then we have shown elsewhere [Blecher and
Read 2014, Lemma 2.5] that the range of the §-transform is exactly the set of strict
contractions in %S 4.

Proposition 3.5. If A is an approximately unital Banach algebra then RTF 4 = t4.
Proof. As in [Blecher and Read 2013a, Theorem 3.3], it follows that if x € t4 then

x =1lim, o+ (1/8)tx (1 +tx)". By Lemma 3.4, tx(1 +tx)"! € F4. So RT3y is
dense in t4. O
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In the following results we will use the fact that if A is an approximately unital
Banach algebra, then the “regular representation” A — B(A) is isometric. Thus we
can view an accretive x € A and its principal roots as operators in B(A). These are
sectorial of angle /2, and so we can use the theory of roots (fractional powers)
from, e.g., [Haase 2006, Section 3.1] or [Li et al. 2003; Sz.-Nagy et al. 2010].
Basic properties of such (principal) powers include: x*x! = x*t, (cx)’ = ¢! x*
for positive scalars ¢, s,¢, and t — x! is continuous. See also, for example, [ Yosida
1965, Chapter IX, Section 11], [Blecher 2015], [Blecher and Read 2014, Lemma
1.1(1)] or [Esterle 1978, p. 64]. Also x! = lim,_, ¢+ (x + €1)’ for z > 0, and the
latter can be taken to be with respect to the usual Riesz functional calculus (see
[Haase 2006, Proposition 3.1.9]). Principal n-th roots of accretive elements are
unique for any positive integer n (see [Li et al. 2003]).

Remark. Itis easy to see from the last fact that the definitions of x’ given in [Haase
2006] and [Li et al. 2003, Theorem 1.2] coincide. A similar argument shows that if
X € §4 then the definitions of x? given in [Haase 2006] and Proposition 3.3 coincide,
if # > 0. Indeed for the latter we may assume that 0 < ¢ < 1 and work in B(A)
as above (and we may assume A unital). Then the two definitions of y’ coincide
if y =(1/(14+¢€))(x + €I), since both equal the 7-th power of y as given by the
Riesz functional calculus. However Y32, (F)(—1)*(1 — y)* converges uniformly
0 52 (1) (=¥ (1 —x)*, as € — 0T, since the norm of the difference of these
two series is dominated by

?(2)(—1)"(%%—1)”(1 —0f = 5 0.

See [Blecher 2015] for more details concerning the last remark, and also for a
better estimate in the next result in the operator algebra case.

Lemma 3.6. Let A be an approximately unital Banach algebra. If || x| < 1 and

X € ty, then
2m? b4 2m
/) < —Sm(_) <

(m—1m m

for m > 2. More generally,

2 sin(orr)
——|lx|*

ma(l—a)

if 0 <a < 1andx €ry. If Ais also an operator algebra then one may remove the
2s in these estimates.

¥ <

Proof. This follows from the well-known A. V. Balakrishnan representation of

powers,
sin(a oo
x% = (o7) f Yo+ x)"xde
Y 0
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(see, e.g., [Haase 2006]). We use the simple fact that ||(t + x)~!|| < 1/¢ for
accretive x and ¢ > 0, and so

et =[] = ()] =2

and is even less than or equal to 1 in the operator algebra case by the observation
after Lemma 3.4. Then the norm of x% is dominated by

2 sin(ar) (/1 @1 dr + /Oo t“_lldt) _ 2sin(an)
0 1

7 t - ra(l—a)
The rest is clear from this. O

We will sometimes use the fact from [Li et al. 2003, Corollary 1.3] that the n-th
root function is continuous on t4.

Lemma 3.7. There is a nonnegative sequence (cp) in co such that for any unital
Banach algebra A, and x € §4 or x € Ball(A) Nty4, we have ||x1/"x —x|| < ¢y for
alln e N.

Proof. We follow the proof of [Blecher and Read 2013a, Theorem 3.1], taking
R = 3 there. This is based on the Banach algebra construction from [Li et al. 2003],
so it will be valid in the present generality. There an estimate ||x1/ "Xx—x|| < Dcy
is given, for a nonnegative sequence (c,) in co. We need to know that D does not
depend on A or x. This follows if [|A(A1 — x)~!| is bounded independently of
A or x on the curve I' there. On the piece of the curve I'z, this follows by using
[Stampfli and Williams 1968, Lemma 1] that ||(A1 —x)~!|| <d !, where d is the
distance from A to W(x). On the other part of I', we have A = re’? for 0 <t < R,
and for a fixed 6 with w/2 < |0| < w. However, by the same result of Stampfli
and Williams, ||(A1 —x)~|| <d~1if A # 0, where d is the distance from A to the
y-axis. Thus the quantity will be bounded since |A|/d = csc(60 — 7 /2). |

The following (essentially from [Macaev and Palant 1962]) is a related result:

Lemma 3.8. Let A be a unital Banach algebra. If o € (0, 1) then there exists a
constant K such that ifa, b € t4, and ab = ba, then ||(a* —b%)c|| < K||(a—b)c||“
for any ¢ € Ball(A).

Proof. By the Balakrishnan representation in the proof of Lemma 3.6, if ¢ € Ball(A4),
we have

sin(

(@* —b%c =

am) [ 44 -1, -1
- /0 1“7 +a)la— (@ +b)" b)cdt.

By the inequality ||(z + x)~'|| < 1/¢ for accretive x, we have

[(t+a)a— @ +b)"'b)e| = |t +a) (¢ +b)" (@a—b)ic| < li(a—Db)c].
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and so as in the proof of Lemma 3.6,
dominated by

JoZ N +a)ta— e+ by h)e e s

8 o0 4 Sa—1
4/ z“—ldz+/ 12 dt||(a—b)c| = 8% + °—||(a —b)c|
0 s o -«

for any § > 0. We may now set 6 = ||(a — b)c|| to obtain our inequality. O
Corollary 3.9. An approximately unital Banach algebra with a left bai (resp. right
bai, bai) in v4 has a left bai (resp. right bai, bai) in §4.

Proof. If (e;) is a left bai in t4, let by = §(e;) € Fa. If a € A then

b,l/"a = btl/”(a —eza) + (btl/"e, —ey)a+eza.

The first term here converges to O with ¢ since (b,1 / ") isin §4, and hence is bounded.
Similarly, the middle term can be seen to converge to 0 with n by rewriting it as
(btl/”b, —b;)(1 +e;)a. Working in A! and applying Lemma 3.7, we have

15" by —be) (1 +eall < calll +ecllllall < Ken — 0

for a constant K independent of ¢. The third term converges to a with ¢. So (b,1 / ™

is a left bai. Similarly in the right and two-sided cases. O

Remark. If the bai in the last result is sequential, then so is the one constructed
in §4.

Corollary 3.10. If A is an approximately unital Banach algebra then t4 is closed
under n-th roots for any positive integer n.

Proof. From the proof of Proposition 3.5, we know that if x € t4q, then x =
lim, o+ (1/8)tx(1 4+ tx)~ and tx(1 + tx)~! € F4. Thus by [Li et al. 2003,
Corollary 1.3], we have that x” =lim,_, o+ 1/¢" (tx (1 +tx)‘ﬂr 0<r<1.By
Proposition 3.3, the latter powers are in R*F4, so that x” € RTF4 = t4. O

Proposition 3.11. If A is an approximately unital Banach algebra and x € t4 then
ba(x) = ba(F(x)), and so xA = F(x)A.

Proof. This follows from the elementary spectral theory of unital Banach algebras,
applied in A!. Below we compute the spectrum in ba(x)!. Since 0 ¢ Sp(1 + x), we
have (1 +x)~! e ba(l, x), so that F(x) € ba(x). Any character of ba(x)! applied
to §(x) gives a number of the form z = w(1 + w)~! in the open unit disk, and in
fact also inside the circle |z — %| < % if Re(w) > 0. Since 1 ¢ Sp(F(x)), we have
(1=3F(x))~ L eba(l, F(x)), so that x = —F(x)(1 —F(x))~! € ba(F(x)). The rest

is clear. O

Lemma 3.12. If p is an idempotent in a unital Banach algebra A then p € §4 if
and only if p € v4. If p is an idempotent in A** for an approximately unital Banach
algebra A then p € §y»= if and only if p € tq*=.
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Proof. The first follows from the well-known Lumer—Phillips characterization of
accretiveness in terms of ||exp(—tp)| <1 forall ¢ > 0 (see, e.g., [Bonsall and Duncan
1971, Theorem 6, p. 30]). If p is idempotent then exp(—tp) = 1 — (1 —e~ ") p, and
if this is contractive for all # > 0 then |1 — p|| < 1. For the second, work in (A41)**
and use facts above. |

However, one cannot say that the idempotents in the last result are also in %% A,
as is the case for operator algebras. The following examples illustrate this, and
other “bad behavior” not seen in the class of operator algebras.

Example 3.13. Let Zi be identified with the /!-semigroup algebra of the abelian
semigroup {1, a, b, c} with relations making a, b, ¢ idempotent, and ab = ac =
bc=c. Thenp=1—a,q=1-b GSA\%SA C ty4. For such p, set x = %p € %SA,
and notice that x/” = 271/7 p which is not always in %&4 (if it were, then we get
the contradiction that its limit p is in %3 4). So we see that %3 4 1s not closed under
n-th roots. We also see that if x € %S 4 then x A need not have a left cai (even if
A is commutative). It does have a left bai of norm at most 2, and indeed a left bai
in §4 by Corollary 3.18. L

In this example, pg = p2q2 = 1—a—b+c ¢ t4 (as can be seen by considering
states f(aa 4+ Bb+yc+Al) =yz+A+a+f for|z| <1). So x'/2y1/2 need
not be in t4 even if x, y € %S 4. This shows that the main results about roots in
[Bearden et al. 2014] fail in more general M -approximately unital Arens regular
Banach algebras. Note too that if J; = pA and J, =gA, then J1NJ, =Cd =dA,
where d = pgq, but d A has no identity or bai in t4. This shows that, unlike in the
operator algebra case, finite intersections of extremely nice closed ideals need not
be “nice” in the sense of the theory developed in this paper. See, however, Section 8
for a context in which finite intersections will behave well.

Example 3.14. In the Banach algebra A4 = [ (Z,) with convolution multiplication,
we know that p = (%, %) is a contractive idempotent in %S 4 with numerical range
B (%, %) The states in this example are the functionals (a, b) +— a + bz for |z| < 1.
All of the principal n-th roots of p obviously have the same numerical range. So the
numerical range of pl/ " does not “converge” to the x-axis. Thus we cannot expect
statements in the Blecher—Read papers involving “near positivity” to generalize
(unless A is a Hermitian Banach *-algebra satisfying the conditions in the latter part
of [Li et al. 2003], in which case the numerical ranges of x1/7 do “converge” to the
x-axis if x is accretive). Note also in this example that p is not an M -projection in
A. Thus we cannot expect support projections to be associated with M -projections
in general. In this example, it is easy to see that x = (a,b) € t4 if and only if
|b| <Rea, whereas x € %SA if and only if |b|? — || < Rea — |a|?. In this example,
the Cayley transform does not take t4 into the set of contractions, so that x (1 +x) ™!
need not be in %&4.
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This example also serves to show that if B is an approximately unital closed
ideal in a commutative finite-dimensional approximately unital Banach algebra,
then tp and §p need not be related to t4 and T4, unlike the setting of operator
algebras (where there is a very strong relationship between these, even in the case
that B is a subalgebra). Indeed let B = C(1, 1) inside the last example. Then we
have 1 = (%, %), and tp = {(a,a) :Rea >0} and §p = {(a,a) ‘a € B(%, %)}

For a state ¢ on an operator algebra A and x € §y4, it is the case that ¢(s(x)) =0
if and only if ¢(x) = 0 if and only if ¢ € ba(x)L. Here s(x) is the support projection
of x from [Blecher and Read 2011]. In Example 3.14, if x = (% ’5) and ¢((a, b)) =
a+ib then x € Ker ¢ but xZ and s(x) = 1 are not in Ker ¢. Thus much of the theory
of “strictly real positive” elements from [loc. cit.] and its sequels breaks down.

A slight variant of this example is the same algebra, but with norm |||(a, b)||| =
|a| +2|b|. Here J = (D(%, %) is an ideal equal to x A for x € §4, but this ideal has
no cai.

Example 3.15. The unital Banach algebra /!(N), with convolution product, is
easily seen to be equal to ba(x) where x = 1 + %52 € 4. However [1(N) is not
Arens regular; thus its second dual is not commutative in either one of the Arens
products [Palmer 1994, §1.4.9]. Thus ba(x)** need not be commutative if x € F4.
In this example, it is easy to compute §4 and t4. C. A. Bearden has verified that in
this example, unlike the operator algebra case [Bearden et al. 2014], (xl/ ") need
not increase in the “real positive ordering” with n for x € %3 4.

Example 3.16. The approximately unital Banach algebra 4 = L!(R) with con-
volution product has multiplier unitization A' = A @' C. This can be seen from
Wendel’s result that the measure algebra M (R) embeds canonically in B(L!(R))
isometrically [Dales 2000], so that L!(R)! can be identified with L!(R) + C&p,
where &g is the point mass at 0. Thus S(A) corresponds to the set of f € L°°(R)
of norm 1. It follows immediately that §4 = t4 = (0) in this case. This algebra
is not Arens regular. Note that any norm-1 functional on L!(R) extends to a state
on L1(R)! clearly. However, there are many norm-1 functions g € L>°(R) with
1 #lim,_, o+ [, ge; for the usual positive cai ¢ = (e;) of L'(R) (the one in the
remark after Lemma 2.1), for example, if g takes only negative values. This shows
that Lemma 2.2 fails for more general Banach algebras. For this same cai ¢, we
remark that S.(A) corresponds to the set of f € Ball(L°°(R)) for which the mean
value of f at 0 (this mean value is the limit with n of the (integral) average of f
over the interval of width 1/n centered at 0) exists and equals 1. From this it is
easy to see that t§ = (0) and . = A™.

Because of the above examples and the considerations mentioned after Lemma 2.3
above, the following result cannot be improved, even for M -approximately unital
Arens regular Banach algebras:
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Proposition 3.17. If x € t4 then ba(x) has a bai in § 4, and hence any weak™ limit
point of this bai is a mixed identity residing in §g++. Indeed (xl/”) is a bai for
ba(x) in ta, and (F(x)Y") is a bai for ba(x) in Fa.

Proof. Note that x1/"x — x by Lemma 3.7. That (x/) is bounded follows from
Lemma 3.6. Thus (x!/?) is a bai for ba(x) in t4.

In the case that x € §4, we have (xl/”) is in §4 (using Proposition 3.3). We
remark that the proof of [Blecher and Read 2011, Lemma 2.1] (see also [Blecher
et al. 2008]) displays a different, and often useful, bai in §4. In the general case,
note that if x € t4 then ba(x) = ba(F(x)) by Proposition 3.11, and so (F(x)!/") is
a bai for ba(x). |

For an approximately unital Banach algebra A and x € ty4, by Proposition 3.11
we have ba(x) = ba(F(x)) and xA = F(x)A. If A is not Arens regular then
Example 3.15 shows that ba(x) need not be Arens regular if x € §4. (However, it
is Arens semiregular as is any commutative Banach algebra [Palmer 1994].) Thus
ba(x)** need not be commutative. We write s(x) for the weak* Banach limit of
(x1/7) in A**. That is s(x)(f) = LIM,, f(x'/?) for f € A*, where LIM is a
Banach limit. It is easy to see that xs(x) = s(x)x = x, by applying these to f € A*.
Hence s(x) is a mixed identity of ba(x)** and is idempotent. By the Hahn—Banach
theorem, it is easy to see that s(x) € conv({x1/" :n € N})W*. By Corollary 3.10
and Lemma 3.12, and the fact below Lemma 2.5 that §4++ is weak* closed, we see
that s(x) resides in Fq+=. If ba(x) is Arens regular then s(x) will be the identity
of ba(x)**. Therefore in this case, or more generally if ba(x)** has a unique left
identity in the second Arens product, s(x) is also the weak* limit of Fx)V/m).
Indeed in this case we can set s(x) to be the weak* limit of any bai for ba(x). This
is the case, for example, if ba(x) is M -approximately unital (that is, if it is an
M -ideal in ba(x)!), by Lemma 2.5.

Remark. Note thatif x € t4 then ba(x) is M -approximately unital if A is M-approx-
imately unital and ba(x)! C A! isometrically (by the argument in Proposition 3.1).
It is claimed in [Smith 1979] that the support projection of an M -ideal in a com-
mutative Banach algebra is central. We did not follow this proof (and its author
confirmed that at present there seemed to him to be a gap), but this would imply
that if ba(x) is M -approximately unital then s(x) is central in ba(x)**, and thus is
actually a (unique) two-sided identity for ba(x)**.

We call s(x) above a support idempotent of x, or a (left) support idempotent
of xA (or a (right) support idempotent of Ax). The reason for this name is the
following result.

Corollary 3.18. If A is an approximately unital Banach algebra, and x € t4 then
XA has a left bai in 4 and x € xA =s(x)A** N A and (x A)*L = s(x) A**. (These
products are with respect to the second Arens product.)
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Proof. Indeed if J = xA then J = F(x)4 by Proposition 3.5. So we may assume
that x € §4. Since xA contains x ba(x), which in turn contains (actually, is equal
to) ba(x), it contains x and x'/. So (x!/") is a left bai in F4 for xA. We have
s(x) e J&L, and J - cs(x)A** c JLL since J 1 is aright ideal in A**. Hence
J+ = s(x)A**, so that J = s(x)A** N A. O

As in [Blecher and Read 2011, Lemma 2.10] we have:

Corollary 3.19. If A is an approximately unital Banach algebra, and x,y € t4,
then xA C yA if and only if s(y)s(x) = s(x). In this case, xA = A if and only
if s(x) is a left identity for A**. (These products are with respect to the second
Arens product.)

Proof. This is essentially just as in the proof of Lemma 2.10 (and Corollary 2.6)
of [loc. cit.]. For example, if xA C yA then, since x € xA, we have s(y)x = x.
Hence s(y)z = z for all z € ba(x), and so s(y)s(x) = s(x), since as we said earlier
s(x) e mw*. d

As in [loc. cit., Corollary 2.7] we have:

Corollary 3.20. Suppose that A is a closed approximately unital subalgebra of
an approximately unital Banach algebra B, and that t4 C vp. If x € 4, then the
support projection of x computed in A** is the same, via the canonical embedding
A** =~ AL © B**, as the support projection of x computed in B**.

We recall that x is pseudo-invertible in A if there exists y € A with xyx = x.
The following result (and several of its corollaries below) should be compared with
the C*-algebraic version of the result due to Harte and Mbekhta [1992; 1993], and
to the earlier version of the result in the operator algebra case (see particularly
[Blecher and Read 2011, Section 3; 2014, Subsection 2.4]).

Theorem 3.21. Let A be an approximately unital Banach algebra A, and x € t4.
The following are equivalent:

1) s(x) € A.
(i1) xA is closed.
(ii1) Ax is closed.
(iv) x is pseudo-invertible in A.
(v) x is invertible in ba(x).
Moreover, these conditions imply that
(vi) 0 is isolated in, or absent from, Sp 4(x).

Finally, if ba(x) is semisimple then (1)—(vi) are equivalent.
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Proof. We recall that (x!/™),,cy is a bai for ba(x), by Proposition 3.17, and it has
weak* limit point s(x) € ba(x)+Lt C A**.

(i1) = (i): Suppose x A is closed. Then

x1/2 ¢ ba(x) C xba(x) C x4 = xA,

1/2 1/2

sox/*=xy forsome y € A. Thusif z=x"/“y € A then x = x1/2xy =xz,and
so a = az for every a € ba(x). Now s(x)z = z since x!/2 € ba(x), for example.

On the other hand, s(x)z = s(x) since x'/"z = x1/7 5o that

(s(x)2)(f)= fs(x)(z) =LIM, f(x'/"2)=LIM,, f(x"/")=5(x)(f), [feA*

1/n

Thus s(x) = z € A. (Of course, in this case x'/" — s(x) in norm.)

(i) = (iv): Recall s(x) is a left identity of ba(x)** in the second Arens product,
and if (i) holds, it is an identity, and ba(x) is unital. This implies, by the Neumann
lemma, that x is invertible in ba(x), and hence that x is pseudo-invertible in A.

(iv) = (ii): Item (iv) implies that x4 = xyA is closed since xy is idempotent.

That (iii) is equivalent to the others follows from (ii) and the symmetry in (i) or
(iv). That (v) is equivalent to (i) is now obvious from the above.

For the equivalences with (vi), by the definition of spectrum, and because of
the form of (v), we may assume A is unital. That (iv) implies (vi) may be proved
similarly to the analogous argument in [Blecher and Read 2011, Theorem 3.2], but
replacing B(H ) and B(K) with B(A) and B(xA). We can assume that 0 € Sp,4(x),
so that x is not invertible. Then xA # A, for if xA = A then s(x) is a left identity
for A. It is also a right identity since if (e;) is a cai for A then s(x)e; = e; — s(x).
Then the inverse of x in ba(x) is an inverse in A, contradicting the fact that x is
not invertible in A'. It may be simpler to prove the equivalent fact that 0 is isolated
in the spectrum of x1/2, By the argument in [loc. cit., Theorem 3.2] it is enough to
prove that 0 is isolated in the spectrum of L in B(A), where L is left multiplication
by x1/2. We note that

xV2ACcxAcCeAC xl/zA,

where ¢ = x1/2 y = s(x) and y is the pseudo-inverse of x. So these subspaces
coincide; call this space K. It follows that K is an invariant subspace for L, indeed
R = L is continuous, surjective and one-to-one (since x12x1/2q =0 implies
1/2 i5 a limit of polynomials in x with no constant term).
Thus 0 ¢ Spp(k)(R); hence R + z/ is invertible for z in a small disk centered at 0.
Since A =eAP(1—e)A,itiseasytoarguethat L+zlg4=(L+zI)e®z(l—e)is
invertible in B(A) for such z if z # 0. So 0 is isolated in the spectrum of L in B(A).

The last assertion follows just as in [loc. cit., Theorem 3.2]. O

that x1/2a = 0, since x
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Remark. We have been informed by Matthias Neufang that he and M. Mbekhta
have also generalized the analogous result from [Blecher and Read 2011; 2013b],
or a variant of it, to the class of Banach algebras that are ideals in their bidual.

The next result is an analogue of [Blecher and Read 2011, Theorem 2.12]:

Proposition 3.22. If A is an approximately unital Banach algebra, a subalgebra
of a unital Banach algebra B with t4 C tp, and x € t4, then x is invertible in B if
and only if 1p € A and x is invertible in A, and if and only if ba(x) contains 1p;
and in this case s(x) = 1p.

Proof. 1t is clear by the Neumann lemma that if ba(x) contains 1p then x is
invertible in ba(x), and hence in A. Conversely, if x is invertible in B (or in A) then
by the equivalences (i)—(iv) proved in the last theorem, we have s(x) € B, and this is
the identity of ba(x). If xy = 1p,then 1g = xy = s(x)xy =s(x) €eba(x) C 4. O

Corollary 3.23. Let A be an approximately unital Banach algebra. A closed right
ideal J of A is of the form xA for some x € vy if and only if J = qA for an
idempotent q € 4.

Proof. If x A is closed for a nonzero x € t4 then by Theorem 3.21, ¢ = s(x) € §4.
Hence it is easy to see that xA = gA. The other direction is trivial. O

Corollary 3.24. If a nonunital approximately unital Banach algebra A contains a
nonzero x € t4 with x A closed, then A contains a nontrivial idempotent in §4.

Proof. By the above, xA = gA for a nontrivial idempotent g in F4. O

Corollary 3.25. If an approximately unital Banach algebra A has no left identity,
then xA # A for all x € vy.

Remark. If A4 is a Banach algebra such that %% 4 18 closed under n-th roots then
one may also generalize other parts of the theory in [Blecher and Read 2011]. For
example, in this case, if x € §4 then the support projection s(x) is a bicontractive
projection, and ba(x) has a cai in %SA.

4. One-sided ideals and hereditary subalgebras

At the outset it should be said there seems to be no completely satisfactory theory
of hereditary subalgebras. This can already be seen in finite-dimensional unital
examples where one may have pA = gA for projections p, q € §4, but no good
relation between pAp and gAq. For example, one could take the opposite algebra
to the one in Example 4.3. Another example arises when one considers various
mixed identities in the second dual A**, with the second Arens product, inside
(A1)**. In this section we will investigate what initial parts of the theory do work.
We shall see that things work considerably better if A is separable.
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We define an inner ideal in A to be a closed subalgebra D with DAD C D. To
see what kinds of results one might hope for, note that in the unital example in the
last paragraph, given an idempotent p € A, the right ideal J = pA contains a unital
inner ideal D = pAp of A. Conversely, if D = pAp then J = DA = pA is aright
ideal with a left identity.

In nonunital examples things become more complicated. One may define a
hereditary subalgebra to be an inner ideal D of A which has a bai. This then induces
aright ideal J/ = DA with a left bai, and a left ideal K = A D with a right bai. We
shall call these the induced one-sided ideals. We have JK = J N K = D just as in
[Blecher et al. 2008, Corollary 2.6]. However, unlike the previous paragraph, without
further conditions one cannot in general obtain a hereditary subalgebra from a right
ideal with a left bai. The following example illustrates some of what can go wrong.

Example 4.1. One of the main results in [Blecher et al. 2008] is that if J is a closed
right ideal with a left cai in an operator algebra A4, then there exists an associated
hereditary subalgebra D of A, in particular, a closed approximately unital subalgebra
D C J with J = DA. This is false without further conditions in more general
Banach algebras. Indeed, suppose that J/ = A is a separable Banach algebra with
a sequential left cai, but no commuting bounded left approximate identity. See
[Dixon 1978] for such an example. By way of contradiction, suppose that there is a
closed subalgebra D C J with a bai, such that J/ = DA. By [Sinclair 1978], D has
a commuting bounded approximate identity, and this will be a commuting bounded
left approximate identity for J, a contradiction.

This example also shows that if J is a closed right ideal with a left cai, we cannot
rechoose another left cai (e;) with ege; — e with ¢ for all s. This is critical in the
operator algebra theory in, e.g., [Blecher et al. 2008, Section 2].

In order to obtain a working theory, we now impose the condition that the bais
considered are in t4. Thus we define a right §-ideal (resp. left §-ideal) in an
approximately unital Banach algebra A to be a closed right (resp. left) ideal with a
left (resp. right) bai in §4 (or equivalently, by Corollary 3.9, in t4). Henceforth in
this section, by a hereditary subalgebra (HSA) of A we will mean an inner ideal D
with a two-sided bai in §4 (or equivalently, by Corollary 3.9, in t4). Perhaps these
should be called §-HSAs to avoid confusion with the notation in [Blecher et al.
2008; Blecher and Read 2011] where one uses cais instead of bais, but for brevity
we shall use the shorter term. Also it is shown in [Blecher 2015] that in an operator
algebra A these two notions coincide, and that right §-ideals in A are just the
r-ideals of [Blecher et al. 2008] (and similarly in the left case).

Note that an HSA D induces a pair of right and left §-ideals J = DA and
K = AD. As we pointed out a few paragraphs back, it is not clear that the converse
holds, namely that every right ;§-ideal comes from an HSA in this way. In fact, the
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main results of this section are, firstly, that if A is separable then this is true, and
indeed all HSAs and §-ideals are of the form in the next lemma. Secondly, we shall
prove (see Corollaries 4.6 and 4.11) that if A is not necessarily separable then the
HSAs and §-ideals in A are just the closures of increasing unions of ones of the
form in this lemma:

Lemma 4.2. If A is an approximately unital Banach algebra, and z € Ty, set
J=zA, D =zAz,and K = Az. Then D is an HSA in A and J and K are the
induced right and left §-ideals mentioned above.

Proof. By Cohen factorization, D = D*c JK cJNK,andif x € J N K then
x =lim, zY/"xzY/" e D. Soze D =JK =JNK. Also J = pA*™ N A by
Corollary 3.18,and D = pA**p N A is an HSA in A, and K = A**p N A, where
p =s(z). To see this, note that pz =z =zp, sothat K C A**pNA. Ifae A** pNA,
then az!/" has weak* limit point ap = a. Hence a convex combination converges
in norm, so that @ € K, and then K = A™* p N A. A similar argument works for D.

Finally, DA = J, since zA C DA C J, and similarly AD = K. O

Remark. (1) In general D and K are determined by the particular z used above,

and not by J alone.
%

(2) We note that if z € §4 then with the notation in the last proof, K 1= A*—*pW
and D = pA** pw*. (The weak* closure here is not necessary if A is Arens
regular.) Indeed K1+ C A*—*pw*. Also p eba(z)t+ c D+ ¢ K1+, 5o that
A**p c K+ Thus K1+ = 4% p™™ . It is well known that J + K is closed,
which implies, as in the proof of [Blecher and Zarikian 2006, Lemma 5.29],
that (J N K)* = JL + KL, sothat DL+ = JLLn kL = paep™™,

Example 4.3. The following example illustrates some other issues that arise for left
ideals in general Banach algebras, which obstruct following the r-ideal and hereditary
subalgebra theory of operator algebras [Blecher et al. 2008; Blecher and Read 2011].
First, for E C §4, it may be that E A has no left cai. Even if E has two elements
this may fail, and, in this case, EA may not even equal a A4 for any a € A. Thus, in
general, the class of right §-ideals in noncommutative algebras is not closed under
either finite sums or finite intersections (see Example 3.13). Also, it need not be the
case that EAFE has abai if E C§4. A simple three-dimensional example illustrating
all of these points is the set of lower triangular 2 x 2 matrices with its norm as an

operator on Eé (see [Smith and Ward 1978, Example 4.1]), and £ = {E; &+ E»1}.

Theorem 4.4. Suppose that J is a right §-ideal in an approximately unital Ba-
nach algebra A. For every compact subset K C J, there exists z € J N §y with
K CzJ C:zA

Proof. We may assume that A is unital, and follow the idea in the proof of Cohen’s
factorization theorem (see, e.g., [Pedersen 1998, Theorem 4.1] or [Dales 2000]).
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For any f1, f2,...€ J NF4, define z, = > p 4 27k f, +27" € J + C1. We have
n

> 2ka- fo)

k=1

and so by the Neumann lemma, z,;! € J + Cl and ||z, !|| <2".

Let (e;) be a left cai for J in §4, set zo = 1, and choose € > 0. For each x € K,
we have lim; ||(1 —e;)z;; ! x|| = 0. Thus by the Arzela—Ascoli theorem, and passing
repeatedly to subnets, we can inductively choose a subsequence ( f;,) of (e;), and
use these to inductively define z; by the formula above, so that

n

< Zz—k =1-27",

k=1

11— znll =

max [ (1 — fu41)z, ' x| <27, n>0.
x€K

Setz = Z;il 2_kfk econv(e,) CJNFy. If x € K, set x, = Zn_lx. Then
-1 -1 —n—1,_—1 -1 _
[Xn+1=Xnll = 2551 Cn =z )z, X1 = 127"z (1= fug )z, x| 277

Hence w = lim,, x, exists and zw = x. Note also that

n
Ixn =Xl < Y o — x| < 2
k=1

so that ||w — x|| < 2e if one wishes for that (so that |[w| < ||x| + €). O

Remark. In the case of operator algebras, or in the commutative case considered
in Section 7, one can choose the z in the last result in conv(K), if K is, for example,
a finite set in J NF4. If A is noncommutative, this fails as we saw in Example 4.3.

Corollary 4.5. Let A be an approximately unital Banach algebra. The closed right
ideals with a countable left bai in t4 are precisely the “principal right ideals” z A
for some z € §4. Every separable right §-ideal is of this form.

Proof. The one direction is easy since (21/ ") is a left bai for zA (see the proof of
Corollary 3.18). Conversely, if (e;) is a countable left bai in t4 for right ideal J,
set K = {1/ney,} and apply Theorem 4.4.

For the last assertion, if {d,} is a countable dense set in a right §-ideal J, apply
Theorem 4.4, with K = {d,/(n||d||)}. There exists z € J N F4 with K C zA.
Hence J CzAC J. O

Corollary 4.6. The right §-ideals in an approximately unital Banach algebra A
are precisely the closures of increasing unions of closed right §-ideals of the form
zA for some z € F4.

Proof. Suppose that J is an arbitrary right §-ideal in 4. Let € > 0 be given (this is
not needed for the proof but will be useful elsewhere). Let E be the left bai in §4
considered as a set, and let A be the set of finite subsets of £ ordered by inclusion.
Define zg = x if G = {x} for x € E. For any two element set G = {x1, X2} in A,
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one can apply Theorem 4.4 to obtain an element zg € §4 with GA C zg A4, and,
moreover, such that x; = zgwy with ||wg — x| < € for each k, if one wishes for
that. For any three element set G = {x1, x2, x3} in A, we can similarly choose
zG € §4 with zgg A C zg A for all proper subsets H of G (and with the “moreover’
above too). Proceeding in this way, we can inductively choose for any n element
set G in A an element zg € §4 with zg A C zg A for all proper subsets H of G
(and, moreover, such that each such zg can be written as zgw for some w with
|w—zg || < €, if one wishes for that). Thus (zg A) is increasing (as sets) with
G e A, and | Jgep zgA=J.

Conversely, suppose that A is a directed set and that J = m where (J¢)ren
is an increasing net of subspaces of A, and J; = z;Aforz; € §4. Thusif 1 <t, then
Jt, C Jp,, so that s(z4,)zs, = 24, . Hence s(z;)x — x with ¢ for all x € J. Thus a
weak* limit point p of (s(z;))scA acts as a left identity for J, and hence is a left iden-
tity for J L. Thus J 1 = pA**. Since this left identity p is in the weak* closure of
the convex set §4 N J, the usual argument (see, e.g., p. 81 of [Blecher and Le Merdy
2004]) shows that J has a left bai in §4 N J. So J is a right §-ideal in A. O

’

Remark. (1) Note that (2(1; ") in the last proof is a left bai for the right ideal J
there. This net is indexed by n € N and G € A. To see this, suppose x € J is
given, and that ||zg,a — x|| <€, where a € A. If G; C G then zg, € zg A. By the
proof of Corollary 4.6, we can choose w with zg, = zgw and |jw|| < 3. Choose N
such that ¢, < ¢/3 for n > N, where ¢, is as in Lemma 3.7. Then by that result,

||zlG/nzG1 —zg, |l = ||zg;/nsz —zgw|| <3¢y <e. Thus
1 1 1 1
Iz "x—xl| <llzg]"x =z " zG all+z8 " 26 a—zG all +|1z6,a—x | < B+ al))e

for all G containing G, and n > N. So (zgn) is a left bai for J.

(2) If (zG)Gen is as above, it is tempting to define D = | J;cp 26 Azg. However,
we do not see that this can be adjusted to make it an HSA.

In the operator algebra case, most of the following result and its proof were first
in the preprint [Blecher and Read 2013b] (which, as we said on the first page, has
now morphed into several papers). We thank Charles Read for discussions on that
result in May 2013, and thank Garth Dales and Tomek Kania for conversations in
the same period on algebraically finitely generated ideals in Banach algebras, and in
particular, for drawing our attention to the results in [Sinclair and Tullo 1974] (these
will not be used in the present proof below, but were used in an earlier version).
We say that a right module Z over A is algebraically countably generated (resp.
algebraically finitely generated) over A if there exists a countable (resp. finite) set
{xr} in Z such that every z € Z may be written as a finite sum Y j_; xxay for
some ay € A.
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Corollary 4.7. Let A be an approximately unital Banach algebra. A right §-ideal J
in A is algebraically countably generated as a right module over A if and only if
J = qA for an idempotent q € §4. This is also equivalent to J being algebraically
countably generated as a right module over A'.

Proof. Let J be a right §-ideal which is algebraically countably generated over A
by elements x1, X2, ... in A. We can assume that || x| — 0, and so {xj : k € N}
is compact. By Theorem 4.4, there exists z € J such that {x;} C zA. Thus
xxACzA? =zAforallk,andso J CzAC J,and J = zA. By Corollary 3.23,
J = qA for an idempotent g € §4.

If J is algebraically countably generated over A! then by the above J = gA'.
Clearly g € A,andso J ={x € A:qx = x} = qA. |

Lemma 4.8. Let A be an approximately unital Banach algebra, with a closed
subalgebra D. If D has a bai from § 4, then for every compact subset K C D, there
isx € DNEFy suchthat K C xDx C xAx.

Proof. This can be done by adapting the proof of Theorem 4.4 as follows. We can
inductively choose a subsequence ( f) of the bai (e;) with

-1 -1 -2
max(|(1= o)z 'l + ez (L= fugn)]]) <272
for each n. Choose z as before. If x € K, set x, =z, !xz,;! € D. Then
-1 —1,y,—1 —1(y—1 -1
1Xn41 = Xnll < 1zppax =2, )z |+ M1z ez iy —x2, )]s

which is dominated by 2" ||z, x — z;7 'x|| + 2" ||xz, {; —xz; ']|. Again we
have ||Z;}r1x —z;7 x| < 27%"¢, and similarly ||xz;_i1_1 —xzy | <27%". So
|xne1 —Xn|| < @V +27)e < €/2"2. Thus w = lim, x, exists in D, and
zwz = limy, zy Xz, = x as desired. We also have ||w — x|| < 2¢ as before, if we
wish for this. O

Remark. The above, and the next couple of results, are closely related to the results
of Sinclair [1978], Esterle, and others on the Cohen factorization method, which
also shows there is a commuting cai or bai under certain hypotheses. However the
result above does not follow from Sinclair’s results, and the latter do not directly
connect to “positivity” in our sense.

Applying Lemma 4.8 to a suitable scaling of a countable bai in §4, as in the
proof of Corollary 4.5, we obtain:

Theorem 4.9. Let A be an approximately unital Banach algebra, and let D be an
inner ideal in A. Then D has a countable bai from § 4 (or equivalently, from t4) if
and only if there exists an element z € D N4 with D = zAz. Thus such D has a
countable commuting bai from §4. Any separable inner ideal in A with a bai from
t4 is of this form.
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The following is an Aarnes—Kadison-type theorem for Banach algebras. For
another result of this type, see [Sinclair 1978].

Corollary 4.10. If A is a subalgebra of a unital Banach algebra B, and we set
tq = A Ntp, then the following are equivalent:

(1) A has a sequential (commuting) bai from t4.
(ii) There exists an x € tq4 with A = xAx.
(iii) There exists an x € tq with A = xA = Ax.
(iv) There exists an x € tq with s(x), a mixed identity for A**.

Any separable Banach algebra with a bai from t4 satisfies all of the above, as
does any M -approximately unital Banach algebra which is separable or has a
countable bai.

This is clear from earlier results. Indeed the last theorem gives the equivalence
of (i) and (ii) above and the separability assertion, and that (ii) implies (iii) follows
from Lemma 4.2, for example. Also (iii) implies (i) by considering (xl/ ™), and (iii)
is equivalent to (iv) by Corollary 3.19. Again, t4 can be replaced by §4 = ANJp
throughout this result, or in any of the items (i) to (iv).

As a consequence of the last results, if D is an HSA in an approximately unital
Banach algebra A, and if D has a countable bai from §4, then D is of the form
in Lemma 4.2. We leave it to the reader to check that doing an “HSA variant” of
the proof of Corollary 4.6, using Lemma 4.8 and mixed identities rather than left
identities, yields:

Corollary 4.11. The HSAs in an approximately unital Banach algebra A are exactly
the closures of increasing unions of HSAs of the form z Az for z € Fa.

Proof. We just sketch the more difficult direction of this since this is so close to
the proof of Corollary 4.6. Indeed we proceed as in the proof of Corollary 4.6,
taking E to be the bai (e;). Define A and zg € D NFy for G € A as before,
but using Lemma 4.8. Note that each e; is in some zg Azg, which in turn is
contained in the closed inner ideal D’ = | Jgcp 26 Az Since for x € D, we have
x =lim; e;xe; € D' C D, the result is now clear. O

Remark. As in the remark after Corollary 4.6, if one takes care with the choice of
the z in the last corollary, the n-th roots of these z can be a bai for the HSA.

5. Better cai for M -approximately unital algebras

In this section we consider the better behaved class of M -approximately unital
Banach algebras. We will use the fact that M -ideals in Banach spaces are strongly
proximinal. (Actually the only “proximinality-type” condition we use here is “the
strongly proximinal at 1 property” mentioned in the introduction.)
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Lemma 5.1. Let X be a Banach space, and suppose that J is an M -ideal in X,
andx € X,y € J,and € > 0, with | x — y| <d(x, J) + €. Then there existsaz € J
with ||y —z|| < 3€ and ||x —z|| = d(x, J).

Proof. This follows from the proof of [Harmand et al. 1993, Proposition II.1.1]. [

Theorem 5.2. Let A be an M -approximately unital Banach algebra. Then §4 is
weak™* dense in §ax+, and t4 is weak™* dense in vqx=. Thus A has a cai in %SA-

Proof. This is easy if A is unital, so we will focus on the nonunital case. Suppose
that n € A** with |1 —n]|| < 1. Suppose that (x;) is a bounded net in A with weak*
limit 7 in A**, so that 1 — x; — 1 —n weak* in (4!)**. By Lemma 1.1, for any
n € N, there exists a #, such that for every t > ¢,

1
%.
For every ¢t > t,, choose such a y}! e conv{x; : j >t} with |[1—y}| <14+1/n. Ift
does not dominate 7y, define y;' =y . So for all 7, we have |1 —y}|| <1+ 1/n.
Writing (n,¢) as i, we may view (y}) as a net indexed by i, with ||[1—y}| — 1.
Given € > 0 and ¢ € A*, there exists a 71 such that |p(x;) —n(@)| < € forall £ > 1y.
Hence |¢(y}) —n(¢)| <€ forallt > t; and all n. Thus y} — n weak* with ¢. By
Lemma 5.1, since d(1, A) = 1, we can choose w} € A with |w} — y}'|| <3/n and
[1—w}| = 1. Clearly w} — n weak*.

That t4 is weak™ dense in t4+= follows from this, and the idea in Proposition 3.5.
We omit the details, since this also follows from Propositions 2.11 and 6.2.

Next, let e be the identity of A**. By Lemma 2.4, we have that e € %S A
Suppose that (z;) is a net in %S 4 with weak™ limit e in A**. Standard arguments
(see, e.g., [Dales 2000, Proposition 2.9.16]) show that convex combinations w; of
the z; have the property that aw; and wya converge weakly to a for all @ € A. The
usual argument (see, e.g., the proof of [Blecher et al. 2008, Theorem 6.1]) shows
that further convex combinations are a cai in %S 4. O

inf{||1—y|| 1y €convix; i j > t}} <1+

Remark. For the first statements of Theorem 5.2, we do not need the full strength
of the “M -approximately unital” condition, just strong proximinality at 1. For
the existence of a cai in %&4, the argument only uses strong proximinality at 1
and |1 —2e|| < 1. Similarly, the existence of a bai in §4 will follow from strong
proximinality at 1 and |1l —e|| < 1.

Applied to operator algebras, the latter gives short proofs of a recent theorem
of Read [2011] (see also [Blecher 2013]), as well as [Blecher and Read 2011,
Lemma 8.1; 2013a, Theorem 3.3]. (We remark though that the proof of Read’s
theorem in [Blecher 2013] does contain useful extra information that does not seem
to follow from the methods of the present paper, as is pointed out, for example, in
Remark 2 after Theorem 2.1 in [Blecher and Read 2014].) Several other results
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from [Blecher and Read 2011] now follow from the last result, and with otherwise
unchanged proofs, for M -approximately unital Banach algebras. For example:

Corollary 5.3 (cf. [Blecher and Read 2011, Corollary 1.5; Smith and Ward 1979,
Theorem 2.8]). If J is a closed two-sided ideal in a unital Arens regular Banach
algebra A, and if J is M -approximately unital, and if the support projection of J
in A** is central there, then J has a cai (e;) with |1 —2e;|| < 1 for all t, which is
also quasicentral (that is, e;a —ae; — 0 for all a € A).

Corollary 5.4 (cf. [Blecher and Read 2011, Corollary 1.6]). Let A be an M -
approximately unital Banach algebra. Then A has a countable bai ( f,) if and
only if A has a countable cai in %S 4. This is also equivalent (by Theorem 4.9) to
A = xAx for some x € §4.

Remark. We can also use the results in this section to develop a slightly different
approach to hereditary subalgebras than the one taken in Section 4. For example,
the following is a generalization of the phenomenon in the first example in [Blecher
et al. 2008, Section 2], which can be interpreted as saying that for any contractive
projection p in the multiplier algebra M (A), pAp is an HSA in the sense of that
paper. Suppose that A is an M -approximately unital Banach algebra, and that p is
an idempotent in M (A) with |1 —2p|| < 1. For simplicity, suppose that A is Arens
regular. Define D = pAp. Note that D is an inner ideal in A. We claim that D has
a bai in %S p. To see this, note that by the usual arguments, D+ = pA**p. By
Theorem 5.2, there is a net wy, in %S’A with wy — p weak®*. Set d; = pw, p; then
dy € %S D, and d) — p weak*. By the usual arguments, convex combinations of
the d give a cai for D in %5,3. It is easy to see that DA = pA and AD = Ap are
the induced one-sided ideals, and (d}) is a one-sided cai for these.

6. Banach algebras and order theory

As we said earlier, t4 and v are closed cones in A, but are not proper in general
(and hence are what are sometimes called wedges). By the argument at the start
of Section 2 in [Blecher and Read 2014], ¢4 = RT34 is a proper cone. These
cones naturally induce orderings: we write @ < b (resp. a <. b) if b —a € vy (resp.
b—a e1). These are preorderings, but are not in general antisymmetric. Because of
this, some aspects of the classical theory of ordered linear spaces will not generalize.
Certainly many books on ordered linear spaces assume that their cones are proper.
However, other books (such as [Asimow and Ellis 1980] or [Jameson 1970]) do
not make this assumption in large segments of the text, and it turns out that the
ensuing theory interacts in a remarkable way with our recent notion of positivity, as
we point out in this section and in [Blecher and Read 2014; 2013a]. For example,
in the ordered space theory, the cone 0 = {x € X : x > 0} in an ordered space X is
said to be generating if X = 0 — 0. This is sometimes called positively generating
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or directed or conormal. If it is not generating, one often looks at the subspace
9 — 0. In this language, we shall see next that t4 and ¢4 = RT3 4 are generating
cones if A is M -approximately unital, or has a sequential cai and satisfies some
further conditions of the type met in Section 2. We first discuss the order theory of
M -approximately unital algebras.

Theorem 6.1. Let A be an M -approximately unital Banach algebra. Any x € A
with || x| < 1 may be written as x = a —b witha,b € tq and ||a|| <1 and || < 1.
In fact, one may choose such a, b to also be in %SA.

Proof. Assume that || x| = 1. Since Fq++ = e +Ball(A**) by Lemma 2.4, x = n—§&
forn, £ € %S 4#+. We may assume that A is nonunital (the unital case follows from
the last line with A** replaced by A). By [Blecher and Read 2011, Lemma 8.1], we
deduce that x is in the weak closure of the convex set %S 4 — %3’ 4. Therefore it is in
the norm closure, so given € > 0, there exists ag, bg € %SA with ||[x—(ao—bo)| <€/2.
Similarly, there exists a1, by € %&4 with || x — (ap —bo) —€/2(a1 —by)|| < €/22.
Continuing in this manner, one produces sequences (ar), (by) in %%A. Setting
a' =332 1(1/2%)a) and b’ = 332 | (1/2¥)by, which are in 1F4 since the latter
is a closed convex set, we have x = (ag —bg) +€(a’ —b’). Leta = ag + €a’ and
b = by + €b’. By convexity, (1/(1 +¢€))a € %&4 and (1/(1+¢€))b € %SA.

If ||x|| < 1, choose € > 0 with ||x|[(1 4+ ¢€) < 1. Then x/||x|| = a — b as above,
so that x = ||x||a — || x||b. We have

Ixlla = (Il + ) - (2a) € 0.1+ 184 € 15,

and similarly || x||b € %3A- |

Remark. (1) If A is M -approximately unital then can every x € Ball(A4) be written
as x =a—b witha,b € t4 NBall(A)? As we said above, this is true if A is unital.
We are particularly interested in this question when A is an operator algebra (or
uniform algebra). We can show that in general x € Ball(A4) cannot be written as
x=a—bwitha,b e %SA. To see this let A be the set of functions in the disk
algebra vanishing at —1, an approximately unital function algebra. Let W be the
closed connected set obtained from the unit disk by removing the “slice” consisting
of all complex numbers with negative real part and argument in a small open interval
containing 7. By the Riemann mapping theorem, it is easy to see that there is a
conformal map 4 of the disk onto W taking —1 to 0, so that # € Ball(4). By way
of contradiction, suppose that h = a —b with a, b € %S 4. We use the geometry of
circles in the plane: if z, w e B (%, %) with |[z—w| =1 then z+w = 1. Tt follows that
a+ b =1 on a nontrivial arc of the unit circle, and hence everywhere (by [Hoffman
1962, p. 52]). However, a(—1) + b(—1) = 0, which is the desired contradiction.



REAL POSITIVITY AND APPROXIMATE IDENTITIES IN BANACH ALGEBRAS 37

(2) Applying Theorem 6.1 to ix for x € A, one gets a similar decomposition
X = a — b with the “imaginary parts” of a and b positive. One might ask if, as
is suggested by the C*-algebra case, one may write for each €, any x € A with
x|l <1 asa; —ay+i(as —aq) for a; with numerical range in a thin horizontal
“cigar” of height less than € centered on the line segment [0, 1] in the x-axis. In fact
this is false, as one can see in the case that A is the set of upper triangular 2 x 2
matrices with constant diagonal entries.

A bounded R-linear ¢ : A — R (resp. C-linear ¢ : A — C) is called real positive if
¢(tq) C [0, 00) (resp. Re p(t4) > 0). The set of real positive functionals on A is the
real dual cone, and we write it as CE* . Similarly, the “real version” of ¢} . will be writ-
ten as C;’E? . By the usual trick, for any R-linear ¢ : A — R, there is a unique C-linear
¢ : A— C with Re ¢ = ¢, and clearly ¢ is real positive if and only if ¢ is real positive.

Proposition 6.2. Let A be an M-approximately unital Banach algebra. An R-linear
f A — R (resp. C-linear f : A — C) is real positive if and only if f is a
nonnegative multiple of the real part of a state (resp. nonnegative multiple of a
state). Thus M -approximately unital algebras are scaled Banach algebras.

Proof. The one direction is obvious. For the other, by the observation above the
proposition, we can assume that f : A — C is C-linear and real positive. If A
is unital then the result follows from the proof of [Magajna 2009, Theorem 2.2].
Otherwise by Proposition 3.2(4) applied to the inclusion A C A', we see that the
condition in Corollary 2.8(iii) holds. So A is scaled by Corollary 2.8. (We remark
that we had a different proof in an earlier draft.) O

We now turn to other classes of algebras (although we will obtain another couple
of results for M -approximately unital algebras later in this section in parts (2) of
Corollaries 6.7 and 6.8).

The following is a variant and simplification of [Blecher and Read 2013b,
Lemma 2.7 and Corollary 2.9] and [Blecher and Read 2013a, Corollary 3.6].

Proposition 6.3. Let A be an scaled approximately unital Banach algebra. Then
the real dual cone cE‘iD* equals {t Re(y) 1 € S(A), t €[0,00)}. The prepolar ofcj'}*,
which equals its real predual cone, is t4, and the polar of cﬁ'}*, which equals its real
dual cone, is tg*x.

Proof. It follows as in Proposition 6.2 that
e = {tRe(¥) : ¥ € S(4), 1 €[0,00)}.

The prepolar of cj'}*, which equals its real predual cone, is t4 by the bipolar theorem.
We proved in Proposition 2.11 that t4 is weak* dense in t4++. This together with
the bipolar theorem gives the last assertion. O

The following is a “Kaplansky density” result for tgxx:
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Proposition 6.4. Let A be an approximately unital Banach algebra such that t4
is weak* dense in tq== (as we saw in Proposition 2.11 was the case for scaled
approximately unital algebras). Then the set of contractions in vy is weak* dense
in the set of contractions in ta==. If, in addition, there exists a mixed identity of
norm 1 in v+, then A has a cai in t4.

Proof. We use a standard kind of bipolar argument from the theory of ordered
spaces. If E and F are closed sets in a TVS with E compact, then E 4 F is closed.
By this principle, and by Alaoglu’s theorem, Ball(A*) + c4= is weak™* closed. Its
prepolar (resp. polar) certainly is contained in Ball(A) Nty (resp. Ball(A**) Ntgxx).
This uses the fact that

(CA*)O = tjlo = aw* = tA**

by the bipolar theorem. However, if a € Ball(4) Nt4 and f € Ball(A*) and
g € ¢4, then Re(f(a) + g(a)) > —1+0 = —1. So the prepolar of Ball(A™*) + ¢4+
is Ball(A4) N ty4, and similarly its polar is Ball(4**) N tg++. Thus Ball(A4) Nty is
weak* dense in Ball(A**) N4+« by the bipolar theorem. The last assertion clearly
follows from this and Lemma 2.1. O

The condition in the next result that A** is unital is a bit restrictive (it holds, for
example, if A is Arens regular and approximately unital), but the result illustrates
some of what one might like to be true in more general situations:

Theorem 6.5. Let A be a Banach algebra such that A** is unital, and suppose
that ¢ is a cai for A. Then v% C vg=« if and only if vy = v4. Suppose that the latter
is true, and that Q.(A) is weak* closed. Then A is scaled, S(A) = S.(A), and A
has a cai in tq. Also in this case, A = t4 —t4. Indeed, any x € A with ||x|| < 1
may be written as x = a — b for a,b € t4 N Ball(A).

Proof. If f € S(A) then by viewing A = A + Ce, we may extend f to a state
f of A**. If x € v C vq«+ then Re f(x) = Re f(x) > 0. Thus t§ C ty4, and
so these sets are equal. We also see that cg+ = ¢§.. If Q.(A4) is weak™* closed
then A is e-scaled by Lemma 2.7, so that f = tg for some g € S.(A) and for
some ¢ which must equal 1. It follows that S(A) = S.(A). Hence A is scaled,
so that the weak* closure of t4 N Ball(A) is t4++ N Ball(4**) by Proposition 6.4.
Since the latter contains an identity, A has a cai in t4 by the observation after that
result. The assertion concerning || x| < 1 follows by a slight variant of the proof of
Theorem 6.1. O

In fact it is not too hard to see, as we shall show in another paper, that if A** is
unital (or if it has a unique mixed identity), and A has a cai in t4 then A has a cai
in §4 (and the latter cai can be chosen to be sequential if the first cai is sequential).
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We now attempt to prove parts of the last theorem, and some other order theoretic
results, in the case that A** is not unital. We will mostly be using the class of
states S.(A) with respect to a fixed cai ¢, and the matching cones % and c}., as
opposed to S(A) and its matching cones. The reason for this is that we will want
norm additivity

lcior +- 4+ cnpnll=c1+--+cn, @ €S(A), cx =0.

In many interesting examples, S(A) satisfies this additivity property (for example,
if A is Hahn—Banach smooth, by Lemma 2.2), and in this case almost all the rest
of the results in this section will be true for the S(A) variants, and with all the
subscripts and superscripts and every hyphenated ¢ dropped.

Lemma 6.6. Suppose that ¢ = (e;) is a fixed cai for a Banach algebra A, and
suppose that Q.(A) is weak* closed in A*.

(1) The cones ¢;. and CZ’E{ are additive (that is, the norm on the dual space of A is
additive on these cones).

¢t) is an increasing net in ¢ . which is bounded in norm, then the ne
2) If (¢ g net in ¢ which is bounded then the net
converges in norm, and its limit is the least upper bound of the net.

Proof. (1) If ¥ = ¢ for ¢ € S.(A) and ¢ > 0, then
191l = cligll = lim yr(e).

Indeed, for an appropriate mixed identity e of A** of norm 1, we have ||¢|| = (e, ¢)
forall p € CZ’B It follows that the norm on B(A4, R) is additive on CZ’EE . The complex
scalar case is similar.

(2) It follows from (1) and [Asimow and Ellis 1980, Proposition 3.2, Chapter 2]. [J

We recall that the positive part of the open unit ball of a C *-algebra is a directed
set. The following is a Banach algebra version of this:

Corollary 6.7. (1) Let ¢ be a cai for a Banach algebra A, and suppose that Q.(A)
is weak* closed in A*. Then the open unit ball of A is a directed set with
respect to the <. ordering. That is, if x,y € A with ||x||, ||y|| <1, then there
exists z € Awith ||z|| <1 and z €}, and also x X,z and y <, z.

(2) If A is an M -approximately unital Banach algebra, then given x,y € A with
x|, |yl <1, @a majorant z can be chosen as in (1), but also with z € %SA.

Proof. (1) By Lemma 6.6(1) together with [Asimow and Ellis 1980, Corollary 3.6,
Chapter 2], for any x, y € A with ||x|| < 1 and ||| < 1, there exists a w € A with
[w| < 1and w—x, w—y €. By the last assertion of Theorem 2.9 (setting the
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a there to be —fw for some appropriate ¢ > 1), we have w <, z for some z € t§
with ||z]| < 1. So
—Z fe_w fexfewfez-

Similarly, y “lies between” z and —z, from which it is easy to see that z is in tf,.

(2) This is similar to (1), but uses the fact that S(4) = S.(A4) by Lemma 2.2, so
every ¢ can be dropped. We also use the following principle twice in place of the
cited results in the proof above: if ||z|| < 1 then by Theorem 6.1 we may write
Z=a—bf0ra,be%gA,andthen—bjzfa. O

For a C*-algebra B, a natural ordering on the positive part of the open unit ball
of B turns the latter into a net which is a positive cai for B (see [Pedersen 1979]). A
similar result holds for operator algebras [Blecher and Read 2014, Proposition 2.6].
We are not sure if there is an analogue of this for the classes of algebras in the
last result.

Corollary 6.8. (1) Let ¢ be a cai for a Banach algebra A, and suppose that Q.(A)
is weak* closed in A*. For all x € A, there exists an element z € A with z in
vy and —z X, x =, z. Thus x = a — b, where a, b € t. Moreover, if || x| <1
then z,a, b can all be chosen in Ball(A).

(2) If A is an M -approximately unital Banach algebra, then given x € A with
x|l < 1, an element z can be chosen satisfying the inequalities in (1), but also
with z € %SA

Proof. Apply Corollary 6.7 to x and —x. Clearly,a=(z+x)/2and b=(z—x)/2. O

In the language of [Messerschmidt 2015], item (1) implies that the associated
preorder on A is approximately 1-absolutely conormal, and from the theory of
ordered Banach spaces in that reference, this is equivalent to B(A, R) being “abso-
lutely monotone”. That is, with respect to the natural induced ordering on B(A4, R),

if = <@ <9 then [o] < [l¥]l.

Corollary 6.9. Let ¢ be a cai for a Banach algebra A, and suppose that Q.(A) is
weak* closed in A*. If f < g < h in B(A,R) in the natural ¢ .-ordering, then
gl < L/ =+ [I721.

Proof. This follows from Corollary 6.8 by [Batty and Robinson 1984, Theo-
rem 1.1.4]. O

Corollary 6.10. If A is an approximately unital Banach algebra then the last four
results are true with all the subscripts and superscripts and every hyphenated ¢
dropped if also S(A) = S.(A) for the cai ¢ appearing in those results (which holds,
for example, if A is Hahn—Banach smooth in A').

Proof. Indeed, in the Hahn—Banach smooth case, S(A) = S.(A) by Lemma 2.2,
and if the latter holds then all ¢ may be dropped. O
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In the part of Corollary 6.10 dealing with Corollary 6.7(1), and with Corollary 6.8
in the || x|| < 1 case, one may often get the majorants z appearing in those corollaries
to also be in §4 (and even get a sequential cai for A in §4 consisting of such
majorants z). We will discuss this in another paper, but briefly this follows from the
ideas in Corollary 2.10 and the paragraphs after that, and the idea in the paragraph
after Theorem 6.5.

Remark. (1) Above we saw that under various hypotheses, a Banach algebra A
had a cai in t4, and the latter was a generating cone, that is 4 = t4 —t4. Con-
versely, we shall see in Corollary 7.6 that if 4 is commutative, approximately
unital, and A = t4 —t4, then 4 has a bai in §4.

(2) It is probably never true for an approximately unital operator algebra A that
B(A,R) = cﬁi* — CE*. Indeed, in the case A = C, the latter space has real
dimension 1. However, the complex span of the (usual) states of an approxi-
mately unital operator algebra A is A* (the complex dual space). Indeed, by a
result of Moore [1971] (see also [Asimow and Ellis 1972]), the complex span
of the states of any unital Banach algebra A is A*. In the approximately unital
Banach algebra case, at least if A is scaled, the same fact follows by using a
Hahn—Banach extension and Corollary 2.8(iii).

(3) Every element x € %&4 need not achieve its norm at a state, even in M»
(consider x = (I + E12)/2, for example).

(4) We thank Miek Messerschmidt for calling our attention to the result in [Batty
and Robinson 1984] used in Corollary 6.9. Previously we had a cruder in-
equality in that result.

(5) Note that 4 is not usually “order-cofinal” in A!, in the sense of the ordered
space literature, even for A any C *-algebra with no countable cai (and hence
no strictly real positive element).

7. Ideals in commutative Banach algebras

Throughout this section, A will be a commutative approximately unital Banach
algebra. We will use ideas from [Blecher et al. 2008; Blecher and Read 2011;
2013a] (see [Esterle 1978; Kaniuth et al. 2010] for some other Banach algebra
variants of some of these ideas). In the following statement, the “respectively”s are
placed correctly, despite first impressions.

Theorem 7.1. Let A be a commutative approximately unital Banach algebra. The
closed ideals in A with a bai in t4 (resp. $4) are precisely the ideals of the form E A
for some subset E C §4 (resp. E C vq). They are also the closures of increasing
unions of ideals of the form x A for x € F4 (resp. X € t4).
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Proof. Suppose that E C t4, and we will prove that EA has a bai in 4. We may
assume that £ C §4 since EA = F(E)A, as may be seen using Proposition 3.11.
We will first suppose that E has two elements, and here we will include a separate
argument if A is Arens regular since the computations are interesting. Then we will
discuss the case where E has n elements, and then the general case.

If x,y € tyq then xA and )74 are ideals with bais in §4 by Corollary 3.18.
Their support idempotents s(x) and s(y) are in F4++. Indeed if J = xA then by
Corollary 3.18, we have J -1 = s(x)A**, and J = s(x)4** N A. (In the non-
Arens regular case we are using the second Arens product here.) In the rest of this
paragraph, we assume that A is Arens regular. Set

s(x.y) =s5(x) +5(y) —s(x)s(y) =1 -1 =s(x)(1—s()).

where s(x, y) is an idempotent dominating both s(x) and s(y) in the sense that
s(x,y)s(x) =s(x) and s(x, y)s(y) =s(y). If f is another idempotent dominating
both s(x) and s(y) then fs(x,y) =s(x,y), so that s(x, y) is the “supremum” of
s(x) and s() in this ordering. Then notice that ||(1—x'/")(1—y1/™)|| <1, and also

|1 =s)A=s) | =1-s@»] <1
Notice too that x4 4+ yA has a bai in §4 with terms of form
xl/n + yl/m _xl/nyl/m —1— (1 _xl/n)(l _yl/m)’

which has bound 2. A double weak* limit point of this bai from F4 N EA is s(x, y).
Soasusual xA+yA={ac A:s(x,y)a =a}.

In the non-Arens regular case we use the second Arens product below. We show
that xA + yA = ((x + y)/2)A = a A, where a = (x + y)/2 € F4. By the proof of
[Blecher and Read 2011, Lemma 2.1], we know that (1—1/n Y ¢ _;(1 —a)*) eFy
is a bai for ba(a), and for ad. Write x = 1 —z,y = 1 — w for contractions
z,we Al,and let b = (z + w)/2. Then a = 1 —b. Let r be a weak* limit point
of the bai above, which is a mixed identity for ba(a)**. Then ra = a, so that
(1—r)b = (1—r). Note that s = 1 —r is a contractive idempotent, and is an identity
for s(A!)**s. Since the identity in a Banach algebra is an extreme point, and since
(sz+sw)/2=s, we deduce that sz = zs = 5. Similarly sw = ws =s. Thus rx = x,
so that x € rA** N A = aA (as in Corollary 3.18). This works similarly for y, and
thus xA 4+ yA = ((x + y)/2)A. Thus if x,y € §4 then the support idempotent
s((x + y)/2) for a can be taken to be a “support idempotent” for x4 + yA.

A very similar argument works for three elements x, y, z € §4, using, for example,
the fact that ||(1 — x1/?)(1 — y¥/")(1 — z'/")|| < 1. Indeed, a similar argument
works for any finite collection G = {x1, ..., X} € 4. We have GA = xg A, where

xXg = L(x1+-+xm) €FaNEA
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Let us write s(G) for s((1/m)(x1+- -+ Xm)). Then s(G) is the support idempotent
of GA, and s(G)A** = (GA)L, and thus GA = s(G)A** N A. This has a bai in
FANEA, namely (1= [(1=x1/") - (1=xp{ ")), or (1=[(1=x}"") -+ (1=x,{"™))).

If E is a subset of §4, let J/ = EA, and let A be the collection of finite subsets G
of E ordered by inclusion. Writing A as a net (G;);ea, we have

J=EA=|]JGA=|]xgA.
ieA ieA

where xg; € §4 N EA. To see that J has a bai in F4, as in [Palmer 1994, Theorem
5.1.2(a)], it is enough to show that given G € A and € > 0, there existsa € 4 N J
with |lax — x| < € for all x € G. However, this is clear since, as we saw above,
GA has a bai in F4.

Conversely, suppose that J is an ideal in A with a bai (x;) in t4. Then
J=),xA= EA, where E = {F(x;)} C F4 by Proposition 3.11. The remaining
results are clear from what we have proved. O

Remark. (1) See [Lau and Ulger 2014] for a recent characterization of ideals
with bais.

(2) We saw in Example 4.3 that several of the methods used in the last proof fail
for noncommutative algebras. First, it is not true there that if x, y € §4 then
xA+yA=((x+y)/2)A. Also xA + yA may have no left cai. Also, it need
not be the case that EAFE has a bai if £ C §4.

If E is any subset of §4 and J = EA, and if s = sg is a weak* limit point of any
bai in §4 for J, then we call s a support idempotent for J . Note that sA** = J 1L+
as usual, and so J = s4** N A.

Remark. Suppose that I is a directed set, and that {E; : i € I} is a family of
subsets of §4 with E; C E; if i < j. Then ), E;A = EA, where E = U; Ei.
Moreover, if s; is a support idempotent for E; A, and if s; has weak* limit point s’
in A** then we claim that s’ is a support idempotent for J = EA. Indeed, clearly
s’ € (J NF4)+L, since each s; resides here. Conversely, if x € E; then $jiX =X
if j >1i, so that s’x = x. Thus s;x — x in norm for all x € J, so that s'x = x
for all x € J. Hence s’x = x for all x € J++. Therefore s’ is idempotent, and
J1tL cs’A** and so JEL = s’ A**. As usual, J = s’A** N A. This concludes
the proof of the claim. If (x;) is a net in J N F4 with weak* limit s’ then we leave
it as an exercise that one can choose a net of convex combinations of the x;, which
is a bai for J in F4 with weak* limit s’. In particular, if (G;);cp is as in the proof
of Theorem 7.1, then the net s; = s(G;) has a weak™ limit point which is a support
projection for J = EA.
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Let us define an §-ideal to be an ideal of the kind characterized in Theorem 7.1,
namely a closed ideal in 4 with a bai in t4.

Theorem 7.2. Let A be a commutative approximately unital Banach algebra. Any
separable F-ideal in A is of the form x A for x € 4. Also, the closure of the sum of
a countable set of ideals xy A for X € Fu, equals zA, where z = Iy (1/2k)xk.

Proof. The first assertion follows from the matching result Corollary 4.5, or from the
second assertion as in [Blecher and Read 2011, Theorem 2.16]. For the second asser-
tion, let xx, z be as in the statement. Inductively one can prove that x; € zA, which
is what is needed. One begins by setting x = x; and y = Zf=2(1/2k_1)xk €5a.
Then z = (x 4 y)/2, and the third paragraph of the proof of Theorem 7.1 shows that
x =x1 € zA, and y € zA. One then repeats the argument to show all x; € zA. O

As in Section 4, we obtain again that, for example:

Corollary 7.3. Let A be a commutative M -approximately unital Banach algebra.
Then A has a countable cai if and only if there exists x € F4 with A = xA (or
equivalently, if and only if s(x) is the unique mixed identity of A** of norm 1).

With this in hand, one can generalize some part of the theory of left ideals and
cais in [Blecher et al. 2008; Blecher and Read 2011; 2013a] to the class of ideals
in the last theorem, in the commutative case. This class is not closed under finite
intersections. In fact, this fails rather badly (see Example 3.13). One may define an
§-open idempotent in A** to be an idempotent p € A** for which there exists a
net (x;) in §4 (or equivalently, as we shall see, in t4) with x; = px; — p weak*.
Thus a left identity for the second Arens product in A** is §-open if and only if it
is in the weak™ closure of §4. See [Akemann 1970; Pedersen 1979] for the notion
of open projection in a C *-algebra.

Lemma 7.4. If A is a commutative approximately unital Banach algebra then the
§-open idempotents in A** are precisely the support idempotents for F-ideals.

Proof. If p is an F-open idempotent then it follows that p € F4++, and that J = EA
is an §-ideal, where £ = {x;} (using Theorem 7.1). Also px = x if x € J, and
p e JtLt So pA** = J1L, from which it is easy to see that p is a support
idempotent of J.

The converse is obvious by the definition of support idempotent above, and the
fact that EA = sg A** N A. O

Corollary 7.5. If A is a commutative approximately unital Banach algebra, and
E C vy, then the closed subalgebra generated by E has a bai in § 4.

Proof. In Theorem 7.1 we constructed a bai in §4 for E A, and this bai is clearly in
the closed subalgebra generated by E, and is a bai for that subalgebra. O
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If A is any approximately unital commutative Banach algebra, define Ay = §4 A.
This is an ideal of the type in Theorem 7.1, and is the largest such (by that result).

If A is an operator algebra, it is proved in [Blecher and Read 2013a] that
A =14 —ty if and only if A has a cai. In our setting we at least have:

Corollary 7.6. If A is a commutative approximately unital Banach algebra which
is generated by t4 as a Banach algebra (and certainly if A = v4 —t4), then A has
a bai in §4.

Proof. This follows from Corollary 7.5 because A is generated by t4 in this case,
and hence is generated by §4 since t4 = RTF 4. O

Conversely, if A is M -approximately unital or has a sequential cai satisfying
certain conditions discussed in Section 6, then we saw in Section 6 that A = t4 —ty4.
Indeed, we saw in the M -approximately unital case in Theorem 6.1 that

A=RT(F4—F4) Cra—ta CA.

We do not know if it is always true if, as in the operator algebra case, for
any approximately unital commutative Banach algebra we have Ay =t4 —t4 =

RY (54 —Ta).

8. M -ideals which are ideals

We now turn to an interesting class of closed approximately unital ideals in a general
approximately unital Banach algebra that generalizes the class of approximately
unital closed two-sided ideals in operator algebras. (Unfortunately, we see no way
yet to apply the theory in [Blecher and Zarikian 2006] to generalize the results in
this section to one-sided ideals.) The study of this class was initiated in [Smith and
Ward 1978; 1979; Smith 1979]. We will use basic ideas from these papers (see also
Werner’s theory of inner ideals in the sense of [Harmand et al. 1993, Section V.3]).

First, let A be a unital Banach algebra. We define an M -ideal ideal in A
to be a subspace J of A which is an M-ideal in A, such that if P is the M-
projection then z = P1 is central in A** (the latter is automatic, for example, if
A is commutative and Arens regular). Actually it suffices in all the arguments
below that simply za = az for a € A, but for convenience we will stick to the
“central” hypothesis. By [Smith and Ward 1978, Proposition 3.1], z is a hermitian
projection of norm 1 (or 0). It is then a consequence of Sinclair’s theorem on
hermitians [Sinclair 1971] that z is accretive, indeed W(z) C [0, 1]. The proof
of [Smith and Ward 1978, Proposition 3.4] shows that (1 —z)J 1+ = (0) (it is
shown there that zJ -1z ¢ J1L = J; in the notation there, and that (1—2z)J C J»,
but clearly zJ C Jy so that (1 —z)J C (J —J1)NJr C Jy N Jp =(0)). It also
shows that z(I — P)A™* = 0, so that P is simply left multiplication by z, and
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J++ = zA**_ Since the latter is an ideal, J = J+1 N 4 is an ideal in A. Moreover,
J is approximately unital since z is a mixed identity for J+ of norm 1. We call
z the support projection of J, and write it as sy. The correspondence J +— s is
bijective on the class of M -ideal ideals.

Proposition 8.1. An M -ideal ideal J in a unital Banach algebra A is M -approxi-
mately unital, indeed J has a cai in %S 4. Also J is a two-sided §-ideal in A, and
J = EA = AE for some subset E € J N Fy.

Proof. By Proposition 3.2, J is M -approximately unital, so by Theorem 5.2 it has
a cai in %8 s=JN %S 4. (The latter equality follows from Proposition 3.2 applied
in A1.) Thus J is a two-sided -ideal. We also deduce from Proposition 3.2 that
Jl12>~J 4+ Cly. Hence J = EA = AE for some E C J NFy4; for example, take E
to be the cai above. O

The converse of the last result fails. Indeed even in a commutative algebra, not
every ideal EA for a subset E € Fy4, is an M -ideal ideal, nor need have a cai in
%8’,4 (see Example 3.14).

Suppose that J; and J, are M -ideal ideals in A, and that Py, P, are the corre-
sponding M -projections on A** with z; = Py 1 central in A**. As in Corollary 3.19,
J1 C J, if and only if z,z; = z1, and the latter equals z;z5. So the correspondence
J — sy is an order embedding with respect to the usual ordering of projections
in A**. Then by facts above, Py P>(1) = P1(z3) = z12z2, and this is central in A**.
Similarly, (P1 + P> — P1P2)1 = z1 + z2 — 2123, and this is central in A**. Hence
J1NJyand J; + J, are M -ideal ideals in A.

To describe the matching fact about “joins” of an infinite family of ideals, we
introduce some notation. Set N to be A**. We will use the fact that N contains a
commutative von Neumann algebra. We recall that the centralizer Z(X) of a dual
Banach space X is a weak* closed subalgebra of B(X), and it is densely spanned in
the norm topology by its contractive projections, which are the M -projections (see,
e.g., [Harmand et al. 1993] and [Blecher and Zarikian 2006, Section 7.1]). It is also
a commutative W *-algebra in the weak* topology from B(X). By [Harmand et al.
1993, Theorem V.2.1]), the map 6 : Z(N) — N taking T € Z(N) to T(1) is an
isometric homomorphism, and it is weak* continuous by the definition of the weak*
topology on B(/N) and hence on Z(N). Therefore by the Krein—Smulian theorem,
the range of 6 is weak* closed, and 6 is a weak* homeomorphism onto its range.
Thus Z(N) is identifiable with a weak™* closed subalgebra A of N, which is a com-
mutative W *-algebra, via the map T+ T'(1). All computations can be done inside
this commutative von Neumann algebra. Indeed the ordering of support projections
z1, 22, and their “meet” and “join”, which we met a couple of paragraphs above, are
simply the standard operations z1 < z,,z1 V 23, Z1 A zp with projections, computed
in the W*-algebra A. Of course, we are specifically interested in the weak* closed
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subalgebra consisting of elements in A that commute with A. The projections in
this subalgebra densely span a commutative von Neumann algebra inside A.

Lemma 8.2. The closure of the span of a family {J; :i € I} of M -ideal ideals in a
unital Banach algebra A is an M -ideal ideal in A.

Proof. Let { P; :i € I} be the corresponding family of M -projections on A** with
z;i = P;j1 central in A**. Let A be the collection of finite subsets of / ordered by
inclusion. For F € A, let Jr = Zi <r Ji; by the above, this will be an M -ideal
ideal in A whose support projection s, corresponds to Pr (1), where Pr is the
M -projection for Jg. Next suppose that (Pg) has weak™® limit P in Z(N); by the
theory of M -projections, P is the M -projection corresponding to the M -ideal J =
Y i Ji=Y pep JF. Wehave P(1) =z is the weak™ limit of the (z;); this is a con-
tractive hermitian projection in the ideal J 1. For n € N, we have zn € J = so that

zn = P(zn) =lim P;(zn) =limz;zn =limz;n = limnz; = nz.
1 1 1 1

Thus z is central in N, and so J is an M -ideal ideal with support projection z, and
z is the supremum V;z; in A. O

Next assume that 4 is an approximately unital Banach algebra. We define an
M -ideal ideal in A to be a subspace J of A which is an M -ideal in A! such that
z = P1 is central in A** (or, as we said above, simply that za = az fora € A,
which will then allow an M -approximately unital A to always be an M -ideal ideal
in itself). We may then apply the theory in the last several paragraphs to A'; thus
N = (A")** there. Set A’ to be the weak* closure in A of the span of those
projections that happen to be in A**. This is also a commutative W *-algebra.

Theorem 8.3. If A is an approximately unital Banach algebra then the class of
M -ideal ideals in A forms a lattice; indeed, the intersection of a finite number, or
the closure of the sum of any collection, of M -ideal ideals is again an M -ideal ideal.
The correspondence between M -ideal ideals J in A and their support projections
sy in A" C A** is bijective and preserves order, and preserves finite meets and
arbitrary joins . That is, sj,nj, = SJ,5J, for M-ideal ideals J1, J> in A; and if
{Ji i € 1} is any collection of M -ideal ideals in A and J is the closure of their
span, then s is the supremum in A" C A** of {sy, :i € I'}.

Proof. This result is essentially a summary of some facts above with these facts
applied to A! instead of A4, and with N = (A1)**. O

Clearly any M -ideal ideal in 4 is Hahn-Banach smooth in A' [Harmand et al.
1993], and hence in A.

If J is an M -ideal ideal then we call s; above a central open projection in A**.
Clearly such open projections p are weak* limits of nets x; € %SA with px; =
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Xt p = x;. However, not every projection in A** which is such a weak* limit is the
support idempotent of an M -ideal ideal (again, see Example 3.14). Nonetheless we
expect to generalize more of the theory in [Blecher et al. 2008; Blecher and Read
2011; 2013a] of open projections and r-ideals to this setting. For a start, it is now
clear that suprema of any collection, and infima of finite collections, of central open
projections are central open projections. If A is an M -approximately unital Banach
algebra then the mixed identity e for A** of norm 1 is a central open projection.

Proposition 8.4. If A is an approximately unital Banach algebra then any central
open projection is lower semicontinuous on Q(A).

Proof. If A is unital then this result is in [Smith and Ward 1979], and we use this
below. Let ¢; — ¢ weak* in Q(A), and suppose that ¢;(p) < r for all ¢. Write
©r = ¢ty for Yy € S(A), and let 1}, € S(A') be a state extending ;. By replacing
by a subnet, we can assume that ¢; — s € [0, 1]. A further subnet &tv converges to
p € S(A') weak*. Thus ¢ = 5P| 4, Since

@1, (@) = c1, V¥, (@) = ¢4, Y1, (@) — sp(a). a € A.

By the result from [loc. cit.] mentioned above,

p(p) <liminf ¥y, (p) = liminf Y, (p).
Hence
¢(p) = sp(p) = liminfsyy, (p) =liminfes, Yr, (p) =7,

as desired. a
Given a central open projection p € A**, we set F, = {¢ € Q(A4) : ¢(p) =0}.

Theorem 8.5. Suppose that A is a scaled approximately unital Banach algebra, and
p is a central open projection in A**, and J = pA** N A is the corresponding ideal.
Then F, = Q(A)N JL, and this is a weak* closed face of Q(A). Moreover, the
assignment © taking p — Fp, (resp. J — Fp) from the set of central open projections
(resp. M -ideal ideals of A) into the set of weak* closed faces of Q(A), is one-to-one
and is a (reverse) order embedding. Moreover, “suprema’” (that is, joins of arbitrary
families) are taken by © to intersections of the corresponding faces.

Proof. If J = pA**NA and ¢ € Q(A)NJ* then ¢ € F, since p € J 1+, Conversely,
if ¢ € Fp has norm 1 then we have

L=llgll=llg-pl+le-0=pl=le(d-pl=1
Thus ¢ - p =0, and so ¢ € Q(A)NJL.
If o € Fp and ¢ = tyr1 + (1 — 1) for Y1, Y2 € Q(A) and ¢ € [0, 1], then it is
clear that ¥,y € Fp. So F), is a face of Q(A). Since F, = Q(A4) N JL, itis
weak™* closed.
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Write Fp1 ={p e S(AY): p(p) =0}. Suppose that ¢; — ¢ € Q(A) weak*, with
¢: € Fp and ¢ # 0. Suppose that ¢; = ¢,y with ¥, € S(A). We may assume that
¥ € S(A"), and then ¢, € F,. By [Smith and Ward 1978; 1979], F, is weak*
closed, so we have a weak* convergent subnet ¢, — ¢ € F pl. A further subnet
of the ¢;, converges to ¢ € [0, 1] say. In fact, ¢ # 0 or else ¢, has a norm null
subnet, so that ¢ = 0. Now it is clear that ¢y 4 = ¢ € Fp. So Fj is weak* closed.

If we have two central open projections p; < p, then w = pp — p; is a hermitian
projection in (A1)**, so that as we said above W(z) C [0, 1]. Thus it is clear that
@(p1) < @(p2) for states ¢ € S(A). Hence Fp, C Fp,.

Conversely, suppose that Fp,, C Fp,. If ¢ € Fpl2 and ¢ is nonzero on A then,
since it is real positive on A, it will be a positive multiple of a state ¥ on A. We
have ¢ € Fp, C Fp,,sothatg € Fpll. That is, Fpl2 - Fpll. We are now in the setting
of [Smith and Ward 1978; 1979], from where we see that these are split faces of
S(A') and are weak* closed. Let N; C N, be the complementary split faces. We
may view pj, p as affine lower semicontinuous functions fi, f> on S(A!). As
in those references, we have f; = 0 on Fplk, and f; = 1 on Ni. From this and
the theory of split faces [Alfsen 1971, Section IL.6], it is easy to see that f1 < f5.
That is, ¢(p2 — p1) = 0 for all ¢ € S(A'). By [Magajna 2009], this is also true if
¢ € S((A1)**), and hence if ¢ € S(A). Therefore p; < p, in A, so that indeed
p1 < p2 in the usual ordering of projections in A**.

The last assertion follows from the identity

1
o (L) =Newn b 0

i

Note that the support projection s(x) ¢ A in general if x € §4. This can be
overcome by restricting to the class where this is true — but unfortunately this class
seems often only to be interesting if A is commutative. Thus if A is an approximately
unital Banach algebra, write §’, for the set of x € §4 such that multiplying on
the left by s(x) in the second Arens product is an M -projection on N = (A1)**,
and s(x) is commutes with A! (again the latter is automatic if A is commutative
and Arens regular). (Note that if A is M -approximately unital then multiplying
on the left by s(x) is an M -projection on A** if and only if it is an M -projection
on (A')**.) Define an m-ideal in A to be an ideal of form EA for a subset E C §.
If A is also a commutative operator algebra then the m-ideals in A are exactly the
closed ideals with a cai, by the characterization of r-ideals in [Blecher and Read
2011] (see also [Effros and Ruan 1990]), since in this case 3{’4 =354.

Proposition 8.6. If A is an approximately unital Banach algebra then any m-ideal
in A is an M -ideal ideal in A.
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Proof. Suppose that x € §/,. Setting J, = XA C s(x)A** N A, we have J-1 =
s(x)A** = s(x)N, as in the proof of Corollary 3.18. So Jx = s(x)A** N A is an
M -ideal ideal. Then EA =), g xA is also an M -ideal ideal by Theorem 8.3. OJ

The above class is perhaps also a context to which there is a natural generalization
of some of the results in [Blecher et al. 2008; Blecher and Read 2011; 2013a; Hay
2007] related to noncommutative peak interpolation, and noncommutative peak and
p-sets (see [Blecher 2013] for a short survey of this topic). However, one should
not expect the ensuing theory to be particularly useful for noncommutative algebras
since the projections in this section are all “central”.

Indeed it is unlikely that one could generalize to general Banach algebras the
main noncommutative peak interpolation results surveyed in [Blecher 2013], or
see [Hay 2007; Blecher et al. 2008; Blecher and Read 2013a; 2014]. However, we
end with one nice noncommutative peak interpolation result concerning M -ideal
ideals in general Banach algebras, which can also be viewed as a “noncommutative
Tietze theorem”. In particular, it also solves a problem that arose at the time of
[Blecher and Read 2013a], and was mentioned in [Blecher and Read 2013b], namely
whether t4,; = q(t4) when J is an approximately unital ideal in an operator
algebra A, and gy : A — A/J is the quotient map. In [Blecher and Read 2011],
it was shown that §4,; = q(54), and it is easy to see that gy (t4) Ctq/7. In
fact a much more general fact is true. The main new ingredient needed is [Chui
et al. 1977, Theorem 3.1]. Their proof of this result, while remarkable and deep,
clearly contains misstatements. However, we were able to confirm that (a small
modification of) their proof works at least in the case of unital Banach algebras.
For the reader’s interest, we will give a rather different, and more direct, proof of
their full result.

Let (X, ¢) be a pair consisting of a Banach space X and an element ¢ € X such
that [le|| < 1. Let

Se(X)={peX":llpl=1=g¢(e)} and W(x)=Wg(x)={p(x):¢€Se(X)}

denote respectively the state space and the numerical range of x € X, relative to e.
Of course, these are empty if |le|| < 1. Below we write B(4, r) for the closed disk
centered at A of radius r. The following formula in the Banach algebra case is
attributed to Williams in [Bonsall and Duncan 1973], and it may be proved by a
tiny modification of the proof at the end of page 1 there.

Lemma 8.7 (Williams formula). For every x € X, one has
W(x) =) B, [x—2e|).
AeC

In particular, Wg (x) = Wx .. (x) for every x € X.
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Theorem 8.8 (Chui, Smith, Smith, and Ward). Let (X, e) be as above. Suppose
that J is an M -ideal in X and x € X is such that WXQ/(Je)(Q(x))) has nonempty
interior, where Q: X — X /J is the quotient map. Then there exists y € J such that
lx—=ylx =10)lx/s and Wg(x—y) =W Q).
Proof. For a bounded convex subset C C C, @ € C, and € > 0, we define
N(C a,e)={a+(1+e)(y—a):yeCl.

It is an exercise to show that the N(C, «, €) are open convex neighborhoods of C
if ¢ € int(C), and they shrink as € decreases.
Let x € X be given, and fix @ € int(WXQ/(Je)(Q(x))). Then |a|<||Q(x)||. Now

N (0 (), e, 1)

is an open neighborhood of the compact subset WXQ/(Je)(Q(x)). By Lemma 8.7, the
latter equals () cc B(A.[|Q(x—Ae)|x/s), and so we can find 0=A¢g,A1,..., A, €C,
and § > 0, such that

(B 100 =Aie)lx/s +8) € N(WZ¥(Q(x)). . 1).

Let zg = P(x —ae) € J1L and A € C. Since P is an M -projection,
[x —zo — Ae| = max{[[P((a = D)) |l. [(/ = P)(x —Ae + y)[}. ye.
which is dominated by

max{|A —a|, |Q(x—2e)|x,s} = 1Q(x —Ae)llx,s

since a € (e B(A,[|Q(x — Ae)llx/s). Thus ||x —zo — Aje|| < r; for each i,
where r; = ||Q(x — A;e)|x;s + 6. Hence by Lemma 1.1, there exists yo € J such
that ||x — yo — A;je|| < r; for all i. Indeed using that lemma similarly to some other
proofs in our paper, if x’ € X and z € J1 are such that ||z 4+ x’||x++ < r, and if
{yi}is anetin J which converges to z weak*, one can find a net { y]’.} of convex
combinations of the y; such that yj/. — z and || y]’. + x’|lx < r. One can iterate this
procedure and obtain the same conclusion for any finite sequence x7, ..., x;, € X
such that ||z 4 x/ ||y« <r; foralli =1,...,m.
It follows that xo = x — yg satisfies | xo|| <[ Q(x)|lx;s + §, and

lo(x0) =il = lo(x —yo —Aie)| = [[Q(x = Aie)lx/7 + 8. @ € Se(X).
This implies

Wy (x0) € [\ B(Ai. 1Q(x = Aie)lxys +8) € N(WE S (Q(x)). . 1).

1
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Now we iterate the above process, controlling the increments. If € > 0, let N(¢)
denote the set of those x” € x + J C X such that

15l < 19y + T (10 s = ),

and such that Wx (') € N(W,Z$(Q(x)). . €). Note that xo € N(1) (the first

condition in the definition of N(1) we treat as being vacuous).
Claim. Foranyn =0,1,2,...and x, € N(27"), there is x, 11 € N2~ ®*D) such
that || xp4+1 —xn| <3-27"||Q(x)| when n > 1.

Before we prove the claim, we finish the proof of the theorem. Note that if n > 1
then ||x, || <2[|Q(x)|x,s by the first clause in the definition of N(e). It follows
from this and the inequality in the claim that the norm-limit v = lim x;, exists in
x+ J. Itsatisfies [|[v|| < | Q(x)l|x,s by the first clause in the definition of N(27"),
and Wx (v) C Wx,;(Q(x)) since by the second clause in that definition,

p(v) =limp(xy) € (\N (WZ P (Q(x)). 0. 27") = Wy, (Q(x)). ¢ € Se(X).

That Wy, ;(Q(x)) C Wx (v) is an easy exercise. This completes the proof of the
theorem.

To prove the claim, let z = 27" P(x, —ae) € J1. Using the first clause in the
definition of x, € N(27"), we have

Izl < 27" (lxnll + o)) <3- 27 Q ().

Also, P(x, —z) = (1 —27")x;, + 27", so by an argument similar to the M-
projection argument in the second paragraph of the proof, we have

12 — 2| < max{(1=27") [lxu || + 27" |, | Q(x)llx /.7 }-

The latter equals || Q (x) | x, . using the first clause in the definition of x, € N(27").
Suppose that @1 € Se (X **) with ¢ o P = ¢;. There exists y € WXQ/(Je)(Q(x))
such that ¢ (x,) = o 4+ (1 +27")(y — @), by the second clause in the definition of

X, € N(27™). Hence, one has
o1(xn —2) = @+ (1=27")(p1(xn) —0) =+ (1 -272")(y ~a),

and the latter is in WXQ/(Je)(Q(x)) since it is a convex combination of « and y.
Next, suppose that g, € S, (X **) with ¢ o P = 0. Then ¢, induces a “state” on
(X/J)** = X**/J+L, so that

92060 —2) = g2(xn) € WS, (Q()) = WET (0 (x)).

Thus W¥..(xn —z) C WXQ/(Je)(Q(x)), since any ¢ € S.(X**) is a convex com-

bination of ¢; = ¢ o P and ¢» = ¢ o (I — P) as above. Here we are using the
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L-projection argument we have seen several times, relying on

1 =g¢(e) =p1(e) + g2(e) < |lg1ll + llp2l = 1.
By the Williams formula (Lemma 8.7),
() B l1xn — 2 = Aellx=+) = Wiau (xn —2) € Wg (0 ().
AeC

Let § = 2~(+1)_ By the argument at the start of the proof, one can choose a finite
sequence Aq, ..., A, € C such that

(B (Aillxn —z = Azel) € N(WXQ/(Je)(Q(x)),a, 5).

Choose r; > ||xn — z — Aje|| with (), B(A;i.ri) C N(WXQ/(Je)(Q(x)),a,S). By
the argument using Lemma 1.1 in the second paragraph of the proof, we can
replace z in these inequalities by an element in J. Thus there exists y € J such
that || y[| <3-27"[|Q(x)].

5
[xn =yl = 1Q)lx/7 + m(ll O)lx/s — l)),
and

Wxn—y) () B(Ai- llxn—y—Aiell) € () Bhi.r) € N(W25 (Q(x)). . 6).

Hence x,,+1 = x, — y € N(§), which completes the proof of the claim. O
We next deal with the exceptional case when WXQ/(Je)(Q(x))) has empty interior,

which by convexity happens exactly when it is a line segment or point.

Corollary 8.9. Suppose that J is an M -ideal ideal (or simply an ideal which is an
M -ideal) in a unital Banach algebra A. Let x € A/ J with K = Wy, ;(x). Then

(1) If K is a point, then there exists a € A with ||a||=||x|| and with Wa(a)=Wy4, (x).

(2) If K = Wy, ;(x) is a nontrivial liQe segment then (1) is true “within epsilon”.
More precisely, in this case, let K be any thin triangle with K as one of the
sides (so contained in a thin rectangle with side K). Then there exists a € A
with |la|| = ||x|| and with K C Wy(a) C K.

Proof. If K is a point, then x is a scalar multiple of 1, so this case is obvious. For (2),
if K is a nontrivial line segment, choose A within a small distance ¢ of the midpoint
of the line. Then replace A by B = A®*°C, replace J by I = J & (0), and consider
(x,A) € B/I. Itis easy to see that Wg,r((x,A)) is the convex hull K of K and A.
By Theorem 8.8 there exists (a, A) € B with Wg((a, 1)) = K. If € is small enough,
we also have |la|| = ||x]|| (since then |A| is dominated by the maximum of the
moduli of two numbers in the numerical range, which is dominated by ||x| < |l |).
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However, similarly Wg((a, 1)) is the convex hull of Wy(a) and A, which makes
the rest of the proof of (2) an easy exercise in the geometry of triangles. |

We remark that in a previous version of our paper, the last result (and Theorem 8.8
in the unital Banach algebra case) was stated as a claim , not as a theorem. Thus it is
referred to in [Blecher and Read 2014] as “the Claim at the end of” the present paper.

We can now answer the open question referred to above Theorem 8.8.

Corollary 8.10. If A is an approximately unital Banach algebra, and if J is an
M -ideal ideal in A, then vq,; = qj(t4). In particular, v4;;5 = qy(t4) for ap-
proximately unital closed two-sided ideals J in any (not necessarily approximately
unital) operator algebra A.

Proof. First suppose that A is unital. We leave it as an exercise that gy (v4) Cty,7.
The converse inclusion follows from Theorem 8.8 and Corollary 8.9 (in the line situa-
tion take the triangle above and/or to the right of K). Next suppose that A is a nonuni-
tal approximately unital Banach algebra, and that A/J is also nonunital. Then by the
last paragraph of A.4.3 in [Blecher and Le Merdy 2004], the inclusion A/J C A'/J
induces an isometric isomorphism A!/J = (A/J)!. The result then follows by
applying the unital case to the canonical map from A' onto (4/J)'. If A/J is unital
then one can reduce to the previous case where it is not, by considering the ideal
J®®K in AG° B, where K is an approximately unital ideal in (e.g., a commutative
C *-algebra) B such that B/J is not unital. For this latter trick, one needs to know
that tygeop = {(x,y) € AB° B : x €y, y € tg} for approximately unital Banach
algebras, but this is an easy exercise (and a similar relation holds for §gge p).
Finally, suppose that A is any nonunital operator algebra and J is an approxi-
mately unital closed ideal in A. Then J is an M-ideal in A' by [Effros and Ruan
1990]. Also, by the uniqueness of the unitization of an operator algebra mentioned
in the introduction, we have A'/J = (4/J)! completely isometrically if 4/J is
nonunital (see also [Blecher and Read 2014, Lemma 4.11]). Then the result follows
again by applying the unital case to the canonical map from A! onto (4/J)'. If A/ J
is unital, we can reduce to the case where it is not by the trick in the last paragraph. [

By the assertion about the norms in Theorem 8.8 and Corollary 8.9, we can
lift elements in t4,; to elements in t4, keeping the same norm, in the situations
considered in the corollary.

As we said, these results may be viewed as noncommutative peak interpolation
or noncommutative Tietze theorems. For in the case that A is a uniform algebra on
a compact Hausdorff set €2, the M -ideals J are well known to be the closed ideals
with a cai, and are exactly the functions in A vanishing on some p-set £ C 2 (see
[Smith 1979] and [Harmand et al. 1993, Theorem V.4.2]). Then ¢ is identifiable
with the restriction map f +— fig,and A/J ={f|g: f € A} C C(E). The lifting
result in Theorems 8.8 and 8.9 in this case say that if f € A with f(F) C C for a
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compact convex set C in the plane, then there exists a function g € A which agrees
with f on E, which has norm ||g||q = || fig || £, and Wthh has range g(2) C C
(or g(2) C K if conv( f(E)) is a line segment K, where K is a thin triangle given
in advance, one of whose sides is K).

9. Banach algebras without cai

If A is a Banach algebra without a cai, or without any kind of bai, we briefly
indicate here how to obtain nearly all the results from Sections 3, 4, and 7. We give
more details in a forthcoming conference proceedings survey article [Blecher 2015];
however, the interested reader will have no trouble reconstructing this independently
from the discussion below. Namely, if B is any unital Banach algebra containing
A, for example, any unitization of A4, one can define %’f ={acA:|lp—al| <1}
and tf to be the set of @ € A whose numerical range in B is contained in the right
half-plane. Also one can define F4 (resp. t4) to be the union of the 5B 4 (resp. v A)
over all B as above. Unfortunately it is not clear to us that §4 and t4 are always
convex, which is needed in Sections 4 and 7 (indeed we often need them closed
too there). Of course, §4 and t4 are convex and closed if there is an “extremal”
unitization B of A such that %’f = §4 (resp. tf = t4). This is the case with B
equal to the multiplier unitization if A is approximately unital, or more generally if
the left regular representation embeds A isometrically in B(A).

Most of the results in Sections 3, 4, and 7 of our paper then work without
the approximately unital hypothesis if Sf and tff are used. In particular, we
mention the results 3.3-3.6, 3.9-3.11, 3.17-3.19, 3.21, 3.23-3.25, and all lemmas,
theorems, and corollaries in Sections 4 and 7 not concerning M -approximately
unital algebras. Every one of the statements of these results is still correct if one
drops the approximately unital hypothesis, but uses Sf and tf in place of §4
and t4. Indeed the results just mentioned in Section 3 (and also the first lemma
in Section 4) are also correct for general Banach algebras if one uses §4 or t4 as
defined in the last paragraph (the other results in Sections 4 and 7 would seem to
need §4 and vy (as defined in the last paragraph) being closed and convex).

Some of the results asserted in the last paragraph are obvious from the unital case
of the result, and some follow by the obvious modification of the given proof of the
result. However, in some of these results, one also needs to know that EA = EB,
where B is a unitization of 4 and E is a subset of Sf or tf . This follows from the
following fact: if x € t4 as defined in the last paragraph then

x € xA=ba(x)A =xB

for any unitization B of A. Indeed this is clear since by Cohen factorization,
x € ba(x) = ba(x)? C xA. We also need to know that the §-transform, and n-th
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roots, are independent of the particular unitization used, but this is easy to see using
the fact that all unitization norms are equivalent.
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ON SHRINKING GRADIENT RICCI SOLITONS WITH
NONNEGATIVE SECTIONAL CURVATURE

MINGLIANG CAI

Perelman proved that an open 3-dimensional shrinking gradient Ricci soliton
with bounded nonnegative sectional curvature is a quotient of S? x R or R°.
We extend this result to higher dimensions with a decay condition on the
Ricci tensor.

1. Introduction

A gradient Ricci soliton is a Riemannian manifold (M, g) together with a smooth
function f such that
Ric+ Hess f = Ag,

where X is a constant. It is called shrinking, steady and expanding when A > 0,
A =0and A < 0 respectively.

Gradient Ricci solitons are self-similar solutions of Hamilton’s Ricci flow and
play a vital role in the analysis of singularities of the flow. In dimension 2, Hamil-
ton [1988] completely classified shrinking gradient Ricci solitons with bounded
curvature and proved that they are the sphere, the projective space and the Euclidean
space with constant curvature. In dimension 3, Ivey [1993] proved that compact
shrinking gradient Ricci solitons have positive sectional curvature, and Perelman
[2003] proved that shrinking gradient Ricci solitons with bounded nonnegative
sectional curvature are quotients of S°, §? x R or R3.

In higher dimensions, there have been many results in the last several years. Chen
[2009] showed that a complete shrinking gradient Ricci soliton has nonnegative
scalar curvature. Ni and Wallach [2008] gave the classification of shrinking gradient
Ricci solitons with nonnegative Ricci curvature and zero Weyl tensor. Petersen and
Wylie [2010] and independently, Cao, Wang and Zhu [Cao et al. 2011], classified
the shrinking gradient Ricci solitons with zero Weyl tensor. Fernandez-Lo6pez and
Garcia-Rio [2011] considered solitons with harmonic Weyl tensor. In [Petersen and
Wylie 2009], several natural curvature conditions are given that characterize gradient
Ricci solitons of the flat vector bundle N x R, where N is an Einstein manifold,

MSC2010: primary 53C25; secondary 53C20, 53C24.
Keywords: shrinking gradient Ricci soliton, rigidity, nonnegative sectional curvature.
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I acts freely on N and by orthogonal transformations on R”, and f = }ldz with d
being the distance on the flat fiber to the base. In particular, it is shown in [Petersen
and Wylie 2009] that a shrinking gradient Ricci soliton is rigid, i.e., of the form
N xp R™, if the scalar curvature is constant and the sectional curvature of the plane
containing V f is nonnegative. As a consequence of a theorem of Bohm and Wilking
[2008], the gradient Ricci solitons with positive curvature operators are trivial. In
view of this and the aforementioned result of Perelman, one naturally asks to what
extend shrinking gradient Ricci solitons with nonnegative sectional curvature are
rigid. Our first result in this paper is the rigidity under a decay condition on | DRic]|,
extending Perelman’s result to higher dimensions. In all theorems we scale the
metric so that A = %

Theorem 1.1. Let (M, g, [) be a complete noncompact shrinking gradient Ricci
soliton with bounded nonnegative sectional curvature. Assume that there exists § >0
such that

/ ¢’/ | DRic| dvol, < 00.
M

Then (M™", g) is isometric to N Xr R™, where N is a compact Einstein manifold.

This is, to our knowledge, the first rigidity result in high dimensions without
assumptions on the Weyl tensor. The potential function f is known to grow quadrat-
ically with respect to the distance from a fixed point, so our condition on DRic
says that it decays exponentially. Our proof also works under the assumption that
DRic decays polynomially with a degree depending on other geometric quantities.

The Cheeger—Gromoll soul theorem states that an open manifold with nonnegative
sectional curvature is diffeomorphic to a vector bundle over a compact submanifold
called a soul. The pull-back metric on the bundle can be highly twisted. However,
if there exists a gradient soliton structure on such a bundle, then, by Theorem 1.1,
the metric has to be locally trivial, provided that the decay condition is satisfied.
The decay condition on DRic in Theorem 1.1 is imposed in the region where f is
large. Our next result deals with the rigidity under a condition on D Ric imposed in
the region where f is small.

Theorem 1.2. Let (M", g, f) be a complete shrinking gradient Ricci soliton with
bounded nonnegative sectional curvature. Assume that the minima of f is a smooth
compact nondegenerate critical submanifold and DRic and D*Ric vanish on the
minima. Then (M", g) is noncompact and isometric to N xp R™, where N is a
compact Einstein manifold.

We derive some basic formulas in Section 2, and prove Theorems 1.1 and 1.2 in
Sections 3 and 4 respectively.
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2. Basic formulas

There are different conventions for the curvature tensor in the literature, so to
avoid the confusion, we state ours as follows. The (3, 1) tensor Rm(X, Y, Z) =
Rm(X, Y)Z is defined as

Rm(X,Y)Z =DxDyZ — DyDxX — Dix y|Z
and the (4, 0) tensor as
Rm(X,Y, Z, W)= (Rm(X, Y)Z, W).

We use Ric to denote the Ricci tensor and R the scalar curvature. For a tangent
vector X at p, we use Ric(X) to denote the vector such that

(Ric(X), Y) = Ric(X, Y)

for any vector Y at p. For any smooth vector field V and any smooth function ¢
on manifold M, by V(¢), we mean V(¢) =d¢ (V) = (V, V). In the remainder
of the paper, we will rescale the metric and assume that our gradient Ricci soliton
satisfies

Ric +Hess f = %g.

Since the curvature of (M, g) is assumed to be bounded, there exists a flow
@, : M — M defined for all time with &y = Id and 0®/9¢t = V f [Morgan and
Tian 2007, p. 207]. For t € (00, 0), define G(¢) = [t|®* , .., g. Then G(—1) =g
and G (¢) satisfies

In|t|

Ric(G(t)) +Hess f = %G(z),

where Hess is taken with respect to the metric G(¢) and T = |t| = —¢.
In the next lemma, we collect some well-known formulae.

Lemma 2.1. On (M, G(¢)), we have

(1) dR =2Ric(Vf, ),

(2) |VfI> = f/t — R + constant,

(3) R/t+ (Vf, VR) = AR +2|Ric|?,

4) divRm(X,Y,Z)=Rm(Vf, X,Y, Z),

(5) DxRic(Y,Z) = DyRic(X,Z) —Rm(X, Y, Vf, Z),
where divRm(X, Y, Z) =trace; o DRm(-, -, X, Y, Z).

Proof. The derivations of (1)-(3) can be found in [Hamilton 1995] and (4)—(5) in
[Petersen and Wylie 2010]. U
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Lemma 2.2. On (M, g), we have
A[Ric|* = 2| DRic|* + 2[Ric|* + V£ (|Ric|*) — 4K, A A,

where A; are the eigenvalues of the Ricci tensor and K;; is the sectional curvature
of the plane spanned by the eigenvectors belonging to A; and A j respectively.

Proof. This follows from the formula derived in Lemma 2.1 in [Petersen and Wylie
2010]:

n
ARic = Dy Ric+Ric—2 ) "Rm(-, ¢, Ric(er), ). O
k=1
Throughout the computations in the paper, we assume {ey, ..., e,} is an or-

thonormal basis in a neighborhood of a fixed point x with D, e;(x) =0 and further
assume that each ¢; is an eigenvector of Ric at x corresponding to the eigenvalue A;.
Such a basis always exists. We also use the Einstein summation convention (unless
otherwise specified).

Lemma 2.3. On (M, g), we have
div(Ric(VR)) = Vf(|Ric|2) + %|VR|2 —2Z,Vf)+ |R1c| -2 Zk

where Z =Ric(e;, e;) Rm(V [, e;, e;).
Proof. The following computations are done at x. From Lemma 2.1, we have
D, Ric(VR, ¢;) = DygRic(e;, ¢;) —Rm(e;, VR, V[, e;)
=|VR[* —Ric(VR, Vf) = }|VR*.
We then obtain
div(Ric(VR)) = (D, Ric(VR), ¢;) = ¢;Ric(VR, ¢;)

= D, Ric(VR, ¢;) +Ric(D., VR, ¢;)

= 1|VR|* +Ric(e;, e;){D,, VR, ¢})

= LIVR|* +2Ric(e;, €;)(De,Ric(Vf), ¢})

= 1|VR|?> +2Ric(e;, ¢))e;Ric(V f, e})

= LIVR|* +2Ric(e;, €;) (D¢ Ric(V £, e;) +Ric(D, V f, €})).
That is,
(2-1) div(Ric(VR)) = %lVR|2+2Ric(ei, ej)(De,.Ric(Vf, ej)+Ric(D,, Vf, ej)).
From the soliton equation

Ric+ Hess f = 5

it follows that
D,V f = %ei —Ric(e;) = 3e; — Aiej,
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where we have used the assumption that e; is an eigenvector of Ric at x belonging
to the eigenvalue A;. Hence,

(2-2)  2Ric(e;, ej)Ric(D,, V£, ej) = 2(3 — Ai)(Ric(e;, e,))* = 247 (3 — ;).
Lemma 2.1(5) implies that
D, Ric(Vf,e;) = DysRic(e;, e;) —Rm(e;, Vf, V£, e;).
It follows that
(2-3) 2Ric(e;, e;) Dy, Ric(Vf, e;)
= 2Ric(e;, e;)(DvsRic(e;,e;)—Rm(e;, Vf, V£ e;))
= 2Ric(e;, ej)DysRic(e;, e;)—2(Z,V )
= Vf(IRic|)—2(Z,Vf).
Combining (2-2) and (2-3), we obtain that
2Ric(e;, ¢;)(DgRic(V f, e) + Ric(D,, V£, e))
= Vf(Ric|) =2(Z, V) + 237 (5 = ).
Substituting the above into (2-1) gives
div(Ric(VR)) = 3|[VR[* + Vf(IRic|*) —2(Z, Vf) + 247 (3 — )
= LVR? + Vf(IRic*) —2(Z, Vf) + Ric|? 2Zx3 O

Remark 2.4. We have (Z, Vf) > 0 when the sectional curvature of (M, g) is
nonnegative. In fact, at x, (Z, Vf) =A; Rm(Vf, e;, e;, V).

The next lemma is a slight variation of Lemma 2.3.

Lemma 2.5. On (M, g), we have

Vf(|Ric|2)=2(<z,Vf>+ZAi(,\i— )%VfVR LIVR*—div(DyRV ).
i=1

Proof. 1t follows from Lemma 2.3 that
div(Ric(VR)) = }|VR|* + Vf([Ric|) —2(Z, Vf) + [Ric|* =2 ) "2},
i
Using Ric(VR) = %VR — DygV f and Lemma 2.1(3), we have
V £ (|Ric|? )_ —2|Ricl*+2) 2} +2(Z, Vf)
i

+ 3V, VR) = $|VR|* — div(DyrVf).

The lemma now follows as R/2 —2[Ric|* +2 Y, A3 =231 A (A — %)2 O
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Combining Lemmas 2.2 and 2.3 gives the following proposition.

Proposition 2.6. On (M, g),
P = IVf(Ric|*) + 1|VR[* + div(3 V|Ric|* — Ric(VR)),
where P = K;j(Aj — %;)* 4+ |DRic|> + 2(Z, Vf).
Proof. Lemma 2.2 implies that
—2K;;Aikj +|DRic]* = =1V £ (|Ric|*) — [Ric|* + div(3 V|Ric|?),
while Lemma 2.3 implies that

ZZ/\? +2(Z, Vf) = Vf(IRic[*) + |Ric|* + 3| VR|* — div(Ric(VR)).
i

Adding the corresponding sides of the last two equations and noting that 2 ) ", A? —
2 Zi’j KijAidj= Zi,j K;j(A; — A j)?, we obtain Proposition 2.6. O

Remark 2.7. Clearly, P > 0 when the sectional curvature of (M, g) is nonnegative.

The proof of Theorem 1.1 will use an alternative form of Proposition 2.6 in
which the term | DRic|? is replaced by | divRm [>2. An integral from of the next
lemma is proved in [Cao 2007].

Lemma 2.8. On (M, g),
|DRic|* = | divRm |* +2(Z, Vf) — V£ ([Ric|*) + div(3 V|Ric|* — 2Z).

Proof. As before, we fix an orthonormal basis, {ey, ..., e,}, in a neighborhood of a
fixed point x and assume that D, e;(x) =0 and that each ¢; is an eigenvector of Ric
at x corresponding to the eigenvalue A;. Recall that Z =Ric(e;, e;) Rm(V f, e;, e;),
so at x,

div(Z2) = (D, Z, ex) = (D¢ (Ric(e;,e;) Rm(V f, e;, ¢;)), ex)

= er(Ric(e;, e;))Rm(V f,e;, e, er)+Ric(e;, e;) (D, (Rm(V [, e, e;)), ex)
= D¢ Ric(e;,ej) Rm(Vf, e;,ej, er)+Ric(e;, ej)e (Rm(V f,e;, e, er))
= D, Ric(e;,e;)divRm(e;, e;, ;)

+Ric(e;, ;) (De, Rm(V f, i, €}, e)+Rm(De, V f, i, €, €r))
= (D¢,Ric(ej, ex)—Rm(ey, e;,Vf,e;))divRm(e;, e}, er)

+Ric(e;, e;)divRm(e;, e;, V )+, Rm((%—)»k)ek,ei,ei,ek)
= D, Ric(ej, e;)divRm(e;, e, er)+divRm(e;, e;, e;) divRm(e;, e}, er)

+Ric(e;, ¢, )Rm(Vf, ej,e;, VI)+K;hi(3—1;).
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In the above calculation, we have repeatedly used Lemma 2.1. The lemma now
follows from Lemma 2.2 and the following two identities, whose proofs are easy:

D, Ric(e;, e;) divRm(e;, e, e;) =0,
divRm(e;, ¢;, ex) divRm(e;, ¢}, ex) = 1|divRm|*. O
Lemma 2.8, together with Proposition 2.6, implies the following:
Lemma 2.9. On (M, g),
0 = Vf(IRic|*) + 1|VR|* +div(2Z — Ric(VR)),
where Q = K;; (b — 1)+ |divRm|? +4(Z, V f).

Remark 2.10. We note that Q > 0 when the sectional curvature of (M, g) is
nonnegative.

The next lemma deals with the term V £ (|Ric|?) in Lemma 2.9.
Lemma 2.11. On (M, g),
(2-4) Vf(IRic’) = 3IVR> + 3(Vf, VR) + 3 VF((Vf, VR))
+div(DygrVf — V(Vf, VR)).
Proof. It follows from Lemma 2.1(1) and (3) that
SVF(AR) ==V f(Ric[) + 3(Vf. VR) + 5Vf((Vf. VR)).
The Bochner—Weitzenbdck formula implies that
div(3V(Vf, VR)) = 1A(Vf, VR)
= (Hess f, Hess R)+3Vf(AR)+3VR(Af)+Ric(Vf, VR)
Hess f, Hess R)+3V f(AR)+3VR(2—R)+1|VR|?

=
= (Hess f, Hess R)+3V f(AR).

But,
div(DyrV f) = (D, DvrV f, ei) = €;(DvrV f, e;) = ¢;(D.,V f, VR)
= <De,- (%e,- — Ric(e,-)), VR) + (Hess f, Hess R>
= —D,,Ric(e;, VR) 4+ (Hess f, Hess R)
= —1|VR|* + (Hess f, Hess R).
The lemma follows. O

We now have the following proposition which will be used in the proof of
Theorem 1.1.
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Proposition 2.12. On (M, g),
Q= |VR*+ 3(Vf, VR) + 3Vf((Vf, VR))
+div(2Z —Ric(VR) + DygVf — 1 V(Vf, VR)).

Proof. This is merely a consequence of Lemmas 2.9 and 2.11. O

3. Proof of Theorem 1.1

We will use ¢ to denote a real-valued nonnegative C* function on R and write ¢ o f
as ¢ (f). We will show that R is a constant function and then appeal to [Petersen
and Wylie 2009] to complete the proof. We begin with the following proposition.

Proposition 3.1. On (M, g),

G-1) ¢()Q =5V, VR ((@—¢") (/)= (@+8) ()AL =@+ NIVSI)
+ @+ NIVRE =2'(Z, V ) +div(X),

where

X =3(Vf, VRN +¢)(/IVf+¢(f)(2Z—Ric(VR)+DyrVf—3V(Vf, VR)).

Proof. We multiply each side of the equation in Proposition 2.12 by ¢ ( f) to get

210 = NIVRE+ 2L v vry+ €D v (v s vR)
—¢'(f)(2Z —Ric(VR) + DygVf — iV(Vf, VR), V)
+div(¢(f)(2Z —Ric(VR) + DyrVf — 1V(Vf, VR))).
It follows from the soliton equation and Lemma 2.1(1) that
(—Ric(VR) + DvrVf, Vf) =(3VR —2Ric(VR), V)
(Vf,VR) — |VR|*.

1
2
‘We thus obtain

6D 9N =@+NIVRE+ T (s )

P PV FAVE VRY

+div(¢(f)(2Z —Ric(VR) + DyrVf — 1V(Vf, VR))).
Now, we observe that
@+ (HVFUVS, VR)) =(V(VF,VR), (¢’ +$) (V)
= —(VLVR)(@ +®)(HAf+ @+ NIV
+div((Vf, VR)(¢'+8)(/IVS).

—2¢(Z, Vf)+
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Substituting the above into (3-2), we obtain (3-1). Proposition 3.1 is thus proved. [J

The idea now is to choose an appropriate function ¢ and integrate (3-1) over M.
The divergence term, after integration, vanishes because of the fall-off condition
we impose. The right-hand side will then be nonpositive while the left is always
nonnegative, and consequently, R is a constant. Theorem 1.1 follows from [Petersen
and Wylie 2009].

Proof of Theorem 1.1. We normalize f by adding a constant so that Lemma 2.1(2)
takes the form |V f|> = f —R. Since R >0, we always have |V f|> < f. On the other
hand, since R is assumed to be bounded and f grows quadratically with respect to the
distance from a fixed point [Cao and Zhou 2010; Naber 2006], we have |V f|*> > % f,
when f is sufficiently large. Thus, there exists 7' > 2 so that when f > T,

(3-3) LF<IVIF< £

FixO<n<danddefinegp :R— Rby¢(t)=0fort <T,and ¢p(t) = (t — T)kem
for t > T, where k is a sufficiently large number to be determined. Throughout
this section, we will use this ¢ in (3-1). By our fall-off assumption, there exists a
sequence f; — oo such that

VS

From this, we now deduce that

Sf 1 . .
e’ ——|DRic| - 0, asi— oo.
f=ti

/ o / (X.Vf) .
(3-4) div(X) = — — 0, asi— oo.
f<t r=u V[l

To this end, we look at each of the five terms in X and denote by X; the i-th term.
Then, when f > T,

(X1, VA
V£l

where C is a constant depending only on k and 1. Now by the Cauchy—Schwarz
inequality,

2
.2 . 2 1 . 1 2
| DRic|” = E (D¢, Ric(ej, er)) 2;5 (E Del.Rlc(ej,ej)> :r_zWRl'
J

i,j.k i

= (VA VR)(¢ + &) (NIVFI < Cr eV | VR,

Thus,
IVR| < +/n|DRic|.

Hence,

(X1, V)

2 =L < /n e | DRic.
IV fl
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Integrating the above over { f = ¢;} and noting that
R1c|

|D
Civ/nf* e |DRic| < e/ —— VA

when f is sufficiently large, we conclude that

/ (X1, VI .
o 250, asi— oo.
=i V[l

Now note that (X», Vf) =2¢(Z, Vf)=2¢ ) A Rm(Vf, e;, e;, Vf). Since Ric
is assumed to be bounded and since the sectional curvature is nonnegative,
(X2, V)|
VA
where C; is a constant dependent only on the bound of Ric, and the last equality
follows from Lemma 2.1. Hence, when f is sufficiently large,

Cof* 12V Ric(Vf, V) = Co ff 121 LV f, VR),

[(X2, V) <1, f5e |VR| _ o7 [PRic|.
IV fl IV fl
It then follows that
/ (X2, V) .
———— >0, asi— oo.
f=t |Vf|

The arguments for the other X; are similar; we will skip X3 and X4. Now look
at X5. Repeatedly using Lemma 2.1(2), we see that

(X5, Vf) = =36V (VS VR)) = —¢V[Ric(Vf, V[))
= —¢(Dv Ric(Vf, Vf) +2Ric(Dv;V [, V))
= —¢(DvRic(Vf, Vf) +Ric(Vf — VR, Vf))
= —¢(DvRic(Vf, Vf)+ H(Vf, VR) —Ric(VR, V)).
Since |V R| can be bounded by | DRic|, we have |(Xs5, Vf)}| < C5e"ffk+3|DRic|.
Equation (3-4) then follows.
To simplify notations, we put
F=3(VEVR)(@—¢) )= @+ NHAf— @ +d)(HIVF)
+ (P + ) NIVRI>—2¢"(Z, V f).
Then,
¢(f)O = F +div(X).
It follows easily from the arguments in the proof of (3-4) that |’ w Fdvoly < oo.
We thus have

(3-5) / 6(f)0 = / F
M M
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We now show that fM F dvol, <0. First, we note that —Af = R—n/2 < A, where
A is an upper bound of R; hence —(¢ + ¢')(f)Af < A(p + ¢'), as ¢ and ¢’ are
both nonnegative. Next, we observe that, by Lemma 2.1,

[VR> =2Ric(Vf, VR) =2} hiei(f)ei(R)
i
and ¢;(R) = (VR, e;) =2Ric(Vf, e;) =2Xr;e;(f). So for each i, e; (f)e; (R) > 0.
Hence |VR|?> < 2A(Vf, VR). Finally, we recall that (Z, Vf) > 0 (Remark 2.4).
We thus conclude, from (3-3), that

(3-6) F < N(Vf. VR)Fi,
where

Fi=@—¢) )+ AP+ f)+4A@+) — 5"+ ().
It follows from (3-5) and (3-6) that

G) [ enos<} [ wrvrm.
M M
A direct computation leads to
Fi = (p—¢) () +A(p+¢) () +4A (D+¢') (1) — 5t (" +¢') (1)

= —%8(1+8)(t—T)"+1e5’—(%(1+28)k—5(1+8)A—1+TT_28>(t—T)ke‘”

—k(3(k=D)=SA+3T+)1(=T)"e" =1 T¢".

If we choose k > 10A + 2, the above expression will clearly be negative for
t > T. We have therefore shown that F; < 0 everywhere and F| < 0 where f > T.
Since Q > 0 (Remark 2.10) and (Vf, VR) =2Ric(Vf, Vf) > 0 (Lemma 2.1), we
conclude from (3-7) that (Vf, VR) = 0 in the region {f > T}. But as we noted
earlier in the proof, IVR|?> <2A(Vf, VR). Hence VR = 0 in the region {f > T}.
The analyticity of the metric [Bando 1987; Kotschwar 2013] then implies that R is
a constant function. Theorem 1.1 then follows from [Petersen and Wylie 2009]. [J

4. Proof of Theorem 1.2

We first show that the Ricci tensor has a zero eigenvalue at any point p in C, then
show that the soliton splits in a neighborhood of p, which, in turn, implies that the
scalar curvature is a constant.

Let C be the critical manifold of minima of f. Since C is assumed to be
nondegenerate, the Morse—-Bott lemma implies that for any point p € C, there
exists an open neighborhood U of p and a diffeomorphism ¢ : U — R" such
that p(UNC) ={(0,...,0, Xpi1s.... %)}, d(p)=0and fop (xy,...,x,) =
ct 3G+ +x2).
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In what follows in this section, unless specified otherwise, the range for the
Greek letters «, 8, ... is 1 to m while that for the Latin letters i, j, ... ism+1 to n.

We observe that we may assume that for all « and i, g% (p) = 0. In fact, by
making a change of variables, y, = Xo and y; = x; — ng:l g’ (p)xg, we see
that in the new coordinates, at p, g = (Vy,, Vy;) = 0 for « and i. Moreover,
F Oty e ooy Yims Yimads-os Yn) =C+ }L(yl2 +---+y2). From now on, we assume
in the original coordinates (x, ..., x,) that g* (p) = 0 for all @ and i. As a
consequence, we also have g,; (p) =0.

Next lemma computes the Ricci tensor at p.

Lemma 4.1. Az p, we have

. 0 0 1 . d ) 1
R — — =5 -4 R —, — | =5g&i;
IC(P)<axas 8)6}3) 2(80{;3([’) aﬁ)7 IC(P)(axi, axj) 78ij»
. a 0
RlC(p)(E, a—Xl> =0.
Proof. Since
_lepy O 1 ei, D
Vf 78 xaaxﬁ +38 xaaxi,
we have at p,
d 0 1
H —,— =56
ess(N0) (55 5 ) = b
a 0 a 0
H 2 2 )=H —, — ) =0.
ess (1)) ) = Hess( ) (- ) =0
The lemma follows from the soliton equation. (]
Let pu,, U'(y =1, ..., m)denote the eigenvalues of the positive definite symmetric

matrix g,s(p). Then there exists (vi,, ..., Uy, ) # 0 such that 2,3 gup(Pvg, =

/,L]jlvay. Let v, =), U4y (3/0x). The first part of Lemma 4.1 implies that

d 0

Ric(p)(v,, v,) = Xﬁ; vayvﬂwa(p)<E, @)

=3, = 1)) (vay)?

=3, = Dy g(p)(vy. vy)
=1(1—u)g(P)(vy, vy).
We conclude from this and the rest of Lemma 4.1 that the eigenvalues of the Ricci
tensor at p are (1 —uy)/2, withae =1, ..., m, and % with multiplicity n —m. Since

the Ricci tensor is assumed to be semipositive definite, u, < 1 for each . Of
course, iy > 0. Our goal is to show that u, = 1.
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Now assume {eq, ..., e,} is an orthonormal basis in a neighborhood of a fixed
point p € C with D,.e;(p) =0 for 1 <i, j <n. We may assume that each e, is an
eigenvector of Ric at p corresponding to the eigenvalue (1 — py)/2 for 1 <o <m
and e; an eigenvector corresponding to % form+1<i<n.

By our assumption, DRic = D?Ric =0 at p. Hence, for each 1 < s <n, in the
neighborhood of p,

n
Ric(ey, e5) =15 + Z I'sijkXiX jX + higher-order terms,
ijk=1
where ry and ry;j; are constants. We make the following observation.
Lemma 4.2. Given that K, is the sectional curvature of the section spanned by e;
and ey, we have
m

1—
Fog= Ma, a=1,...,m, ri:%, i=m+1,...,n, ZKmua:Q
a=1

2

Proof. We only need to prove the second line. At p,
(ARic)(ey, ;) = A(Ric(ey, €5)) = 0.

On the other hand, we have ARic = Dy sRic + Ric —2 Z;’:l Rm( -, ¢;, Ric(e)), -)
(Lemma 2.1 in [Petersen and Wylie 2010], see also the proof of Lemma 2.2). Hence,

n
0=Ric(ey, ¢,) =2 ) Rm(es, er. Ric(er), )
=1

m n
=ry,—2) Rm(e,, eq, Ric(ee), €,) =2 Y Rm(es, ¢, Ric(er), ¢;)
a=1 i=m-+1

m n
=Trs — Z(l — o) Rm(ey, e, €4, €5) — Z Rm(ey, e;, e;, e5)
a=1 i=m+1

m
= ZKsaMoz- U
a=1

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. It follows from Lemma 4.2 and the assumption of nonnegative
sectional curvature that K, (p) =0 for all 1 <s <n. So, Ric(p) vanishes on the
subspace spanned by {0/dxy|la =1, ..., m}.

We first prove that a neighborhood of p splits isometrically as U x V, where U
is at least m-dimensional and Ric = 0 on U. We have shown that Ricg(p) = 0.
The rest of the argument is along the lines of the proof of Lemma 8.2 in [Hamilton
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1986] and that of Corollary 2.1 in [Ni and Tam 2003]. Denote by K (x, ) the null
space of Ric(x, 1), i.e.,

K(x,t)={weT,M|Ric(x, t)(w) =0}.

Let wo € K(p, —1) and y (s) a smooth curve starting from p. Parallel translating wq
along y gives a vector field w along y. Denote the extension of w to a neighborhood
of y still by w. Now we project w onto K (x, t) to get a vector field v(x, ¢). Then
v(y(s),1) € K(y(s),t). We first show that D, v is also in K (y(s), t). We fix an
orthonormal basis in g(¢), {ey, ..., ey}, in a neighborhood of a fixed point y (s)
and assume that e;(y (s)) are the eigenvectors of Ric. For simplicity, we denote
ei(y(s)) by e;(s). Since Ric(v) =0, we have ((d/9t)Ric)(v, v) =0. The evolution
equation for Ricci tensor then implies that at y (s),

(ARic)(v, v) — 2(Ric(v), Ric(v)) + 2Ric(e;, ¢;) K (e;, v) =0,

where the repeated indices are being summed over. Since the sectional curvature
K (e;, v) is nonnegative and since Ric(v) = 0, we deduce that (ARic)(v, v) < 0.
Direct computations give

(ARic) (v, v) = A(Ric(v, v)) —4e; (Ric(v, D, v)) + 2Ric(v, D, D, v)
+ 2Ric(v, DDe[ei v) 4+ 2Ric(D,, v, D, v).

Using (ARic)(v, v) < 0 and Ric(v) = 0, we obtain Ric(D,,v, D,,v) < 0. Since
Ric is positive semidefinite, we conclude that Ric(D,,v) = 0 for each i, and hence
D, v € K(y(s),t). As in the proof of Corollary 2.1 in [Ni and Tam 2003], we
conclude that w € K (x, t). Since parallel translation preserves inner product, for
each fixed ¢, the dimension of K (x, ) is independent of x. We then use the de Rham
decomposition theorem to conclude that a neighborhood of p splits.

Note that |V f]?>> f on U x V. In fact, for any ¢ € V, the restriction of g and f on
U x {q} gives a soliton on U x {g} with zero Ric tensor. Lemma 2.1(2) implies that
|va{q}f|2 = flux{q)» Where Vi) f is the gradient of f|y g With respect to
the metric g|yx(q)- Since |V£|* > |Viyxq) f1%, we infer that |V f|2(x, ¢) > f(x, q)
for all x € U. Since ¢ is an arbitrary point in V, it follows that |V f|>> fon U x V.

We now prove that |V f|> < f on U x V. Given any point y € U x V, denote
by y(s) the integral curve of Vf/|Vf|?> such that y(0) = y. Then f(y(s)) =
s + f(y(0)). On the other hand, using Lemma 2.1(1) and (2), we have

iVZ —va2—1v2vv1e
dsl fl (y(s))—lvf|2 fq fl)—|vf|2(| fIF=(Vf,VR))
1

— |Vf|2(|vf|2 —2Ric(Vf, V£)).
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Since Ric(Vf, Vf) = 0, we obtain (d/ds)|Vf|*>(y(s)) < 1. Integrating this in-
equality from — f(y(0)) to s and noting that Vf(y(s)) =0 at s = — f(y(0)) give
us the desired inequality |V f|*> < f.

We have thus proved that |V f|> = f, which, when combined with Lemma 2.1(2),
implies that R is constant in a neighborhood of p. Hence R is constant on the
entire M. The proof of Theorem 1.2 is therefore completed. |
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FROM QUASIMODES TO RESONANCES:
EXPONENTIALLY DECAYING PERTURBATIONS

ORAN GANNOT

We consider self-adjoint operators of black-box type which are exponentially
close to the free Laplacian near infinity, and prove an exponential bound
for the resolvent in a strip away from resonances. Here the resonances are
defined as poles of the meromorphic continuation of the resolvent between
appropriate exponentially weighted spaces. We then use a local version of
the maximum principle to prove that any cluster of real quasimodes gener-
ates at least as many resonances, with multiplicity, rapidly converging to the
quasimodes.

1. Introduction

It is expected that for open systems, trapping of classical trajectories produces
scattering resonances close to the real axis; this is often referred to as the Lax—
Phillips conjecture [1989, Section V.3]. When trapping is weak, for instance in
the sense of hyperbolicity, the general conjecture is not true, as shown by Ikawa
[1982]. For an account of recent results about resonances near the real axis under
weak trapping; see the review by Wunsch [2012]. On the other hand, when the
trapping is sufficiently strong so that a construction of real quasimodes is possible,
there exist resonances close to the quasimodes [Stefanov and Vodev 1996; Tang
and Zworski 1998; Stefanov 1999]. These results were established in the setting of
compactly supported perturbations, or more generally for perturbations which are
dilation analytic near infinity [Sjostrand and Zworski 1991; Sjostrand 1997].
Complementary to the aforementioned results, in this note we prove analogues for
“black box” operators which are exponentially close to the free Laplacian at infinity.
More precisely, we allow both metric and potential perturbations of the Laplacian
outside a compact set (the black box), but require only minimal assumptions on the
operator in the black box. Standard techniques give a meromorphic continuation
of the exponentially weighted resolvent through the real axis to a strip whose
width is of size O(h); the choice of exponential weight and the width of the strip
depend on the decay rate of the perturbation. We then apply a complex analytic

MSC2010: primary 35P25; secondary 47F05, 47A40.
Keywords: scattering resonances, quasimodes, exponentially decaying potentials.
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framework — summarized, for example, in [Petkov and Zworski 2001] — to deduce
an exponential a priori bound on the weighted resolvent away from resonances.

A typical application of such an exponential bound — well-established in [Ste-
fanov and Vodev 1996; Tang and Zworski 1998; Stefanov 1999; 2005] —is to show
that any family of sufficiently independent quasimodes generates at least as many
resonances, counting multiplicity; these resonances converge rapidly not only to
the real axis, but to the quasimodes; see Theorem B for a precise statement. The
general assumptions are presented beginning in Section 1B.

One motivation for this work comes from a recent investigation of resonances for
Schwarzschild—AdS black holes, where quasimodes have been constructed [Gannot
2014; Holzegel and Smulevici 2014]. Due to the spherical symmetry in that setting,
the stationary wave operator P decomposes as a sum of one-dimensional operators
P, on a half-line, which are just restrictions to spaces of spherical harmonics with
angular momentum £. Each Py is a self-adjoint perturbation of the Laplacian by an
exponentially decaying potential which is singular near the origin — the results of
this paper imply that the resolvent Ry(o) of P, has a meromorphic continuation
through the real axis. Although meromorphy of each one-dimensional resolvent
does not imply meromorphy for the global resolvent (this requires uniform control
as £ — oo and was recently established in the Schwarzschild—AdS setting; see
[Warnick 2015]), the results of this paper do imply the existence of a sequence of
poles oy for Ry (o) satisfying

0<—Imoy < Ce Y€ for ¢ sufficiently large.

We also remark that in the Schwarzschild—AdS case the effective potential is dilation
analytic, so the results of [Sjostrand 1997] indeed apply. One advantage to the
approach taken here is that the exponential decay of the potential remains stable
under small (radial, static) perturbations of the Schwarzschild—AdS metric.

1A. Free resolvent. We begin by gathering several results about the free resolvent.
The Laplacian —A on R" with domain H?(R") is self-adjoint and we denote by
Ry (o) the free resolvent

Ro(o)=(—A -2~ L2(R") - H*(R"), Imo >0.

Choose ¢ € C°°(R") with the property that ¢ (x) = |x| for |x| large enough. If A
denotes some function space, we will use the notation A, = e~ 7% A for its weighted
counterpart. We will also freely move between the equivalent notions

T:A,— Bg < P9Te % . A — B,

depending on convenience.
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Our starting point is the well known fact [McLeod 1967] that for each y > 0 the
weighted resolvent

e V*Ro(0)e™ "’ : L*(R") — L*(R")

extends holomorphically across Reo > 0 as a bounded operator to the strip
Imo > —y, with the usual caveats in even dimensions when winding around the
origin. We also have the standard representation,

(1-1) e V’Ry(c)e VY = e V’Ry(—o)e VY + 0" 2e VY M(o)e VY

whenever Reo > 0 and —y < Imo < 0. Here M (o) is the operator with kernel

Mo, x,y) = (i/2) ()" f ¢ oy,
Snfl
We can also write

(1-2) M(o)=(i/2)2m) " ®' (o) D(—0),

where ® (o) : L>(R") — L?(S*') has kernel ® (0, o, x) = €7“*) and @' :
L>(S""!) = L?(R") has the transposed kernel.

The following two lemmas establish standard polynomial bounds for the free
resolvent in the case of exponential weights.

Lemma 1.1. For each € > 0 there exists a constant C = C(¢) > 0 such that
whenever Imo| <y —e and Reo > 1,

_ _ 1—
le "M (o) e |l 2wy 2@y < Clo | "

Proof. The proof is adapted from [Burq 2002]. First note that the Fourier transform
F(e77?)(&) extends holomorphically to the strip {£ € C" : [Im&| <y — €} and

(1-3) IFE") @) < Cnie)™
in the strip for each N. In light of (1-1) and (1-2), it suffices to prove that
1P (@) eIl 2@y 12er-1) < Clo |72,

which by Plancherel’s theorem is equivalent to the same estimate for the composition
(P(o)e V?) o F. The operator (®(0)e 7?) o F has kernel F(e V?)(cw —&). By
Schur’s lemma it suffices to obtain an estimate of the form

sup/ |F(e ") (cw—§&)|dw < Clo|' ",
SER” gnfl

since in the other direction we may use (1-3) to obtain the trivial estimate

sup |F(e"")(ow—&)|dE < C.
weSH—1 JR"
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Write £ as € = (&, w)w + & (w) where (- (w), w) = 0. Then, by (1-3), we are left
estimating

[ (41 o) ~Real + @) o

Sn-

Fix £ e R" and § > 0, and decompose the sphere into two sets,
={weS" " |(¢,w) —Reo| <8Reo, |- (w)| <SReo)

and its complement U°. The integral over U¢ is of the order O (| Re o |™%°), so it
suffices to examine the integral over U.

Observe that unless Re o is comparable to |£], the set U is empty. Indeed, if
we U then (1—-§)Reo < (&£, w) < (1+5)Reo. Hence,

ReTG <(1—-08)Reo < (&, w) < ||,

while on the other hand,

€% = (€, o) > + |1 (0)|* <3(Reo)?

for & sufficiently small.

Write a typical point of R" as (y, y) where y € R"~! and y’ € R. By a rotation we
may assume that & = (0, |£]). In that case U is contained in the upper hemisphere,
in a cap around |£|7'& = (0, 1) whose size is independent of &. This is true since
w € U implies

(E17'E, w) > % > 0.

We then parametrize the upper hemisphere 81_1 (which contains &) by the
diffeomorphism

_ _ o On 8D 1£D
- R" 1 s" l’
T TG e
Whenever y € p~!(U) we have
€ (PN = Il
To see this, compute
1 2 _ g2 o lgf ,  IEP
EXPODE =17 =16 pONP =16F = T s =P s 2 b

Furthermore, the Jacobian satisfies

|ap/dyl = O(I&]"™).
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We can now bound the integral over U by
/ (14 1&4 @) ™ do =/ (1+ 185NN~ 19p/dyl dy
U j (%))

< |Rea|l"f (1+1y) N dy < C2|Req |
Rnfl

for N large enough. In the second step, we used the fact that |£| and Re o were
comparable. U

Lemma 1.2. For each € > 0 and |a| < 2 there exists C, = Cy(y, €) such that
whenever Imo > —y +€ and Reo > 1,

”Da(e_y(DRO(U)e_yw)”Lz_)Lz <Cqy |0'||a|_1‘

Proof. (1) First we handle the case || = 0 and n > 1; see [Rauch 1978; Vodev
1994] for similar arguments. Let U (t) = cos(¢+/—A) denote the propagator for the
Cauchy problem

{(3,2 —MNU@f(x)=0, (,x) eRxR",
UO)fx) = fx), 3 U(0) f(x) =0.

For Im o > 0, write the resolvent
. (e8]
(1-4) e V’Ro(o)e V? = ;—/ ele VU (t)e 7Y dt.
0

Let ro be such that ¢(x) = |x| for |x| > rg. Notice that ||U (¢)||;2— ;2 <1 and
||1{|x|2t/4} e_y‘pHLz(Rn)_)Lz(Rn) < e_yl/4, t > 47"0.
Writing
U(t) = 1x 1</ U @) L <ty4y + L2040 U (O 1x <14y
+ Lixj <y U O Ljjxz1/4) + Lijx 12074 U (0 Ljx 2174y,

we see the norms of the latter three terms are of size O (e~?'/%) after multiplication
by ¢77% on the left and right. Hence, we only need to estimate the norm of the
operator with kernel

i <t/ay () e VDU (8, x, 9) e 7Y 1121 /ay (),

using explicit knowledge of the kernel U (¢, x, y).

In odd dimensions, the kernel vanishes identically by the strong Huygens
principle. In even dimensions, the kernel vanishes unless |x|, |y| < ¢/4, which
implies that |x — y| < ¢/2 and thus

1xj<t/ay (DU, x, Y) ) <e/ay (D) < Ct77,
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again from explicit formulas for U (¢, x, y). Schur’s lemma then gives

11 gx)<t/aye YU @) e " 1x <tyayll L2my— L2y < Ct7"

Therefore we see that the integral in (1-4) actually converges for Im ¢ > 0 with the
uniform estimate

le " Ro(0)e "?||;2;2 < Clo|™!, Imo >0 and Reo > 1.

The result for —y + € <Imo < 0 follows immediately by reflection from (1-1) and
Lemma 1.1.

(2) In the case « = 0 and n = 1, one can simply apply Schur’s lemma to the
Schwartz kernel

- - ) i€
e V’Ry(x,y,0)e V¥ = VY ST omrel),

o

The || =1, 2 cases follow from the |o| = 0 case by interpolation, as in [Zworski
1989, Lemma 3]; we supply a proof for the reader’s convenience. Consider first the
case |a| = 2. By analytic continuation, if u € L?>(R"), then

(1-5) ARy(c)e "u=—e"%u—c’Ro(c)e "u

and hence Ry(o) : L}z, — HEV is bounded for Imo > —y. Now, choose u € L?(R")
and set f = Ro(0)e Y?u. Then

(1-6) A(e7V’Ro(o)e™"%u)
= IVelP =y Ap)e 7 f =2y Vg (e 7V ) +e VY Af

In light of (1-5) it suffices to estimate the L? norm of —yVo-(e7Y?V f). But since
¢ has uniformly bounded derivatives,

IVe- (7Y )7 < Clle 7V f117.
We now integrate by parts and estimate

(1-7) e "V £l

< 2/|yw| VOV £ 17V £l dx +f|e‘”"Af| 7% £ dx.

Applying the inequality 2ab < 2a”+ %bz to the integrand, the first term on the right
hand side is bounded by

[2irverie e ax + [Lierevsian,
while for the second term we use (1-5). We conclude that

le "V flI7, <CA+IoD)lle™? fII7, + e ul7,.
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Returning to (1-6), it follows that
1A Ro(0)e 7 4u)l 12 < C(L+ o) lull 2.
Moreover, (1-7) actually shows
IV(e™"?Ro(o)e "?u)ll2 < Cllull 2. O

We now introduce the semiclassical rescaling by setting A = ho. Let Ry(o, h) de-
note (—h%A —2?)~! and its corresponding analytic continuation. We are interested
in A lying in a set of the form

(a,b)+i((—y +¢€)h, 1),

where 0 < a < b. For the remainder of the paper, equip H*(R") with the h-
dependent norm ||u||?1k = Zlalsk ||(hD)°‘u||iz. Since Ro(A, h) =h~2Ro(A/h), we
have uniform estimates

1RO W2z, = O™, 5=0,1,2,
for A € (a,b) +i((—y +€)h, 1).

1B. Black box model. As our scattering problem, we consider exponentially de-
caying perturbations of the Laplacian outside a compact set, formulated in the
black box setting as follows. Suppose # is a Hilbert space with an orthogonal
decomposition

H =Hg, ® L*(R" ~ B(0, Ry))

where B(x, R) ={y e R": |x — y| < R} and Ry is fixed. The orthogonal projec-
tions onto ‘Hpg, and L*(R" ~. B(0, Ry)) will be denoted 1B(0.ry)" = U|B(0, Ry and
Ire BO,R)U = U|R B(0,Ry) fOr u € H. Note that any bounded continuous function
x € Cp(R™) which is constant near B(0, Rp) acts naturally on H by

xu=Cou+ (x —Co)lrr_p©,Rry)4>

where y = Cy near B(0, Ry).
Now consider an unbounded self-adjoint operator P (k) on H with domain D C ‘H
(independent of % for simplicity) with the following properties:

o If u € D, then 1ge_po.ryu € H*(R" . B(0, Rp)).
e If u € H*(R" ~. B(0, Ry)) vanishes near B(0, Ry), then u € D.

We assume there exists a real-valued and uniformly positive-definite matrix (a;;) and
a real-valued function V (which are allowed to be s-dependent) such that for u € D,

(1-8) (P (h)u)|re<B(0,Ry) = (— Z(hai)aij (ho;) + V) (R B(0, Ry))-

i,j
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Furthermore, we require that
aij(x; h) € C;°(R" . B(0, Rp)) and V(x;h)e C,°(R" \ B(0, Ry)),

with all derivatives uniformly bounded in /.
The perturbation is assumed to decay exponentially to the Laplacian in the sense
that there exists y > 0, § > 0 so that for x € R" . B(0, Ry),

(1-9) la;; (x; h) = 8;j| < Ce™ @R and |V (x; h)| < Ce™@r+D|,
Finally, assume that the mapping
(1-10) 180.Ry) (P (h) + )"t H — Mg,

is compact.
Under these hypotheses, we show that

R(A, h)=(P(h)—2»"!, Rer>O0and Imi > 0,

admits a meromorphic continuation to the strip ImA > (—y + €)h as an operator
H, — H_,. In order that the associated weighted space H, makes sense, we
choose ¢ € C*°(R"), as above, satisfying ¢ = 0 near B(0, Ry).

Remark. All of the results in this note also apply to black box operators on the half-
line (0, 0o). For the most part this amounts to replacing the Laplacian on R" with the
Dirichlet Laplacian on (0, o), and replacing H*(R") with H*(0, co) N HOl 0, c0).
Estimates for the free resolvent on (0, co) follow from those on R by the method
of odd reflection; all other necessary modifications should be clear.

1C. Meromorphic continuation. As a preliminary, arbitrarily extend a;; and V to
functions defined on all of R"” with the same properties as their original counterparts.
Since the choice of extension has no bearing on the final result, we denote them by
the same letters. Now define

P(h)y == (hd;)a;j(hd;) + V.
i,j
RO, h)y=(P(h)—n"" A2 ¢o(P(h)).

Since f’(h) is uniformly elliptic, it is self-adjoint with domain H 2(R™). We will
also write A(h) for the difference

A(h) = P(h) — (—h*A).

The important fact about A(h) is that it is bounded as a map H; — H;jrgy 4 for
each s, ¢ € R.
We will need information about the L)z, — HJ mapping properties of R(%, h)

for A2 ¢ o (P (h)).
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Lemma 1.3. Fix an interval (a, b) € Ry. For each y > 0 there exists Ty > 0 such
that
le”? R(x, h)e 7|l oy = O(1Im AT, s=0,1,2

uniformly for A € (a, b) +i(Toh, 1).
Proof. Conjugating P(h) by e?? yields
e’ P(h)e™ "% = P(h)+ h’*B,

where
B = 2(2)/611'/31'@3]' —v2aij0i9 3¢ + v 9 (aij09)
ij
is a first order operator with uniformly bounded coefficients. It follows that for
A2 ¢ o (P(h)) (in particular for Im A > 0 and Re A > 0) we can write

e’?P(h)e ™"’ — 22 = (I +h*BR(., h))(P(h) — 1?).
Since P(h): H® — L% is self-adjoint,
lull g2 < C (P (R) + iDull 2.
It follows that for A € (a, b) +i(0, 1),
(1-11) IR )| 2 gs = O(IImA|™Y),  s=0,1,2.
We immediately deduce that
IR*BROG )|l 2 2 = O(h|ImA|™") < 1, A€ (a,b) +i[Toh, 1),

for Ty > O large enough. In particular, I + thlé(k, h) : LA(R") — L%*(R") is
invertible for A € (a, b) +i[Tph, 1) and

eY’R(A, h)e 7% = R(x, h)(I +h*BR(x, h))~\.
This also shows that
le"’R(A, ) e |2 s = O(JImA|™Y), s=0,1,2
for A € (a, b) +i[Toh, 1). O

The following lemma is useful in the proof of the meromorphic continuation.
Equip D with the h-dependent norm

lullp = 1[(P(h) + Dully.

Then it is easy to see that under the uniform boundedness conditions on the deriva-
tives of a;; and V, the analog of [Sjostrand and Zworski 1991, Proposition 4.1]
remains true:
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Lemma 1.4. Suppose x € C°(R") has support disjoint from B(0, Ry). Then
multiplication by x is bounded D — H2(R") and H*(R") — D with a norm
bounded independently of h.

Proof. Consider first the map x : D — H 2(R™). Since f’(h) is elliptic, we have the
a priori estimate

||Xu||%.]2(Rn) =< Cl (”Xl ﬁ(h)IR”\B(O»RO)M”iZ(R"\B(O,RO))
2
+ ”X] IRH\B(O’RU)M||L2(R”\B(O,RQ)))
< Gl (P() +Dull3,,
where x; = 1 on supp x and y; also has support disjoint from B(0, Ry). All the

constants are independent of A. For the case x : H 2(R") — D this is equivalent to
the uniform boundedness of P (k) on H*(R"), namely

xullp = (P )+ D) (x| 2y < Clluell g2y - 0

In what follows, we will always be concerned with A ranging in a precompact
neighborhood of R,.. So fix 0 < ag < by and €y > 0, and define

Q(h) = (ao, bo) +i((—y +€0)h, 1).
For each € > 0, we also define a shrunken neighborhood,
Qe(h) =(ao+€,bp—€)+i((—y +€o+€)h, 1).

Proposition 1.5. The function R(\, h) has a meromorphic continuation in 2 (h) as
a family of bounded operators H,, — H_,,.

Proof. Choose cutoff functions y, x; € C°(R"), i =0, 1, 2, so that xo = 1 near
B(0, Ry) with x; =1 on supp x;— and x = 1 on supp x2. We can always choose
these so that x¢o = 0 and y;¢ = 0. Approximate R(A, h) by a parametrix of the
form Qo (A, Ao, h) + Q1(Xg, h) where

Qo(h, 2o, B) = (1 = x0) (Ro(A, h) — R(Ro, 1) A(R) Ro(h, ) (1 — x1),
01(Xo, h) = x2R(Xo, h) x1;

see also [S4 Barreto and Zworski 1995]. Here, Ag = Ao(h) denotes a point in €2 (h)
with Im A¢ > Tyh. We now compute

(P(h) — 21 Qo(X, ro, B) = (1 — x1) + Ko(&, Ao, h) + K1 (&, Ao, h)
where
Ko(x, ko, h) = —[P(h), x0] (Ro(A, h) — R(ho, B) A(R)Ro (A, ) (1 = x1),
K1 (&, 2o, ) = (1= x0) (A% — A3) R(ho, B) A(h) Ro(h, B)(1 — x1),
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and
(P(h) —2%)Q1(ro, h) = x1 + K2(Xo, h) + K3 (A, Ao, h),

where

K2(ho, h) = —[P(h), x2]1R (x0, W) X1,
K3(&, o, h) = x2(hd — AR (o, h) X1

If we let K = Ko+ K1+ K, + K3, then
(P(h) = A*)(Qo(A, ko, h) + Q1 (ho, h)) = I + K (A, Ao, ).

Note that if ¢ € C°(R") then [ﬁ(h), Y] is a first order operator with compactly
supported coefficients and ||[f’(h), V1l g @ny— 2@y = O (h).

Itis easy to see that Qo+ Q1 :H, — H_,. For Qy this follows from the mapping
properties of Ro(A, h), A(h), and E(Ao, h). For Q1, this fact is trivial since Q;
contains compactly supported cutoffs. We also remark that by the resolvent identity,

Ko(ho, Ao, h) = —[P(h), x0lR(ho, B)(1 — x1).

To apply the Fredholm theory, we begin by showing that K : H, — H, is
compact. First note that

Ko(k, ko, h) =—[P(h), ol (Ro(k, h)—R (%o, B)A(R) Ro(h, 1)) (1—x1) : 1y — H,,

is compact: we see that Ro(X, ) : Lf, (R") — HEV(IR") and R(o, h)A(h)Ro(\, h) :
LJZ/([RR”) — Hf +s(R"). On the other hand [f’(h), Xo] is compactly supported and
hence maps Hg(R”) — L*>(R" ~. B(0, Ry)) compactly for each o € R.

Similarly, we can write

K>(ho, ) = [P(h), x21(1 = x0)R (Mo, h) x1

which is compact since (1 — xo)R(Ao, h)x1 : Hy) — H?(R" ~. B(0, Ry)) and
[P(h), x»] is compactly supported. To see that K is compact, again use that
R(ko. h)A(h)Ro(x, h) : L (R") — HJEM([R{") and now appeal to the fact that the
inclusion

H (R < L2 (R")

is compact. Finally, the compactness of K3(A, Ag, h) follows from (1-10).

Next, we need to verify the invertibility of 1 4+ K (A, Ag, h) for at least one value
of A € Q(h). Recall that multiplication by (1 — xo) : H 2(R") — D is uniformly
bounded in 4. It follows that for Ag € €2(4) in the upper half-plane, for u € H,

(1 = X0) R Gro, Y]l g2y < Cill (P (R) + i) R(ho, h)ull < Collm ao| ™" flull3,



88 ORAN GANNOT

and hence
(1= x)R (o, Mly— m2@ny = O(] Imiol™), Xoe€ (), Imig > 0.
Here, we used
(P(h)+)R(ho, h) =1+ (A5+i)R (Ao, h)

and R(Ag, h) = Oy (JIm Ag| ™). Combining this with (1-11), we see there exists
T; > Ty such that if Ay € 2 (h) satisfies Im Ao > Tk, then

IK (Ao, Ao, W) 13,3, = O(hImAg| ") < 3.
and hence I + K (A9, Ao, h) will be invertible. O

Remark. The poles and their multiplicities of the extension obtained above do
not depend on the particular choice of ¢. Indeed, if ¢; and ¢, both vanish near
R" . B(0, Rp) and equal |x| for large |x|, then

eTVPIR(A, h) e V9 = e VW)Y IR () ) e V2T (P10
and vice versa. Hence the poles and multiplicities of one such extension agree with
those of any other.

Remark. As pointed out by the anonymous referee, an interesting question is
whether R(A, i) can be continued to a larger region in the lower half plane when
the perturbations are smooth functions of exp((—2y — §)|x|) for large |x| (and also
whether the corresponding resolvent estimates hold). Such hypotheses are satisfied
for stationary wave operators arising from black hole metrics with nondegenerate
event horizons; see [Dyatlov 2011; Gannot 2014] for two examples.

At this point we need to introduce a new assumption on a reference operator
P%(h), defined as follows: choose R; > Ry and R, > 2R, and let T denote the
torus T = (R/RyZ)". Let

HF =g, ® L*(T\ B(O, Ro)),
where B(0, R)) is considered a subset of T. Define the dense subspace
DP={ueH :yueD, (1—y)ueH T,
where ¥ € C2°(B(0, Ry)) satisfies ¥ = 1 near B(0, Ry). Now set
P*(hyu = P(h)Yu+ (— > (hdy)ai;(hd;) + V)(l —Y)u, ueD
i,j
Then P (h) is self-adjoint on D* with discrete spectrum. We require that

(1-12) #{zeo(Pih) 1z e[—L, L1} < C(L/h*)"/?
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for some n* > n and each L > 1. Here the eigenvalues are counted with multiplicity.
If 21, 22, 23, . . . are the eigenvalues of P*(h) ordered so |z1| < |z2] < |z3] < ---,
then the singular values of (P*(h) —A3)~! are u; (P*(h) — 1)~ = |z; — 23|~
If Im Ag = Tk, then (1-12) implies that there exists a constant C > 0 so that

i ((PEhY =23~ < Ch 27", j>cCh™".

2. Resolvent estimates

To estimate R(A, k), we make use of the following general fact [Gohberg and Krein
1969, Chapter V, Theorem 5.1]: Suppose A is a compact operator lying in some
p-class. If (I 4+ A) is invertible, then

det(I + |A]P)

|det(] + AP)|

We wish to apply this inequality to (I + K), but first we need to verify that a suitable
power of K is of trace class. Under our hypotheses we cannot estimate the singular

values of K;; nevertheless, the proof of Proposition 1.5 shows that I + K, (,g, k) is
invertible on #, for ImAg > T1h, so we use the decomposition

I+ A)7 ! <

(I+ K, do, h) =+ Ka(ho, ) + K (X, o, h)),

where K = (I + K») "' (Ko + K1 + K3). Note that I + K and I + K have the same
poles.

2A. Singular values. From now on we will always choose Ao € €2 (/) with fixed
imaginary part Im A9 = T1h. Throughout, it will be clear that whenever an estimate
depends on Ag € €2(h), it really only depends on Im Ag.

Proposition 2.1. The operator K (1, A, h)”’jJrl : Hy — H, is of trace class for
A€ Q(h).

Proof. We estimate the singular values of each summand in K. Since the weighted
resolvent only continues to a narrow strip in the lower half-plane, in such a region
it is particularly simple to estimate u;(Ko): choose an open ball B C R" containing
supp Vxo and let —Ap denote the Dirichlet Laplacian on B. Again using that the
inclusion Ige p(o,Ry) : Dy — H)% is uniformly bounded in A, we consider K as a
map H, — H'(B). By Weyl asymptotics,

wi((=h*Aap)™ Yy <27 j=1,2,3, ...
Thus, we estimate
1 (Ko(h, 2o, B)) < Craj((—h*Ap) ™) | (=h* Ag) 2 Ko(h, Ao, Wllag, 2By
<Ch73j7V" reQ).
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By the same reasoning we estimate j; (K1), writing

1 (K1, Ao, b))
< Ci(e"*R(ho, h)e” V%) 7+ A(h) e ?e ™7 Ry 13 ey L2 -

In order to bound u; (eW’I?(AO, h)e=+99) let Py(h) = —h%>A + x? denote the
harmonic oscillator. The inequality uj(Po(h)_l) <Ch™! j_l/ " follows, in this case
by explicit knowledge of the spectrum. Since Py(h)e™%¢ : H*(R") — L*(R") is
bounded,

wi(e? Rno, hye™ ¥ 0%)
< i (Po(W) ™) | Po(h) e~ R(ho, B)e™ "+ L2y 12y
<Ch2j=lUn
Combined with the previous estimate we obtain
(K <Ch=2 71" e Q.

Next we estimate the singular values of K3 using (1-12). Recall that (P (h)—A%) x =
(P%(h) — A%)x, which implies that

(P(M)—=215) "' x1=x (P*() =15 x1 = (P(W)=25) " [P*(h), x1(P* () —25) ' x1.
Multiply this equation on the left by x» and apply Fan’s inequality, uyx—1(A+ B) <
1k (A) + pr(B). Using the fact that (P (h) —A3)~'[P*(h), x] has norm O(1),

i (K3(h, ko, ) < Ch727H% 0 j > P

for some constant F > 0. For j < Fh™" we simply bound u;(K3) < Ch~! using
the trivial norm estimate.
It is now clear that u,j(Kl-)”ﬁ is summable for j =0, 1, 3. U

Applying the resolvent estimate as above, we obtain
-1 NRG, W, —n,
< 11Q0+ Qtlla, -3, 1+ K2) " 3, 0, 1L+ K)o,
det(I + (R*K)"F)
| det(] + K"*+1)]

<ClQo+ Qilln,—n_,

Since
Qo+ Qillag, -2, = 0>, reQh),

it remains only to estimate the determinants. Define

O ) =det(I + K100, ho, h))
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in 2 (h). By Weyl convexity inequalities, it follows that | f (A, h)| <M (h), L€ Q2(h),
where

M(h)y= sup det(I+(K*K)"7).
reQ(h)

We therefore need to bound M (k) from above and | f (A, h)| from below.

2B. Estimating the determinant from above. Here we obtain an upper bound for
M (h) of the form M (h) < e“""". For the application in mind, the value of p is
unimportant and we do not attempt to optimize the exponent. In fact 2= also
represents a polynomial upper bound for the number of resonances in a disk of
radius &, but again obtaining an optimal value is unimportant in this context.

Proposition 2.2. There exists C > 0 depending only on Im Ay, and p > 0 such that

4

M(h) < e

Proof. We estimate M (h) using Fan’s inequalities:
[T+ &) = [T+ Ry = [T +pajma(R™)
jzl j=1 izl

< T+ Colps (KoY ™' + 1y (K™ + pu (K3)" 1)
j=1

< [T TT0+Comx ™’

i=0,1,3 j>1

For i =0, 1, the singular values occurring in this product are bounded above by
mi(K;) < Ch_3j_1/”n, and so we bound the product by the trace,

tt —3nf-3
1_[(1+CO//L](K1)nn+1) Sexp<clh3n'32jl+l/nn> SeCh 3 %.

izl jzl1

On the other hand for K3,

[ (1 + Comj(K3)™)

Jj=1 1 :
< J] (+Cowik)™™) T (1+ Couj(ks)" )
1<j<Fh=* j>Fh="
< (eClz”’: log(l/h)) (eCh’”:)‘
Thus,
M(h) <"

for some p > 0, where the constant C only depends on Im Ag. U
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2C. Estimating the determinant from below. Next we need to estimate | f (A, )|
from below. Note that A is not a zero of f (A, h) and that we have

(I + K (ho, o, Y™ =T — KR (0o, 2o, )" THI + K (Mo, ho, )T~

By taking determinants and arguing as in the previous section, we obtain a lower
bound at X,

| f(ho, )| = e~ "

where the constant again depends only on Im Ag. Since we can bound | f (A, h)|
from above by M (h) and from below at a chosen point, we are in a position to
employ Cartan’s principle [Levin 1972, Theorem 11] to obtain a lower bound away
from resonances.

Proposition 2.3. For each € > 0 there exists C = C(¢€) such that

| f(h, h)| > e AN P10/t 5 e @ () U D(r;(h), S(h)),
J

where S(h) < 1 and {r;(h)} denote the resonances of P(h) in Q¢(h).

Proof. Rather than applying [Levin 1972, Theorem 11] directly, we prefer to control
the set where the lower bound holds at the expense of the quality of the lower bound,
just as in [Petkov and Zworski 2001]. For the reader’s convenience we reproduce
the proof, making the necessary adjustments.

Choose A with fixed real part. Define radii and disks

ps(hy =T +y —eg—se, Ds(h)= D( oy, ps(h)), s=1,2,3.

We see that f(A, h) is analytic in the disk Dy(h). Let rj(h), j =1,..., N(h)
denote the zeros of f (A, h) in D, (h), including multiplicity, and define the Blaschke
product

(—=pa ()N ® I1 p2(R)(A —rj(h))

d(A, h) = — :
(ri(h) —xo) - - (rny () —20) * & pa(h)? — (rj(h) — ko) (A — o)

J
Then ¢ has the same zeros as f (X, k), no poles in D, (h), and satisfies ¢ (Ao, ) = 1.
Moreover, on the boundary of D, (h),

py ()

2-2 bl = -
(2-2) (2, h)] |()L0_r1(h))---(ko—i”N(h))|>

Since the function defined by

Y (h, h) ===
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has no zeros in D,(h), we may apply (2-2) and Carathéodory’s estimate [Levin
1972, Theorem 8] to conclude that in D3(k) we have the lower bound

2p3(h) p2(h) + p3(h)
logl (A, h)| = =2 log sup [y, )| + o2 qog [y (o, 1))
€ reDi(h) €
203(h h) + h
> _25W 10 sup 1G] + PRI G .
€ reDy(h) €

It therefore suffices to bound |¢ (A, h)| from below in D3 (k).

Outside the set | J j D(rj(h), S(h)), the polynomial appearing in the numerator
of ¢ (X, h) is bounded below by S(2)N™. On the other hand, the polynomial in the
denominator of ¢ (A, ) is bounded above in D3 (k) by 2 (h)N™ (pa(h)4p3 ()N,
Therefore

S(h)
p2(h)(p2(h) + p3(h))

N(h)
lp(A, h)| = ( ) . A€ D3()~\UJD(rjh), S(h).
j

Moreover, we can apply Jensen’s formula to estimate the number of zeros N (k) in
D;(h) by

1
N(h) < ——=(log sup | f (1, h)] —log| f (o, 1))

py €D
1
< iy (log M () ~log| £ (o, )])
0g £
=0hP).

Combining all the contributions, we obtain

|f (A, k)| > e Ch " Ie/St) =5 e Dy(h)y U D(rj(h), S(h)).
J

Since all the constants appearing are uniform in Re Ag, we can vary the real part
in Q¢ (h) and obtain the necessary lower bound. Of course, € is arbitrary and the
result follows. ]

We can now establish our main theorem on resolvent estimates.

Theorem A. For each € > 0, there exists A = A(€) such that

IR, M), 20, < e "18WSED 5 e @ (hy U D(rj(h), S(h)),
J

where S(h) < 1 and {r;(h)} denote the resonances of P(h) in Q¢(h).
Proof. Apply Propositions 2.2 and 2.3 to (2-1). U
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3. From quasimodes to resonances

The passage from quasimodes to resonances is essentially an argument by contradic-
tion. In the absence of resonances, the exponential bound appearing in Theorem A
would hold throughout €2, (%); combined with the self-adjoint bound in the upper
half-plane, an application of the “semiclassical maximum principle” implies a
resolvent estimate on the real axis that contradicts the existence of a real quasimode.
First results in this direction are due to Stefanov and Vodev [1996] who used the
Phragmén—Lindel6f principle to show that having high energy real quasimodes
implies the existence of resonances converging to the real axis. Bounds on the
resolvent play a central role in that argument which go back to the work of Carleman
[1936] on the completeness of sets of eigenfunctions. Tang and Zworski [1998]
replaced the Phragmén—Lindelof principle with a local version of the maximum
principle which showed that there exists a resonance close to each quasimode.
Stefanov further refined these method by dealing with multiplicities [1999], and
modifying the maximum principle [2005] to allow the localization of resonances
exponentially close to the real axis.

3A. Quasimodes. Suppose that u(h) € D satisfies |lu(h)| = 1 and
suppu(h) C K for a compact set K independent of 4.
Suppose further that there exists A(h)? € (ag, by) such that
| (P = 1(m)*)um)| < R(h)

for a function R(h) > 0. We refer to such functions as quasimodes with accuracy
R(h). For the resolvent, choose a weight ¢ so that ¢ =0 on K. Also choose x;
with ¢ =0 on supp x; and x; =1 on K. Notice that for A in the upper half-plane,

e V’ROLh)e VP (P(h) — A u=e7’R, h)e 7?(P(h) — A xiu = u,

and hence this equation holds away from poles by analytic continuation. We also re-
call the following standard fact: consider the Laurent expansion of e"?? R(\, h)e™7?
near a resonance r(h):

N
e 7 R(1, h)e™"? = holomorphic(A) + >  A; (1> = r(h)*) /.
j=1

Then, range(A;) C range(Ay) for j =1,..., N. For a very general discussion
of these types of results, see [Agmon 1998]. Consider the resonances r;(h) for
i=1,...,N(h) contained in the set Q2. (/), each with the associated residue Agi).
If IT denotes the projection onto P, range(Agi)), then (1 — H)AS.i) =0 foreachi, j.
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Hence,
(I—-TDe "’R(A,h)e 7?

is holomorphic in 2. (#). By the maximum principle, this operator satisfies the
bound given by Theorem A in a set slightly smaller than Q. (%) — see the proof of
[Stefanov 1999, Theorem 1] or [Stefanov 2005, Theorem 3] for a precise statement.

3B. Semiclassical maximum principle. We now review the semiclassical maxi-
mum principle, as presented in [Stefanov 2005].
Lemma 3.1. Let a(h) < b(h) and suppose that S+(h), a(h), w(h) are functions
satisfying

0<Si(h)=S-(h), 1=am), S-(hWa(h)loga(h)=<wh).
Also, suppose F (A, h) is a holomorphic function defined in a neighborhood of

la(h) —w(h), b(h) +w(h)]+i[—a(h)S-(h), S4+(h)].
If
|FG, ) <e*®, e lath) —w(h), b(h) +wh)] +i[—a(h)S_(h), S+.(h)],
{IF(K, M| =M(h), xela(h)—wh),bh)+wlh)]+iSi(h),
with M (h) > 1, then there exists hy = h{(S—, S+, ) > 0 such that

|FOu, b <&M (h), A€ la(h), b(h)]+i[S-(h), S+ (h)]
forh < h.

For our application, we will apply this lemma with
* S_(h) =S84(h) = S(h),
e F(A,h)=(I —ID) e "?R(\, h)e™ 7%,
e a(h)=Ch Plog(1/S(h)),
e M(h)y=1/S(h).
The choice of S(h) and w(h) is made as in [Stefanov 2005] according to the

accuracy R(h) of the quasimodes.

3C. Lower bounds on the number of resonances. Here we state the main theorem
on the existence of resonances rapidly converging to the real axis. We refer to
[Stefanov 2005, Theorem 3] for the proof; the only modification is that instead of a
compactly truncated resolvent (I —IT) x R(X, h) x, weuse (I —I1)e Y’ R(A, h)e 7%

Theorem B. Let P (h) satisfy the black box hypotheses. Let 0 <ag <a(h) <b(h) <
by < oo. Assume there is an ho such that for h < hg there exists m(h) € {1,2, ...},
An(h)? € [a(h), b(h)], and u,(h) € D with ||lu,(h)|| = 1 for 1 <n < m(h) such that
supp u,(h) C K for a compact set K, independent of h. Suppose further that
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(D) [|(P(h) = 2 () un(h) | < R(R),

(2) whenever a collection {v, (h)}fg;) C H satisfies ||un(h) — va(h)|| < KN /M,
{v, (h)};"gi) is linearly independent,

where R(h) < h?*™N+1/Clog(1/h) and C > 1, N >0, M > 0. Then there exists
Co > 0 depending on ag, by and the operator P (h) such that for B > 0 there exists
hy < hg depending on A, B, M, N so that the following holds: whenever h € (0, hy),
the operator P(h) has at least m(h) resonances in the strip

[a(h) — c(h)log 1, b(h) + c(h)log 1] — i[O, c(h)]

where c(h) = max(CoBM R(h)h—P~N=1 ¢=B/hy,
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A GENERAL SIMPLE RELATIVE TRACE FORMULA

JAYCE R. GETZ AND HEEKYOUNG HAHN

In this paper we prove a relative trace formula for all pairs of connected
algebraic groups H < G x G, with G a reductive group and H the direct
product of a reductive group and a unipotent group, given that the test func-
tion satisfies simplifying hypotheses. As an application, we prove a relative
analogue of the Weyl law, giving an asymptotic formula for the number of
eigenfunctions of the Laplacian on a locally symmetric space associated to
G weighted by their L2-restriction norm over a locally symmetric subspace
associated to Hy < G.
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1. Introduction

Let G be a connected reductive algebraic group over a number field F and let Ag
be the neutral component of the real points of the greatest Q-split torus in the center
of Resr;g G. Throughout this paper, we let

H<GxG

be a connected algebraic subgroup such that H is the direct product of a reductive
group and a unipotent group; both of these groups are necessarily connected. We
do not assume that the decomposition of H into a reductive and unipotent group is
compatible with the embedding H — G x G.
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Let x : H(Ap) — C* be a quasi-character trivial on Ag gy H (F') (see Section 2B
for the definition of Ag, y and the other A, groups; they are all central subgroups).
Let

¢ € L2, (AcG(F)\G(AF) x AgG(F)\G(AF))

cusp

be a smooth cusp form, and let
(1.1) Py () = / X (he, hy)@(he, hy) d(he, hy)
A, H(F)\H(AF)

whenever this period is well-defined (for a criterion see Corollary 3.2 below). Here
d(hg, h,) is a Haar measure; we will set our conventions on Haar measures in
Section 2C below. The relative trace formula is a tool for studying the period
integrals %, (¢). Many particular instances of the relative trace formula have been
developed, but the development has not been systematic.

In this paper we establish the formula in what we view as the natural level of
generality in terms of the subgroup H for test functions satisfying the usual “simple
trace formulae” hypotheses. In particular, we only make the assumption that H
is connected and a direct product of a reductive and unipotent group. In contrast,
in all references known to the authors the subgroup H is assumed to be “large”,
e.g., spherical and satisfy other simplifying hypotheses. We also note that this
greater generality is not vacuous in that it leads to new applications, for example,
Theorem 1.2 below. It is also used in constructing the four-variable automorphic
kernel functions of [Getz 2014].

For f € C°(AG\G(AF)) let

R(f): L*(AcG(F)\G(AF)) — L*(AcG(F)\G(AF))

o> (x > / F(@)o(xg) dg)
AG\G(AF)

denote the operator defined by the right regular action and f. We prove the following
theorem:

Theorem 1.1. Let f € C°(Ag\G(AF)) be a function such that R(f) has cuspidal
image and such that if the H(Arg)-orbit of y € G(F) intersects the support of f
then y is elliptic, unimodular and closed. Then

> T(H)ROL(f) =) rrn(f).

14

where the sum on y is over elliptic unimodular closed relevant classes and the
sum on 7 is over isomorphism classes of cuspidal automorphic representations of

AG\G(Ap).
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Here elliptic, unimodular and closed are defined as in Section 2A, the action of H
on G is givenin (2A.1), and relevant is defined as in Section 4A. Moreover, T (H,,) is
a volume term that can be viewed as a Tamagawa number if normalized appropriately,
RO;ﬁ (f) is a relative orbital integral (see Section 4 for both of these notions) and
rtr T (f) is the relative trace of 7 (f), defined in (3.2) (it is a period integral of the
form (1.1)). A cuspidal automorphic representation = of Ag\G(AF), by convention,
is an automorphic representation of G(Ar) trivial on Ag that can be realized in
Lgusp(AgG(F J\G(AF)). In particular, we do not fix an embedding; the definition
of rtr w (f) involves the entire m-isotypic subspace of L% (AgG(F NG(AFR)).

cusp

Remarks. (1) Given the work of Lindenstrauss and Venkatesh [2007], henceforth
abbreviated [LV], the assumption that R( f) has purely cuspidal image may not be
as severe a restriction as one might think (see also the proof of Theorem 5.1).

(2) Though the method of proof is the usual one (take a kernel and compute the
integral over Ag. g H(F)\H (AF) two ways) there are many points in the proof of
Theorem 1.1 that are not obvious. On the spectral side we check that rtr w ( f) is well-
defined for all f, not just K-finite f. On the geometric side we define a notion of
elliptic elements and the relative analogue of semisimple elements (which we call
unimodular and closed). These have only appeared in special cases in the literature.
We also use Galois cohomology to deal with nonconnected stabilizers in a way that
we have never seen in the literature in the context of the relative trace formula.

The formula in Theorem 1.1 is called simple because we have imposed condi-
tions on the test function f to ensure that various analytic difficulties disappear.
Theorem 1.1 is general because the geometric set-up includes all trace formulae that
the authors have seen as special cases. For example, the simple twisted relative trace
formula of the second author [Hahn 2009] is a special case of this formula, as is the
usual simple trace formula of Deligne and Kazhdan [Bernstein et al. 1984] (see also
[Rogawski 1983]), as one can see by taking x to be trivial and H to be the diagonal
copy of G inside G x G. As another example, let E/F be a quadratic extension, let
G =Resg,r GL,, let U, < G be a unitary group, let N < G be the unipotent radical
of the Borel subgroup of upper triangular matrices, let ¥ : N(F)\N (Ar) — C* be
a character, and set

H=U,xN and x=1x1.

In this case the trace formula above is a simple version of one introduced by Jacquet
and Ye [1996]. We also note that the formula does not hold for a general connected
algebraic subgroup H < G x G without serious modification (see the remark after
Proposition 3.4), so in some sense it is as general as possible.

As an application of these ideas, we prove a relative analogue of the Weyl law in
Theorem 1.2 below. It gives an asymptotic formula for the number of eigenfunctions
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of the Laplacian on a locally symmetric space associated to G weighted by the
L>-restriction norm over a locally symmetric subspace associated to Hy < G.

To state it, assume that G is split and adjoint over Q. Note that G (Q)\G (Aq) is
of finite volume but noncompact. Let Hy < G be the direct product of a reductive
group and a unipotent group and let

K =Ko x K® < G(Ag),

where K < G(R) is a maximal compact subgroup and K> < G(Ag’) is a compact
open subgroup satisfying the torsion-freeness assumption (TF) of Section 5 below.

In the setting above, using a technique developed in [LV], we prove Theorem 1.2
below. We remark that since G (Q)\ G (Ag) is noncompact, even if Hy(Q)\ Hy(Ag)
is compact the theorem does not follow in any obvious way from the classical Weyl
law or its local variants.

Theorem 1.2. Assume that Hy(Q)\ Hy(Ag) is compact. As X — 00 one has

2

T (A)<X peB(m)K

/ lo(h)|* dh ~ a(G) measg;, (Ho(Q)\ Ho(Ag)) X9/?,
Hy(Q)\ Ho(Aqg)

where the sum is over isomorphism classes of cuspidal automorphic representa-
tions w of G(Ag), B() is an orthonormal basis of the m-isotypic subspace of
Lgusp(G(@)\G(A@)), 7w (A) is the eigenvalue of the Casimir operator A acting on
the space of K oo-fixed vectors in w, «(G) > 0 is a constant related to the Plancherel
measure defined in [LV], and d = dim(G(R)/ K ).

We refer to the asymptotic in Theorem 1.2 as a relative Weyl law. We can
in fact weaken the assumption that Hy(Q)\ Hy(Ag) is compact. Specifically, in
Proposition 5.2 we prove that if Hy(Q)\ Hy(Ag) is of finite volume but noncompact,
then the relative Weyl law holds provided that one assumes the upper bound of the
relative Weyl law (in the setting of the usual Weyl law this was proven in [Donnelly
1982]). Interestingly, this is not known in the relative case.

We now outline the sections of this paper. In the following section we recall
the notion of relative classes and relative analogues of definitions often used in the
context of the absolute trace formula. The proof of Theorem 1.1 comes down to
evaluating an integral of a kernel function in two ways. The spectral evaluation is
given in Section 3 and the geometric evaluation is given in Section 4. Finally, in
Section 5 we prove Theorem 1.2.

2. Preliminaries and notation

2A. Relative classes. Let G be a connected reductive algebraic group over a char-
acteristic zero field F with algebraic closure F and let
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H<GxG

be a connected algebraic subgroup that is the direct product of a reductive and a
unipotent group. We let
diag: G - G x G

denote the diagonal embedding. The letter R will denote an F-algebra. There is an
action of H on G given at the level of points by

(2A.1) -:H(R) x G(R) = G(R)
(e, hy), &) > hegh, .
The stabilizer of a y € G(R) will be denoted by H,,. By assumption, we can write
H=H"x H"
where H" is reductive and H" is unipotent.
Definition 2.1. Let k/F be a field. An element y € G (k) is
e closed if the orbits of y under H and H" are both closed.

e unimodular if H, is the direct product of a reductive and a unipotent group.

o elliptic if the maximal reductive quotient of H, / diag(Zs) N H has anisotropic
center.

Remark. If H is reductive, then a closed element has reductive stabilizer and hence
1s unimodular.

If R is an F-algebra, then an element of
(2A.2) I'(R) := H(R)\G(R)

is called a relative class, or simply a class. Note that here the quotient is taken
with respect to the action (2A.1). All of the conditions mentioned in the previous
definition depend only on the relative class of an element of I'(R), and not on the
particular element. If k is a field with algebraic closure k we say that y, y’ € G(k)
are in the same geometric class if there is an h € H(k) such that h-y = y'. We
denote the set of geometric classes by

(2A.3) & k) :=Im(G (k) - H\G(k)).

2B. The A groups. If H is a connected algebraic group over a number field F,
we let Ay be the neutral component (in the real topology) of the real points of the
maximal Q-split torus in Resr/g H. We let

AG,H = AH N (AG X Ac;)
A= Ay Ndiag(Ag).
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We choose Haar measures dag on Ag, d(as, a,) on A,y and da on A.

2C. Haar measures. Throughout this work we fix a Haar measure dg on G(Af)
and use it and da to obtain a Haar measure, also denoted by dg, on Ag\G(AF).
We also fix a Haar measure d(hg, h,) on H(Af) and also denote by d(hy, h,)
the induced measure on Ag y\H (Ar). For each unimodular y € H(F) we let
d(hyg, h,), be a Haar measure on H, (Ar) and let

d(he, hy)

denote the induced right-invariant Radon measure on H, (Ar)\ H (AF).

3. Relative traces

As in the introduction, let
x : H(Ap) — C*

be a quasi-character trivial on Ag g H(F). Let f € C°(Ag\G(AF)), and let w be a
cuspidal automorphic representation of Ag\G(Ar). We let B(rr) be an orthonormal
basis of the m-isotypic subspace of L% (AGG(F )J\G (AF)) consisting of smooth

cusp
vectors and let
3.1 Kx(n(x,y) =Y R(e®)P(y).
peB(m)

A priori this expression only converges in LZ(AgG(F)\G(AF) xXAgG(F)\G(AF)).
However, it follows from the Dixmier—Malliavin lemma [1978] that there is a unique
smooth (jointly in (x, y)) square-integrable function that represents K () (compare
the proof of Theorem 3.1). From now on we use the notation K ) to refer to this
function, and whenever R( f) has cuspidal image we let

Kp,y):=Y_ Y R( ™)@,
T geB(n)
where the sum is over isomorphism classes of cuspidal automorphic representations
7w of Ag\G(AF).
We refer to the integral

3.2) e (f) i =P, (Kx(p))

as the relative trace of w(f), where %, is the period integral defined in (1.1) above.
We will show in the course of the proof of Theorem 3.1 that the integral in the
definition of P, (K (r)) is well-defined.

The following theorem amounts to the computation of the spectral side of our
relative trace formula:
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Theorem 3.1. Let f € C°(Ag\G(AF)), and assume that R( f) has cuspidal image.
Then

X e, K (e, hp)d(he, hy) =) rte (f).
Ag,nH(F)\H(AF) =

Moreover, the integral on the left and the sum on the right are absolutely convergent.

This is the main result of this section. A similar result is proven in [Hahn 2009]
in a special case, but we give a simpler proof here.

Fix a maximal compact subgroup K, of G(Fu), where F, 1= Hvloo F, is the
product of the archimedean completions of F'. As mentioned above, in the course of
the proof of the theorem we will prove that the integral in the definition of rtr 7w (f)
is absolutely convergent. Assuming this for the moment, we obtain the following
corollary:

Corollary 3.2. Assume that ¢ € Lgusp(AG G(F)\G(AF)) is a cuspidal automorphic
form, that is, ¢ is cuspidal, K ~-finite and finite under the center of the universal
enveloping algebra of Lie(Resr;g G(R))®rC. Then the integral defining P , (¢ x @)

is absolutely convergent.

Proof. It suffices to verify the corollary when ¢ lies in the w-isotypic subspace
L%usp(n) of the cuspidal subspace of L*(AgG(F)\G(AF)) for a cuspidal au-
tomorphic representation 7. By a standard argument one can choose an f €
C°(Ag\G(AFr)) such that R(f)¢ = ¢ and R(f) acts by zero on the orthogonal

complement of ¢ in Lgusp(n). Hence

Py(@ x @) =Py (Kn(p)) =1trm(f). O

3A. Integrals of rapidly decreasing functions. Let Z <Resr ;g G be the maximal
split torus in the center of G. Let T < Resy;g G x Resr/g G be a maximal split
torus and let A be a choice of simple roots of 7/(Z x Z) in Resr/g G x Resp/q G.
Set

A% =TR)"/Ag x Ag

where the + denotes the neutral component in the real topology. For any positive
real number r we set

(3A.1) AC:={teAC: 1" > rforalla € A).
For concreteness, we record the following definition:
Definition 3.3. A function

¢ AGG(FO\G(Ap) x AgG(F)\G(Ar) — C

is rapidly decreasing if it is smooth and, for all compact subsets 2 of the domain
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and all r € R and p € Z, there is a constant C = Cgq ,,, such that
lp(tx)] < Ct”
forallteAf;,x € Q,and x € A.

Proposition 3.4. For all rapidly decreasing (smooth) functions ¢ belonging to
L>((AGG(F)\G(AF))*?), the period integral

Py (@) 1=/ X (he, hy)o(he, hy)d(he, hy)
Ac.aH(F)\H(AF)

is absolutely convergent.

Proof. Since H is the direct product of a unipotent group and a reductive group,
and U (F)\U (A) is compact for any unipotent group U, it suffices to prove the
proposition in the special case where H is reductive. In this case, the argument
proving [Ash et al. 1993, Proposition 1] implies the proposition. U

Remark. This proposition depends crucially on the fact that H is assumed to be a
direct, not a semidirect, product of a reductive group and a unipotent group. It is
false for a general connected algebraic group. Examples of this occur already in
low-rank applications of the Rankin—Selberg method (see [Getz and Goresky 2012,
Lemma 10.3] for an example).

We also recall the following basic theorem.

Theorem 3.5 [Godement 1966]. Letr € R.g, p € Z and let Q2 be a compact subset
of (AcG(F)\G(AF))*% If ® € CX°((Ag\G(AF))*?) then one has an estimate

IR(P)p(tx)| < Ct* |l ¢ |

Jor all ¢ € L3, ,(AcG(F)\G(Ap))*?), 1 € AY, a € A and x € Q, where the

constant C := C, p o o is independent of ¢. In particular, R(®)¢ is rapidly
decreasing. [l

3B. Proof of Theorem 3.1. By assumption, R(f) has image in the cuspidal spec-
trum. Thus the operator R(f) is trace class and hence is Hilbert—Schmidt. We
therefore have the convergent L?-expansion

(3B.1) K, ) =Y K. ) =Y Y R(Nex)P()

T peRB(m)

where the sum is over isomorphism classes of cuspidal automorphic representations
of Ag\G(AF). By the Dixmier—Malliavin lemma [1978] we can write f as a finite



A GENERAL SIMPLE RELATIVE TRACE FORMULA 107

sum of functions of the form

Six fax f3

for f1, f2, f3 € C°(AGg\G(AF)). It clearly suffices to prove the theorem for f
of this special form, so for the moment we assume that f = f| % f> % f3. For
feCX(AG\G(Ap)) let

(N (= fg™.

We note that

D R(Ne@P(»N = Y eRA(N)P()

YeB(m) QeB()

because they both represent the same kernel. Thus

(BB2)  Kup@,y)= D RUfi*fax [He@)E()

YeER(T)

= D R(2x He@RA)B()
PEB(T)

= (R(f) x R(A) Y. R(fex)B().

peR(m)

The latter function is smooth as a function of (x, y) (jointly) and this is the unique
smooth function representing K () (x, y) as mentioned earlier (to prove conver-
gence one can invoke Theorem 3.5). Thus we can view K (r)(x, y) as an honest
function. The same is true of K ¢(x, y) and (3B.1) holds pointwise.

Thus in view of Proposition 3.4, to complete the proof of the theorem it suffices
to show that for any f € C°(Ag\G(AF)) one has

(3B.3) D 1K () x, 0)

is rapidly decreasing as a function of (x, y) € (AgG(F)\G(AF)) %2 To see this, we
use a trick going back to Selberg. Using the Dixmier—-Malliavin lemma we reduce
to the case where f = fi * f. For f € C®(Ag\G(AF)) we set f*(g) := f(g~").
Applying the Cauchy—Schwarz inequality we obtain

- 2
Krin @ 0P =] Y 2(fem(Fiew)

QER(T)
< D lr(e@l Y In (el
peB(T) QeB()

= Ka(fre) 6 D) K ponp) (V5 )
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We note that originally the first identity is an identity of L2-functions, but using
the Dixmier—Malliavin lemma and Theorem 3.5 as above we can regard it as a
pointwise identity of continuous functions. The same is true of the rest of the
functions appearing in the inequalities above, and in particular the application
of Cauchy-Schwarz makes sense. The point of all of this is that the kernels
Kﬂ(fl*fl*)('x’ x), K,,(fz»«*fz)(y, y) are positive as functions of x and y.

By Holder’s inequality one has

12
Z(Kn(fl**f])(x, X)Ka(pynf) (Vs )

w 1/2

12
< (Z Kn(fl**f])(x,x)) (Z Ka(pupp) (v, y))
b4 b/

Thus it is enough to prove that for all 1 € C2°(Ag\G(AF)) the sum
(3B.4) > Ky (x, x)
b

is rapidly decreasing as a function of x. Using the Dixmier—Malliavin lemma again
we reduce to the case that & = hy *x h, * h3, and arguing as in the beginning of the
proof we obtain

(3B.5) 3" Ky, y) = R(h2) x RY) D Koy (x, ).

In the notation of Definition 3.3, Theorem 3.5 implies that for all compact subsets
QC (A(;G(F)\G(AF))XZ, x € Q,r €R.pand p € Z one has

1/2
| K (06, 1) s 17 (Z tr (h} *h3>)
s s

forall t € A,G and o € A. Note that ) tr 7t (h3 * h3) < oo since the restriction of
the operator R(h3) to the cuspidal spectrum is of trace class (and hence Hilbert—
Schmidt). This implies the desired rapid decrease of (3B.4) and hence the theorem.

O

4. The geometric side

4A. Relative orbital integrals. Let H and G be connected algebraic F'-groups with
H < G x G, where G is reductive, and H is the direct product of a reductive and a
unipotent group. Let x : H(Af) — C* be a quasi-character trivial on Ag gy H (F).

Definition 4.1. An element y, € G(F,) is relevant if y, is trivial on H,, (F,). An
element y € G(F) is relevant if y, is relevant for all v.

The point of this definition is that irrelevant elements will not end up contributing
to the trace formula. We note that if x is trivial then all elements are relevant.
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Definition 4.2. Let v be a place of F. For f, € C°(G(Fy)) and y, € G(Fy)
relevant, unimodular and closed we define the local relative orbital integral:

RO;:(fv) :/ Xv(he7hr)fv(hg_lyvhr) d(hiahr)-
Hy, (F)\H(Fy)

Remark. The assumption of unimodularity is used to define the right-invariant
Radon measure on H,, (F,)\H (F,).

Proposition 4.3. If y, € G(F,) is relevant, unimodular and closed then the integral
RO;ﬁ: (fy) is absolutely convergent.

Proof. Since the measure d(hy, h,) is a Radon measure on H, (F,)\H(F,), to
show the integral is well-defined and absolutely convergent it is enough to construct
a pull-back map

(4A.1) CZ(G(Fy) — CF(Hy \H (Fy))

attached to the natural map H, \H (F,) — G(F,). But this map is a closed embed-
ding (since the underlying map of schemes is a closed embedding) and is therefore
proper. Thus the pull-back map in (4A.1) exists. U
4B. Global relative orbital integrals.

Definition 4.4. For f € C°(Ag\G(AFr)) and for relevant, unimodular and closed
y € G(F) we define the global relative orbital integral:

ROX(f) = f X hes hp) FGhT yhyy dhe, ).
Ag,.uHy, (Ap)\H(AF)

Proposition 4.5. If y € G(F) is relevant unimodular closed then the integral
defining RO))ﬁ (f) converges absolutely.

Proof. As in the proof of Proposition 4.3 it suffices to show that the map
H,\H(AFr) = G(AF)
is proper, but this is obvious since it is a closed embedding. U

4C. The geometric side of the general simple relative trace formula. Let
Foo = ]_[ F,
v|oo

be the product of the archimedean completions of F'. We note that A < H,, (Fx)
for all y € G(F), and

4C.1) T(Hy) :=measq,.n,), (AH, (F)\H, (AF))
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is finite if y is elliptic. Let

(4C.2) KpG,y)= > f@&x'yy.

y€G(F)

This kernel is equal to the earlier kernel of (3B.1) under the additional assumption
that R(f) has cuspidal image. With this in mind, combining Theorem 3.1 and the
following theorem immediately implies Theorem 1.1:

Theorem 4.6. Assume that if the H(Ag)-orbit of y € G(F) meets the support of f
then y is elliptic, unimodular and closed. Then

Z T(Hy)ROJ(f) =/ x(he, hy)K g (he, he) d(he, hy).

[y1el'(F) Ag.u H(F)\H(AF)
Moreover, the sum on the left and the integral on the right are absolutely convergent.

In the theorem we use the notation [y ] for the class of y; we will continue to
use this convention. We will also denote by [y ] the geometric class of y. To
prove Theorem 4.6, it is convenient to first prove the following proposition:

Proposition 4.7. Let C C G(Af) be a compact subset. Then, if H is reductive,
there exist only finitely many closed classes [y] € T (F) such that H(Ag)-y'NC # &
for some y’ € [y]. (Here the - refers to the action (2A.1).)

We will prove this in several steps.

Lemma 4.8. Let C C G(Af) be a compact subset. Then, if H is reductive, there
exist only finitely many closed classes [y18%° € T8°(F) such that H(Ap)-y'NC £ &
Sfor some y’ € [y]&°.

Proof. Since H is reductive there exists a categorical quotient X of G by the action
(2A.1) of H; it is an affine scheme of finite type over F. Let

B:G—X

be the canonical quotient map. Note that if y, ¥’ € G(F) are closed then B(y) =
B(y’) if and only if y and y’ define the same element of ['8°(F). Moreover,
assuming y’ is closed, if H(Ag) -y’ N C # & then B(C) contains the geometric
class of y’. On the other hand B(C) N X (F) is finite because B(C) is compact and
X (F) C X(Ar) is discrete and closed. O

We now show that for each closed y there are only finitely many classes in [y ]8°
that intersect C. To do this it is convenient to review some Galois cohomology.

Let So be a finite set of places of F' including the infinite places. For a smooth
linear algebraic group L over @i" let H'(Ap, L) denote the adelic cohomology
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of L:

H'Ap, L) = {(ov) e[[H(F,, L) : 0, € H\(F,, L) for ae. v ¢ So}.

Here
Hy(F,, L) :=Im(H"(Gal(F}"/F,), L(0})) > H'(F,, L)),

where F}" is the maximal unramified extension of F,, and O is its ring of integers.
We endow H!(F,, L) with the discrete topology for all v and endow H'(Af, L)
with the restricted direct product topology with respect to the subgroups H,(F,, L)
for v ¢ Sp (again given the discrete topology).

Lemma 4.9. The image of the diagonal map H'(F, L) — I, HY(F,, L) lies in
HY(Ap, L) and the induced map

H'(F,L)— H'(Ar, L)
is proper if we give H'(F, L) the discrete topology.
Let S © S be a finite set of places of F. It is convenient to say that an element
o = (0y) € HY(AF, L) is unramified outside of S if o, € Hnlr(FU, L) forallv ¢S and

that o € H'(F, L) is unramified outside of S if o maps to an element of H' (A, L)
unramified outside of S under the diagonal map (i.e., the map of Lemma 4.9).

Proof. It is not hard to see that H'(F, L) has image in H'(Af, L). We now prove
the properness statement. For this we follow the proof of [Harari and Skorobogatov
2002, Proposition 4.4]. Since H Y(F,, L) is finite for all v it is enough to show that
for all sufficiently large S O Sp, the inverse image of [ [, ¢s HI}r(Fv, L)in HY(F, L)
is finite, in other words, there are only finitely many classes in H'(F, L) unramified
outside of S. We denote by L° the schematic closure in L of the neutral component
of L. By enlarging § if necessary we can assume that L, L°, mo(L) :== L/L° and
Aut(mg(L)) are all smooth over @IS, and that the sequence

]l —L°— L— my(L) —1

is exact, which in turn yields a cartesian diagram

HYGal(F)'/F,), L°(O%)) —— H'(F,,L°)

| |

(4C.3) HYGal(F)"/F,), LO})) —— H'(F, L)

g l

HY(Gal(F}"/F,), 70(L)(OF)) — H'(F,, my(L))
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with exact columns for all v € S. All of the maps are the natural ones; we have just
labeled two of them « and 8. We now use this diagram to prove that the map

(4C.4) HL(F,, L) — H.(F,, m(L))

is injective.

We first claim that H 1(Gal(F;lr /Fy), Lo(@?fu)) is trivial for all v € S. Indeed, let
X be an L%Fv—torsor representing an element. Then, denoting by @, a uniformizer
for Of, one has

X(OF,/wy) # 9@

by Lang’s theorem [Serre 2002, §III.2.3]. Since X is smooth, Hensel’s lemma
implies that the map X (Of,) — X (OF, /@) is surjective. In particular X (Of,) # &,
proving our claim. This implies that the map « in (4C.3) is injective.

We now claim that the map

(4C.5) B : H'(Gal(F)"/F,), mo(L)(OF)) —> H'(F,, mo(L)(F)),

of (4C.3) is injective. Assuming this, it follows that (4C.4) is injective as asserted
above. To prove that f is injective, let X, X, be two 7o(L)g,, -torsors isomorphic
over @%rv such that X|r, = X»F,, which is to say that the classes of these torsors
map to the same element of H Y(F,, mo(L)(F,)) under B. The @‘Ey—isomorphisms
between X 1o and Xz@r;rv form an Aut(wo(L))g,, -torsor Y such that Y (F,) # &
(since X1fr, = X»F,), and Y (OFf,) # @ if and only if X; = X (over OF,), i.e., if and
only if X and X, represent the same class in Hl(Gal(F;“/Fv), JTQ(L)(@III{))). But
Aut(mo(L)) is proper over Of, (even finite), and hence so is Y. By the valuative
criterion of properness, Y (F,) # & implies Y (Of,) # @, implying that X; = X,
(over Of,). As already remarked, this completes our proof that (4C.4) is injective
as asserted above.

Suppose that 0 € H'(F, L) is unramified outside of S. Then the image of o in

Im(H'(F, mo(L)) — H'(Ar, mo(L))),

say &, is also unramified outside of S. The cocycle £ is attached to the spectrum
of an étale F-algebra (i.e., direct sum of finite extension fields) of degree at most
7o(L)(F) that is unramified outside of S. There are only finitely many such étale
F-algebras, so to complete the proof of the lemma it suffices to fix a cocycle &
and show that there are only finitely many o € H'(F, L) unramified outside of
S that map to it. For this, we combine the fact that H Y(F,, L) is finite for all v
and the injection (4C.4) to conclude that there are only finitely many elements of
H'(Ar, L) unramified outside of S that map to £. We now employ the Borel-Serre
theorem [Serre 2002, §II1.4.6], which states that the fibers of the diagonal map
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HY(F, L) — [, H'(Fy, L) are finite, to deduce that there are only finitely many
o € H'(F, L) mapping to £ that are unramified outside of S. ]

Now assume that L < M are smooth linear algebraic groups over @f, such that
M has connected fibers. Then the map M — L\ M is smooth and surjective. We
obtain a characteristic map

Lemma 4.10. The characteristic map cl maps compact sets to compact sets.
Remark. We do not know whether cl is continuous.

Proof. Any cocycle o € cl(L\M(F,)) € H'(F,, L) gives rise to forms ,L, ,M of
LF, and MF, equipped with a map

(4C.6) oL (Fy) \ oM (Fy) —> L\M(F})

with the property that the inverse image of o under cl is the image of (4C.6)
(compare [Serre 2002, §1.5.4, Corollary 2]). Moreover, ;M (F,) — L\M(F),)
is open (see above the proof of [Conrad 2012, Theorem 4.5]). Thus the maps
cl: L\M(F,) — H'(F,, L) are continuous for each v if we give H'(F,, L) the
discrete topology.

The map M (@‘;5”) — L\M (@}rv) is surjective by Hensel’s lemma, and it follows
that c1(L\M (OF,)) < Hr}r(Fv, L), which completes the proof of the lemma. O

Proof of Proposition 4.7. For a large enough set Sy of places of F including the
infinite places we can and do choose models of H, < H over @? that are smooth
linear algebraic groups. We use the same letters to denote these models and use the
models to define adelic cohomology as above.
In view of Lemma 4.8 it suffices to check that for a given closed y € G (F) there
are finitely many y’ in the geometric class of y such that H(Ar) -y’ NC # .
One has a commutative diagram with exact rows

H,(F) —— H(F) —— HM\H(F) —%> HYF, H,)

| l ! gl

H,(Ap) —— H(Ap) —— H,\H(Af) _d, HY(Af, H,)
and the image of the map cl on the upper line can be identified with the set of classes
in the geometric class of y. We give the first three sets on the bottom row their
natural topologies and give H'(Ar, H,) the topology described above Lemma 4.9.
Identifying H,\ H (Ar) with a subset of G(Af) via the action of H(Ar) on y,
the set of ¢’ in the geometric class of ¥ such that H(Af) -y’ N C # & injects into
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the subset of cl(H,, \ H(F')) mapping to
4C.7) cl(CNH,\H(AF))

under a. Since a is proper by Lemma 4.9, it suffices to show (4C.7) is compact.
Since CN H,\ H(AF) is compact by the fact y is closed, the compactness of (4C.7)
follows from Lemma 4.10. O

Remark. One can prove Proposition 4.7 in a simpler manner as follows. Let
C C G(AF) be a compact set. Observe that the ' € G(F) in the geometric class
of a given closed y € G(F) such that H(Ar) -y’ N C # & are in the intersection
of C and the image of the topological embeddings

H,\H(F) — H,\H(Ar) — G(AF).

Since H, \ H (Ar)NC is compact and H,\ H (F') is discrete and closed in H,,\ H (Ar),
we can deduce Proposition 4.7 from Lemma 4.8. However, the more refined
information presented in the discussion above ought to be useful as a starting point
towards future work on the stabilization of the relative trace formula.

Proof of Theorem 4.6. Proceeding formally for the moment, we have

4C8) Y T(H,)ROX(f)

[y1eT'(F)
y relevant

= Y t(H) X (e, hy) f(hy 'y he) d(he, hy).
[}/JEF(F) (A\AG,H)HV (AF)\H(AF)
y relevant

Notice that

/ X e i) f 7 i) d (e, 1) =0
Ag,nHy (F)\H(AF)

if y is not relevant, because in this case

/ X(hfvhr) d(h[v hr)y :0
AH, (F)\H, (Af)
Thus (4C.8) is equal to

/ X(hf’h”)f(he_lyhr) d(hﬁahr)
[ylel(F) Y Ac.u Hy (F)\H (AF)

X, k7Y D fhy yhe) de, hy)
vE€G(F)

v/AG,HH(F)\H(AF)

2/ x(he, ) K p(he, hy)d(hg, hy).
Ag,.uH(F)\H(AF)
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We now justify these formal manipulations. By dominated convergence, it
suffices to consider the case where x = |x| and f is nonnegative; we henceforth
assume this. Suppose that y € G(F) is relevant, unimodular and closed. Then by
Proposition 4.5 one has

|ROZ(f)] < oo.
If y is unimodular, closed and elliptic we have
|t (H,))| < oc.

If H is also reductive then the sum over y in (4C.8) is finite by Proposition 4.7 so
in this case our formal manipulations are justified.
In the general case, write

H=MHXNH

where My (resp. Ng) is reductive (resp. unipotent).

Decompose the measure d(hy, h,) on Ag g H(F)\H(AF) as the product of a
measure d(mg, m,) on Ag. g My (F)\Mpy(Ar), induced by a Haar measure on
A . u\My(AFr), with a measure d(ng, n,) on Ny (F)\Ny(Afr) induced by a Haar
measure on Ny (Ap). Since Ny (F)\Ng (AF) is compact, we can choose a compact
subset 2 C N (Af) such that

f |x|Che, he)K g (he, hy)d (e, hy)
Ag.ut H(F)\H(AF)

/ [x|(meng, mrnr)Kf(mZn€7 m,n,)d(mg, my)dng, n,)
Ag, My (F)\Mpy (Ap) xS

=/ |X|(m€’ mr)KfN(mZ, mr)d(mb mr)
AGc.uMpu(F)\Mu (AF)

where
fx):= / X1(ne. np) f (ng ' xny)d(ng, ny) € CP(A\G(AF)).
Q
This allows us to reduce to the reductive case with which we have already dealt. [

5. A relative Weyl law

Let G be a split adjoint semisimple group over Q. Note that G(Q)\G(Aq) is of
finite volume but noncompact. We also let G denote the Chevalley group over Z
whose generic fiber is G. Fix a maximal compact subgroup K. < G(R) and a
compact open subgroup K> < G(AgZ’) and let

K=Ky x K*.
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We assume that K5 = G (Z5) for any sufficiently large finite set of places S of Q
containing infinity. For our later use we fix a maximal split torus 7 < G and assume
that the Cartan involution fixing K, acts as inversion on the identity component
T(R)* of T(R) in the real topology. We impose the following torsion-freeness
assumption:

(TF) For all g € G(AY’) the group g 'K®g N G(Q) is torsion-free.

This can always be arranged by taking K *° to be contained in a sufficiently small
principal congruence subgroup.

To deduce the relative Weyl law of Theorem 1.2, we investigate the following
special case of the setting of the previous sections of the paper:

Let Hy < G be a subgroup that is a direct product of a reductive group and
a unipotent group and let H < G x G be the image of the diagonal embedding
Hy — G x G. We point out that though Hy(Q)\ Hy(Ag) is compact, we make
no such assumption on G(Q)\G(Ag), so Theorem 1.2 does not follow in any
obvious way from the usual Weyl law and its local variants. Moreover, we will also
show in Proposition 5.2 how the same asymptotic would follow for noncompact
Hy(Q)\ Hy(Ag) of finite volume provided that we knew the upper bound of the
relative Weyl law (in the setting of the usual Weyl law this was proven in [Donnelly
1982]).

We restate Theorem 1.2 for convenience:

Theorem 5.1. Assume that [Hy] := Hy(Q)\ Hy(Aq) is compact. As X — 00 one
has

5.1) OIS f[HO] 9 (h)Pdh ~ «(G) measqy, ([HoD X2,

m:m(A)<X peRB(m)K

where the sum is over isomorphism classes of cuspidal automorphic representa-
tions w of G(Aq), B() is an orthonormal basis of the w-isotypic subspace of
Lgusp(G (\G(Aq)), T (A) is the eigenvalue of the Casimir operator A acting on
the space of K w-fixed vectors in w, and d = dim(G (R)/ K ).

Here «(G) > 0 is the same constant appearing in [LV], and the Casimir operator
and the Haar measure on G(R) are normalized as in [LV]. The Haar measure on
G (Ag) is normalized to give K volume 1.

The proof of Theorem 5.1 follows from the observation that if we replace the
diagonal embedding G < G x G considered in Lindenstrauss and Venkatesh’s
work [LV] by the diagonal embedding Hy < G x G, the argument of [LV] can be
followed line by line to deduce the result. In particular, one can use the same test
functions that were constructed in that reference. We will give a few more details
but will be quite brief.



A GENERAL SIMPLE RELATIVE TRACE FORMULA 117

With a view towards future generalizations, until otherwise stated we merely
assume that Hy(Q)\ Hy(Ag) has finite volume (which is not implied by the fact
that G(Q)\G (Ag) has finite volume).

Arguing exactly as in [LV] one proves the following theorem:

Proposition 5.2. Let [Hy] := Ho(Q)\ Hy(Aqg) be of finite volume (not necessarily
compact) and let 0 < ¢ < 1. If we assume the upper bound of the relative Weyl law,
namely, if

> X / lp()2dh < @(G) + O (&) measa ([Hol) X2
[Hol

m:(A)<X peB(m)K
for X — oo, then (5.1) follows. (I

In [LV], the upper bound of Proposition 5.2 follows from work of Donnelly
[1982]. Interestingly, the corresponding relative analogue is not known. However,
in case where Hy(F)\ Ho(AFr) is compact one can establish the following result
using standard techniques:

Proposition 5.3. Suppose that [Hy] := Hy(Q)\ Hy(Ag) is compact and that 0 <
& < 1. With notation as in Theorem 5.1, for X € R~ one has the upper bound:

> X /HJ|so<h>|2dhs<a<G>+0<e>>measdh<[Ho]>xd/2.

T (A) <X peB(m)K ¥

Proof. One can mimic the argument in [LV; §5]. There are only two minor
differences between the argument there and the argument proving the proposition
above. First, in [LV; Lemma 2(4)] one replaces 1 — & with 1 4 &, since we are
interested in upper bounds. Second, one has to include Fisenstein series in the
expansion of the spectral kernel. However, unlike in the usual trace formula, their
contribution is absolutely convergent in the setting above because we have assumed
Ho(Q)\ Hy(Ag) is compact. This contribution is also positive by the choice of test
function in [LV]. |

Combining Proposition 5.3 and Proposition 5.2 yields Theorem 5.1.
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CHERN-SIMONS FUNCTIONS
ON TORIC CALABI-YAU THREEFOLDS
AND DONALDSON-THOMAS THEORY

ZHENG HuA

We use the notion of strong exceptional collections to give a construction of
the global Chern—-Simons functions for toric Calabi-Yau stacks of dimen-
sion three. Moduli spaces of sheaves on such stacks can be identified with
critical loci of these functions. We give two applications of these functions.
First, we prove Joyce’s integrality conjecture of generalized DT invariants
on local surfaces. Second, we prove a dimension reduction formula for vir-
tual motives, which leads to a recursion formula for motivic Donaldson—
Thomas invariants.

1. Introduction

Moduli spaces of sheaves (more generally, complexes of sheaves) on Calabi—Yau
threefolds are examples of moduli problems with symmetric obstruction theories
[Behrend 2009]. It is expected that such a moduli space is locally the critical set of
a holomorphic function. Such functions are called Chern—Simons (CS) functions.
Chern—Simons functions play an important role in Calabi—Yau (CY) geometry
because Behrend proved that the Milnor number of a CS function is the microlocal
version of the Donaldson—Thomas invariant [loc. cit.].

In a seminal work, Joyce and Song [2012] proved the existence of CS functions
for moduli spaces of stable sheaves on compact CY 3-folds using analytic techniques
in gauge theory. In this paper, we give a different construction of the CS functions
on toric CY 3-folds. Our construction has a few new ingredients. First, the functions
we construct are algebraic. Second, the moduli spaces of stable sheaves are, in
fact, globally critical sets of these functions. Third, the construction is explicit; i.e.,
there is an algorithm to write down such functions starting with a toric CY 3-fold
together with some extra data; see the end of Section 5.

The construction of CS function consists of three steps:

(1) Let Y be a complex CY 3-fold. Find a good ¢-structure in the derived category
D?(Y). The heart of this ¢-structure is the abelian category of representations of

MSC2010: 14F05, 14N35.
Keywords: algebraic geometry, derived category, Donaldson-Thomas theory.
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a quiver with relations. Such an abelian category is good in the sense that it has
enough projective modules and has finite projective dimension.

(2) On a moduli space of representations with fixed dimension vector, we find a
maximally degenerate point, which corresponds to the semisimple representation.
The tangent complex of the moduli space at this point is given by the well studied
L+ (Ax) Yoneda algebra in representation theory. We compute the Lo, (Ax)
products and prove they are bounded. The Calabi—Yau condition defines a cyclic
pairing on this L, algebra, which together with the L, products determines the
CS function.

(3) Embed the moduli spaces of sheaves into the moduli spaces of representations
as open substacks.

Step one is based on the existence of full, strong, exceptional collections of line
bundles on toric Fano stacks of dimension two; see Theorem 3.3. This was proved
in [Borisov and Hua 2009]. Passing from a strong exceptional collection to the
associated quiver is a consequence of derived Morita equivalence. We will study
this in Section 3.

Step two is based on the cyclic completion (see Theorem 4.2) and boundedness
of Lo products (see Theorem 4.4). Theorem 4.2 was first proved by Aspinwall
and Fidkowski [2006] and later reproved in a much more general setting by Segal
[2008]. The terminology cyclic completion is due to Segal. The proofs of these two
theorems are given in Section 4 just for our convenience.

In Section 5, we construct the CS functions and show that the moduli spaces
of sheaves are open substacks of the critical sets modulo gauge groups. Several
examples of CS functions are discussed in Section 6.

The language of L., algebras and derived schemes (stacks)— developed in
[Kontsevich and Soibelman 2009] —is extensively used in the paper. Each of
the moduli spaces mentioned above is the zero locus of an odd vector field on a
differential graded (dg) symplectic manifold and the CS functions we construct are
essentially Hamiltonian functions associated to it. In Section 2, we give a short
introduction to L, algebras and dg schemes.

In the last three sections, we give two applications of the CS function. In
Theorem 7.4, we prove that the L, products vanish at semistable points of moduli
space of sheaves on local surfaces, which leads to a proof of a special case of
the integrality conjecture of Joyce and Song [2012]. In Theorem 8.3, we prove a
dimension reduction formula of virtual motives for CS functions, which generalizes
some results in [Behrend et al. 2013]. By manipulating this dimension reduction
formula, we compute the generating series of moduli spaces of noncommutative
Hilbert schemes on toric CY stacks; this is done in Section 9.
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Notation. Three dimensional smooth toric Calabi—Yau stacks are in one to one
correspondence with the set of 3-dimensional cones over convex lattice polygons
A contained in an affine hyperplane, together with a triangulation of A. When the
polygon A has at least one interior lattice point, we can consider the barycentric
triangulation. (This means the triangulation has only one interior lattice point.)
This gives a fan X on the affine hyperplane such that its supporting polygon is A.
The fan X determines a 2-dimensional toric Fano stack Xy (X, for short). The
cone over X determines a 3-dimensional toric CY stack Yy (Y, for short), which is
the total space of the canonical bundle over X5. We call such a toric CY 3-stack a
local surface. The CY 3-stacks associated to other triangulations of A are related
to Yy by a sequence of flops.

e mw:Y — X is the projection and ¢ : X — Y is the inclusion of zero section;
« D?(X) is the bounded derived category of coherent sheaves on X
« D?(Y) is the bounded derived category of coherent sheaves on Y’;

e D, is the full subcategory of D?(Y) of objects with cohomology sheaves
supported on X.

2. L, algebras and differential graded schemes

This is a short introduction to L, algebras and differential graded schemes. A
standard reference for this topic is [Kontsevich and Soibelman 2009]. The reader
who is familiar with co-algebras can skip this section.

2A. L, algebras. Let k be a field.

Definition 2.1. An L, algebra is a graded k-vector space L with a sequence
Uiy ..., Uk, - .. of graded antisymmetric operations of degree 2, or equivalently,
homogeneous multilinear maps

pe: NL— L2 —k]

such that for each n > 0, the n-Jacobi rule holds:

n
> (=t > (=D (Gt -2 Xi)s Xy X5, ) =0,
k=1 i <<l J1<-<jn—k
{i1s e i3I Jni = {1 om)
Here, the sign (—1)€ equals the product of the sign (—1)” associated to the permu-

tation

(1~~kk+1~~~ n )

T= i i uk

with the sign associated by the Koszul sign convention to the action of 7 on the
elements (xi, ..., x,) of L.
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Definition 2.2. Let (L, ;) be an Lo, algebra. An element x € L' is called a
Maurer—Cartan element if x satisfies the formal Maurer—Cartan equation:

o0

1
Z—,uk(x,...,x)zo.
P k!

If the above formal sum is convergent, then there is a map Q : L' — L2, defined by
=1
xn—)Zauk(x,...,x).
k=1

called the curvature map. The set of elements in L' satisfying the Maurer—Cartan
equation is denoted by MC(L).

Definition 2.3. Let L be an L., algebra. We write § for the first Lo, product
w1 L — L[1]. It follows from the L, relations that 82 = 0. Let x be a Maurer—
Cartan element of L. We define the twisted differential 6* by the formula

FN =80+

1
we(x, ..., x,y).
(k—1)!
k=2

By manipulating the Maurer—Cartan equation and the L, relations, one can check
that (8*)> = 0.
Given a homogeneous element a € L, we denote its grading by |a].

Definition 2.4. A finite dimensional L, algebra (L, ) is called cyclic if there
exists a homogeneous bilinear map

k:L®L— k[-3]
satisfies:
(1) k(a,b) = (=1l (b, a);
Q) k(ur(ar, ..., a), appy) = (=Dlallalr-Faabe gy a, ... @), an);
(3) « is nondegenerate on H*(L, §).
We call such a « a cyclic pairing on L.

Definition 2.5. Let (L, uy, k) be a cyclic L, algebra. The Chern—Simons function
associated to L is the formal function

o0 k(k+1)

(=D 2
f@)= ———k (ur(z, ..., 2),2).
; k+1)!
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2B. Differential graded schemes.

Definition 2.6. A differential graded scheme X is a pair (X°, 0%), where X 0is an
ordinary scheme and O% is a sheaf of Z™-graded commutative dg algebras on X 0
such that:

(1) 0% = Oy0;
2) (’)}} are quasicoherent Oyo modules.

The cohomology sheaves of 0%, denoted by H' (O%) are Oxo modules. In
particular, H O(O;() is a quotient ring of (99( = Oyxo. We define the “O-truncation”
of X to be the ordinary scheme

70(X) = Spec H'(O%).
It is a subscheme of X©.

Definition 2.7. A morphism of dg schemes f : X — Y is a morphism of ordinary
schemes fy: X° — Y° together with a morphism of dg algebras fo0y — 0. A
morphism f is called a quasi-isomorphism if f induces isomorphisms between
H'(O%) and H'(O3) for all i.

Definition 2.8. A dg scheme X is called smooth (or a dg manifold) if the following
conditions hold:

(a) X° is a smooth algebraic variety.

(b) Locally over the Zariski topology on X, we have an isomorphism of graded
algebras 05, ~ SymoxO 0 '®0?@---, where Q' are vector bundles (of
finite rank) on X°.

Every L, algebra defines a dg manifold.

Example2.9. Let L=L"*®...¢L°@®L'®- - - be a finite dimensional L, algebra
and 7°L be the truncation of L in positive degrees. Let X° be the linear manifold
L' and Oy be the completed symmetric algebra (Sym >9L[1]1%)7, considered as
a sheaf over L!. It has the structure of differential graded algebra (dga). The Lo
structure comprises the multilinear maps xy : Symk L[1] — L[2]. The dual map
of Y 1/k!ui defines a derivation from ¢ : Oy — O% of degree one. The L
relations are equivalent to the condition that g2 = 0. It can be interpreted as an odd
vector field on the dg manifold. The “O-truncation” mo(X) can be identified with
the Maurer—Cartan locus MC(L). We call the dg manifold constructed in this way
the formal dg manifold associated to L.

Given a cyclic Lo, algebra (L, pu, ), the formal dg manifold constructed in
Example 2.9 is a formal symplectic dg manifold in the sense of [Kontsevich and
Soibelman 2009]. The pairing x can be viewed as an odd symplectic form.
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On a formal dg manifold, we can define the analogue of the usual Cartan calculus
[loc. cit.]. The CS function f is the Hamiltonian function of the odd vector field ¢
on X with respect to the odd symplectic form k. In particular, crit( f) coincides
with the Maurer—Cartan locus of L.

Comments on Ay, and L, algebras. Given an A, algebra (R, my), we can con-
struct, in a canonical way, an L, algebra (L, uy). This is done by replacing my
by its antisymmetrizer. A lazy way to do that is to first construct a dg algebra
quasi-isomorphic to R. Antisymmetrize it to form a dg Lie algebra and then take the
cohomology. The Maurer—Cartan sets of R, and L, agree as sets. In the process
of antisymmetrization, a cyclic A, algebra goes to a cyclic L, algebra. We will
skip the formal definition of A, algebra (it can be found in [loc. cit.]) although
it is implicitly used in the later sections. Using L, algebras has the advantage
that one can make sense of the Maurer—Cartan set as a scheme instead of as a
noncommutative scheme.

3. Derived categories of toric stacks and Morita equivalence

Definition 3.1. Let k be a field. Given a k-linear triangulated category 7, an object
E €T is called exceptional, if Ext!(E, E) =0 for all i # 0 and Ext’(E, E) =k.

» A sequence of exceptional objects E1, ..., E, is called an exceptional collec-
tion if Exti(Ej, Ey) = 0 for arbitrary i when j > k.

o An exceptional collection is called strong if Ext' (E j» Ex) =0 for any j and k
unless i = 0.

o We say an exceptional collection is full if it generates 7.

Let E, F be an exceptional collection of length 2 in 7. We define the left and
right mutation, Lg F' and Rp E respectively, using the distinguished triangles.

LgF — RHom(E, F)Q E—> F
E — RHom(E, F)*® F— RpE

Mutations of exceptional collection are exceptional [Bondal 1990]. But mutations
of strong exceptional collections are not necessary strong.

Given an exceptional collection Ey, ..., E,, we can define another exceptional
collection F_,,, F_,41, ..., Fy, called the dual exceptional collection to Ey, ..., E,.
First let F{ equal to Ey. Second, make F_; = Lg,E;. Then define F_; inductively
by Lr . Lr ., - LR Ei.

In our application, 7" will be the bounded derived category D?(X) of a smooth
algebraic variety (stack) X. The exceptional objects are always assumed to belong
to the heart of a certain z-structure.
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Given a full strong exceptional collection Ey, ..., E,, we denote the direct sum
P, Ei by T. It is called a tilting object.

Theorem 3.2 [Bondal 1990]. The exact functor RHom(T', —) induces an equiva-
lence between triangulated categories D?(X) and D?(mod-A), where A = End(T).
This equivalence is usually referred to as derived Morita equivalence.

Let £ be an object in D’(X), the right A-module structure on RHom(7, &) is
given by precomposition. The quasi-inverse functor of RHom(7', —) is — ®/§‘ T.

We can define a quiver with relations from a strong exceptional collection by the
following recipe. First, define the set of nodes of Q, denoted by Qy to be the ordered
set {0, 1, ..., n}. The i-th node corresponds to the generator of Hom(E;, E;). The
set of arrows of Q, denoted by Q; is double graded by source and target. The graded
piece Q'l’j is a set with cardinality dim¢Hom(E;, E;). With a choice of basis on
Hom(E;, E;), the elements of Ql]’J are in one-to-one correspondence with such a
basis. The exceptional condition guarantees that there is no arrow that decreases
the indices of nodes. The relations of Q are determined by the commutativity of
composition of morphisms. The nodes and arrows generate the free path algebra
CQ, which is spanned as a vector space by all the possible paths. Multiplication in
CQ is defined by concatenation of paths. The relations in Q form a two-side ideal
7 of CQ. We call CQ/Z the path algebra of (Q, 7). In some situations, we omit 7
and write just Q. It follows from the construction that CQ/Z ~ A.

A representation of (Q, 7) is given by the following pieces of data:

« a finite dimensional vector space V; associated to each node i;

e a matrix a”/ associated to each arrow from nodes i to j such that the matrix
associated to any element in Z is zero.

Denote the category of finite dimensional representations of (Q, Z) by Rep;(Q, 7).
There are equivalences of abelian categories:

Rep;(9Q,7) = CQ/Z-mod = A-mod.

The abelian category mod-A is Noetherian and Artinian. Its simple objects are
exactly those representations S; that have a one-dimensional vector space over node
i and 0 over all other nodes. Under the functor RHom(7', —), the exceptional objects
E; are mapped to projective right A-modules, and the objects F_; are mapped to
shifts of simple modules S;[—i].

The Yoneda algebra R of A is defined to be Ext} (D;_, Si, D;_, Si)- It has a
canonical A, algebra structure.

Theorem 3.2 builds up a link between the geometry and the representation theory
of a quiver, assuming that one can find a full strong exceptional collection in D?(X).
In general, there is no reason why such a collection (even a single exceptional
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object) should exist. However, the existence result can be proved for toric Fano
stacks of dimension two.

Recall that a two dimensional convex lattice polygon A with a distinguished
interior lattice point determines a fan X associated to the barycentric triangulation.
This uniquely determines a toric stack, which is denoted by Xy. The Fano condition
is equivalent to the convexity of A. We refer the reader to [Borisov and Hua 2009,
Section 3] for an introduction to toric Deligne—Mumford (DM) stacks.

Theorem 3.3 [Borisov and Hua 2009]. Let Xx be a complete toric Fano DM stack
of dimension two. The bounded derived category of coherent sheaves D” (X)) has a
full strong exceptional collection consisting of line bundles. The length of the strong
exceptional collection is always equal to the integral volume of A, which is also
equal to the Euler characteristic x (Xx).

We will try to extend the derived Morita equivalence to the study of the CY
stack Y. Consider the exact functor RHom(r*T, —) from D?(Y) to D?(mod-B),
where B = Hom*(w*T, 7*T). It turns out that this is still an equivalence of
triangulated categories if we define the right-hand side appropriately. The algebra B
(called the roll-up helix algebra by Bridgeland), in general, carries a nontrivial dg
algebra structure. However, in order to apply the quiver techniques, we need to find
a strong exceptional collection such that the differential of B vanishes; this is an
additional condition on a strong exceptional collection.

The following proposition generalizes [Bridgeland 2005, Proposition 4.1], which
was originally proved for P2

Proposition 3.4. Let Ly, ..., L, be a full strong exceptional collection of line
bundles on a toric Fano stack of dimension two. The roll-up (dg)-helix algebra B
is in fact an algebra, i.e., Ext™(*T, 7*T) = 0. Therefore, the exact functor
RHom(*T, —) induces an equivalence from D?(Y) to D?(mod-B).

Proof. We need a technical lemma from [Borisov and Hua 2009] about cohomology
of line bundles on toric stacks.

For every r = (r;)?_, € Z" we denote by Supp(r) the simplicial complex on the
vertices {1, ..., n} which consists of all subsets J C {1, ..., n} such that ; > 0 for
all i € J and there exists a cone of X that contains all v;, i € J. For example, if
all coordinates r; are negative then the simplicial complex Supp(r) consists of the
empty set only, and its geometric realization is the zero cone of X. In the other
extreme case, if all r; are nonnegative then the simplicial complex Supp(r) encodes
the fan X, which is its geometric realization.

Lemma 3.5 [Borisov and Hua 2009, Proposition 4.1]. Let N be an integral lattice,
Y afan in N ®7 R, and Xy the toric stack associated to ¥.. The cohomology
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HP (X, L) is isomorphic to the direct sum over all r = (r;)7_, such that

n

@(Zr,E,-) =

i=1

with E; being toric invariant divisors of the (tk(N) — p)-th reduced homology of
the simplicial complex Supp(r).

By adjunction,

Hom! (x*T, *T) = @) Hom§ (T, T ® wy").
k>0

In order to prove the proposition, it suffices to show that H¢ (X, Ci_l ®L;j ®a);{1) =0
ford =1, 2. Since Ly, ..., L; is strong exceptional, we have HY (X, Ei_l ®L;j)=0
for d = 1,2. Consider all the possible integral linear combinations Y i, r; E;
such that O(Z;":l riEi) = Ei_l ® L;. By Lemma 3.5, H/(X, Cl._l ® L) =0 for
d =1, 2 means Supp(r) is contractible. Notice that if Supp(r) is contractible then
Supp(r+1) is also contractible. Again by Lemma 3.5, H% (X, Efl QL; ®a)§1) =0
ford =1, 2. ]

Now we can write B simply by End(z*T'). It is also the path algebra of a quiver
with relations. This quiver can be constructed by the same recipe as in the previous
section. Let’s denote it by Q,. Notice that Q, will have cyclic paths because
the pull back of exceptional objects will have homomorphisms in both directions.
Again, we have an equivalence of abelian categories

Rep; (9, Z) = mod-B.

The path algebra B is naturally graded by path length. A B-module M is called
nilpotent if there exists k >> 0 such that B M =0. The exact functor RHom (s *T, —)
maps D,, to the derived category of nilpotent B-modules D?(mod-B).

The pushforward ¢, defines an exact functor from D’ (X) to D,,. Under Morita
equivalence, the modules ¢, (F_;[i]) are the simple modules in D?(mody-B) corre-
sponding to those one dimensional representations associated to each of the vertices
of Q,.

Similarly, we call the self-extension algebra

n n
Ext} (@L*s,., @L*s,)
i=0 i=0

the Yoneda algebra, denoted by R,,. It carries a natural A, structure as well.
We now give the example of derived Morita equivalence on P? and local P2.
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Example 3.6. Let X be P2 The line bundles @, O(1), O(2) form a full strong
exceptional collection. Take the tilting bundle to be T = O & O(1) & O(2). The
quiver @ is

T~ YT~

with the ideal of relations generated by

x/y_y/x’ y/Z_Z/y, Z/x —X/Z

The dual collection to @, O(1), O(2) is 22(2), Q'(1), ©. They map to simple
modules S>[—2], Si[—1], So under RHom(7, —).

The roll-up helix algebra B = End(s7*T) is the path algebra of the quiver Q,,
given by

0

: /<§:> 1

’ / ’ ’ ’ /.
Xy—yx, yz—2zy, X —Xx2z;

(@)

with relations

1/ /i " _7 1/ 1/ n_7.
x"y' —=y'x', V' ="y, X —x"7;

xy// _ yx//’ yZ// _ Zy//, ZX// _ XZ//.

4. The cyclic completion of the Yoneda algebra
Two technical results are proved in this section.

» We show the Yoneda algebra L, is the cyclic completion of the Yoneda algebra
L. This is the algebraic counterpart of the cotangent bundle construction.

o We show that the operations p; on L vanish when k& > x (X). Then, by the

cyclic completion construction, the same is true for L.

Theorem 4.2 was proved first by Aspinwall and Fidkowski [2006, Section 4.3]
and reproved in a more general form by Segal [2008, Theorem 4.2]. For our own
convenience, we give a slightly different proof here since some techniques in the
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proof are used in the later sections. But the ideas are quite similar to the ones given
in those two references.

These two results, together with the existence theorem of strong exceptional
collections (Definition 3.1) and Proposition 3.4, guarantee the existence of global
algebraic CS functions. In fact, they provide a recipe to construct CS functions,
starting from a strong exceptional collection satisfying Proposition 3.4.

Definition 4.1. [Segal 2008] Let L = @flzo L' be a finite dimensional L« algebra
over k, with its Lo, products denoted by ;. Define L to be the graded vector
space L @ L[—d — 1], i.e., L' = L' @ (L?T'~")* Define the cyclic pairing and L.
products jig : NL — L[2 — k] according to the following rules:

(1) Define the bilinear form « on L by the natural pairing between L and L*.
(2) If the inputs of i all belong to L, then define iy = .

(3) If more than one input belongs to L*, then define iy = 0.

(4) If there is exactly one input a; € L*, then define ji; by

k(flan, ...,af, ..., a1), b) = (=D« (i (@iy1, ..., ax, by ar, ..., ai-1), aj’)
for arbitrary b € L, where € = |a;|(Jaz|+- - -+[bD)+- - -+laf|(|ai41 1+ - -+1b]);

It is easy to check that (L, jix, ) forms a cyclic L, algebra. We call L the cyclic
completion of L.

We have defined the Yoneda algebras R = Ext} (B, Si, Bi_, Si) and R, =
Ext*(D!_, t+Si, D/_y t«S:) in previous section. Take the associated Lo, algebras
and denote them by L and L. Since X is a surface, d = 2 in Definition 4.1.

The following theorem will play a central role in this paper.

Theorem 4.2 [Aspinwall and Fidkowski 2006; Segal 2008]. The Yoneda algebra
L, is the cyclic completion of the Yoneda algebra L.

Proof. This can be done in three steps. First, we need to verify that L, and L
coincide as graded vector spaces. Second, we will show the pairing on L defined
by (1) of Definition 4.1 coincides with the Serre pairing on L,,. Finally, we need to
check that the L, products on L,, satisfy properties (2)—(4) in Definition 4.1.

Given an object E € D?(mod-B) ~ D?(Y) that is scheme theoretically supported
on X, one can view E as a complex of finitely generated A-modules. There is a
projective A resolution P* for E:

P — FE—0

such that each P’ is a direct sum of copies of E, ..., E,,.
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Because Y is the total space of canonical bundle over X, there is a tautological
short exact sequence of sheaves:

0 — 7*(wy') — Oy —> Ox —> 0.
Tensor it with 7*E to obtain
0— n*E(a);(]) — 1*E — LE — 0.

Since 7* preserves the projective modules, by replacing E with P* we obtain a
projective B resolutions of ¢, E as total complex of the following double complex

0

—— L ———— L * 1 NG L | N |

| | |

coi ——> P2 ®n*a)}l —— g*p-1 ®n*a);1 — g*PY ®n*w}l

—>0

We denote this resolution of (. E by P;.

As a graded vector space, L,, is computed as the cohomology of Homj, (P}, (. E).
Because P is the total complex of the above double complex, Homj} (P, 1, E) is
quasi-isomorphic with the total complex of the following double complex:

Hom(r*P~ !, 1,E) <———— Hom(w*P% (,LE) <——0

| |

.« =<—— Hom(z*P~! ®7t*a);(1, 1,E) <—— Hom(z*P° ®n*w;1, xE) =<—0

The spectral sequence associated to this double complex degenerates at E| page.
Using adjunction together with Serre duality, we obtain

Hom(i.E, i1+ E) = Homy(E, E),
Ext!(.E, 1,E) = Exty (E, E) ® Ext%(E, E)*,
Ext’(.E, 1, E) = Ext% (E, E) ® Exty (E, E)*,
Ext’(i4E, ,E) = Homy (E, E)*.

The above fact holds for any object E with scheme theoretic support on X. We
are particularly interested in the case when E is &]_,F_;[i], i.e., the direct sum
of the simple objects in mod-A. This identifies L,, and L as graded vector spaces
since both will be equal to L & L[—3]*.

In order to verify property (1), we need to write down a bilinear pairing «
on Hom*(P;, P;) such that its restriction on cohomology gives the obvious du-
ality between L and L* By adjunction, H0m3(PL;, P?) has a direct summand
Hom?(7*P* ® a);(l, *P*), which is isomorphic to Homg((P‘, P ® (D4 a)’)‘()).
It contains the finite dimensional graded piece Homgf(P', P* ® w), which has a
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trace map to H>(X, wx) ~ C. Given any two elements x and y in Hom*(P;, P),
we define the bilinear pairing x (x, y) to be the projection of x o y to the graded
piece Hom%((P', P* ® w) followed by the trace map. Clearly, the restriction of «
on cohomology satisfies property (1).

Now we need to verify properties (2) to (4) for L. For dimension reasons, it
suffices to check the case when all the inputs of the Lo, products ju lie in L.
Since L, is constructed as the cohomology of Hom*(P;,, P?), the element in L),
can be represented by either the vertical or horizontal arrows in diagram (3). More
specifically, a class in Extﬁ((E , E) is represented by a horizontal arrow and a class
in Extg((E , E)* is represented by a vertical arrow. Then property (2) follows
immediately since the rows of the double complex are simply the pullback of P*
(upto ® a);l), which is the projective resolution of E.

If we write Ext?(E, E)* as Ext’(E, E ® wy), then we can see that

s Ext'(E, E) @ Ext®(E, E @ wx) —> Ext'(E, E @ wx) ~ Ext!'(E, E)*

is the only nonzero term that can involve Ext?(E, E)*. For example, if both inputs
of 112 belong to Ext’(E, E ® wy), then the output is Ext’(E, E ® »%), which is
not in LCZU. Similarly, this argument shows that any nonzero term of u; of L, can
involve at most one Ext?(E, E)* term. This proves property (3).

Property (4) is essentially the cyclic symmetry of ;. Since the x on cohomology
is a restriction of a bilinear form (also denoted by «) on the dga Hom*(P;, P;)
with differential d, property (4) will follow from the following cyclic symmetry
properties on Hom* (P}, P;). For arbitrary elements x, y, and z:

© Kk(x,y)==xk(y, x)
o k(dx,y)==xx(dy, x);
o k(xoy,z) =xk(yoz, x).

The first property is clear since the commutator is trace-free. The trace map will
factor through the morphism

Hom?(P*, P*® w) —> L} = Ext*(E, E ® w) ~ Hom(E, E)*.

Therefore, the trace of a coboundary is zero, so the second property follows from
the Leibniz rule. The third property follows from the first and associativity of the
product. ([

Remark 4.3 (the geometric meaning of cyclic completion). From Example 2.9
recall that the completion of the truncated symmetric algebra (Sym L[1]*)™ (we
omit 770 for simplicity) can be interpreted as the structure sheaf of the graded
linear manifold M = L[1].

The odd cotangent bundle of the graded manifold M, denoted as T*[—1]M, is
defined to be the graded manifold L[1] & (L[1]*[—1]). As graded vector spaces,
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T*[—1]M is the same as L,[1]. Then, Ors—1jm coincides with (Sym L, [1]*)"
as graded algebras. The L., products ji; defines a derivation on Orx[_1j) and
the cyclic pairing « defines an odd two-form on 7*[—1]M. In fact, this process is
functorial. Hence, passing to the cyclic completion of an L, algebra is an algebraic
counterpart for taking the odd cotangent bundle of a dg manifold.

The L (or Ax) structure of the Yoneda algebra L has been studied for a long
time in the representation theory of finite dimensional algebras. The following
boundedness theorem turns out to be very important for the purpose of this paper.

Theorem 4.4. The Lo, products (higher brackets) uy on L vanish when k > x (X).

Proof. Let A be a finite dimensional algebra and {S;} be the collection of simple
A-modules. It is well known that the Yoneda algebra R = Ext, (D; Si, D; Si)
controls the deformation of A. If A is presented as a path algebra of a quiver with
relations, then the A, products m; on R can be interpreted as relations of the path
algebra; see [Keller 2006, Section 7.8].

Since in our situation the quiver is constructed from a strong exceptional col-
lection of line bundles on X (recall the construction in Section 3), the elements
in the path algebra A carry an extra grading given by the ordering on the strong
exceptional collection. The A, products preserve this extra grading. Therefore, the
length of the strong exceptional collection, which is equal to the Euler characteristic
x (X), gives an upper bound for number of nonvanishing my. This is intuitively
clear since, on a directed quiver generated by, say, a length 4 strong exceptional
collection, there cannot be a relation involving length 5 paths.

Finally, we pass from an A, algebra to an L, algebra. Since L is the anti-
symmetrization of R, we get u; = 0 when my; = 0. U

5. Moduli spaces and Chern-Simons functions

We fix the ground field k = C. Let I' be the Grothendieck group of D,,. By derived
Morita equivalence, I' also equals the Grothendieck group of the derived category
of nilpotent representations of Q,,. It is a free abelian group of rank n + 1 generated
by the collection of simple modules ¢, Sp, . . ., tx.S,. If we fix these simple modules
as a Z-basis of T, every effective class can be written as a vector d = (dy, .. ., dy)
with nonnegative entries. We call such a choice of d a dimension vector.

Theorem 5.1. Let X be a toric Fano stack of dimension two and Y the total space
of its canonical bundle. Pick a strong exceptional collection constructed in [Borisov
and Hua 2009] and denote the corresponding quiver of Y by Q. Let 9, be a
bounded family of sheaves on Y support on X with class y € I. There exists a
dimension vector d and an open immersion of Artin stacks from 9M,, to the quotient
stack [IMC(L.q)/ Gal, where MC(L,.q) is the space of representations of Q,, with
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dimension vector d and G4 (defined later in this section) is the gauge group acting
by changing of basis.

Theorem 5.2. Given a class y € T, a bounded family of sheaves on Y supported
on X with class y is the critical set of an algebraic function fy.

We call such a function a Chern—Simons (CS) function. The infinitesimal de-
formation of representations is controlled by the following L, algebras. Fix a
dimension vector d, define

n n
La :=Ext'<@55 V. Ps ®V,->
i=0 i=0
and

n n

i=0 i=0

where each V; is a vector space of dimension d;. They are generalizations of the
Yoneda algebras: if we take d = (1, ..., 1) we obtain the Yoneda algebras. All the
results in Section 4 clearly generalize to Lg and L, 4.

The space Ltll can be identified with the space @GEQIHom(Vi, V) of matrices,
summing over all the arrows, and similarly for L Clo d with a € Q. It carries a
natural bigrading by the source and target of each arrow. The space Lg can be
identified with the space EBier End(V;), which is the Lie algebra associated to the
group HieQOGL(Vi)' We denote this group by G4 for simplicity. It acts on Ly by
conjugation. Analogously, the space LS)’ 4 can be identified with the Lie algebra
associated to the same group, which acts on L, 4.

The following lemma is well known in representation theory of quivers.

Lemma 5.3. The elements of MC(Lg) are in one to one correspondence with the
representations of Q of dimension vector d, and analogously for the elements of
MC(L.q) and the representations of Q. Two representations are isomorphic if
and only if they belong to the same orbits of Gg4.

Proof. See [Keller 2006, Section 7.8] or [Segal 2008, Proposition 3.8]. O

The L, algebra L controls the infinitesimal deformation of representations in
the following sense. Let M be an A-module with dimension vector d. We denote
its corresponding Maurer—Cartan element by x. The homology groups H'(Lg4, %)
are isomorphic to EthA(M , M). In general, Ly is just the formal tangent space at
the point €, S; ® V;. However, in our situation because of the boundedness of 11x
(Theorem 4.4), the Maurer—Cartan equation actually converges. An analogous
argument holds for the L, algebra L, 4, with M a B-module with dimension
vector d, in which case the homology groups H'(L,, 4,8%) are isomorphic to
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Ext’é (M, M). Therefore the moduli space can be constructed globally as mentioned
in the previous Lemma.

Proof of Theorem 5.1. Given Lemma 5.3, it suffices to show the existence of an
open immersion of M, into [MC(L, 4)/Gal.

First, we need to construct a monomorphism of stacks. Let’s pick an ample line
bundle L on X. If T is a tilting bundle on X then 7 ® L~ is again a tilting bundle
for any integer N. Therefore, the functor RHom(7*(T ® L~N), =) induces an
equivalence from D?(Y) to D?(mod-B). Because T is direct sum of line bundles,
we can choose N > 0 such that for any sheaf £ € 91, RHom(7n*(T ® L), 8)
is concentrated in degree zero, i.e., is a module over B.! Let d be its dimension
vector, which depends on both y and N. Then we obtain a morphism between
stacks. Because of the derived Morita equivalence, this is clearly an injection.

Next we need to argue this morphism is étale. Let A — A — C be a small
extension of pointed C-algebras, and let T = Spec A and T’ = Spec A’. Consider
the 2-commutative diagram

T

fmy
_ 7
- RHom(z*(T®LN),—)
P

T' “—= [MC(Ly.4)/ Gl

of solid arrows. We have to prove that the dotted arrow exists, uniquely, up to a
unique 2-isomorphism. This follows from standard deformation theory. We need
that RHom(7*(T ® L~), —) induces a bijection on deformation spaces and an
injection on obstruction spaces (associated to the above diagram). They follow
immediately for the equivalence between D”(Y) and D”(mod-B). In fact, all the
obstruction groups are isomorphic. U

Proof of Theorem 5.2. As we have seen in Definition 2.5, there is always a formal

function
0 o 1\k(k+1)/2
(=D _
7) = —x Zy...,2),2
fa(@) ; G < ). 2)
associated to the cyclic Ly, algebra L, 4, where z € Lclo 4- The critical set of fg4
coincides with MC(L,, 4).

By the boundedness in Theorem 4.4, such a formal function is, in fact, a poly-
nomial function of degree at most x (X). Therefore, MC(L,, 4), as a subvariety of
Lclo 4» 18 the critical scheme of fj. Since the G4 action is induced from the action
of the Lie subalgebra L?U 4» it is clear that fy is invariant under this action.

IThis is not true when T contains torsion.
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By Theorem 5.1, 9, is an open substack of [MC(L, 4)/Gq] for an appropriate
choice of d. The theorem follows since we can restrict the function fj. ]

Remark 5.4. Recall that by Theorem 4.2, Lclu’ 4 decomposes into L}, @ (Lf,)*. The
CS function f4 has a nice property coming from this decomposition:

If we write the cyclic pairing x (x, y) as tr(x o y), then the function fz can be
written as the trace of the cyclic invariant polynomial of matrices. Definition 4.1
tells us that the variables in (Ltzi)* appear exactly once (in degree one) in all the
monomials. This means that we can always write f; as an inner product of a
polynomials of elements in L}l and elements of (Lfl)*. This property plays a central
role in Section 8.

As a summary of Sections 4 and 5, we give an algorithm to compute CS functions
on local toric Fano surfaces.

STEP 1 Choose a strong exceptional collection of line bundles on X. By results
in Section 3, this completely determines the quiver Q, together with its
relations.

STEP 2 Compute the A, structures on the Yoneda algebra R using the correspon-
dence between m; and the relations on Q.

STEP 3 Apply Theorem 4.2 to compute #iy for R,,.

STEP 4 Plug in specific dimension vector d, antisymmetrize R, 4 to L 4, and
apply Definition 2.5 to compute fy.

6. Examples of CS functions
In these section, we discuss some examples of CS functions.

6A. Complex affine 3-space C3. The easiest example of a Calabi—Yau 3-fold is
the three dimensional affine space. Rigorously speaking, it is not a local surface
but still the CS function can be computed using the same philosophy.

Let B be the polynomial algebra with three variables. The category Coh(C?)
equals mod-B. Consider the quiver Q,,:

@ s

Z

with relations xy — yx, yz — zy, zx — xz. Its path algebra is equal to B.

Given a positive integer n, let L,, , be the Yoneda algebra Extg33 (Or0y, O10)) gL,
Since the only nonvanishing product is fi2, L, , is a graded Lie algebra. Now, let
A, B, C be n x n matrices associated to x, y, z. The CS function f, is equal to
tr((AB — BA)C).
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The Morita equivalence in this case is the classical Koszul duality between
symmetric and exterior algebras

D?(Coh(V)) = D’ (mod-/\ (V).

The quiver Q,, gives combinatorial description for both C? and the cotangent
bundle of the three dimensional torus. The first is clear since the path algebra of
Q,, is the algebra of functions on C>. For the second, we can think of the quiver as
the 1-skeleton of 73 and the relations as the gluing conditions of two cells.

The stack [crit( fg)/Gg4] is related to two interesting moduli spaces. The first
one? is the moduli space of length n sheaves on C? and the second one® is the
moduli space of flat GL,, vector bundles on T3. These two moduli spaces are related
by homological mirror symmetry.

6B. The local projective plane wp:. Using the calculations done in Example 3.6,
the CS function for the local projective plane is

tr(C"(A'B— B'A)+ A"(B'C —C'B)+ B"(C'A— A'C))

where A, B, C, A/, B’, C', A”, B”, C" are matrices associated, respectively, to the
arrows x, y, z, x, v, 2, x", y", 7"

6C. The Calabi-Yau 3-folds wp:3:1) and wp:1:2). In this subsection, we will
compute the CS functions of wp(;.3.1) and wp(2.1:2). These two Calabi—Yau 3-folds
are K-equivalent; consequently, there is some interesting symmetry between these
two CS functions.

For simplicity, we set X; :=P(1:3:1) and X, :=P(2:1:2). The stacky
fan X; of X has rays (0, 1), (1, —1), (—1, —2); the stacky fan X, of X, has rays
0,2), (1,0), (—1, —1). Denote their canonical bundles by Y; and Y.

The Picard groups of X; and X, both equal Z. We denote the positive generator
by O(1). On X, O(1) can be written as O(D,), with D, being the toric invariant
divisor for (1, —1). On X», O(1) can be written as O(D;) with D being the toric
invariant divisor for (0, 2). For both D?(X) and D?(X»),

O, 01, 02, 0@3), 04

form a full strong exceptional collection. The quivers associated to these two
collections are denoted by Q; and Q,. The sets of vertices {0, 1, 2, 3, 4} correspond

20ne can modify the construction slightly to include the Hilbert scheme of points; see [Behrend
et al. 2013].
30ne needs to include a stability condition to make it hold rigorously.
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to 0, 0(1), 0(2), 0(3), O4).

/xy\
) 9 o oo I — 1~

1 1
X x —7 Sy —7 °
Vo (4] [ %] U3 V4
Xy
/ . y: é
X v/ x
6) (9)3 o—/l—;o—%o—/l—;o—l

Notice that X1 and X, are related by a shift of origin. This shift changes the stack
completely. But surprisingly, the full strong exceptional collections on X5, and
X, are related [Borisov and Hua 2009]. We denote the arrows from the i-th node
to the j-th node by A;;, B;; or C;; and the relations from the i-th node to the j-th
node by R;;. Because the quivers are directed, i is strictly less than j.

Using the algorithm at the end of last section, the CS function for wp(i.3.1) is

(7)  f =tr(Rao(Bi2Aoi — A12Bo1) + R31(B23 A1z — A3 B12)
+ R42(B34A23 — A34B23) + Rao(A34Co3 — Cr4A01)
+ S40(B34Co3 — C14301))-

The CS function for wp.1.2) is

(8) f =1tr(R30(A23Bo2 — Bi3Ao1) + Ra1(BasA12 — A34B13)
+ 830(A23C02 — C13A01) + S41(Cag A2 — A34C13)
+ R40(B24Co2 — C24B(2)).

6D. Blow-up of the projective plane P* at one point. The first example which
involves u; terms with k£ > 2 is the local DelPezzo surface of degree one. It was
first computed in [Aspinwall and Fidkowski 2006].

Let X be the blow-up of P2 at one point. Denote the pull back of a hyperplane
by H and the exceptional divisor by E. The derived category D”(X) has a strong
exceptional collection, consisting of O, O(H), O2H — E), O(2H), and the
corresponding quiver is

) s o@/

(@) O(H) O(2H —E) OQCH)
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The graded piece L? of the Yoneda algebra has dimension three. We denote the
basis by rg, sg, s1. If we denote the matrices associated to each arrow by uppercase
letters, then the CS function is

f =tr(Ro(ByDy — By Do) + So(AByD> — CDy) + S1(AB1 D, — CDy)).

7. Integrality of generalized DT invariants

In this section, we give the first geometric application of CS functions. The main
result is Theorem 7.4, where we show that the L, products vanish at semistable
points of the moduli space of sheaves of local surfaces. As a consequence, the
generalized Donaldson—-Thomas invariants defined by Joyce and Song [2012] are
integral on local surfaces.

We only consider sheaves on Y that belong to the category D, i.e., set theoreti-
cally supported on X. Furthermore, we assume they are supported in dimension
bigger than zero. The integrality of the zero dimensional sheaves has been proved
in [Joyce and Song 2012, Section 6.3].

Let L be an ample line bundle on X. The Hilbert polynomial of a coherent sheaf
£ on Y is defined to be x (£ @ w*L¥) for k >> 0. The slope of &, denoted by (&) is
defined to be the quotient of the second nonzero coefficient of its Hilbert polynomial
by the first. We will adopt the notation of Joyce and Song [loc. cit.]. A sheaf £
is called t-stable if for any proper subsheaf F, the slopes satisfy u(F) < w(€).
Similarly, £ is called t-semistable if p(F) < u(E). The moduli space of T semistable
sheaves on Y with class y € I is denoted by 9° (Y, y).

Lemma 7.1. Assume X is a Gorenstein toric Fano stack of dimension two. If € is a
t-stable sheaf on Y, then £ is supported on X scheme theoretically.

Proof. Let Z be the scheme theoretical support of a t-stable sheaf £. There is
a trace map trg : Hom* (€, £) — Oz and a map is : Oz — Hom’ (&, €) such that
treoig =r1kz(€). (We refer the reader to [Huybrechts and Lehn 1997, §10.1] for
the precise definitions of these maps.) Since the rank of £ (over Z) is positive, ig
must be an injection. By local-to-global spectral sequence, there is an injection
H(Z, 07) — Ext% (&, &).

By stability, £ must be pure. We first assume & is supported in dimension two.
Then Z is an order n thickening of X in the normal direction. The cohomology
group HY%Z,0y) is equal to EB?:O HO(X, a))_(i). The dimension of H°(X, a))_(l)
can be identified with number of lattice points in A in Mk := Hom(M, R), where
M is the dual lattice of N. Recall that the polytope supporting the fan ¥ lives in
Ng. In general, A is only a rational polytope. However, since the origin is always
in the interior of A, the dimension of H°(X, a);(l) is at least one. Therefore, the
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dimension of H%(Z, ©y) is strictly bigger than one. We get a contradiction since a
stable sheaf can only have one dimensional endomorphisms.

Now, let Z be a thickening of a divisor C in X. Similarly, it suffices to show that
HO(C, a);l) is nonzero. There is a morphism HO(X, a);l) — HO(C, a);(l). Let us
denote the toric divisors of X by E;. Because C is an effective divisor, it can be
written as a linear combination ) _; a; E; where all a; are nonnegative integers and
at least one of them is positive. Consider the short exact sequence

00— Ic — Ox — Oc — 0.
The cohomology group H(C, a)}l) vanishes only if the morphism
H(X, Ic ® wy) — H(X, w}")

is a bijection. The first group can be written as H%(X, O(}_;(1 — a;)E;)). The
Gorenstein condition implies that A and AY are both lattice polytopes. The dimen-
sion of H (X , (’)(Zi (1-— ai)Ei)) is equal to the number of lattice points inside the
polytope that is obtained from AY by translating its faces towards origin. Because
at least one a; is positive and A" is a lattice polytope to begin with, the number of
lattice points will decrease when one face is pushed. As a consequence, H°(C, a);(l)
is nonzero. ]

Lemma 7.2. Let £, and &, be t-semistable sheaves on X such that iw(€1) = u(&y).
Then, Ext>(&1, &) = 0.

Proof. By Serre duality, Ext2 (&1, &) = Homy (&, €1 ® wyx)*. Because wy! is
y y X X

ample and &1, & have dimension bigger than zero, u (&1 @ wyx) < w(&1) = u(&).
Hence, Ext2(é’1, &) vanishes by stability. O

Lemma 7.1 doesn’t hold for semistable sheaves. For example, if we take a proper
but nonreduced curve in Y, then its structure sheaf can be semistable but not stable.

Lemma 7.3. Let £ be a t-semistable sheaf on Y. Then the restriction E|x is a
semistable sheaf on X.

Proof. Because € is set theoretically supported on X, it can be written as consequent
extensions of stable sheaves on X with the same slope (the Jordan—Holder filtration).
Furthermore, the natural morphism £ — £|x is always a surjection of sheaves. Since
w(€lx) = u(€), any quotient sheaf that destabilizes £|x will destabilize £ as well.

O

From now on, we will assume X is Gorenstein.
Theorem 7.4. The L, products jix of L, vanish at semistable points.

Proof. Let € be a t-semistable sheaf on Y. It follows from Theorem 5.1 that we can
define a cyclic L, algebra L,, such that £ is mapped to a Maurer—Cartan element x.
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Moreover, Ext"Y(é’ , £) coincides with H'(L,,, 8*). The L, products ji; uniquely
defines L, products on H*(L,,, 8*) up to L, isomorphisms. We say that ji; vanish
at x if they vanish after passing to H*(L,,, §%).

An MC element x of L, decomposes into (x, €), with respect to the decompo-
sition L}U = L' @ (L?»* It follows from Theorem 4.2 that x is an MC element
of L. The cohomology H*(L,,, 8*) can be computed as the cohomology of the total
complex of

(L** (Lh* (LO)*
[
L L! L?

where the horizontal differential is §* and the vertical differential is induced by
[e, —].

If x is the image of a sheaf of the form ¢,.£ for some sheaf £ on X then x = (x, 0).
In that case, the associated spectral sequence will degenerate at E; page.

If € #£ 0, we need to pass to the E; page of

HA(L, 8 —2~ HY(L, §) ——= HO(L, 8"

[e,—]T [e,—]] [e,—]]

H(L,8) —— H'(L,8") — H*(L, 8"

The MC element (x, 0) is exactly the one corresponding to £|x. So H (L,8) =
Exté((5|x, €lx). Now by Lemmas 7.3 and 7.2, H?(L, §%) vanishes. By the previous
commutative diagram, H (L, 8) and H*(L,, §°) are equal to the kernel and
cokernel of the map

H'(L,s") <=L g, sy,

The Ly, structure jix on H*(L,,, 8%) is obtained from p; by transferring. The
vanishing of H>(L, 8*) and H?(L, §*)* together with Theorem 4.2 implies 1 = 0.
Therefore ji; must vanish after transferring to cohomology with respect to [e, —]. [

Remark 7.5. A corollary of Theorem 7.4 is that the moduli space of r-semistable
sheaves on Y is smooth as an Artin stack since the images of ji; are nothing but
obstructions to smoothness of moduli space.

We are not going to define Joyce’s generalized DT invariants and state the general
form of the integrality conjecture since it requires too much work. The interested
reader can refer to [Joyce and Song 2012] for the full story.

Corollary 7.6. The generalized Donaldson—Thomas invariants DT(z) for t-semi-
stable sheaves are integers on local surfaces.
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Proof. The integrality has been proved for the DT invariants of a quiver without
relations. The proof can be found in [Joyce and Song 2012] or [Reineke 2011]. By
[Joyce and Song 2012, Proposition 7.28], the formal neighborhood of a point of the
moduli space of sheaves is isomorphic as formal schemes to a formal neighborhood
of the origin of the moduli space of representation of the Ext-quiver (see the
proposition for the definition). By Theorems 7.4 and 4.4 the relations of the Ext-
quiver vanish when the point is taken to be semistable. Jiang [2010] proved that
Behrend function only depends on the formal neighborhood of a moduli space.
Therefore, the integrality of the moduli space of semistable sheaves is equivalent to
the integrality of the moduli space of representations of quivers without relations. [J

8. A dimension reduction formula for virtual motives

In this section, we give the second application of CS functions. We prove a decom-
position theorem for virtual motives of fy, which partially generalizes [Behrend
et al. 2013, Section 3]. If we could identify geometric stability with the appropriate
quiver stability condition, then we would obtain a decomposition theorem of virtual
motives of Hilbert schemes, which generalizes the most interesting part of [loc. cit.].
However, so far we have no idea how to deal with geometric stability.

Let L be the motive of the affine line. Given a scheme X, we will denote its
motive by [X].

Consider a smooth scheme M with an action of a special algebraic group G,
together with a G-invariant regular function f : M — C. Denef and Loeser [2001]
defined the motivic vanishing cycle [¢ r] in a suitable augmented Grothendieck ring
of varieties (called the ring of motivic weights). Since our result is not going to
involve the precise definition of this ring, we refer to [Behrend et al. 2013, Section 1]
for the precise definition of the ring of motivic weights.

Definition 8.1. [Behrend et al. 2013] In the appropriate ring of motivic weights,
we define the virtual motive of a degeneracy locus by

- dim i G [d)f]
[G]
We will try to get some property of the virtual motive of the CS function f;.

The following lemma guarantees that the main technical result [Behrend et al. 2013,
Proposition 1.11] applies.

[erit® (f)]vie == —

Lemma 8.2. Let f;: L (10 a — C be the CS function constructed in Section 5. There
is a C* action on L(lu 4 Such that:

(1) For , € C* fa(A-2) = Afa(2).

(2) The limit limy,_,q A - z exists in L, ,.
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Proof. Let us choose coordinate z = (y1,...,yj, ..., w],..., w/,...) on L(L’d
with respect to the decomposition L }U i= Lé @ (L‘Zi)*. As mentioned in Remark 5.4,

s 72
dim Ly

fa= Y ai(...yj...w

i=1
where the g; are polynomials in y;. We define the C* action by scaling w}. The
limit of the orbits of this one parameter subgroup is L :11' ([
Theorem 8.3. Take X, Y and Lg, L, 4 as before. We have the dimension reduction
formula
[¢7,]=—[(LY*]- IMC(La)].

Proof. The existence of the C* action in Lemma 8.2 implies that the Milnor fibration
given by fy is Zariski trivial outside the central fiber. Hence

(L) 0—1f7 (O]

-1 _
a1 = =24

Furthermore, Lemma 8.2 together with [Behrend et al. 2013, Proposition 1.11]
implies that

[br]1=1f"(D1- £ O]
Recall that

.
fd=Zai(y1,...,yj,...)-w;k,

where r = dim Ltzi. We can stratify L}I by the union of {g; =0|i=1,...,r}and its
complement. The first subscheme is nothing but MC(L,4). Using this stratification,
we obtain

[ O] = [(LDH*IIMC(La)] + (LY = IMC(LO)DILH*IL™!
= (1 —L"HILY* IIMCL)] +L7'[L,, 41.

Then we obtain the formula for [¢, ]:

(10) - = o S e
[ps,] = fd fd f L—1 L—-1
__(T[(Ld) IMC(La)]+ — )[L—l T

= —[(L3)*IIMC(Lg)]. O
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9. Virtual motives of the moduli space of framed representations

In this section, we will compute the virtual motive of the moduli space of framed
representations, which is a noncommutative analogue of Hilbert schemes. The main

result is the formula
1
C(L2t)
Z(t) = ———.
C(L™21)

where C([L%t) is a generating series defined in (16).

Using the Chern—Simons function we obtained, this is a straightforward general-
ization of the work in [Behrend et al. 2013] in the case of C3. The same calculation
is also obtained independently by Morrison [2012].

We fix the following notations for motives:

[dl! o= @ = DA =1L =1),  [d! = [l
=0

dl [d]! dl 1~ [d
[d/} Cld—dW!d [d’L =11 [dj'

i=0
Let GLy = [];_, GLy, and Gry g = [[;_, Gr(d}, d;). It is easy to show that
Yo (%) d
[GLd] =[&i=0\2 [d]ﬂ_' and [Grd’,d] = d .
L

Definition 9.1. Consider the quiver Q,, defined in the previous section. Given a
dimension vector d, let Vj, ..., V,, be the sequence of vector spaces of dimensions
do, ...,d, over the nodes. A framed representation V of Q, with dimension
vector d is a representation of Q,, together with a vector v = (v, ..., v,) such that
v; € V;. A framed representation V is called cyclic if vy, ..., v, generate V.

Denote the submodule generated by v by M,, and let
Ya={(A,v) €Ll 4 x Vox...x V| fa=0},
Za={(A,v) €Ll 4 xVox...xV, | fa=1}

Then Y = || Yj/ and Zg = || 7z where
d'<d d'<d

Y ={(Av) e Ll yx Vox ... x Vy| fa=0,cl(M,) =d'},
Z8 ={(Av)eLl yx Vox...x V| fa=1,cl(M,) =d'}.

Now, write wg = [Y4] — [Z4] and w? = [Y4]—[Z4].
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Let |d| = )"} _,d;. By Theorem 8.3, we have
(11) wg = LI[(L3)*]IMC(Lg)].

There is a projection from Y;’, to the Grassmannian Grg 4, whose fiber is the set

(5 40 ) | fa=0},

where A® are matrices of size d’ x d’ (depending on the source and target vertices),
A" are matrices of size (d —d’) x (d —d’) and A’ are matrices of size d’ x (d —d’).
There is an embedding of LCIO’ a X LOIU’ d_q 1NtO Lclo’ 4 Py mapping to block diagonal
matrices.

The CS function fy satisfies

far((’?)0 2‘1), v) = fa(A% v) + fa—ar (Al ).

Denote the subgroup of GL,; that preserves these Borel matrices by Bg 4 and the
Euler form of Q,, by x.

' [Ba.a'] oo o Td ,
yd 1= Pdddl ) —xaa d)|: ] vi oty
[ d] [GLd’][GLd—d/] d [L([ d] [ d d]

+ (L= 1) [Z81- [Za-a]) - L7940,
A similar analysis yields

[Ba.a'l

78 = ——%4°
Za] [GL4)[GLy—_a]

N | )
AT @D (Y [ Za-a)
d],
+(L=2)- 1281 [Za—a] +1Z8) - [Ya_a]) - L7174,
The above formulas, combined with (11), yield

/ [Bd.a'] o d.d—dy y —d—a'|| 4 /

(12) wi =—— @A Tl wg )
4 7 [GLg1GLg_a'] !

_ BaallLg ) aaa)

 [GL#1[GL4-a']

d /
[ d,} [MC(La-a)]- w§ .
L

Because Yy = || Yﬂ‘,’l and Zg = || 2%, we get
d'<d d'<d

d !

d'<d



CHERN-SIMONS FUNCTIONS ON TORIC CALABI-YAU THREEFOLDS 145

Letcqg =[MC(Lg4)]/[GL4]. Applying (11) and (12), we obtain the recursion formula

(13) wd =1L IIMC(Ly)]

(5]
[GL4]

_yBaall )

’ ~d .
—x(d',d-d")
d [GLd/][GLd,d/] [L |: :| [MC(Ld d’ )] wd/

d

(@751
[GLa]

=LY Iea+ Y ML) - L¥ Dy
d'<d
Here f;° is the restriction of f4 to the semistable loci.
Define the virtual motive of the noncommutative Hilbert scheme Hilb? by

radia [Prp]

Rdl . —
(14) [Hilb ]y := —L Tt

After replacing ¢ 3 by [Hilbd]vir, subject to the above formula, we obtain

2x(d,d—d))+x @ .d") d>+x(d’d) @
(15 LL)Tréa =y L- T (L)) Ca—a - Hilb ]y

/<d
1| - d.d)— (d d'd—d) _ |d—d'| - . ’
L2 Nea=Y L7 2 [(L7_4)*1a—a - [HiIb Jyir
/<d
(, \d| (d— d d—d') _di
LSS (L) e = Y LT LS (L) e - HID Ly
d'<d

Define the generating series for ¢4 by

(16) C@)=

L3)*1éq-1¢

d eZ’;{)l
and the generating series of noncommutative Hilbert schemes by

Z@t)= Y [Hilb"}y; -7
dez})

Then the generating series of Hilbert schemes can be written as

(17) Z(t) = ﬂ.
C(L™21)

Finally, notice that [LX(@-9/ 2[(L(%,)*] is nothing but L.x2@-®/2 for the Euler form of
the quiver Q. So C(¢) is the generating series of the moduli space of representations
of Q (without stability).
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ON THE FLAG CURVATURE
OF A CLASS OF FINSLER METRICS
PRODUCED BY THE NAVIGATION PROBLEM

LI1BING HUANG AND XIAOHUAN MO

One of the important approaches in discussing Finsler geometry is the nav-
igation problem. In this paper, we determine the flag curvature of a Finsler
metric produced from any Finsler metric and any conformal field in terms
of the navigation problem, and therefore we provide a unifying framework
for the fundamental equations due to Bao, Robles, and Shen, Cheng and
Shen, Foulon, and Mo and Huang.

1. Introduction

The navigation problem (or shortest time problem [Shen 2003]) was first studied by
E. Zermelo [1931]. Bao, Robles, and Shen [Bao et al. 2004] classified Randers met-
rics of constant flag curvature via the navigation problem on Riemannian manifolds.
Flag curvature is an important quantity in Finsler geometry because it takes the place
of sectional curvature in the Riemannian case [Bao and Chern 1993]. The complete
classification of Randers metrics of constant flag curvature, due to Bao, Robles, and
Shen, is motivated by the following result [Bao et al. 2004; Chern and Shen 2005]:

Theorem. A Randers metric F is of constant flag curvature K = A if and only if
(i) h has constant sectional curvature L = A + c? and (i) V is a homothetic field
of h with dilation c, where (h, V) is the navigation data of F.

Condition (ii) is equivalent to F" having constant S-curvature [Shen and Xing
2008; Xing 2005]. Recently, Cheng and Shen [2009] established a relationship be-
tween the flag curvature of F and 4 for a Randers metric F of isotropic S-curvature
(see also [Chern and Shen 2005]), generalizing the flag curvature nonincreasing
equation of [Bao et al. 2004]. More generally, they obtained a relationship between
the Riemann curvature of F and /. Using this, they locally classified Randers
metrics of scalar flag curvature with isotropic .S-curvature [Cheng and Shen 2009;

Xiaohuan Mo is the corresponding author. Huang was supported by the National Natural Science
Foundation of China 11301283. Mo was supported by the National Natural Science Foundation of
China 11371032.
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Chern and Shen 2005; Shen 2004]. Mo [2008] gave a global classification for these
metrics on compact manifolds by using a formula of Cheng and Shen [2009]. It is
worth mentioning the recent result by Xing [Shen and Xing 2008] that a Randers
metric F is of isotropic S-curvature S = (n+1)c(x) F if and only if V' is conformal
with respect to s. The theorems of Cheng and Shen [2003] and Mo generalize
results previously only known in the case of locally projectively flat Randers metrics
with isotropic S-curvature. Recall that all locally projectively flat Finsler metrics
are of scalar curvature [Chern and Shen 2005, Proposition 6.1.3].

Recall that a vector field V' on a Finsler manifold (M, F) is called conformal
with dilation c(x) if its flow @, satisfies

F(Ds(x), @5 () = 2 X F(x,p), VxeM, yeTiM,

where ¢(x) = [do;(x)/dt];=¢ [Shen and Xia 2012; Huang and Mo 2013]. In
particular, V' is called a homothetic field if ¢ is constant, and V is called a Killing
field if ¢ = 0 [Huang and Mo 2011; Mo and Hang 2007].

At the 2004 International Conference on Riemann—Finsler Geometry at Nankai
University, P. Foulon announced that if F is a Finsler metric and V is a Killing
field, then F and F have the same flag curvature. Mo and Huang [2007] studied
the navigation problem for any Finsler metric ' and any homothetic field (for
instance, the Funk metric on a strongly convex domain) in the spirit of the flag
curvature nonincreasing equation of Bao, Robles, and Shen and the announcement
of P. Foulon. They showed that for a homothetic field, the navigation representation
satisfies the flag curvature nonincreasing equation. In particular, the navigation
problem has the flag curvature preserving property for a Killing field. Applying
this result, Hu and Deng [2012] established a principle to classify homogeneous
Randers spaces with (almost) isotropic S-curvature and positive flag curvature, and
then they gave a complete classification of these homogeneous Randers spaces.

In this paper, we provide a unifying framework for [Bao et al. 2004; Cheng and
Shen 2009; Mo and Hang 2007]. We study the Finsler metric F produced from any
Finsler metric F and any conformal field V in terms of the shortest time problem
and give the relation between the flag curvatures of F and F. Precisely we show
the following:

Theorem 1.1. Let F = F(x, y) be a Finsler metric on a manifold M with Cartan

torsion A and V be a vector field on M with F(x,Vx) < 1. Let F = F(x,y)

denote the Finsler metric on M defined in (2-2). Suppose that V is conformal with

dilation c(x). Then the flag curvatures of F and F are related by

Kx( 32 2oy = ke 7
FyAu)—|3=———c"+2V(c) | = Kr(J, Y Au)

F(x.y)
where y = y + F(x, )V and h is the angular metric of F.

_ 2 A(x,[)7]) (u, VC, u)
hx [57) (. 1)
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For the definition of a conformal field V' with dilation c(x), see Section 2. In
Theorem 1.1, we denote the partial derivative dc/dx’ by ci. The case where F is
a Riemannian manifold implies a formula of Cheng and Shen [2009], whilst V' is
homothetic implies the curvature nonincreasing equation of Mo and Huang [2007].
In particular, if F has constant flag curvature and is of Randers type, our formula
has been obtained by Bao, Robles, and Shen [2004].

Our approach to proving Theorem 1.1 is partially in the contact geometry [Blair
2002]. Recall that a Finsler metric is Riemannian if and only if its Cartan torsion
vanishes [Chern and Shen 2005].

As an application of Theorem 1.1, we determine the flag curvature of a Finsler
metric produced by a generalized Poincaré metric and its nonhomothetic conformal
field via the navigation problem (see Section 5).

Finally, we should point out that very recently [Shen and Xia 2012; Xia 2013]
established the relationship between the flag curvatures of F and F, where F is
a Randers metric with some special curvature properties and Fis produced from
(F, V) via the navigation problem, where V is a conformal field.

2. Preliminaries

Let (M, F) be a Finsler manifold with Hilbert form w. Let SM be the projective
sphere bundle of M, obtained from 7'M by identifying nonzero vectors which
differ from each other by a positive multiplicative factor. It is easy to verify that

o A(do)" 1 #£0, n=dimM.

That is, @ defines a contact structure on SM [Chern 1996]. Hence there is a unique
vector field X on SM that satisfies w(X) =1 and X .(dw) = 0. This vector field X
is known as the Reeb vector field [Blair 2002; Bryant 2002; Huang and Mo 2011].

Every vector y € T M'\{0} uniquely determines a covector p € Ty M\{0} by

1d
p(u):zzE(Fz(x,y+lu))‘ o ueTxM.

=

The resulting map L f :yeTxM — pe T} M is called the Legendre transformation
at x.
Define a nonnegative scalar function H = H(x, p) by

p(y)
max .
yeT«M\{0} F(x, )

The function H is C° on T* M \{0} and Hy := H|rx s is a Minkowski norm on
T;M for x € M. Such a function is called a Cartan metric [Miron et al. 2001;
Mo and Hang 2007] (or co-Finsler metric [Shen 2004; 2002]). The pair (M, H) is
called a Cartan manifold.

2-1) H(x, p):=
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Every covector p € T M \{0} uniquely determines a vector y € Tx M \{0} by

1d
q(y) =5 (H*(x.p +tq))‘ ;o 4ETIM.

=

The resulting map L 5 *:peTgM — ye Ty M is called the inverse Legendre trans-
formation at x. Indeed LE and LE* are inverses of each other. Moreover, they
preserve the Minkowski norms H (x, p) = F(x, Lf *p).

Recently, one of the important approaches in discussing Finsler metrics is the
(Zermelo) navigation problem [Bao et al. 2004; Hu and Deng 2012; Huang and Mo
2011; Shen 2003; Zermelo 1931; Xia 2013]. The main technique of the navigation
problem is described as follows. Given a Finsler metric F and a vector field V' with
F(x,Vy) < 1, define a new Finsler metric F by

(2-2) F(x,,.L—FVx) —1, VxeM,yeTyM.
F(x,y)

A (local) flow (or local one-parameter group) on a manifold M is a map
®:(—€,6) x M — M, also denoted by ®; := ®(t, - ), satisfying

* cI)() =id: M - M,
e O&;0d;, = Oy, for any 5,7 € (—e,€) with s + ¢ € (—¢, €).
Hence, the lift of a flow ®; on M is a flow &)t on T*M,

(2-3) D, (x, p) i= (D (x), (@)~ (p)).

By the relationship between vector fields and flows, (2-3) induces a natural way a
lift of a vector field V on M to a vector field X ; on T*M.

A vector field V' on a Finsler manifold (M, F) is called conformal with dilation
c(x) if its flow O, satisfies

24)  F(Pr(x), Drx(1)) = 2" F(x,y), VxeM, yeTM,

where c(x) = [dos(x)/dt];=o [Shen and Xia 2012]. In particular, V is called a
homothetic field if ¢ is constant.

Similarly, a vector field V' on a Cartan manifold (M, H) is called conformal
with dilation ¢(x) if its flow ®; is a conformal transformation on (M, H), i.e.,

2-5)  H(®:(x), (@) (p))=e 2D H(x,p), VxeM, peTiM,
where ¢(x) = [do(x)/dt];=0-

Lemma 2.1. Let V be a conformal field on a Finsler manifold (M, F) with dilation
c(x) and H its Cartan metric defined by (2-1). Then V' is a conformal field of H
with dilation c(x).
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Proof. By using (2-1) and (2-4) we have
(@)~ (pI(F)
max e ———
JeTo,yM\{0} F(Ds(x), )
_ p((Pr)"1 (7))
= max e ———
j€To,oM\{0} F(P(x), )
_ max ()
yeTx M\{0} F(Ps(x), Prx(y))
p(»)
« PV
yeT M\{0} e29:(X) F(x, y)
p(»)
max E—
yeTxM\{0} F(x,y)

H(®:(x). (@) (p) =

— e—ZU,(x) — e—20t(x)H(x’ P,

where y := (®;4)"!(7). The lemma follows. O

The Hilbert form o of the co-Finsler metric H is given by

(2-6) o’ = o

[Mo and Hang 2007]. Let S*M be the cosphere bundle of M and 7 : S*M — M
the natural projection. We call Ker 7« the vertical distribution of S*M , denoted
by VS*M.

Lemma 2.2. For an arbitrary function [ € C°(S*M), there is a unique vector
field Xy on S*M satisfying

(2-7) "(Xp) = fo Xpa(do®) = —df + X"(f)e".

This vector field Xy is called the Reeb field associated with f .

Proof. The Hilbert form ” defines a contact structure on S*M . By using [Blair
2002, Theorem 4.4], there exists an almost contact metric structure (o, X b, a)l’, g)
such that g(X, ®Y) = do®(X,Y). A direct computation tells us that the second
equation of (2-7) is equivalent to L‘Xfa)b = X°(f)w". Together with [loc. cit.,
Theorem 5.7], we have Xy = —®Df + fX°, where g(Df,Y) = Y (/). O
Remark. (i) Itis easy to see that X1 = X b is known as the Reeb vector field.

(i) Let {eq, X b, e} be alocally orthonormal frame on S*M such that e, € HS*M
(see (2-10) below) and ez € VS*M . By using (2-7), we have

Xy = X"+ Zaea(f)ea — Taalf)ea
By the definition of VS*M, we have eg(f) = 0 for /€ C°°(M). It follows that
(2-8) Yyi=Xp— fX' =—®Df € VS*M for f e C®(M).
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(ii1) Note that the de’ adopted here differs from that of D. E. Blair [2002], where
dw® is defined by

do’(X.Y) = 3 (X(@"(¥) = Y (0" (X)) " ((X. Y]).
In the same work, X is called an infinitesimal contact transformation.

Let F be a Finsler metric and F denote the Finsler metric defined in (2-2). With
the help of the inverse Legendre transformation at x, we obtain co-Finsler metrics
H(x, p) and H(x, p) respectively. Then H and H are related by

(2-9) H(x,p)=H(x,p)—p(V)

[Mo and Hang 2007]. Furthermore the Hilbert form @" of the co-Finsler metric H
satisfies @” = p/ H. Taking this together with (2-6), we obtain Ker w” = Ker@".
The vertical endomorphism V? is characterized by

V@) =0, VWP =0, V[X"v=-v, VveVS*M.
The horizontal endomorphism H’ is given by
H () = —[X", o] = DVPIXP (X0 o), H(XP) =0, HH () =0
for v € VS*M . The horizontal distribution of S*M is defined by
(2-10) HS*M = H(VS*M).
It is easy to see that
TS*M = HS*M & VS*M & Span{X"} = Ker »’ & Span{X"}.

We denote the projection to VS*M (resp. HS*M) by PB =V’ o HP (resp. P;’{ =
H” 0 V?). Define the Riemann tensor of R” by

(2-11) RP(v) = VP o KX, HP(v)], v e VS*M.
Then the flag curvature K b is given by

W (R (v), v)

(2-12) K’(v) = o)

. ve VS*M\{0},

where /" is the angular metric on V.S*M which satisfies
7P (v, v) = do® ((X°, u], v) = d’(u, 1’ (v)).
The Cartan torsion A” is characterized by

24 (u, v, w) = u(do (X, v], w) + do”(u, [X°, V], w) + do’ ([u, [X, w]], v))
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for u, v, w € VS*M . We require the following result in Lemma 3.5, the proof of

which is omitted.

Lemma 2.3. There is a unique affine connection V : VS*M x VS*M — VS*M
satisfying

Voo =V[u, '), Vv —Vou =[u,v],  (Vuh®) (v, w) = 24°u, v, w)
foru,v,w e VS*M.
The following lemma will be used in Section 4.

Lemma 2.4 [Mo and Hang 2007]. Assume that Cartan metrics H and H are
related by (2-9). Then vertical endomorphisms VP and VP are related by Vb =
yh— Vb(X;) ® w’, where X} is the left of V on T*M.

3. Conformal transformations

In this section, we establish some properties for a conformal transformation on a Car-
tan manifold required in next section. For the definition of conformal transformation,
see (2-5) above.

Lemma 3.1. Let ¢ be a conformal transformation on a Cartan manifold (M, H),
ie, 9*H = e 2°X) H where $(x, p) = (¢(x), (¢*) " (p)). Then

G X" = X000,
where X" denotes the Reeb field of H.
Proof. By (2-5) and (2-6), we have
(3-1) O’ = 20 b,
Hence ¢ : S*M — S*M is a contact transformation [Blair 2002]. It follows that
P (GaXP) = (9 0") X" = 27 b(xP) = (20
and
P+ X 1(do”) = X* L (¢*dw”)
= X",[d(@* )]
= X",[d(e* ™)
= XP[de? ™) A b 4 270 4]
— deZa(x)(Xb)wb _ wb(Xb)deZU(x) + 6217(x)Xb_I (da)b)
= e 4 xb(e2000),b

The lemma follows from the uniqueness of the Reeb field associated with 27 ). [
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Proposition 3.2. Let ¢ be a conformal transformation on a Cartan manifold
(M, H), ie., p*H = ¢ 2OV H. Then ¢ X° = 2@ (XP + 2Y, (), where
Y5 (x) is defined in (2-8).

Proof. By virtue of (2-8), we conclude that
Y2000 = —®De?*X) = 20200 (—d Do (x)) = 22Xy, ().
It follows that
G+ X" = X,2000
= Y2000 + €200 xP
=220y, () + 20X = 20 (x> 12y, (). O

Lemma 3.3. For a conformal transformation ¢ on a Cartan manifold (M, H), we
have
(2’* oVb — e—ZU(x)Vb og?)*.

Proof. For v € VS*M and ¢xv € VS*M , it follows that
Pxo V(W) =0=e"2DVP 55, (v).
Similarly, from (i) we have ¢4 o VP (X?) = e720®) VP o G, (XP). For u € HS*M,
we write u = H"(v), where v € VS*M . Then
G oV () = Gr oV (-[X" 0] = VX" (X7 0]
= —¢x oV X" 0] = 145 0 VP o VPIXP [XP, v]] = Guv,
and
e 20V 6 6 (1) = e 2TV 6 6 (1 (1)
=727 IVb 6 G (—[X°, v] = VP [XP (X", 0]))
= o205 ¥ 5]
= e 2020 ¥ 5 g
= 200 20IPI X 5] = G, O

Lemma 3.4. Write X"(f) = ffor an arbitrary function f € C®°(M). Then
b — Y.
(X, X=X
Proof. Simple calculations give
o"(X°, XD = f, (X", Xplu(do') = —df + fo.

The lemma now follows from the uniqueness of the Reeb field associated with

S O
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Lemma 3.5. If f € C®°(M) and v € VS*M , then
(3-2) VX e —24°(Yy,v),
where l> (A" (Y, v),u) := A"(v, Yy, u).
Proof. By (2-8) and Lemma 3.4, we have
(3-3) VX ; = VX, Xy]
= VX", ¥y + fX7]
= VPIX, Y]+ VX () X
=Y + XP(HV(XP) = —75.
Note that [PBX ., v] € VS*M . It follows that

(3-4) Vb[PVXf, v] =0.
Together with (2-7) and (3-3), we obtain

b br & yb b b
(3-5) VX ;v =V [fX +PHXf+PVXf~,v]

= VIS X" +H oV X 0]
= VLS X" —H Y, 0] = VI f X0, 0] = VI [H Yy, 0],
On the other hand,
VIFX, 0] = —v(HVI(X") + FV[X°, 0] = — fo.
Plugging this into (3-5) yields V"[Xf, v =—fv+ V", Hbe]. It follows that
(3-6) B OVLX 0], u) = — fhP (v, u) + B (VPlo, HO V7], u)
= —f'hb(v, u) + hb(Vva, u).
By Lemma 2.3, we have
(3-7) B (VoYr,u) = —(Voh®) (Yr, u) — i (Y7, Vyu) + v(h” (Y7, 1))
= 24 (v, Yy, u) — i (Yy, Vyu) + v(h* (Yr, u)).
By a straightforward computation, one obtains
B (Y, v) = =H ()(f) = —df (H’(v)), veVS*M.
It follows that
(3-8) 1 Yy, Vou) = =(Pyo. H @) (f)
and

(3-9) v(h* (Yr,u)) = —(Py[v, H @D (/) + f 1 (u, v),

157
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where we have used /" (1, v) = —w”[u, H"(v)]. Substituting (3-8) and (3-9) into

(3-7) and then combining it with (3-6), we have (3-2). O
Proposition 3.6. For a conformal transformation ¢ on a Cartan manifold (M, H),
we have

(3-10)  ¢uH (v) = T H (Grv) + 26 G0 — 24" (Yo, Puv)].

Proof. By Lemma 3.3, we have
(3-11) ¢xH’ (V) = —@u[ X", v] = 35 0 V' [X”, [X” 0]
— —[(ﬁ*Xb, (,?)*v] - %e—ZU(x)Vb O(/A)*[Xb, [Xb, o]]

= —[e2 D (XP + 2, x)). pxv] + (1),
where

(-12) (D) =5 VG’ Gu X ]
= Lo 20@b20) (P 4 oY, (), Gul X, V]
= —3e 20OV (<o [X" 0] O (X® + 2V )
— IVPLX® 4 2V (), (95 X, G0
= =372 (G X", )NV (X 4 2Y )))
— IVPIXP 4 2V, (), 2D [XP 4 2V (o, Bs0]]

= 3D + X OVIXP 42V, (1), [X° 4+ 2Y 5 (), Gu0]]).
and

(I1) = VP (X" 4 2Y5 () (27 N XD + 2V, (1), 0]
= X (2O (VP[X". guv] + 2V [V (x). fav]) = =X (€27 gsv.

Plugging this into (3-12) and combining with (3-11), we obtain
(3-13)
ot () = 27 (H (Pu0) = Yo (). av] + X (W)Ga0 =V Vo). [X . Guv]).

By using the Jacobi identity and Lemma 3.4, we have
VW00 [X°. 0] = VX [§40. Yool = V@0, [X° Yo ()]
= —[Pav. Yo ()] = V' [dsv. Xs].
Plugging this into (3-13) and using Lemma 3.5, we get (3-10). O

4. Conformal navigation problems

We call the navigation problem (2-2) conformal if V is a conformal field. In this
section, we explore some properties of conformal navigation problems and prove
Theorem 1.1.



ON THE FLAG CURVATURE OF A CLASS OF FINSLER METRICS 159

Lemma 4.1. Let V be a conformal field on a Cartan manifold (M, H) with dilation
c(x). Let H be the Cartan metric given in (2-9). Then for v € VS*M

4-1) ’Hb(v) = 7T[b(v) —cv,

where H° (resp. HP) is the horizontal endomorphism of H (resp. H ).
Proof. By [Mo and Hang 2007, Lemma 4.10], we have

(4-2) (X", v] € Kero® = HS*M @ VS*M, [X°,[X° v]] € Kero.
Together with Lemma 2.4 we get

(4-3) ~H(v) = [X°, v] + IVP[XP, [XP, v]].

According to [loc. cit., Lemma 6.2], the Reeb fields of X b and X satisfy

(4-4) X' =X"+ X3,
where
.0 v/ 9
X* = l—. —PDi—,
v=y ax! P axt dp;

with V = v/(3/dx"). It follows that
@-5)  V[X°, (X, o)) = PPLXP, [XP, o]) + VO[5, [XP, ]
= VP [X°, o]l + VP, (X5, o]l + VLG (X, )

Let ¢; be flow of X I’ﬁ Then (@;)xv is vertical for v € VS*M . Hence,

(4-6) (X7, 0] := lim V= (@)
t—0 t
is also vertical. It follows that
(4-7) VLY. (X5, o)l = = (X7, ]
By using the Jacobi identity, we have
(4-8) (X5, (X7, vl = (X", [, XP] = [v, [X5, XL

Now we assume that V is a conformal field of Cartan metric H with dilation ¢(x);
that is, the flow ¢; of V' satisfies

(4_9) (ﬁ;kH — e—ZO’t(X)H’ C(X) _ |:d0t(x)] )
t=0

dt

Differentiating the first of these equations with respect to ¢ at t = 0 yields



160 LIBING HUANG AND XIAOHUAN MO

0
—2c(x)H = g(e_z"f(x)H)}mo
J .
= E((p;kH)}t:()
J 5
= &(Ho(pt)‘t=0
_ %

at ‘t=0

Recall that VS*M =Kermx ={veTSM |v(f)=0,V feC®(M)CC>®(S*M)}.
Together with (4-2), we have

H = X;(H).

[v, 2ch] = U(ZC)Xb — ZC[Xb, V)= —2c[Xb, v] € Kero”.

Note that the vertical distribution is involutive. We obtain
~b aC 3
Vilv, -H— | =0.
oxt  dp;
A direct calculation (see [Huang and Mo 2011, Lemma 3.2]) gives the formula

dac 0
X XX =2eXP 20— H—.
[ ’ V] ¢ ax’ apl

By Lemma 2.4, we obtain

ac d ~b b
e a—pl] —V’[v,2¢X’] = —2cv.

PPlu, (X35, XP]) = 217*’[1)

Together with (4-6) and (4-8), we have
Vg, [X°, o)l = =VP[X°, [o, Xp) = Vv, (X5, X7
= VX", [v. Xp1+ 2cv =[v, Xp]+ 2cv.
Plugging this and (4-7) into (4-5) yields
PPIXP [XP o)) = VPXP, [X°, v]] - [X75, v] + [v, X}5] + 2cv
= VPIXP, [XP, v]) - 2[X 5, v] + 2cv.
Substituting this into (4-3) and using (4-4), we deduce that
~H’(v) = [X°, v] + L (VP[XP, [X°, 0] - 2[X 75, v] + 2¢)
= [X°, v] + 1DP[X°, (X, v]] + cv = —H"(v) + cv.

This gives (4-1). ]
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Lemma 4.2. Let V be a conformal field on a Cartan manifold (M, H) with dilation
c(x) Let H be the Cartan metric given in (2-9). Then on HS*M &V S*M , we have
P~ = Pb—cvb Plb, cV®, where P" (resp. P~) is the projection of H (resp. H)

Proof. The second equality follows from Lemma 2.4. For v € VS*M,
V)=0. Piv)=

It follows that
PY(v) = (Py—cV)(v), YveVS*M.

For u € HS*M , we write u € H°(v), where v € VS*M . By the definition of 7
and Lemma 4.1, we obtain

PY(u) + V() = VP o 7P (H' (v)) + VP (H (v))
=V’ o 7 (HP (v) — cv) + VP (H(v) — cv)
VP o HP () + VP o HP (v) — 2P0 (v)
=0= PS(u). O
Proposition 4.3. Let V be a conformal field of H with dilation c¢(x). Then
(4-10) (X5, H ()] = —2¢H (v) + HO[X 5, v] — 2¢v 4 24° (Y, v).

Proof. By using Proposition 3.6, we have

@1 XEH@)=—2| G

dt
d A oA N
= =] _ (@O [H (@1a0) 4261 9rav=24" (Yo, . f1a0) ]).
where ¢; is the flow of V. By direct calculations, we have
~L] H @) =Hb[X* o | A ) = A (V)
dt lt= oo dt lt=0 r T

d n . d . .
_E‘ (01 Prxv) = dl‘ t=0(p0*v+at‘t:0E(ﬂt*U = Xb(C)v = Cv.
Plugging them into (4-11), we have (4-10). O

Proposition 4.4. Let V be a conformal field on a Cartan manifold (M, H) with
dilation c¢(x). Let H be the Cartan metric given in (2-9). Then

(4-12) R () = RP(v) + [3X"(c) — * + 2X7(0)Jv — 24" (Y, v),

where R? (resp. RP) is the Riemann tensor of H (resp. H ).
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Proof. From [Mo and Hang 2007, Lemma 4.9], we have
(4-13) PYX" 0] =V [X° . H(v)], veVS*M.
By (2-11), (4-1) and (4-4),
R°(v) = PYX°. H (v)]
= P]%[fb, Hb(v) + cv]
= PIIX". H(v)]+ PYX", cv]
= P\%[Xb - Xy, H(v)] + P%(fb(c)v + [ X7, v))
= (I)— PY[X}. 7 ()] + X’ (o),
where
(I): = PYX°. H ()] + cPYX". v]
= (PY,— V)X, 1 ()] + e (P, — V)X — X5, 0]
= POLX, 1O ()] — VO [XP, 1O (0)] + e PO X1, 0]
— VP XP ] — CPB[X;, v] + czvb[Xf;, v]
=R"(v) + v — c[Xy.v],

where we have used (4-13). It follows that

(4-14) R’ (v) = R"(v) = PYX}. H ()] — [ X} v] + [X"(c) + *Jo.

From (4-4), we have
(4-15) XP(e) =¢— X} (o).
By using (4-11) and Lemma 4.2, we obtain
PYXG. H (v)] = 2¢% P — ¢ P X v] — 2¢ Py
+2¢¢V(v) + 2P A" (Yo, v) — 26V AP (Y, v)
=2c%v— c[X} . v]—2¢v+ 2Ab(Yc, V).
Plugging this and (4-15) into (4-14) yields (4-12).

|

Proposition 4.5. Let V be a conformal field on a Cartan manifold (M, H) with

dilation c(x). Let H be the Cartan metric given in (2-9). Then

A (v, Ye, )

(4-16) K (v) = [3X°(c) = c* +2V(0)] = K*(v) —2—
h°(v,v)

’

where KP (resp. K b) is the flag curvature of H (resp. H ).
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Proof. By [Mo and Hang 2007, Lemma 6.2], we have 7’ (vy, v;) = (fNI/H)};b (vq,v7).
Together with (4-12) and (2-12), this yields
_ - A, Y,
(4-17) K°(v) = K°(v) +3X"(c) —¢? —|—2Xf’}(c)—2h(bv(—c)v).
v,V

On the other hand,
;0 v/ 9 ; dc
* _ 1 . . | _
XV(C) = (U ﬁ _p] Wa—pl)C(X) = W = V(C)

Together with (4-17), we have (4-16). O
Proof of Theorem 1.1. Let F be a Finsler metric with flag curvature K, Cartan
torsion A and angular metric /. Let V be a conformal field on M with F(x, Vy) < 1.
Let F be the Finsler metric given in (2-2) with flag curvature K. Then their Cartan
metrics are related by (2-9). From Lemma 2.1, we obtain that V' is a conformal

field of H with dilation c¢(x). Hence K and K satisfy (4-16). By (2-8), we have
AP (v, Y., v) = —A(v, ®Dc, v). Plugging this into (4-16) yields

[K> )]xp) — [3X°(0) —¢* +2V(O)]x,[p)
Ab(v, ®Dc, v)(x,[p])
(v, v) (x [p])

= [K*(0)](x.[p)) +2

Pulling back to the sphere bundle, we have

A(u, Ve, u)(x,[;])
h(u, 1) (x,[57)

[K )] x.y)) — [3 4 I;xi —c*+ 2V(C)} = [K(@)](x,[57) — 2

where u:= (LE*),v, Ve:= (LE*),®Dc and where we have used dH /dp;=y'/F.
By [Mo and Hang 2007, Lemma 3.9], we get the desired result. O

Remark. (i) The reader should note that the navigation problem adopted here
differs from that of [Shen and Xia 2012; Shen 2003], where the navigation
problem is defined by F(x, y/ﬁ(x, y)— V) = 1; i.e., the F that we define
with (F, V) is precisely the F that Shen defines with (F,=-V).

(ii)) We have two special cases of Theorem 1.1:

(1) If V is homothetic, i.e., its dilation ¢(x) is constant, then V¢ = 0 and our
formula is reduced to that of Mo and Huang [2007].

(2) If F is Riemannian and has sectional curvature K = K(x), then our
formula is reduced to that of Cheng and Shen [2009] (see also [Chern and
Shen 2005]).



164 LIBING HUANG AND XIAOHUAN MO

5. An example

In this section, we determine the flag curvature of a nontrivial example using
Theorem 1.1.

Consider the case dim M = 2; so x = (x!,x?) and y = (»!, y?). In order to
avoid the excessive use of parentheses, we shall abbreviate x!, x%ass,tand y1 , y2
as p,q. Let

M :={(s,t) eR* |t > 1}.

Define F': TM — R by

1
(5-1) F(s,t; p.q):= ;<I>(p,q),
where
(5-2) D(p.q) = (p* +2ep?q* + g4 €€(0.3),

is a Minkowski norm on R? (see [Shen 2001, Example 1.1.3]) and F is a Finsler
metric on M .

For the Finsler surface (M, F), its Gaussian curvature K takes the place of
the flag curvature in general case. A direct calculation shows that the Gaussian
curvature of F is given by

[@(p. 9 0(p.q)
5-3 K , L3 ) = )
(5-3) F-Lp4) [A(p, 9)]*

where
(5-4)
0(p.q) :=€(2e*=3) p" 4+ (17€*—4263+18) p' 2> +€(8¢*—50¢ +21)p1° 4

+(9€4—89¢* +81€2—36) p3¢®—5e(5e*—4€%+6) pbq
(564 —5e2-21) p*q 10463 (5e2—12) p2q 2 —e*g 1

and
(5-5) A(p,q):=ep* + (B —€?)p*q® +eq*.
We denote the determinant of the fundamental tensor by g. Then

_ A9
tH(p.

where we have used (5-1), (5-2) and (5-5). The Cartan form 7 is given by

(5-6)

ad
(5-7) ( 7 log f) dx’ .
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Then the main scalar I of F' is given by

(5-8) I(x,y) =n(er)
= Ze((Gre @) (5), - (e ve) (5),)

31—€¥)pqg a4 4
= (" —q"),
[A(p. )2
where {e1, ¢, } is the Berwald frame with w(eq) = 0. Let V denote a vector field

on M defined by

(5-9) V=

By using the isomorphism T M ~ R?, we have F(x, Vy) < 1 on M. Denote the
liftt of V' by Xj,. Then

V9
X :V J T =
4 +y daxJ 9y?

[Huang and Mo 2011]. It follows that

oF 1
where we have made use of (5-1). Thus V is conformal with dilation ¢ = —1/(2¢)
(see [Huang and Mo 2013, Lemma 3.1]). In particular, V' is not homothetic.

Now we calculate the following scalar function on SM .

Ay, Ve, u)

(5-10) E(x,y) = oy (2 8)
x,[y >

where u A y # 0. Taking u = e; we obtain
(5-11)
heeypleren) =1, A pplerseren) =10x,p), A pplerexer) =0.

Define V¢ by

(5-12) Ve = Aey + ey,

where {e1, e} is the Berwald frame on M. Then

(5-13) A(x,y) = g,y (Ve er)

_ 30(_ Fq) de Fp _ p(p*+eq?)

o\ yg) T oz 2R A o
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where g denotes the fundamental tensor. From (5-10), (5-11) and (5-12), it follows
that
Ax[yp(er. dey + pea,eq)

hx tyn(er.er)
= )\'(xa y)A(x,[y])(el, elael) = )\‘(x’ y)I(xs Y),

E(x,y) =

where A and [ are given in (5-13) and (5-8) respectively.
Now we consider the navigation data (F, V'), where F and V are defined in (5-1)
and (5-9) respectively. (F, V') produces a new Finsler metric F by

(5-14) F(xwLJer) —1, VxeM, yeTyM.
F(x,y)
By (5-1), (5-2) and (5-9), (5-14) holds if and only if

(5-15) P+ 2ep%(q+ F)* + (¢ + F)* = t*F*,

that is, F is the unique nonnegative solution of (5-15). By direct calculation we
have .
Y lcxi _ q
F(x,y) 2t2F(x,y)

3
2
—c24+2V(c) = —.
¢ © 412

For the Finsler surface (M, F'), F is of scalar flag curvature. Using Theorem 1.1,
we obtain that the Gaussian curvature K 7 is given by

- inxi 5 A(x,[j,])(u, Ve, u)
K~(x,y)=Kp(x,y)+|:3~——c —|—2V(c)]—2
4 F(x,y) hix 57 (U, u)
- 3q 3 - -
=Kr(x,J)+ —=——+— —2A(x,J) I(x, ),

202F(x,y) 412
where

(P4 +26p2q2 +q4)1/4)

ﬁ=y+F(x,y)V=(p,q+ p

and K, A, I are given in (5-3), (5-13) and (5-8) respectively.
Let us take a look at the special case when € =1,

(P2 +q*)'?
F(S,t; p,q) = f

F is the famous Poincaré metric of constant sectional curvature K g = —1. In this
case, F is of Randers type and its Gaussian curvature is given by

3 2q )
K=(x, =—| = +1)—-1.
FOo) 4t2(F(x,y)
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ANGULAR DISTRIBUTION OF
DIAMETERS FOR SPHERES
AND RAYS FOR PLANES

NOBUHIRO INNAMI AND YUYA UNEME

Grove and Shiohama used the critical point theory of a distance function to
prove the diameter sphere theorem. In light of the angular distribution of
minimizing geodesics, we examine and develop the techniques in its proof
to make some diameter sphere theorems and study complete noncompact
manifolds, using a generalized Toponogov comparison theorem.

1. Introduction

Let M be a compact Riemannian n-manifold with distance d( -, - ) induced from its
Riemannian metric. Let diam(M) = max{d(x, y) | x, y € M} denote its diameter.
Grove and Shiohama [1977] have proved that if the sectional curvature of M is
greater than or equal to 1 and diam(M) > /2, then M is homeomorphic to an
n-sphere, using the critical point theory of a distance function. From this point of
view, the unit sphere has nice properties as a reference surface. We examine those
properties to make some other diameter sphere theorems and show some conditions
under which M is diffeomorphic to an n-plane. In order to do this, we introduce the
angular distribution of minimizing geodesic segments and the reference map from
M into a reference surface. The angular distribution measures how the minimizing
geodesics are distributed in M. The reference map will be used to compare the
geometry on M with the geometry on a reference surface M through the generalized
Toponogov comparison theorem.

In Section 2, we define the angular distribution of minimizing geodesic segments
connecting two points and the reference map &, , for g in (M, p) with a base point
at p into a reference surface (1\7 , p) of revolution with vertex p. We propose a
domain D(p, q) C M such that the generalized Toponogov comparison theorem is
valid if &, ,(M) C D(p, g). Using this terminology we state some theorems.

In Section 3, we summarize some properties of geodesics in a surface of revolution
and present the generalized Toponogov comparison theorem of the form used in

Innami’s research was partially supported by Grant-in-Aid for Scientific Research (C), 22540072.
MSC2010: 53C20, 53C22.
Keywords: sphere, diameter, ray, plane.
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this note. In Section 4, we show some properties of the domain D(p, g) and
give proofs of the theorems stated in Section 2. In Section 5, we study the case
that M is a k-plane M, — which is, by definition, a complete simply connected
Riemannian surface with constant Gaussian curvature k. We have some sphere
theorems depending on the relation among the angular distribution of minimizing
geodesic segments, the distance between two points, and the Gaussian curvature
of a model surface. In Section 6, we discuss the case of noncompact manifolds
referred to a k-plane with « < 0.

Klingenberg [1963] was first interested in radial sectional curvature. Some roles
of critical point theory have been introduced in [Abresch and Meyer 1997]. A
general introduction to the techniques used in this note is found in [Cheeger and
Ebin 1975]. There are some generalized Toponogov comparison theorems for radial
curvature. But the version used in this note was first proved in [[tokawa et al. 2001;
2003] and developed in [Kondo and Tanaka 2010; Innami et al. 2013a]. As its
application, some diameter sphere theorems have been proved in [Kondo 2007;
Kondo and Ohta 2007; Lee 2005; Innami et al. 2013b]. The geometry of geodesics
on surfaces of revolution has been developed in [Belegradek et al. 2012; Sinclair
and Tanaka 2007; Tanaka 1992].

2. Definitions and statements

Let M be a complete Riemannian manifold. We introduce a function o, (x) that
measures the angular distribution of minimizing geodesic segments from x to p. For
p € Mletd,(x) =d(p, x) for all x € M. Let T, M denote the tangent space of M
at x. Let A, (x) be the set of tangent vectors T (x, p)*(0) at x # p of all minimizing
geodesic segments T (x, p) from x to p. The geodesics are supposed to be param-
eterized by arclength. Let B, (v) =min{Z (v, w) |w € A,(x)} for v € T, M and

ap(x) =max{B;(v) |ve T M}.

Obviously, o, (x) < 7 for all x € M, x # p. If x is not a cut point of p, then
ap(x) =m. We call a,(x) the angular distribution of A, (x) in the unit sphere S, M
in T, M. We call x € M a critical point of d), if o), (x) <7 /2. If p, q € M satisfy
d(p, q) = diam(M), then g is a critical point of d,,, and p is a critical point of d,,.

The distribution of critical points of d,, depends on the topological and metric
structure of M. The diameter sphere theorem is based on the following lemma due
to Grove and Shiohama [1977].

Lemma 2.1 (basic lemma). Let M be a complete Riemannian manifold and p € M.
If there exists no critical point of d,, in M \ {p}, then M is diffeomorphic to the
Euclidean space [E". If there exists only one critical point g € M \ {p} of d, and
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ifa,(q) <m/2ord,(q) =max{d,(x) | x € M}, then M is homeomorphic to an
n-sphere.

In this note, using the angular distribution, we propose some conditions under
which the assumption of Lemma 2.1 is satisfied. In order to do this we use the
generalized Toponogov comparison theorem for radial curvature proved in [Itokawa
et al. 2003; Innami et al. 2013a; Kondo and Tanaka 2010].

Let (M, p) be a surface of revolution homeomorphic to a sphere or a plane with
a geodesic polar coordinate system (r, §) around p. Its metric is of class C? and
given by

ds* = dr* + m(r)*do?,

where m(r) > 0,0 <r < £ <o00,0 € S!, and m : [0, £) — R satisfies the Jacobi
equation
m'+Km=0, m©0)=0, m0) =1,
and if £ < oo,
m) =0, m')=-1.

The function X is called the radial curvature function of M.

Let (M, p) be a complete Riemannian manifold with a base point at p. A
radial plane T1 C T, M at a point x € M is a plane containing a vector tangent to
a minimizing geodesic segment emanating from p. A radial sectional curvature
K (IT) is a sectional curvature with respect to a radial plane I1. We say that (M, p)
is referred to (1\71 , p) if every radial sectional curvature at x € M is bounded below
by K (d(p, x)), namely, Ky (I1) > K (d(p, x)).

Let (M, p) be referred to (M, p). If £ < oo, we then have d,(x) < £ forall x € M,
equality holding if and only if M is isometric to the warped product S"~! x,, [0, €],
where n =dim M and $" 'is a sphere; see [Itokawa et al. 2001]. From this fact,
we may assume that max{d,(x) | x € M} < £ if £ < oo, because our purpose is to
study some conditions on M being homeomorphic to a sphere. Thus, we have the
point g = (d(p, q),0) € M for any point g € M.

Let @, , denote the reference map from M to the east side M of the meridian
containing 7 (p, ) in ]\’Z, namely M+ = {(r,0) 10 <r,0<6 <m}. By definition,
for a point x € M,

d(p, ®pq(x)) =d(p,x) and d(q, Ppq(x))=d(q,x).

It is not certain whether or not every point x € M has a reference point and every
geodesic triangle A(pgx), g, x € M, admits the corresponding geodesic triangle
A(pgx), q,x € M. This question has been answered affirmatively under a certain
condition in [Innami et al. 2013a]. However, we use only a quarter of M in the
critical point theory. More precisely, as the image space of the reference map ®, 4,
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we define a special domain D(p, g) in M+ for q = (r0,0) € ]\7[, 0 <ryg<£. For
0 €10, 7/2] let

d

s
3(0) = sup{r >0 ‘ Z(US, _a_r) > 2, v € A0z,

A(ws, _0

b4 -
8_r> < 3 ws € A, (q), O§s<r}

where z; = (s, 0), and set
D, ={(r0)eM|0<r<ir;0),0<0<m/2}U{p,q).

Obviously, D(p, q) D T(p, q), since L(pzg) =m forall z € T(p, q) ~{p, q}.
Moreover, as will be shown in Lemma 4.1, there exists no cut point of g in D(p, g).
Hence, if ®, ,(M) C D(p, q), then the generalized Toponogov comparison theorem
is valid for all geodesic triangles A(pgx) and for all x € M.

We define a dominant triangle for M with respect to p and ¢g. Let z € Mand T a
minimizing geodesic segment with z € 7. For an angle w let S = S(z, T, w) denote
the geodesic such that the angle of S with T at z is w. We make a trilateral with
three geodesic segments:

=T, q), Si=SP.TP.9),a9(p)), S2=8q,T(p,q),ap(q)).

We call the domain Dj; bounded by Sy, S| and S, a dominant domain for M if
it exists. The dominant domain Dy, becomes a triangle if S; and S, intersect.
Otherwise, it may not become a triangle. If Sy, S1 and $> make a triangle, we call it
the dominant triangle for M, and it is denoted by Ay = A(T(p, q), oq(p), @ p(q)).

For a triangle A, the triangle domain bounded by A in M is also denoted by A.
If the dominant triangle Ay, exists and the generalized Toponogov comparison
theorem is valid for (M, p) referred to (1\7, D), then ®, (M) C Ay because of
the Alexandrov convexity. The vertex of the dominant triangle A, other than p
and g is denoted by z(Ajy).

Theorem 2.2. Let (M, p) be a complete Riemannian manifold referred to (]\7 , D).
Assume that there exists a point q in M such that the dominant triangle Ay =
AT (p, q),aq(p), ay(q)) for M can be made from p and q. If z(Ay) € D(p, ),
then M is topologically an n-sphere.

We have a generahzatlon of the diameter sphere theorem if we impose a certain
condition on M; see Lemma 4.3. We say that M is without conjugate points in
a half if any point z € Int(M*) has no point conjugate to z along any geodesic
segment from z contained in Int(M ). Here Int(M™) is the interior of M*. Any
point in Int(M *) has no cut point in Int(ﬂ *) if and only if M is without conjugate
points in a half. Tanaka [1992] proved that M is without conjugate points in a half
if M is a von Mangoldt surface of revolution.
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We say that M is without meridian focal points in a quarter if there exists no focal
point of the meridian {(r, 0) |0 <r <{} in a quarter {(r,0) |0<r <¥{, 0< 0 <1 /2}
of M. If M is without conjugate points in a half, then it is without meridian focal
points in a quarter; see Proposition 3.1. If M is without meridian focal points in a
quarter, then it is without conjugate points in a quarter; see Proposition 3.2.

If M is without meridian focal points in a quarter and m’(r(q)) < 0, then
AT (p,q), /2, 7/2) C D(p, q); see Lemma 4.3. Kondo and Ohta [2007] have
proved the following corollary, assuming that M is a von Mangoldt surface of
revolution.

Corollary 2.3. Let (M, P) be a reference surface homeomorphic to a sphere such
that M is without meridian focal points in a quarter. Let (M, p) be a complete
Riemannian manifold referred to (1\7 , D). If there exists a point g € M such that g
and p are critical points of d,, and d,, respectively, and if m'(d,(q)) < 0, then M
is homeomorphic to an n-sphere.

When ¢ = oo, let y(¢) = (¢, 0) for ¢ € [0, 00). For 6 € [0, 7], let A; () denote
the supremum of those r > 0 such that there exists a unique coray from (s, 9),
0 <s < r, to y whose initial tangent vector v satisfies Z (v, —d/dr) > /2. Using
this function A; (), we define a special domain D(y) in a reference surface of
revolution M. Namely, we set

D()?):{(r,@)el\’/vl|0§r<)»};(9),O§9§n}.

Obviously, 1;(0) = co. Let p;(y) = sup{p | A;(8) = oo for 0 € [0, 6p)}. When
Misa k-plane with k <0, we have p;(y) =0if x <0and p;(y) =n/2if k =0.
If Misa paraboloid of revolution, then p;(y) = 7.

Let I', denote the set of all rays from p in (M, p). Let

np(v) =min{Z (v, y(0)) | y € T}
for any v € T, M, and set
¢p =max{n,(v) |veT,M}.

Obviously, ¢, < for all p € M. We call ¢, the angular distribution of rays from p.
We call MT(6y) ={(r,0) |0 <r < £, 0 <0 <6} asector of M for 6y € [0, ].

Theorem 2.4. Let (M, p) be a complete noncompact Riemannian n-manifold re-
ferred to (M, p) such that p3(y) > 0. Assume that the sector Int(M ™ (p;(7))) is
without conjugate points. If £, < p;(V), then M is diffeomorphic to an n-plane.

Since pj(y) = 0 for M, with ¥ < 0, the theorem shows an advantage of using a
surface of revolution as a reference surface.
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3. Preliminaries

Let (]\71 , p) be a surface of revolution with vertex p and let y : (—o0, 00) — M be
a geodesic with unit speed. We write y (s) = (r(s), 8(s)) for all s € (—o0, 00). Let
{E1(s) =y (s), E2(s)} denote a set of parallel orthonormal vector fields along y.
Since the vector field Y (s) = 9/06 along y is generated from a variation through
geodesics y, (s) = (r(s), 8(s)+u), it is a Jacobi vector field along y. If ¢ (s) denotes
the angle of Y (s) with y(s), we then have (E|(s), Y(s)) = m(r(s)) cosp(s) = v
which is called the Clairaut relation. Note that —m(r(0)) < v < m(r(0)). The
orthogonal complement of Y (s) to y(s) is v/m(r(s))? — vZE>(s). Therefore,

y(s) = vVm(r(s))? —v?

satisfies the Jacobi equation,
Y'(5) + K (r()y(s) =0.

If C(y) = {s | r'(s) = 0}, then the number of elements of C(y) is 1 or oo. The
Sturm separation theorem states that if C(y) = {so}, then for every s < sg there
exists at most one point y(s1), s1 > Sg, conjugate to y (s). The Clairaut relation
states that if --- <s_| < s§p <s; < --- are the solutions of the equation y(s) =0,
then y is tangent to the parallel circle r = r(s;) with m(r(s;)) = v and y (s;) are
conjugate to one another for i € Z. From the Sturm separation theorem, if y(s) is the
length of a perpendicular Jacobi vector field along y such that y(#y) =0, s <ty < 51,
then the zeros of y(s) appear in each interval (s;, s;+1) once for every i € Z.

Proposition 3.1. Let (M, P) be a surface of revolution with vertex p. If M is with-
out conjugate points in a half, then M is without meridian focal points in a quarter.

Proof. Suppose that M is not without meridian focal points in a quarter. Then there
exists a geodesic y : [0, a] — Int(]\? ) normal to the meridian # = 7 /2 such that
6(y(a)) =m/2 and y (0) is a focal point of 8 = 7 /2 along y. Since M is a surface
of revolution, M is symmetric with respect to § = /2. From this symmetry, if
¥, 1 [0, 00) —> M denotes the extension of y, we see that y,(2a) € Int(]\? Tisa
point conjugate to y,(0). Namely, M is not without conjugate points in a half. [

Proposition 3.2. Let (M, P) be a surface of revolution with vertex p. Assume that
M is without meridian focal points in a quarter. Then, M is without conjugate points
in a quarter. In particular, there exists a unique geodesic segment in M+ (/2)
connecting any two points in M+ (/2).

Proof. Suppose that there exists a geodesic segment w : [0, L] — M+ (7t /2) such that
w (L) is the first point conjugate to w(0) along w. Then, r(s) =r(w(s)), s € [0, L],
is not monotone because M is a surface of revolution without meridian focal points
in a quarter. Assume that r’(sg) = 0 at so with 0 < 59 < L.
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The complete extension of w is denoted by the same symbol and its parametriza-
tion is changed by w(s) = @ (s + sg), s € (—00, 00). By the symmetry of M with
respect to the meridian through ®(0), w(sp) is a point conjugate to @(sg — L).
From the Sturm separation theorem, there exists a number L; > O such that
so—L <—Lj<0and ®(L1) is a point conjugate to w(—L) along @. Then, (L) is
a focal point of the mer~idian through @(0) along @ and ’9((7)(0)) —0 (a_)(Ll))| <m/2.
This contradicts that M is without meridian focal points in a quarter.

We prove the second part. If there exist two geodesic segments connecting the
same endpoints in M *(7/2), then they may bounds a biangle domain in M+ (r/2).
There exists a minimizing geodesic segment in the biangle domain such that the
endpoints are conjugate to each other. This contradicts the first part. (Il

Lemma 3.3. Let (1\7 , P) be a surface of revolution with vertex p. If M is without
meridian focal points in a quarter, then Int(ﬂ 1) is foliated by geodesics perpendic-
ular to the meridian 0 = /2. In particular, if M is compact, then those geodesics
cross the meridian 0 = 0 at points between the focal points along the meridian 6 = 0.

Proof. Let z € Int(l\? *). Since M is without meridian focal points in a quarter,
there exists a unique foot w of z on 6 = /2, namely z € X = 6~ (/2) and
d(z, w) =d(z, X). This proves the first part of the lemma.

If M is compact, then g = (£, 0) is the unique point conjugate to p = (0, 0).
Hence, there exist focal points to § = /2 along 8 = 0 from p and g. Let (a, 0)
and (b, 0) be focal points of § = /2 along 6 =0 from p and (£, 0), respectively.
We then have a < b. In fact, if a > b, then the geodesics normal to 6 = /2 from
points near p and (¢, 0) meet in Int(M ™), contradicting the first part. If @ = b, then
all geodesics normal to 6 = /2 pass through (a, 0). If a < b, then they pass the
interval ([a, b], 0), keeping their order. O

We review the generalized Toponogov comparison theorem. Let (M, p) be a
complete Riemannian manifold referred to (]\71 , D). Letg € M, g # p. For a point
x €M, lety :[0,a] - M denote a minimizing geodesic segment such that y (0) =g
and y (a) = x. As was seen in [Itokawa et al. 2003], if ®, ,(y (s)), s € [0, a], do not
intersect the cut locus Cut(g) of g in M, then the generalized Toponogov comparison
theorem for the base angles is valid. Namely, we have

(1) Z(pgx) < L(pgx) and Z(pxq) < L(pxq).

Let « : [0, b] — M be a minimizing geodesic segment such that «¢(0) = p and
a(b) = x. As was seen in [Innami et al. 2013a], the generalized Toponogov
comparison theorem for the angle at p is valid, under the condition that if ®, , (c(s)),
s € [0, b], intersects Cut(g) at s = s, then for any minimizing geodesic segment
T(q, ®p,4(a(so))), there exists a minimizing geodesic segment from g to o (so)
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satisfying (1). Namely, we then have

£(gpx) = L(gpx).

For p, g, x € M, the minimum angle Z’(pgx) and maximum one Z*(pgx) are
defined by

£ (pgx) =min{Z (v, w) | v e A,(q), w € Ac(q)},
25 (pgx) =max{Z (v, w) | v e A,(q), w € Ay (q)}.

It should be noted that there may not exist any triangle A(pgx) with three angles
£ (pgx), £*(pxq), and L% (gpx).

In this note, we use the generalized Toponogov comparison theorem of the
following form, which is a conclusion of the argument in [Itokawa et al. 2003].

Theorem 3.4. Let (M, p) be a complete Riemannian manifold referred to a surface
of revolution (M, p). Let q € M, g # p. If there exists a star-shaped domain D
around g contained in the dominant domain Dy such that ®, ,(M) C D, then for
all x e M,

L(pgx) < L' (pgx), L(pig) < Li(pxq), Z(Gpx) < L' (gpx).

We say that a domain D C MT is star-shaped around ¢ in M if there exists a
unique minimizing geodesic segment from ¢ to any point z € D contained in D.

4. Dominant domains

Let (1\71 , p) be a surface of revolution homeomorphic to a sphere or a plane with a
geodesic polar coordinate system (r, 6) around p. Let g = (r9,0) € M, 0 < rg < £.

Lemma 4.1. Let D(p, g) be the subset defined before. Then, there is no cut point
of g in D(p, q), and D(p, q) is star-shaped around p and q.

Proof. Let z € D(p,q) and let y : [0,a] — M, a = d(g, z), a minimizing
geodesic segment such that y(0) = g, y(a) = z, £(y(0), —3/0r) < /2, and
L(y(a),—03/0r) <m/2. If r(s) =r(y(s)), s € [0, a], then r'(0) <0 and r'(a) < O.

We prove that y (a) is not conjugate to y (0) along it. In order to prove this, it is
enough to prove that r(s) is monotone decreasing in s € [0, a], since M is a surface
of revolution. If '(s) > 0 for some s € [0, a], then, from r'(a) < 0, there exist at
least two parameters s; and s, such that 0 < s; < s, < a and r'(s1) = r'(s2) = 0.
This implies that y (s2) is a point conjugate to y (s1) along y, contradicting the fact
that y ([0, a]) is minimizing.

Next, we prove that z is joined to ¢ by a unique minimizing geodesic. Suppose for
indirect proof that y; : [0, a] — M is another minimizing geodesic segment satisfying
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the same condition as y. Set ¢(s) = Z(y(s), 9/06) and ¢ (s) = ZL(y1(s), 3/930)
for s € [0, a]. Without loss of generality, 0 > ¢(0) > ¢,(0) > —7/2, so

m(r(0)) cos ¢ (0) > m(r(0)) cos ¢1(0).
From this, the Clairaut relation states that

m(r(a)) cosg(a) > m(r(a)) cos ¢ (a).

Therefore, we have 0 > ¢(a) > ¢i(a) > —m/2. On the other hand, since z is
the first meeting point of ¢ and y;, the relation between ¢(a) and ¢;(a) must be
¢(a) < ¢1(a), a contradiction. This implies that z is not a cut point of g.

We next prove that y ([0, a]) € D(p, ¢). If z = (ry, 0), then we define z; = (¢, 0)
for t € [0, rp]. We set

to=sup{s | T(z:,q) C D(p,q) forall t € [0, 5)}.

From the first variation formula, we see there exists a number ¢ > 0 such that
there exists a unique minimizing geodesic segment T (z;, ¢) and z; € D(p, g) for
every t € [0, €). As seen above, T (z;,q) C D(p, g) for all ¢ € [0, €); hence 7y > 0.
If T(z4,q) is tangent to the parallel circle at g, then fy = A;(), contradicting
ro < A5(6). This is not the case. Otherwise, from the facts seen above, there exists
a neighborhood of T'(z;,, ¢) contained in D(p, g). This implies that fo =rg. U

This lemma makes it possible to use the generalized Toponogov comparison
theorem if ®, ,(M) C D(p, q).

Lemma 4.2. Let (M, p) be a complete Riemannian manifold referred to (M, D).
Assume that there exists a point q in M such that the dominant triangle Ay =
A(T(p, q),ay(p),ap(q)) for M can be made from p and q. If z(Ay) € D(p, 4),
then ®, ,(M) C Ay C D(p, q). In particular, the generalized Toponogov compar-
ison theorem by ®,, , for (M, p) referred to (M, p) is valid.
Proof. From Lemma 4.1, D(p, g) is star-shaped around p and g. Therefore, the
triangle domain Ay satisfies Ay C D(p, q).

We prove that @, ,(M) C Ay. For a sufficiently small & > 0, the generalized
Toponogov comparison theorem is valid for all triangles A(pgx) if

d(p,x)+d(q,x) <d(p,q)+¢;

see [Itokawa et al. 2003; Innami et al. 2013a; Kondo and Tanaka 2010]. Let
% = Dy (x). Since Z(5GT) < £(pgx) < a,(q) and £(Gp5) < £(gpx) <ag(p).
we have X € Ay,

Let x € M be any point and y : [0, a] — M, a minimizing geodesic segment
such that ¥ (0) = g and y (a) = x. We define

to =sup{t | ®, ,(y(s)) is defined and @, ,(y (s)) € Ay fors € [0, 1)}.
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As is seen above, we have 7y > 0. Suppose for indirect proof that #y < a. Then
y=®,,(y(to)) is defined and y € T(g, z(Ay)) or y € T(p, z(Ap)). Let U be
an open set such that Ay ~ T (p,g) C UcC D(p, g). Since y is not a cut point
of g, there exists a number #; with #; > #y, such that the points ®, ,(y (s)) exist in
U forall s € [t0, t1] and X1 = @, , (v (1)) & Ap. In fact, we find those reference
points because of the method in [Itokawa et al. 2003]. Therefore, we have either
£(pgx1) > ap(q) or L(Gpx1) > aq(p). N

On the other hand, since there is no cut point of g in U, the generalized Toponogov
comparison theorem is valid in @, }1 (17 ). Hence,

£(pgx1) < L(pqy ) <ay(q), £L(Gpx1) < L(gpy(t)) < ay(p),
a contradiction. Therefore, tp =a and x € Ay O

Proof of Theorem 2.2. Since z(Ay) € D(p, g), we have both «,(q) < /2 and
a4 (p) < /2. In particular, g is a critical point of d,,. In order to apply Lemma 2.1,
we have only to prove that there exists no critical point in M ~\ {p, q}. Let x € M.
From Lemma 4.2, the generalized Toponogov comparison theorem by ®,, , for
(M, p) referred to (1\7, p) is valid. Hence, we have /2 < Z(pxq) < Z(pxq)
since X = ®, ,(x) € D(p, q). Consequently, a,(x) > /2, so x is not a critical
point of d. U

A special case of the next lemma has been proved in [Kondo and Ohta 2007].

Lemma 4.3. Let (M, D) be a reference surface without meridian focal points in a
quarter and g = (ro, 0). If m’'(ro) <0, then A = A(T(p, §), 7/2,7/2) C D(p, §).

Proof. We first prove that the domain 2—bounded by the minimizing geodesic
segment T (p, q), the parallel circle r = rg = r(g), and the meridian 6 = /2 —is
foliated by geodesic segments which are either tangent to r = ry or perpendicular
to the meridian € = 7 /2 and cross the meridian 6 = 0.

Let r| < rg satisfy m(r1) = m(rog) and m(r) > m(rg) for all r € (ry, ro). Since
m’(ry) < 0, there exists at least one r;. The Clairaut relation states that the strip
between parallels r = r; and r = ry is foliated by the geodesic segments 7, (¢),
0 <t < ty, where T; (0) = (ro, 7), T (0) = —(1/m(r())d/80, and r (T% (1)) € (r1, ro)
for all r € (0, tp). Hence the subset Q21 of €2 bounded by T'(p, g), r = ro, and Ty >
is foliated by geodesic segments 7; which are tangent to » = ry.

Let S, (¢), o € (0, ry), denote the geodesic segments such that S, (0) = (o, 7/2)
and S, (0) = —(1/m(0))0/00. Since there exists no point focal to 8 = 7 /2 in
the sector {(r, 8) | 6 € (0, w/2)}, those geodesic segments give a foliation of the
subset €2, of €2, bounded by T'(p, q), Tx/2, and 6 = 7 /2; see Lemma 3.3. Since
Q = Q| Uy, the first claim is proved.

Lety:[0, L] — M denote the geodesic segment which is the edge of A opposite
to p. Hence, we have y(0) = ¢, y(0) = (1/m(r¢))d/06, and O(y (L)) = /2. Let
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z = (r,m/2) for r € (0,r(y(L))). From Proposition 3.2, there exists a unique
minimizing geodesic segment w : [0, L] — M from g to z in A.

We have only to prove that the r-coordinate of w is monotone decreasing. We
have Z(w(0), —d/0r) <m/2 and £ (& (L), —0/dr) > 7 /2 because of the foliation
given in the first part. Therefore, if it is not monotone, then there exist two parameters
s1 and s, such that w is tangent to the parallel circles at s; and s5, since then w(s>)
is a point conjugate to w(sy), contradicting the fact that w is minimizing.

Since the r-coordinate of any geodesic segment from ¢ in A is monotone de-

creasing, A(T(p, q), /2, 7/2) C D(p, q). U
Proof of Corollary 2.3. This corollary follows from Proposition 3.1, Lemma 4.3
and Theorem 2.2, since Ay C A(T(p, g), w/2,7/2) C D(p, q). O

We need two lemmas to prove Theorem 2.4. For z € D(y), let z; € T(p, z) be
the point such that r(z,) =t.

Lemma 4.4. Let (1\71 , P) be a surface of revolution with vertex p such that £ = oo
and let y : [0, 00) — M be a ray such that y(t) = (t,0) forallt > 0. Let z € D(y).
Then, there exists a number Ry > 0 such that the angles of T (z;, y (s)) with —d/0r
at z; are greater than /2 for all z, € T (p, z) and s > Ry.

Proof. For any s > 0, let ¥ (s) be the supremum of the angles of T (z;, y(s))
with —a/0r at z; for all z; € T(p, z). Then ¥ (s) is monotone and increasing in
s € (0, 00), since (1\7 , ) is a surface of revolution homeomorphic to a plane. Since
T (z;, Y (s)) converges to the corays from z; to 7, ¥ (s) converges to a real number
greater than /2 as s — 00. U

Lemma 4.5. Let (M, p) be a complete noncompact Riemannian n-manifold re-
ferred to (1\7, p). Let y : [0, 00) = M be a ray such that y (0) = p. Then, for any
points x € M and 7 € M, there exists a sequence of parameters s such that s j — o0
and the angles of T (y (s;), x) with —y (s;) and T (y (s;), z) with —]j(Sj) converge
to zero as j — oQ.

Proof. This follows from the following inequality and the first variation formula.
|25 —d(y(s), x) —d(7(5), 2)| <d(¥(0),x) +d(7(0),2).

In fact, if this lemma is not true, then the left hand side of the inequality goes to oo
as s — oo. ]

Proof of Theorem 2.4. From Lemma 2.1, we have only to prove that there exists no
critical point of d, in M \ {p}. Letx € M \ {p} and « : [0, a] — M a minimizing
geodesic segment such that «(0) = p and «(a) = x. From the assumption, there
exists a ray y : [0,00) — M from p such that Z(y(0),®(0)) < ¢,. Let z =
(d(p,x),&), where £, <& < p;(y). For this point z, let Ry > 0 denote the number
given in Lemma 4.4. Furthermore, for this x and z, there exists a number sy > Ry
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satisfying the property in Lemma 4.5. If A is the triangle domain bounded by
T(p,y(s0)UT(y(so),z)UT(p,z), as is seen in the proof of Lemma 4.1, then
A C D(p, y(s0))-

We have to prove that ®, ,(s,)(x) € A. Since p is not a cut point of y (so), there
exists a number € > 0 such thatif 0 <7 < ¢, then y, = ®, (5, ((?)) € A. In fact,
r(y;) =t and Z(y(so)py:) < L(y(so)px) < &, since the generalized Toponogov
comparison theorem is valid in some neighborhood of y ([0, sp]). Set

to =sup{r € (0,a] | yr € A}.

As seen before, g > 0 and «(fy) € A. If ) # a, we find a number &; > 0 such that
v, € A for all t € (19, tg+€1), since the sector Int(MJr(pi,()?))) is without conjugate
points and, hence, the generalized Toponogov comparison theorem is valid. This
contradicts the choice of #y. Thus, we have y, = @, (5, (x) € A.

Therefore, Z(y(so)xp) > Z(y(s0)y.p) > 7/2, meaning that o, (x) > m/2.
Thus, x is not a critical point of d,. U

5. The k-plane as a reference surface for spheres

Let M, be the k-plane, by definition isometric to the 2-sphere S%(1//k ) with radius
1//k if k > 0, the Euclidean plane E? if ¥ = 0, or the Poincaré disk with Gauss
curvature k if k¥ < 0. Notice that M, is without meridian focal points in a quarter.
However, Lemma 4.3 is not applied if x < 0, since no parameter rq exists such that
m’(rg) < 0. This means that the condition of being critical, namely «,(¢) < /2
and oy (p) < /2, are not enough for a sphere theorem if the reference surface is
M,, k < 0. We need a restricted condition on «,(q) and o, (p) which depends on
the distance d(p, ¢) and «.

Let M be a complete Riemannian n-manifold with sectional curvature bounded
below by a constant k. For points p, g € M we have points p, g € M, such that
d(p,q) =d(p,q). When k > 0, we assume that d(p, q) < w/+/k. Because, in
general, d(p, q) < /+/k, with equality holding if and only if M is isometric to
the sphere with radius 1//«.

Obviously, D(p, q) ={z € M, | £L(pzg) > 7 /2}. More precisely, z € D(p, q)
if and only if z satisfies the inequalities:

(1) cos/k d(p,q) <cos/kd(p,z) cos/kd(q,z) ifx >0,
2) d(p,q)* >d(p,2)* +d(G,2)* ifk=0,
(3) coshy/—k d(p, q) > coshy/—k d(p, z) coshy/—k d(q,z) ifk <O.

Example 5.1. In M|, if p and ¢ satisfy 7 > d(p, g) > w/2 and z € M| is a meeting
point of the perpendiculars to T (p, ¢) at p and ¢, then the domain bounded by
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the geodesic triangle A(pzq) is contained in D(p, §). In My = [ by elementary
geometry, we see that D(p, ¢) is the open disk with diameter d(p, g).

Corollary 5.2. Let M be a complete Riemannian manifold with sectional curvature
bounded below by k. Assume that there exist two points p and q such that a
dominant triangle Ay = AT (p, q), aq(p), ay(p)) for M can be made from p
and q. If its inner angle at z(Ayy) is greater than 7w /2, then M is topologically an
n-sphere.

Proof. Since the dominant triangle A, is contained in D(p, ¢), this proposition
follows from Theorem 2.2. (I

Let p,g € M, such that p # g. Let E(p,q) = {z € M, | L(pzq) = 7 /2}.
Namely, E(p, q) =3D(p, q). Set

w=wk,d(p,q)) =min{L(zpq) + £(zqp) |z € E(p,q)}.

Obviously, w > 0. From the Gauss—Bonnet formula, we have w = 7 /2 when x > 0
and w < /2 when k < 0. If o, (¢) + g (p) < w, then there exists a dominant
triangle for M.

Corollary 5.3. Let M be a complete Riemannian n-manifold with sectional curva-
ture bounded below by k. If there exist two points p, q € M such that

ap(q) +a4(p) <k, d(p, q)),
then M is homeomorphic to an n-sphere.

Proof. From the assumption, there exists a dominant triangle A, for M which is
contained in D(p, ¢). This corollary follows from Theorem 2.2. U

Remark 5.4. Let E? denote the Euclidean plane. Let G be the isometry group
generated by two translations w(x, y) = (x +a, y) and v(x, y) = (x, y + b) where
a and b are positive constants. The quotient space is a flat torus 7> = F?/G. The
equivalence class containing (x, y) is written with [(x, y)]. Let p = [(a/2, b/2)]
and ¢ = [(0, 0)]. There exist four minimizing geodesic segments connecting p and
g in T? We then have d(p, ¢) = diam(7?) and ap(q) +ay(p) = /2, meaning
that Corollary 5.3 is optimal.

Let C =C(p, q) be the set of all midpoints between p and ¢, namely
C={xeM|d(p,x)=d(x,q)=d(p,q)/2}.
Ifx €C, then T (p, x)UT (x, g) is the unique minimizing geodesic segment through x
connecting p and q.

Corollary 5.5. Let M be a complete Riemannian n-manifold of nonnegative sec-
tional curvature and p,q € M. If d(x,C(p, q)) <d(p,q)/2forall x € M ~{p, q},
then M is topologically an n-sphere.
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Proof. We have only to prove that any point x € M ~\ {p, ¢} is not a critical point of
the distance function d,,. We use the Euclidean plane E? as a model space for the
Toponogov comparison theorem. Let T=T( 7, §) be a segment in E? with length
d(p, g) and m the midpoint of T.

Let x € M ~ {p, gq}. From the assumption, there exists a midpoint m between
p and ¢ such that d(x, m) < d(p, q)/2. Let A(pgx) be the comparison triangle
in E2 corresponding to A(pgx). Then it follows from the Alexandrov convexity
that d(x, m) > d(x, m). Therefore, we have d(m, X) <d(p, g)/2. Thus we have
£ (pxq) > m /2. From the Toponogov comparison theorem, we have Z (pxq) > 7 /2.
This implies that x is not a critical point of d,. (]

Remark 5.6. Let T2 p, and ¢ be as in Remark 5.4. Let s = [(0, b/2)]. We then
have d(s, x) = diam(7'?) /2 for all x € C(p, q). From this example, Corollary 5.5
is optimal.

6. Noncompact manifolds referred to M,

Let M be a complete noncompact Riemannian n-manifold with sectional curvature
bounded below by ¥ < 0 and M, the k-plane. Let y be aray in M with y(0) = p.
The Busemann function f, for y is defined by

fr(x) = tliIEo(’ —d(x,y(1)), xeM.

Let B, (x) be the open horoball of aray y givenby {y e M | f,,(y) > f,(x)}.

Let I', denote the set of all rays from p in M. The super Busemann function f),
is given by f,(x) = SUp,,cr, fy(x) forall x € M.

Let y be a fixed ray in M, with y(0) = p. We call B;(z) a horoball of y
determined by z € M,. Since x < 0, all horoballs are convex in M,, meaning
that if wy, wy € Bj(z), then the unique minimizing geodesic segment 7'(z1, z2) is
contained in Bj(z).

Let v(z) be the unit tangent vector at z € M, of the coray to ¥ and w(z) the unit
tangent vector of geodesic segment from z to p at z, respectively. Set

D(y)={ze M| £L(v(2), w(2)) > 7/2}.

We have D(y) =lim;_, o By (1) if « =0. When « < 0, the boundary 0 D(y) of
D(y) is the trace of those points z(t) € M, t > 0, such that the straight line tangent
to the horocircle f);*l(t) through y (¢) at z(¢) passes through p.

Example 6.1. Let M_; = {(x, y) | x>+ y?> < 1} and

_ 4dx?+dy?)

ds?’= —— -~
s (1—x2—y2)2
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be the Poincaré disk model. Let p = (0, 0) and y ([0, 00)) ={(0,¢) |0 <t < 1}. If
x =rcosf,y=rsin6, then d D(y) is the trace of the curve given by the equation
r =tan(0/2), 0 < 8 < m/2. In fact, since any horocircle of y is a subarc of a
circle with center (u cos 8, 1) and radius u cos # and any geodesic from (0, 0) is a
subsegment of a straight line through (0, 0) with slope tan 6, they meet at points
satisfying

r=u—ucosf, 1=usiné.

Hence, we have

l—cos®  2sin’(6/2) _ sin(0/2)
sinf 2sin(6/2) cos(8/2) - cos(6/2)°

Here we assume that k < 0. As before, let z(t) = dD(y) N f?_l(t) in M,. Let
pj(t) be the angle of y with T'(p, z(t)) at p for t > 0. Then p;(0) = 7/2 and
lim; , o p5(t) = 0. Moreover, p;() is monotone decreasing in 7 > 0.

Let y be a fixed ray in (M, p) with y(0) = p. Let ¥, be the reference map
from M to M, . By definition, we have, for all points x € M,

d(p,¥p(x)) =d(p,x), [fr(¥px))= fpx).

Corollary 6.2. Let M be a complete noncompact Riemannian n-manifold with
sectional curvature bounded below by k. If there exists a point p € M such that
Y, (M~ {p}) C D(y), then M is diffeomorphic to the Euclidean space [".

Proof. From the definition of D(y), there exists no critical point of d,, in M \ {p}.
Lemma 2.1 proves this corollary. ]

Proposition 6.3. Let M denote a complete noncompact Riemannian n-manifold
with sectional curvature bounded below by k < 0. Assume that ¢, < /2. Then p is
a minimum point of f,, in M. If ty satisfies pj(to) = ¢p, then there exists no critical
point of d, in f,~1((0, t)).

Proof. Since ¢, < m /2, it follows that f,(p) =0 is a minimum of f, in M. Let
x € M be such that 0 < f,(x) <19. Let v be the initial tangent vector of a minimizing
geodesic segment from p to x. From the definition of ¢, there exists y € I';, such
that Z (v, y(0)) < ¢,,. From the definition of f},, we have f, (x) < f,(x) <1y and,
hence, from the Toponogov comparison theorem,

p5(f (X)) > pito) = = L (v, 7(0) = £ (B, 7)

where v is the initial tangent vector of the minimizing geodesic segment from p
to W, (x) in M,. This inequality shows W, (x) € D(y). O
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A NOTE ON AN LP’-BRUNN-MINKOWSKI INEQUALITY
FOR CONVEX MEASURES IN THE UNCONDITIONAL CASE

ARNAUD MARSIGLIETTI

We consider a different LP-Minkowski combination of compact sets in R”
than the one introduced by Firey and we prove an L?-Brunn—Minkowski
inequality, p € [0, 1], for a general class of measures called convex measures
that includes log-concave measures, under unconditional assumptions. As
a consequence, we derive concavity properties of the function ¢ — u (/7 A),
p € (0,1], for unconditional convex measures g and unconditional con-
vex body A in R”. We also prove that the (B)-conjecture for all uniform
measures is equivalent to the (B)-conjecture for all log-concave measures,
completing recent works by Saroglou.

1. Introduction

The Brunn—Minkowski inequality is a fundamental inequality which states that, for
every convex subset A, B C R" and for every A € [0, 1], one has

(1) |(1—2)A+AB|# > (1—X)|Alr + A| B,
where
A+B={a+b:acA,be B}

denotes the Minkowski sum of A and B and where | - | denotes Lebesgue measure.
The inequality and its consequences are well covered in the book [Schneider 1993]
and the survey [Gardner 2002].

Several extensions of the Brunn—Minkowski inequality have been developed
during the last decades by establishing functional versions (see, e.g., [Henstock and
Macbeath 1953; Dubuc 1977; Dancs and Uhrin 1980; Uhrin 1994]), by considering
different measures (see, e.g., [Borell 1974; 1975]), by generalizing the Minkowski
sum (see, e.g., [Firey 1961; 1962; 1964; Lutwak 1993; 1996]), among others.
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In this paper, we will combine these extensions to prove an L”-Brunn—Minkowski
inequality for a large class of measures, including the log-concave measures.
Firstly, let us consider measures other than Lebesgue measure. Following Borell
[1974; 1975], we say that a Borel measure p in R” is s-concave, s € [—00, +00],
if the inequality
u((1=2)A+21B) = M} (11(A), u(B))

holds for every A € [0, 1] and for every compact subset A, B C R” such that
u(A)u(B) > 0. Here M SA (a, b) denotes the s-mean of the nonnegative real numbers
a, b with weight A, defined as

M*(a,b) = (1= 2)a* +Ab*)s if s ¢ {—00, 0, +00},

M*_(a,b) =min(a, b), M{(a, b) = a'~*b*, M’ (a, b) = max(a, b). Hence the
Brunn—Minkowski inequality tells us that Lebesgue measure in R” is %—concave.

As a consequence of the Holder inequality, one has MpA (a,b) <M ; (a, b) for
every p < q. Thus every s-concave measure is —oo-concave. The —oo-concave
measures are also called convex measures.

For s < %, Borell showed that every measure p which is absolutely continuous
with respect to n-dimensional Lebesgue measure is s-concave if and only if its
density is an «-concave function, with

) =3 e[—l,+oo].

1—sn n

A function f : R" — [0, +00) is said to be «-concave, with o € [—00, +00], if the
inequality

F(=2)x +1y) > ME(f(x), f()

holds for every x, y € R" such that f(x) f(y) > 0 and for every A € [0, 1].

Secondly, let us consider a generalization of the notion of the Minkowski sum
introduced by Firey, which leads to an L?-Brunn—Minkowski theory. For convex
bodies A and B in R" (i.e., compact convex sets containing the origin in the interior),
the LP-Minkowski combination, p € [—00, +00], of A and B with weight A € [0, 1]
is defined by

(1-2)-A@,r-B={xeR": (x,u) < le(hA(u), hg(u)) for all u € S"~1},
where h 4 denotes the support function of A defined by
ha(u) = rileaf)‘((x, u), wueS" '
Notice that, for every p < ¢, one has

(1-=2)-A@,A-BC(1—1)-A®, - B.
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The support function is an important tool in convex geometry: it has the property
of determining the convex body, since

A={xeR": (x,u) <hau) forallu e $" '},
and it is linear with respect to Minkowski sum and dilation:
hayp=ha+hp, hya=pha
(A, BC R" and i > 0). Thus,
(1—A2)-A®1A-B=(1—X)A+AB.

In this paper, we consider a different LP-Minkowski combination. We denote by
R the set of nonnegative real numbers. Recall that a function f : R" — R is uncon-
ditional if there exists a basis (ay, ..., a,) of R" (the canonical basis in the sequel)
such that, for every x = Z?:l x;a; € R" and for every ¢ = (e1, ..., &,) € {—1, 1},
one has f (7, &ixia;) = f(x). A measure which is absolutely continuous with
respect to n-dimensional Lebesgue measure is unconditional if its density function
is unconditional. For p = (py, ..., px) € [—00, +00]", a = (ay, ..., a,) € (RL)",
b=(by,...,by) € (Ry)" and A € [0, 1], let us denote

(1 =2a-+p b= (M, (a1, b1). ... My (an, bn)) € (R4)".

1

For subsets A, B C R" such that A N (Ry)" and B N (R4+)" are nonempty, for
p € [—o0, +00]" and for A € [0, 1], we define the LP’-Minkowski combination of
A and B with weight A, denoted by (1 — 1) - A+, A - B, to be the unconditional
subset (i.e., the indicator function is unconditional) such that

(1=2)-A+pA-B)NRY)"={(1—Na+pAb:a e ANRY", be BN[RY)"}.

This definition is consistent with the well known fact that an unconditional set
(or function) is determined by its restriction to the positive octant (R)". More-
over, this LP-Minkowski combination coincides with the classical Minkowski
sum when p = (1,...,1) and A, B are unconditional convex subsets of R" (see
Proposition 2.1).

Using an extension of the Brunn—Minkowski inequality discovered by Uhrin
[1994], we prove the following result:

Theorem 1.1. Let p=(p1, ..., pn) €10, 1" and @ € R with « > —(Z?Zl plfl)_l.
Let u be an unconditional measure in R" that has an a-concave density function
with respect to Lebesgue measure. Then, for every unconditional convex body A, B

in R" and for every A € [0, 1],
3) u((1=2)- A4p % B) = M (u(A), u(B)),

where y = (Z?:l pi_l +oz‘1)_1
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In Theorem 1.1, if a or one of the p; is equal to 0, then (}_7_, pl._l)_1 and y are
defined by continuity and are equal to 0.

The case of Lebesgue measure and p = (0, ..., 0) is treated by Saroglou [2015],
answering a conjecture by Boroczky, Lutwak, Yang and Zhang [Boroczky et al.
2012] in the unconditional case.

Conjecture 1.2 (log-Brunn—Minkowski inequality [Boroczky et al. 2012]). Let A, B
be symmetric convex bodies in R" and let A € [0, 1]. Then

) |(1—2)-A@or- Bl > |AI'"*B|.

Useful links between Conjecture 1.2 and the (B)-conjecture have been discovered
by Saroglou [2014; 2015].

Conjecture 1.3 ((B)-conjecture [Latata 2002; Cordero-Erausquin et al. 2004]).
Let (1 be a symmetric log-concave measure in R" and let A be a symmetric convex
subset of R". Then the function t — u(e' A) is log-concave on R.

The (B)-conjecture was solved by Cordero-Erausquin, Fradelizi and Maurey
[Cordero-Erausquin et al. 2004] for the Gaussian measure and for the unconditional
case. As a variant of the (B)-conjecture, one may study concavity properties of the
function # — p(V (¢)A) where V : R — R, is a convex function. As a consequence
of Theorem 1.1, we deduce concavity properties of the function ¢ +— /L(I%A),
p € (0, 1], for every unconditional s-concave measure p and every unconditional
convex body A in R" (see Proposition 2.4).

Saroglou [2014] has also proved that the log-Brunn—Minkowski inequality for
Lebesgue measure — which is to say, inequality (4) —is equivalent to the log-
Brunn—Minkowski inequality for all log-concave measures. We continue these
kinds of equivalences by proving that the (B)-conjecture for all uniform measures is
equivalent to the (B)-conjecture for all log-concave measures (see Proposition 3.1).

We also investigate functional versions of the (B)-conjecture, which may be read
as follows:

Conjecture 1.4 (functional version of the (B)-conjecture). Let f, g : R* — R be
even log-concave functions. Then the function

t— fle"x)g(x)dx
Rn

is log-concave on R.

We prove that Conjecture 1.4 is equivalent to Conjecture 1.3 (see Proposition 3.2).

Let us note that other developments in the use of the earlier mentioned extensions
of the Brunn—Minkowski inequality have been recently made as well. See, e.g.,
[Bobkov et al. 2014; Caglar and Werner 2014; Caglar et al. 2015; Gardner et al.
2014].
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The rest of the paper is organized as follows: in the next section, we prove
Theorem 1.1 and we extend it to m sets, m > 2. We also compare our L”-Minkowski
combination to the Firey combination and derive an L”-Brunn—Minkowski inequality
for the Firey combination. We then discuss the consequences of a variant of the
(B)-conjecture, namely we deduce concavity properties of the function ¢ — ,u(t%A),
p € (0, 1]. In Section 3, we prove that the (B)-conjecture for all uniform measures
is equivalent to the (B)-conjecture for all log-concave measures, and we also prove
that the (B)-conjecture is equivalent to its functional version, Conjecture 1.4.

2. Proof of Theorem 1.1 and consequences

Before proving Theorem 1.1, let us show that our LP-Minkowski combination
coincides with the classical Minkowski sum when p = (1, ..., 1), for unconditional
convex sets.

Proposition 2.1. Let A, B be unconditional convex subsets of R* and let A € [0, 1].
Then

1—-A)-A+1A-B=((1—-AA+AB,
where1=(1,...,1).

Proof. Since the sets (1 —A)-A+1A- B and (1 —X)A + AB are unconditional, it is
sufficient to prove that

((I=2)-A+12-B)NRY)"=((1=2MNA+AB)N(Ry)".

Let x € (1 —X)A + AB) N (RL)". There exists a = (ay,...,a,) € A and
b= (by,...,b,) € Bsuchthat x = (1 —A)a+ Ab and, for every i € {1,...,n},
(1 —A)a; +1b; e Ry. Let g, n € {—1, 1}" such that (144, ..., g,a,) € (Ry)" and
(mby, ..., nub,) € (R1)". Notice that, foreveryi e {1, ...,n},0<(1—A)a;+1b; <
(1—=X\)e;a; +An;b;. Since the sets A and B are convex and unconditional, it follows
thatx e 1 —2D)(ANRL)D+ABNRL)H) =1 —=A)-A+1A-B)NRP".

The other inclusion is clear due to the definition of the set (1—X)-A+qA-B. [

Proof of Theorem 1.1. Let A € [0, 1] and let A, B be unconditional convex bodies
in R".

It has been shown by Uhrin [1994] that if f, g, 4 : (R;)" — Ry are bounded
measurable functions such that, for every x,y € (Ry)", h((1 — A)x +p Ay) >

MA(f(x), g(»)), then

/ h(x)dsz)’}( f(x)dx,/ g(x)dx),
Ry)" R)" R"

where y = (X0, p;*! —i—oz‘l)_1
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Let us denote by ¢ the density function of n and let us set & = 1(1_;). A+p1-BD,
f = 14¢ and g = 1p¢. By assumption, the function ¢ is unconditional and
«-concave, hence ¢ is nonincreasing in each coordinate on the octant (R)". Then
for every x, y € (R;)" one has

G (1= 2)x 45 1y) = ¢((1 = Mx +4y) = M ($(x), $(¥)).

Hence,

R((1 = 2)x 45 Ay) = M2 (f(x), ().

Thus we may apply the result mentioned at the beginning of the proof to obtain that

f h(x)dsz)’}(/ f(x)dx,f g(x)dx),
Ry Ry)" Ry)"

where y = (X7, pi' + a‘l)_l. In other words, one has
p((L=2)-A+p 2 BYN(RY") = M3 (u(AN R, (BN (R)").
Since the sets (1 —1)- A+, A- B, A and B are unconditional, it follows that
P =2) - Atp d- B) = My (11(A), u(B)). O
Remark. One may similarly define the L”-Minkowski combination
AMArtp - p A Ap

for m convex bodies Ay, ..., Ay CR", m > 2, where Ay, ..., A, € [0, 1] are such
that > /" | A; = 1, by extending the definition of the p-mean MpA to m nonnegative
numbers. By induction, one has under the same assumptions of Theorem 1.1 that

(5) - Ay p oy A Ap) = M (AL, .., w(A)),
where y = (30, p;! —I—a_l)_l. Indeed, let m > 2 and let us assume that inequal-

ity (5) holds. Notice that

m

Ar- Ay +p tee +p Am - Am +p )¥m+1 : Am—H = <Z Ai) : Z+p )\m-i-l : Am+1,

i=1

where

A ( M Aty g )
Zi:l Ai b P Zi:l Ai "
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Thus,

u((Z Ai) A Ap dt -Am+1) > ((Z ki)u(fT)V +Am+m(Am+1)V)y

i=1 i=1
m+1 %
> (Z )»iM(Ai)y) .

i=1

Consequences. The following result compares the LP”-Minkowski combinations
@p and +p.

Lemma 2.2. Let p € [0, 1] and set p = (p, ..., p) € [0, 1]". For every uncondi-
tional convex body A, B in R" and for every A € [0, 1], one has

(1-=2)-A@A-BD(1—1)-A+p1-B.

Proof. The case p = 0 is proved in [Saroglou 2015]. Let p # 0. Since the sets
(I=A)-A@®pA-Band (1—-21)-A+,A-B are unconditional, it is sufficient to prove
that

(1 =2)-A@pa-B)N(RY)" D ((1—2)- Aty r-B)N(RL".

LetueS" 'N(Ry) andletx € (1—1)-A +p A-B)N(R4)". One has

(o) = S (U= 1)al +AbD) 7wy = 3 (1= W) (@ui)? + h(biu)")7

i=1 i=1

1
=[1-2M)X+2Y|1,

P
where X = ((aju1)?, ..., (a,u,)?) and Y = ((byu1)?, ..., (b,u,)?). Notice that
||X||% <ha(u)?, ||Y||% < hg(u)? and that || - ||]17 is a norm. It follows that

1 1
(o, u) < (1 = MIXI s +)»||Y||%)” < (A =Wha@)? +rhp@)?)?.
Hence, x € (1 —=1)-A@, - B)N(R)". ]

From Lemma 2.2 and Theorem 1.1, one obtains the following result:

Corollary 2.3. Let p € [0, 1]. Let u be an unconditional measure in R"* that has

an a-concave density function, with o > — % Then, for every unconditional convex
body A, B in R" and for every A € [0, 1],

(6) u((1=2)- A, 1 B) = M (1u(A), u(B)),

where y = (% + é)_l.
In Corollary 2.3, if o or p is equal to O, then y is defined by continuity and is

equal to 0.
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Remarks. (1) By taking o = 0 in Corollary 2.3 (corresponding to log-concave
measures), one obtains

w((1—2)-A@or-B) > (A" u(B)*

(2) By taking o = 400 in Corollary 2.3 (corresponding to %—concave measures),
one obtains that, for every p € [0, 1],

u((1=2)- A@ya-B)r = (1 —A)u(A)n +Apu(B)r.

Equivalently, for every p € [0, 1], for every unconditional convex body A, B
in R" and for every unconditional convex set K C R”,

(1=2)-A@,A-B)NK|" = (1—VIANK|" +A|BNK|,

Let us recall that the function ¢ > (e’ A) is log-concave on R for every uncon-
ditional log-concave measure w and every unconditional convex body A in R" (see
[Cordero-Erausquin et al. 2004]). By adapting the argument of [Marsiglietti 2015],
Proof of Proposition 3.1 (see Proof of Corollary 2.5), it follows that the function
t— ,u(t%A) is f—concave on R, for every p € (0, 1], for every unconditional
s-concave measure u, with s > 0, and for every unconditional convex body A in R".
However, no concavity properties are known for the function ¢ — (e’ A) when p is
an s-concave measure with s < 0. Instead, for these measures we prove concavity
properties of the function ¢ — M(I%A).

Proposition 2.4. Let p € (0, 1] and a € [—5, 0), let i be an unconditional measure
that has an a-concave density function, and let A be an unconditional convex body
in R". Then the function t — ,u(t%A) is (% + é)_l-concave on R,.

1 1
Proof. Let t1, 1, € Ry. By applying Corollary 2.3 to the sets " A and ¢, A, one
obtains

1 1
(=011 +20)7A) = u((1 =) 1] A@p & -1] A)
1 1
> M (it A), (1] A)),
where y = (% + é)_l. Hence the function ¢ +— ,u(t%A) is y-concave on Ry. [
As a consequence, we derive concavity properties for the function t — u(tA).

Corollary 2.5. Let p € (0, 1], let u be an unconditional measure that has an
a-concave density function, with o € [—5, 0), and let A be an unconditional convex
body in R". Then the function t — u(tA) is (lpr + y)-concave on Ry, where

-1
r=0G+a)
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Proof. We adapt [Marsiglietti 2015], Proof of Proposition 3.1. Let us denote
by ¢ the density function of the measure p and let us denote by F the func-
tion t — w(tA). From Proposition 2.4, the function ¢t +— F (t%) is y-concave,

hence the right derivative of F', denoted by F, exists everywhere and the function
1_

t— %tﬂ IFJL (t%)F(t%)V_1 is nonincreasing. Notice that
F@)=1" / ¢(tx)dx
A

. . . . 1 1-p .
and that ¢ — ¢ (fx) is nonincreasing; thus the function ¢ — tlTpF(t) + is non-
increasing. Since

Iy, _ 1 I=p
FLOF@ = =t PFOF @)™ FO) 7

. lp_ 1. . . .
it follows that F Jﬁ (O F(1) oy =lig nonincreasing as the product of two nonnegative
nonincreasing functions. Hence F is (I_Tp + y)—concave. O

Remark. For every s-concave measure i and for every convex subset A C R”,
the function ¢t — pu(tA) is s-concave. Hence Corollary 2.5 is of value only if
1pr + v > a/(1 4+ an) (see relation (2)). Notice that this condition is satisfied if
o > —p/(m(1+ p)). We thus obtain:

Corollary 2.6. Let p € (0, 1], let u be an unconditional measure that has an
a-concave density function, with —p /(n(1+ p)) <« <0, and let K be an uncon-
ditional convex body in R". Then, for all subsets A, B € {uK : u > 0} and all
A €0, 1], one has

w1 =NA+1B) = M, (1(A), u(B)),

n

where y = (% + é)_l.

In [Marsiglietti 2015] we investigated improvements of concavity properties of
convex measures under additional assumptions, such as symmetries. Corollary 2.6
follows the same path and completes the results found there.

We conclude this section with a remark on the question of improving the concavity
properties of convex measures.

Remark. Let u be a Borel measure that has a density function with respect to
Lebesgue measure in R”. One may write the density function of y in the form e~V
where V : R” — R is a measurable function. Let us assume that V is C2. Let
y > 0. The function e~" is y-concave if Hess(ye""), the Hessian of ye™7", is

nonpositive (in the sense of symmetric matrices). One has

Hess(ye 7Yy =—y2V-(VVe 7YY =9%2"V(yVV Q VV —Hess V),
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where

ov oV
VV@VV=(——— .

It follows that the matrix Hess(ye~"") is nonpositive if and only if the matrix
yVV ® VV —Hess V is nonpositive.
Let us apply this remark to the Gaussian measure
2

1
dy,(x) = —e 2 dx, xeR"
et

Here V(x) = % + ¢u, where ¢, = 5 log(2m). Thus VV @ VV = (x;x;)1<i j<n
and Hess V = Id, the identity matrix. The eigenvalues of yVV ® VV — Hess V
are —1 (with multiplicity (n — 1)) and y|x|?> — 1. Hence, if y|x|> — 1 <0, then
yVV ® VV — Hess V is nonpositive. One deduces that, for every y > 0, for all
compact sets A, B C ﬁBg and for every X € [0, 1], one has

(7) Ya((1=A)A+AB) > Mf%w(yn(m, Yu(B)),

where B} denotes the Euclidean closed unit ball in R".
Since the Gaussian measure is a log-concave measure, inequality (7) is an
improvement of the concavity of the Gaussian measure when restricted to compact
1 pn
sets A, B C ﬁB2‘
3. Equivalence between (B)-conjecture-type problems

The next proposition reduces the proof of the (B)-conjecture for all uniform measures
in R”, for every n € N*, to proving the (B)-conjecture for all symmetric log-concave
measures in R”, for every n € N*. This completes recent work by Saroglou [2014;
2015].

We will say that a measure y satisfies the (B)-property if the function 7 — (e’ A)
is log-concave on R for every symmetric convex set A C R”".

Proposition 3.1. If every symmetric uniform measure in R", for every n € N*,
satisfies the (B)-property, then every symmetric log-concave measure in R"*, for
every n € N*, satisfies the (B)-property.

Proof. The proof is inspired by [Artstein-Avidan et al. 2004, beginning of Section 3].

Step 1: Stability under orthogonal projection. Let us show that the (B)-property is
stable under orthogonal projection onto an arbitrary subspace.

Let F be a k-dimensional subspace of R". Let us define, for every compactly
supported measure @ in R” and every measurable subset A C F,

T (A) == n(I; ' (A)),
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where [1r denotes the orthogonal projection onto F and
M;'(A) == {x e R": [Ip(x) € A}.

We have I ! (e'A) =¢' (A x F1), where F denotes the orthogonal complement
of F. Hence if u satisfies the (B)-property, so does ITgu.

Step 2: Approximation of log-concave measures. Let us show that for every com-
pactly supported log-concave measure p in R" there exists a sequence (K),) e+
of convex subsets of R"*? such that lim,_, 4 oo [Tge KK, = |4 in the sense that the
density function of  is the pointwise limit of the density functions of (ux,) pen-,
where pk, denotes the uniform measure on K, (up to a constant).

Let 1 be a compactly supported log-concave measure in R"” with density function
f=e", where V: R" — RU {400} is a convex function. To simplify notation,
define

®) W) = (1 - Wx)) ,
P /4

where a; = max(a, 0) for every a € R. Notice that eV = lirJlrl W (x)? for every
—+00
x € R". Let us define for every p € N* b

Ky, ={(x,y) eR" xR” : [y| < W(x)}.

One has, for every x € R",

W(x) +o00 1
W(x)? = f prp*1 dr = p/ l[oyw(x)](r)rl”f1 dr = — g, (x, y)dy.
0 0 Up JRP
The last equality follows from an integration in polar coordinates, where v, denotes
the volume of the Euclidean closed unit ball in R”. By denoting ug, the measure
in R"*? with density function

1
—1g,(x,y), (x,y) eR"xRP,
Up

it follows that, for every p € N*, the measure Ilgsug, has density function
W(x)?, x € R". We conclude that lim,_, ; o Mgn g, = W

Step 3: Conclusion. Let n € N* and let 1 be a symmetric log-concave measure
in R". By approximation, one can assume that  is compactly supported. Since p is

symmetric, the sequence (K),) pen+ defined in Step 2 is a sequence of symmetric
convex subsets of R"*7. If we assume that the (B)-property holds for all uniform
measures in R™, for every m € N*, then, for every p € N*, MK, satisfies the
(B)-property. It follows from Step 1 that, for every p € N*, ITgn g, satisfies the
(B)-property. Since lim_, 400 [gnpk, = 1 (see Step 2) and since a pointwise
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limit of log-concave functions is log-concave, we conclude that u satisfies the

(B)-property. U
Similarly, let us now prove that the functional form of the (B)-conjecture

(Conjecture 1.4) is equivalent to the classical (B)-conjecture (Conjecture 1.3).

Proposition 3.2. One has equivalence between the following properties:

(1) For every n € N*, for every symmetric log-concave measure (v in R" and for
every symmetric convex subset A of R", the function t — (e’ A) is log-concave
on R.

(2) For every n € N* and for all even log-concave functions f, g : R" — Ry, the
function t — fw fle7'x)g(x)dx is log-concave on R.

Proof. (2) = (1) This is clear by taking f to be 14, the indicator function of a
symmetric convex set A, and by taking g to be the density function of a log-concave
measure (.

(1) = (2) Let f, g : R" — R, be even log-concave functions. By approximation,

one may assume that f and g are compactly supported. Let us write g = e~ ",

where V : R" — R U {400} is an even convex function. One has
Git):=| fe'x)e?"®dx= lim Fle ' x)W(x)P dx,
R» p—>+00 R®
where W (x) is as in (8). Let us denote, for r € R,

G,(t)= | feT'x)W(x)?dx.
R)l

We have seen in the proof of Proposition 3.1 that
1
Wx)!r'=— | 1k, (x,y)dy,
Up RP
where K, := {(x, y) € R" x R? : |y| < W(x)} and where v,, denotes the volume of
the Euclidean closed unit ball in R”. Hence,

1
Gty == [ Fe D1a)drdy.
P p

Notice that K, is a symmetric convex subset of R"*”. The change of variable
X=e'xand y =e 'y leads to

et(n+p)

Gy(t) = Mp(e_le)»

Up

where u,, is the measure with density function

h(x,y) = f)1Ire(y), (x,y) e R" xRP.
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Since a pointwise limit of log-concave functions is log-concave, we conclude
that the function G is log-concave on R as the pointwise limit of the log-concave
functions G, p € N*. O

Recall that the (B)-conjecture holds true for the Gaussian measure and for the
unconditional case (see [Cordero-Erausquin et al. 2004]). From the techniques
of the proof of Proposition 3.2, it follows that Conjecture 1.4 holds true if one
function is the density function of the Gaussian measure or if both functions are
unconditional.

References

[Artstein-Avidan et al. 2004] S. Artstein-Avidan, B. Klartag, and V. Milman, “The Santal6 point of
a function, and a functional form of the Santal6 inequality”, Mathematika 51:1-2 (2004), 33-48.
MR 2007a:52008 Zbl 1121.52021

[Bobkov et al. 2014] S. G. Bobkov, A. Colesanti, and I. Fragala, “Quermassintegrals of quasi-concave
functions and generalized Prékopa—Leindler inequalities”, Manuscripta Math. 143:1-2 (2014), 131-
169. MR 3147446 Zbl 1290.26019

[Borell 1974] C. Borell, “Convex measures on locally convex spaces”, Ark. Mat. 12 (1974), 239-252.
MR 52 #9311 Zbl 0297.60004

[Borell 1975] C. Borell, “Convex set functions in d-space”, Period. Math. Hungar. 6:2 (1975),
111-136. MR 53 #8359 Zbl 0307.28009

[Boroczky et al. 2012] K. J. Boroczky, E. Lutwak, D. Yang, and G. Zhang, “The log—Brunn—
Minkowski inequality”, Adv. Math. 231:3-4 (2012), 1974-1997. MR 2964630 Zbl 1258.52005

[Caglar and Werner 2014] U. Caglar and E. M. Werner, “Divergence for s-concave and log concave
functions”, Adv. Math. 257 (2014), 219-247. MR 3187648 Zbl 1310.26016

[Caglar et al. 2015] U. Caglar, M. Fradelizi, O. Guédon, J. Lehec, C. Schiitt, and E. M. Werner,
“Functional versions of L p-affine surface area and entropy inequalities”, International Mathematics
Research Notices (2015), 1-28.

[Cordero-Erausquin et al. 2004] D. Cordero-Erausquin, M. Fradelizi, and B. Maurey, “The (B)
conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems”, J.
Funct. Anal. 214:2 (2004), 410-427. MR 2005g:60064 Zbl 1073.60042

[Dancs and Uhrin 1980] S. Dancs and B. Uhrin, “On a class of integral inequalities and their
measure-theoretic consequences”, J. Math. Anal. Appl. 74:2 (1980), 388-400. MR 81g:26009
Zbl 0442.26011

[Dubuc 1977] S. Dubuc, “Criteres de convexité et inégalités intégrales”, Ann. Inst. Fourier (Grenoble)
27:1 (1977), 135-165. MR 56 #3210 Zbl 0331.26008

[Firey 1961] W.J. Firey, “Mean cross-section measures of harmonic means of convex bodies”, Pacific
J. Math. 11 (1961), 1263-1266. MR 25 #3427 Zbl 0122.41101

[Firey 1962] W.J. Firey, “p-means of convex bodies”, Math. Scand. 10 (1962), 17-24. MR 25 #4416
7Zbl 0188.27303

[Firey 1964] W.J. Firey, “Some applications of means of convex bodies”, Pacific J. Math. 14 (1964),
53-60. MR 28 #4428 Zbl 0126.38405

[Gardner 2002] R. J. Gardner, “The Brunn—Minkowski inequality”, Bull. Amer. Math. Soc. (N.S.)
39:3 (2002), 355-405. MR 2003f:26035 Zbl 1019.26008


http://dx.doi.org/10.1112/S0025579300015497
http://dx.doi.org/10.1112/S0025579300015497
http://msp.org/idx/mr/2007a:52008
http://msp.org/idx/zbl/1121.52021
http://dx.doi.org/10.1007/s00229-013-0619-9
http://dx.doi.org/10.1007/s00229-013-0619-9
http://msp.org/idx/mr/3147446
http://msp.org/idx/zbl/1290.26019
http://dx.doi.org/10.1007/BF02384761
http://msp.org/idx/mr/52:9311
http://msp.org/idx/zbl/0297.60004
http://dx.doi.org/10.1007/BF02018814
http://msp.org/idx/mr/53:8359
http://msp.org/idx/zbl/0307.28009
http://dx.doi.org/10.1016/j.aim.2012.07.015
http://dx.doi.org/10.1016/j.aim.2012.07.015
http://msp.org/idx/mr/2964630
http://msp.org/idx/zbl/1258.52005
http://dx.doi.org/10.1016/j.aim.2014.02.013
http://dx.doi.org/10.1016/j.aim.2014.02.013
http://msp.org/idx/mr/3187648
http://msp.org/idx/zbl/1310.26016
http://dx.doi.org/10.1093/imrn/rnv151
http://dx.doi.org/10.1016/j.jfa.2003.12.001
http://dx.doi.org/10.1016/j.jfa.2003.12.001
http://msp.org/idx/mr/2005g:60064
http://msp.org/idx/zbl/1073.60042
http://dx.doi.org/10.1016/0022-247X(80)90136-5
http://dx.doi.org/10.1016/0022-247X(80)90136-5
http://msp.org/idx/mr/81g:26009
http://msp.org/idx/zbl/0442.26011
http://dx.doi.org/10.5802/aif.645
http://msp.org/idx/mr/56:3210
http://msp.org/idx/zbl/0331.26008
http://dx.doi.org/10.2140/pjm.1961.11.1263
http://msp.org/idx/mr/25:3427
http://msp.org/idx/zbl/0122.41101
https://eudml.org/doc/165786
http://msp.org/idx/mr/25:4416
http://msp.org/idx/zbl/0188.27303
http://dx.doi.org/10.2140/pjm.1964.14.53
http://msp.org/idx/mr/28:4428
http://msp.org/idx/zbl/0126.38405
http://dx.doi.org/10.1090/S0273-0979-02-00941-2
http://msp.org/idx/mr/2003f:26035
http://msp.org/idx/zbl/1019.26008

200 ARNAUD MARSIGLIETTI

[Gardner et al. 2014] R.J. Gardner, D. Hug, and W. Weil, “The Orlicz-Brunn—Minkowski theory:
A general framework, additions, and inequalities”, J. Differential Geom. 97:3 (2014), 427-476.
MR 3263511 Zbl 1303.52002

[Henstock and Macbeath 1953] R. Henstock and A. M. Macbeath, “On the measure of sum-sets, I:
The theorems of Brunn, Minkowski, and Lusternik”, Proc. London Math. Soc. (3) 3 (1953), 182-194.
MR 15,109g Zbl 0052.18302

[Latata 2002] R. Latata, “On some inequalities for Gaussian measures”, pp. 813—-822 in Proceedings
of the International Congress of Mathematicians, 1I (Beijing, 2002), edited by T. Li, Higher Ed.
Press, Beijing, 2002. MR 2004b:60055 Zbl 1015.60011

[Lutwak 1993] E. Lutwak, “The Brunn—Minkowski—Firey theory, I: Mixed volumes and the Minkowski
problem”, J. Differential Geom. 38:1 (1993), 131-150. MR 94g:52008 Zbl 0788.52007

[Lutwak 1996] E. Lutwak, “The Brunn—-Minkowski-Firey theory, II: Affine and geominimal surface
areas”, Adv. Math. 118:2 (1996), 244-294. MR 97f:52014 Zbl 0853.52005

[Marsiglietti 2015] A. Marsiglietti, “On the improvement of concavity of convex measures”, Pro-
ceedings of the American Mathematical Society (2015), 1-12.

[Saroglou 2014] C. Saroglou, “More on logarithmic sums of convex bodies”, preprint, 2014. arXiv
1409.4346

[Saroglou 2015] C. Saroglou, “Remarks on the conjectured log-Brunn—Minkowski inequality”, Geom.
Dedicata 177:1 (2015), 353-365. MR 3370038

[Schneider 1993] R. Schneider, Convex bodies: The Brunn—Minkowski theory, Encyclopedia of
Mathematics and its Applications 44, Cambridge Univ. Press, 1993. MR 94d:52007 Zbl 0798.52001

[Uhrin 1994] B. Uhrin, “Curvilinear extensions of the Brunn—Minkowski-Lusternik inequality”, Adv.
Math. 109:2 (1994), 288-312. MR 95j:52017 Zbl 0847.52007

Received November 25, 2014. Revised March 13, 2015.

ARNAUD MARSIGLIETTI

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS
UNIVERSITY OF MINNESOTA

207 CHURCH STREET SE

306 LIND HALL

MINNEAPOLIS, MN 55455

UNITED STATES

arnaud.marsiglietti@ima.umn.edu


http://projecteuclid.org/euclid.jdg/1406033976
http://projecteuclid.org/euclid.jdg/1406033976
http://msp.org/idx/mr/3263511
http://msp.org/idx/zbl/1303.52002
http://dx.doi.org/10.1112/plms/s3-3.1.182
http://dx.doi.org/10.1112/plms/s3-3.1.182
http://msp.org/idx/mr/15,109g
http://msp.org/idx/zbl/0052.18302
http://msp.org/idx/mr/2004b:60055
http://msp.org/idx/zbl/1015.60011
http://projecteuclid.org/euclid.jdg/1214454097
http://projecteuclid.org/euclid.jdg/1214454097
http://msp.org/idx/mr/94g:52008
http://msp.org/idx/zbl/0788.52007
http://dx.doi.org/10.1006/aima.1996.0022
http://dx.doi.org/10.1006/aima.1996.0022
http://msp.org/idx/mr/97f:52014
http://msp.org/idx/zbl/0853.52005
http://dx.doi.org/10.1090/proc/12694
http://msp.org/idx/arx/1409.4346
http://msp.org/idx/arx/1409.4346
http://dx.doi.org/10.1007/s10711-014-9993-z
http://msp.org/idx/mr/3370038
http://dx.doi.org/10.1017/CBO9780511526282
http://msp.org/idx/mr/94d:52007
http://msp.org/idx/zbl/0798.52001
http://dx.doi.org/10.1006/aima.1994.1088
http://msp.org/idx/mr/95j:52017
http://msp.org/idx/zbl/0847.52007
mailto:arnaud.marsiglietti@ima.umn.edu

PACIFIC JOURNAL OF MATHEMATICS
Vol. 277, No. 1, 2015

dx.doi.org/10.2140/pjm.2015.277.201

STRUCTURE OF SEEDS IN GENERALIZED
CLUSTER ALGEBRAS

TOMOKI NAKANISHI

We study generalized cluster algebras, introduced by Chekhov and Shapiro.
When the coefficients satisfy the normalization and quasireciprocity condi-
tions, one can naturally extend the structure theory of seeds in the ordinary
cluster algebras by Fomin and Zelevinsky to generalized cluster algebras.
As the main result, we obtain formulas expressing cluster variables and
coefficients in terms of c-vectors, g-vectors, and F-polynomials.

1. Introduction

Chekhov and Shapiro [2014] introduced generalized cluster algebras, which natu-
rally generalize the ordinary cluster algebras by Fomin and Zelevinsky [2002]. In
generalized cluster algebras, the celebrated binomial exchange relation for cluster
variables of ordinary cluster algebras

n n

_ [—bir] [bji]

(1-1) vxe=p; [1x " +ei [
j=1 j=1

n n
[bk]+ b'k
=( X )(k+pkwk) wk:l—[xj/’
j=1

j=1

is replaced by the polynomial one of arbitrary degree diy > 1,

[ﬂ,u+) Zpkswk’ e — Hxﬂ”’

where B = bji/dj are assumed to be integers and the coefficients py ¢ should also
be mutated appropriately. This generalization is expected to be natural, since it
originates in the transformations preserving the associated Poisson bracket [Gekht-
man et al. 2005]. In fact, it was shown in [Chekhov and Shapiro 2014] that the
generalized cluster algebras have the Laurent property, which is regarded as the

(1-2) XpXp = (

j=1

most characteristic feature of the ordinary cluster algebras. It was also shown in

MSC2010: 13F60.
Keywords: cluster algebra.
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the same paper that the finite-type classification of the generalized cluster algebras
reduces to the one for the ordinary case. These results already imply that, despite the
apparent complexity of their exchange relations (1-2), generalized cluster algebras
may be well controlled like the ordinary ones. See also [Rupel 2013] for the result
on greedy bases in rank 2 generalized cluster algebras.

Besides the above cluster-algebra-theoretic interest, the generalized cluster al-
gebra structure naturally appears for the Teichmiiller spaces of Riemann surfaces
with orbifold points [Chekhov and Shapiro 2014]. More recently, it also appears
in representation theory of quantum affine algebras [Gleitz 2014] and also in the
study of WKB analysis [Iwaki and Nakanishi 2014]. In view of these developments,
and also for potentially more versatility of polynomial exchange relations than the
binomial one, it is not only natural but also necessary to develop a structure theory
of seeds in generalized cluster algebras which is parallel to the one for the ordinary
cluster algebras by [Fomin and Zelevinsky 2007]. The core notion of the theory of
that paper is a cluster pattern with principal coefficients, from which other important
notions such as c-vectors, g-vectors, and F-polynomials are also induced. Then,
the main result of [Fomin and Zelevinsky 2007] is the formulas expressing cluster
variables and coefficients in terms of c-vectors, g-vectors, and F-polynomials.
These formulas are especially important in view of the categorification of cluster
algebras by (generalized) cluster categories (see [Plamondon 2011] and references
therein).

The purpose of this paper is to provide results parallel to the above ones for
generalized cluster algebras. To be more precise, we consider a class of generalized
cluster algebras whose coefficients satisfy the normalization condition and what we
call the quasireciprocity condition. For this class of generalized cluster algebras,
we introduce the notions of a cluster pattern with principal coefficients, c-vectors,
g-vectors, and F-polynomials. Then, as a main result, we obtain the formulas
expressing cluster variables and coefficients in terms of c-vectors, g-vectors, and
F-polynomials, which are parallel to the ones in [Fomin and Zelevinsky 2007]. To
summarize, generalized cluster algebras preserve essentially every feature of the
ordinary ones, and this is the main message of the paper.

2. Generalized cluster algebras

In this section we recall basic notions of generalized cluster algebras following
[Chekhov and Shapiro 2014]. However, we slightly modify the setting of Chekhov
and Shapiro to match the setting of (ordinary) cluster algebras in [Fomin and
Zelevinsky 2007].

2A. Generalized seed mutations. Throughout the paper we always assume that
any matrix is an integer matrix.
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Recall that a matrix B = (b;;)} ;_, is said to be skew-symmetrizable if there is
an n-tuple of positive integers d = (dy, ..., d,) such that d;b;; = —d;bj;.
We start by fixing a semifield °, whose addition is denoted by . Let Z[P be

the group ring of P, and let QP be the field of fractions of ZP. Let wy, ..., w, be
any algebraic independent variables, and let 7 = QP(w) be the field of rational
functions in w = (wy, ..., w,) with coefficients in QP.

The following definition is the usual one [Fomin and Zelevinsky 2007].
Definition 2.1. A (labeled) seed in P is a triplet (x, y, B) such that

e B is a skew-symmetrizable matrix, called an exchange matrix,

e x = (x1,...,X,) is an n-tuple of elements in F, called cluster variables or
x-variables,

ey =(1,...,Yn) is an n-tuple of elements in P, called coefficients or y-
variables.

Next we introduce a pair (d, z) of data for generalized seed mutations. Firstly,
d=(d,,...,d,) is an n-tuple of positive integers, and we call these integers the
mutation degrees. We stress that we do not impose the skew-symmetric condition
dib;j = —d;bj;. Secondly, z is a family of elements in P,

(2-1) 2= (Zis)i=1,..ms=1....d—15
satisfying the reciprocity condition
(2_2) Zi,s = Zi,dj—s (S = 15 ceey di - 1)

We call them the frozen coefficients, since they are not “mutated”, or simply the
z-variables. We also set

(2-3) 2i,0 =Zid, = 1.

Ford = (1, ..., 1), z is empty, and it reduces to the ordinary case. (Here and
below, “ordinary” means the case of ordinary cluster algebras.)

Definition 2.2. Let (d, z) be given as above. For any seed (x, y, B) in [P and
k=1,...,n, the (d, z)-mutation of (x, y, B) at k is another seed (x’, y’, B') =
Ur(x,y, B) in PP defined by the following rule:

—b;; ifi =korj=k,
(2-4) b§j={ﬂ iy e

bl] +dk([ bzk]+bk] +b1k[bk]]+) if L] 5& k,

A ifi =k,
(2-5) yi =

by
[sbm]+ (@Zk Yy > ifi £k,
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di
OES
n di > ks Yk
X! ( AT =0 g
J di ’
(2—6) x-/ = — es
! j=1 D 7 ¥
s=0
Xi if i ;ﬁ k,

where ¢ = +£1, [a]+ = max(a, 0), and we set
= b
2-7) Si=w [
i=1

When the data (d, z) is clearly assumed, we may drop the prefix and simply call it
the (generalized) mutation.

Let D=(d;5;;)! Pz
to note that the mutation (2-4) is equivalent to the ordinary mutation of exchange
matrices between DB and DB’, and also between BD and B’D in [Fomin and
Zelevinsky 2007].

The following properties are easy to confirm:

be the diagonal matrix with diagonal entries d. It is important

o The formulas (2-5) and (2-6) are independent of the choice of the sign ¢ due
to (2-2).

o The mutation uy is involutive, i.e., ux(ux(x, y, B)) = (x, y, B).

Remark 2.3. Here we transposed every matrix in [Chekhov and Shapiro 2014].
Also, the matrix B therein is the matrix DB here, and B; ; therein is bj; here.

Remark 2.4. In this paper we do not use the freedom of the choice of sign ¢ in
(2-5) and (2-6), and it can be safely set as ¢ = 1 throughout. Nevertheless, we keep
it in all formulas involved since it is useful for several purposes, for example, to
consider signed mutations, which appeared in [Iwaki and Nakanishi 2014].

Proposition 2.5. Under the mutation i, the y-variables (2-7) mutate in the same
way as the y-variables, namely,

! ifi =k,
2-8 P = ~bu
( ) Yi [Sbk1]+ (Z Zk s "SS) lfl ;é k.
Proof. This is proved using the technique in [Fomin and Zelevinsky 2007, Proposi-
tion 3.9]. O

Next let us explain how our setting is regarded as a specialization of the setting
of [Chekhov and Shapiro 2014]. In that paper a seed in PP is defined as a triplet
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(x, p, B), where x and B are the same as in this paper (up to the identification of
B as in Remark 2.3), but p is a family of elements in P,

(2‘9) P = (pi,s)i:l,...,n;s:O ..... d; -

Then, for the mutation (x’, p’, B") = ux(x, p, B), the following formulas replace
(2-5) and (2-6):

/
pk,s = pk,dkfs,

pi,S bk,‘ Ky . . .
(2-10) Py F(Pk’dk) ifi £k, by >0,

Pio p”(pbl") ifi #k, b <0,

n
- (D] .
Q2-11) o Xy 1<1_[ jk +) (Z Dk suk> ifi =k,

i j=1
X; ifi £k,

where

2-12) u =[]«

Now, let us start from a seed (x, y, B) in our setting. Comparing (2-6) and (2-11),
we naturally identify
Yi
(2-13) P =
@rl 0 Zl ryl
Then, it is easy to check that the mutation (2-10) follows from (2-2) and (2-5).
Moreover, the specialization (2-13) satisfies the normalization property

d;
(2-14) Bris=1
s=0
and the quasireciprocity property that for eachi =1, ..., n there is some y; € P
such that
(2-15) Pis Pidi _ s g1, ..., d.
Pi,0 Didi—s

Conversely, suppose that a family p in (2-9) satisfies properties (2-14) and
(2-15). First we note that such a y; is unique, since any semifield P is torsion-free
[Fomin and Zelevinsky 2002, Section 5]. Next we define z;,, e P (i =1,...,n;
s = ,d;) by

(2-16) B vz
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In particular, we have z; o = 1. Then, substituting (2-16) in (2-15), we obtain
(2'17) Zi,SZi,diZi_,(;i—s =1, s=1,..., di-

In particular, by setting s =d;, we have z,-z’ 4, = 1. Once again, since [ is torsion-free,
we have z; 4, = 1. Then, again by (2-17), we have the reciprocity z; s = z; 4,—s
(s=1,...,d; —1). Meanwhile, by (2-14) and (2-16), we have
(2-18) :

- Pi0o= 4,

@s=0 Zi,sy;

Then, by (2-16) again, we recover the specialization (2-13). Finally, it is straightfor-
ward to recover the mutation (2-5) from (2-10) and (2-15). Furthermore, by (2-16),
one can also confirm that the coefficients z; ; do not mutate.

2B. Generalized cluster algebras and Laurent property. Let T, be the n-regular
tree whose edges are labeled by the numbers 1, ..., n. Following [Fomin and
Zelevinsky 2002], let us write 1K ¢ if the vertices ¢ and ¢’ of T, are connected by
the edge labeled by k.

Definition 2.6. A (d, z)-cluster pattern ¥ in P is an assignment of a seed ¥; in
P to each vertex ¢ of T such that if £¢’ then the assigned seeds ¥, and ¥, are
obtained from each other by the (d, z)-mutation at k.

We fix a vertex g of T, and call it the initial vertex. Accordingly, the assigned
seed Xy, = (X4, Y1, Byy) at 1o is called the initial seed. Let us write, for simplicity,

(2-]9) xl‘0=x=(x19"'axn)’ ylo=y=(y1»---ayl’l)’ Bl():Bz(bij Zj:]'

On the other hand, for the seed %; = (x;, y;, B;) assigned to a general vertex ¢ of
T,, we write

(2-20) xe=0p o xh), =009, Bt=(bl’-j ijl.

Definition 2.7. The generalized cluster algebra A associated with a (d, z)-cluster
pattern ¥ in P is a ZP-subalgebra of F generated by all x-variables x; (r € T,
i=1,...,n)occurring in X. Itis denoted by A= A(x, y, B; d, z), where (x, y, B)
is the initial seed of X.

For any (d, z)-cluster pattern in [P, each x-variable x/ is expressed as a subtraction-
free rational function of x with coefficients in @QP. The following stronger property
due to [Chekhov and Shapiro 2014] is of fundamental importance.

Theorem 2.8 (Laurent property [Chekhov and Shapiro 2014, Theorem 2.5]). For
any (d, z)-cluster pattern in P, each x-variable x| is expressed as a Laurent poly-
nomial of x with coefficients in ZP.
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2C. Example. As the simplest nontrivial example, we consider d = (2, 1), z =
(z1,1), and an initial seed (x, y, B) in P such that

(2-21) B= ((1’ _(1)).

(This example also appears in [Chekhov and Shapiro 2014, proof of Theorem 2.7].)
Accordingly,

(2-22) $1=yix2, 2 =yox;!
We note that

0 -2 0 —1
(2-23) DB_(I 0)’ BD_(z 0)’

which are the initial exchange matrices for ordinary cluster algebras of type B, = C».
Set (1) = (x(1), y(1), B(1)) to be the initial seed (x, y, B), and consider the
seeds X (¢) = (x(1), y(t), B(t)) (t =2, ..., 7) obtained by the following sequence
of alternative mutations of pt; and 5.

(2-24) () S 22 823 8 @8 5 8 06 8 0.

By (2-4), we have
(2-25) B(t) = (—=1)'*'B.

Then, using the exchange relations (2-5) and (2-6), we obtain the explicit expressions

of x- and y-variables in Table 1, where we set z;,; = z for simplicity. We observe

the same periodicity of mutations of seeds for the ordinary cluster algebras of type
= C,.

3. Structure of seeds in generalized cluster patterns

The goal of this section is to establish some basic structural results on seeds in
a (d, z)-cluster pattern which are parallel to the ones in [Fomin and Zelevinsky
2007].

3A. X-functions and Y-functions. Let us temporarily regard y = (y;);_, and
2= (Zis)i=1...n:s=1....d—1 With z; ; = z; 4_s as formal variables. Let Qq(y, z) be
the universal semifield of y and z, which consists of the rational functions in y and
z with subtraction-free expressions [Fomin and Zelevinsky 2007]. Let Trop(y, z)
be the tropical semifield of y and z, which is the multiplicative abelian group freely
generated by y and z with tropical sum & defined by

on ([T T )o (T T ) =TT Tl
i is i

lS
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{X1(1)=X1
x(1) =x;
_ 1+Z}A71+}A)2
x1(2) = x, 1—12
1®zy1®y;
x2(2) =x;
14z +3?
0@ =ayt L
1®zy1Dy;
1492 +291 52+ 9%9
x2(3):x,1 +y2+zy1Y2+yi )2

2 1@n®yn®yin

yi(l) =y
(1) =y
@ =y’

¥2(2) = »(1®2y1Dy?)

y13) =y, 1 ®y:®2y1:Dyy2)
»3) =y 1oy ®y?) !

L1425+ 934251 D423 93+ 9793

x1(4) =x1x
2 120 @y D71 2 D201 Y3 Dy y3
4Dtz _
@) =x" 1 L i) =y1(10y,®zy1:®y{y2) "
Dy Dzy1 2Dy ¥2 2.1 2
@) =y "y, (182y®y;
®zy1y2D2y1Y; BYTY?)
1(5) = 1122 1425+ 93+ 291 92+ 291 93+ 3793
2 1@20m @y D231 221 Y3 DYy
IR EN 1
0(5) = x1x; ! l@yz »G) ="y 1@y
2
»2(5) = yin(182y,®y;
Dzy1 2Dz ®yiy3) !
*1(6) =x A M1(6) = yiya(1@yy) "
x2(6) = xyxy | I 2 2(6) = y;'!
1® 2
x1(7) =x) n(@ =y
x2(7) =x2 »(@) =y

Table 1. x- and y-variables for sequence (2-24).

Definition 3.1. A (d, z)-cluster pattern with principal coefficients is a (d, z)-cluster
pattern in P = Trop(y, z) with initial seed (x, y, B), where x and B are arbitrary.

Definition 3.2. Let ¥ be the (d, z)-cluster pattern with principal coefficients and
initial seed (x, y, B). By the Laurent property in Theorem 2.8, each x-variable x|
in X is expressed as Xf(x, y,2) € ZP[x*!] with P = Trop(y, z). We call them the

X-functions of X.

For principal coefficients, we actually have the following result, which is stronger
than Theorem 2.8 and which is parallel to [Fomin and Zelevinsky 2003, Proposi-

tion 11.2; 2007, Proposition 3.6].
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Proposition 3.3. We have
(3_2) Xf(xsyaz)ez[xilsyazl

Proof. We follow the argument in the proof of [Fomin and Zelevinsky 2003,
Proposition 11.2]. Let p be any variable in y or z. Let us view X!(x, y,z) as a
Laurent polynomial in p, say i(p), whose coefficients are Laurent polynomials in
the rest of the variables in x, y, and z. We show that 4 (p) is a polynomial in p
with nonzero constant term having subtraction-free rational expression by induction
on the distance between ¢ and 7y in T,. The crucial point is that the coefficients
Pks = ZksYi/ EBf":O Zk,rY;, in the mutation (2-6) are normalized as (2-14). Since
P =Trop(y, z), this means that p; ; (s =0, ..., d,) are polynomials in p, and there
is no common factor in p. Thus, the right-hand side of (2-6) is a polynomial in
p with nonzero constant term having subtraction-free rational expression by the
induction hypothesis and the “trivial lemma” (Lemma 5.2) in [Fomin and Zelevinsky
2003]. O

Definition 3.4. We denote by X the (d, z)-cluster pattern in the universal semifield
Qst(y, z) with initial seed (x, y, B). Each y-variable y! in ¥ is expressed as a
subtraction-free rational function Yi’ (y, 2) € Qs(y, 7). We call them the Y -functions
of X.

Due to the universal property of the semifield Qg (y, z) [Fomin and Zelevinsky
2007, Definition 2.1], the following fact holds.

Lemma 3.5. For any (d, z)-cluster pattern in P with the same initial exchange
matrix B as above, we have

(3-3) yi=Y!p(y, 2),

where the right-hand side stands for the evaluation of Y} (y, z) in P.

3B. c-vectors, F-polynomials, and g-vectors. Let us extend the notions of c-
vectors, F-polynomials, and g-vectors in [Fomin and Zelevinsky 2007] to a (d, z)-
cluster pattern with principal coefficients.

3B.1. C-matrices and c-vectors. For a (d, z)-cluster pattern with principal coef-
ficients, each y-variable y! € Trop(y, z) is, by definition, a Laurent monomial of
y and z with coefficient 1. The following simple fact was observed in [Iwaki and
Nakanishi 2014] in the special case.

Lemma 3.6. Each y-variable y! is actually a Laurent monomial of y with coeffi-
cient 1.

Proof. This is equivalent to saying that the frozen coefficients z never enter in y/.
This is true for the initial y-variables. Then, the claim can be shown by induction
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on the distance between ¢ and ty in T,, by inspecting the mutation (2-5) and the
definition of the tropical sum (3-1). U

Definition 3.7. Let X be a (d, z)-cluster pattern with principal coefficients. Let us
express each y-variable y; in X as

n

¢l

(3-4) y; = Y,'[|Trop(y,z)(y’ Z) = 1_[ Vi !
i=1

The resulting matrices C' = (cl’.j);? =1 and their column vectors c;. = (cf j)?zl are

called the C-matrices and the c-vectors of X, respectively.

The following mutation/recurrence formula provides a combinatorial description
of c-vectors.

Proposition 3.8. The c-vectors of a (d, z)-cluster pattern with principal coefficients
satisfy the following recurrence relation for t~t":

(3-5) cf;’ =4;j,
/ —Cl-‘ l‘f.] - k,

(3-6) ci=1," . ) L

where ¢ = 1 and it is independent of the choice of the sign e.

Proof. As already remarked in the proof of Lemma 3.6, for a (d, z)-cluster pattern
with principal coefficients, the mutation (2-5) is simplified as

(! if i =k,
(3-7) ¥ , dy b,
G (@) i £
s=0
This is equivalent to (3-6) due to the following formula in Trop(y, z):
1 L e\ %
(3-8) ——= ( y; EC_/k]Jr) . 0
k o ecl \S .
69( Iy, "k) j=1
5=0 N j=1

We observe that the above relation coincides with the one for the c-vectors of
the ordinary cluster pattern with principal coefficients and initial seed (x, y, DB)
in [Fomin and Zelevinsky 2002, Proposition 5.8]. Therefore, we have the following
result.

Proposition 3.9. The c-vectors of the (d, z)-cluster pattern with principal coeffi-
cients and initial seed (x, y, B) coincide with the c-vectors of the ordinary cluster
pattern with principal coefficients and initial seed (x, y, DB).



STRUCTURE OF SEEDS IN GENERALIZED CLUSTER ALGEBRAS 211

Alternatively, one can relate these c-vectors with the c-vectors of the ordinary
cluster pattern with principal coefficients and initial seed (x, y, BD) as follows.
Let us introduce

(3-9) &o=d'cld;.

ij — i ij

Then, Ef(j) = J;j, and (3-6) is rewritten as

~t' _Ez{k it j =k,
(3-10) Cj=Var tog. ot B BT
Cij +Cl-k[8bkjd]]++[ 8Cik]+bkjdj if j #k.

Therefore, we have the following result.

Proposition 3.10. The c-vectors, which are the column vectors in (3-9), of the
(d, z)-cluster pattern with principal coefficients and initial seed (x, y, B) coincide
with the c-vectors of the ordinary cluster pattern with principal coefficients and
initial seed (x,y, BD).

We need this alternative description for the description of the g-vectors below.

3B.2. F-polynomials. Thanks to Proposition 3.3, the following definition makes
sense.

Definition 3.11. Let X be a (d, z)-cluster pattern with principal coefficients. For
eachteT,andi =1,...,n, apolynomial Fl.f(y, Z) € Z]y, z] is defined by the
specialization of the X-function X! (x, y, z) of ¥ with x; =---=x, = 1. They are
called the F-polynomials of .

The following mutation/recurrence formula provides a combinatorial description
of F-polynomials.

Proposition 3.12 (cf. [Fomin and Zelevinsky 2007, Proposition 5.1]). The F-
polynomials for a (d, z)-cluster pattern with principal coefficients satisfy the
following recurrence relation for Ly

(3-11) F°=1,
(3-12) n [—ac’. 1 , dk dk n et . s
Pl lFé—l <l_[ y; Jk +F;[—8bjk]+) sz’s (1_[ v Jk F;Sbjk) ifi =k,
P =1 5=0 j=1
B - ifi £k,

where ¢ = 1 and it is independent of the choice of the sign &.
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Proof. By specializing the mutation (2-6) with P = Trop(y, z), we obtain
dy nooech, rebt )
1 n (b ] dy. S;)Zk,s (/,_1 yj ' Xj M)
t— t[—eb'., - J= P
X (HXj /k+> A ifi =k,
j=1

3-13 X{/ = ect \S
( ) i @ < l—[ yj ./k)
s=0 \j=1
X! ifi #k.
Then, specializing it with x; = ... x, = 1, and using (3-8), we obtain (3-12). [

3B.3. G-matrices and g-vectors. Let X be the (d, z)-cluster pattern with principal
coefficients and initial seed (x, y, B). Let Z[x*!, ¥, z] be the one in Proposition 3.3.
Following [Fomin and Zelevinsky 2007], we introduce a Z"-grading in Z[x*!, y, z]
as follows:

(3-14) deg(x;) =e;, deg(y;)=—bj, deg(z;,)=0.

Here, e; is the i-th unit vector of Z", and b; = Z?:l bije; is the j-th column of the

initial matrix B = (b;;); j=1- Note that deg(y;) = 0 by (2-7).
Proposition 3.13 (cf. [Fomin and Zelevinsky 2007, Proposition 6.1]). The X-

functions are homogeneous with respect to the 7" -grading.

Proof. We repeat the original argument of Fomin and Zelevinsky, by induction on
the distance between ¢ and fy in T,. Using (2-6) and Lemma 3.5 specialized to a
(d, z)-cluster pattern with principal coefficients, we have

d
> 4 i F(, 2)

n dy
r—1 t[—ebl, 1y s=0 ——
X! (an i ) . ifi =k,
j=1

3-15) X! = .
( ) i b Zk’SY/éngrop(y,z)(y’ )
s=0
X! if i £k.
Then, the right-hand side is homogeneous due to the induction hypothesis. U

Definition 3.14. Let X be the (d, z)-cluster pattern with principal coefficients and
initial matrix (x, y, B). Thanks to Proposition 3.13, the degree vector deg(X!) of
each X-function X of ¥ is defined. Let us express it as

n
(3-16) deg(X}) = gle;.
i=1

The resulting matrices G' = (g! )i j=1 and their column vectors gj. =(g! )iy are
called the G-matrices and the g-vectors of X, respectively.

The following mutation/recurrence formula provides a combinatorial description
of g-vectors.
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Proposition 3.15. The g-vectors of the (d, z)-cluster pattern with principal coef-
ficients and initial seed (x, y, B) satisfy the following recurrence relation for t*t':

(B-17) g =24,

n n
e D sll—ebldidy = Y bil—echdily if j =k,
(3-18) 8ij = , =1 =1

8ij if j #k,
where ¢ = &1 and it is independent of the choice of the sign ¢.
Proof. This is obtained by comparing the degrees of both sides of (3-13). O

By using the ¢-vectors in (3-9), the relation (3-18) is rewritten as follows.

n n
o | e+ D sl —eblydidy = D biedil—edy s if j =k,
(3-19) 8ij = . =1 =1 p
8ij if j #k.
Having Proposition 3.10 in mind, we observe that this relation coincides with the
one for the g-vectors of the ordinary cluster pattern with principal coefficients and
initial seed (x, y, B D) in [Fomin and Zelevinsky 2007, Proposition 6.6]. Therefore,
we have the following result.

Proposition 3.16. The g-vectors of the (d, z)-cluster pattern with principal coeffi-
cients and initial seed (x, y, B) coincide with the g-vectors of the ordinary cluster
pattern with principal coefficients and initial seed (x, y, BD).

For the sake of completeness, we also present the counterpart of Proposition 3.10.
Let us introduce

(3-20) gl =digld;".
Then, the relation (3-18) is also rewritten as
n n
| E D D E—edibly ) = > dibil—ech 1y if j =k,
(-2 &= = =1 s
&ij if j #k.

Having Proposition 3.9 in mind, we observe that this relation coincides with the
one for the g-vectors of the ordinary cluster pattern with principal coefficients and
initial seed (x, y, D B). Therefore, we have the following result.

Proposition 3.17. The g-vectors, which are the column vectors in (3-20), of the
(d, z)-cluster pattern with principal coefficients and initial seed (x, y, B) coincide
with the g-vectors of the ordinary cluster pattern with principal coefficients and
initial seed (x,y, DB).
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We see a duality between the c-vectors and the g-vectors in Propositions 3.9,
3.10, 3.16, and 3.17. In particular, the c-vectors are associated with the matrix DB,
while the g-vectors are associated with the matrix B D. This is somewhat suggested
from the beginning in the monomial parts in the relations (2-5) and (2-6).

3B.4. Sign-coherence.

Definition 3.18. Let X be a (d, z)-cluster pattern with principal coefficients. A
c-vector c’/. of X is said to be sign-coherent if it is nonzero and all components are
either nonnegative or nonpositive.

Proposition 3.19 (cf. [Fomin and Zelevinsky 2007, Proposition 5.6]). For any
(d, 2)-cluster pattern with principal coefficients, the following two conditions are
equivalent.

(i) Any F-polynomial F!(y, z) has constant term 1.
(ii) Any c-vector c! is sign-coherent.

Proof. This is proved by an argument parallel to the one in [Fomin and Zelevinsky
2007, Proposition 5.6] by using the recursion relation (3-12) for the F-polynomials.
We omit the details. (]

In the ordinary case it was conjectured in [Fomin and Zelevinsky 2007, Con-
jecture 5.6] that the sign-coherence holds for any c-vector of any cluster pattern
with principal coefficients. This was proved by Derksen et al. [2010, Theorem 1.7]
when the initial exchange matrix B is skew-symmetric, and very recently it was
proved in full generality by Gross et al. [2014, Corollary 5.5]. Since our c-vectors
are identified with the c-vectors of some ordinary cluster pattern with principal
coefficients by Proposition 3.9, we obtain the following theorem as a corollary of
[Gross et al. 2014, Corollary 5.5].

Theorem 3.20. Any c-vector of any (d, z)-cluster pattern with principal coefficients
is sign-coherent.

As a consequence of the sign-coherence, we also obtain the following duality
between the C- and G-matrices by applying [Nakanishi and Zelevinsky 2012,
Equation (3.11)] (see also [Nakanishi 2012, Proposition 3.2]), which is valid under
the sign-coherence property. Recall that for a skew-symmetrizable matrix B the
matrix DB is still skew-symmetrizable.

Proposition 3.21 (cf. [Nakanishi and Zelevinsky 2012, Equation (3.11)]). Let C*
and G' be the C- and G-matrices att € T, of any (d, z)-cluster pattern T with
principal coefficients. Let R = ("iaij)z"l,J':l
diagonal entries such that RD B is skew-symmetric. Then

be a diagonal matrix with positive

(3-22) R'DYGHTDRC'=1.
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Proof. This is obtained by combining [Nakanishi and Zelevinsky 2012, Equation
(3.11)] with Propositions 3.9 and 3.17. O

3C. Main formulas. Finally, we present the main formulas expressing the x- and
y-variables of any (d, z)-cluster pattern X in any semifield [ in terms of F-polyno-
mials, c-vectors, and g-vectors defined for the same initial exchange matrix of X.

Theorem 3.22 (cf. [Fomin and Zelevinsky 2007, Proposition 3.13]). Forany (d, z)-
cluster pattern in P,

n n
. t
(3-23) =TIy TIFiew. 2",
j=1 j=1
Proof. We apply Lemma 3.5 to a (d, z)-cluster pattern with principal coefficients,
and we obtain
(3-24) Y=Y/ 2.

On the other hand, specializing (2-7) to the same (d, z)-cluster pattern with principal
coefficients, we have

n n n
~ L Ct’i L
(3-25) =Y Itopty (0. 2) [ [ X, y. 2% = Ty, T] X5 (x. 3. 2",
j=1 =1 j=l

where we used (3-4) in the second equality. Thus, we have

n ; n
~ Cij L
(3-26) viG.o =]y [ X y.2"%.
j=1 j=1
Now, we set x; = - -+ =x, = 1. Then, y = y, and we obtain
n ' n
Cvi tH
(3-27) Yy =[]y []Fiv. 2"
j=1 j=1
Finally, evaluating it in P, we obtain (3-23). ]

Theorem 3.23 (cf. [Fomin and Zelevinsky 2007, Corollary 6.3]). For any (d, z)-
cluster pattern in P,

&\ Flr(3, 2)
(3-28) xl = ( ngf'> A AL
,Ul 7 ) Fe(y, 2

Proof. First, we obtain the following equality in exactly the same way as [Fomin
and Zelevinsky 2007, Theorem 3.7], and we skip its derivation:
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. XiF(x,y,2)
Xp=—— .
Filp(y, z)

On the other hand, by the definition of the g-vectors, we have
(3-30)
n

—byi gt','
Xf(...,y,-x,-,...;...,l |]/k ‘y,-,...;...,z,-,r,...>=(| |)/j]>Xl{(x,y,Z).
j=1

j=1

(3-29)

By setting y; = x;~ ! we have
~ _gt','
(3-31) Fl (5.2 = (1‘[ x; )X,f(x, ¥, 2).
j=1

Combining it with (3-29), we obtain (3-28). U

3D. Example. Let us consider the example in Section 2C again. From the data in
Table 1, one can read off the following data for the C-matrix C(t), the G-matrix

G (t), and the F-polynomials F;(¢) for the seed X (¢) with principal coefficients
therein.

10 10 Fi(1) =1,
ch={(, 1)’ G={, 1)’ AE)=1,

10 0 Fi(2) =142y + 7,
co=(",]) 6= ) By 1. !

0) Fi(3) =1+zy1 +y?,

" RG) =1+t ity
- Fi(4) =142y, +y? s
o) + 2y +2viy3 + v3y3,
F@) =14y + 201y + ¥y,
Fi(5) =142y, + 3

C(S)z(j 2. G(S):(_; ) +2y1y2 + 2315 + ¥1y3,
F2(5) =1+ ys,
(1 0 (1 1 Fi(6) =1,
C(6)_<1 —1)’ G(6)_<0 —1)’ {F2(6)=1+y2,
(10 (10 (1) =1,
co-(49) eo-(30) {nmo.
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INEQUALITIES OF ALEXANDROV-FENCHEL TYPE
FOR CONVEX HYPERSURFACES IN HYPERBOLIC SPACE
AND IN THE SPHERE

YONG WEI AND CHANGWEI XIONG

By applying the unit normal flow to well-known inequalities in hyperbolic
space H"*1 and in the sphere S"*!, we derive some new inequalities of
Alexandrov-Fenchel type for closed convex hypersurfaces in these spaces.
We also use the inverse mean curvature flow in the sphere to prove an opti-
mal Sobolev-type inequality for closed convex hypersurfaces in the sphere.

1. Introduction

Let N"1(c) be the simply connected space form of constant sectional curvature ¢
and ¥ : " — N"T1(c) be a closed hypersurface. Denote the k-th order mean
curvature of ¥ by py (see Section 2A). Inequalities about the integrals |, 5, Pk dju
have attracted much attention for a long time. Among them the most famous one is
the classical Minkowski inequality for closed convex surfaces ¥ C R3, which can
be written as

1 2 Iz
(1-1) —/ prdp) =—,
wy Jx w7

with equality if and only if ¥ is a sphere. Here w, is the area of §"(1) and
|X| = [ dpisthe area of X with respect to the induced metric from R3. The general
inequality is the Alexandrov—Fenchel inequality [Alexandrov 1937; 1938; Fenchel
1936] which states that for convex hypersurfaces in the Euclidean space R* 1,

1 1 (n—k)/(n—=1)
(1-2) —/ PdeZ(—/PldM) for0<!/ <k =<n,
a)n E a)n Z

with equality if and only if X is a sphere. See [Chang and Wang 2011; Guan and Li
2009; McCoy 2005; Schneider 1993] for other references on Alexandrov—Fenchel
inequalities for closed hypersurfaces in Euclidean space R**1.

MSC2010: primary 53C44; secondary 53C42.
Keywords: isoperimetric inequality, convex hypersurface, Alexandrov—Fenchel-type inequality, k-th

order mean curvature, Gauss—Bonnet curvature.
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It is natural to generalize the Minkowski inequality and Alexandrov—Fenchel
inequalities to the hypersurfaces in space forms. See, for example, [Borisenko and
Miquel 1999; Gallego and Solanes 2005; Natario 2015]. Recently, the following
optimal inequalities of Alexandrov—Fenchel type in H" ™! were obtained (see [Ge
et al. 2013; 2014b; Li et al. 2014; Wang and Xia 2014]): for 1 <k <n and any
closed horospherical convex hypersurface & C H**1,

1 |E| 2/k |E| 2(n—k)/kn~\k/2
o fma=((G) +(5) )
Wp Jx Wp Wy

with equality if and only if ¥ is a geodesic sphere in H”* ™!, In particular, when k =2,
Li, Wei and Xiong [Li et al. 2014] proved that (1-3) holds under the weaker condition
that X is star-shaped and 2-convex. In the proof of (1-3), the geometric flow was
used and was an important tool. However, so far there is no inequality comparing
[s Pk dp and [y p;dp in H*+! like (1-2) in R"*!. And one also wants to know
whether there exist other inequalities of Alexandrov—Fenchel type in H”*! for closed
hypersurfaces under a weaker condition than horospherical convex. Besides, in
space forms, the integrals fE Pr du are essentially the so-called quermassintegrals
from convex geometry and integral geometry (see, e.g., [Solanes 2006] for the
transformation formula) and many attempts have been devoted to establishing the
relationships for quermassintegrals. See [Santalé 1976; Solanes 2003] and the
references therein. So in this paper we are interested in obtaining new inequalities
between the integrals fz Prdu.

The Minkowski inequality and the Alexandrov—Fenchel inequalities can be
viewed as the generalizations of the classical isoperimetric inequality, which com-
pares the area of the hypersurface ¥ and the volume of the domain enclosed
by X. The Minkowski inequality (1-1) was used by Minkowski himself to prove the
isoperimetric inequality for closed convex surfaces (see [Minkowski 1903; Osserman
1978]). Recently, J. Natdrio [2015] reversed Minkowski’s idea and derived a new
Minkowski-type inequality for closed convex surfaces in the hyperbolic space H3
from the isoperimetric inequality by using the unit normal flow. In this paper, first,
we deal with the higher dimensional case by adapting Natario’s method [2015]. We
will derive some new inequalities of Alexandrov—Fenchel type for closed convex
hypersurfaces in H”*! and in ST, starting from the isoperimetric inequality.

Let X be a closed and convex hypersurface in H” 1. We say a hypersurface ¥ is
convex if all the principal curvatures of X are nonnegative everywhere. Then by the
well-known result of do Carmo and Warner [1970], X is embedded and bounds a
convex body in H” 1. Inspired by [Natario 2015], we flow the initial hypersurface
3 by its unit outer normal v. The resulting hypersurfaces are >; = v;(X), where
V1 (X) = expy(x) (1v(X)), x € X. The X; are also called the parallel hypersurfaces of
3. From Steiner’s formula [Allendoerfer 1948], we can compute the area of 3; and
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the volume of the domain €2 enclosed by X;. In Natdrio’s paper, the area of X; was
obtained by using the first and second variation formulas with the help of the Gauss—
Bonnet formula. Steiner’s formula can also be obtained by using the precise expres-
sions of the geodesics in space forms (see Section 2C). Since H”*! has constant
negative curvature ¢ = —1 and X is convex, it follows that ¥, can be well-defined
for all # > 0. Define a function r(¢) such that |X;| = |S,(;)|. Then the isoperimetric
inequality (see [Schmidt 1940; Ros 2005]) implies that Vol(2;) < Vol(B,(y)),
where S, () and B, () are the geodesic sphere and geodesic ball of radius r(z)
in H" 1, respectively. Applying the isoperimetric inequality to X, for sufficiently
large ¢, we obtain the following inequalities of Alexandrov—Fenchel type in H” 1,

Theorem 1.1. Let X" be a closed and convex hypersurface in H* 1 with n > 3.
Then

n

2k —n . 1 & X (n=2)/n
1-4 Ckprdu>(— Ckprd .
a4 ) S /E " Pk M_(wn,;)/z n Pk u)

k=0

A direct calculation shows that if ¥ is a geodesic sphere, then the equality in
(1-4) holds. However, we do not obtain the rigidity (i.e.,we don’t know whether the
equality in (1-4) implies that ¥ is a geodesic sphere). In Remark 3.2, we note that
when the hypersurface ¥ C H"*! is sufficiently small, the inequality (1-4) reduces
to one of the Alexandrov—Fenchel inequalities in Euclidean space.

Besides the isoperimetric inequality, there are many other known inequalities in
hyperbolic space. If we use the warped product model for the hyperbolic space H" 1,
ie., H*T1 = Rt x S” with the metric g = dr? + sinh?r gsn, then there are two
important functions on the hypersurface ¥ in H? 1. One is the weight function f =
cosh 7, and the other one is the support function u = (Df, v). Recently, the following
inequality of Alexandrov—Fenchel type with weight f* was proved by de Lima and
Girdo [2015]: for any mean convex and star-shaped closed hypersurface ¥ in H"*1,

1 |2| (n+1)/n |Z| (n—1)/n
(1-5) | fplduz(—) (=)
wp Jxy wWp Wp

with equality if and only if ¥ is a geodesic sphere centered at the origin in H” 1,
For more weighted inequalities of Alexandrov—Fenchel type in different ambient
spaces, readers can refer to the recent papers [Brendle et al. 2014; Ge et al. 2014a;
2015]. We remark that in [Ge et al. 2014a], the weighted Alexandrov—Fenchel-type
inequalities were used to prove the Penrose-type inequality for the new Gauss—
Bonnet—Chern mass in asymptotically hyperbolic graphs. Thus it is an interesting
question to establish new inequalities with weight.

Applying the same method as in Theorem 1.1 to inequality (1-5), we can obtain
a new inequality as follows:
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Theorem 1.2. Let X" be a closed and convex hypersurface in H*+1. Then

1 n . 1 n P (n+1)/n
1-6 — +u Cp prdp = —/ G d) .
o g [ etz (g [ 3 claan

We remark that if X is a geodesic sphere centered at the origin, then the equality
in (1-6) holds. But as before we do not obtain the rigidity.

Next we will use the same method to derive inequalities for closed convex
hypersurfaces in S”*1. In this case, we can prove the rigidity result.

Theorem 1.3. Let X" be a closed and convex hypersurface in S* ™' withn > 2. Then

(1-7) on< Y. V(EG)?+(F()%

szil_(zl)n ,+2

where “+2” means that the step-length of the summation for s is 2 and

1 kg
Eo= Y Y G Gienst [ pan,
prq=(n=ts)/2 g<k<n—p z
p,9=0 2|k
k1l Kl k—
F(s) = Z Z c! Z_HC,f_kcg(_l)[z]Jr q
p+q=(n=ts)/2 g<k=<n—p
p.4=0 2tk X(_1)X{2(p+q>—n<o}/ prdu,
z

Moreover, the equality holds in (1-7) if and only if £" is a geodesic sphere.
When n = 2, it is easy to check that
E0) =2m, F(0)=0,

EQ) = |%|- 27, F(2)=/Ep1du,

using the Gauss—Bonnet theorem || + [ p, dju = 47 (see Section 2B). So (1-7)
implies the Minkowski-type inequality in the sphere

2
(1-8) (/E pldu) > 15|47 — |Z)).

which is just Theorem 0.2 in [Natdrio 2015]. See also [Blaschke 1938; Knothe
1952; Santalé 1963]. Makowski and Scheuer [2013] proved (1-8) by using the
inverse curvature flow in sphere. To get a better feeling of the inequality (1-7),
we also give the precise expressions of (1-7) in the case of n = 3 and n = 4; see
Remark 3.3.
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Finally, in the last part of this paper, we use the inverse mean curvature flow in
the sphere [Makowski and Scheuer 2013; Gerhardt 2015] to prove the following
optimal inequalities for strictly convex hypersurfaces in sphere S”*1.

Theorem 1.4. Let X" be a closed and strictly convex hypersurface in S"T1. Then
we have the optimal inequality

(1-9) f Ly du > CH(2k) 2K/ 5|20/ for ke < n/2.
)

Equality holds in (1-9) if and only if ¥ is a geodesic sphere. Here Ly is the
Gauss—Bonnet curvature of the induced metric on X (see Section 2B for details).

The proof of Theorem 1.4 uses a similar idea as in [Brendle et al. 2014; de Lima
and Girao 2015; Guan and Li 2009; Ge et al. 2013; 2014b; Li et al. 2014]. We define
a curvature quantity Q(¢) which is monotone nonincreasing under the inverse mean
curvature flow in the sphere. Then we obtain the inequality (1-9) by comparing the
initial value Q(0) with the limit lim,_, 7+ Q(¢). We remark that since X is a closed
and strictly convex hypersurface in S”!, a well-known result due to do Carmo and
Warner [1970] implies that ¥ is embedded and is contained in an open hemisphere.

When k = 1, the inequality (1-9) reduces to

(1-10) /pzdu+|2|zw5/”|2|<”‘”/”,
b

which was already proved by Makowski and Scheuer [2013]. One can compare
(1-10) with the case k = 2 of the Alexandrov—Fenchel-type inequality (1-3) in H”*1;
that is,

(1-11) [ prdn=1%1= W/ mzie2m,
)

which was proved by Li, Wei and Xiong [Li et al. 2014] for star-shaped and 2-convex
hypersurfaces in H**!. For k > 1, inequalities of the same type as (1-9) were
proved by Ge, Wang and Wu [Ge et al. 2013; 2014b] for horospherical convex
hypersurfaces in the hyperbolic space H" !,

2. Preliminaries

2A. k-th order mean curvature. Let T be a closed hypersurface in N1 (c) with
unit outward normal v. The second fundamental form / of X is defined by

hX,Y)=(Vxv,Y)

for any two tangent vector fields X, Y on X. For an orthonormal basis {ey, ..., e,}
of X, the components of the second fundamental form are given by %;; = h(e;, ej)
and h{ = g/*hy;, where g is the induced metric on . The principal curvatures
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k = (x1,...,kn) are the eigenvalues of /s with respect to g. The k-th order mean
curvature of X for 1 < k <n is defined as

1 1
2-1 Pk = C_,’fak(K) =k Z Kiy *** Kig s

N <ip<e<iy

or equivalently as

1 ; 1 o .
(2-2) pr = —0p(h]) = ——8 " pdv o gl
Ck L Cklet ki ik
where 8]’:1:::3!; is the generalized Kronecker delta given by
i1 ¢i2 ix
(Sjl 8]1 5j1

i hogia o slk
5}’.:::;{; = det 812 812 5]2

i l:2 . lk
5jk 5jk o 5]k
We have the following Newton—MacLaurin inequalities (see, e.g., [Guan 2006]).

Lemma 2.1. Fork € l:lj, 1 <k <n, where f‘: is the closure of the Garding cone
IF={keR"| pi(k) >0,V <k},
we have the following Newton—MacLaurin inequalities

P1Pk—1 = Dk

1/2 1/k
pzpt =z plk

.. + . . .
Moreover, equalities above hold for some k € I'," if and only if k = c(1,...,1),
where ¢ is a constant.

2B. Gauss—-Bonnet curvature L. Given an n-dimensional Riemannian manifold
(M, g), the Gauss—Bonnet curvature Ly, where k < n/2, is defined by (see, e.g.,
[Ge et al. 2014b; 2014c])

(2-3) Ly = — gitizwieaiize g jiis R

— gl ) . J2k—1J2k
ok “Jvjzjzk—1ja T2 )

ing—1i2k
For a closed hypersurface X" C R"T!, recall the Gauss equation
Rij*" =t — hlnk.
Then the Gauss—Bonnet curvature of the induced metric on X" C R"*1 is
(2-4) Ly = giviziak—tizk pivpia | pJak—1pJ2k

T VJJ22k—1Jd2k i i inp—1 P2k

= 2k)!CP* poy.
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For a closed hypersurface £ C S"T!, the Gauss equations are

(2-5) Rij*t = (Wb — hink) + (5F 8% —816%).
Then by a straightforward calculation, we have

Ly = sitizizi—1izk (hljllhljzz +5_j15j2) L. (hjzk—lhjzk +5j2k—15j2k)

J1J2 " J2k—1J2k i1 “ip iog—1 " P2k ing—1 "2k
k

= Ci(n—2k+1)(n—2k+2) - (n—2k +2i)(2k —2i)!02_s;
i=0

k
> Ciln=2k+1)(n=2k+2) -+ (n =2k +20) 2k =201 G pyje_s;
=0

4

n!

ci—— ., ..
k(n—2k)!p2k 2i

Il
.M*‘

0

~

k
= K20 Clpak—ai-
i=0

Similarly, for a closed hypersurface X" C H"*!, its Gauss—Bonnet curvature is

k
(2-6) Li = C*@i0)Y " CH=1) pag—ai-
i=0

Finally, note that throughout our paper, we assume that the hypersurface > C
N"™T1(c) is closed and convex. It follows that ¥ is homeomorphic to the n-sphere
(see [do Carmo and Warner 1970]). Then if the dimension of X is even, the
Gauss—Bonnet—Chern theorem [Chern 1944] implies that

2-7) / Ly dp=n!wy.
x

Equation (2-7) will be used in the following sections. Also (2-7) shows that when
2k = n, the inequality (1-9) is an equality.

2C. Unit normal flow and Steiner’s formula. Let ¢ : ¥ — N"T1(c) be a closed
and convex hypersurface in the simply connected space form N”*1(c) of constant
sectional curvature c. Denote by 2 the domain enclosed by X. The area of ¥
is denoted by |X| and the volume of €2 is denoted by |V|. As we mentioned in
Section 1, we flow the initial hypersurface ¥ by its unit outer normal v. The
resulting hypersurfaces are X; = y;(X), where ¥/ (x) = expy, () (1v(x)), x € .
The ¥, are also called the parallel hypersurfaces of 3. Denote by €2; the domain
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bounded by %;. The convexity assumption of ¥ and the curvature of N"*1(c)
guarantee that the 3; are well-defined in the following range:

t€[0,%) forc=1,

t>0 forc=0or —1.

Further, denote the area of 3; and the volume of 2; by |X;| and | V;|, respectively.
Then Steiner’s formula [Allendoerfer 1948] implies that

Iy Ckprdut* ifc=0,
(2-8) 12 =30 o 5 Ck pr ducosh®* ¢ sinhk ¢ if ¢ = —1,
Sheo /s CKpr ducos" k¢ sin® ¢ ifc=1.
and
VI+ Y k=0 [5 CF pic dpg t* ! if ¢ =0,
29 Vil =31VI+ koo fs Ckpr dp [y cosh *ssinhFsds if e = —1,

VI+Yh—o Jx CKprdp fé cos" K ssinfsds  ife=1.

We give a simple proof of (2-8) and (2-9) here. First, when ¢ = 0, the parallel
hypersurface can be expressed as y; = ¥ + tv (see [Montiel and Ros 1991]). So
(Y¥¢)x(e;) = (1 + tk;i)e;. Therefore the area element of X; is

dpe = (1 +1k1) - (1 +1kn) dpa,

which implies that the areas |X;| of the parallel hypersurfaces X; are equal to
n
15| = /2(1 tcy) (Lt tkg)dp =) /E Ckpre dut*.
k=0

Note that X; = y4(X) are parallel hypersurfaces of 3 given by

Ve (X) = expy(x) (11(X))

for x € X. By integrating and using the co-area formula, we obtain

t n
1 k+1
Vil =|VI+ | |1Zlds=|V 2: Ckpr dy———rtk+1,
| l‘l | | /(;l Sl N | |+k=0/; npk Mk-i—l

Similarly, when ¢ = —1, ¥, = cosht ¢ + sinh ¢ v (see [Montiel and Ros 1991])
and so (V¥¢)«(e;) = (cosht + sinhf k;)e;. Therefore the area element of X; is

dus = (cosht +sinhtky)---(cosht +sinh ¢ &) du,
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which implies

|2 = /E(cosht +sinh# k1) --- (cosht + sinh# k) du
n
= Z / C,fpk du cosh” ¥ ¢ sinh¥ .
k=0"%
Then by integrating, we obtain
t n t
Vel =1[V| +/ |Zs|ds = |V]+ Z / C,f‘pk du/ cosh” ¥ s sinhk s ds.
0 = 0
k=0

Finally, the case ¢ = 1 can also be proved by noting that y; = costy + sintv,
where 7 € [0, §).

3. The results by the method of unit normal flow

3A. The Euclidean case. To demonstrate the method which will be used to prove
Theorems 1.1-1.3, in this subsection we first consider the simple case that X is a
closed and convex hypersurface in R"*!. Let X, be the parallel hypersurfaces of
3 and €2; be the domain enclosed by ¥;. Then X, is well-defined for all ¢ > 0.
For all ¢t > 0, the isoperimetric inequality (see [Osserman 1978]) in Euclidean
space R"*! implies

n+1 n
(3-1) (@) > ((n + 1)|Vt|) .
(O Wp

Substitute Steiner’s formulas (2-8), (2-9) into (3-1). If # is odd, then comparing
the coefficient of "+ 1 in (3-1) yields

(3-2) /Z DPndp = wy,

which is a special Alexandrov—Fenchel inequality.

If n is even, (2-4) and the Gauss—Bonnet—Chern theorem (2-7) imply that
f): Pndi = wp. Thus expanding the two sides of (3-1) and comparing the co-
efficients of (#(t+D e+ D=1 gnq mnt1)=2 we can get

2
1 1
3-3 — srdp ) = — —2du,
(3-3) (wnLPnIM)_wn/EanM

which is also an Alexandrov—Fenchel inequality. In particular, when n = 2, (3-3)
reduces to the classical Minkowski inequality (1-1).
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3B. The hyperbolic case, I. In this subsection, we prove Theorem 1.1. Assume
that ¥ is a closed and convex hypersurface in H” 1. Then the parallel hypersurfaces
3. are well-defined for all # > 0. Recall that the area of a geodesic sphere S, and
the volume of a geodesic ball B, with radius r in the hyperbolic space H”*! are

S(r) :=|Sy| = wp sinh™r,

r
V(r) := Vol(B,) = wy / sinh” s ds.
0

Now define a function r(¢) such that |X;| = S(r(¢)). That is,

n
(3-4) E cosh” ¥ ¢ sinh* ¢ / C,fpk dp = wp sinh"r(1).
)
k=0

Then the isoperimetric inequality (see [Schmidt 1940; Ros 2005]) implies
(3-5) |[Ve| < V(r(t)) forz>0.

From this inequality, we can get some information for X.
First we get a rough estimate for r(¢z). When ¢t — +o0, cosh” K¢ sinh*r =
sinh”7 (1 4 o(1)). Thus from |X;| = S(r(¢)), we get

n
sinh”7 (1 4 o(1)) Z / C,fpk dp = wy sinh™r (1),
b))
k=0

which implies

(3-6) r(t)—t+—l( Z/ ck kdu)—i—o(l)

However, this estimate for (¢) is not enough. For our purposes, we should make
better use of |X;| = S(r(¢)) as follows. The case of n = 2 was considered by
Natdrio [2015], so we assume that # > 3 in the following calculation. Since we will
examine (3-5) for sufficiently large ¢, we only care about the terms involving e”?
and ¢"=2)_ The other terms are o(e(”_z)’ ). It is straightforward to check that

cosh™ ¥ ¢ sinhk ¢ = Le"t + L

e + (1= 240

Consequently (3-4) implies
(3-7) Z(e"t + (n—2k)e= 4 / Ck P dp

_ 1 (n—2)
_wn(z—ne"’—znne” 4. )
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On the other hand, from Steiner’s formula (2-9), we have

nooat
|Vt|=|V|+Z/(; cosh”_kssinhksdsﬂzC,fpkd,u
|V|_|_ Z/ ™+ (n— 2k)e(” s 4 ')ds/;cricpk du

n
= VI g D (e + e k) [l
k=0 )]
1 1 n—2k
= mZ[ Ckpkd,u—i- e("- 2)’Z—n_2 Ckprdp+---
k=0 z
and

,
V(r@)) = a),,/ sinh”s ds
0

"1 1
= wy / (—ne”s - —nne(”_z)s +- ) ds
o \2 2

Onlopr _On M -2

2" n 2 p—2

Now taking (3-7) into account yields

11 ¢
Vi) = e s Y+ (=200 ) /Z Co picdp
k=0

wy N _
e(n 2)r

2hp—12
n
_ Wn —2 (n—=2)r 11 nt k

11
+2”n e 2)’2(11 Zk)/ Ckpkd,u—i-
k=0

Noting (3-6), we have

On =2\ o 1 o k =2/
V(V(l))=2—n(ﬁ)e" (w_Z/ECn Pkdﬂ)
n j—

nIZ/ Ckpkdﬂ+_—e(n 2)t Z(n 2]()/ Ckpde+
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Now |V;| = V(r(t)),t — +oo gives us

1 < (n—2k n—2k . wy =2 (1 f (n=2)/n
— - Ckprdu<==—(— Ckprd :
an k=0( n—2 n ) /z; n PR =900 (a),, kg:/z n Pk ,u)

or equivalently

" 2k —n k 1 " k (n=2)/n
(3-8) kX_;} p /EC,, pkd,uan(w—Z/ECn pkdu) for n>3.

Hence we complete the proof of Theorem 1.1.

Remark 3.1. It is easy to check that for a geodesic sphere in H"*!, the equality
holds in (3-8). However this method can not yield the rigidity result; i.e., we cannot
conclude that X is a geodesic sphere if the equality holds in (3-8).

Remark 3.2. We also remark that for a small hypersurface & C H"*! (i.e., with
small diameter), the inequality (3-8) can reduce to the Euclidean inequalities (3-2)
and (3-3). For example, we first assume n = 4. For 4-dimensional hypersurface
¥ C H?, the Gauss—Bonnet—Chern formula (2-7) implies

1
(3-9) /(p4—2pz+1)du=5/ Lydp = ws.
) cJE

Substituting (3-9) into the inequality (3-8) gives that

2
2 4
(1+—/(p3+pz—p1—l)du) Zl+—/(p3+2pz+p1)du-
w4 Jx wWa Jx

Expanding the left-hand side of the above inequality, and comparing both sides by
orders (note that ¥ is a small hypersurface), we obtain that

2
1 1

3-10 — d Z—/ dn.

(3-10) (w4/EP3 M) wa J5 P2

This is just the inequality (3-3) for hypersurfaces in Euclidean space R>. For the
general even-dimensional case, by using the Gauss—Bonnet—Chern formula,

n/2
1
/ Z Cric 2(_1)kpn—2k dp = —/ Ln/z du = wy.
/ !

We can also reduce the inequality (3-8) to the Euclidean version (3-3) for small
hypersurfaces ¥ C H”*1. For the odd-dimensional case, the argument is similar.
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3C. The hyperbolic case, I1. In this subsection, we will prove Theorem 1.2. Since
the method is similar to that of the last subsection, we just sketch it.

Here we need the following model of the hyperbolic space. Let R’I’H be the
Minkowski space with the Lorentzian metric

(x.7) =x1y1+ + Xnt1 V1 — Xnt2Vn+42-
Then the (n+1)-dimensional hyperbolic space can be defined by
H"t! ={x e R’f"'z [ (x,x) =—1,xp42>1}

with the induced metric from IR'IZJFZ.
Fix a point a = (0,...,0,—1). Then it is easy to check that the weight function
and the support function can be written down as

S ={.a).

u={(v,a).
Next define a family of parallel hypersurfaces X; = ¥;(X), where ¥;(x) =
€XPy (x) (1V (X)), x € X, and v(x) is the outward unit normal of X. In fact, ¥, =

cosh? ¥ +sinh7 v. And since the initial hypersurface is convex, X, is well-defined
for all > 0. Then (v;)«(e;) = (cosht + k; sinh)e; and

tanh ¢ + k;

Ki(l) = ————.
i(0) 1 + «; tanh ¢t

For convenience, we define a function Q(¢) by
On(t) = (1 +ticy) - (1 +tky) =14+ Clpit +--+ Clppt".

Then the mean curvature of X; is

ncoshtsinhz Q,(tanh?) + Q) (tanh?)
ncosh?t Q,(tanh ) '

p1(t) =

Note that p; () — 1 as t — +o0. So for sufficiently large ¢, X; is mean convex.
And (vs, a) = (sinh ¢ ¥ 4+ coshz v, a) > 0 for sufficiently large ¢, which implies 3,
is star-shaped for these ¢. Thus, we can apply (1-5) to X;:

a)L/ (cosht ¥ +sinhtv,a) py(¢) cosh”t Qp(tanht) du
nJx
n+1 n—1

> (L / cosh”th(tanht)dM) " +(wi / cosh”t Qn(tanht)du)
)] X

n
Wy n

Let ¢t - +oo. Taking into account that tanh¢# — 1, p;(¢f) — 1 and sinh¢ =
cosh? (14 o(1)), we obtain (1-6). So we have finished the proof.
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3D. The spherical case. We now prove Theorem 1.3. Assume that X is a closed
and convex hypersurface in S”*1. Then the parallel hypersurface X; is well-defined
for t € [O, %) Recall that the area of a geodesic sphere S, and the volume of a
geodesic ball B, with radius r in the sphere S”*! are

S(r) = wy, sin"r,

,
V(r)= a),,/ sin”s ds.
0

Now since | V%] is increasing in ¢, when ¢ satisfies

. /2
|V;|=V(5)=wn/ sin” r dr,
0

the isoperimetric inequality (see [Ros 2005]) implies |X;| > S(5) = wj for this 7.
Therefore, a weaker requirement is

(3-11) max |2 > wp.
t€[0,7/2)

Then the key point is to estimate max;¢[o,/2)|2¢|. Direct computation shows that

_ ) elt +e it\”n elt —e
COSn klsmktz e — —_—
2 21

n—k k

ZZ qucos((2(p+q) n)t—k—)( 1)k=4.

p=0g=0

Then Steiner’s formula (2-8) implies

|Et|—ZCkcos tsmkt/ Prdu

1 n—k k
—Z ck ZZ qucos((2(p+q) n)l——)( l)k qLPkdﬂ
p=0g=0
1 n—k k
= ¥ g 2 Y G b eos@l+y-mn < [ ped
0<k=<n p=0g=0
2|k
1 n—k k
+ ) G5 2 2 GG sin(@(p+g)-mn (— DK / prdp.
0<k=n p=0g=0

24k
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Next let 2(p + ¢) —n = £s and sum up in terms of s first. We get

n

_ k1l ~p ,a
(3-12) [Z= ) > Y. GimCliC
s=1=CD" 5 p+q=(nks)/2 gq<k=n—p
2 0,4>0 20k B
x(—l)2+k—qcos(st)/ Prdu
b

n

+ Y > > ChnCr Cl-llka

_1—(=Dn +q=(n=+s)/2 g<k<n—
= +2 Ptq q p
s z ot 2,4=0 2tk

x (—1)X2p+a-n=0; sin(st)/ Prdu
b))

n
< Y VES)?+(F6)
s= #,4—2
in the notation of Theorem 1.3.
Next we show that for the geodesic sphere with radius r € [0, %), the equality holds.
For this special hypersurface, | s Pk A= wy sinrcoth r = w,sin™ K rcoskr. Thus

n
|2/ | = wp Z C,{‘(costsin r)" K (sint cos r)* = w, sin” (r + 1)
k=0

= wnzin Z Ccl cos((Zq —n)(r+1)— ’%T)(—l)”_q.
q=0

For simplicity, we assume 7 is even. Then

n
1 —_
|2 = ©n 5 Z Clcos((2q —n)(r + 1)) (=1)y"/2+n=q
q=0

—on Y Y 2inc,;1cos(s(r+z))(—1)3”/2—q

§=0,2,....,n 2g—n==s

—on Y D 255G eosls(r +0) (=)™,

§=0,2,..., n2q—n=s

where we note that the coefficients of cos(s(r + ¢)) for the two choices of ¢ are
the same.

Now expand cos(s(r 4+ ¢)) = cos sr cos st — sinsr sinst. We find that all the
inequalities in (3-12) become equalities for = 5 —r and |Z;| = wp sin”" T = wp.
Thus for the geodesic sphere, the equality in (3-12) holds.

On the other hand, assume the equality holds. Then when some ¢ satisfies
Vil =V(5) = on fon/z sin"r dr, we must have |X;| = S(5) = wj for this 7. So
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the isoperimetric inequality implies that X; = S"(1). Then the initial hypersurface
must be a geodesic sphere.
Thus Theorem 1.3 is proved.

Remark 3.3. In Section 1, we discussed the special case n = 2 of (1-7), which is
just the Minkowski-type inequality for convex surfaces in S*. Here, to get a better
feeling of the inequality (1-7), we give the precise expressions for n = 3 and n = 4.
For n = 3, we have

o (1 ) (e )
(e ) (e L)

And for n = 4, we have
(3-13)

w4§\/(%(|E|—6/Epzdu+/zp4du)) (3¢ pran- /pgdm)

A} - o]
wa(imie2 [paaus [ poan).

For a 4-dimensional hypersurface ¥ in S°, we have the Gauss—Bonnet—Chern
formula

1
(3-14) /(p4+2pz+1)d;t=5[ Ly dp = wy.
b)) cJY

Therefore, the inequality (3-13) can be further simplified by using the formula (3-14).

Remark 3.4. As in the hyperbolic case, when the hypersurface ¥ C S? is small,
the inequality (3-13) reduces to the Euclidean version (3-3). This can be seen using
a similar argument to that in Remark 3.2.

4. The results by the method of inverse mean curvature flow

In this section we give the proof of Theorem 1.4 using a different method from the
one in the previous section.

4A. Evolution equations. Considering X as the initial hypersurface, we flow X
in "1 under the flow equation X : ¥ x [0, T*) — S"**1,

atX = F\),
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where F is a curvature function and v is the unit normal to the flow hypersurfaces X;.
First we recall the following evolution equations.

Lemma 4.1 [Makowski and Scheuer 2013]. Under the curvature flow 9; X = Fv
in S"T1 we have

d
4-1) d—IEtI =nf Fpydug,
t =,

d
(4-2) —/ Pmdje = (n—m)/ Fpm+t1 dut—rn/ Fpm—1du:.
dt Jz, P D
To simplify the notation, in the following we define

(4-3) Ly = 2K 2k (2k)' Z Ci P2k—2i-

Using Lemma 4.1, we obtain the following.

Lemma 4.2. Under the curvature flow ;X = Fv in S, we have

k
d ~ )
—[ Lydp: = (n—2k) E C;é/ Fpok—ai+1dpe.
dt >, =0 3,

Proof. The proof is by a direct calculation:

d koo
Z | Lidu, = C"—/ id
dl/gtkut ;kdz z,kaZI 1293
k
e [Z (12K 420 F pogsi o1 —20k—i) F pag—2i—1) dpts
i=0 4

k
= ché/E (n—=2k+20)F pog—2i+1 dps
; ‘

Z / k=i +1)F patai 1 diis

i=1
k .
= (n—2k)ZC,i/E Fpok—2it1dpie. O
i= ‘

4B. Proof of Theorem 1.4. Recently, Makowski and Scheuer [2013] and Gerhardt
[2015] studied the curvature flows in the sphere. If the initial hypersurface ¥ C S"*!
is closed and strictly convex, then under the inverse mean curvature flow

BtX = i1),

D1
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there exists a finite time 7* < oo such that the flow hypersurface X; converges
to an equator in S”T! and the mean curvature of ¥, converges to zero almost
everywhere in the sense of (see Theorem 1.4 in [Makowski and Scheuer 2013])

(4-4) lim pYdu, =0 foralll <« < oo.
t—->T* Jx,
For each 1 € [0, T*), define the quantity Q(¢) by
(4-5) 0(1) = |Z, |~ 20/ f Ly du,.
7

On the one hand, by Lemmas 4.2 and 2.1 (note that strictly convex implies all
principal curvatures of ¥, are positive, and certainly belong to F,j ), we have

k
d/ ~ ; D2k—2i+1
L Trdus = (n—2k) c’f Pok=2itt 4,
dt Et ! IZZO k Et p] !

k
<=3 [ paeaidu
i=0 ‘

=m—2k) | Lidu;.
Dy

Equality holds if and only if 3, is totally umbilical. On the other hand, the area of
the flow hypersurface evolves as

d
—_ Et =n Et .
g7 1Bl = nlX]
Therefore we obtain that the quantity Q(¢) is monotone nonincreasing in 7; i.e.,

d
(4-6) 7 o) =0.

Since under the inverse mean curvature flow, the flow hypersurfaces converge
to an equator in $”*! and the mean curvature of X, converges to zero almost
everywhere in the sense of (4-4), we have

(4-7) lim Q) = w2k/".
t—>T*
Combining (4-6) and (4-7), we have

00) =27 [ Lidu= lim Q) =i/
b t—>T*
Hence noting (4-3), we obtain that

(4-8) / Ly d/,L > ank(2k)!a)3k/”|Z|(”_2k)/”.
by
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Equality holds in (4-8) if and only if Q(¢) is constant in ¢. Then X; is totally
umbilical for each ¢ € [0, T*), and, in particular, X is totally umbilical and hence
a geodesic sphere. The inequality (4-8) says that the induced metric of convex
hypersurfaces in S$”*! satisfies the optimal Sobolev inequalities. See [Ge et al.
2014b] for further information about the Sobolev inequalities of the same type.
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UPPER BOUNDS OF ROOT DISCRIMINANT LOWER BOUNDS

SIMAN WONG

For any rational number ¢ € [0, 1], define the logarithmic Martinet function
B(t) to be the liminf of the logarithm of the root discriminant of number
fields K with r{(K)/[K : Q] = ¢ as [K : Q] goes to infinity. Under the gen-
eralized Riemann hypothesis for Dedekind zeta functions of number fields,
we show that B(¢) < 14.55 for a dense subset of rational numbers ¢ € [0, 1].
We also study unconditional estimates of the growth of root discriminants
by studying how the polynomial discriminant behaves under perturbation
of coefficients, and by using Pisot numbers.

1. Introduction

Let K be a number field of degree n, and absolute discriminant d;,. Denote by
r1(K) and r»(K) the number of real and complex conjugate pairs of embeddings
of K, and by rdy := |dg|"/" the root discriminant of K. By analyzing the explicit
formula for the Dedekind zeta function ¢ (s) of K, Stark [1974] shows that! as
Ny —> 00,

ri(K) log(47rec) + M 10g(2nec) +o0(1),

ng ng

ey log(rdk) =

where C is the Euler constant. Note that rd; = rdg if L/K is a finite extension
unramified at all finite places. This suggests that root discriminant lower bounds
can be used to study ideal class groups and, more generally, numbers fields and
Galois representations with restricted ramifications; see [Fontaine 1985; Masley
1978; Tate 1994] for a sample of the wide range of applications of root discriminant
lower bounds.

In view of such applications, there are extensive works on sharpening root
discriminant lower bounds. Let Ig = QN[O0, 1]. Inspired by [Hajir and Maire 2001]
and [Martinet 1978], to help us focus on the asymptotic nature of (1) we define the
logarithmic Martinet function B : Ig—R-oU {oo} as follows. For t € Ig, let R, ;

Siman Wong’s work is supported in part by NSF grant DMS-0901506.
MSC2010: primary 11R29; secondary 11R37, 11R21.
Keywords: Chebotarev density theorem, class field towers, Pisot numbers, root discriminants.
IThe asymptotic constants in this paper depend only on those quantities (if any) adorning the
corresponding < sign.
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be the minimal root discriminant for number fields of degree n and with r; real
embeddings such that r; /n =¢. Then

B(t) :=liminf R, ;.
n—oo

Note that B(¢) is finite? for any t € Ig: first, find a number field K,/Q with
r1(K)/ng =t (see for example the proof of Theorem 1.2 below for an explicit
construction). Next, let L; C L, C --- be a totally real class field tower. Then the
compositums L; K; have bounded root discriminants and satisfy r{ (L; K;)/ n. g =t.
We also know that B(z) > O for all ¢ € Ig; this follows from

B(t) > tlog(4meC) + (1 — ) log(Rme®) =t log 2 + log(2me®),

which is a restatement of (1). By using a smooth form of the explicit formula and
with a careful choice of kernel, this lower bound has since been improved to

B(t) > tlog(dme! ™) + (1 — 1) log(4me®) =t + log(4me®),

and the two constants are optimal within the framework of the explicit formula and
without additional inputs about the zeros of ¢, (s) and prime ideals of the number
fields. Assuming the generalized Riemann hypothesis (GRH) for ¢ (s), the optimal
conditional lower bound from the explicit formula approach is

) B(t) > tlog(8we /%) + (1 — 1) log(87e®) = Zt + log(8me®).

See [Odlyzko 1990] for a survey of the literature. Aside from this finiteness result
and the aforementioned lower bounds, little is known about this function §. For
example, it is not known if g is bounded on Ig (the finiteness result for 5(¢) sketched
earlier depends on K;). Hajir and Maire [2001] raise a number of interesting (and,
as these authors put it, probably very difficult) questions:

» Does B extend to a continuous function on [0, 1] (which would imply that 8
is bounded on Ig)?
« Is B monotonically increasing?

o Is there a root discriminant lower bound of the form

" g1y 4 228 g0y 4 o1y

ng K

log(rdg) >

o Very optimistically, is it true that 8(¢) is a linear function in # and, even more
boldly, do we have 8(¢) =tB8(1) + (1 —1)5(0)?

By constructing explicit Hilbert class field towers, Martinet [1978] shows that
B(0) < 4.53 and B(1) < 6.97, and Hajir and Maire [2002] refine this method to

2We thank Professor Hajir for showing us this argument.
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give B(0) < 4.41 and B(1) < 6.87; Martin [2006] has made further improvement

on B(t) fort € {;11, % % %, % 1}. As a comparison, note that, by (2), under GRH
we have 8(0) > 3.80 and S(1) > 5.37. In this paper we give a conditional proof

that B(¢) is bounded by an explicit universal constant for a dense subset of ¢ € Ig.

Theorem 1.1. Assume the generalized Riemann hypothesis for the Dedekind zeta
functions of number fields. Fix a fraction a/(3’m) € Ig with a,b,m > 0 and
31 m (we allow 3 | a). Then there exist an infinite sequence of Galois extensions
K1 C Ky C -+ such that rl(Ki)/nKi = a/(3bm)f0r all i, and such that log(rdg,)
is at most

1 1
19.59316+mT_l(Zlogm+210g10gm+6.813445)+0(ognxiJrogm).

m~nKi

Corollary. Assume the generalized Riemann hypothesis for the Dedekind zeta
functions of number fields. Then for any fraction a/(3”m) € Ig with a, b, m > 0
and 3 1m (we allow 3 | a), we have

B(5%) < 19.59316 + =L (2 log m + 2 log log m + 6.813445). 0

A natural way to construct number fields with a prescribed ratio r| (K)/ny is to
take the square root of a totally real algebraic integer with the appropriate number of
positive embeddings. To bound the root discriminant of the field generated by such
a square root, we need to keep the absolute norm of this element small. We achieve
that by applying the GRH form of the effective Chebotarev density theorem to the
narrow class field of an explicit infinite 3-class field tower of a real quadratic field.
This produces infinitely many fields for which r;(K')/n; take on a fixed rational
value with 3-power denominator; to handle ratios with general denominators m we
compose the extensions constructed above with a totally real Galois extension of
degree m. Because of this last step’ we are not able to show that 8(¢) is uniformly
bounded on I (which would have to be the case if 8 does extend to a continuous
function on [0, 1]). Since fractions with 3-power denominators are dense in /g,
Theorem 1.1 does show that B(¢) is informally bounded on a dense subset of Ig.

Remark. Our proof of Theorem 1.1 readily generalizes to function fields (for which
the GRH is true unconditionally).

We do not know how to prove unconditionally that B(#) is bounded by a universal
constant for all ¢ € Ig. If we replace in the proof of Theorem 1.1 the conditional

3We thank Professor Hajir for suggesting this compositum construction. We can also directly
construct totally real infinite m-class field tower using the Golod—Shafarevich construction [Roquette
1967]. This results in an upper bound B(a/m) < c| logm + ¢, for some absolute constants c;, just
like Theorem 1.1, but these constants would be weaker than those in Theorem 1.1.
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effective Chebotarev density theorem with the unconditional one, our argument
only gives

3) log(rdK,.) < (CnKi )/nKi

for some absolute constant ¢ > 0. We have the following unconditional improvement.

Theorem 1.2. There exists an absolute constant ¢ > 0 such that for any t € Ig,
there exist infinitely many number fields K; (depending on t) of unbounded degree
such that ry (Ki)/”K,- =t andlog(rdg,) < cn, log(nK,_).

To prove this unconditional result, we start with a polynomial f(x) that splits
completely over Z. We can easily estimate the discriminant of f, and by prescribing
the signs of the roots of f appropriately we can guarantee that the ratio of the
number of real roots of f(x?) to the degree of f(x?) takes on any given value in Ig.
To achieve irreducibility we perturb the constant term and study its effect on the
discriminant and signature.

Remark. The proof of Theorems 1.1 and 1.2 come down to finding in a totally
real number field algebraic integers of small absolute norm and with a prescribed
number of positive embeddings. If we try to tackle this problem using Minkowski’s
convex body theorem, the obvious construction leads to an estimate comparable
to the unconditional Chebotarev estimate (3). It would be interesting to find a
geometry of numbers proof of the two theorems here.

Remark. The constants in Theorem 1.1 can be improved, but not anywhere near
the records of Martinet and Hajir—Maire; to streamline the exposition we forgo
such refinements. In a similar vein we leave out explicit value for the constant in
Theorem 1.2.

In connection with their study on arithmetic lattices in simple Lie groups of
bounded covolume, Belolipetsky and Lubotzky [2012] use Pisot numbers to con-
struct an infinite sequence of number fields of unbounded degree with a fixed
number of complex places and bounded root discriminant. On the other hand,
computational data suggest that number fields with a large number of complex
places tend to have large class numbers, and hence (at least heuristically) large root
discriminant. The following result is the first step towards affirming this circle of
ideas (and the only result we know of in this direction).

Theorem 1.3. There exists an infinite sequence of number fields Ty with ny, =€+ 1
and r1(Ty) € {1, 2}, such that log(rdr,) <log({ +1)+1log3/(£+1).

2. Conditional estimate

For any number field L # Q, denote by iy, Ry, w; and O its class number,
regulator, number of roots of unity in K, and the ring of integers of K.
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Lemma 2.1. For any number field L with n;, > 36, we have the estimate

j 1.292958
5 1.710172+7>
hp < 4|dL|2( log(ld1') /|

Proof. We prove this by finding explicit numerical values for the constants in the

argument in [Lang 1986, p. 322], which is a preliminary step in the proof of the

Brauer—Siegel theorem. Before we proceed with the elementary but somewhat

tedious computation, we will briefly explain the idea behind the proof of the lemma.
The Brauer—Siegel theorem gives an asymptotic estimate for

log(hp Ry1)
log(ld.|'/?)

as we run through an infinite sequence of number fields L with n; /log |d;|—0.
More precisely, the crucial exponent % shows up in the main term of the asymptotic
estimate, and n; /log |d | appears in the error term. But if we are willing to weaken
the main term of Brauer-Siegel, we can actually make this n, /log |d; | term go
away (there are additional error terms).

We now resume the proof of the lemma. The residue at s = 1 of ¢, (s) is equal to

(L) =2"P @) Phy Ry /(weldL]?).
Take the logarithm of both sides, recall that |[dy| > 1 if L # Q and we get

log(h Rr)  log(k (L)) —ri(L)log2 —ry(L)log(2mr) +log(wy)
log(ld.|'/?) — log(ldL|'/?)

“4) +1.

Next, combining the functional equation of ¢; (s) with the positivity of the integral
representation of ¢, (s) for real s > 1, we find that (see [Lang 1986, Lemma XVI.1])

@B dy )P (3) T ()P ¢, (555 = D) Z e (D)ldy [P ) P,
SO

K(L) < 2_r2(L)S7T_nLS/2(27T)r2(L)|dL|(S_])/2F(%)rl(L)F(S)rZ(L)CL(S) . S(S _ 1)

< 2r2(L)(1—S)T[FQ(L)—nLS/Z|dL|(S—1)/2F(%)VI(L)F(S)IQ(L);.@(S)I’IL . S(S _ 1)

Sets =1+ 1/« with ¢ > 0. Then

1 1\ .- 1 " % dt & n
i+ zsoliri) = (142 ) = (10 [T ) e
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Thus

log(x (L))
r2(L)

log2 + (rz(L) — %nL(l + %)) logm +r;(L) log F(%
+ry(L) 10gF(1+£)+$log|di/2|+nL log(1 +a) +log(1

=ry(L)(log I(1+ 1) +logw — '%22) 4, (log(1 + ) — %7 (1+ 1))

+ri(L)logT'(L 4+ 1) + ]log|d1/2|+log(1+$)—loga.

—_

Substitute this into the right side of (4) and we get that
log(hLRL) 1 1 1
— < —(LlFl——l—lZ
tog(d, 1) = '+ ¥ laglay i (2P0l (140) = (145 loa2)
1 (log(1 +a) = ¥57 (14 3)) +r1(L) (log ' (5 + 5;) —log2)

+log(1 + é) —loga + log wL>.

We check that if a > ag := 0.23048745595 then the coefficients of the | (L) term
and the (L) term above are both negative. Thus for @ > «y,

log(hrRy)
log(|dp|'/?)

n, (log(1 +a) — log” (1+1))+log(1+1) —loge +logw,
log(|dL|'/?) '

<I1+1l4

The roots of unity in K form a cyclic group, so wy, is the largest positive integer w
for which K contains a primitive w-root of unity. Thus 7, is divisible by

logwp, log?2

—1 w 2 w 2 Tog 3 1
wL p—Z_L _Z_L(_) e — _wIOgS‘
[ » 2 3~ 2 \3 2
rlwr plwr
p>2

Thus w;, < (2nL)1°g3/lOg2 < 3nL1'6, whence logw; < 1.6logn; +log3. We check
that 0.1x > log x for x > 36, so for n; > 36 and o > «y,

log(hrR1)
log(ld.|'/?)

ny (log(1+a) +0.1 — 2% (1 + 1)) 4+ 1og(1+ 1) —logar + log3

<141
=lrat log(|d.|'/?)
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We check that log(14-a)+0.1—(log 7/2)(1+1) vanishes at or; := 1.408110244096.
Set o = o] and we get

(5)

log(h; R log(1+ L) —loga; +log 3 1.292958
logthiRe) 1y gl +5;) ~log g 17101724 228
log(|d.|'/?) « log(ld.|'/?) log(|dL|'/?)

Friedman [1989, Theorem B] shows that R; > A% for all L # Q except for the
following three totally complex sextic fields:

L dL RL hL wr,
X0 =4 2x* —2x3+2x2—2x+1 —10051 020521 1 2
xX0O—x—x*42x3—x+1 —10571 0.21320 1 2

X0 =33+ 5x* =53 +5x2—3x+1 —12671 023722 1 2

Set Ry, > % and we get, except possibly for these three fields,

1.292958
(6) log($hr) < 1og(|dL|1/2)<1.710172+ )

log(ld.|'/?)
Exponentiate both sides and we get

! 1,710172+M>
hr §4|dL|2( log(d1%) )

which is the estimate in the lemma. And since /i; = 1 for these three fields, this
estimate is applicable as well. (I

Lemma 2.2. Assume the generalized Riemann hypothesis for the Dedekind zeta
functions of number fields. Then for any totally real number field L of degree m > 18
and for any integer 0 < m’ < m, there exists a quadratic extension L, /L with
signature (r1,ry) = 2m —2m’, m’) and

loglog |dr | +1og 280

log(rdLm,) < 1.855086 log(rdyr) + 3.372400 +
ny

Proof. Denote by C| , the narrow ray class group of L (of modulus Oy ), and by
H} , the corresponding narrow ray class field of L. Denote by O} the group of
units of Oy and by OZ + the subgroup of totally positive units. Then

#Cpp=hy - 2W9/[0F 1 OF .1 by [Lang 1986, Theorem VI1.2]
<hy 2090

Since Hy ,/L is unramified at all finite places,

(7) |dHL’n| = |dL|[HLJ1:L] S |dL|hL'2[L:@J.
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Denote by ¢1, . . ., ¢y, the distinct real embeddings of L. Apply the GRH form of the
effective Chebotarev density theorem ([Lagarias and Odlyzko 1977, Corollary 1.2];
see [Oesterlé 1979, Theorem 4] for a version with explicit constants) to the Galois
extension Hy, ,/L and we see that for any integer 0 < m’ < m, there exists a prime
ideal p,,» C Oy, such that

(i) Normy g (pa) < 70(log|dy, ,|)%, and

(ii) pny is principal and is generated by an element m,y € O with ¢;(7,) > 0
if and only if i <m’.

The sign conditions mean that L,, := L(,/7,) has exactly 2m’ real embeddings.
Since 7, is a uniformizer, L, /L is a quadratic extension unramified outside p,,’
and 2. Let Q C O, , be a prime lying above 2 that ramifies in L, /L. By [Serre
1979, Remark 1 on p. 58], the exponent of £ in the different ideal of L,, /L is
at most 1 4 ordq(2). Consequently, Disc(L,, /L) divides p,, ]_[q|2 qltorda —
P [ 1412 9201, so in particular

(8) Disc(L,/L) divides p,-2%0;.
Thus
|dr, ,| = Normy jg(Disc(Lyy /L)) - |dp | Fn' ]

< Normg g (pm - 2°Or) - d by (8)
<[70-hy -2 log|dy]-2*: ] - d} by (7).

Since ny, , = 2n;, the logarithm of the root discriminant of L,, is bounded by
log70 logh loglog |d

log(rdy,,) < % + OERL +log2 + Ogo—gILI + log4 + log(rdy).
ny ny ny

Since ny, , > 36, apply Lemma 2.1 and we get

log |d 1292958 \  log4
log(rdy, ,) < M<1,710172+ s ) o2
n log(de1)) " n,
log 70 loglog |d
110870 | jog 0 4 08108 LL oo 4 4 tog(rdy)
I’lL nL
loglog |dy | + log 280
< 1.855086 log(rdy ) +3.372400 + 22108 | +10g 280 0

ny,

Remark. The proof of the lemma (and its subsequent application) does not require
that the element 7,y be a generator of a prime ideal; it is enough that it is not a
square, has small norm, and has the prescribed number of positive embeddings.
Thus the use of the conditional effective Chebotarev density theorem is an overkill;
instead we could apply the GRH form of the Perron formula to the Hecke L-series
of the narrow class group C; , and sieve out the desired positivity conditions using
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orthogonality relations. But this alternative argument still requires the GRH and
would lengthen the proof, so we opt for a streamlined approach via the conditional
effective Chebotarev density theorem.

Proof of Theorem 1.1. Schmithals [1980] shows that the elementary 3-class group
of the real quadratic field X = Q(+/3321607) has rank 3. Combining this with
refinement of earlier work of Koch and Venkov [1975] and Schoof [1986] shows
that £ has an infinite 3-class field tower. Set Ko := k and denote by K, the
3-Hilbert class field of K;, all viewed as subfields of a fixed algebraic closure of Q.
Since K| is totally real and every [K; 4 : K;] is odd, that means every K; is totally
real.
Since K;/k is unramified for all i > 1, we have
)
rdy, = rdy = /39345017, loglog |dx,| _ log(ng. /2) N loglog «/39345017.

nK i nK i nK i

Fix i > 18; then for any integer 0 <m’ < n; , Lemma 2.2 furnishes an extension
Kim/Q of degree 2n with signature (2, —2m', m') and

logn
(10) log(rdk,,,) < 1.855086 log(rdy) +3.372400+ O <_§K,Ki )

1

—19.593159 + o(lgTK)

i

We now consider the m = 1 case of the theorem, so fix t = a/3” € Ig with b > 0
and 0 < a < 3% (we allow 3 | @). Since the K, are 3-class field towers of k, for i
sufficiently large we have 3 | ny., so for such i we can choose 0 <m’ <[K; : Q]
so that 2m'/ny. ., =m'/ng =t. Apply (10) and we are done.

Now, let m > 1 be coprime to 3. Then ¢ (6m) =2¢ (2m) < 2m, so by [Washington
1982, Proposition 2.7],

)0 6m)
ldag,,)| = 2¢((6m‘>)3¢<6‘m>/2‘ =m?OM3PONZ <23 = (V)"

The GRH form of the effective Chebotarev density theorem then furnishes a prime
p =1 (mod 6m) with

p <70(log |dag,,) )’
< 70(log(v/3m)*")?
<70 -4m>(log m + log v/3)?
which is to say (since m > 2)

(11) p <70-13m*log? m.
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Denote by M,, the unique degree m subfield of the p-th cyclotomic field Q(¢)).
The conductor-discriminant formula gives |dy, | < p~', so by (11),

(12) log|dy,| < (m—1)(2logm 4 2loglogm +log(70 - 13)).

The only finite prime that ramifies in K; /Q (resp. M,,/Q) is 39345017 =2 (mod 3)
(resp. p=1 (mod 3)), so K; and M,, are linearly disjoint over Q. It follows that

[KiMy :Ql=m-ng  and |dk,u,| = |dg, " |du,|"™ .
Thus
(13) log |dk,m,,| = mlog|dk,| + ng, log|dwm,|,
whence, by (9) and (12),

log(rdk, m,,) =log(rdg,) +log(rdy,,)
< 8.743940 + mT_l(Z logm + 2loglogm + 6.813445).

Both terms on the right side of (13) are greater than 1. Since x + y < xy if both
x,y > 1, it follows from (13) that

loglog |dg,u,| logm+loglog|d,|+logny +loglogldy,|

"KMy e
logn, 1
52ﬁ+0( ogm ) by (9), (12).
m‘nKi m'l’lKi

Since [Q(¢,) : My, ] is even, M,, is fixed by the unique order-2 element of the cyclic
group Gal(Q(¢,)/Q). That means M,,, and hence K;M,,, is totally real. Apply
Lemma 2.2 and we see that for any 0 <m <m ‘N, there exists an extension K;
with signature (2m - ny — 2m’, m’) and

log(rdg,,,) < 1.855096(8.743940 + =1 (2 log m + 2 log log m + 6.813445))

logng +logm
m-ng )’

+3.3724004 O (

and Theorem 1.1 follows for general m > 1. (]

3. Unconditional estimate

Fix an integer n > 1. For each 0 < j < n, pick o; € {£1} and define

n

L) =] =)o),  gn(x) = fulx)+2.

i=1
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Lemma 3.1. For n > 6, the roots y; of g,(x) are all real and pairwise distinct, and
up to relabeling we have ly; — (2j)oj| < 1 foralli. In particular, g,(x) has as
many positive roots as f,(x).

Proof. For any 1 < j <n we can write

(14) fn(x) = (x — (2))o)) H(x — (2i)oy).

i#]
Since |(2i)o; — (2j)oj| = 2|i — j| forall i # j, if |[x — (2j)o;| < 1 then the product
on the right side of (14) does not change sign and has absolute value at least
Il 2;2li = jI = 1). This latter product is taken over n — 1 odd integers between 1
and 2n — 3, with each odd integer appearing at most twice. So if |x — (2j)o;| <1
and n > 3, then

(5]
> E 20—1)*> (2[%] _ 1>2 > <n ; 3)2.

To recapitulate, for |[x — (2j)o;| < 1 and n > 3, the polynomial f,(x) is equal to
x — (2j)o; times a product that, within this closed interval, takes on a constant sign
and has absolute value at least ((n — 3)/ 2)2. Note that x — (2 J)oj takes values F1
at (2j)o; £ 1. So for n > 6, one of f,((2j)o; £ 1) is < —3 and the other is > 2.
Thus g, (x) := f,(x) +2 takes a negative value at exactly one of the two end points
of the closed interval

[Tee = @ion
J#

[(2))oj — 1, (2))oj +1]

and it takes positive value in the middle. By continuity, g, (x) must have a root in
one of the open intervals

(15) (2j)oj —1,2))oj)  or  ((2))gj, (2j)oj + 1).

As we run through all 1 < j < n, these 2n open intervals are pairwise disjoint, and
the two open intervals in (15) are both contained in the positive x-axis if and only
if o; > 0. That means if n > 6, then the degree-n polynomial g, (x) has exactly
n distinct real roots, and its unique root in the union of the intervals in (15) has the
same sign as oj. This completes the proof of the lemma. U

Lemma 3.2. As n— 00 we have the estimate log |disc(g, (x?)| « n? log n.

Proof. For any polynomial G (x), from the definition of polynomial discriminant
we see that

|disc(G (x2))| = |disc(G(x))|? - 292G . |constant term of G(x)].
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Consequently,

n
log |disc(g, (xz))l < 2log |disc(gn(x))| +2nlog?2 + Z log(2i)
i=1
« log |disc(g,(x))| +nlogn.
By Lemma 3.1, if n > 6 then the roots of g, (x) are pairwise distinct and each one
is of distance less than 1 from exactly one of the (2j)o;. Thus

log |disc(gn (x))] < Z 2log 2i +2j 42| « n*log(2n +2) <« n*logn.
I<i#j=n

Combine this with (16) and the lemma follows. O

Proof of Theorem 1.2. Given 0 <n’ <n, choose oj € {£1} (0 < j <n) so that exactly
n’ of them are positive. With respect to these o, the corresponding polynomial
gn(x?) is Eisenstein at 2, and so it is irreducible over Q. By construction it has
exactly 2n’ real embedding. Denote by N, /Q the degree 2n extension defined by a
root of g, (x?). It is totally real if n > 6, by Lemma 3.1. By Lemma 3.2, we have
log(rdy,) < ny log(ny ), and the theorem follows. O

4. Small root discriminants via Pisot numbers

A real algebraic integer 0 is called a Pisot number if every conjugate of 6 other
than 6 itself has absolute value less than 1 (these other conjugates need not be real).
A celebrated theorem of Salem [1944] says that the set of Pisot numbers is a closed
subset of the real line.

Lemma 4.1. Any integer a > 2 is a nonisolated limit point of the set of Pisot
numbers.

Proof. This is a standard fact about Pisot numbers; we give the details following
the hint in [Salem 1963, p. 21] since we need the explicit polynomials later on.
Consider the polynomial

Jra(x)=x"(x—a)—1.
Clearly f,.,(0) #0, and

'y an \ _(_an "/ an D)o n \'[—a"t! 1o
“\n+1 n+1 n+1 n+1 n+1

Thus the roots of the derivative f,:’a(x) =+ Dx""'(x —an/(n+1)) are not roots
of fu.4, whence f, , is separable. Since f, ,(a) = —1 and

fnala+1/n)= >0 forn>2,

(a+1/n)" A+D"=n_ m-1""1.1)—n
—1> >
n n n
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it follows that f;, , has a real root in the interval (a, a + 1/n) for n > 2. And since

..o has no root in (a, a + 1/n), the mean value theorem implies that f, , has a
unique real root 6, , in this interval. Our next step is to show that the remaining
roots of f, , all have absolute value less than 1.

First, suppose a > 2. By Rouché’s theorem, the number of roots of f, , inside
the unit circle is equal to that of az”, counted with multiplicity. For future reference,
note that up until this point our argument does not require that a be an integer.

Take a > 2 to be an integer. Since f,, , has degree n + 1, combine the conclusion
of the two paragraphs above and it follows that 6, , is a Pisot number for all n > 2.
And since lim,_, o 65,4 = a, we see that a is a nonisolated limit point of the set of
Pisot numbers.

Now, fix n > 2, and let a—2 from the right side. By the conclusion of the
second paragraph (which is valid for a > 2), it follows that f, » has n roots with
absolute value at most 1. Suppose it does have a root ¢ with absolute value 1. Then
¢ —¢7" =2, which is impossible. Thus for any fixed n > 2, all roots of f,, » except
for 6, 2 have absolute value less than 1. We can now continue as in the case of
integer @ > 2 above, and the lemma follows. U

Proof of Theorem 1.3. First, note that f, , is irreducible over Q; otherwise by
Gauss’s lemma, it has a nontrivial monic irreducible factor over Z with all roots
having absolute value less than 1, which is impossible. Thus 7,, := ((6,2) is an
extension of Q of degree n + 1.

Since f,2(0) = —1 and since f, , is negative on the interval (0, 1), that means
fn.2 has no real root on the interval [0, 1]. Thus 6, 5 is the only real root of f; »
on the positive real axis. Since f,L2 has no root on the negative real axis, the mean
value theorem implies that f; » has at most one negative real root. Consequently,
fn.2 has at most two real roots. Since f, » does have at least one real root and since
deg(fn2) =n+1, it follows that r1(7;,) = 1 or 2 depending on whether # is even
or odd. It remains to bound the root discriminant of 7,,.

As o runs through the roots of f, 2, we see that the absolute value of the
polynomial discriminant of f;, » is

[T 2@i=[]e«

=m+1)"" (1= 29)]
= D" (1= 32) (= 3F -2) -1

<3+ 1)'"! forn > 2,

‘n—

]‘(n+1)"+1-1_“a—n2—_"_’1
o

and the theorem follows. O
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