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ON SHRINKING GRADIENT RICCI SOLITONS WITH
NONNEGATIVE SECTIONAL CURVATURE

MINGLIANG CAI

Perelman proved that an open 3-dimensional shrinking gradient Ricci soliton
with bounded nonnegative sectional curvature is a quotient of S2 × R or R3.
We extend this result to higher dimensions with a decay condition on the
Ricci tensor.

1. Introduction

A gradient Ricci soliton is a Riemannian manifold (M, g) together with a smooth
function f such that

Ric+Hess f = λg,

where λ is a constant. It is called shrinking, steady and expanding when λ > 0,
λ= 0 and λ < 0 respectively.

Gradient Ricci solitons are self-similar solutions of Hamilton’s Ricci flow and
play a vital role in the analysis of singularities of the flow. In dimension 2, Hamil-
ton [1988] completely classified shrinking gradient Ricci solitons with bounded
curvature and proved that they are the sphere, the projective space and the Euclidean
space with constant curvature. In dimension 3, Ivey [1993] proved that compact
shrinking gradient Ricci solitons have positive sectional curvature, and Perelman
[2003] proved that shrinking gradient Ricci solitons with bounded nonnegative
sectional curvature are quotients of S3, S2

×R or R3.
In higher dimensions, there have been many results in the last several years. Chen

[2009] showed that a complete shrinking gradient Ricci soliton has nonnegative
scalar curvature. Ni and Wallach [2008] gave the classification of shrinking gradient
Ricci solitons with nonnegative Ricci curvature and zero Weyl tensor. Petersen and
Wylie [2010] and independently, Cao, Wang and Zhu [Cao et al. 2011], classified
the shrinking gradient Ricci solitons with zero Weyl tensor. Fernández-López and
García-Río [2011] considered solitons with harmonic Weyl tensor. In [Petersen and
Wylie 2009], several natural curvature conditions are given that characterize gradient
Ricci solitons of the flat vector bundle N ×0 Rm , where N is an Einstein manifold,
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0 acts freely on N and by orthogonal transformations on Rm , and f = 1
4 d2 with d

being the distance on the flat fiber to the base. In particular, it is shown in [Petersen
and Wylie 2009] that a shrinking gradient Ricci soliton is rigid, i.e., of the form
N ×0 Rm , if the scalar curvature is constant and the sectional curvature of the plane
containing ∇ f is nonnegative. As a consequence of a theorem of Böhm and Wilking
[2008], the gradient Ricci solitons with positive curvature operators are trivial. In
view of this and the aforementioned result of Perelman, one naturally asks to what
extend shrinking gradient Ricci solitons with nonnegative sectional curvature are
rigid. Our first result in this paper is the rigidity under a decay condition on |D Ric|,
extending Perelman’s result to higher dimensions. In all theorems we scale the
metric so that λ= 1

2 .

Theorem 1.1. Let (M, g, f ) be a complete noncompact shrinking gradient Ricci
soliton with bounded nonnegative sectional curvature. Assume that there exists δ >0
such that ∫

M
eδ f
|D Ric| d volg <∞.

Then (Mn, g) is isometric to N ×0 Rm , where N is a compact Einstein manifold.

This is, to our knowledge, the first rigidity result in high dimensions without
assumptions on the Weyl tensor. The potential function f is known to grow quadrat-
ically with respect to the distance from a fixed point, so our condition on D Ric
says that it decays exponentially. Our proof also works under the assumption that
D Ric decays polynomially with a degree depending on other geometric quantities.

The Cheeger–Gromoll soul theorem states that an open manifold with nonnegative
sectional curvature is diffeomorphic to a vector bundle over a compact submanifold
called a soul. The pull-back metric on the bundle can be highly twisted. However,
if there exists a gradient soliton structure on such a bundle, then, by Theorem 1.1,
the metric has to be locally trivial, provided that the decay condition is satisfied.
The decay condition on D Ric in Theorem 1.1 is imposed in the region where f is
large. Our next result deals with the rigidity under a condition on D Ric imposed in
the region where f is small.

Theorem 1.2. Let (Mn, g, f ) be a complete shrinking gradient Ricci soliton with
bounded nonnegative sectional curvature. Assume that the minima of f is a smooth
compact nondegenerate critical submanifold and D Ric and D2 Ric vanish on the
minima. Then (Mn, g) is noncompact and isometric to N ×0 Rm , where N is a
compact Einstein manifold.

We derive some basic formulas in Section 2, and prove Theorems 1.1 and 1.2 in
Sections 3 and 4 respectively.
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2. Basic formulas

There are different conventions for the curvature tensor in the literature, so to
avoid the confusion, we state ours as follows. The (3, 1) tensor Rm(X, Y, Z) =
Rm(X, Y )Z is defined as

Rm(X, Y )Z = DX DY Z − DY DX X − D[X,Y ]Z

and the (4, 0) tensor as

Rm(X, Y, Z ,W )= 〈Rm(X, Y )Z ,W 〉.

We use Ric to denote the Ricci tensor and R the scalar curvature. For a tangent
vector X at p, we use Ric(X) to denote the vector such that

〈Ric(X), Y 〉 = Ric(X, Y )

for any vector Y at p. For any smooth vector field V and any smooth function φ
on manifold M , by V (φ), we mean V (φ)= dφ(V )= 〈V,∇φ〉. In the remainder
of the paper, we will rescale the metric and assume that our gradient Ricci soliton
satisfies

Ric+Hess f = 1
2 g.

Since the curvature of (M, g) is assumed to be bounded, there exists a flow
8t : M→ M defined for all time with 80 = Id and ∂8/∂t = ∇ f [Morgan and
Tian 2007, p. 207]. For t ∈ (∞, 0), define G(t) = |t |8∗

− ln |t |g. Then G(−1) = g
and G(t) satisfies

Ric(G(t))+Hess f = 1
2τ

G(t),

where Hess is taken with respect to the metric G(t) and τ = |t | = −t .
In the next lemma, we collect some well-known formulae.

Lemma 2.1. On (M, G(t)), we have

(1) d R = 2Ric(∇ f, · ),

(2) |∇ f |2 = f/τ − R+ constant,

(3) R/τ +〈∇ f,∇R〉 =1R+ 2|Ric|2,

(4) div Rm(X, Y, Z)= Rm(∇ f, X, Y, Z),

(5) DX Ric(Y, Z)= DY Ric(X, Z)−Rm(X, Y,∇ f, Z),

where div Rm(X, Y, Z)= trace1,2 D Rm( · , · , X, Y, Z).

Proof. The derivations of (1)–(3) can be found in [Hamilton 1995] and (4)–(5) in
[Petersen and Wylie 2010]. �
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Lemma 2.2. On (M, g), we have

1|Ric|2 = 2|D Ric|2+ 2|Ric|2+∇ f (|Ric|2)− 4Ki jλiλ j ,

where λi are the eigenvalues of the Ricci tensor and Ki j is the sectional curvature
of the plane spanned by the eigenvectors belonging to λi and λ j respectively.

Proof. This follows from the formula derived in Lemma 2.1 in [Petersen and Wylie
2010]:

1Ric= D∇ f Ric+Ric− 2
n∑

k=1

Rm( · , ek,Ric(ek), · ). �

Throughout the computations in the paper, we assume {e1, . . . , en} is an or-
thonormal basis in a neighborhood of a fixed point x with Dei e j (x)= 0 and further
assume that each ei is an eigenvector of Ric at x corresponding to the eigenvalue λi .
Such a basis always exists. We also use the Einstein summation convention (unless
otherwise specified).

Lemma 2.3. On (M, g), we have

div(Ric(∇R))=∇ f (|Ric|2)+ 1
2 |∇R|2− 2〈Z ,∇ f 〉+ |Ric|2− 2

∑
i

λ3
i ,

where Z = Ric(ei , e j )Rm(∇ f, ei , e j ).

Proof. The following computations are done at x . From Lemma 2.1, we have

Dei Ric(∇R, ei )= D∇RRic(ei , ei )−Rm(ei ,∇R,∇ f, ei )

= |∇R|2−Ric(∇R,∇ f )= 1
2 |∇R|2.

We then obtain

div(Ric(∇R))= 〈Dei Ric(∇R), ei 〉 = ei Ric(∇R, ei )

= Dei Ric(∇R, ei )+Ric(Dei∇R, ei )

=
1
2 |∇R|2+Ric(ei , e j )〈Dei∇R, e j 〉

=
1
2 |∇R|2+ 2Ric(ei , e j )〈Dei Ric(∇ f ), e j 〉

=
1
2 |∇R|2+ 2Ric(ei , e j )ei Ric(∇ f, e j )

=
1
2 |∇R|2+ 2Ric(ei , e j )

(
Dei Ric(∇ f, e j )+Ric(Dei∇ f, e j )

)
.

That is,

(2-1) div(Ric(∇R))= 1
2 |∇R|2+2Ric(ei , e j )

(
Dei Ric(∇ f, e j )+Ric(Dei∇ f, e j )

)
.

From the soliton equation
Ric+Hess f = 1

2 g,

it follows that
Dei∇ f = 1

2 ei −Ric(ei )=
1
2 ei − λi ei ,
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where we have used the assumption that ei is an eigenvector of Ric at x belonging
to the eigenvalue λi . Hence,

(2-2) 2Ric(ei , e j )Ric(Dei∇ f, e j )= 2
( 1

2 − λi
)
(Ric(ei , e j ))

2
= 2λ2

i
( 1

2 − λi
)
.

Lemma 2.1(5) implies that

Dei Ric(∇ f, e j )= D∇ f Ric(ei , e j )−Rm(ei ,∇ f,∇ f, e j ).

It follows that

(2-3) 2Ric(ei ,e j )Dei Ric(∇ f,e j )

= 2Ric(ei ,e j )(D∇ f Ric(ei ,e j )−Rm(ei ,∇ f,∇ f,e j ))

= 2Ric(ei ,e j )D∇ f Ric(ei ,e j )−2〈Z ,∇ f 〉

= ∇ f (|Ric|2)−2〈Z ,∇ f 〉.

Combining (2-2) and (2-3), we obtain that

2Ric(ei , e j )(Dei Ric(∇ f, e j )+Ric(Dei∇ f, e j ))

=∇ f (|Ric|2)− 2〈Z ,∇ f 〉+ 2λ2
i (

1
2 − λi ).

Substituting the above into (2-1) gives

div(Ric(∇R))= 1
2 |∇R|2+∇ f (|Ric|2)− 2〈Z ,∇ f 〉+ 2λ2

i (
1
2 − λi )

=
1
2 |∇R|2+∇ f (|Ric|2)− 2〈Z ,∇ f 〉+ |Ric|2− 2

∑
i

λ3
i . �

Remark 2.4. We have 〈Z ,∇ f 〉 ≥ 0 when the sectional curvature of (M, g) is
nonnegative. In fact, at x , 〈Z ,∇ f 〉 = λi Rm(∇ f, ei , ei ,∇ f ).

The next lemma is a slight variation of Lemma 2.3.

Lemma 2.5. On (M, g), we have

∇ f (|Ric|2)=2
(
〈Z ,∇ f 〉+

n∑
i=1

λi
(
λi−

1
2

)2
)
+

1
2〈∇ f,∇R〉− 1

2 |∇R|2−div(D∇R∇ f ).

Proof. It follows from Lemma 2.3 that

div(Ric(∇R))= 1
2 |∇R|2+∇ f (|Ric|2)− 2〈Z ,∇ f 〉+ |Ric|2− 2

∑
i

λ3
i .

Using Ric(∇R)= 1
2∇R− D∇R∇ f and Lemma 2.1(3), we have

∇ f (|Ric|2)= R
2
− 2|Ric|2+ 2

∑
i

λ3
i + 2〈Z ,∇ f 〉

+
1
2〈∇ f,∇R〉− 1

2 |∇R|2− div(D∇R∇ f ).

The lemma now follows as R/2− 2|Ric|2+ 2
∑

i λ
3
i = 2

∑n
i=1 λi

(
λi −

1
2

)2. �
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Combining Lemmas 2.2 and 2.3 gives the following proposition.

Proposition 2.6. On (M, g),

P = 1
2∇ f (|Ric|2)+ 1

2 |∇R|2+ div
( 1

2∇|Ric|2−Ric(∇R)
)
,

where P = Ki j (λi − λ j )
2
+ |D Ric|2+ 2〈Z ,∇ f 〉.

Proof. Lemma 2.2 implies that

−2Ki jλiλ j + |D Ric|2 =− 1
2∇ f (|Ric|2)− |Ric|2+ div

( 1
2∇|Ric|2

)
,

while Lemma 2.3 implies that

2
∑

i

λ3
i + 2〈Z ,∇ f 〉 = ∇ f (|Ric|2)+ |Ric|2+ 1

2 |∇R|2− div(Ric(∇R)).

Adding the corresponding sides of the last two equations and noting that 2
∑

i λ
3
i−

2
∑

i, j Ki jλiλ j =
∑

i, j Ki j (λi − λ j )
2, we obtain Proposition 2.6. �

Remark 2.7. Clearly, P ≥ 0 when the sectional curvature of (M, g) is nonnegative.

The proof of Theorem 1.1 will use an alternative form of Proposition 2.6 in
which the term |D Ric|2 is replaced by | div Rm |2. An integral from of the next
lemma is proved in [Cao 2007].

Lemma 2.8. On (M, g),

|D Ric|2 = | div Rm |2+ 2〈Z ,∇ f 〉− 1
2∇ f (|Ric|2)+ div

( 1
2∇|Ric|2− 2Z

)
.

Proof. As before, we fix an orthonormal basis, {e1, . . . , en}, in a neighborhood of a
fixed point x and assume that Dei e j (x)= 0 and that each ei is an eigenvector of Ric
at x corresponding to the eigenvalue λi . Recall that Z =Ric(ei , e j )Rm(∇ f, ei , e j ),
so at x ,

div(Z)= 〈Dek Z ,ek〉 = 〈Dek (Ric(ei ,e j )Rm(∇ f,ei ,e j )),ek〉

= ek(Ric(ei ,e j ))Rm(∇ f,ei ,e j ,ek)+Ric(ei ,e j )〈Dek (Rm(∇ f,ei ,e j )),ek〉

= Dek Ric(ei ,e j )Rm(∇ f,ei ,e j ,ek)+Ric(ei ,e j )ek(Rm(∇ f,ei ,e j ,ek))

= Dek Ric(ei ,e j )divRm(ei ,e j ,ek)

+Ric(ei ,e j )
(
Dek Rm(∇ f,ei ,e j ,ek)+Rm(Dek∇ f,ei ,e j ,ek)

)
= (Dei Ric(e j ,ek)−Rm(ek,ei ,∇ f,e j ))divRm(ei ,e j ,ek)

+Ric(ei ,e j )divRm(e j ,ei ,∇ f )+λi Rm
(( 1

2−λk
)
ek,ei ,ei ,ek

)
= Dei Ric(e j ,ek)divRm(ei ,e j ,ek)+divRm(e j ,ei ,ek)divRm(ei ,e j ,ek)

+Ric(ei ,e j )Rm(∇ f,e j ,ei ,∇ f )+Ki jλi
( 1

2−λ j
)
.
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In the above calculation, we have repeatedly used Lemma 2.1. The lemma now
follows from Lemma 2.2 and the following two identities, whose proofs are easy:

Dei Ric(e j , ek) div Rm(ei , e j , ek)= 0,

div Rm(e j , ei , ek) div Rm(ei , e j , ek)=
1
2 |div Rm|2. �

Lemma 2.8, together with Proposition 2.6, implies the following:

Lemma 2.9. On (M, g),

Q =∇ f (|Ric|2)+ 1
2 |∇R|2+ div(2Z −Ric(∇R)),

where Q = Ki j (λi − λ j )
2
+ |div Rm|2+ 4〈Z ,∇ f 〉.

Remark 2.10. We note that Q ≥ 0 when the sectional curvature of (M, g) is
nonnegative.

The next lemma deals with the term ∇ f (|Ric|2) in Lemma 2.9.

Lemma 2.11. On (M, g),

(2-4) ∇ f (|Ric|2)= 1
2 |∇R|2+ 1

2〈∇ f,∇R〉+ 1
2∇ f (〈∇ f,∇R〉)

+ div
(
D∇R∇ f − 1

2∇〈∇ f,∇R〉
)
.

Proof. It follows from Lemma 2.1(1) and (3) that

1
2∇ f (1R)=−∇ f (|Ric|2)+ 1

2〈∇ f,∇R〉+ 1
2∇ f (〈∇ f,∇R〉).

The Bochner–Weitzenböck formula implies that

div
( 1

2∇〈∇ f,∇R〉
)
=

1
21〈∇ f,∇R〉

= 〈Hess f,Hess R〉+1
2∇ f (1R)+ 1

2∇R(1 f )+Ric(∇ f,∇R)

= 〈Hess f,Hess R〉+1
2∇ f (1R)+ 1

2∇R
( n

2−R
)
+

1
2 |∇R|2

= 〈Hess f,Hess R〉+1
2∇ f (1R).

But,

div(D∇R∇ f )= 〈Dei D∇R∇ f, ei 〉 = ei 〈D∇R∇ f, ei 〉 = ei 〈Dei∇ f,∇R〉

=
〈
Dei

(1
2 ei −Ric(ei )

)
,∇R〉+ 〈Hess f,Hess R

〉
=−Dei Ric(ei ,∇R)+〈Hess f,Hess R〉

= −
1
2 |∇R|2+〈Hess f,Hess R〉.

The lemma follows. �

We now have the following proposition which will be used in the proof of
Theorem 1.1.
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Proposition 2.12. On (M, g),

Q = |∇R|2+ 1
2〈∇ f,∇R〉+ 1

2∇ f (〈∇ f,∇R〉)

+ div
(
2Z −Ric(∇R)+ D∇R∇ f − 1

2∇〈∇ f,∇R〉
)
.

Proof. This is merely a consequence of Lemmas 2.9 and 2.11. �

3. Proof of Theorem 1.1

We will use φ to denote a real-valued nonnegative C4 function on R and write φ ◦ f
as φ( f ). We will show that R is a constant function and then appeal to [Petersen
and Wylie 2009] to complete the proof. We begin with the following proposition.

Proposition 3.1. On (M, g),

(3-1) φ( f )Q = 1
2〈∇ f,∇R〉

(
(φ−φ′)( f )−(φ+φ′)( f )1 f −(φ′′+φ′)( f )|∇ f |2

)
+ (φ+φ′)( f )|∇R|2− 2φ′〈Z ,∇ f 〉+ div(X),

where

X = 1
2〈∇ f,∇R〉(φ′+φ)( f )∇ f +φ( f )

(
2Z−Ric(∇R)+D∇R∇ f − 1

2∇〈∇ f,∇R〉
)
.

Proof. We multiply each side of the equation in Proposition 2.12 by φ( f ) to get

φ( f )Q = φ( f )|∇R|2+ φ( f )
2
〈∇ f,∇R〉+ φ( f )

2
∇ f (〈∇ f,∇R〉)

−φ′( f )〈2Z −Ric(∇R)+ D∇R∇ f − 1
2∇〈∇ f,∇R〉,∇ f 〉

+ div
(
φ( f )

(
2Z −Ric(∇R)+ D∇R∇ f − 1

2∇〈∇ f,∇R〉
))
.

It follows from the soliton equation and Lemma 2.1(1) that

〈−Ric(∇R)+ D∇R∇ f,∇ f 〉 =
〈1

2∇R− 2Ric(∇R),∇ f
〉

=
1
2〈∇ f,∇R〉− |∇R|2.

We thus obtain

(3-2) φ( f )Q = (φ+φ′)( f )|∇R|2+
φ−φ′

2
( f )〈∇ f,∇R〉

− 2φ′〈Z ,∇ f 〉+
φ+φ′

2
( f )∇ f (〈∇ f,∇R〉)

+ div
(
φ( f )

(
2Z −Ric(∇R)+ D∇R∇ f − 1

2∇〈∇ f,∇R〉
))
.

Now, we observe that

(φ+φ′)( f )∇ f (〈∇ f,∇R〉)= 〈∇〈∇ f,∇R〉, (φ′+φ)( f )∇ f 〉

= −〈∇ f,∇R〉
(
(φ′+φ)( f )1 f +(φ′′+φ′)( f )|∇ f |2

)
+div

(
〈∇ f,∇R〉(φ′+φ)( f )∇ f

)
.
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Substituting the above into (3-2), we obtain (3-1). Proposition 3.1 is thus proved. �

The idea now is to choose an appropriate function φ and integrate (3-1) over M .
The divergence term, after integration, vanishes because of the fall-off condition
we impose. The right-hand side will then be nonpositive while the left is always
nonnegative, and consequently, R is a constant. Theorem 1.1 follows from [Petersen
and Wylie 2009].

Proof of Theorem 1.1. We normalize f by adding a constant so that Lemma 2.1(2)
takes the form |∇ f |2= f −R. Since R≥0, we always have |∇ f |2≤ f . On the other
hand, since R is assumed to be bounded and f grows quadratically with respect to the
distance from a fixed point [Cao and Zhou 2010; Naber 2006], we have |∇ f |2≥ 1

2 f ,
when f is sufficiently large. Thus, there exists T > 2 so that when f ≥ T ,

(3-3) 1
2 f ≤ |∇ f |2 ≤ f.

Fix 0< η < δ and define φ : R→ R by φ(t)= 0 for t ≤ T , and φ(t)= (t − T )keηt

for t ≥ T , where k is a sufficiently large number to be determined. Throughout
this section, we will use this φ in (3-1). By our fall-off assumption, there exists a
sequence ti →∞ such that∫

f=ti
eδ f 1
|∇ f |
|D Ric| → 0, as i→∞.

From this, we now deduce that

(3-4)
∫

f≤ti
div(X)=

∫
f=ti

〈X,∇ f 〉
|∇ f |

→ 0, as i→∞.

To this end, we look at each of the five terms in X and denote by X i the i-th term.
Then, when f > T ,

|〈X1,∇ f 〉|
|∇ f |

=
1
2 |〈∇ f,∇R〉|(φ′+φ)( f )|∇ f | ≤ C1 f k+1eη f

|∇R|,

where C1 is a constant depending only on k and η. Now by the Cauchy–Schwarz
inequality,

|D Ric|2 =
∑
i, j,k

(Dei Ric(e j , ek))
2
≥

1
n

∑
i

(∑
j

Dei Ric(e j , e j )

)2

=
1
n
|∇R|2.

Thus,

|∇R| ≤
√

n|D Ric|.

Hence,
|〈X1,∇ f 〉|
|∇ f |

≤ C1
√

n f k+1eη f
|D Ric|.
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Integrating the above over { f = ti } and noting that

C1
√

n f k+1eη f
|D Ric| ≤ eδ f |D Ric|

|∇ f |
,

when f is sufficiently large, we conclude that∫
f=ti

|〈X1,∇ f 〉|
|∇ f |

→ 0, as i→∞.

Now note that 〈X2,∇ f 〉 = 2φ〈Z ,∇ f 〉 = 2φ
∑

i λi Rm(∇ f, ei , ei ,∇ f ). Since Ric
is assumed to be bounded and since the sectional curvature is nonnegative,

|〈X2,∇ f 〉|
|∇ f |

≤ C2 f k−1/2eη f Ric(∇ f,∇ f )= C2 f k−1/2eη f 1
2〈∇ f,∇R〉,

where C2 is a constant dependent only on the bound of Ric, and the last equality
follows from Lemma 2.1. Hence, when f is sufficiently large,

|〈X2,∇ f 〉|
|∇ f |

≤
1
2C2 f keη f

|∇R| ≤ eδ f |D Ric|
|∇ f |

.

It then follows that ∫
f=ti

|〈X2,∇ f 〉|
|∇ f |

→ 0, as i→∞.

The arguments for the other X i are similar; we will skip X3 and X4. Now look
at X5. Repeatedly using Lemma 2.1(2), we see that

〈X5,∇ f 〉 = − 1
2φ∇ f (〈∇ f,∇R〉)=−φ∇ f (Ric(∇ f,∇ f ))

=−φ
(
D∇ f Ric(∇ f,∇ f )+ 2Ric(D∇ f∇ f,∇ f )

)
=−φ

(
D∇ f Ric(∇ f,∇ f )+Ric(∇ f −∇R,∇ f )

)
=−φ

(
D∇ f Ric(∇ f,∇ f )+ 1

2〈∇ f,∇R〉−Ric(∇R,∇ f )
)
.

Since |∇R| can be bounded by |D Ric|, we have |〈X5,∇ f 〉| ≤ C5eη f f k+3
|D Ric|.

Equation (3-4) then follows.
To simplify notations, we put

F = 1
2〈∇ f,∇R〉

(
(φ−φ′)( f )− (φ+φ′)( f )1 f − (φ′′+φ′)( f )|∇ f |2

)
+ (φ+φ′)( f )|∇R|2− 2φ′〈Z ,∇ f 〉.

Then,
φ( f )Q = F + div(X).

It follows easily from the arguments in the proof of (3-4) that
∫

M F d volg <∞.
We thus have

(3-5)
∫

M
φ( f )Q =

∫
M

F.
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We now show that
∫

M F d volg ≤ 0. First, we note that −1 f = R−n/2≤3, where
3 is an upper bound of R; hence −(φ+φ′)( f )1 f ≤3(φ+φ′), as φ and φ′ are
both nonnegative. Next, we observe that, by Lemma 2.1,

|∇R|2 = 2Ric(∇ f,∇R)= 2
∑

i

λi ei ( f )ei (R)

and ei (R)= 〈∇R, ei 〉 = 2Ric(∇ f, ei )= 2λi ei ( f ). So for each i , ei ( f )ei (R) ≥ 0.
Hence |∇R|2 ≤ 23〈∇ f,∇R〉. Finally, we recall that 〈Z ,∇ f 〉 ≥ 0 (Remark 2.4).
We thus conclude, from (3-3), that

(3-6) F ≤ 1
2〈∇ f,∇R〉F1,

where

F1 = (φ−φ
′)( f )+3(φ+φ′)( f )+ 43(φ+φ′)− 1

2 f (φ′′+φ′)( f ).

It follows from (3-5) and (3-6) that

(3-7)
∫

M
φ( f )Q ≤ 1

2

∫
M
〈∇ f,∇R〉F1.

A direct computation leads to

F1 = (φ−φ
′)(t)+3(φ+φ′)(t)+43(φ+φ′)(t)−1

2 t (φ′′+φ′)(t)

=−
1
2δ(1+δ)(t−T )k+1eδt−

(
1
2(1+2δ)k−5(1+δ)3−1+T−2

2
δ

)
(t−T )keδt

−k
( 1

2(k−1)−53+ 1
2 T+

)
1(t−T )k−1eδt− 1

2 Tφ′′.

If we choose k > 103 + 2, the above expression will clearly be negative for
t > T . We have therefore shown that F1 ≤ 0 everywhere and F1 < 0 where f > T .
Since Q ≥ 0 (Remark 2.10) and 〈∇ f,∇R〉 = 2Ric(∇ f,∇ f )≥ 0 (Lemma 2.1), we
conclude from (3-7) that 〈∇ f,∇R〉 = 0 in the region { f > T }. But as we noted
earlier in the proof, |∇R|2 ≤ 23〈∇ f,∇R〉. Hence ∇R = 0 in the region { f > T }.
The analyticity of the metric [Bando 1987; Kotschwar 2013] then implies that R is
a constant function. Theorem 1.1 then follows from [Petersen and Wylie 2009]. �

4. Proof of Theorem 1.2

We first show that the Ricci tensor has a zero eigenvalue at any point p in C , then
show that the soliton splits in a neighborhood of p, which, in turn, implies that the
scalar curvature is a constant.

Let C be the critical manifold of minima of f . Since C is assumed to be
nondegenerate, the Morse–Bott lemma implies that for any point p ∈ C , there
exists an open neighborhood U of p and a diffeomorphism φ : U → Rn such
that φ(U ∩C)= {(0, . . . , 0, xm+1, . . . , xn)}, φ(p)= 0 and f ◦φ−1(x1, . . . , xn)=

c+ 1
4(x

2
1 + · · ·+ x2

m).
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In what follows in this section, unless specified otherwise, the range for the
Greek letters α, β, . . . is 1 to m while that for the Latin letters i, j, . . . is m+1 to n.

We observe that we may assume that for all α and i , gαi (p) = 0. In fact, by
making a change of variables, yα = xα and yi = xi −

∑m
β=1 giβ(p)xβ , we see

that in the new coordinates, at p, gαi
= 〈∇ yα,∇ yi 〉 = 0 for α and i . Moreover,

f (y1, . . . , ym, ym+1, . . . , yn) = c+ 1
4(y

2
1 + · · · + y2

m). From now on, we assume
in the original coordinates (x1, . . . , xn) that gαi (p) = 0 for all α and i . As a
consequence, we also have gαi (p)= 0.

Next lemma computes the Ricci tensor at p.

Lemma 4.1. At p, we have

Ric(p)
(
∂

∂xα
,
∂

∂xβ

)
=

1
2(gαβ(p)− δαβ), Ric(p)

(
∂

∂xi
,
∂

∂x j

)
=

1
2 gi j ,

Ric(p)
(
∂

∂xα
,
∂

∂xi

)
= 0.

Proof. Since

∇ f = 1
2 gαβxα

∂

∂xβ
+

1
2 gαi xα

∂

∂xi
,

we have at p,

Hess( f )(p)
(
∂

∂xα
,
∂

∂xβ

)
=

1
2δαβ,

Hess( f )(p)
(
∂

∂xα
,
∂

∂xi

)
= Hess( f )(p)

(
∂

∂xi
,
∂

∂x j

)
= 0.

The lemma follows from the soliton equation. �

Let µ−1
γ ( γ =1, . . . ,m) denote the eigenvalues of the positive definite symmetric

matrix gαβ(p). Then there exists (v1γ , . . . , vmγ ) 6= 0 such that
∑

β gαβ(p)vβγ =
µ−1
γ vαγ . Let vγ =

∑
α vαγ (∂/∂xα). The first part of Lemma 4.1 implies that

Ric(p)(vγ , vγ )=
∑
α,β

vαγ vβγRic(p)
(
∂

∂xα
,
∂

∂xβ

)
=

1
2(µ
−1
γ − 1)

∑
α

(vαγ )
2

=
1
2(µ
−1
γ − 1)µγ g(p)(vγ , vγ )

=
1
2(1−µγ )g(p)(vγ , vγ ).

We conclude from this and the rest of Lemma 4.1 that the eigenvalues of the Ricci
tensor at p are (1−µα)/2, with α= 1, . . . ,m, and 1

2 with multiplicity n−m. Since
the Ricci tensor is assumed to be semipositive definite, µα ≤ 1 for each α. Of
course, µα > 0. Our goal is to show that µα = 1.
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Now assume {e1, . . . , en} is an orthonormal basis in a neighborhood of a fixed
point p ∈ C with Dei e j (p)= 0 for 1≤ i, j ≤ n. We may assume that each eα is an
eigenvector of Ric at p corresponding to the eigenvalue (1−µα)/2 for 1≤ α ≤ m
and ei an eigenvector corresponding to 1

2 for m+ 1≤ i ≤ n.
By our assumption, D Ric= D2 Ric= 0 at p. Hence, for each 1≤ s ≤ n, in the

neighborhood of p,

Ric(es, es)= rs +

n∑
i, j,k=1

rsi jk xi x j xk + higher-order terms,

where rs and rsi jk are constants. We make the following observation.

Lemma 4.2. Given that Ksα is the sectional curvature of the section spanned by es

and eα, we have

rα=
1−µα

2
, α=1, . . . ,m, ri=

1
2 , i=m+1, . . . , n,

m∑
α=1

Ksαµα=0,

Proof. We only need to prove the second line. At p,

(1Ric)(es, es)=1(Ric(es, es))= 0.

On the other hand, we have 1Ric= D∇ f Ric+Ric− 2
∑n

l=1 Rm( · , el,Ric(el), · )

(Lemma 2.1 in [Petersen and Wylie 2010], see also the proof of Lemma 2.2). Hence,

0= Ric(es, es)− 2
n∑

l=1

Rm(es, el,Ric(el), es)

= rs − 2
m∑
α=1

Rm(es, eα,Ric(eα), es)− 2
n∑

i=m+1

Rm(es, ei ,Ric(ei ), es)

= rs −

m∑
α=1

(1−µα)Rm(es, eα, eα, es)−

n∑
i=m+1

Rm(es, ei , ei , es)

=

m∑
α=1

Ksαµα. �

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. It follows from Lemma 4.2 and the assumption of nonnegative
sectional curvature that Ksα(p)= 0 for all 1≤ s ≤ n. So, Ric(p) vanishes on the
subspace spanned by {∂/∂xα|α = 1, . . . ,m}.

We first prove that a neighborhood of p splits isometrically as U × V , where U
is at least m-dimensional and Ric ≡ 0 on U . We have shown that Ricαβ(p) = 0.
The rest of the argument is along the lines of the proof of Lemma 8.2 in [Hamilton
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1986] and that of Corollary 2.1 in [Ni and Tam 2003]. Denote by K (x, t) the null
space of Ric(x, t), i.e.,

K (x, t)= {w ∈ Tx M | Ric(x, t)(w)= 0}.

Letw0 ∈ K (p,−1) and γ (s) a smooth curve starting from p. Parallel translatingw0

along γ gives a vector fieldw along γ . Denote the extension ofw to a neighborhood
of γ still by w. Now we project w onto K (x, t) to get a vector field v(x, t). Then
v(γ (s), t) ∈ K (γ (s), t). We first show that Dγ ′v is also in K (γ (s), t). We fix an
orthonormal basis in g(t), {e1, . . . , en}, in a neighborhood of a fixed point γ (s)
and assume that ei (γ (s)) are the eigenvectors of Ric. For simplicity, we denote
ei (γ (s)) by ei (s). Since Ric(v)= 0, we have ((∂/∂t)Ric)(v, v)= 0. The evolution
equation for Ricci tensor then implies that at γ (s),

(1Ric)(v, v)− 2〈Ric(v),Ric(v)〉+ 2Ric(ei , ei )K (ei , v)= 0,

where the repeated indices are being summed over. Since the sectional curvature
K (ei , v) is nonnegative and since Ric(v) = 0, we deduce that (1Ric)(v, v) ≤ 0.
Direct computations give

(1Ric)(v, v)=1(Ric(v, v))− 4ei (Ric(v, Deiv))+ 2Ric(v, Dei Deiv)

+ 2Ric(v, DDei eiv)+ 2Ric(Deiv, Deiv).

Using (1Ric)(v, v) ≤ 0 and Ric(v) = 0, we obtain Ric(Deiv, Deiv) ≤ 0. Since
Ric is positive semidefinite, we conclude that Ric(Deiv)= 0 for each i , and hence
Dγ ′v ∈ K (γ (s), t). As in the proof of Corollary 2.1 in [Ni and Tam 2003], we
conclude that w ∈ K (x, t). Since parallel translation preserves inner product, for
each fixed t , the dimension of K (x, t) is independent of x . We then use the de Rham
decomposition theorem to conclude that a neighborhood of p splits.

Note that |∇ f |2≥ f on U×V . In fact, for any q ∈V , the restriction of g and f on
U ×{q} gives a soliton on U ×{q} with zero Ric tensor. Lemma 2.1(2) implies that
|∇U×{q} f |2 = f |U×{q}, where ∇U×{q} f is the gradient of f |U×{q} with respect to
the metric g|U×{q}. Since |∇ f |2≥ |∇U×{q} f |2, we infer that |∇ f |2(x, q)≥ f (x, q)
for all x ∈U . Since q is an arbitrary point in V , it follows that |∇ f |2≥ f on U×V .

We now prove that |∇ f |2 ≤ f on U × V . Given any point y ∈U × V , denote
by γ (s) the integral curve of ∇ f/|∇ f |2 such that γ (0) = y. Then f (γ (s)) =
s+ f (γ (0)). On the other hand, using Lemma 2.1(1) and (2), we have

d
ds
|∇ f |2(γ (s))=

1
|∇ f |2

∇ f (|∇ f |2)=
1
|∇ f |2

(|∇ f |2−〈∇ f,∇R〉)

=
1
|∇ f |2

(|∇ f |2− 2Ric(∇ f,∇ f )).
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Since Ric(∇ f,∇ f ) ≥ 0, we obtain (d/ds)|∇ f |2(γ (s)) ≤ 1. Integrating this in-
equality from − f (γ (0)) to s and noting that ∇ f (γ (s))= 0 at s =− f (γ (0)) give
us the desired inequality |∇ f |2 ≤ f .

We have thus proved that |∇ f |2= f , which, when combined with Lemma 2.1(2),
implies that R is constant in a neighborhood of p. Hence R is constant on the
entire M . The proof of Theorem 1.2 is therefore completed. �
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