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ANGULAR DISTRIBUTION OF
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AND RAYS FOR PLANES

NOBUHIRO INNAMI AND YUYA UNEME

Grove and Shiohama used the critical point theory of a distance function to
prove the diameter sphere theorem. In light of the angular distribution of
minimizing geodesics, we examine and develop the techniques in its proof
to make some diameter sphere theorems and study complete noncompact
manifolds, using a generalized Toponogov comparison theorem.

1. Introduction

Let M be a compact Riemannian n-manifold with distance d( · , · ) induced from its
Riemannian metric. Let diam(M)=max{d(x, y) | x, y ∈ M} denote its diameter.
Grove and Shiohama [1977] have proved that if the sectional curvature of M is
greater than or equal to 1 and diam(M) > π/2, then M is homeomorphic to an
n-sphere, using the critical point theory of a distance function. From this point of
view, the unit sphere has nice properties as a reference surface. We examine those
properties to make some other diameter sphere theorems and show some conditions
under which M is diffeomorphic to an n-plane. In order to do this, we introduce the
angular distribution of minimizing geodesic segments and the reference map from
M into a reference surface. The angular distribution measures how the minimizing
geodesics are distributed in M. The reference map will be used to compare the
geometry on M with the geometry on a reference surface M̃ through the generalized
Toponogov comparison theorem.

In Section 2, we define the angular distribution of minimizing geodesic segments
connecting two points and the reference map 8p,q for q in (M, p) with a base point
at p into a reference surface (M̃, p̃) of revolution with vertex p̃. We propose a
domain D( p̃, q̃)⊂ M̃ such that the generalized Toponogov comparison theorem is
valid if 8p,q(M)⊂ D( p̃, q̃). Using this terminology we state some theorems.

In Section 3, we summarize some properties of geodesics in a surface of revolution
and present the generalized Toponogov comparison theorem of the form used in
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this note. In Section 4, we show some properties of the domain D( p̃, q̃) and
give proofs of the theorems stated in Section 2. In Section 5, we study the case
that M̃ is a κ-plane Mκ — which is, by definition, a complete simply connected
Riemannian surface with constant Gaussian curvature κ. We have some sphere
theorems depending on the relation among the angular distribution of minimizing
geodesic segments, the distance between two points, and the Gaussian curvature
of a model surface. In Section 6, we discuss the case of noncompact manifolds
referred to a κ-plane with κ < 0.

Klingenberg [1963] was first interested in radial sectional curvature. Some roles
of critical point theory have been introduced in [Abresch and Meyer 1997]. A
general introduction to the techniques used in this note is found in [Cheeger and
Ebin 1975]. There are some generalized Toponogov comparison theorems for radial
curvature. But the version used in this note was first proved in [Itokawa et al. 2001;
2003] and developed in [Kondo and Tanaka 2010; Innami et al. 2013a]. As its
application, some diameter sphere theorems have been proved in [Kondo 2007;
Kondo and Ohta 2007; Lee 2005; Innami et al. 2013b]. The geometry of geodesics
on surfaces of revolution has been developed in [Belegradek et al. 2012; Sinclair
and Tanaka 2007; Tanaka 1992].

2. Definitions and statements

Let M be a complete Riemannian manifold. We introduce a function αp(x) that
measures the angular distribution of minimizing geodesic segments from x to p. For
p ∈ M let dp(x)= d(p, x) for all x ∈ M. Let Tx M denote the tangent space of M
at x . Let Ap(x) be the set of tangent vectors T (x, p)•(0) at x 6= p of all minimizing
geodesic segments T (x, p) from x to p. The geodesics are supposed to be param-
eterized by arclength. Let βx(v)=min{6 (v,w) | w ∈ Ap(x)} for v ∈ Tx M and

αp(x)=max{βx(v) | v ∈ Tx M}.

Obviously, αp(x) ≤ π for all x ∈ M, x 6= p. If x is not a cut point of p, then
αp(x)=π . We call αp(x) the angular distribution of Ap(x) in the unit sphere Sx M
in Tx M. We call x ∈ M a critical point of dp if αp(x)≤ π/2. If p, q ∈ M satisfy
d(p, q)= diam(M), then q is a critical point of dp, and p is a critical point of dq .

The distribution of critical points of dp depends on the topological and metric
structure of M. The diameter sphere theorem is based on the following lemma due
to Grove and Shiohama [1977].

Lemma 2.1 (basic lemma). Let M be a complete Riemannian manifold and p ∈ M.
If there exists no critical point of dp in M r {p}, then M is diffeomorphic to the
Euclidean space En. If there exists only one critical point q ∈ M r {p} of dp and
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if αp(q) < π/2 or dp(q) = max{dp(x) | x ∈ M}, then M is homeomorphic to an
n-sphere.

In this note, using the angular distribution, we propose some conditions under
which the assumption of Lemma 2.1 is satisfied. In order to do this we use the
generalized Toponogov comparison theorem for radial curvature proved in [Itokawa
et al. 2003; Innami et al. 2013a; Kondo and Tanaka 2010].

Let (M̃, p̃) be a surface of revolution homeomorphic to a sphere or a plane with
a geodesic polar coordinate system (r, θ) around p̃. Its metric is of class C2 and
given by

ds2
= dr2

+m(r)2dθ2,

where m(r) > 0, 0 < r < ` ≤∞, θ ∈ S1, and m : [0, `)→ R satisfies the Jacobi
equation

m′′+ K̃ m = 0, m(0)= 0, m′(0)= 1,

and if ` <∞,
m(`)= 0, m′(`)=−1.

The function K̃ is called the radial curvature function of M̃.
Let (M, p) be a complete Riemannian manifold with a base point at p. A

radial plane 5⊂ Tx M at a point x ∈ M is a plane containing a vector tangent to
a minimizing geodesic segment emanating from p. A radial sectional curvature
KM(5) is a sectional curvature with respect to a radial plane5. We say that (M, p)
is referred to (M̃, p̃) if every radial sectional curvature at x ∈ M is bounded below
by K̃ (d(p, x)), namely, KM(5)≥ K̃ (d(p, x)).

Let (M, p) be referred to (M̃, p̃). If `<∞, we then have dp(x)≤ ` for all x ∈M,
equality holding if and only if M is isometric to the warped product Sn−1

×m [0, `],
where n = dim M and Sn−1 is a sphere; see [Itokawa et al. 2001]. From this fact,
we may assume that max{dp(x) | x ∈ M}< ` if ` <∞, because our purpose is to
study some conditions on M being homeomorphic to a sphere. Thus, we have the
point q̃ = (d(p, q), 0) ∈ M̃ for any point q ∈ M.

Let 8p,q denote the reference map from M to the east side M̃+ of the meridian
containing T ( p̃, q̃) in M̃, namely M̃+ = {(r, θ) | 0≤ r, 0≤ θ ≤ π}. By definition,
for a point x ∈ M,

d( p̃,8p,q(x))= d(p, x) and d(q̃,8p,q(x))= d(q, x).

It is not certain whether or not every point x ∈ M has a reference point and every
geodesic triangle 4(pqx), q, x ∈ M, admits the corresponding geodesic triangle
4( p̃q̃ x̃), q̃, x̃ ∈ M̃. This question has been answered affirmatively under a certain
condition in [Innami et al. 2013a]. However, we use only a quarter of M̃ in the
critical point theory. More precisely, as the image space of the reference map 8p,q ,
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we define a special domain D( p̃, q̃) in M̃+ for q̃ = (r0, 0) ∈ M̃, 0 < r0 < `. For
θ ∈ [0, π/2] let

λq̃(θ)= sup
{

r > 0
∣∣∣ 6 (vs,−

∂

∂r

)
>
π

2
, vs ∈ Aq̃(zs),

6

(
ws,−

∂

∂r

)
<
π

2
, ws ∈ Azs (q̃), 0≤ s < r

}
where zs = (s, θ), and set

D( p̃, q̃)= {(r, θ) ∈ M̃ | 0≤ r < λq̃(θ), 0≤ θ < π/2} ∪ { p̃, q̃}.

Obviously, D( p̃, q̃)⊃ T ( p̃, q̃), since 6 ( p̃zq̃)= π for all z ∈ T ( p̃, q̃)r { p̃, q̃}.
Moreover, as will be shown in Lemma 4.1, there exists no cut point of q̃ in D( p̃, q̃).
Hence, if8p,q(M)⊂ D( p̃, q̃), then the generalized Toponogov comparison theorem
is valid for all geodesic triangles 1(pqx) and for all x ∈ M.

We define a dominant triangle for M with respect to p and q . Let z ∈ M̃ and T a
minimizing geodesic segment with z ∈ T. For an angle ω let S = S(z, T, ω) denote
the geodesic such that the angle of S with T at z is ω. We make a trilateral with
three geodesic segments:

S0 = T ( p̃, q̃), S1 = S( p̃, T ( p̃, q̃), αq(p)), S2 = S(q̃, T ( p̃, q̃), αp(q)).

We call the domain DM bounded by S0, S1 and S2 a dominant domain for M if
it exists. The dominant domain DM becomes a triangle if S1 and S2 intersect.
Otherwise, it may not become a triangle. If S0, S1 and S2 make a triangle, we call it
the dominant triangle for M , and it is denoted by 1M =4(T ( p̃, q̃), αq(p), αp(q)).

For a triangle 1, the triangle domain bounded by 1 in M̃+ is also denoted by 1.
If the dominant triangle 1M exists and the generalized Toponogov comparison
theorem is valid for (M, p) referred to (M̃, p̃), then 8p,q(M) ⊂ 1M because of
the Alexandrov convexity. The vertex of the dominant triangle 1M other than p̃
and q̃ is denoted by z(1M).

Theorem 2.2. Let (M, p) be a complete Riemannian manifold referred to (M̃, p̃).
Assume that there exists a point q in M such that the dominant triangle 1M =

4(T ( p̃, q̃), αq(p), αp(q)) for M can be made from p and q. If z(1M) ∈ D( p̃, q̃),
then M is topologically an n-sphere.

We have a generalization of the diameter sphere theorem if we impose a certain
condition on M̃ ; see Lemma 4.3. We say that M̃ is without conjugate points in
a half if any point z ∈ Int(M̃+) has no point conjugate to z along any geodesic
segment from z contained in Int(M̃+). Here Int(M̃+) is the interior of M̃+. Any
point in Int(M̃+) has no cut point in Int(M̃+) if and only if M̃ is without conjugate
points in a half. Tanaka [1992] proved that M̃ is without conjugate points in a half
if M̃ is a von Mangoldt surface of revolution.
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We say that M̃ is without meridian focal points in a quarter if there exists no focal
point of the meridian {(r, 0) | 0≤ r ≤ `} in a quarter {(r, θ) | 0≤ r <`, 0<θ <π/2}
of M̃. If M̃ is without conjugate points in a half, then it is without meridian focal
points in a quarter; see Proposition 3.1. If M̃ is without meridian focal points in a
quarter, then it is without conjugate points in a quarter; see Proposition 3.2.

If M̃ is without meridian focal points in a quarter and m′(r(q̃)) < 0, then
4(T ( p̃, q̃), π/2, π/2)⊂ D( p̃, q̃); see Lemma 4.3. Kondo and Ohta [2007] have
proved the following corollary, assuming that M̃ is a von Mangoldt surface of
revolution.

Corollary 2.3. Let (M̃, p̃) be a reference surface homeomorphic to a sphere such
that M̃ is without meridian focal points in a quarter. Let (M, p) be a complete
Riemannian manifold referred to (M̃, p̃). If there exists a point q ∈ M such that q
and p are critical points of dp and dq , respectively, and if m′(dp(q)) < 0, then M
is homeomorphic to an n-sphere.

When `=∞, let γ̃ (t)= (t, 0) for t ∈ [0,∞). For θ ∈ [0, π], let λγ̃ (θ) denote
the supremum of those r > 0 such that there exists a unique coray from (s, θ),
0< s < r , to γ̃ whose initial tangent vector v satisfies 6 (v,−∂/∂r) > π/2. Using
this function λγ̃ (θ), we define a special domain D(γ̃ ) in a reference surface of
revolution M̃. Namely, we set

D(γ̃ )= {(r, θ) ∈ M̃ | 0≤ r < λγ̃ (θ), 0≤ θ ≤ π}.

Obviously, λγ̃ (0) =∞. Let ρ p̃(γ̃ ) = sup{θ0 | λγ̃ (θ) =∞ for θ ∈ [0, θ0)}. When
M̃ is a κ-plane with κ ≤ 0, we have ρ p̃(γ̃ )= 0 if κ < 0 and ρ p̃(γ̃ )= π/2 if κ = 0.
If M̃ is a paraboloid of revolution, then ρ p̃(γ̃ )= π .

Let 0p denote the set of all rays from p in (M, p). Let

ηp(v)=min{6 (v, γ̇ (0)) | γ ∈ 0p}

for any v ∈ Tp M, and set

ζp =max{ηp(v) | v ∈ Tp M}.

Obviously, ζp ≤ π for all p ∈M. We call ζp the angular distribution of rays from p.
We call M̃+(θ0)= {(r, θ) | 0≤ r < `, 0≤ θ ≤ θ0} a sector of M̃ for θ0 ∈ [0, π].

Theorem 2.4. Let (M, p) be a complete noncompact Riemannian n-manifold re-
ferred to (M̃, p̃) such that ρ p̃(γ̃ ) > 0. Assume that the sector Int(M̃+(ρ p̃(γ̃ ))) is
without conjugate points. If ζp < ρ p̃(γ̃ ), then M is diffeomorphic to an n-plane.

Since ρ p̃(γ̃ )= 0 for Mκ with κ < 0, the theorem shows an advantage of using a
surface of revolution as a reference surface.
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3. Preliminaries

Let (M̃, p̃) be a surface of revolution with vertex p̃ and let γ : (−∞,∞)→ M̃ be
a geodesic with unit speed. We write γ (s)= (r(s), θ(s)) for all s ∈ (−∞,∞). Let
{E1(s) = γ̇ (s), E2(s)} denote a set of parallel orthonormal vector fields along γ.
Since the vector field Y (s)= ∂/∂θ along γ is generated from a variation through
geodesics γu(s)= (r(s), θ(s)+u), it is a Jacobi vector field along γ. If ϕ(s) denotes
the angle of Y (s) with γ̇ (s), we then have 〈E1(s), Y (s)〉 = m(r(s)) cosϕ(s) = ν
which is called the Clairaut relation. Note that −m(r(0)) ≤ ν ≤ m(r(0)). The
orthogonal complement of Y (s) to γ̇ (s) is

√
m(r(s))2− ν2 E2(s). Therefore,

y(s)=
√

m(r(s))2− ν2

satisfies the Jacobi equation,

y′′(s)+ K̃ (r(s))y(s)= 0.

If C(γ )= {s | r ′(s)= 0}, then the number of elements of C(γ ) is 1 or∞. The
Sturm separation theorem states that if C(γ ) = {s0}, then for every s < s0 there
exists at most one point γ (s1), s1 > s0, conjugate to γ (s). The Clairaut relation
states that if · · ·< s−1 < s0 < s1 < · · · are the solutions of the equation y(s)= 0,
then γ is tangent to the parallel circle r = r(si ) with m(r(si )) = ν and γ (si ) are
conjugate to one another for i ∈Z. From the Sturm separation theorem, if y(s) is the
length of a perpendicular Jacobi vector field along γ such that y(t0)= 0, s0< t0< s1,
then the zeros of y(s) appear in each interval (si , si+1) once for every i ∈ Z.

Proposition 3.1. Let (M̃, p̃) be a surface of revolution with vertex p̃. If M̃ is with-
out conjugate points in a half , then M̃ is without meridian focal points in a quarter.

Proof. Suppose that M̃ is not without meridian focal points in a quarter. Then there
exists a geodesic γ : [0, a] → Int(M̃+) normal to the meridian θ = π/2 such that
θ(γ (a))= π/2 and γ (0) is a focal point of θ = π/2 along γ . Since M̃ is a surface
of revolution, M̃ is symmetric with respect to θ = π/2. From this symmetry, if
γe : [0,∞)→ M̃ denotes the extension of γ , we see that γe(2a) ∈ Int(M̃+) is a
point conjugate to γe(0). Namely, M̃ is not without conjugate points in a half. �

Proposition 3.2. Let (M̃, p̃) be a surface of revolution with vertex p̃. Assume that
M̃ is without meridian focal points in a quarter. Then, M̃ is without conjugate points
in a quarter. In particular, there exists a unique geodesic segment in M̃+(π/2)
connecting any two points in M̃+(π/2).

Proof. Suppose that there exists a geodesic segment ω : [0, L]→ M̃+(π/2) such that
ω(L) is the first point conjugate to ω(0) along ω. Then, r(s)= r(ω(s)), s ∈ [0, L],
is not monotone because M̃ is a surface of revolution without meridian focal points
in a quarter. Assume that r ′(s0)= 0 at s0 with 0< s0 < L .
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The complete extension of ω is denoted by the same symbol and its parametriza-
tion is changed by ω(s)= ω(s+ s0), s ∈ (−∞,∞). By the symmetry of M̃ with
respect to the meridian through ω(0), ω(s0) is a point conjugate to ω(s0 − L).
From the Sturm separation theorem, there exists a number L1 > 0 such that
s0−L<−L1<0 andω(L1) is a point conjugate toω(−L1) alongω. Then, ω(L1) is
a focal point of the meridian through ω(0) along ω and

∣∣θ(ω(0))− θ(ω(L1))
∣∣<π/2.

This contradicts that M̃ is without meridian focal points in a quarter.
We prove the second part. If there exist two geodesic segments connecting the

same endpoints in M̃+(π/2), then they may bounds a biangle domain in M̃+(π/2).
There exists a minimizing geodesic segment in the biangle domain such that the
endpoints are conjugate to each other. This contradicts the first part. �

Lemma 3.3. Let (M̃, p̃) be a surface of revolution with vertex p̃. If M̃ is without
meridian focal points in a quarter, then Int(M̃+) is foliated by geodesics perpendic-
ular to the meridian θ = π/2. In particular, if M̃ is compact, then those geodesics
cross the meridian θ = 0 at points between the focal points along the meridian θ = 0.

Proof. Let z ∈ Int(M̃+). Since M̃ is without meridian focal points in a quarter,
there exists a unique foot w of z on θ = π/2, namely z ∈ X = θ−1(π/2) and
d(z, w)= d(z, X). This proves the first part of the lemma.

If M̃ is compact, then q̃ = (`, 0) is the unique point conjugate to p̃ = (0, 0).
Hence, there exist focal points to θ = π/2 along θ = 0 from p̃ and q̃. Let (a, 0)
and (b, 0) be focal points of θ = π/2 along θ = 0 from p̃ and (`, 0), respectively.
We then have a ≤ b. In fact, if a > b, then the geodesics normal to θ = π/2 from
points near p̃ and (`, 0) meet in Int(M+), contradicting the first part. If a = b, then
all geodesics normal to θ = π/2 pass through (a, 0). If a < b, then they pass the
interval ([a, b], 0), keeping their order. �

We review the generalized Toponogov comparison theorem. Let (M, p) be a
complete Riemannian manifold referred to (M̃, p̃). Let q ∈ M, q 6= p. For a point
x ∈M, let γ : [0, a]→M denote a minimizing geodesic segment such that γ (0)= q
and γ (a)= x . As was seen in [Itokawa et al. 2003], if8p,q(γ (s)), s ∈ [0, a], do not
intersect the cut locus Cut(q̃) of q̃ in M̃, then the generalized Toponogov comparison
theorem for the base angles is valid. Namely, we have

(1) 6 ( p̃q̃ x̃)≤ 6 (pqx) and 6 ( p̃x̃ q̃)≤ 6 (pxq).

Let α : [0, b] → M be a minimizing geodesic segment such that α(0) = p and
α(b) = x . As was seen in [Innami et al. 2013a], the generalized Toponogov
comparison theorem for the angle at p is valid, under the condition that if8p,q(α(s)),
s ∈ [0, b], intersects Cut(q̃) at s = s0, then for any minimizing geodesic segment
T (q̃,8p,q(α(s0))), there exists a minimizing geodesic segment from q to α(s0)
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satisfying (1). Namely, we then have

6 (q̃ p̃x̃)≤ 6 (qpx).

For p, q, x ∈ M , the minimum angle 6 i (pqx) and maximum one 6 s(pqx) are
defined by

6 i (pqx)=min{6 (v,w) | v ∈ Ap(q), w ∈ Ax(q)},

6 s(pqx)=max{6 (v,w) | v ∈ Ap(q), w ∈ Ax(q)}.

It should be noted that there may not exist any triangle 4(pqx) with three angles
6 s(pqx), 6 s(pxq), and 6 s(qpx).

In this note, we use the generalized Toponogov comparison theorem of the
following form, which is a conclusion of the argument in [Itokawa et al. 2003].

Theorem 3.4. Let (M, p) be a complete Riemannian manifold referred to a surface
of revolution (M̃, p̃). Let q ∈ M, q 6= p. If there exists a star-shaped domain D
around q̃ contained in the dominant domain DM such that 8p,q(M)⊂ D, then for
all x ∈ M,

6 ( p̃q̃ x̃)≤ 6 i (pqx), 6 ( p̃x̃ q̃)≤ 6 i (pxq), 6 (q̃ p̃x̃)≤ 6 i (qpx).

We say that a domain D ⊂ M̃+ is star-shaped around q̃ in M̃ if there exists a
unique minimizing geodesic segment from q̃ to any point z ∈ D contained in D.

4. Dominant domains

Let (M̃, p̃) be a surface of revolution homeomorphic to a sphere or a plane with a
geodesic polar coordinate system (r, θ) around p̃. Let q̃ = (r0, 0) ∈ M̃, 0< r0 < `.

Lemma 4.1. Let D( p̃, q̃) be the subset defined before. Then, there is no cut point
of q̃ in D( p̃, q̃), and D( p̃, q̃) is star-shaped around p̃ and q̃.

Proof. Let z ∈ D( p̃, q̃) and let γ : [0, a] → M̃, a = d(q̃, z), a minimizing
geodesic segment such that γ (0) = q̃, γ (a) = z, 6 (γ̇ (0),−∂/∂r) < π/2, and
6 (γ̇ (a),−∂/∂r) < π/2. If r(s)= r(γ (s)), s ∈ [0, a], then r ′(0) < 0 and r ′(a) < 0.

We prove that γ (a) is not conjugate to γ (0) along it. In order to prove this, it is
enough to prove that r(s) is monotone decreasing in s ∈ [0, a], since M̃ is a surface
of revolution. If r ′(s)≥ 0 for some s ∈ [0, a], then, from r ′(a) < 0, there exist at
least two parameters s1 and s2 such that 0 < s1 < s2 < a and r ′(s1) = r ′(s2) = 0.
This implies that γ (s2) is a point conjugate to γ (s1) along γ, contradicting the fact
that γ ([0, a]) is minimizing.

Next, we prove that z is joined to q̃ by a unique minimizing geodesic. Suppose for
indirect proof that γ1 : [0, a]→ M̃ is another minimizing geodesic segment satisfying
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the same condition as γ. Set ϕ(s) = 6 (γ̇ (s), ∂/∂θ) and ϕ1(s) = 6 (γ̇1(s), ∂/∂θ)
for s ∈ [0, a]. Without loss of generality, 0> ϕ(0) > ϕ1(0) >−π/2, so

m(r(0)) cosϕ(0) > m(r(0)) cosϕ1(0).

From this, the Clairaut relation states that

m(r(a)) cosϕ(a) > m(r(a)) cosϕ1(a).

Therefore, we have 0 > ϕ(a) > ϕ1(a) > −π/2. On the other hand, since z is
the first meeting point of γ and γ1, the relation between ϕ(a) and ϕ1(a) must be
ϕ(a) < ϕ1(a), a contradiction. This implies that z is not a cut point of q̃ .

We next prove that γ ([0, a])⊂ D( p̃, q̃). If z= (r0, θ), then we define zt = (t, θ)
for t ∈ [0, r0]. We set

t0 = sup{s | T (zt , q̃)⊂ D( p̃, q̃) for all t ∈ [0, s)}.

From the first variation formula, we see there exists a number ε > 0 such that
there exists a unique minimizing geodesic segment T (zt , q̃) and zt ∈ D( p̃, q̃) for
every t ∈ [0, ε). As seen above, T (zt , q̃)⊂ D( p̃, q̃) for all t ∈ [0, ε); hence t0 > 0.
If T (zt0, q̃) is tangent to the parallel circle at q̃, then t0 = λq̃(θ), contradicting
r0 < λq̃(θ). This is not the case. Otherwise, from the facts seen above, there exists
a neighborhood of T (zt0, q̃) contained in D( p̃, q̃). This implies that t0 = r0. �

This lemma makes it possible to use the generalized Toponogov comparison
theorem if 8p,q(M)⊂ D( p̃, q̃).

Lemma 4.2. Let (M, p) be a complete Riemannian manifold referred to (M̃, p̃).
Assume that there exists a point q in M such that the dominant triangle 1M =

4(T ( p̃, q̃), αq(p), αp(q)) for M can be made from p and q. If z(1M) ∈ D( p̃, q̃),
then 8p,q(M)⊂1M ⊂ D( p̃, q̃). In particular, the generalized Toponogov compar-
ison theorem by 8p,q for (M, p) referred to (M̃, p̃) is valid.

Proof. From Lemma 4.1, D( p̃, q̃) is star-shaped around p̃ and q̃. Therefore, the
triangle domain 1M satisfies 1M ⊂ D( p̃, q̃).

We prove that 8p,q(M) ⊂1M. For a sufficiently small ε > 0, the generalized
Toponogov comparison theorem is valid for all triangles 4(pqx) if

d(p, x)+ d(q, x) < d(p, q)+ ε;

see [Itokawa et al. 2003; Innami et al. 2013a; Kondo and Tanaka 2010]. Let
x̃ =8p,q(x). Since 6 ( p̃q̃ x̃)≤ 6 (pqx)≤ αp(q) and 6 (q̃ p̃x̃)≤ 6 (qpx)≤ αq(p),
we have x̃ ∈1M.

Let x ∈ M be any point and γ : [0, a] → M , a minimizing geodesic segment
such that γ (0)= q and γ (a)= x . We define

t0 = sup{t |8p,q(γ (s)) is defined and 8p,q(γ (s)) ∈1M for s ∈ [0, t)}.



178 NOBUHIRO INNAMI AND YUYA UNEME

As is seen above, we have t0 > 0. Suppose for indirect proof that t0 < a. Then
ỹ = 8p,q(γ (t0)) is defined and ỹ ∈ T (q̃, z(1M)) or ỹ ∈ T ( p̃, z(1M)). Let Ũ be
an open set such that 1M r T ( p̃, q̃) ⊂ Ũ ⊂ D( p̃, q̃). Since ỹ is not a cut point
of q̃ , there exists a number t1 with t1 > t0, such that the points 8p,q(γ (s)) exist in
Ũ for all s ∈ [t0, t1] and x̃1 =8p,q(γ (t1)) 6∈1M. In fact, we find those reference
points because of the method in [Itokawa et al. 2003]. Therefore, we have either
6 ( p̃q̃ x̃1) > αp(q) or 6 (q̃ p̃x̃1) > αq(p).

On the other hand, since there is no cut point of q̃ in Ũ , the generalized Toponogov
comparison theorem is valid in 8−1

p,q(Ũ ). Hence,

6 ( p̃q̃ x̃1)≤ 6 (pqγ (t1))≤ αp(q), 6 (q̃ p̃x̃1)≤ 6 (qpγ (t1))≤ αq(p),

a contradiction. Therefore, t0 = a and x̃ ∈1M. �

Proof of Theorem 2.2. Since z(1M) ∈ D( p̃, q̃), we have both αp(q) < π/2 and
αq(p) < π/2. In particular, q is a critical point of dp. In order to apply Lemma 2.1,
we have only to prove that there exists no critical point in M r {p, q}. Let x ∈ M.
From Lemma 4.2, the generalized Toponogov comparison theorem by 8p,q for
(M, p) referred to (M̃, p̃) is valid. Hence, we have π/2 < 6 ( p̃x̃ q̃) ≤ 6 (pxq)
since x̃ = 8p,q(x) ∈ D( p̃, q̃). Consequently, αp(x) > π/2, so x is not a critical
point of dp. �

A special case of the next lemma has been proved in [Kondo and Ohta 2007].

Lemma 4.3. Let (M̃, p̃) be a reference surface without meridian focal points in a
quarter and q̃ = (r0, 0). If m′(r0) < 0, then 1=4(T ( p̃, q̃), π/2, π/2)⊂ D( p̃, q̃).

Proof. We first prove that the domain �— bounded by the minimizing geodesic
segment T ( p̃, q̃), the parallel circle r = r0 = r(q̃), and the meridian θ = π/2 — is
foliated by geodesic segments which are either tangent to r = r0 or perpendicular
to the meridian θ = π/2 and cross the meridian θ = 0.

Let r1 < r0 satisfy m(r1) = m(r0) and m(r) > m(r0) for all r ∈ (r1, r0). Since
m′(r0) < 0, there exists at least one r1. The Clairaut relation states that the strip
between parallels r = r1 and r = r0 is foliated by the geodesic segments Tτ (t),
0≤ t ≤ t0, where Tτ (0)= (r0, τ ), Ṫτ (0)=−(1/m(r0))∂/∂θ , and r(Tτ (t))∈ (r1, r0)

for all t ∈ (0, t0). Hence the subset �1 of � bounded by T ( p̃, q̃), r = r0, and Tπ/2
is foliated by geodesic segments Tτ which are tangent to r = r0.

Let Sσ (t), σ ∈ (0, r0), denote the geodesic segments such that Sσ (0)= (σ, π/2)
and Ṡσ (0) = −(1/m(σ ))∂/∂θ . Since there exists no point focal to θ = π/2 in
the sector {(r, θ) | θ ∈ (0, π/2)}, those geodesic segments give a foliation of the
subset �2 of �, bounded by T ( p̃, q̃), Tπ/2, and θ = π/2; see Lemma 3.3. Since
�=�1 ∪�2, the first claim is proved.

Let γ : [0, L]→ M̃ denote the geodesic segment which is the edge of 1 opposite
to p̃. Hence, we have γ (0)= q̃, γ̇ (0)= (1/m(r0))∂/∂θ , and θ(γ (L))= π/2. Let
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z = (r, π/2) for r ∈ (0, r(γ (L))). From Proposition 3.2, there exists a unique
minimizing geodesic segment ω : [0, L1] → M̃ from q̃ to z in 1.

We have only to prove that the r-coordinate of ω is monotone decreasing. We
have 6 (ω̇(0),−∂/∂r)<π/2 and 6 (ω̇(L1),−∂/∂r)>π/2 because of the foliation
given in the first part. Therefore, if it is not monotone, then there exist two parameters
s1 and s2 such that ω is tangent to the parallel circles at s1 and s2, since then ω(s2)

is a point conjugate to ω(s1), contradicting the fact that ω is minimizing.
Since the r-coordinate of any geodesic segment from q̃ in 1 is monotone de-

creasing, 4(T ( p̃, q̃), π/2, π/2)⊂ D( p̃, q̃). �

Proof of Corollary 2.3. This corollary follows from Proposition 3.1, Lemma 4.3
and Theorem 2.2, since 1M ⊂4(T ( p̃, q̃), π/2, π/2)⊂ D( p̃, q̃). �

We need two lemmas to prove Theorem 2.4. For z ∈ D(γ̃ ), let zt ∈ T ( p̃, z) be
the point such that r(zt)= t .

Lemma 4.4. Let (M̃, p̃) be a surface of revolution with vertex p̃ such that `=∞
and let γ̃ : [0,∞)→ M̃ be a ray such that γ̃ (t)= (t, 0) for all t ≥ 0. Let z ∈ D(γ̃ ).
Then, there exists a number R0 > 0 such that the angles of T (zt , γ̃ (s)) with −∂/∂r
at zt are greater than π/2 for all zt ∈ T ( p̃, z) and s > R0.

Proof. For any s > 0, let ψ(s) be the supremum of the angles of T (zt , γ̃ (s))
with −∂/∂r at zt for all zt ∈ T ( p̃, z). Then ψ(s) is monotone and increasing in
s ∈ (0,∞), since (M̃, p̃) is a surface of revolution homeomorphic to a plane. Since
T (zt , γ̃ (s)) converges to the corays from zt to γ̃ , ψ(s) converges to a real number
greater than π/2 as s→∞. �

Lemma 4.5. Let (M, p) be a complete noncompact Riemannian n-manifold re-
ferred to (M̃, p̃). Let γ : [0,∞)→ M be a ray such that γ (0)= p. Then, for any
points x ∈ M and z ∈ M̃, there exists a sequence of parameters s j such that s j→∞

and the angles of T (γ (s j ), x) with −γ̇ (s j ) and T (γ̃ (s j ), z) with − ˙̃γ (s j ) converge
to zero as j→∞.

Proof. This follows from the following inequality and the first variation formula.∣∣2s− d(γ (s), x)− d(γ̃ (s), z)
∣∣≤ d(γ (0), x)+ d(γ̃ (0), z).

In fact, if this lemma is not true, then the left hand side of the inequality goes to∞
as s→∞. �

Proof of Theorem 2.4. From Lemma 2.1, we have only to prove that there exists no
critical point of dp in M r {p}. Let x ∈ M r {p} and α : [0, a] → M a minimizing
geodesic segment such that α(0) = p and α(a) = x . From the assumption, there
exists a ray γ : [0,∞) → M from p such that 6 (γ̇ (0), α̇(0)) ≤ ζp. Let z =
(d(p, x), ξ), where ζp < ξ < ρ p̃(γ̃ ). For this point z, let R0 > 0 denote the number
given in Lemma 4.4. Furthermore, for this x and z, there exists a number s0 > R0
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satisfying the property in Lemma 4.5. If 1 is the triangle domain bounded by
T ( p̃, γ̃ (s0))∪ T (γ̃ (s0), z)∪ T ( p̃, z), as is seen in the proof of Lemma 4.1, then
1⊂ D( p̃, γ̃ (s0)).

We have to prove that 8p,γ (s0)(x) ∈1. Since p̃ is not a cut point of γ̃ (s0), there
exists a number ε > 0 such that if 0≤ t < ε, then yt =8p,γ (s0)(α(t)) ∈1. In fact,
r(yt)= t and 6 (γ̃ (s0) p̃yt)≤ 6 (γ (s0)px) < ξ , since the generalized Toponogov
comparison theorem is valid in some neighborhood of γ ([0, s0]). Set

t0 = sup{t ∈ (0, a] | yt ∈1}.

As seen before, t0 > 0 and α(t0) ∈1. If t0 6= a, we find a number ε1 > 0 such that
yt ∈1 for all t ∈ (t0, t0+ε1), since the sector Int(M̃+(ρ p̃(γ̃ ))) is without conjugate
points and, hence, the generalized Toponogov comparison theorem is valid. This
contradicts the choice of t0. Thus, we have ya =8p,γ (s0)(x) ∈1.

Therefore, 6 (γ (s0)xp) ≥ 6 (γ̃ (s0)ya p̃) > π/2, meaning that αp(x) > π/2.
Thus, x is not a critical point of dp. �

5. The κ-plane as a reference surface for spheres

Let Mκ be the κ-plane, by definition isometric to the 2-sphere S2(1/
√
κ ) with radius

1/
√
κ if κ > 0, the Euclidean plane E2 if κ = 0, or the Poincaré disk with Gauss

curvature κ if κ < 0. Notice that Mκ is without meridian focal points in a quarter.
However, Lemma 4.3 is not applied if κ ≤ 0, since no parameter r0 exists such that
m′(r0) < 0. This means that the condition of being critical, namely αp(q)≤ π/2
and αq(p)≤ π/2, are not enough for a sphere theorem if the reference surface is
Mκ , κ ≤ 0. We need a restricted condition on αp(q) and αq(p) which depends on
the distance d(p, q) and κ.

Let M be a complete Riemannian n-manifold with sectional curvature bounded
below by a constant κ. For points p, q ∈ M we have points p̃, q̃ ∈ Mκ such that
d(p, q) = d( p̃, q̃). When κ > 0, we assume that d(p, q) < π/

√
κ . Because, in

general, d(p, q) ≤ π/
√
κ , with equality holding if and only if M is isometric to

the sphere with radius 1/
√
κ .

Obviously, D( p̃, q̃)= {z ∈ Mκ | 6 ( p̃zq̃) > π/2}. More precisely, z ∈ D( p̃, q̃)
if and only if z satisfies the inequalities:

(1) cos
√
κ d( p̃, q̃) < cos

√
κ d( p̃, z) cos

√
κ d(q̃, z) if κ > 0,

(2) d( p̃, q̃)2 > d( p̃, z)2+ d(q̃, z)2 if κ = 0,

(3) cosh
√
−κ d( p̃, q̃) > cosh

√
−κ d( p̃, z) cosh

√
−κ d(q̃, z) if κ < 0.

Example 5.1. In M1, if p̃ and q̃ satisfy π > d( p̃, q̃)>π/2 and z ∈M1 is a meeting
point of the perpendiculars to T ( p̃, q̃) at p̃ and q̃, then the domain bounded by
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the geodesic triangle 4( p̃zq̃) is contained in D( p̃, q̃). In M0 = E2, by elementary
geometry, we see that D( p̃, q̃) is the open disk with diameter d( p̃, q̃).

Corollary 5.2. Let M be a complete Riemannian manifold with sectional curvature
bounded below by κ. Assume that there exist two points p and q such that a
dominant triangle 1M = 4(T ( p̃, q̃), αq(p), αq(p)) for M can be made from p
and q. If its inner angle at z(1M) is greater than π/2, then M is topologically an
n-sphere.

Proof. Since the dominant triangle 1M is contained in D( p̃, q̃), this proposition
follows from Theorem 2.2. �

Let p̃, q̃ ∈ Mκ such that p̃ 6= q̃. Let E( p̃, q̃) = {z ∈ Mκ | 6 ( p̃zq̃) = π/2}.
Namely, E( p̃, q̃)= ∂D( p̃, q̃). Set

ω = ω(κ, d( p̃, q̃))=min{6 (z p̃q̃)+ 6 (zq̃ p̃) | z ∈ E( p̃, q̃)}.

Obviously, ω > 0. From the Gauss–Bonnet formula, we have ω = π/2 when κ ≥ 0
and ω < π/2 when κ < 0. If αp(q)+ αq(p) < ω, then there exists a dominant
triangle for M.

Corollary 5.3. Let M be a complete Riemannian n-manifold with sectional curva-
ture bounded below by κ. If there exist two points p, q ∈ M such that

αp(q)+αq(p) < ω(κ, d(p, q)),

then M is homeomorphic to an n-sphere.

Proof. From the assumption, there exists a dominant triangle 1M for M which is
contained in D( p̃, q̃). This corollary follows from Theorem 2.2. �

Remark 5.4. Let E2 denote the Euclidean plane. Let G be the isometry group
generated by two translations µ(x, y)= (x + a, y) and ν(x, y)= (x, y+ b) where
a and b are positive constants. The quotient space is a flat torus T 2

= E2/G. The
equivalence class containing (x, y) is written with [(x, y)]. Let p = [(a/2, b/2)]
and q = [(0, 0)]. There exist four minimizing geodesic segments connecting p and
q in T 2. We then have d(p, q) = diam(T 2) and αp(q)+ αq(p) = π/2, meaning
that Corollary 5.3 is optimal.

Let C = C(p, q) be the set of all midpoints between p and q , namely

C = {x ∈ M | d(p, x)= d(x, q)= d(p, q)/2}.

If x ∈C, then T (p, x)∪T (x, q) is the unique minimizing geodesic segment through x
connecting p and q.

Corollary 5.5. Let M be a complete Riemannian n-manifold of nonnegative sec-
tional curvature and p, q ∈ M. If d(x, C(p, q)) < d(p, q)/2 for all x ∈ M r {p, q},
then M is topologically an n-sphere.
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Proof. We have only to prove that any point x ∈ M r {p, q} is not a critical point of
the distance function dp. We use the Euclidean plane E2 as a model space for the
Toponogov comparison theorem. Let T̃ = T ( p̃, q̃) be a segment in E2 with length
d(p, q) and m̃ the midpoint of T̃.

Let x ∈ M r {p, q}. From the assumption, there exists a midpoint m between
p and q such that d(x,m) < d(p, q)/2. Let 4( p̃q̃ x̃) be the comparison triangle
in E2 corresponding to 4(pqx). Then it follows from the Alexandrov convexity
that d(x,m) ≥ d(x̃, m̃). Therefore, we have d(m̃, x̃) < d( p̃, q̃)/2. Thus we have
6 ( p̃x̃ q̃)>π/2. From the Toponogov comparison theorem, we have 6 (pxq)>π/2.
This implies that x is not a critical point of dp. �

Remark 5.6. Let T 2, p, and q be as in Remark 5.4. Let s = [(0, b/2)]. We then
have d(s, x)= diam(T 2)/2 for all x ∈ C(p, q). From this example, Corollary 5.5
is optimal.

6. Noncompact manifolds referred to Mκ

Let M be a complete noncompact Riemannian n-manifold with sectional curvature
bounded below by κ ≤ 0 and Mκ the κ-plane. Let γ be a ray in M with γ (0)= p.
The Busemann function fγ for γ is defined by

fγ (x)= lim
t→∞

(
t − d(x, γ (t))

)
, x ∈ M.

Let Bγ (x) be the open horoball of a ray γ given by {y ∈ M | fγ (y) > fγ (x)}.
Let 0p denote the set of all rays from p in M. The super Busemann function f p

is given by f p(x)= supγ∈0p
fγ (x) for all x ∈ M.

Let γ̃ be a fixed ray in Mκ with γ̃ (0) = p̃. We call Bγ̃ (z) a horoball of γ̃
determined by z ∈ Mκ . Since κ ≤ 0, all horoballs are convex in Mκ , meaning
that if w1, w2 ∈ Bγ̃ (z), then the unique minimizing geodesic segment T (z1, z2) is
contained in Bγ̃ (z).

Let v(z) be the unit tangent vector at z ∈ Mκ of the coray to γ̃ and w(z) the unit
tangent vector of geodesic segment from z to p̃ at z, respectively. Set

D(γ̃ )= {z ∈ Mκ | 6 (v(z), w(z)) > π/2}.

We have D(γ̃ )= limt→∞ Bγ̃ (t)(t) if κ = 0. When κ < 0, the boundary ∂D(γ̃ ) of
D(γ̃ ) is the trace of those points z(t)∈ Mκ , t ≥ 0, such that the straight line tangent
to the horocircle fγ̃−1(t) through γ̃ (t) at z(t) passes through p̃.

Example 6.1. Let M−1 = {(x, y) | x2
+ y2 < 1} and

ds2
=

4(dx2
+ dy2)

(1− x2− y2)2
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be the Poincaré disk model. Let p̃ = (0, 0) and γ̃ ([0,∞))= {(0, t) | 0≤ t < 1}. If
x = r cos θ , y = r sin θ , then ∂D(γ̃ ) is the trace of the curve given by the equation
r = tan (θ/2), 0 < θ < π/2. In fact, since any horocircle of γ̃ is a subarc of a
circle with center (u cos θ, 1) and radius u cos θ and any geodesic from (0, 0) is a
subsegment of a straight line through (0, 0) with slope tan θ , they meet at points
satisfying

r = u− u cos θ, 1= u sin θ.

Hence, we have

r =
1− cos θ

sin θ
=

2 sin2(θ/2)
2 sin(θ/2) cos(θ/2)

=
sin(θ/2)
cos(θ/2)

.

Here we assume that κ < 0. As before, let z(t)= ∂D(γ̃ )∩ fγ̃−1(t) in Mκ . Let
ρ p̃(t) be the angle of γ̃ with T ( p̃, z(t)) at p̃ for t ≥ 0. Then ρ p̃(0) = π/2 and
limt→∞ ρ p̃(t)= 0. Moreover, ρ p̃(t) is monotone decreasing in t ≥ 0.

Let γ̃ be a fixed ray in (Mκ , p̃) with γ̃ (0) = p̃. Let 9p be the reference map
from M to Mκ

+. By definition, we have, for all points x ∈ M,

d( p̃, 9p(x))= d(p, x), fγ̃ (9p(x))= f p(x).

Corollary 6.2. Let M be a complete noncompact Riemannian n-manifold with
sectional curvature bounded below by κ. If there exists a point p ∈ M such that
9p(M r {p})⊂ D(γ̃ ), then M is diffeomorphic to the Euclidean space En.

Proof. From the definition of D(γ̃ ), there exists no critical point of dp in M r {p}.
Lemma 2.1 proves this corollary. �

Proposition 6.3. Let M denote a complete noncompact Riemannian n-manifold
with sectional curvature bounded below by κ < 0. Assume that ζp <π/2. Then p is
a minimum point of f p in M. If t0 satisfies ρ p̃(t0)= ζp, then there exists no critical
point of dp in f p

−1((0, t0)).

Proof. Since ζp < π/2, it follows that f p(p) = 0 is a minimum of f p in M. Let
x ∈M be such that 0< f p(x)< t0. Let v be the initial tangent vector of a minimizing
geodesic segment from p to x . From the definition of ζp, there exists γ ∈ 0p such
that 6 (v, γ̇ (0))≤ ζp. From the definition of f p, we have fγ (x)≤ f p(x) < t0 and,
hence, from the Toponogov comparison theorem,

ρ p̃( fγ (x)) > ρ p̃(t0)= ζp ≥ 6 (v, γ̇ (0))≥ 6 (ṽ, ˙̃γ )

where ṽ is the initial tangent vector of the minimizing geodesic segment from p̃
to 9γ (x) in Mκ . This inequality shows 9γ (x) ∈ D(γ̃ ). �
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