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A NOTE ON AN L p-BRUNN–MINKOWSKI INEQUALITY
FOR CONVEX MEASURES IN THE UNCONDITIONAL CASE

ARNAUD MARSIGLIETTI

We consider a different L p-Minkowski combination of compact sets in Rn

than the one introduced by Firey and we prove an L p-Brunn–Minkowski
inequality, p ∈ [0, 1], for a general class of measures called convex measures
that includes log-concave measures, under unconditional assumptions. As
a consequence, we derive concavity properties of the function t 7→µ(t1/ p A),
p ∈ (0, 1], for unconditional convex measures µ and unconditional con-
vex body A in Rn. We also prove that the (B)-conjecture for all uniform
measures is equivalent to the (B)-conjecture for all log-concave measures,
completing recent works by Saroglou.

1. Introduction

The Brunn–Minkowski inequality is a fundamental inequality which states that, for
every convex subset A, B ⊂ Rn and for every λ ∈ [0, 1], one has

(1) |(1− λ)A+ λB|
1
n ≥ (1− λ)|A|

1
n + λ|B|

1
n ,

where
A+ B = {a+ b : a ∈ A, b ∈ B}

denotes the Minkowski sum of A and B and where | · | denotes Lebesgue measure.
The inequality and its consequences are well covered in the book [Schneider 1993]
and the survey [Gardner 2002].

Several extensions of the Brunn–Minkowski inequality have been developed
during the last decades by establishing functional versions (see, e.g., [Henstock and
Macbeath 1953; Dubuc 1977; Dancs and Uhrin 1980; Uhrin 1994]), by considering
different measures (see, e.g., [Borell 1974; 1975]), by generalizing the Minkowski
sum (see, e.g., [Firey 1961; 1962; 1964; Lutwak 1993; 1996]), among others.
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In this paper, we will combine these extensions to prove an L p-Brunn–Minkowski
inequality for a large class of measures, including the log-concave measures.

Firstly, let us consider measures other than Lebesgue measure. Following Borell
[1974; 1975], we say that a Borel measure µ in Rn is s-concave, s ∈ [−∞,+∞],
if the inequality

µ((1− λ)A+ λB)≥ Mλ
s (µ(A), µ(B))

holds for every λ ∈ [0, 1] and for every compact subset A, B ⊂ Rn such that
µ(A)µ(B)> 0. Here Mλ

s (a, b) denotes the s-mean of the nonnegative real numbers
a, b with weight λ, defined as

Mλ
s (a, b)= ((1− λ)as

+ λbs)
1
s if s /∈ {−∞, 0,+∞},

Mλ
−∞
(a, b)=min(a, b), Mλ

0 (a, b)= a1−λbλ, Mλ
+∞
(a, b)=max(a, b). Hence the

Brunn–Minkowski inequality tells us that Lebesgue measure in Rn is 1
n -concave.

As a consequence of the Hölder inequality, one has Mλ
p (a, b) ≤ Mλ

q (a, b) for
every p ≤ q. Thus every s-concave measure is −∞-concave. The −∞-concave
measures are also called convex measures.

For s ≤ 1
n , Borell showed that every measure µ which is absolutely continuous

with respect to n-dimensional Lebesgue measure is s-concave if and only if its
density is an α-concave function, with

(2) α =
s

1−sn
∈

[
−

1
n
,+∞

]
.

A function f : Rn
→[0,+∞) is said to be α-concave, with α ∈ [−∞,+∞], if the

inequality
f ((1− λ)x + λy)≥ Mλ

α( f (x), f (y))

holds for every x, y ∈ Rn such that f (x) f (y) > 0 and for every λ ∈ [0, 1].
Secondly, let us consider a generalization of the notion of the Minkowski sum

introduced by Firey, which leads to an L p-Brunn–Minkowski theory. For convex
bodies A and B in Rn (i.e., compact convex sets containing the origin in the interior),
the L p-Minkowski combination, p ∈ [−∞,+∞], of A and B with weight λ∈ [0, 1]
is defined by

(1− λ) · A⊕p λ · B = {x ∈ Rn
: 〈x, u〉 ≤ Mλ

p (h A(u), hB(u)) for all u ∈ Sn−1
},

where h A denotes the support function of A defined by

h A(u)=max
x∈A
〈x, u〉, u ∈ Sn−1.

Notice that, for every p ≤ q , one has

(1− λ) · A⊕p λ · B ⊂ (1− λ) · A⊕q λ · B.
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The support function is an important tool in convex geometry: it has the property
of determining the convex body, since

A =
{

x ∈ Rn
: 〈x, u〉 ≤ h A(u) for all u ∈ Sn−1},

and it is linear with respect to Minkowski sum and dilation:

h A+B = h A+ hB, hµA = µh A

(A, B ⊂ Rn and µ≥ 0). Thus,

(1− λ) · A⊕1 λ · B = (1− λ)A+ λB.

In this paper, we consider a different L p-Minkowski combination. We denote by
R+ the set of nonnegative real numbers. Recall that a function f :Rn

→R is uncon-
ditional if there exists a basis (a1, . . . , an) of Rn (the canonical basis in the sequel)
such that, for every x =

∑n
i=1 xi ai ∈ Rn and for every ε = (ε1, . . . , εn) ∈ {−1, 1}n ,

one has f
(∑n

i=1 εi xi ai
)
= f (x). A measure which is absolutely continuous with

respect to n-dimensional Lebesgue measure is unconditional if its density function
is unconditional. For p= (p1, . . . , pn) ∈ [−∞,+∞]

n , a = (a1, . . . , an) ∈ (R+)
n ,

b = (b1, . . . , bn) ∈ (R+)
n and λ ∈ [0, 1], let us denote

(1− λ)a+p λb = (Mλ
p1
(a1, b1), . . . ,Mλ

pn
(an, bn)) ∈ (R+)

n.

For subsets A, B ⊂ Rn such that A ∩ (R+)n and B ∩ (R+)n are nonempty, for
p ∈ [−∞,+∞]n and for λ ∈ [0, 1], we define the L p-Minkowski combination of
A and B with weight λ, denoted by (1− λ) · A+p λ · B, to be the unconditional
subset (i.e., the indicator function is unconditional) such that

((1−λ) · A+p λ · B)∩ (R+)n =
{
(1−λ)a+p λb : a ∈ A∩ (R+)n, b ∈ B ∩ (R+)n

}
.

This definition is consistent with the well known fact that an unconditional set
(or function) is determined by its restriction to the positive octant (R+)n . More-
over, this L p-Minkowski combination coincides with the classical Minkowski
sum when p = (1, . . . , 1) and A, B are unconditional convex subsets of Rn (see
Proposition 2.1).

Using an extension of the Brunn–Minkowski inequality discovered by Uhrin
[1994], we prove the following result:

Theorem 1.1. Let p= (p1, . . . , pn)∈ [0, 1]n and α ∈R with α≥−
(∑n

i=1 p−1
i

)−1.
Let µ be an unconditional measure in Rn that has an α-concave density function
with respect to Lebesgue measure. Then, for every unconditional convex body A, B
in Rn and for every λ ∈ [0, 1],

(3) µ((1− λ) · A+p λ · B)≥ Mλ
γ (µ(A), µ(B)),

where γ =
(∑n

i=1 p−1
i +α

−1
)−1.
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In Theorem 1.1, if α or one of the pi is equal to 0, then
(∑n

i=1 p−1
i

)−1 and γ are
defined by continuity and are equal to 0.

The case of Lebesgue measure and p= (0, . . . , 0) is treated by Saroglou [2015],
answering a conjecture by Böröczky, Lutwak, Yang and Zhang [Böröczky et al.
2012] in the unconditional case.

Conjecture 1.2 (log-Brunn–Minkowski inequality [Böröczky et al. 2012]). Let A, B
be symmetric convex bodies in Rn and let λ ∈ [0, 1]. Then

(4) |(1− λ) · A⊕0 λ · B| ≥ |A|1−λ|B|λ.

Useful links between Conjecture 1.2 and the (B)-conjecture have been discovered
by Saroglou [2014; 2015].

Conjecture 1.3 ((B)-conjecture [Latała 2002; Cordero-Erausquin et al. 2004]).
Let µ be a symmetric log-concave measure in Rn and let A be a symmetric convex
subset of Rn . Then the function t 7→ µ(et A) is log-concave on R.

The (B)-conjecture was solved by Cordero-Erausquin, Fradelizi and Maurey
[Cordero-Erausquin et al. 2004] for the Gaussian measure and for the unconditional
case. As a variant of the (B)-conjecture, one may study concavity properties of the
function t 7→µ(V (t)A) where V :R→R+ is a convex function. As a consequence
of Theorem 1.1, we deduce concavity properties of the function t 7→ µ(t

1
p A),

p ∈ (0, 1], for every unconditional s-concave measure µ and every unconditional
convex body A in Rn (see Proposition 2.4).

Saroglou [2014] has also proved that the log-Brunn–Minkowski inequality for
Lebesgue measure — which is to say, inequality (4) — is equivalent to the log-
Brunn–Minkowski inequality for all log-concave measures. We continue these
kinds of equivalences by proving that the (B)-conjecture for all uniform measures is
equivalent to the (B)-conjecture for all log-concave measures (see Proposition 3.1).

We also investigate functional versions of the (B)-conjecture, which may be read
as follows:

Conjecture 1.4 (functional version of the (B)-conjecture). Let f, g : Rn
→ R+ be

even log-concave functions. Then the function

t 7→
∫

Rn
f (e−t x)g(x) dx

is log-concave on R.

We prove that Conjecture 1.4 is equivalent to Conjecture 1.3 (see Proposition 3.2).
Let us note that other developments in the use of the earlier mentioned extensions

of the Brunn–Minkowski inequality have been recently made as well. See, e.g.,
[Bobkov et al. 2014; Caglar and Werner 2014; Caglar et al. 2015; Gardner et al.
2014].
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The rest of the paper is organized as follows: in the next section, we prove
Theorem 1.1 and we extend it to m sets, m≥ 2. We also compare our L p-Minkowski
combination to the Firey combination and derive an L p-Brunn–Minkowski inequality
for the Firey combination. We then discuss the consequences of a variant of the
(B)-conjecture, namely we deduce concavity properties of the function t 7→µ(t

1
p A),

p ∈ (0, 1]. In Section 3, we prove that the (B)-conjecture for all uniform measures
is equivalent to the (B)-conjecture for all log-concave measures, and we also prove
that the (B)-conjecture is equivalent to its functional version, Conjecture 1.4.

2. Proof of Theorem 1.1 and consequences

Before proving Theorem 1.1, let us show that our L p-Minkowski combination
coincides with the classical Minkowski sum when p= (1, . . . , 1), for unconditional
convex sets.

Proposition 2.1. Let A, B be unconditional convex subsets of Rn and let λ ∈ [0, 1].
Then

(1− λ) · A+1 λ · B = (1− λ)A+ λB,

where 1= (1, . . . , 1).

Proof. Since the sets (1−λ) · A+1 λ · B and (1−λ)A+λB are unconditional, it is
sufficient to prove that

((1− λ) · A+1 λ · B)∩ (R+)n = ((1− λ)A+ λB)∩ (R+)n.

Let x ∈ ((1 − λ)A + λB) ∩ (R+)n . There exists a = (a1, . . . , an) ∈ A and
b = (b1, . . . , bn) ∈ B such that x = (1− λ)a + λb and, for every i ∈ {1, . . . , n},
(1− λ)ai + λbi ∈ R+. Let ε, η ∈ {−1, 1}n such that (ε1a1, . . . , εnan) ∈ (R+)

n and
(η1b1, . . . , ηnbn)∈ (R+)

n . Notice that, for every i ∈{1, . . . , n}, 0≤ (1−λ)ai+λbi ≤

(1−λ)εi ai+ληi bi . Since the sets A and B are convex and unconditional, it follows
that x ∈ (1− λ)(A∩ (R+)n)+ λ(B ∩ (R+)n)= ((1− λ) · A+1 λ · B)∩ (R+)n .

The other inclusion is clear due to the definition of the set (1−λ) · A+1 λ · B. �

Proof of Theorem 1.1. Let λ ∈ [0, 1] and let A, B be unconditional convex bodies
in Rn .

It has been shown by Uhrin [1994] that if f, g, h : (R+)n → R+ are bounded
measurable functions such that, for every x, y ∈ (R+)n , h((1 − λ)x +p λy) ≥
Mλ
α( f (x), g(y)), then∫

(R+)n
h(x) dx ≥ Mλ

γ

(∫
(R+)n

f (x) dx,
∫
(R+)n

g(x) dx
)
,

where γ =
(∑n

i=1 p−1
i +α

−1
)−1.



192 ARNAUD MARSIGLIETTI

Let us denote by φ the density function of µ and let us set h = 1(1−λ)·A+pλ·Bφ,
f = 1Aφ and g = 1Bφ. By assumption, the function φ is unconditional and
α-concave, hence φ is nonincreasing in each coordinate on the octant (R+)n . Then
for every x, y ∈ (R+)n one has

φ((1− λ)x +p λy)≥ φ((1− λ)x + λy)≥ Mλ
α(φ(x), φ(y)).

Hence,

h((1− λ)x +p λy)≥ Mλ
α( f (x), g(y)).

Thus we may apply the result mentioned at the beginning of the proof to obtain that∫
(R+)n

h(x) dx ≥ Mλ
γ

(∫
(R+)n

f (x) dx,
∫
(R+)n

g(x) dx
)
,

where γ =
(∑n

i=1 p−1
i +α

−1
)−1. In other words, one has

µ
(
((1− λ) · A+p λ · B)∩ (R+)n

)
≥ Mλ

γ

(
µ(A∩ (R+)n), µ(B ∩ (R+)n)

)
.

Since the sets (1− λ) · A+p λ · B, A and B are unconditional, it follows that

µ((1− λ) · A+p λ · B)≥ Mλ
γ (µ(A), µ(B)). �

Remark. One may similarly define the L p-Minkowski combination

λ1 · A1+p · · · +p λm · Am

for m convex bodies A1, . . . , Am ⊂ Rn , m ≥ 2, where λ1, . . . , λm ∈ [0, 1] are such
that

∑m
i=1 λi = 1, by extending the definition of the p-mean Mλ

p to m nonnegative
numbers. By induction, one has under the same assumptions of Theorem 1.1 that

(5) µ(λ1 · A1+p · · · +p λm · Am)≥ Mλ
γ (µ(A1), . . . , µ(Am)),

where γ =
(∑n

i=1 p−1
i +α

−1
)−1. Indeed, let m ≥ 2 and let us assume that inequal-

ity (5) holds. Notice that

λ1 · A1+p · · · +p λm · Am +p λm+1 · Am+1 =

( m∑
i=1

λi

)
· Ã+p λm+1 · Am+1,

where

Ã :=
(

λ1∑m
i=1 λi

· A1+p · · · +p
λm∑m
i=1 λi

· Am

)
.
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Thus,

µ

(( m∑
i=1

λi

)
· Ã+p λm+1 · Am+1

)
≥

(( m∑
i=1

λi

)
µ( Ã)γ + λm+1µ(Am+1)

γ

)1
γ

≥

( m+1∑
i=1

λiµ(Ai )
γ

)1
γ

.

Consequences. The following result compares the L p-Minkowski combinations
⊕p and +p.

Lemma 2.2. Let p ∈ [0, 1] and set p = (p, . . . , p) ∈ [0, 1]n . For every uncondi-
tional convex body A, B in Rn and for every λ ∈ [0, 1], one has

(1− λ) · A⊕p λ · B ⊃ (1− λ) · A+p λ · B.

Proof. The case p = 0 is proved in [Saroglou 2015]. Let p 6= 0. Since the sets
(1−λ) · A⊕p λ · B and (1−λ) · A+p λ · B are unconditional, it is sufficient to prove
that

((1− λ) · A⊕p λ · B)∩ (R+)n ⊃ ((1− λ) · A+p λ · B)∩ (R+)n.

Let u ∈ Sn−1
∩ (R+)

n and let x ∈ ((1− λ) · A+p λ · B)∩ (R+)n . One has

〈x, u〉 =
n∑

i=1

((1− λ)a p
i + λbp

i )
1
p ui =

n∑
i=1

((1− λ)(ai ui )
p
+ λ(bi ui )

p)
1
p

= ‖(1− λ)X + λY‖
1
p
1
p
,

where X = ((a1u1)
p, . . . , (anun)

p) and Y = ((b1u1)
p, . . . , (bnun)

p). Notice that
‖X‖ 1

p
≤ h A(u)p, ‖Y‖ 1

p
≤ hB(u)p and that ‖ · ‖ 1

p
is a norm. It follows that

〈x, u〉 ≤
(
(1− λ)‖X‖ 1

p
+ λ‖Y‖ 1

p

) 1
p ≤

(
(1− λ)h A(u)p

+ λhB(u)p) 1
p .

Hence, x ∈ ((1− λ) · A⊕p λ · B)∩ (R+)n . �

From Lemma 2.2 and Theorem 1.1, one obtains the following result:

Corollary 2.3. Let p ∈ [0, 1]. Let µ be an unconditional measure in Rn that has
an α-concave density function, with α ≥− p

n . Then, for every unconditional convex
body A, B in Rn and for every λ ∈ [0, 1],

(6) µ((1− λ) · A⊕p λ · B)≥ Mλ
γ (µ(A), µ(B)),

where γ =
( n

p +
1
α

)−1.

In Corollary 2.3, if α or p is equal to 0, then γ is defined by continuity and is
equal to 0.
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Remarks. (1) By taking α = 0 in Corollary 2.3 (corresponding to log-concave
measures), one obtains

µ((1− λ) · A⊕0 λ · B)≥ µ(A)1−λµ(B)λ.

(2) By taking α =+∞ in Corollary 2.3 (corresponding to 1
n -concave measures),

one obtains that, for every p ∈ [0, 1],

µ((1− λ) · A⊕p λ · B)
p
n ≥ (1− λ)µ(A)

p
n + λµ(B)

p
n .

Equivalently, for every p ∈ [0, 1], for every unconditional convex body A, B
in Rn and for every unconditional convex set K ⊂ Rn ,

|((1− λ) · A⊕p λ · B)∩ K |
p
n ≥ (1− λ)|A∩ K |

p
n + λ|B ∩ K |

p
n .

Let us recall that the function t 7→ µ(et A) is log-concave on R for every uncon-
ditional log-concave measure µ and every unconditional convex body A in Rn (see
[Cordero-Erausquin et al. 2004]). By adapting the argument of [Marsiglietti 2015],
Proof of Proposition 3.1 (see Proof of Corollary 2.5), it follows that the function
t 7→ µ(t

1
p A) is p

n -concave on R+, for every p ∈ (0, 1], for every unconditional
s-concave measure µ, with s ≥ 0, and for every unconditional convex body A in Rn .
However, no concavity properties are known for the function t 7→µ(et A) when µ is
an s-concave measure with s < 0. Instead, for these measures we prove concavity
properties of the function t 7→ µ(t

1
p A).

Proposition 2.4. Let p ∈ (0, 1] and α ∈ [− p
n , 0), let µ be an unconditional measure

that has an α-concave density function, and let A be an unconditional convex body
in Rn . Then the function t 7→ µ(t

1
p A) is

( n
p +

1
α

)−1-concave on R+.

Proof. Let t1, t2 ∈ R+. By applying Corollary 2.3 to the sets t
1
p

1 A and t
1
p

2 A, one
obtains

µ
(
((1− λ)t1+ λt2)

1
p A
)
= µ

(
(1− λ) · t

1
p

1 A⊕p λ · t
1
p

2 A
)

≥ Mλ
γ

(
µ(t

1
p

1 A), µ(t
1
p

2 A)
)
,

where γ =
( n

p +
1
α

)−1. Hence the function t 7→ µ(t
1
p A) is γ -concave on R+. �

As a consequence, we derive concavity properties for the function t 7→ µ(t A).

Corollary 2.5. Let p ∈ (0, 1], let µ be an unconditional measure that has an
α-concave density function, with α ∈ [− p

n , 0), and let A be an unconditional convex
body in Rn . Then the function t 7→ µ(t A) is

( 1−p
n + γ

)
-concave on R+, where

γ =
( n

p +
1
α

)−1.
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Proof. We adapt [Marsiglietti 2015], Proof of Proposition 3.1. Let us denote
by φ the density function of the measure µ and let us denote by F the func-
tion t 7→ µ(t A). From Proposition 2.4, the function t 7→ F(t

1
p ) is γ -concave,

hence the right derivative of F , denoted by F ′
+

, exists everywhere and the function
t 7→ 1

p t
1
p−1 F ′

+
(t

1
p )F(t

1
p )γ−1 is nonincreasing. Notice that

F(t)= tn
∫

A
φ(t x) dx

and that t 7→ φ(t x) is nonincreasing; thus the function t 7→ 1
t1−p F(t)

1−p
n is non-

increasing. Since

F ′
+
(t)F(t)

1−p
n +γ−1

= t1−p F ′
+
(t)F(t)γ−1

·
1

t1−p F(t)
1−p

n ,

it follows that F ′
+
(t)F(t)

1−p
n +γ−1 is nonincreasing as the product of two nonnegative

nonincreasing functions. Hence F is
( 1−p

n + γ
)
-concave. �

Remark. For every s-concave measure µ and for every convex subset A ⊂ Rn ,
the function t 7→ µ(t A) is s-concave. Hence Corollary 2.5 is of value only if
1−p

n + γ ≥ α/(1+ αn) (see relation (2)). Notice that this condition is satisfied if
α ≥−p/(n(1+ p)). We thus obtain:

Corollary 2.6. Let p ∈ (0, 1], let µ be an unconditional measure that has an
α-concave density function, with −p/(n(1+ p))≤ α < 0, and let K be an uncon-
ditional convex body in Rn . Then, for all subsets A, B ∈ {µK : µ > 0} and all
λ ∈ [0, 1], one has

µ((1− λ)A+ λB)≥ Mλ
1−p

n +γ
(µ(A), µ(B)),

where γ =
( n

p +
1
α

)−1.

In [Marsiglietti 2015] we investigated improvements of concavity properties of
convex measures under additional assumptions, such as symmetries. Corollary 2.6
follows the same path and completes the results found there.

We conclude this section with a remark on the question of improving the concavity
properties of convex measures.

Remark. Let µ be a Borel measure that has a density function with respect to
Lebesgue measure in Rn . One may write the density function of µ in the form e−V ,
where V : Rn

→ R is a measurable function. Let us assume that V is C2. Let
γ > 0. The function e−V is γ -concave if Hess(γ e−γ V ), the Hessian of γ e−γ V , is
nonpositive (in the sense of symmetric matrices). One has

Hess(γ e−γ V )=−γ 2
∇ · (∇V e−γ V )= γ 2e−V (γ∇V ⊗∇V −Hess V ),
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where

∇V ⊗∇V =
(
∂V
∂xi

∂V
∂x j

)
1≤i, j≤n

.

It follows that the matrix Hess(γ e−γ V ) is nonpositive if and only if the matrix
γ∇V ⊗∇V −Hess V is nonpositive.

Let us apply this remark to the Gaussian measure

dγn(x)=
1

(2π)
n
2

e−
|x |2

2 dx, x ∈ Rn.

Here V (x) = |x |
2

2 + cn , where cn =
n
2 log(2π). Thus ∇V ⊗∇V = (xi x j )1≤i, j≤n

and Hess V = Id, the identity matrix. The eigenvalues of γ∇V ⊗∇V −Hess V
are −1 (with multiplicity (n − 1)) and γ |x |2 − 1. Hence, if γ |x |2 − 1 ≤ 0, then
γ∇V ⊗∇V −Hess V is nonpositive. One deduces that, for every γ > 0, for all
compact sets A, B ⊂ 1

√
γ

Bn
2 and for every λ ∈ [0, 1], one has

(7) γn((1− λ)A+ λB)≥ Mλ
γ

1+γ n
(γn(A), γn(B)),

where Bn
2 denotes the Euclidean closed unit ball in Rn .

Since the Gaussian measure is a log-concave measure, inequality (7) is an
improvement of the concavity of the Gaussian measure when restricted to compact
sets A, B ⊂ 1

√
γ

Bn
2 .

3. Equivalence between (B)-conjecture-type problems

The next proposition reduces the proof of the (B)-conjecture for all uniform measures
in Rn , for every n ∈N∗, to proving the (B)-conjecture for all symmetric log-concave
measures in Rn , for every n ∈N∗. This completes recent work by Saroglou [2014;
2015].

We will say that a measure µ satisfies the (B)-property if the function t 7→µ(et A)
is log-concave on R for every symmetric convex set A ⊂ Rn .

Proposition 3.1. If every symmetric uniform measure in Rn , for every n ∈ N∗,
satisfies the (B)-property, then every symmetric log-concave measure in Rn , for
every n ∈ N∗, satisfies the (B)-property.

Proof. The proof is inspired by [Artstein-Avidan et al. 2004, beginning of Section 3].

Step 1: Stability under orthogonal projection. Let us show that the (B)-property is
stable under orthogonal projection onto an arbitrary subspace.

Let F be a k-dimensional subspace of Rn . Let us define, for every compactly
supported measure µ in Rn and every measurable subset A ⊂ F ,

5Fµ(A) := µ(5−1
F (A)),



AN L p-BRUNN–MINKOWSKI INEQUALITY FOR CONVEX MEASURES 197

where 5F denotes the orthogonal projection onto F and

5−1
F (A) := {x ∈ Rn

:5F (x) ∈ A}.

We have5−1
F (et A)= et(A×F⊥), where F⊥ denotes the orthogonal complement

of F . Hence if µ satisfies the (B)-property, so does 5Fµ.

Step 2: Approximation of log-concave measures. Let us show that for every com-
pactly supported log-concave measure µ in Rn there exists a sequence (Kp)p∈N∗

of convex subsets of Rn+p such that limp→+∞5RnµKp = µ in the sense that the
density function of µ is the pointwise limit of the density functions of (µKp)p∈N∗ ,
where µKp denotes the uniform measure on Kp (up to a constant).

Let µ be a compactly supported log-concave measure in Rn with density function
f = e−V , where V : Rn

→ R∪ {+∞} is a convex function. To simplify notation,
define

(8) W (x)=
(

1−
V (x)

p

)
+

,

where a+ =max(a, 0) for every a ∈R. Notice that e−V (x)
= lim

p→+∞
W (x)p for every

x ∈ Rn . Let us define for every p ∈ N∗

Kp =
{
(x, y) ∈ Rn

×Rp
: |y| ≤W (x)

}
.

One has, for every x ∈ Rn ,

W (x)p
=

∫ W (x)

0
pr p−1 dr = p

∫
+∞

0
1[0,W (x)](r)r p−1 dr =

1
vp

∫
Rp

1Kp(x, y) dy.

The last equality follows from an integration in polar coordinates, where vp denotes
the volume of the Euclidean closed unit ball in Rp. By denoting µKp the measure
in Rn+p with density function

1
vp

1Kp(x, y), (x, y) ∈ Rn
×Rp,

it follows that, for every p ∈ N∗, the measure 5RnµKp has density function
W (x)p, x ∈ Rn . We conclude that limp→+∞5RnµKp = µ.

Step 3: Conclusion. Let n ∈ N∗ and let µ be a symmetric log-concave measure
in Rn . By approximation, one can assume that µ is compactly supported. Since µ is
symmetric, the sequence (Kp)p∈N∗ defined in Step 2 is a sequence of symmetric
convex subsets of Rn+p. If we assume that the (B)-property holds for all uniform
measures in Rm , for every m ∈ N∗, then, for every p ∈ N∗, µKp satisfies the
(B)-property. It follows from Step 1 that, for every p ∈ N∗, 5RnµKp satisfies the
(B)-property. Since limp→+∞5RnµKp = µ (see Step 2) and since a pointwise



198 ARNAUD MARSIGLIETTI

limit of log-concave functions is log-concave, we conclude that µ satisfies the
(B)-property. �

Similarly, let us now prove that the functional form of the (B)-conjecture
(Conjecture 1.4) is equivalent to the classical (B)-conjecture (Conjecture 1.3).

Proposition 3.2. One has equivalence between the following properties:

(1) For every n ∈N∗, for every symmetric log-concave measure µ in Rn and for
every symmetric convex subset A of Rn , the function t 7→µ(et A) is log-concave
on R.

(2) For every n ∈ N∗ and for all even log-concave functions f, g : Rn
→ R+, the

function t 7→
∫

Rn f (e−t x)g(x) dx is log-concave on R.

Proof. (2) =⇒ (1) This is clear by taking f to be 1A, the indicator function of a
symmetric convex set A, and by taking g to be the density function of a log-concave
measure µ.
(1)=⇒ (2) Let f, g :Rn

→R+ be even log-concave functions. By approximation,
one may assume that f and g are compactly supported. Let us write g = e−V ,
where V : Rn

→ R∪ {+∞} is an even convex function. One has

G(t) :=
∫

Rn
f (e−t x)e−V (x) dx = lim

p→+∞

∫
Rn

f (e−t x)W (x)p dx,

where W (x) is as in (8). Let us denote, for t ∈ R,

Gp(t)=
∫

Rn
f (e−t x)W (x)p dx .

We have seen in the proof of Proposition 3.1 that

W (x)p
=

1
vp

∫
Rp

1Kp(x, y) dy,

where Kp := {(x, y) ∈ Rn
×Rp

: |y| ≤W (x)} and where vp denotes the volume of
the Euclidean closed unit ball in Rp. Hence,

Gp(t)=
1
vp

∫
Kp

f (e−t x)1Rp(y) dx dy.

Notice that Kp is a symmetric convex subset of Rn+p. The change of variable
x̃ = e−t x and ỹ = e−t y leads to

Gp(t)=
et (n+p)

vp
µp(e−t Kp),

where µp is the measure with density function

h(x, y)= f (x)1Rp(y), (x, y) ∈ Rn
×Rp.
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Since a pointwise limit of log-concave functions is log-concave, we conclude
that the function G is log-concave on R as the pointwise limit of the log-concave
functions Gp, p ∈ N∗. �

Recall that the (B)-conjecture holds true for the Gaussian measure and for the
unconditional case (see [Cordero-Erausquin et al. 2004]). From the techniques
of the proof of Proposition 3.2, it follows that Conjecture 1.4 holds true if one
function is the density function of the Gaussian measure or if both functions are
unconditional.
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