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FROM QUASIMODES TO RESONANCES:
EXPONENTIALLY DECAYING PERTURBATIONS

ORAN GANNOT

We consider self-adjoint operators of black-box type which are exponentially
close to the free Laplacian near infinity, and prove an exponential bound
for the resolvent in a strip away from resonances. Here the resonances are
defined as poles of the meromorphic continuation of the resolvent between
appropriate exponentially weighted spaces. We then use a local version of
the maximum principle to prove that any cluster of real quasimodes gener-
ates at least as many resonances, with multiplicity, rapidly converging to the
quasimodes.

1. Introduction

It is expected that for open systems, trapping of classical trajectories produces
scattering resonances close to the real axis; this is often referred to as the Lax–
Phillips conjecture [1989, Section V.3]. When trapping is weak, for instance in
the sense of hyperbolicity, the general conjecture is not true, as shown by Ikawa
[1982]. For an account of recent results about resonances near the real axis under
weak trapping; see the review by Wunsch [2012]. On the other hand, when the
trapping is sufficiently strong so that a construction of real quasimodes is possible,
there exist resonances close to the quasimodes [Stefanov and Vodev 1996; Tang
and Zworski 1998; Stefanov 1999]. These results were established in the setting of
compactly supported perturbations, or more generally for perturbations which are
dilation analytic near infinity [Sjöstrand and Zworski 1991; Sjöstrand 1997].

Complementary to the aforementioned results, in this note we prove analogues for
“black box” operators which are exponentially close to the free Laplacian at infinity.
More precisely, we allow both metric and potential perturbations of the Laplacian
outside a compact set (the black box), but require only minimal assumptions on the
operator in the black box. Standard techniques give a meromorphic continuation
of the exponentially weighted resolvent through the real axis to a strip whose
width is of size O(h); the choice of exponential weight and the width of the strip
depend on the decay rate of the perturbation. We then apply a complex analytic
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framework — summarized, for example, in [Petkov and Zworski 2001] — to deduce
an exponential a priori bound on the weighted resolvent away from resonances.

A typical application of such an exponential bound — well-established in [Ste-
fanov and Vodev 1996; Tang and Zworski 1998; Stefanov 1999; 2005] — is to show
that any family of sufficiently independent quasimodes generates at least as many
resonances, counting multiplicity; these resonances converge rapidly not only to
the real axis, but to the quasimodes; see Theorem B for a precise statement. The
general assumptions are presented beginning in Section 1B.

One motivation for this work comes from a recent investigation of resonances for
Schwarzschild–AdS black holes, where quasimodes have been constructed [Gannot
2014; Holzegel and Smulevici 2014]. Due to the spherical symmetry in that setting,
the stationary wave operator P decomposes as a sum of one-dimensional operators
P` on a half-line, which are just restrictions to spaces of spherical harmonics with
angular momentum `. Each P` is a self-adjoint perturbation of the Laplacian by an
exponentially decaying potential which is singular near the origin — the results of
this paper imply that the resolvent R`(σ ) of P` has a meromorphic continuation
through the real axis. Although meromorphy of each one-dimensional resolvent
does not imply meromorphy for the global resolvent (this requires uniform control
as `→∞ and was recently established in the Schwarzschild–AdS setting; see
[Warnick 2015]), the results of this paper do imply the existence of a sequence of
poles σ` for R`(σ ) satisfying

0<− Im σ` < Ce−`/C for ` sufficiently large.

We also remark that in the Schwarzschild–AdS case the effective potential is dilation
analytic, so the results of [Sjöstrand 1997] indeed apply. One advantage to the
approach taken here is that the exponential decay of the potential remains stable
under small (radial, static) perturbations of the Schwarzschild–AdS metric.

1A. Free resolvent. We begin by gathering several results about the free resolvent.
The Laplacian −1 on Rn with domain H 2(Rn) is self-adjoint and we denote by
R0(σ ) the free resolvent

R0(σ )= (−1− σ
2)−1
: L2(Rn)→ H 2(Rn), Im σ > 0.

Choose ϕ ∈C∞(Rn) with the property that ϕ(x)= |x | for |x | large enough. If A
denotes some function space, we will use the notation Aγ = e−γ ϕA for its weighted
counterpart. We will also freely move between the equivalent notions

T :Aα→ Bβ ⇐⇒ eβϕT e−αϕ :A→ B,

depending on convenience.
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Our starting point is the well known fact [McLeod 1967] that for each γ > 0 the
weighted resolvent

e−γ ϕR0(σ )e−γ ϕ : L2(Rn)→ L2(Rn)

extends holomorphically across Re σ > 0 as a bounded operator to the strip
Im σ >−γ , with the usual caveats in even dimensions when winding around the
origin. We also have the standard representation,

(1-1) e−γ ϕR0(σ )e−γ ϕ = e−γ ϕR0(−σ)e−γ ϕ + σ n−2e−γ ϕM(σ )e−γ ϕ

whenever Re σ > 0 and −γ < Im σ < 0. Here M(σ ) is the operator with kernel

M(σ, x, y)= (i/2)(2π)−n+1
∫

Sn−1
eiσ 〈ω,x−y〉 dω.

We can also write

(1-2) M(σ )= (i/2)(2π)−n+18t(σ )8(−σ),

where 8(σ) : L2(Rn) → L2(Sn−1) has kernel 8(σ, ω, x) = eiσ 〈ω,x〉 and 8t
:

L2(Sn−1)→ L2(Rn) has the transposed kernel.
The following two lemmas establish standard polynomial bounds for the free

resolvent in the case of exponential weights.

Lemma 1.1. For each ε > 0 there exists a constant C = C(ε) > 0 such that
whenever |Im σ |< γ − ε and Re σ ≥ 1,

‖e−γ ϕM(σ )e−γ ϕ‖L2(Rn)→L2(Rn) < C |σ |1−n.

Proof. The proof is adapted from [Burq 2002]. First note that the Fourier transform
F(e−γ ϕ)(ξ) extends holomorphically to the strip {ξ ∈ Cn

: |Im ξ |< γ − ε} and

(1-3) |F(e−γ ϕ)(ξ)|< CN 〈ξ〉
−N

in the strip for each N . In light of (1-1) and (1-2), it suffices to prove that

‖8(σ)e−γ ϕ‖L2(Rn)→L2(Sn−1) < C |σ |(1−n)/2,

which by Plancherel’s theorem is equivalent to the same estimate for the composition
(8(σ)e−γ ϕ) ◦F. The operator (8(σ)e−γ ϕ) ◦F has kernel F(e−γ ϕ)(σω− ξ). By
Schur’s lemma it suffices to obtain an estimate of the form

sup
ξ∈Rn

∫
Sn−1
|F(e−γ ϕ)(σω− ξ)| dω < C |σ |1−n,

since in the other direction we may use (1-3) to obtain the trivial estimate

sup
ω∈Sn−1

∫
Rn
|F(e−γ ϕ)(σω− ξ)| dξ < C.
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Write ξ as ξ = 〈ξ, ω〉ω+ ξ⊥(ω) where 〈ξ⊥(ω), ω〉 = 0. Then, by (1-3), we are left
estimating ∫

Sn−1

(
1+ |〈ξ, ω〉−Re σ | + |ξ⊥(ω)|

)−N dω.

Fix ξ ∈ Rn and δ > 0, and decompose the sphere into two sets,

U = {ω ∈ Sn−1
: |〈ξ, ω〉−Re σ |< δ Re σ, |ξ⊥(ω)|< δ Re σ }

and its complement U c. The integral over U c is of the order O(|Re σ |−∞), so it
suffices to examine the integral over U.

Observe that unless Re σ is comparable to |ξ |, the set U is empty. Indeed, if
ω ∈U then (1− δ)Re σ < 〈ξ, ω〉< (1+ δ)Re σ . Hence,

Re σ
2

< (1− δ)Re σ < 〈ξ, ω〉 ≤ |ξ |,

while on the other hand,

|ξ |2 = |〈ξ, ω〉|2+ |ξ⊥(ω)|2 < 3(Re σ)2

for δ sufficiently small.
Write a typical point of Rn as (y, y′)where y ∈Rn−1 and y′ ∈R. By a rotation we

may assume that ξ = (0, |ξ |). In that case U is contained in the upper hemisphere,
in a cap around |ξ |−1ξ = (0, 1) whose size is independent of ξ . This is true since
ω ∈U implies

〈|ξ |−1ξ, ω〉>
1

2
√

3
> 0.

We then parametrize the upper hemisphere Sn−1
+ (which contains ξ ) by the

diffeomorphism

p : Rn−1
→ Sn−1

+
, y 7→

(y, |ξ |)
|(y, |ξ |)|

.

Whenever y ∈ p−1(U ) we have

|ξ⊥(p(y))| ≥ |y|.

To see this, compute

|ξ⊥(p(y))|2 = |ξ |2− |〈ξ, p(y)〉|2 = |ξ |2−
|ξ |4

|y|2+ |ξ |2
= |y|2

|ξ |2

|y|2+ |ξ |2
≥ |y|2.

Furthermore, the Jacobian satisfies

|∂p/∂y| = O(|ξ |1−n).
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We can now bound the integral over U by∫
U

(
1+ |ξ⊥(ω)|

)−N dω =
∫

p−1(U )

(
1+ |ξ⊥(p(y))|

)−N
|∂p/∂y| dy

≤ C1 |Re σ |1−n
∫

Rn−1
(1+ |y|)−N dy ≤ C2 |Re σ |1−n

for N large enough. In the second step, we used the fact that |ξ | and Re σ were
comparable. �

Lemma 1.2. For each ε > 0 and |α| ≤ 2 there exists Cα = Cα(γ, ε) such that
whenever Im σ >−γ + ε and Re σ ≥ 1,

‖Dα(e−γ ϕR0(σ )e−γ ϕ)‖L2→L2 ≤ Cα |σ ||α|−1.

Proof. (1) First we handle the case |α| = 0 and n > 1; see [Rauch 1978; Vodev
1994] for similar arguments. Let U (t)= cos(t

√
−1) denote the propagator for the

Cauchy problem {
(∂2

t −1)U (t) f (x)= 0, (t, x) ∈ R×Rn,

U (0) f (x)= f (x), ∂tU (0) f (x)= 0.

For Im σ > 0, write the resolvent

(1-4) e−γ ϕR0(σ )e−γ ϕ =
i
σ

∫
∞

0
eiσ t e−γ ϕU (t)e−γ ϕ dt.

Let r0 be such that ϕ(x)= |x | for |x | ≥ r0. Notice that ‖U (t)‖L2→L2 ≤ 1 and

‖1{|x |≥t/4}e−γ ϕ‖L2(Rn)→L2(Rn) ≤ e−γ t/4, t ≥ 4r0.

Writing

U (t)= 1{|x |<t/4}U (t)1{|x |<t/4}+ 1{|x |≥t/4}U (t)1{|x |<t/4}

+ 1{|x |<t/4}U (t)1{|x |≥t/4}+ 1{|x |≥t/4}U (t)1{|x |≥t/4},

we see the norms of the latter three terms are of size O(e−γ t/4) after multiplication
by e−γ ϕ on the left and right. Hence, we only need to estimate the norm of the
operator with kernel

1{|x |<t/4}(x)e−γ ϕ(x)U (t, x, y)e−γ ϕ(y)1{|x |<t/4}(y),

using explicit knowledge of the kernel U (t, x, y).
In odd dimensions, the kernel vanishes identically by the strong Huygens

principle. In even dimensions, the kernel vanishes unless |x |, |y| < t/4, which
implies that |x − y|< t/2 and thus

|1{|x |<t/4}(x)U (t, x, y)1{|x |<t/4}(y)| ≤ Ct−n,
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again from explicit formulas for U (t, x, y). Schur’s lemma then gives

‖1{|x |<t/4}e−γ ϕU (t)e−γ ϕ1{|x |<t/4}‖L2(Rn)→L2(Rn) ≤ Ct−n.

Therefore we see that the integral in (1-4) actually converges for Im σ ≥ 0 with the
uniform estimate

‖e−γ ϕR0(σ )e−γ ϕ‖L2→L2 ≤ C |σ |−1, Im σ ≥ 0 and Re σ ≥ 1.

The result for −γ +ε < Im σ < 0 follows immediately by reflection from (1-1) and
Lemma 1.1.

(2) In the case α = 0 and n = 1, one can simply apply Schur’s lemma to the
Schwartz kernel

e−γ ϕR0(x, y, σ )e−γ ϕ = e−γ ϕ(x) ieiσ |x−y|

σ
e−γ ϕ(y).

The |α| = 1, 2 cases follow from the |α| = 0 case by interpolation, as in [Zworski
1989, Lemma 3]; we supply a proof for the reader’s convenience. Consider first the
case |α| = 2. By analytic continuation, if u ∈ L2(Rn), then

(1-5) 1R0(σ )e−γ ϕu =−e−γ ϕu− σ 2 R0(σ )e−γ ϕu

and hence R0(σ ) : L2
γ → H 2

−γ is bounded for Im σ >−γ. Now, choose u ∈ L2(Rn)

and set f = R0(σ )e−γ ϕu. Then

(1-6) 1(e−γ ϕR0(σ )e−γ ϕu)

= (γ 2
|∇ϕ|2− γ1ϕ)e−γ ϕ f − 2γ∇ϕ · (e−γ ϕ∇ f )+ e−γ ϕ1 f

In light of (1-5) it suffices to estimate the L2 norm of −γ∇ϕ · (e−γ ϕ∇ f ). But since
ϕ has uniformly bounded derivatives,

‖∇ϕ · (e−γ ϕ∇ f )‖2L2 ≤ C‖e−γ ϕ∇ f ‖2L2 .

We now integrate by parts and estimate

(1-7) ‖e−γ ϕ∇ f ‖2L2

≤ 2
∫
|γ∇ϕ| |e−γ ϕ∇ f | |e−γ ϕ f | dx +

∫
|e−γ ϕ1 f | |e−γ ϕ f | dx .

Applying the inequality 2ab≤ 2a2
+

1
2 b2 to the integrand, the first term on the right

hand side is bounded by∫
2|γ∇ϕ|2 |e−γ ϕ f |2 dx +

∫
1
2 |e
−γ ϕ
∇ f |2 dx,

while for the second term we use (1-5). We conclude that

‖e−γ ϕ∇ f ‖2L2 ≤ C(1+ |σ |2)‖e−γ ϕ f ‖2L2 +‖e−2γ ϕu‖2L2 .
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Returning to (1-6), it follows that

‖1(e−γ ϕR0(σ )e−γ ϕu)‖L2 ≤ C(1+ |σ |2)‖u‖L2 .

Moreover, (1-7) actually shows

‖∇(e−γ ϕR0(σ )e−γ ϕu)‖L2 ≤ C‖u‖L2 . �

We now introduce the semiclassical rescaling by setting λ= hσ. Let R0(σ, h) de-
note (−h21−λ2)−1 and its corresponding analytic continuation. We are interested
in λ lying in a set of the form

(a, b)+ i((−γ + ε)h, 1),

where 0 < a < b. For the remainder of the paper, equip H k(Rn) with the h-
dependent norm ‖u‖2H k =

∑
|α|≤k ‖(h D)αu‖2L2 . Since R0(λ, h)= h−2 R0(λ/h), we

have uniform estimates

‖R0(λ, h)‖L2
γ→H s

−γ
= O(h−1), s = 0, 1, 2,

for λ ∈ (a, b)+ i((−γ + ε)h, 1).

1B. Black box model. As our scattering problem, we consider exponentially de-
caying perturbations of the Laplacian outside a compact set, formulated in the
black box setting as follows. Suppose H is a Hilbert space with an orthogonal
decomposition

H=HR0 ⊕ L2(Rn r B(0, R0))

where B(x, R) = {y ∈ Rn
: |x − y| < R} and R0 is fixed. The orthogonal projec-

tions onto HR0 and L2(Rn r B(0, R0)) will be denoted 1B(0,R0)u = u|B(0,R0) and
1RnrB(0,R)u = u|RnrB(0,R0) for u ∈H. Note that any bounded continuous function
χ ∈ Cb(R

n) which is constant near B(0, R0) acts naturally on H by

χu = C0 u+ (χ −C0)1RnrB(0,R0)u,

where χ ≡ C0 near B(0, R0).
Now consider an unbounded self-adjoint operator P(h) on H with domain D⊂H

(independent of h for simplicity) with the following properties:

• If u ∈ D, then 1RnrB(0,R0)u ∈ H 2(Rn r B(0, R0)).

• If u ∈ H 2(Rn r B(0, R0)) vanishes near B(0, R0), then u ∈ D.

We assume there exists a real-valued and uniformly positive-definite matrix (ai j ) and
a real-valued function V (which are allowed to be h-dependent) such that for u ∈D,

(1-8) (P(h)u)|RnrB(0,R0) =

(
−

∑
i, j

(h∂i )ai j (h∂ j )+ V
)
(u|RnrB(0,R0)).
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Furthermore, we require that

ai j (x; h) ∈ C∞b (R
n r B(0, R0)) and V (x; h) ∈ C∞b (R

n r B(0, R0)),

with all derivatives uniformly bounded in h.
The perturbation is assumed to decay exponentially to the Laplacian in the sense

that there exists γ > 0, δ > 0 so that for x ∈ Rn r B(0, R0),

(1-9) |ai j (x; h)− δi j | ≤ Ce−(2γ+δ)|x | and |V (x; h)| ≤ Ce−(2γ+δ)|x |.

Finally, assume that the mapping

(1-10) 1B(0,R0)(P(h)+ i)−1
:H→HR0

is compact.
Under these hypotheses, we show that

R(λ, h)= (P(h)− λ2)−1, Re λ > 0 and Im λ > 0,

admits a meromorphic continuation to the strip Im λ > (−γ + ε)h as an operator
Hγ → H−γ . In order that the associated weighted space Hγ makes sense, we
choose ϕ ∈ C∞(Rn), as above, satisfying ϕ ≡ 0 near B(0, R0).

Remark. All of the results in this note also apply to black box operators on the half-
line (0,∞). For the most part this amounts to replacing the Laplacian on Rn with the
Dirichlet Laplacian on (0,∞), and replacing H s(Rn) with H s(0,∞)∩ H 1

0 (0,∞).
Estimates for the free resolvent on (0,∞) follow from those on R by the method
of odd reflection; all other necessary modifications should be clear.

1C. Meromorphic continuation. As a preliminary, arbitrarily extend ai j and V to
functions defined on all of Rn with the same properties as their original counterparts.
Since the choice of extension has no bearing on the final result, we denote them by
the same letters. Now define

P̃(h)=−
∑
i, j

(h∂i )ai j (h∂ j )+ V,

R̃(λ, h)= (P̃(h)− λ)−1, λ2 /∈ σ(P̃(h)).

Since P̃(h) is uniformly elliptic, it is self-adjoint with domain H 2(Rn). We will
also write A(h) for the difference

A(h)= P̃(h)− (−h21).

The important fact about A(h) is that it is bounded as a map H s
α→ H s−2

α+2γ+δ for
each s, α ∈ R.

We will need information about the L2
γ → H s

γ mapping properties of R̃(λ, h)
for λ2 /∈ σ(P̃(h)).
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Lemma 1.3. Fix an interval (a, b)b R+. For each γ > 0 there exists T0 > 0 such
that

‖eγ ϕ R̃(λ, h)e−γ ϕ‖L2→H s = O(| Im λ|−1), s = 0, 1, 2

uniformly for λ ∈ (a, b)+ i(T0h, 1).

Proof. Conjugating P̃(h) by eγ ϕ yields

eγ ϕ P̃(h)e−γ ϕ = P̃(h)+ h2 B,

where
B =

∑
i, j

(2γ ai j∂iϕ)∂ j − γ
2ai j∂iϕ ∂ jϕ+ γ ∂i (ai j∂ jϕ)

is a first order operator with uniformly bounded coefficients. It follows that for
λ2 /∈ σ(P̃(h)) (in particular for Im λ > 0 and Re λ > 0) we can write

eγ ϕ P̃(h)e−γ ϕ − λ2
= (I + h2 B R̃(λ, h))(P̃(h)− λ2).

Since P̃(h) : H 2
→ L2 is self-adjoint,

‖u‖H2 < C ‖(P̃(h)+ i)u‖L2 .

It follows that for λ ∈ (a, b)+ i(0, 1),

(1-11) ‖R̃(λ, h)‖L2→H s = O(| Im λ|−1), s = 0, 1, 2.

We immediately deduce that

‖h2 B R̃(λ, h)‖L2→L2 = O(h| Im λ|−1)≤ 1
2 , λ ∈ (a, b)+ i[T0h, 1),

for T0 > 0 large enough. In particular, I + h2 B R̃(λ, h) : L2(Rn)→ L2(Rn) is
invertible for λ ∈ (a, b)+ i[T0h, 1) and

eγ ϕ R̃(λ, h)e−γ ϕ = R̃(λ, h)(I + h2 B R̃(λ, h))−1.

This also shows that

‖eγ ϕ R̃(λ, h)e−γ ϕ‖L2→H s = O(| Im λ|−1), s = 0, 1, 2

for λ ∈ (a, b)+ i[T0h, 1). �

The following lemma is useful in the proof of the meromorphic continuation.
Equip D with the h-dependent norm

‖u‖D = ‖(P(h)+ i)u‖H.

Then it is easy to see that under the uniform boundedness conditions on the deriva-
tives of ai j and V, the analog of [Sjöstrand and Zworski 1991, Proposition 4.1]
remains true:



86 ORAN GANNOT

Lemma 1.4. Suppose χ ∈ C∞b (R
n) has support disjoint from B(0, R0). Then

multiplication by χ is bounded D → H 2(Rn) and H 2(Rn) → D with a norm
bounded independently of h.

Proof. Consider first the map χ :D→ H 2(Rn). Since P̃(h) is elliptic, we have the
a priori estimate

‖χu‖2H2(Rn)
≤ C1

(
‖χ1 P̃(h)1RnrB(0,R0)u‖

2
L2(RnrB(0,R0))

+‖χ11RnrB(0,R0)u‖
2
L2(RnrB(0,R0))

)
≤ C2‖(P(h)+ i)u‖2H,

where χ1 ≡ 1 on suppχ and χ1 also has support disjoint from B(0, R0). All the
constants are independent of h. For the case χ : H 2(Rn)→ D this is equivalent to
the uniform boundedness of P̃(h) on H 2(Rn), namely

‖χu‖D = ‖(P̃(h)+ i)(χu)‖L2(Rn) ≤ C‖u‖H2(Rn). �

In what follows, we will always be concerned with λ ranging in a precompact
neighborhood of R+. So fix 0< a0 < b0 and ε0 > 0, and define

�(h)= (a0, b0)+ i((−γ + ε0)h, 1).

For each ε > 0, we also define a shrunken neighborhood,

�ε(h)= (a0+ ε, b0− ε)+ i((−γ + ε0+ ε)h, 1).

Proposition 1.5. The function R(λ, h) has a meromorphic continuation in �(h) as
a family of bounded operators Hγ →H−γ .

Proof. Choose cutoff functions χ, χi ∈ C∞c (R
n), i = 0, 1, 2, so that χ0 ≡ 1 near

B(0, R0) with χi ≡ 1 on suppχi−1 and χ ≡ 1 on suppχ2. We can always choose
these so that χϕ = 0 and χiϕ ≡ 0. Approximate R(λ, h) by a parametrix of the
form Q0(λ, λ0, h)+ Q1(λ0, h) where

Q0(λ, λ0, h)= (1−χ0)(R0(λ, h)− R̃(λ0, h)A(h)R0(λ, h))(1−χ1),

Q1(λ0, h)= χ2 R(λ0, h)χ1;

see also [Sá Barreto and Zworski 1995]. Here, λ0 = λ0(h) denotes a point in �(h)
with Im λ0 ≥ T0h. We now compute

(P(h)− λ2)Q0(λ, λ0, h)= (1−χ1)+ K0(λ, λ0, h)+ K1(λ, λ0, h)

where

K0(λ, λ0, h)=−[P̃(h), χ0]
(
R0(λ, h)− R̃(λ0, h)A(h)R0(λ, h)

)
(1−χ1),

K1(λ, λ0, h)= (1−χ0)(λ
2
− λ2

0)R̃(λ0, h)A(h)R0(λ, h)(1−χ1),
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and
(P(h)− λ2)Q1(λ0, h)= χ1+ K2(λ0, h)+ K3(λ, λ0, h),

where

K2(λ0, h)=−[P̃(h), χ2]R(λ0, h)χ1,

K3(λ, λ0, h)= χ2(λ
2
0− λ

2)R(λ0, h)χ1.

If we let K = K0+ K1+ K2+ K3, then

(P(h)− λ2)(Q0(λ, λ0, h)+ Q1(λ0, h))= I + K (λ, λ0, h).

Note that if ψ ∈ C∞c (R
n) then [P̃(h), ψ] is a first order operator with compactly

supported coefficients and ‖[P̃(h), ψ]‖H1(Rn)→L2(Rn) = O(h).
It is easy to see that Q0+Q1 :Hγ→H−γ . For Q0 this follows from the mapping

properties of R0(λ, h), A(h), and R̃(λ0, h). For Q1, this fact is trivial since Q1

contains compactly supported cutoffs. We also remark that by the resolvent identity,

K0(λ0, λ0, h)=−[P̃(h), χ0]R̃(λ0, h)(1−χ1).

To apply the Fredholm theory, we begin by showing that K : Hγ → Hγ is
compact. First note that

K0(λ, λ0, h)=−[P̃(h), χ0]
(
R0(λ, h)− R̃(λ0, h)A(h)R0(λ, h)

)
(1−χ1) :Hγ→Hγ

is compact: we see that R0(λ, h) : L2
γ (R

n)→ H 2
−γ (R

n) and R̃(λ0, h)A(h)R0(λ, h) :
L2
γ (R

n)→ H 2
γ+δ(R

n). On the other hand [P̃(h), χ0] is compactly supported and
hence maps H 2

α (R
n)→ L2(Rn r B(0, R0)) compactly for each α ∈ R.

Similarly, we can write

K2(λ0, h)= [P̃(h), χ2](1−χ0)R(λ0, h)χ1

which is compact since (1 − χ0)R(λ0, h)χ1 : Hγ → H 2(Rn r B(0, R0)) and
[P̃(h), χ2] is compactly supported. To see that K1 is compact, again use that
R̃(λ0, h)A(h)R0(λ, h) : L2

γ (R
n)→ H 2

γ+δ(R
n) and now appeal to the fact that the

inclusion
H 2
γ+δ(R

n) ↪→ L2
γ (R

n)

is compact. Finally, the compactness of K3(λ, λ0, h) follows from (1-10).
Next, we need to verify the invertibility of I + K (λ, λ0, h) for at least one value

of λ ∈ �(h). Recall that multiplication by (1− χ0) : H 2(Rn)→ D is uniformly
bounded in h. It follows that for λ0 ∈�(h) in the upper half-plane, for u ∈H,

‖(1−χ0)R(λ0, h)u‖H2(Rn) ≤ C1‖(P(h)+ i)R(λ0, h)u‖H ≤ C2 |Im λ0|
−1
‖u‖H,
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and hence

‖(1−χ)R(λ0, h)‖H→H2(Rn) = O(| Im λ0|
−1), λ0 ∈�(h), Im λ0 > 0.

Here, we used
(P(h)+ i)R(λ0, h)= I + (λ2

0+ i)R(λ0, h)

and R(λ0, h)= OH→H(|Im λ0|
−1). Combining this with (1-11), we see there exists

T1 > T0 such that if λ0 ∈�(h) satisfies Im λ0 ≥ T1h, then

‖K (λ0, λ0, h)‖Hγ→Hγ
= O(h|Im λ0|

−1)≤ 1
2 ,

and hence I + K (λ0, λ0, h) will be invertible. �

Remark. The poles and their multiplicities of the extension obtained above do
not depend on the particular choice of ϕ. Indeed, if ϕ1 and ϕ2 both vanish near
Rn r B(0, R0) and equal |x | for large |x |, then

e−γ ϕ1 R(λ, h)e−γ ϕ1 = e−γ (ϕ1−ϕ2)e−γ ϕ2 R(λ, h)e−γ ϕ2e−γ (ϕ1−ϕ2)

and vice versa. Hence the poles and multiplicities of one such extension agree with
those of any other.

Remark. As pointed out by the anonymous referee, an interesting question is
whether R(λ, h) can be continued to a larger region in the lower half plane when
the perturbations are smooth functions of exp((−2γ − δ)|x |) for large |x | (and also
whether the corresponding resolvent estimates hold). Such hypotheses are satisfied
for stationary wave operators arising from black hole metrics with nondegenerate
event horizons; see [Dyatlov 2011; Gannot 2014] for two examples.

At this point we need to introduce a new assumption on a reference operator
P](h), defined as follows: choose R1 > R0 and R2 > 2R1 and let T denote the
torus T = (R/R2Z)n. Let

H]
=HR0 ⊕ L2(Tr B(0, R0)),

where B(0, R1) is considered a subset of T. Define the dense subspace

D] = {u ∈H]
: ψu ∈ D, (1−ψ)u ∈ H 2(T)},

where ψ ∈ C∞c (B(0, R1)) satisfies ψ ≡ 1 near B(0, R0). Now set

P](h)u = P(h)ψu+
(
−

∑
i, j

(h∂i )ai j (h∂ j )+ V
)
(1−ψ)u, u ∈ D].

Then P](h) is self-adjoint on D] with discrete spectrum. We require that

(1-12) #
{
z ∈ σ(P](h)) : z ∈ [−L , L]

}
≤ C(L/h2)n

]/2
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for some n] ≥ n and each L ≥ 1. Here the eigenvalues are counted with multiplicity.
If z1, z2, z3, . . . are the eigenvalues of P](h) ordered so |z1| ≤ |z2| ≤ |z3| ≤ · · · ,
then the singular values of (P](h)− λ2

0)
−1 are µj ((P](h)− λ2

0)
−1)= |z j − λ

2
0|
−1.

If Im λ0 = T1h, then (1-12) implies that there exists a constant C > 0 so that

µj ((P](h)− λ2
0)
−1)≤ Ch−2 j−2/n], j > Ch−n].

2. Resolvent estimates

To estimate R(λ, h), we make use of the following general fact [Gohberg and Kreı̆n
1969, Chapter V, Theorem 5.1]: Suppose A is a compact operator lying in some
p-class. If (I + A) is invertible, then

‖(I + A)−1
‖ ≤

det(I + |A|p)
|det(I + Ap)|

.

We wish to apply this inequality to (I+K ), but first we need to verify that a suitable
power of K is of trace class. Under our hypotheses we cannot estimate the singular
values of K2; nevertheless, the proof of Proposition 1.5 shows that I +K2(λ0, h) is
invertible on Hγ for Im λ0 > T1h, so we use the decomposition

(I + K (λ, λ0, h))= (I + K2(λ0, h))(I + K̃ (λ, λ0, h)),

where K̃ = (I + K2)
−1(K0+ K1+ K3). Note that I + K and I + K̃ have the same

poles.

2A. Singular values. From now on we will always choose λ0 ∈�(h) with fixed
imaginary part Im λ0 = T1h. Throughout, it will be clear that whenever an estimate
depends on λ0 ∈�(h), it really only depends on Im λ0.

Proposition 2.1. The operator K̃ (λ, λ0, h)n
]
+1
: Hγ → Hγ is of trace class for

λ ∈�(h).

Proof. We estimate the singular values of each summand in K̃. Since the weighted
resolvent only continues to a narrow strip in the lower half-plane, in such a region
it is particularly simple to estimate µj (K0): choose an open ball B ⊆Rn containing
supp∇χ0 and let −1B denote the Dirichlet Laplacian on B. Again using that the
inclusion 1RnrB(0,R0) : Dγ → H 2

γ is uniformly bounded in h, we consider K0 as a
map Hγ → H 1(B). By Weyl asymptotics,

µj ((−h21B)
−1)≤ Ch−2 j−2/n, j = 1, 2, 3, . . .

Thus, we estimate

µj (K0(λ, λ0, h))≤ Cµj ((−h21B)
−1/2)‖(−h21B)

1/2K0(λ, λ0, h)‖Hγ→L2(B)

≤ Ch−3 j−1/n, λ ∈�(h).
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By the same reasoning we estimate µj (K1), writing

µj (K1(λ, λ0, h))

≤ Cµj (eγ ϕ R̃(λ0, h)e−(γ+δ)ϕ)‖e(γ+δ)ϕA(h)eγ ϕe−γ ϕR0(λ)‖L2
γ (R

n)→L2(Rn).

In order to bound µj (eγ ϕ R̃(λ0, h)e−(γ+δ)ϕ), let P0(h) = −h21+ x2 denote the
harmonic oscillator. The inequality µj (P0(h)−1)≤Ch−1 j−1/n follows, in this case
by explicit knowledge of the spectrum. Since P0(h)e−δϕ : H 2(Rn)→ L2(Rn) is
bounded,

µj (eγ ϕ R̃(λ0, h)e−(γ+δ)ϕ)

≤ µj (P0(h)−1)‖P0(h)e−δϕe(γ+δ)ϕ R̃(λ0, h)e−(γ+δ)ϕ‖L2(Rn)→L2(Rn)

≤ Ch−2 j−1/n.

Combined with the previous estimate we obtain

µj (K1)≤ Ch−3 j−1/n, λ ∈�(h).

Next we estimate the singular values of K3 using (1-12). Recall that (P(h)−λ2)χ =

(P](h)− λ2)χ , which implies that

(P(h)−λ2
0)
−1χ1=χ(P](h)−λ2

0)
−1χ1−(P(h)−λ2

0)
−1
[P](h), χ](P](h)−λ2

0)
−1χ1.

Multiply this equation on the left by χ2 and apply Fan’s inequality, µ2k−1(A+B)≤
µk(A)+µk(B). Using the fact that (P(h)− λ2

0)
−1
[P](h), χ] has norm O(1),

µj (K3(λ, λ0, h))≤ Ch−2 j−2/n], j > Fh−n]

for some constant F > 0. For j ≤ Fh−n], we simply bound µj (K3)≤ Ch−1 using
the trivial norm estimate.

It is now clear that µj (Ki )
n] is summable for j = 0, 1, 3. �

Applying the resolvent estimate as above, we obtain

(2-1) ‖R(λ, h)‖Hγ→H−γ

≤ ‖Q0+ Q1‖Hγ→H−γ ‖(I + K2)
−1
‖Hγ→Hγ

‖(I + K̃ )−1
‖Hγ→Hγ

≤ C‖Q0+ Q1‖Hγ→H−γ
det
(
I + (K̃ ∗ K̃ )

n]+1
2
)

| det(I + K̃ n]+1)|
.

Since
‖Q0+ Q1‖Hγ→H−γ = O(h−2), λ ∈�(h),

it remains only to estimate the determinants. Define

f (λ, h)= det(I + K̃ n]+1(λ, λ0, h))
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in�(h). By Weyl convexity inequalities, it follows that | f (λ, h)|≤M(h), λ∈�(h),
where

M(h)= sup
λ∈�(h)

det
(
I + (K̃ ∗ K̃ )

n]+1
2
)
.

We therefore need to bound M(h) from above and | f (λ, h)| from below.

2B. Estimating the determinant from above. Here we obtain an upper bound for
M(h) of the form M(h) ≤ eCh−p

. For the application in mind, the value of p is
unimportant and we do not attempt to optimize the exponent. In fact h−p also
represents a polynomial upper bound for the number of resonances in a disk of
radius h, but again obtaining an optimal value is unimportant in this context.

Proposition 2.2. There exists C > 0 depending only on Im λ0, and p > 0 such that

M(h)≤ eCh−p
.

Proof. We estimate M(h) using Fan’s inequalities:∏
j≥1

(
1+µj (K̃ n]+1)

)
=

∏
j≥1

(
1+µj (K̃ )n

]
+1)
≤

∏
j≥1

(
1+µ3 j−2(K̃ )n

]
+1)3

≤

∏
j≥1

(
1+C0

(
µj (K0)

n]+1
+µj (K1)

n]+1
+µj (K3)

n]+1))3

≤

∏
i=0,1,3

∏
j≥1

(
1+C0µj (Ki )

n]+1)3
.

For i = 0, 1, the singular values occurring in this product are bounded above by
µj (Ki )≤ Ch−3 j−1/n], and so we bound the product by the trace,∏

j≥1

(
1+C0µj (Ki )

n]+1)
≤ exp

(
C1h−3n]−3

∑
j≥1

j−1+1/n]
)
≤ eCh−3n]−3

.

On the other hand for K3,∏
j≥1

(
1+C0µj (K3)

n]+1)
≤

∏
1≤ j≤Fh−n]

(
1+C0µj (K3)

n]+1) ∏
j>Fh−n]

(
1+C0µj (K3)

n]+1)
≤

(
eCh−n] log(1/h)

)(
eCh−n]

)
.

Thus,
M(h)≤ eCh−p

for some p > 0, where the constant C only depends on Im λ0. �
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2C. Estimating the determinant from below. Next we need to estimate | f (λ, h)|
from below. Note that λ0 is not a zero of f (λ, h) and that we have

(I + K̃ (λ0, λ0, h)n
]
+1)−1

= I − K̃ (λ0, λ0, h)n
]
+1(I + K̃ (λ0, λ0, h)n

]
+1)−1.

By taking determinants and arguing as in the previous section, we obtain a lower
bound at λ0,

| f (λ0, h)| ≥ e−Ch−p
,

where the constant again depends only on Im λ0. Since we can bound | f (λ, h)|
from above by M(h) and from below at a chosen point, we are in a position to
employ Cartan’s principle [Levin 1972, Theorem 11] to obtain a lower bound away
from resonances.

Proposition 2.3. For each ε > 0 there exists C = C(ε) such that

| f (λ, h)| ≥ e−Ah−p log(1/S(h)), λ ∈�ε(h)r
⋃

j
D(r j (h), S(h)),

where S(h)� 1 and {r j (h)} denote the resonances of P(h) in �ε(h).

Proof. Rather than applying [Levin 1972, Theorem 11] directly, we prefer to control
the set where the lower bound holds at the expense of the quality of the lower bound,
just as in [Petkov and Zworski 2001]. For the reader’s convenience we reproduce
the proof, making the necessary adjustments.

Choose λ0 with fixed real part. Define radii and disks

ρs(h)= T1+ γ − ε0− sε, Ds(h)= D(λ0, ρs(h)), s = 1, 2, 3.

We see that f (λ, h) is analytic in the disk D1(h). Let r j (h), j = 1, . . . , N (h)
denote the zeros of f (λ, h) in D2(h), including multiplicity, and define the Blaschke
product

φ(λ, h)=
(−ρ2(h))N (h)

(r1(h)− λ0) · · · (rN (h)(h)− λ0)

∏
j

ρ2(h)(λ− r j (h))

ρ2(h)2− (r j (h)− λ0)(λ− λ0)
.

Then φ has the same zeros as f (λ, h), no poles in D2(h), and satisfies φ(λ0, h)= 1.
Moreover, on the boundary of D2(h),

(2-2) |φ(λ, h)| =
ρ

N (h)
2 (h)

|(λ0− r1(h)) · · · (λ0− rN (h))|
≥ 1.

Since the function defined by

ψ(λ, h)= f (λ, h)
φ(λ, h)
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has no zeros in D2(h), we may apply (2-2) and Carathéodory’s estimate [Levin
1972, Theorem 8] to conclude that in D3(h) we have the lower bound

log|ψ(λ, h)| ≥ −
2ρ3(h)
ε

log sup
λ∈D1(h)

|ψ(λ, h)| +
ρ2(h)+ ρ3(h)

ε
log |ψ(λ0, h)|

≥ −
2ρ3(h)
ε

log sup
λ∈D2(h)

| f (λ, h)| +
ρ2(h)+ ρ3(h)

ε
log | f (λ0, h)|.

It therefore suffices to bound |φ(λ, h)| from below in D3(h).
Outside the set

⋃
j D(r j (h), S(h)), the polynomial appearing in the numerator

of φ(λ, h) is bounded below by S(h)N (h). On the other hand, the polynomial in the
denominator of φ(λ, h) is bounded above in D3(h) by ρ2(h)N (h)(ρ2(h)+ρ3(h))N (h).
Therefore

|φ(λ, h)| ≥
(

S(h)
ρ2(h)(ρ2(h)+ ρ3(h))

)N (h)

, λ ∈ D3(h)r
⋃

j
D(r j (h), S(h)).

Moreover, we can apply Jensen’s formula to estimate the number of zeros N (h) in
D2(h) by

N (h)≤
1

log ρ1(h)
ρ2(h)

(
log sup

λ∈D1

| f (λ, h)| − log| f (λ0, h)|
)

≤
1

log ρ1(h)
ρ2(h)

(
log M(h)− log| f (λ0, h)|

)
= O(h−p).

Combining all the contributions, we obtain

| f (λ, h)| ≥ e−Ch−p log(1/S(h)), λ ∈ D3(h)r
⋃

j
D(r j (h), S(h)).

Since all the constants appearing are uniform in Re λ0, we can vary the real part
in �ε(h) and obtain the necessary lower bound. Of course, ε is arbitrary and the
result follows. �

We can now establish our main theorem on resolvent estimates.

Theorem A. For each ε > 0, there exists A = A(ε) such that

‖R(λ, h)‖Hγ→H−γ < eAh−p log(1/S(h)), λ ∈�ε(h)r
⋃

j
D(r j (h), S(h)),

where S(h)� 1 and {r j (h)} denote the resonances of P(h) in �ε(h).

Proof. Apply Propositions 2.2 and 2.3 to (2-1). �
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3. From quasimodes to resonances

The passage from quasimodes to resonances is essentially an argument by contradic-
tion. In the absence of resonances, the exponential bound appearing in Theorem A
would hold throughout �ε(h); combined with the self-adjoint bound in the upper
half-plane, an application of the “semiclassical maximum principle” implies a
resolvent estimate on the real axis that contradicts the existence of a real quasimode.
First results in this direction are due to Stefanov and Vodev [1996] who used the
Phragmén–Lindelöf principle to show that having high energy real quasimodes
implies the existence of resonances converging to the real axis. Bounds on the
resolvent play a central role in that argument which go back to the work of Carleman
[1936] on the completeness of sets of eigenfunctions. Tang and Zworski [1998]
replaced the Phragmén–Lindelöf principle with a local version of the maximum
principle which showed that there exists a resonance close to each quasimode.
Stefanov further refined these method by dealing with multiplicities [1999], and
modifying the maximum principle [2005] to allow the localization of resonances
exponentially close to the real axis.

3A. Quasimodes. Suppose that u(h) ∈ D satisfies ‖u(h)‖ = 1 and

supp u(h)⊂ K for a compact set K independent of h.

Suppose further that there exists λ(h)2 ∈ (a0, b0) such that∥∥(P(h)− λ(h)2)u(h)∥∥≤ R(h)

for a function R(h)≥ 0. We refer to such functions as quasimodes with accuracy
R(h). For the resolvent, choose a weight ϕ so that ϕ ≡ 0 on K . Also choose χ1

with ϕ ≡ 0 on suppχ1 and χ1 ≡ 1 on K . Notice that for λ in the upper half-plane,

e−γ ϕR(λ, h)e−γ ϕ(P(h)− λ2)u = e−γ ϕR(λ, h)e−γ ϕ(P(h)− λ2)χ1u = u,

and hence this equation holds away from poles by analytic continuation. We also re-
call the following standard fact: consider the Laurent expansion of e−γ ϕR(λ, h)e−γ ϕ

near a resonance r(h):

e−γ ϕR(λ, h)e−γ ϕ = holomorphic(λ)+
N∑

j=1

A j (λ
2
− r(h)2)− j.

Then, range(A j ) ⊆ range(A1) for j = 1, . . . , N . For a very general discussion
of these types of results, see [Agmon 1998]. Consider the resonances ri (h) for
i = 1, . . . , N (h) contained in the set �ε(h), each with the associated residue A(i)1 .
If 5 denotes the projection onto

⊕
i range(A(i)1 ), then (I −5)A(i)j = 0 for each i, j .
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Hence,
(I −5)e−γ ϕR(λ, h)e−γ ϕ

is holomorphic in �ε(h). By the maximum principle, this operator satisfies the
bound given by Theorem A in a set slightly smaller than �ε(h)— see the proof of
[Stefanov 1999, Theorem 1] or [Stefanov 2005, Theorem 3] for a precise statement.

3B. Semiclassical maximum principle. We now review the semiclassical maxi-
mum principle, as presented in [Stefanov 2005].

Lemma 3.1. Let a(h) < b(h) and suppose that S±(h), α(h), w(h) are functions
satisfying

0< S+(h)≤ S−(h), 1≤ α(h), S−(h)α(h) logα(h)≤ w(h).

Also, suppose F(λ, h) is a holomorphic function defined in a neighborhood of

[a(h)−w(h), b(h)+w(h)] + i [−α(h)S−(h), S+(h)].
If{
|F(λ, h)| ≤ eα(h), λ ∈ [a(h)−w(h), b(h)+w(h)] + i [−α(h)S−(h), S+(h)],
|F(λ, h)| ≤ M(h), λ ∈ [a(h)−w(h), b(h)+w(h)] + i S+(h),

with M(h)≥ 1, then there exists h1 = h1(S−, S+, α) > 0 such that

|F(λ, h)| ≤ e3 M(h), λ ∈ [a(h), b(h)] + i [S−(h), S+(h)]

for h ≤ h1.

For our application, we will apply this lemma with

• S−(h)= S+(h)= S(h),

• F(λ, h)= (I −5)e−γ ϕR(λ, h)e−γ ϕ,

• α(h)= Ch−p log(1/S(h)),

• M(h)= 1/S(h).

The choice of S(h) and w(h) is made as in [Stefanov 2005] according to the
accuracy R(h) of the quasimodes.

3C. Lower bounds on the number of resonances. Here we state the main theorem
on the existence of resonances rapidly converging to the real axis. We refer to
[Stefanov 2005, Theorem 3] for the proof; the only modification is that instead of a
compactly truncated resolvent (I−5)χR(λ, h)χ , we use (I−5)e−γ ϕR(λ, h)e−γ ϕ.

Theorem B. Let P(h) satisfy the black box hypotheses. Let 0<a0<a(h)< b(h)<
b0 <∞. Assume there is an h0 such that for h < h0 there exists m(h) ∈ {1, 2, . . . },
λn(h)2 ∈ [a(h), b(h)], and un(h) ∈D with ‖un(h)‖ = 1 for 1≤ n ≤m(h) such that
supp un(h)⊂ K for a compact set K , independent of h. Suppose further that
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(1)
∥∥(P(h)− λn(h)2)un(h)

∥∥≤ R(h),

(2) whenever a collection {vn(h)}
m(h)
n=1 ⊂ H satisfies ‖un(h)− vn(h)‖ < hN/M ,

{vn(h)}
m(h)
n=1 is linearly independent,

where R(h) ≤ h p+N+1/C log(1/h) and C � 1, N ≥ 0, M > 0. Then there exists
C0 > 0 depending on a0, b0 and the operator P(h) such that for B > 0 there exists
h1< h0 depending on A, B,M, N so that the following holds: whenever h ∈ (0, h1),
the operator P(h) has at least m(h) resonances in the strip[

a(h)− c(h) log 1
h , b(h)+ c(h) log 1

h

]
− i[0, c(h)]

where c(h)=max(C0 B M R(h)h−p−N−1, e−B/h).
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