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ON TORIC CALABI–YAU THREEFOLDS
AND DONALDSON–THOMAS THEORY

ZHENG HUA

We use the notion of strong exceptional collections to give a construction of
the global Chern–Simons functions for toric Calabi–Yau stacks of dimen-
sion three. Moduli spaces of sheaves on such stacks can be identified with
critical loci of these functions. We give two applications of these functions.
First, we prove Joyce’s integrality conjecture of generalized DT invariants
on local surfaces. Second, we prove a dimension reduction formula for vir-
tual motives, which leads to a recursion formula for motivic Donaldson–
Thomas invariants.

1. Introduction

Moduli spaces of sheaves (more generally, complexes of sheaves) on Calabi–Yau
threefolds are examples of moduli problems with symmetric obstruction theories
[Behrend 2009]. It is expected that such a moduli space is locally the critical set of
a holomorphic function. Such functions are called Chern–Simons (CS) functions.
Chern–Simons functions play an important role in Calabi–Yau (CY) geometry
because Behrend proved that the Milnor number of a CS function is the microlocal
version of the Donaldson–Thomas invariant [loc. cit.].

In a seminal work, Joyce and Song [2012] proved the existence of CS functions
for moduli spaces of stable sheaves on compact CY 3-folds using analytic techniques
in gauge theory. In this paper, we give a different construction of the CS functions
on toric CY 3-folds. Our construction has a few new ingredients. First, the functions
we construct are algebraic. Second, the moduli spaces of stable sheaves are, in
fact, globally critical sets of these functions. Third, the construction is explicit; i.e.,
there is an algorithm to write down such functions starting with a toric CY 3-fold
together with some extra data; see the end of Section 5.

The construction of CS function consists of three steps:

(1) Let Y be a complex CY 3-fold. Find a good t-structure in the derived category
Db(Y ). The heart of this t-structure is the abelian category of representations of
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a quiver with relations. Such an abelian category is good in the sense that it has
enough projective modules and has finite projective dimension.

(2) On a moduli space of representations with fixed dimension vector, we find a
maximally degenerate point, which corresponds to the semisimple representation.
The tangent complex of the moduli space at this point is given by the well studied
L∞ (A∞) Yoneda algebra in representation theory. We compute the L∞ (A∞)
products and prove they are bounded. The Calabi–Yau condition defines a cyclic
pairing on this L∞ algebra, which together with the L∞ products determines the
CS function.

(3) Embed the moduli spaces of sheaves into the moduli spaces of representations
as open substacks.

Step one is based on the existence of full, strong, exceptional collections of line
bundles on toric Fano stacks of dimension two; see Theorem 3.3. This was proved
in [Borisov and Hua 2009]. Passing from a strong exceptional collection to the
associated quiver is a consequence of derived Morita equivalence. We will study
this in Section 3.

Step two is based on the cyclic completion (see Theorem 4.2) and boundedness
of L∞ products (see Theorem 4.4). Theorem 4.2 was first proved by Aspinwall
and Fidkowski [2006] and later reproved in a much more general setting by Segal
[2008]. The terminology cyclic completion is due to Segal. The proofs of these two
theorems are given in Section 4 just for our convenience.

In Section 5, we construct the CS functions and show that the moduli spaces
of sheaves are open substacks of the critical sets modulo gauge groups. Several
examples of CS functions are discussed in Section 6.

The language of L∞ algebras and derived schemes (stacks) — developed in
[Kontsevich and Soibelman 2009] — is extensively used in the paper. Each of
the moduli spaces mentioned above is the zero locus of an odd vector field on a
differential graded (dg) symplectic manifold and the CS functions we construct are
essentially Hamiltonian functions associated to it. In Section 2, we give a short
introduction to L∞ algebras and dg schemes.

In the last three sections, we give two applications of the CS function. In
Theorem 7.4, we prove that the L∞ products vanish at semistable points of moduli
space of sheaves on local surfaces, which leads to a proof of a special case of
the integrality conjecture of Joyce and Song [2012]. In Theorem 8.3, we prove a
dimension reduction formula of virtual motives for CS functions, which generalizes
some results in [Behrend et al. 2013]. By manipulating this dimension reduction
formula, we compute the generating series of moduli spaces of noncommutative
Hilbert schemes on toric CY stacks; this is done in Section 9.
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Notation. Three dimensional smooth toric Calabi–Yau stacks are in one to one
correspondence with the set of 3-dimensional cones over convex lattice polygons
1 contained in an affine hyperplane, together with a triangulation of 1. When the
polygon 1 has at least one interior lattice point, we can consider the barycentric
triangulation. (This means the triangulation has only one interior lattice point.)
This gives a fan 6 on the affine hyperplane such that its supporting polygon is 1.
The fan 6 determines a 2-dimensional toric Fano stack X6 (X , for short). The
cone over 6 determines a 3-dimensional toric CY stack Y6 (Y , for short), which is
the total space of the canonical bundle over X6 . We call such a toric CY 3-stack a
local surface. The CY 3-stacks associated to other triangulations of 1 are related
to Y6 by a sequence of flops.

• π : Y → X is the projection and ι : X→ Y is the inclusion of zero section;

• Db(X) is the bounded derived category of coherent sheaves on X ;

• Db(Y ) is the bounded derived category of coherent sheaves on Y ;

• Dω is the full subcategory of Db(Y ) of objects with cohomology sheaves
supported on X .

2. L∞ algebras and differential graded schemes

This is a short introduction to L∞ algebras and differential graded schemes. A
standard reference for this topic is [Kontsevich and Soibelman 2009]. The reader
who is familiar with∞-algebras can skip this section.

2A. L∞ algebras. Let k be a field.

Definition 2.1. An L∞ algebra is a graded k-vector space L with a sequence
µ1, . . . , µk, . . . of graded antisymmetric operations of degree 2, or equivalently,
homogeneous multilinear maps

µk :
∧k L→ L[2− k]

such that for each n > 0, the n-Jacobi rule holds:
n∑

k=1

(−1)k
∑

i1<···<ik ; j1<···< jn−k
{i1,...,ik}∪{ j1,..., jn−k}={1,...,n}

(−1)ε µn(µk(xi1, . . . , xik ), x j1, . . . , x jn−k )= 0.

Here, the sign (−1)ε equals the product of the sign (−1)π associated to the permu-
tation

π =
( 1 ··· k k+1 ··· n

i1 ··· ik j1 ··· jn−k

)
with the sign associated by the Koszul sign convention to the action of π on the
elements (x1, . . . , xn) of L .
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Definition 2.2. Let (L , µk) be an L∞ algebra. An element x ∈ L1 is called a
Maurer–Cartan element if x satisfies the formal Maurer–Cartan equation:

∞∑
k=1

1
k!
µk(x, . . . , x)= 0.

If the above formal sum is convergent, then there is a map Q : L1
→ L2, defined by

x 7→
∞∑

k=1

1
k!
µk(x, . . . , x).

called the curvature map. The set of elements in L1 satisfying the Maurer–Cartan
equation is denoted by MC(L).

Definition 2.3. Let L be an L∞ algebra. We write δ for the first L∞ product
µ1 : L→ L[1]. It follows from the L∞ relations that δ2

= 0. Let x be a Maurer–
Cartan element of L . We define the twisted differential δx by the formula

δx(y)= δ(y)+
∞∑

k=2

1
(k− 1)!

µk(x, . . . , x, y).

By manipulating the Maurer–Cartan equation and the L∞ relations, one can check
that (δx)2 = 0.

Given a homogeneous element a ∈ L , we denote its grading by |a|.

Definition 2.4. A finite dimensional L∞ algebra (L , µk) is called cyclic if there
exists a homogeneous bilinear map

κ : L ⊗ L −→ k[−3]

satisfies:

(1) κ(a, b)= (−1)|a||b|κ(b, a);

(2) κ(µk(a1, . . . , ak), ak+1)= (−1)|a1|(|a2|+···+|ak+1|)κ(µk(a2, . . . , ak+1), a1);

(3) κ is nondegenerate on H •(L , δ).

We call such a κ a cyclic pairing on L .

Definition 2.5. Let (L , µk, κ) be a cyclic L∞ algebra. The Chern–Simons function
associated to L is the formal function

f (z)=
∞∑

k=1

(−1)
k(k+1)

2

(k+ 1)!
κ(µk(z, . . . , z), z).
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2B. Differential graded schemes.

Definition 2.6. A differential graded scheme X is a pair (X0,O•X ), where X0 is an
ordinary scheme and O•X is a sheaf of Z−-graded commutative dg algebras on X0

such that:

(1) O0
X =OX0 ;

(2) Oi
X are quasicoherent OX0 modules.

The cohomology sheaves of O•X , denoted by H i (O•X ) are OX0 modules. In
particular, H 0(O•X ) is a quotient ring of O0

X =OX0 . We define the “0-truncation”
of X to be the ordinary scheme

π0(X)= Spec H 0(O•X ).

It is a subscheme of X0.

Definition 2.7. A morphism of dg schemes f : X→ Y is a morphism of ordinary
schemes f0 : X0

→ Y 0 together with a morphism of dg algebras f ∗0 O
•

Y →O•X . A
morphism f is called a quasi-isomorphism if f induces isomorphisms between
H i (O•X ) and H i (O•Y ) for all i .

Definition 2.8. A dg scheme X is called smooth (or a dg manifold) if the following
conditions hold:

(a) X0 is a smooth algebraic variety.

(b) Locally over the Zariski topology on X0, we have an isomorphism of graded
algebras O•X ' SymOX0

Q−1
⊕ Q−2

⊕ · · · , where Q−i are vector bundles (of
finite rank) on X0.

Every L∞ algebra defines a dg manifold.

Example 2.9. Let L= L−k
⊕· · ·⊕L0

⊕L1
⊕· · · be a finite dimensional L∞ algebra

and τ>0L be the truncation of L in positive degrees. Let X0 be the linear manifold
L1 and O•X be the completed symmetric algebra (Sym τ>0L[1]∗)̂ , considered as
a sheaf over L1. It has the structure of differential graded algebra (dga). The L∞
structure comprises the multilinear maps µk : Symk L[1] → L[2]. The dual map
of
∑

1/k!µk defines a derivation from q : O•X → O•X of degree one. The L∞
relations are equivalent to the condition that q2

= 0. It can be interpreted as an odd
vector field on the dg manifold. The “0-truncation” π0(X) can be identified with
the Maurer–Cartan locus MC(L). We call the dg manifold constructed in this way
the formal dg manifold associated to L .

Given a cyclic L∞ algebra (L , µk, κ), the formal dg manifold constructed in
Example 2.9 is a formal symplectic dg manifold in the sense of [Kontsevich and
Soibelman 2009]. The pairing κ can be viewed as an odd symplectic form.
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On a formal dg manifold, we can define the analogue of the usual Cartan calculus
[loc. cit.]. The CS function f is the Hamiltonian function of the odd vector field q
on X with respect to the odd symplectic form κ . In particular, crit( f ) coincides
with the Maurer–Cartan locus of L .

Comments on A∞ and L∞ algebras. Given an A∞ algebra (R,mk), we can con-
struct, in a canonical way, an L∞ algebra (L , µk). This is done by replacing mk

by its antisymmetrizer. A lazy way to do that is to first construct a dg algebra
quasi-isomorphic to R. Antisymmetrize it to form a dg Lie algebra and then take the
cohomology. The Maurer–Cartan sets of Rω and Lω agree as sets. In the process
of antisymmetrization, a cyclic A∞ algebra goes to a cyclic L∞ algebra. We will
skip the formal definition of A∞ algebra (it can be found in [loc. cit.]) although
it is implicitly used in the later sections. Using L∞ algebras has the advantage
that one can make sense of the Maurer–Cartan set as a scheme instead of as a
noncommutative scheme.

3. Derived categories of toric stacks and Morita equivalence

Definition 3.1. Let k be a field. Given a k-linear triangulated category T , an object
E ∈ T is called exceptional, if Ext i (E, E)= 0 for all i 6= 0 and Ext0(E, E)= k.

• A sequence of exceptional objects E1, . . . , En is called an exceptional collec-
tion if Ext i (E j , Ek)= 0 for arbitrary i when j > k.

• An exceptional collection is called strong if Ext i (E j , Ek)= 0 for any j and k
unless i = 0.

• We say an exceptional collection is full if it generates T.

Let E, F be an exceptional collection of length 2 in T . We define the left and
right mutation, LE F and RF E respectively, using the distinguished triangles.

LE F −→RHom(E, F)⊗ E−→ F

E −→RHom(E, F)∗⊗ F−→ RF E

Mutations of exceptional collection are exceptional [Bondal 1990]. But mutations
of strong exceptional collections are not necessary strong.

Given an exceptional collection E0, . . . , En , we can define another exceptional
collection F−n, F−n+1, . . . , F0, called the dual exceptional collection to E0, . . . , En .
First let F0 equal to E0. Second, make F−1 = L E0 E1. Then define F−i inductively
by L F−i+1 L F−i+2 · · · L F0 Ei .

In our application, T will be the bounded derived category Db(X) of a smooth
algebraic variety (stack) X . The exceptional objects are always assumed to belong
to the heart of a certain t-structure.
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Given a full strong exceptional collection E0, . . . , En , we denote the direct sum⊕n
i=0 Ei by T. It is called a tilting object.

Theorem 3.2 [Bondal 1990]. The exact functor RHom(T,−) induces an equiva-
lence between triangulated categories Db(X) and Db(mod-A), where A = End(T ).
This equivalence is usually referred to as derived Morita equivalence.

Let E be an object in Db(X), the right A-module structure on RHom(T, E) is
given by precomposition. The quasi-inverse functor of RHom(T,−) is −⊗L

A T .
We can define a quiver with relations from a strong exceptional collection by the

following recipe. First, define the set of nodes of Q, denoted by Q0 to be the ordered
set {0, 1, . . . , n}. The i-th node corresponds to the generator of Hom(Ei , Ei ). The
set of arrows of Q, denoted by Q1 is double graded by source and target. The graded
piece Qi, j

1 is a set with cardinality dimCHom(Ei , E j ). With a choice of basis on
Hom(Ei , E j ), the elements of Qi, j

1 are in one-to-one correspondence with such a
basis. The exceptional condition guarantees that there is no arrow that decreases
the indices of nodes. The relations of Q are determined by the commutativity of
composition of morphisms. The nodes and arrows generate the free path algebra
CQ, which is spanned as a vector space by all the possible paths. Multiplication in
CQ is defined by concatenation of paths. The relations in Q form a two-side ideal
I of CQ. We call CQ/I the path algebra of (Q, I). In some situations, we omit I
and write just Q. It follows from the construction that CQ/I ' A.

A representation of (Q, I) is given by the following pieces of data:

• a finite dimensional vector space Vi associated to each node i ;

• a matrix ai, j associated to each arrow from nodes i to j such that the matrix
associated to any element in I is zero.

Denote the category of finite dimensional representations of (Q, I) by Rep k(Q, I).
There are equivalences of abelian categories:

Rep k(Q, I)∼= CQ/I-mod∼= A-mod.

The abelian category mod-A is Noetherian and Artinian. Its simple objects are
exactly those representations Si that have a one-dimensional vector space over node
i and 0 over all other nodes. Under the functor RHom(T,−), the exceptional objects
Ei are mapped to projective right A-modules, and the objects F−i are mapped to
shifts of simple modules Si [−i].

The Yoneda algebra R of A is defined to be Ext •A(
⊕n

i=0 Si ,
⊕n

i=0 Si ). It has a
canonical A∞ algebra structure.

Theorem 3.2 builds up a link between the geometry and the representation theory
of a quiver, assuming that one can find a full strong exceptional collection in Db(X).
In general, there is no reason why such a collection (even a single exceptional
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object) should exist. However, the existence result can be proved for toric Fano
stacks of dimension two.

Recall that a two dimensional convex lattice polygon 1 with a distinguished
interior lattice point determines a fan 6 associated to the barycentric triangulation.
This uniquely determines a toric stack, which is denoted by X6 . The Fano condition
is equivalent to the convexity of 1. We refer the reader to [Borisov and Hua 2009,
Section 3] for an introduction to toric Deligne–Mumford (DM) stacks.

Theorem 3.3 [Borisov and Hua 2009]. Let X6 be a complete toric Fano DM stack
of dimension two. The bounded derived category of coherent sheaves Db(X6) has a
full strong exceptional collection consisting of line bundles. The length of the strong
exceptional collection is always equal to the integral volume of 1, which is also
equal to the Euler characteristic χ(X6).

We will try to extend the derived Morita equivalence to the study of the CY
stack Y . Consider the exact functor RHom(π∗T,−) from Db(Y ) to Db(mod-B),
where B = Hom•(π∗T, π∗T ). It turns out that this is still an equivalence of
triangulated categories if we define the right-hand side appropriately. The algebra B
(called the roll-up helix algebra by Bridgeland), in general, carries a nontrivial dg
algebra structure. However, in order to apply the quiver techniques, we need to find
a strong exceptional collection such that the differential of B vanishes; this is an
additional condition on a strong exceptional collection.

The following proposition generalizes [Bridgeland 2005, Proposition 4.1], which
was originally proved for P2.

Proposition 3.4. Let L0, . . . ,Ln be a full strong exceptional collection of line
bundles on a toric Fano stack of dimension two. The roll-up (dg)-helix algebra B
is in fact an algebra, i.e., Ext>0(π∗T, π∗T ) = 0. Therefore, the exact functor
RHom(π∗T,−) induces an equivalence from Db(Y ) to Db(mod-B).

Proof. We need a technical lemma from [Borisov and Hua 2009] about cohomology
of line bundles on toric stacks.

For every r = (ri )
n
i=1 ∈ Zn we denote by Supp(r) the simplicial complex on the

vertices {1, . . . , n} which consists of all subsets J ⊆ {1, . . . , n} such that ri ≥ 0 for
all i ∈ J and there exists a cone of 6 that contains all vi , i ∈ J. For example, if
all coordinates ri are negative then the simplicial complex Supp(r) consists of the
empty set only, and its geometric realization is the zero cone of 6. In the other
extreme case, if all ri are nonnegative then the simplicial complex Supp(r) encodes
the fan 6, which is its geometric realization.

Lemma 3.5 [Borisov and Hua 2009, Proposition 4.1]. Let N be an integral lattice,
6 a fan in N ⊗Z R, and X6 the toric stack associated to 6. The cohomology
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H p(X6,L) is isomorphic to the direct sum over all r = (ri )
n
i=1 such that

⊕( n∑
i=1

ri Ei

)
∼= L

with Ei being toric invariant divisors of the (rk(N )− p)-th reduced homology of
the simplicial complex Supp(r).

By adjunction,

Homd(π∗T, π∗T )=
⊕
k≥0

Homd
X (T, T ⊗ω−k

X ).

In order to prove the proposition, it suffices to show that H d(X,L−1
i ⊗L j⊗ω

−1
X )=0

for d = 1, 2. Since L0, . . . ,L j is strong exceptional, we have H d(X,L−1
i ⊗L j )= 0

for d = 1, 2. Consider all the possible integral linear combinations
∑m

i=1 ri Ei

such that O
(∑m

i=1 ri Ei
)
= L−1

i ⊗L j . By Lemma 3.5, H d(X,L−1
i ⊗L j ) = 0 for

d = 1, 2 means Supp(r) is contractible. Notice that if Supp(r) is contractible then
Supp(r+1) is also contractible. Again by Lemma 3.5, H d(X,L−1

i ⊗L j⊗ω
−1
X )= 0

for d = 1, 2. �

Now we can write B simply by End(π∗T ). It is also the path algebra of a quiver
with relations. This quiver can be constructed by the same recipe as in the previous
section. Let’s denote it by Qω. Notice that Qω will have cyclic paths because
the pull back of exceptional objects will have homomorphisms in both directions.
Again, we have an equivalence of abelian categories

Rep k(Qω, I)∼=mod-B.

The path algebra B is naturally graded by path length. A B-module M is called
nilpotent if there exists k�0 such that Bk M=0. The exact functor RHom(π∗T,−)
maps Dω to the derived category of nilpotent B-modules Db(mod0-B).

The pushforward ι∗ defines an exact functor from Db(X) to Dω. Under Morita
equivalence, the modules ι∗(F−i [i]) are the simple modules in Db(mod0-B) corre-
sponding to those one dimensional representations associated to each of the vertices
of Qω.

Similarly, we call the self-extension algebra

Ext •B

( n⊕
i=0

ι∗Si ,

n⊕
i=0

ι∗Si

)
the Yoneda algebra, denoted by Rω. It carries a natural A∞ structure as well.

We now give the example of derived Morita equivalence on P2 and local P2.
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Example 3.6. Let X be P2. The line bundles O,O(1),O(2) form a full strong
exceptional collection. Take the tilting bundle to be T = O⊕O(1)⊕O(2). The
quiver Q is

(1) ◦ ◦ ◦

0 1 2

x
''y //

z
77

x ′
''y′ //

z′
77

with the ideal of relations generated by

x ′y− y′x, y′z− z′y, z′x − x ′z.

The dual collection to O,O(1),O(2) is �2(2),�1(1),O. They map to simple
modules S2[−2], S1[−1], S0 under RHom(T,−).

The roll-up helix algebra B = End(π∗T ) is the path algebra of the quiver Qω

given by

(2)

◦

◦◦

0

12

x

��

y

��

z

""

x ′
ii y′oo

z′
uu

x ′′

<<

y′′

FF

z′′

MM

with relations
x ′y− y′x, y′z− z′y, z′x − x ′z;

x ′′y′− y′′x ′, y′′z′− z′′y′, z′′x ′− x ′′z′;

xy′′− yx ′′, yz′′− zy′′, zx ′′− xz′′.

4. The cyclic completion of the Yoneda algebra

Two technical results are proved in this section.

• We show the Yoneda algebra Lω is the cyclic completion of the Yoneda algebra
L . This is the algebraic counterpart of the cotangent bundle construction.

• We show that the operations µk on L vanish when k > χ(X). Then, by the
cyclic completion construction, the same is true for Lω.

Theorem 4.2 was proved first by Aspinwall and Fidkowski [2006, Section 4.3]
and reproved in a more general form by Segal [2008, Theorem 4.2]. For our own
convenience, we give a slightly different proof here since some techniques in the
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proof are used in the later sections. But the ideas are quite similar to the ones given
in those two references.

These two results, together with the existence theorem of strong exceptional
collections (Definition 3.1) and Proposition 3.4, guarantee the existence of global
algebraic CS functions. In fact, they provide a recipe to construct CS functions,
starting from a strong exceptional collection satisfying Proposition 3.4.

Definition 4.1. [Segal 2008] Let L =
⊕d

i=0 L i be a finite dimensional L∞ algebra
over k, with its L∞ products denoted by µk . Define L to be the graded vector
space L⊕ L[−d − 1], i.e., L i

= L i
⊕ (Ld+1−i )∗. Define the cyclic pairing and L∞

products µk :
∧k L→ L[2− k] according to the following rules:

(1) Define the bilinear form κ on L by the natural pairing between L and L∗.

(2) If the inputs of µk all belong to L , then define µk = µk .

(3) If more than one input belongs to L∗, then define µk = 0.

(4) If there is exactly one input a∗i ∈ L∗, then define µk by

κ(µk(a1, . . . , a∗i , . . . , ak), b)= (−1)εκ(µk(ai+1, . . . , ak, b, a1, . . . , ai−1), a∗i )

for arbitrary b∈ L , where ε=|a1|(|a2|+· · ·+|b|)+· · ·+|a∗i |(|ai+1|+· · ·+|b|);

It is easy to check that (L, µk, κ) forms a cyclic L∞ algebra. We call L the cyclic
completion of L .

We have defined the Yoneda algebras R = Ext •A(
⊕n

i=0 Si ,
⊕n

i=0 Si ) and Rω =
Ext •(

⊕n
i=0 ι∗Si ,

⊕n
i=0 ι∗Si ) in previous section. Take the associated L∞ algebras

and denote them by L and Lω. Since X is a surface, d = 2 in Definition 4.1.
The following theorem will play a central role in this paper.

Theorem 4.2 [Aspinwall and Fidkowski 2006; Segal 2008]. The Yoneda algebra
Lω is the cyclic completion of the Yoneda algebra L.

Proof. This can be done in three steps. First, we need to verify that Lω and L
coincide as graded vector spaces. Second, we will show the pairing on L defined
by (1) of Definition 4.1 coincides with the Serre pairing on Lω. Finally, we need to
check that the L∞ products on Lω satisfy properties (2)–(4) in Definition 4.1.

Given an object E ∈Db(mod-B)'Db(Y ) that is scheme theoretically supported
on X , one can view E as a complex of finitely generated A-modules. There is a
projective A resolution P• for E :

P• −→ E −→ 0

such that each P i is a direct sum of copies of E0, . . . , En .
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Because Y is the total space of canonical bundle over X , there is a tautological
short exact sequence of sheaves:

0−→ π∗(ω−1
X )−→OY −→OX −→ 0.

Tensor it with π∗E to obtain

0−→ π∗E(ω−1
X )−→ π∗E −→ ι∗E −→ 0.

Since π∗ preserves the projective modules, by replacing E with P• we obtain a
projective B resolutions of ι∗E as total complex of the following double complex

(3)

· · · // π∗P−2 // π∗P−1 // π∗P0 // 0

· · · // π∗P−2
⊗π∗ω−1

X

OO

// π∗P−1
⊗π∗ω−1

X

OO

// π∗P0
⊗π∗ω−1

X

OO

// 0

We denote this resolution of ι∗E by P•ω.
As a graded vector space, Lω is computed as the cohomology of Hom•Y (P

•

ω, ι∗E).
Because P•ω is the total complex of the above double complex, Hom•Y (P

•

ω, ι∗E) is
quasi-isomorphic with the total complex of the following double complex:

· · · Hom(π∗P−1, ι∗E)oo

��

Hom(π∗P0, ι∗E)oo

��

0oo

· · · Hom(π∗P−1
⊗π∗ω−1

X , ι∗E)oo Hom(π∗P0
⊗π∗ω−1

X , ι∗E)oo 0oo

The spectral sequence associated to this double complex degenerates at E1 page.
Using adjunction together with Serre duality, we obtain

Hom(ι∗E, ι∗E)= HomX (E, E),

Ext1(ι∗E, ι∗E)= Ext1
X (E, E)⊕Ext2

X (E, E)∗,

Ext2(ι∗E, ι∗E)= Ext2
X (E, E)⊕Ext1

X (E, E)∗,

Ext3(ι∗E, ι∗E)= HomX (E, E)∗.

The above fact holds for any object E with scheme theoretic support on X . We
are particularly interested in the case when E is ⊕n

i=0 F−i [i], i.e., the direct sum
of the simple objects in mod-A. This identifies Lω and L as graded vector spaces
since both will be equal to L ⊕ L[−3]∗.

In order to verify property (1), we need to write down a bilinear pairing κ
on Hom•(P•ω, P•ω) such that its restriction on cohomology gives the obvious du-
ality between L and L∗. By adjunction, Hom3(P•ω, P•ω) has a direct summand
Hom2(π∗P•⊗ω−1

X , π
∗P•), which is isomorphic to Hom2

X (P
•, P•⊗ (

⊕
k≤1 ω

k
X )).

It contains the finite dimensional graded piece Hom2
X (P

•, P• ⊗ ω), which has a
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trace map to H 2(X, ωX )' C. Given any two elements x and y in Hom•(P•ω, P•ω),
we define the bilinear pairing κ(x, y) to be the projection of x ◦ y to the graded
piece Hom2

X (P
•, P•⊗ω) followed by the trace map. Clearly, the restriction of κ

on cohomology satisfies property (1).
Now we need to verify properties (2) to (4) for Lω. For dimension reasons, it

suffices to check the case when all the inputs of the L∞ products µk lie in L1
ω.

Since Lω is constructed as the cohomology of Hom•(P•ω, P•ω), the element in L1
ω

can be represented by either the vertical or horizontal arrows in diagram (3). More
specifically, a class in Ext1

X (E, E) is represented by a horizontal arrow and a class
in Ext2

X (E, E)∗ is represented by a vertical arrow. Then property (2) follows
immediately since the rows of the double complex are simply the pullback of P•

(up to ⊗ω−1
X ), which is the projective resolution of E .

If we write Ext2(E, E)∗ as Ext0(E, E ⊗ωX ), then we can see that

µ2 : Ext1(E, E)⊗Ext0(E, E ⊗ωX )−→ Ext1(E, E ⊗ωX )' Ext1(E, E)∗

is the only nonzero term that can involve Ext2(E, E)∗. For example, if both inputs
of µ2 belong to Ext0(E, E ⊗ωX ), then the output is Ext0(E, E ⊗ω2

X ), which is
not in L2

ω. Similarly, this argument shows that any nonzero term of µk of Lω can
involve at most one Ext2(E, E)∗ term. This proves property (3).

Property (4) is essentially the cyclic symmetry of µk . Since the κ on cohomology
is a restriction of a bilinear form (also denoted by κ) on the dga Hom•(P•ω, P•ω)
with differential d, property (4) will follow from the following cyclic symmetry
properties on Hom•(P•ω, P•ω). For arbitrary elements x , y, and z:

� κ(x, y)=±κ(y, x)

� κ(dx, y)=±κ(dy, x);

� κ(x ◦ y, z)=±κ(y ◦ z, x).

The first property is clear since the commutator is trace-free. The trace map will
factor through the morphism

Hom2(P•, P•⊗ω)−→ L3
ω = Ext2(E, E ⊗ω)' Hom(E, E)∗.

Therefore, the trace of a coboundary is zero, so the second property follows from
the Leibniz rule. The third property follows from the first and associativity of the
product. �

Remark 4.3 (the geometric meaning of cyclic completion). From Example 2.9
recall that the completion of the truncated symmetric algebra (Sym L[1]∗)̂ (we
omit τ>0 for simplicity) can be interpreted as the structure sheaf of the graded
linear manifold M = L[1].

The odd cotangent bundle of the graded manifold M, denoted as T ∗[−1]M , is
defined to be the graded manifold L[1] ⊕ (L[1]∗[−1]). As graded vector spaces,
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T ∗[−1]M is the same as Lω[1]. Then, OT ∗[−1]M coincides with (Sym Lω[1]∗)̂
as graded algebras. The L∞ products µk defines a derivation on OT ∗[−1]M and
the cyclic pairing κ defines an odd two-form on T ∗[−1]M. In fact, this process is
functorial. Hence, passing to the cyclic completion of an L∞ algebra is an algebraic
counterpart for taking the odd cotangent bundle of a dg manifold.

The L∞ (or A∞) structure of the Yoneda algebra L has been studied for a long
time in the representation theory of finite dimensional algebras. The following
boundedness theorem turns out to be very important for the purpose of this paper.

Theorem 4.4. The L∞ products (higher brackets) µk on L vanish when k > χ(X).

Proof. Let A be a finite dimensional algebra and {Si } be the collection of simple
A-modules. It is well known that the Yoneda algebra R = Ext •A(

⊕
i Si ,

⊕
i Si )

controls the deformation of A. If A is presented as a path algebra of a quiver with
relations, then the A∞ products mk on R can be interpreted as relations of the path
algebra; see [Keller 2006, Section 7.8].

Since in our situation the quiver is constructed from a strong exceptional col-
lection of line bundles on X (recall the construction in Section 3), the elements
in the path algebra A carry an extra grading given by the ordering on the strong
exceptional collection. The A∞ products preserve this extra grading. Therefore, the
length of the strong exceptional collection, which is equal to the Euler characteristic
χ(X), gives an upper bound for number of nonvanishing mk . This is intuitively
clear since, on a directed quiver generated by, say, a length 4 strong exceptional
collection, there cannot be a relation involving length 5 paths.

Finally, we pass from an A∞ algebra to an L∞ algebra. Since L is the anti-
symmetrization of R, we get µk = 0 when mk = 0. �

5. Moduli spaces and Chern–Simons functions

We fix the ground field k = C. Let 0 be the Grothendieck group of Dω. By derived
Morita equivalence, 0 also equals the Grothendieck group of the derived category
of nilpotent representations of Qω. It is a free abelian group of rank n+1 generated
by the collection of simple modules ι∗S0, . . . , ι∗Sn . If we fix these simple modules
as a Z-basis of 0, every effective class can be written as a vector d = (d0, . . . , dn)

with nonnegative entries. We call such a choice of d a dimension vector.

Theorem 5.1. Let X be a toric Fano stack of dimension two and Y the total space
of its canonical bundle. Pick a strong exceptional collection constructed in [Borisov
and Hua 2009] and denote the corresponding quiver of Y by Qω. Let Mγ be a
bounded family of sheaves on Y support on X with class γ ∈ 0. There exists a
dimension vector d and an open immersion of Artin stacks from Mγ to the quotient
stack [MC(Lω,d)/Gd], where MC(Lω,d) is the space of representations of Qω with
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dimension vector d and Gd (defined later in this section) is the gauge group acting
by changing of basis.

Theorem 5.2. Given a class γ ∈ 0, a bounded family of sheaves on Y supported
on X with class γ is the critical set of an algebraic function fd .

We call such a function a Chern–Simons (CS) function. The infinitesimal de-
formation of representations is controlled by the following L∞ algebras. Fix a
dimension vector d, define

Ld := Ext •
( n⊕

i=0

Si ⊗ Vi ,

n⊕
i=0

Si ⊗ Vi

)
and

Lω,d := Ext •
( n⊕

i=0

ι∗Si ⊗ Vi ,

n⊕
i=0

ι∗Si ⊗ Vi

)
,

where each Vi is a vector space of dimension di . They are generalizations of the
Yoneda algebras: if we take d = (1, . . . , 1) we obtain the Yoneda algebras. All the
results in Section 4 clearly generalize to Ld and Lω,d .

The space L1
d can be identified with the space

⊕
a∈Q1

Hom(Vi , V j ) of matrices,
summing over all the arrows, and similarly for L1

ω,d with a ∈ Qω1. It carries a
natural bigrading by the source and target of each arrow. The space L0

d can be
identified with the space

⊕
i∈Q0

End(Vi ), which is the Lie algebra associated to the
group

∏
i∈Q0

GL(Vi ). We denote this group by Gd for simplicity. It acts on Ld by
conjugation. Analogously, the space L0

ω,d can be identified with the Lie algebra
associated to the same group, which acts on Lω,d .

The following lemma is well known in representation theory of quivers.

Lemma 5.3. The elements of MC(Ld) are in one to one correspondence with the
representations of Q of dimension vector d, and analogously for the elements of
MC(Lω,d) and the representations of Qω. Two representations are isomorphic if
and only if they belong to the same orbits of Gd .

Proof. See [Keller 2006, Section 7.8] or [Segal 2008, Proposition 3.8]. �

The L∞ algebra L controls the infinitesimal deformation of representations in
the following sense. Let M be an A-module with dimension vector d. We denote
its corresponding Maurer–Cartan element by x . The homology groups H i (Ld, δ

x)

are isomorphic to Ext i
A(M,M). In general, Ld is just the formal tangent space at

the point
⊕

i Si ⊗ Vi . However, in our situation because of the boundedness of µk

(Theorem 4.4), the Maurer–Cartan equation actually converges. An analogous
argument holds for the L∞ algebra Lω,d , with M a B-module with dimension
vector d, in which case the homology groups H i (Lω,d, δx) are isomorphic to
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Ext i
B(M,M). Therefore the moduli space can be constructed globally as mentioned

in the previous Lemma.

Proof of Theorem 5.1. Given Lemma 5.3, it suffices to show the existence of an
open immersion of Mγ into [MC(Lω,d)/Gd].

First, we need to construct a monomorphism of stacks. Let’s pick an ample line
bundle L on X . If T is a tilting bundle on X then T ⊗ L−N is again a tilting bundle
for any integer N. Therefore, the functor RHom(π∗(T ⊗ L−N ),−) induces an
equivalence from Db(Y ) to Db(mod-B). Because T is direct sum of line bundles,
we can choose N � 0 such that for any sheaf E ∈Mγ , RHom(π∗(T ⊗ L−N ), E)
is concentrated in degree zero, i.e., is a module over B.1 Let d be its dimension
vector, which depends on both γ and N. Then we obtain a morphism between
stacks. Because of the derived Morita equivalence, this is clearly an injection.

Next we need to argue this morphism is étale. Let A′ → A→ C be a small
extension of pointed C-algebras, and let T = Spec A and T ′ = Spec A′. Consider
the 2-commutative diagram

T //� _

��

Mγ� _

RHom(π∗(T⊗L−N ),−)

��
T ′ //

88

[MC(Lω,d)/Gd]

of solid arrows. We have to prove that the dotted arrow exists, uniquely, up to a
unique 2-isomorphism. This follows from standard deformation theory. We need
that RHom(π∗(T ⊗ L−N ),−) induces a bijection on deformation spaces and an
injection on obstruction spaces (associated to the above diagram). They follow
immediately for the equivalence between Db(Y ) and Db(mod-B). In fact, all the
obstruction groups are isomorphic. �

Proof of Theorem 5.2. As we have seen in Definition 2.5, there is always a formal
function

fd(z)=
∞∑

k=1

(−1)k(k+1)/2

(k+ 1)!
κ(µk(z, . . . , z), z)

associated to the cyclic L∞ algebra Lω,d , where z ∈ L1
ω,d . The critical set of fd

coincides with MC(Lω,d).
By the boundedness in Theorem 4.4, such a formal function is, in fact, a poly-

nomial function of degree at most χ(X). Therefore, MC(Lω,d), as a subvariety of
L1
ω,d , is the critical scheme of fd . Since the Gd action is induced from the action

of the Lie subalgebra L0
ω,d , it is clear that fd is invariant under this action.

1This is not true when T contains torsion.
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By Theorem 5.1, Mγ is an open substack of [MC(Lω,d)/Gd] for an appropriate
choice of d. The theorem follows since we can restrict the function fd . �

Remark 5.4. Recall that by Theorem 4.2, L1
ω,d decomposes into L1

d ⊕ (L
2
d)
∗. The

CS function fd has a nice property coming from this decomposition:
If we write the cyclic pairing κ(x, y) as tr(x ◦ y), then the function fd can be

written as the trace of the cyclic invariant polynomial of matrices. Definition 4.1
tells us that the variables in (L2

d)
∗ appear exactly once (in degree one) in all the

monomials. This means that we can always write fd as an inner product of a
polynomials of elements in L1

d and elements of (L2
d)
∗. This property plays a central

role in Section 8.

As a summary of Sections 4 and 5, we give an algorithm to compute CS functions
on local toric Fano surfaces.

STEP 1 Choose a strong exceptional collection of line bundles on X . By results
in Section 3, this completely determines the quiver Q, together with its
relations.

STEP 2 Compute the A∞ structures on the Yoneda algebra R using the correspon-
dence between mk and the relations on Q.

STEP 3 Apply Theorem 4.2 to compute mk for Rω.

STEP 4 Plug in specific dimension vector d, antisymmetrize Rω,d to Lω,d , and
apply Definition 2.5 to compute fd .

6. Examples of CS functions

In these section, we discuss some examples of CS functions.

6A. Complex affine 3-space C3. The easiest example of a Calabi–Yau 3-fold is
the three dimensional affine space. Rigorously speaking, it is not a local surface
but still the CS function can be computed using the same philosophy.

Let B be the polynomial algebra with three variables. The category Coh(C3)

equals mod-B. Consider the quiver Qω:

(4) ◦

x

..
y

��

z

]]

with relations xy− yx, yz− zy, zx − xz. Its path algebra is equal to B.
Given a positive integer n, let Lω,n be the Yoneda algebra Ext •

C3(O{0},O{0})⊗gln .
Since the only nonvanishing product is µ2, Lω,n is a graded Lie algebra. Now, let
A, B,C be n × n matrices associated to x, y, z. The CS function fn is equal to
tr((AB− B A)C).
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The Morita equivalence in this case is the classical Koszul duality between
symmetric and exterior algebras

Db(Coh(V ))= Db(mod-
∧
•
(V )

)
.

The quiver Qω gives combinatorial description for both C3 and the cotangent
bundle of the three dimensional torus. The first is clear since the path algebra of
Qω is the algebra of functions on C3. For the second, we can think of the quiver as
the 1-skeleton of T 3 and the relations as the gluing conditions of two cells.

The stack [crit( fd)/Gd] is related to two interesting moduli spaces. The first
one2 is the moduli space of length n sheaves on C3 and the second one3 is the
moduli space of flat GLn vector bundles on T 3. These two moduli spaces are related
by homological mirror symmetry.

6B. The local projective plane ωP2 . Using the calculations done in Example 3.6,
the CS function for the local projective plane is

tr
(
C ′′(A′B− B ′A)+ A′′(B ′C −C ′B)+ B ′′(C ′A− A′C)

)
where A, B, C , A′, B ′, C ′, A′′, B ′′, C ′′ are matrices associated, respectively, to the
arrows x , y, z, x ′, y′, z′, x ′′, y′′, z′′.

6C. The Calabi–Yau 3-folds ωP(1:3:1) and ωP(2:1:2). In this subsection, we will
compute the CS functions of ωP(1:3:1) and ωP(2:1:2). These two Calabi–Yau 3-folds
are K-equivalent; consequently, there is some interesting symmetry between these
two CS functions.

For simplicity, we set X1 := P(1 : 3 : 1) and X2 := P(2 : 1 : 2). The stacky
fan 61 of X1 has rays (0, 1), (1,−1), (−1,−2); the stacky fan 62 of X2 has rays
(0, 2), (1, 0), (−1,−1). Denote their canonical bundles by Y1 and Y2.

The Picard groups of X1 and X2 both equal Z. We denote the positive generator
by O(1). On X1, O(1) can be written as O(D2), with D2 being the toric invariant
divisor for (1,−1). On X2, O(1) can be written as O(D1) with D1 being the toric
invariant divisor for (0, 2). For both Db(X1) and Db(X2),

O, O(1), O(2), O(3), O(4)

form a full strong exceptional collection. The quivers associated to these two
collections are denoted by Q1 and Q2. The sets of vertices {0, 1, 2, 3, 4} correspond

2One can modify the construction slightly to include the Hilbert scheme of points; see [Behrend
et al. 2013].

3One needs to include a stability condition to make it hold rigorously.
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to O,O(1),O(2),O(3),O(4).

(5) Q1 ◦ ◦ ◦ ◦ ◦

v0 v1 v2 v3 v4

1 ''
x

77 1 ''
x

77 1 ''
x

77 1 ''
x

77

xy

##

xy

;;

(6) Q2 ◦ ◦ ◦ ◦ ◦

v0 v1

v2

v3 v4

1 // 1 // 1 // 1 //
x

''
x

''

x
77

y

��

y

��

y

AA

Notice that 61 and 62 are related by a shift of origin. This shift changes the stack
completely. But surprisingly, the full strong exceptional collections on X61 and
X62 are related [Borisov and Hua 2009]. We denote the arrows from the i-th node
to the j-th node by Ai j , Bi j or Ci j and the relations from the i-th node to the j-th
node by R j i . Because the quivers are directed, i is strictly less than j .

Using the algorithm at the end of last section, the CS function for ωP(1:3:1) is

(7) f = tr
(
R20(B12 A01− A12 B01)+ R31(B23 A12− A23 B12)

+ R42(B34 A23− A34 B23)+ R40(A34C03−C14 A01)

+ S40(B34C03−C14 B01)
)
.

The CS function for ωP(2:1:2) is

(8) f = tr
(
R30(A23 B02− B13 A01)+ R41(B24 A12− A34 B13)

+ S30(A23C02−C13 A01)+ S41(C24 A12− A34C13)

+ R40(B24C02−C24 B02)
)
.

6D. Blow-up of the projective plane P2 at one point. The first example which
involves µk terms with k > 2 is the local DelPezzo surface of degree one. It was
first computed in [Aspinwall and Fidkowski 2006].

Let X be the blow-up of P2 at one point. Denote the pull back of a hyperplane
by H and the exceptional divisor by E . The derived category Db(X) has a strong
exceptional collection, consisting of O, O(H), O(2H − E), O(2H), and the
corresponding quiver is

(9) Q3 ◦ ◦ ◦ ◦

O O(H) O(2H − E) O(2H)

d0 ''d1 //
d2

77 b0 ++
b1

33 a //

c
''

s0

~~

s1

yy

r0

dd
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The graded piece L2 of the Yoneda algebra has dimension three. We denote the
basis by r0, s0, s1. If we denote the matrices associated to each arrow by uppercase
letters, then the CS function is

f = tr
(
R0(B0 D1− B1 D0)+ S0(AB0 D2−C D0)+ S1(AB1 D2−C D1)

)
.

7. Integrality of generalized DT invariants

In this section, we give the first geometric application of CS functions. The main
result is Theorem 7.4, where we show that the L∞ products vanish at semistable
points of the moduli space of sheaves of local surfaces. As a consequence, the
generalized Donaldson–Thomas invariants defined by Joyce and Song [2012] are
integral on local surfaces.

We only consider sheaves on Y that belong to the category Dω, i.e., set theoreti-
cally supported on X . Furthermore, we assume they are supported in dimension
bigger than zero. The integrality of the zero dimensional sheaves has been proved
in [Joyce and Song 2012, Section 6.3].

Let L be an ample line bundle on X . The Hilbert polynomial of a coherent sheaf
E on Y is defined to be χ(E⊗π∗Lk) for k� 0. The slope of E , denoted by µ(E) is
defined to be the quotient of the second nonzero coefficient of its Hilbert polynomial
by the first. We will adopt the notation of Joyce and Song [loc. cit.]. A sheaf E
is called τ -stable if for any proper subsheaf F , the slopes satisfy µ(F) < µ(E).
Similarly, E is called τ -semistable ifµ(F)≤µ(E). The moduli space of τ semistable
sheaves on Y with class γ ∈ 0 is denoted by Mτ (Y, γ ).

Lemma 7.1. Assume X is a Gorenstein toric Fano stack of dimension two. If E is a
τ -stable sheaf on Y , then E is supported on X scheme theoretically.

Proof. Let Z be the scheme theoretical support of a τ -stable sheaf E . There is
a trace map trE : Hom•(E, E)→ OZ and a map iE : OZ → Hom0(E, E) such that
trE ◦iE = rkZ (E). (We refer the reader to [Huybrechts and Lehn 1997, §10.1] for
the precise definitions of these maps.) Since the rank of E (over Z ) is positive, iE
must be an injection. By local-to-global spectral sequence, there is an injection
H 0(Z ,OZ )→ Ext0

Z (E, E).
By stability, E must be pure. We first assume E is supported in dimension two.

Then Z is an order n thickening of X in the normal direction. The cohomology
group H 0(Z ,OZ ) is equal to

⊕n
i=0 H 0(X, ω−i

X ). The dimension of H 0(X, ω−1
X )

can be identified with number of lattice points in 1∨ in MR := Hom(M,R), where
M is the dual lattice of N. Recall that the polytope supporting the fan 6 lives in
NR. In general, 1∨ is only a rational polytope. However, since the origin is always
in the interior of 1∨, the dimension of H 0(X, ω−1

X ) is at least one. Therefore, the



CHERN–SIMONS FUNCTIONS ON TORIC CALABI–YAU THREEFOLDS 139

dimension of H 0(Z ,OZ ) is strictly bigger than one. We get a contradiction since a
stable sheaf can only have one dimensional endomorphisms.

Now, let Z be a thickening of a divisor C in X . Similarly, it suffices to show that
H 0(C, ω−1

X ) is nonzero. There is a morphism H 0(X, ω−1
X )→ H 0(C, ω−1

X ). Let us
denote the toric divisors of X by Ei . Because C is an effective divisor, it can be
written as a linear combination

∑
i ai Ei where all ai are nonnegative integers and

at least one of them is positive. Consider the short exact sequence

0−→ IC −→OX −→OC −→ 0.

The cohomology group H 0(C, ω−1
X ) vanishes only if the morphism

H 0(X, IC ⊗ω
−1
X )→ H 0(X, ω−1

X )

is a bijection. The first group can be written as H 0
(
X,O

(∑
i (1− ai )Ei

))
. The

Gorenstein condition implies that 1 and 1∨ are both lattice polytopes. The dimen-
sion of H 0

(
X,O

(∑
i (1−ai )Ei

))
is equal to the number of lattice points inside the

polytope that is obtained from 1∨ by translating its faces towards origin. Because
at least one ai is positive and 1∨ is a lattice polytope to begin with, the number of
lattice points will decrease when one face is pushed. As a consequence, H 0(C, ω−1

X )

is nonzero. �

Lemma 7.2. Let E1 and E2 be τ -semistable sheaves on X such that µ(E1)= µ(E2).
Then, Ext2(E1, E2)= 0.

Proof. By Serre duality, Ext2
X (E1, E2) = HomX (E2, E1 ⊗ ωX )

∗. Because ω−1
X is

ample and E1, E2 have dimension bigger than zero, µ(E1⊗ωX ) < µ(E1)= µ(E2).
Hence, Ext2(E1, E2) vanishes by stability. �

Lemma 7.1 doesn’t hold for semistable sheaves. For example, if we take a proper
but nonreduced curve in Y, then its structure sheaf can be semistable but not stable.

Lemma 7.3. Let E be a τ -semistable sheaf on Y. Then the restriction E|X is a
semistable sheaf on X.

Proof. Because E is set theoretically supported on X , it can be written as consequent
extensions of stable sheaves on X with the same slope (the Jordan–Holder filtration).
Furthermore, the natural morphism E→E|X is always a surjection of sheaves. Since
µ(E|X )= µ(E), any quotient sheaf that destabilizes E|X will destabilize E as well.

�

From now on, we will assume X is Gorenstein.

Theorem 7.4. The L∞ products µk of Lω vanish at semistable points.

Proof. Let E be a τ -semistable sheaf on Y. It follows from Theorem 5.1 that we can
define a cyclic L∞ algebra Lω such that E is mapped to a Maurer–Cartan element x .
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Moreover, Ext i
Y (E, E) coincides with H i (Lω, δx). The L∞ products µk uniquely

defines L∞ products on H •(Lω, δx) up to L∞ isomorphisms. We say that µk vanish
at x if they vanish after passing to H •(Lω, δx).

An MC element x of Lω decomposes into (x, ε), with respect to the decompo-
sition L1

ω = L1
⊕ (L2)∗. It follows from Theorem 4.2 that x is an MC element

of L . The cohomology H •(Lω, δx) can be computed as the cohomology of the total
complex of

(L2)∗ // (L1)∗ // (L0)∗

L0 //

OO

L1 //

OO

L2

OO

where the horizontal differential is δx and the vertical differential is induced by
[ε,−].

If x is the image of a sheaf of the form ι∗E for some sheaf E on X then x = (x, 0).
In that case, the associated spectral sequence will degenerate at E1 page.

If ε 6= 0, we need to pass to the E2 page of

H 2(L , δx)
∗ 0 // H 1(L , δx)

∗ // H 0(L , δx)
∗

H 0(L , δx) //

[ε,−]

OO

H 1(L , δx) //

[ε,−]

OO

H 2(L , δx)

[ε,−]

OO

The MC element (x, 0) is exactly the one corresponding to E|X . So H i (L , δx)=

Ext i
X (E|X , E|X ). Now by Lemmas 7.3 and 7.2, H 2(L , δx) vanishes. By the previous

commutative diagram, H 1(Lω, δx) and H 2(Lω, δx) are equal to the kernel and
cokernel of the map

H 1(L , δx)
[ε,−] // H 1(L , δx)

∗
.

The L∞ structure µk on H •(Lω, δx) is obtained from µk by transferring. The
vanishing of H 2(L , δx) and H 2(L , δx)∗ together with Theorem 4.2 implies µk = 0.
Therefore µk must vanish after transferring to cohomology with respect to [ε,−]. �

Remark 7.5. A corollary of Theorem 7.4 is that the moduli space of τ -semistable
sheaves on Y is smooth as an Artin stack since the images of µk are nothing but
obstructions to smoothness of moduli space.

We are not going to define Joyce’s generalized DT invariants and state the general
form of the integrality conjecture since it requires too much work. The interested
reader can refer to [Joyce and Song 2012] for the full story.

Corollary 7.6. The generalized Donaldson–Thomas invariants D̂T(τ ) for τ -semi-
stable sheaves are integers on local surfaces.
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Proof. The integrality has been proved for the DT invariants of a quiver without
relations. The proof can be found in [Joyce and Song 2012] or [Reineke 2011]. By
[Joyce and Song 2012, Proposition 7.28], the formal neighborhood of a point of the
moduli space of sheaves is isomorphic as formal schemes to a formal neighborhood
of the origin of the moduli space of representation of the Ext-quiver (see the
proposition for the definition). By Theorems 7.4 and 4.4 the relations of the Ext-
quiver vanish when the point is taken to be semistable. Jiang [2010] proved that
Behrend function only depends on the formal neighborhood of a moduli space.
Therefore, the integrality of the moduli space of semistable sheaves is equivalent to
the integrality of the moduli space of representations of quivers without relations. �

8. A dimension reduction formula for virtual motives

In this section, we give the second application of CS functions. We prove a decom-
position theorem for virtual motives of fd , which partially generalizes [Behrend
et al. 2013, Section 3]. If we could identify geometric stability with the appropriate
quiver stability condition, then we would obtain a decomposition theorem of virtual
motives of Hilbert schemes, which generalizes the most interesting part of [loc. cit.].
However, so far we have no idea how to deal with geometric stability.

Let L be the motive of the affine line. Given a scheme X , we will denote its
motive by [X ].

Consider a smooth scheme M with an action of a special algebraic group G,
together with a G-invariant regular function f : M→ C. Denef and Loeser [2001]
defined the motivic vanishing cycle [φ f ] in a suitable augmented Grothendieck ring
of varieties (called the ring of motivic weights). Since our result is not going to
involve the precise definition of this ring, we refer to [Behrend et al. 2013, Section 1]
for the precise definition of the ring of motivic weights.

Definition 8.1. [Behrend et al. 2013] In the appropriate ring of motivic weights,
we define the virtual motive of a degeneracy locus by

[critG( f )]vir := −L−
dim M−dim G

2 ·
[φ f ]

[G]
.

We will try to get some property of the virtual motive of the CS function fd .
The following lemma guarantees that the main technical result [Behrend et al. 2013,
Proposition 1.11] applies.

Lemma 8.2. Let fd : L1
ω,d→ C be the CS function constructed in Section 5. There

is a C∗ action on L1
ω,d such that:

(1) For λ ∈ C∗, fd(λ · z)= λ fd(z).

(2) The limit limλ→0 λ · z exists in L1
ω,d .



142 ZHENG HUA

Proof. Let us choose coordinate z = (y1, . . . , y j , . . . , w
∗

1, . . . , w
∗

i , . . . ) on L1
ω,d

with respect to the decomposition L1
ω,d = L1

d⊕(L
2
d)
∗. As mentioned in Remark 5.4,

fd =

dim L2
d∑

i=1

ai (. . . , y j , . . .)w
∗

i

where the ai are polynomials in y j . We define the C∗ action by scaling w∗i . The
limit of the orbits of this one parameter subgroup is L1

d . �

Theorem 8.3. Take X , Y and Ld , Lω,d as before. We have the dimension reduction
formula

[φ fd ] = −[(L
2
d)
∗
] · [MC(Ld)].

Proof. The existence of the C∗ action in Lemma 8.2 implies that the Milnor fibration
given by fd is Zariski trivial outside the central fiber. Hence

[ f −1
d (1)] =

[L1
ω,d] − [ f

−1
d (0)]

(L− 1)
.

Furthermore, Lemma 8.2 together with [Behrend et al. 2013, Proposition 1.11]
implies that

[φ fd ] = [ f
−1
d (1)] − [ f −1

d (0)].

Recall that

fd =

r∑
i=1

ai (y1, . . . , y j , . . .) ·w
∗

i ,

where r = dim L2
d . We can stratify L1

d by the union of {ai = 0 | i = 1, . . . , r} and its
complement. The first subscheme is nothing but MC(Ld). Using this stratification,
we obtain

[ f −1
d (0)] = [(L2

d)
∗
][MC(Ld)] + ([L1

d] − [MC(Ld)])[(L2
d)
∗
]L−1

= (1− L−1)[(L2
d)
∗
][MC(Ld)] + L−1

[L1
ω,d].

Then we obtain the formula for [φ fd ]:

[φ fd ] = [ f
−1
d (1)] − [ f −1

d (0)] = −[ f −1(0)]
L

L− 1
+
[L1
ω,d]

L− 1
(10)

=−

(
L− 1

L
[(L2

d)
∗
][MC(Ld)] +

L1
ω,d

L

)
L

L− 1
+
[L1
ω,d]

L− 1

=−[(L2
d)
∗
][MC(Ld)]. �
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9. Virtual motives of the moduli space of framed representations

In this section, we will compute the virtual motive of the moduli space of framed
representations, which is a noncommutative analogue of Hilbert schemes. The main
result is the formula

Z(t)=
C(L

1
2 t)

C(L−
1
2 t)
.

where C(L
1
2 t) is a generating series defined in (16).

Using the Chern–Simons function we obtained, this is a straightforward general-
ization of the work in [Behrend et al. 2013] in the case of C3. The same calculation
is also obtained independently by Morrison [2012].

We fix the following notations for motives:

[d]L! := (Ld
− 1)(Ld−1

− 1) · · · (L− 1), [d]L! :=
n∏

i=0

[di ]L!,

[
d
d ′

]
:=

[d]L!
[d − d ′]L! [d ′]L!

,

[
d
d ′

]
L

:=

n∏
i=0

[
di

d ′i

]
.

Let GLd =
∏n

i=0 GLdi and Grd ′,d =
∏n

i=0 Gr(d ′i , di ). It is easy to show that

[GLd] = L
∑n

i=0 (
di
2 )[d]L! and [Grd ′,d] =

[
d
d ′

]
L

.

Definition 9.1. Consider the quiver Qω defined in the previous section. Given a
dimension vector d, let V0, . . . , Vn be the sequence of vector spaces of dimensions
d0, . . . , dn over the nodes. A framed representation V of Qω with dimension
vector d is a representation of Qω together with a vector v = (v0, . . . , vn) such that
vi ∈ Vi . A framed representation V is called cyclic if v0, . . . , vn generate V.

Denote the submodule generated by v by Mv, and let

Yd = {(A, v) ∈ L1
ω,d × V0× . . .× Vn | fd = 0},

Zd = {(A, v) ∈ L1
ω,d × V0× . . .× Vn | fd = 1}.

Then Yd =
⊔

d ′<d
Y d ′

d and Zd =
⊔

d ′<d
Z d ′

d , where

Y d ′
d = {(A, v) ∈ L1

ω,d × V0× . . .× Vn | fd = 0, cl(Mv)= d ′},

Z d ′
d = {(A, v) ∈ L1

ω,d × V0× . . .× Vn | fd = 1, cl(Mv)= d ′}.

Now, write wd = [Yd] − [Zd] and wd ′
d = [Y

d ′
d ] − [Z

d ′
d ].
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Let |d| =
∑n

i=0 di . By Theorem 8.3, we have

(11) wd = L|d|[(L2
d)
∗
][MC(Ld)].

There is a projection from Y d ′
d to the Grassmannian Grd ′,d , whose fiber is the set{((

A0 A′
0 A1

)
, v
) ∣∣ fd = 0

}
,

where A0 are matrices of size d ′× d ′ (depending on the source and target vertices),
A1 are matrices of size (d− d ′)× (d− d ′) and A′ are matrices of size d ′× (d− d ′).
There is an embedding of L1

ω,d ′ × L1
ω,d−d ′ into L1

ω,d by mapping to block diagonal
matrices.

The CS function fd satisfies

fd
((

A0 A′
0 A1

)
, v
)
= fd ′(A0, v)+ fd−d ′(A1, v).

Denote the subgroup of GLd that preserves these Borel matrices by Bd,d ′ and the
Euler form of Qω by χ .

[Y d ′
d ] =

[Bd,d ′]

[GLd ′][GLd−d ′]
· L−χ(d

′,d−d ′)
[

d
d ′

]
L

([Y d ′
d ′ ] · [Yd−d ′]

+ (L− 1) · [Z d ′
d ′ ] · [Zd−d ′]) · L

−|d−d ′|.

A similar analysis yields

[Z d ′
d ] =

[Bd,d ′]

[GLd ′][GLd−d ′]
· L−χ(d

′,d−d ′)
[

d
d ′

]
L

([Y d ′
d ′ ] · [Zd−d ′]

+ (L− 2) · [Z d ′
d ′ ] · [Zd−d ′] + [Z d ′

d ′ ] · [Yd−d ′]) · L
−|d−d ′|.

The above formulas, combined with (11), yield

(12) wd ′
d =

[Bd,d ′]

[GLd ′][GLd−d ′]
L−χ(d

′,d−d ′) L−|d−d ′|
[

d
d ′

]
L

(wd ′
d ′ ·wd−d ′)

=
[Bd,d ′][(L2

d−d ′)
∗
]

[GLd ′][GLd−d ′]
L−χ(d

′,d−d ′)
[

d
d ′

]
L

[MC(Ld−d ′)] ·w
d ′
d ′ .

Because Yd =
⊔

d ′<d
Y d ′

d and Zd =
⊔

d ′<d
Z d ′

d , we get

wd
d = wd −

∑
d ′<d

wd ′
d .
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Let c̃d=[MC(Ld)]/[GLd]. Applying (11) and (12), we obtain the recursion formula

(13) wd
d = L|d|[(L2

d)
∗
][MC(Ld)]

−

∑
d ′<d

[Bd,d ′][(L2
d−d ′)

∗
]

[GLd ′][GLd−d ′]
· L−χ(d

′,d−d ′)
[

d
d ′

]
L

[MC(Ld−d ′)] ·w
d ′
d ′ −
[φ f ss

d
]

[GLd]

= L|d|[(L2
d)
∗
]c̃d +

∑
d ′<d

[(L2
d−d ′)

∗
] · L−χ(d

′,d−d ′)c̃d−d ′ ·
[φ f ss

d′
]

[GLd ′]

Here f ss
d is the restriction of fd to the semistable loci.

Define the virtual motive of the noncommutative Hilbert scheme Hilbd by

(14) [Hilbd
]vir := −L

χ(d,d)−|d|
2
[φ f ss

d
]

[GLd]
.

After replacing φ f ss
d

by [Hilbd
]vir, subject to the above formula, we obtain

(15) L|d|[(L2
d)
∗
] c̃d =

∑
d ′≤d

L−
2χ(d′,d−d′)+χ(d′,d′)

2 L
|d′|

2 [(L2
d−d ′)

∗
] c̃d−d ′ · [Hilbd ′

]vir

L
|d|
2 [(L2

d)
∗
] c̃d =

∑
d ′≤d

L−
χ(d,d)−χ(d−d′,d−d′)

2 L−
|d−d′|

2 [(L2
d−d ′)

∗
] c̃d−d ′ · [Hilbd ′

]vir

L
χ(d,d)

2 L
|d|
2 [(L2

d)
∗
] c̃d =

∑
d ′≤d

L
χ(d−d′,d−d′)

2 L−
|d−d′|

2 [(L2
d−d ′)

∗
] c̃d−d ′ · [Hilbd ′

]vir

Define the generating series for c̃d by

(16) C(t)=
∑

d∈Zn+1
≥0

L
χ(d,d)

2 [(L2
d)
∗
] c̃d · t d

and the generating series of noncommutative Hilbert schemes by

Z(t)=
∑

d∈Zn+1
≥0

[Hilbd
]vir · t d.

Then the generating series of Hilbert schemes can be written as

(17) Z(t)=
C(L

1
2 t)

C(L−
1
2 t)
.

Finally, notice that Lχ(d,d)/2[(L2
d)
∗
] is nothing but LχQ(d,d)/2 for the Euler form of

the quiver Q. So C(t) is the generating series of the moduli space of representations
of Q (without stability).
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