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UPPER BOUNDS OF ROOT DISCRIMINANT LOWER BOUNDS

SIMAN WONG

For any rational number t ∈ [0, 1], define the logarithmic Martinet function
β(t) to be the liminf of the logarithm of the root discriminant of number
fields K with r1(K )/[K : Q] = t as [K : Q] goes to infinity. Under the gen-
eralized Riemann hypothesis for Dedekind zeta functions of number fields,
we show that β(t) < 14.55 for a dense subset of rational numbers t ∈ [0, 1].
We also study unconditional estimates of the growth of root discriminants
by studying how the polynomial discriminant behaves under perturbation
of coefficients, and by using Pisot numbers.

1. Introduction

Let K be a number field of degree nK and absolute discriminant dK . Denote by
r1(K ) and r2(K ) the number of real and complex conjugate pairs of embeddings
of K , and by rdK := |dK |

1/nK the root discriminant of K . By analyzing the explicit
formula for the Dedekind zeta function ζK (s) of K , Stark [1974] shows that1 as
nK→∞,

(1) log(rdK )≥
r1(K )

nK
log(4πeC)+

2r2(K )
nK

log(2πeC)+ o(1),

where C is the Euler constant. Note that rdL = rdK if L/K is a finite extension
unramified at all finite places. This suggests that root discriminant lower bounds
can be used to study ideal class groups and, more generally, numbers fields and
Galois representations with restricted ramifications; see [Fontaine 1985; Masley
1978; Tate 1994] for a sample of the wide range of applications of root discriminant
lower bounds.

In view of such applications, there are extensive works on sharpening root
discriminant lower bounds. Let IQ=Q∩[0, 1]. Inspired by [Hajir and Maire 2001]
and [Martinet 1978], to help us focus on the asymptotic nature of (1) we define the
logarithmic Martinet function β : IQ→R>0 ∪ {∞} as follows. For t ∈ IQ, let Rn,t
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1The asymptotic constants in this paper depend only on those quantities (if any) adorning the
corresponding� sign.
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be the minimal root discriminant for number fields of degree n and with r1 real
embeddings such that r1/n = t . Then

β(t) := lim inf
n→∞

Rn,t .

Note that β(t) is finite2 for any t ∈ IQ: first, find a number field Kt/Q with
r1(K )/nK = t (see for example the proof of Theorem 1.2 below for an explicit
construction). Next, let L1 ⊂ L2 ⊂ · · · be a totally real class field tower. Then the
compositums L i Kt have bounded root discriminants and satisfy r1(L i Kt)/nL i Kt

= t .
We also know that β(t) > 0 for all t ∈ IQ; this follows from

β(t)≥ t log(4πeC)+ (1− t) log(2πeC)= t log 2+ log(2πeC),

which is a restatement of (1). By using a smooth form of the explicit formula and
with a careful choice of kernel, this lower bound has since been improved to

β(t)≥ t log(4πe1+C)+ (1− t) log(4πeC)= t + log(4πeC),

and the two constants are optimal within the framework of the explicit formula and
without additional inputs about the zeros of ζK (s) and prime ideals of the number
fields. Assuming the generalized Riemann hypothesis (GRH) for ζK (s), the optimal
conditional lower bound from the explicit formula approach is

(2) β(t)≥ t log(8πeC+π/2)+ (1− t) log(8πeC)= π
2 t + log(8πeC).

See [Odlyzko 1990] for a survey of the literature. Aside from this finiteness result
and the aforementioned lower bounds, little is known about this function β. For
example, it is not known if β is bounded on IQ (the finiteness result for β(t) sketched
earlier depends on Kt ). Hajir and Maire [2001] raise a number of interesting (and,
as these authors put it, probably very difficult) questions:

• Does β extend to a continuous function on [0, 1] (which would imply that β
is bounded on IQ)?

• Is β monotonically increasing?

• Is there a root discriminant lower bound of the form

log(rdK )≥
r1(K )

nK
β(1)+

2r2(K )
nK

β(0)+ o(1)?

• Very optimistically, is it true that β(t) is a linear function in t and, even more
boldly, do we have β(t)= tβ(1)+ (1− t)β(0)?

By constructing explicit Hilbert class field towers, Martinet [1978] shows that
β(0) < 4.53 and β(1) < 6.97, and Hajir and Maire [2002] refine this method to

2We thank Professor Hajir for showing us this argument.
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give β(0) < 4.41 and β(1) < 6.87; Martin [2006] has made further improvement
on β(t) for t ∈ {14 ,

1
3 ,

1
2 ,

3
5 ,

5
7 , 1}. As a comparison, note that, by (2), under GRH

we have β(0) ≥ 3.80 and β(1) ≥ 5.37. In this paper we give a conditional proof
that β(t) is bounded by an explicit universal constant for a dense subset of t ∈ IQ.

Theorem 1.1. Assume the generalized Riemann hypothesis for the Dedekind zeta
functions of number fields. Fix a fraction a/(3bm) ∈ IQ with a, b,m > 0 and
3 - m (we allow 3 | a). Then there exist an infinite sequence of Galois extensions
K1 ( K2 ( · · · such that r1(Ki )/nKi

= a/(3bm) for all i , and such that log(rdKi )

is at most

19.59316+ m−1
m (2 log m+ 2 log log m+ 6.813445)+ O

( log nKi
+log m

m·nKi

)
.

Corollary. Assume the generalized Riemann hypothesis for the Dedekind zeta
functions of number fields. Then for any fraction a/(3bm) ∈ IQ with a, b,m > 0
and 3 - m (we allow 3 | a), we have

β
( a

3bm

)
≤ 19.59316+ m−1

m (2 log m+ 2 log log m+ 6.813445). �

A natural way to construct number fields with a prescribed ratio r1(K )/nK is to
take the square root of a totally real algebraic integer with the appropriate number of
positive embeddings. To bound the root discriminant of the field generated by such
a square root, we need to keep the absolute norm of this element small. We achieve
that by applying the GRH form of the effective Chebotarev density theorem to the
narrow class field of an explicit infinite 3-class field tower of a real quadratic field.
This produces infinitely many fields for which r1(K )/nK take on a fixed rational
value with 3-power denominator; to handle ratios with general denominators m we
compose the extensions constructed above with a totally real Galois extension of
degree m. Because of this last step3 we are not able to show that β(t) is uniformly
bounded on IQ (which would have to be the case if β does extend to a continuous
function on [0, 1]). Since fractions with 3-power denominators are dense in IQ,
Theorem 1.1 does show that β(t) is informally bounded on a dense subset of IQ.

Remark. Our proof of Theorem 1.1 readily generalizes to function fields (for which
the GRH is true unconditionally).

We do not know how to prove unconditionally that β(t) is bounded by a universal
constant for all t ∈ IQ. If we replace in the proof of Theorem 1.1 the conditional

3We thank Professor Hajir for suggesting this compositum construction. We can also directly
construct totally real infinite m-class field tower using the Golod–Shafarevich construction [Roquette
1967]. This results in an upper bound β(a/m) ≤ c1 log m+ c2 for some absolute constants ci , just
like Theorem 1.1, but these constants would be weaker than those in Theorem 1.1.
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effective Chebotarev density theorem with the unconditional one, our argument
only gives

(3) log(rdKi )� (cnKi )/nKi

for some absolute constant c>0. We have the following unconditional improvement.

Theorem 1.2. There exists an absolute constant c > 0 such that for any t ∈ IQ,
there exist infinitely many number fields Ki (depending on t) of unbounded degree
such that r1(Ki )/nKi

= t and log(rdKi )≤ cnKi
log(nKi

).

To prove this unconditional result, we start with a polynomial f (x) that splits
completely over Z. We can easily estimate the discriminant of f , and by prescribing
the signs of the roots of f appropriately we can guarantee that the ratio of the
number of real roots of f (x2) to the degree of f (x2) takes on any given value in IQ.
To achieve irreducibility we perturb the constant term and study its effect on the
discriminant and signature.

Remark. The proof of Theorems 1.1 and 1.2 come down to finding in a totally
real number field algebraic integers of small absolute norm and with a prescribed
number of positive embeddings. If we try to tackle this problem using Minkowski’s
convex body theorem, the obvious construction leads to an estimate comparable
to the unconditional Chebotarev estimate (3). It would be interesting to find a
geometry of numbers proof of the two theorems here.

Remark. The constants in Theorem 1.1 can be improved, but not anywhere near
the records of Martinet and Hajir–Maire; to streamline the exposition we forgo
such refinements. In a similar vein we leave out explicit value for the constant in
Theorem 1.2.

In connection with their study on arithmetic lattices in simple Lie groups of
bounded covolume, Belolipetsky and Lubotzky [2012] use Pisot numbers to con-
struct an infinite sequence of number fields of unbounded degree with a fixed
number of complex places and bounded root discriminant. On the other hand,
computational data suggest that number fields with a large number of complex
places tend to have large class numbers, and hence (at least heuristically) large root
discriminant. The following result is the first step towards affirming this circle of
ideas (and the only result we know of in this direction).

Theorem 1.3. There exists an infinite sequence of number fields T` with nT` = `+1
and r1(T`) ∈ {1, 2}, such that log(rdT`)≤ log(`+ 1)+ log 3/(`+ 1).

2. Conditional estimate

For any number field L 6= Q, denote by hL , RL , wL and OL its class number,
regulator, number of roots of unity in K , and the ring of integers of K .
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Lemma 2.1. For any number field L with nL ≥ 36, we have the estimate

hL ≤ 4|dL |
1
2

(
1.710172+ 1.292958

log(|dL |
1/2)

)
.

Proof. We prove this by finding explicit numerical values for the constants in the
argument in [Lang 1986, p. 322], which is a preliminary step in the proof of the
Brauer–Siegel theorem. Before we proceed with the elementary but somewhat
tedious computation, we will briefly explain the idea behind the proof of the lemma.

The Brauer–Siegel theorem gives an asymptotic estimate for

log(hL RL)

log(|dL |
1/2)

as we run through an infinite sequence of number fields L with nL/log |dL |→0.
More precisely, the crucial exponent 1

2 shows up in the main term of the asymptotic
estimate, and nL/log |dL | appears in the error term. But if we are willing to weaken
the main term of Brauer–Siegel, we can actually make this nL/log |dL | term go
away (there are additional error terms).

We now resume the proof of the lemma. The residue at s = 1 of ζL(s) is equal to

κ(L)= 2r1(L)(2π)r2(L)hL RL/(wL |dL |
1/2).

Take the logarithm of both sides, recall that |dL |> 1 if L 6=Q and we get

(4)
log(hL RL)

log(|dL |
1/2)
=

log(κ(L))− r1(L) log 2− r2(L) log(2π)+ log(wL)

log(|dL |
1/2)

+ 1.

Next, combining the functional equation of ζL(s) with the positivity of the integral
representation of ζL(s) for real s > 1, we find that (see [Lang 1986, Lemma XVI.1])

(2−2r2(L)π−nL ·|dL |)
s/20

( s
2

)r1(L)
0(s)r2(L) ·ζL(s)·s(s−1)≥ κ(L)|dL |

1/2(2π)−r2(L),

so

κ(L)≤ 2−r2(L)sπ−nL s/2(2π)r2(L)|dL |
(s−1)/20

( s
2

)r1(L)
0(s)r2(L)ζL(s) · s(s− 1)

≤ 2r2(L)(1−s)πr2(L)−nL s/2
|dL |

(s−1)/20
( s

2

)r1(L)
0(s)r2(L)ζQ(s)

nL · s(s− 1).

Set s = 1+ 1/α with α > 0. Then

ζL
(
1+ 1

α

)
≤ ζQ

(
1+ 1

α

)nL =

(
1+

∞∑
m=2

1

m1+ 1
α

)nL

≤

(
1+

∫
∞

1

dt

t1+ 1
α

)nL

= (1+α)nL .
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Thus

log(κ(L))

≤−
r2(L)
α

log 2+
(
r2(L)− 1

2 nL
(
1+ 1

α

))
logπ + r1(L) log0

( 1
2 +

1
2α

)
+r2(L) log0

(
1+ 1

α

)
+

1
α

log |d1/2
L | + nL log(1+α)+ log

(
1+ 1

α

)
− logα

= r2(L)
(
log0

(
1+ 1

α

)
+ logπ − log 2

α

)
+ nL

(
log(1+α)− logπ

2

(
1+ 1

α

))
+r1(L) log0

( 1
2 +

1
2α

)
+

1
α

log |d1/2
L | + log

(
1+ 1

α

)
− logα.

Substitute this into the right side of (4) and we get that

log(hL RL)

log(|dL |
1/2)
≤ 1+ 1

α
+

1
log(|dL |

1/2)

(
r2(L)

(
log0

(
1+ 1

α

)
−
(
1+ 1

α

)
log 2

)
+nL

(
log(1+α)− logπ

2

(
1+ 1

α

))
+ r1(L)

(
log0

( 1
2 +

1
2α

)
− log 2

)
+ log

(
1+ 1

α

)
− logα+ logwL

)
.

We check that if α > α0 := 0.23048745595 then the coefficients of the r1(L) term
and the r2(L) term above are both negative. Thus for α > α0,

log(hL RL)

log(|dL |
1/2)

≤ 1+ 1
α
+

nL

(
log(1+α)− logπ

2

(
1+ 1

α

))
+ log

(
1+ 1

α

)
− logα+ logwL

log(|dL |
1/2)

.

The roots of unity in K form a cyclic group, so wL is the largest positive integer w
for which K contains a primitive w-root of unity. Thus nL is divisible by

wL

∏
p|wL

p− 1
p
≥
wL

2

∏
p|wL
p>2

2
3
≥
wL

2

(2
3

)logwL
log 3
=

1
2
w

log 2
log 3
L .

Thus wL ≤ (2nL)
log 3/log 2

≤ 3nL
1.6, whence logwL ≤ 1.6 log nL + log 3. We check

that 0.1x > log x for x ≥ 36, so for nL ≥ 36 and α > α0,

log(hL RL)

log(|dL |
1/2)

≤ 1+ 1
α
+

nL

(
log(1+α)+ 0.1− logπ

2

(
1+ 1

α

))
+ log

(
1+ 1

α

)
− logα+ log 3

log(|dL |
1/2)

.
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We check that log(1+α)+0.1−(logπ/2)
(
1+ 1

α

)
vanishes at α1 :=1.408110244096.

Set α = α1 and we get
(5)
log(hL RL)

log(|dL |
1/2)
≤ 1+ 1

α1
+

log
(
1+ 1

α1

)
− logα1+ log 3

log(|dL |
1/2)

= 1.710172+
1.292958

log(|dL |
1/2)

.

Friedman [1989, Theorem B] shows that RL >
1
4 for all L 6= Q except for the

following three totally complex sextic fields:

L dL RL hL wL

x6
− x5
+ 2x4

− 2x3
+ 2x2

− 2x + 1 −10051 0.20521 1 2
x6
− x5
− x4
+ 2x3

− x + 1 −10571 0.21320 1 2
x6
− 3x5

+ 5x4
− 5x3

+ 5x2
− 3x + 1 −12671 0.23722 1 2

Set RL >
1
4 and we get, except possibly for these three fields,

(6) log( 1
4 hL) < log(|dL |

1/2)

(
1.710172+

1.292958
log(|dL |

1/2)

)
.

Exponentiate both sides and we get

hL ≤ 4|dL |
1
2

(
1.710172+ 1.292958

log(|dL |
1/2)

)
,

which is the estimate in the lemma. And since hL = 1 for these three fields, this
estimate is applicable as well. �

Lemma 2.2. Assume the generalized Riemann hypothesis for the Dedekind zeta
functions of number fields. Then for any totally real number field L of degree m≥ 18
and for any integer 0 ≤ m′ ≤ m, there exists a quadratic extension Lm′/L with
signature (r1, r2)= (2m− 2m′,m′) and

log(rdLm′
)≤ 1.855086 log(rdL)+ 3.372400+

log log |dL | + log 280
nL

.

Proof. Denote by CL ,n the narrow ray class group of L (of modulus OL ), and by
HL ,n the corresponding narrow ray class field of L . Denote by O×L the group of
units of OL and by O×L ,+ the subgroup of totally positive units. Then

#CL ,n = hL · 2[L:Q]/[O×L :O
×

L ,+] by [Lang 1986, Theorem VI.2]

≤ hL · 2[L:Q].

Since HL ,n/L is unramified at all finite places,

(7) |dHL ,n | = |dL |
[HL ,n :L] ≤ |dL |

hL ·2[L:Q] .
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Denote by φ1, . . . , φm the distinct real embeddings of L . Apply the GRH form of the
effective Chebotarev density theorem ([Lagarias and Odlyzko 1977, Corollary 1.2];
see [Oesterlé 1979, Theorem 4] for a version with explicit constants) to the Galois
extension HL ,n/L and we see that for any integer 0≤ m′ ≤ m, there exists a prime
ideal pm′ ⊂OL such that

(i) NormL/Q(pm′)≤ 70(log |dHL ,n |)
2, and

(ii) pm′ is principal and is generated by an element πm′ ∈ OL with φi (πm′) > 0
if and only if i ≤ m′.

The sign conditions mean that Lm′ := L(
√
πm′) has exactly 2m′ real embeddings.

Since πm′ is a uniformizer, Lm′/L is a quadratic extension unramified outside pm′

and 2. Let Q⊂OLm′
be a prime lying above 2 that ramifies in Lm′/L . By [Serre

1979, Remark 1 on p. 58], the exponent of Q in the different ideal of Lm′/L is
at most 1 + ordQ(2). Consequently, Disc(Lm′/L) divides pm′

∏
q|2 q

1+ordq(2) =

pm′
∏

q|2 q · 2OL , so in particular

(8) Disc(Lm′/L) divides pm′ · 22OL .

Thus
|dLm′
| = NormL/Q(Disc(Lm′/L)) · |dL |

[Lm′ :L]

≤ NormL/Q(pm′ · 22OL) · d 2
L by (8)

≤
[
70 · hL · 2nL log |dL | · 22nL

]2
· d 2

L by (7).

Since nLm′
= 2nL , the logarithm of the root discriminant of Lm′ is bounded by

log(rdLm′
)≤

log 70
nL
+

log hL

nL
+ log 2+

log log |dL |

nL
+ log 4+ log(rdL).

Since nLm′
≥ 36, apply Lemma 2.1 and we get

log(rdLm′
)≤

log |dL |

2nL

(
1.710172+

1.292958
log(|dL |

1/2)

)
+

log 4
nL

+
log 70

nL
+ log 2+

log log |dL |

nL
+ log 4+ log(rdL)

≤ 1.855086 log(rdL)+ 3.372400+
log log |dL | + log 280

nL
. �

Remark. The proof of the lemma (and its subsequent application) does not require
that the element πm′ be a generator of a prime ideal; it is enough that it is not a
square, has small norm, and has the prescribed number of positive embeddings.
Thus the use of the conditional effective Chebotarev density theorem is an overkill;
instead we could apply the GRH form of the Perron formula to the Hecke L-series
of the narrow class group CL ,n and sieve out the desired positivity conditions using
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orthogonality relations. But this alternative argument still requires the GRH and
would lengthen the proof, so we opt for a streamlined approach via the conditional
effective Chebotarev density theorem.

Proof of Theorem 1.1. Schmithals [1980] shows that the elementary 3-class group
of the real quadratic field k = Q(

√
3321607) has rank 3. Combining this with

refinement of earlier work of Koch and Venkov [1975] and Schoof [1986] shows
that k has an infinite 3-class field tower. Set K0 := k and denote by Ki+1 the
3-Hilbert class field of Ki , all viewed as subfields of a fixed algebraic closure of Q.
Since K0 is totally real and every [Ki+1 : Ki ] is odd, that means every Ki is totally
real.

Since Ki/k is unramified for all i ≥ 1, we have
(9)

rdKi = rdk =
√

39345017,
log log |dKi |

nKi

=
log(nKi

/2)

nKi

+
log log

√
39345017

nKi

.

Fix i ≥ 18; then for any integer 0≤ m′ ≤ nKi
, Lemma 2.2 furnishes an extension

Ki,m′/Q of degree 2nKi
with signature (2nKi

− 2m′,m′) and

(10) log(rdKi,m′
)≤ 1.855086 log(rdk)+ 3.372400+ O

( log nKi
nKi

)
= 19.593159+ O

( log nKi
nKi

)
.

We now consider the m = 1 case of the theorem, so fix t = a/3b
∈ IQ with b > 0

and 0 ≤ a ≤ 3b (we allow 3 | a). Since the Ki are 3-class field towers of k, for i
sufficiently large we have 3b

| nKi
, so for such i we can choose 0≤ m′ ≤ [Ki :Q]

so that 2m′/nKi ,m′ = m′/nKi
= t . Apply (10) and we are done.

Now, let m>1 be coprime to 3. Then φ(6m)=2φ(2m)<2m, so by [Washington
1982, Proposition 2.7],

|dQ(ζ6m)
| ≤

(6m)φ(6m)

2φ(6m)3φ(6m)/2 = mφ(6m)3φ(6m)/2 < m2m3m
= (
√

3m)2m .

The GRH form of the effective Chebotarev density theorem then furnishes a prime
p ≡ 1 (mod 6m) with

p ≤ 70(log |dQ(ζ6m)
|)2

< 70
(
log(
√

3m)2m)2

≤ 70 · 4m2(log m+ log
√

3)2

which is to say (since m ≥ 2)

(11) p < 70 · 13m2 log2 m.
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Denote by Mm the unique degree m subfield of the p-th cyclotomic field Q(ζp).
The conductor-discriminant formula gives |dMm | ≤ pm−1, so by (11),

(12) log |dMm | ≤ (m− 1)(2 log m+ 2 log log m+ log(70 · 13)).

The only finite prime that ramifies in Ki/Q (resp. Mm/Q) is 39345017≡ 2 (mod 3)
(resp. p ≡ 1 (mod 3)), so Ki and Mm are linearly disjoint over Q. It follows that

[Ki Mm :Q] = m · nKi
and |dKi Mm | = |dKi |

m
|dMm |

nKi .

Thus

(13) log |dKi Mm | = m log |dKi | + nKi
log |dMm |,

whence, by (9) and (12),

log(rdKi Mm )= log(rdKi )+ log(rdMm )

≤ 8.743940+ m−1
m (2 log m+ 2 log log m+ 6.813445).

Both terms on the right side of (13) are greater than 1. Since x + y ≤ xy if both
x, y ≥ 1, it follows from (13) that

log log |dKi Mm |

nKi Mm

=
log m+ log log |dKi | + log nKi

+ log log |dMm |

m · nKi

≤ 2
log nKi

m · nKi

+ O
(

log m
m · nKi

)
, by (9), (12).

Since [Q(ζp) : Mm] is even, Mm is fixed by the unique order-2 element of the cyclic
group Gal(Q(ζp)/Q). That means Mm , and hence Ki Mm , is totally real. Apply
Lemma 2.2 and we see that for any 0≤ m ≤ m · nKi

there exists an extension Ki,m′

with signature (2m · nKi
− 2m′,m′) and

log(rdKi,m′
)≤ 1.855096

(
8.743940+ m−1

m (2 log m+ 2 log log m+ 6.813445)
)

+3.372400+ O
( log nKi

+ log m

m · nKi

)
,

and Theorem 1.1 follows for general m > 1. �

3. Unconditional estimate

Fix an integer n ≥ 1. For each 0≤ j ≤ n, pick σj ∈ {±1} and define

fn(x) :=
n∏

i=1

(x − (2i)σi ), gn(x) := fn(x)+ 2.
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Lemma 3.1. For n ≥ 6, the roots γi of gn(x) are all real and pairwise distinct, and
up to relabeling we have |γj − (2 j)σj | < 1 for all i . In particular, gn(x) has as
many positive roots as fn(x).

Proof. For any 1≤ j ≤ n we can write

(14) fn(x)= (x − (2 j)σj )
∏
i 6= j

(x − (2i)σi ).

Since |(2i)σi − (2 j)σj | ≥ 2|i − j | for all i 6= j , if |x− (2 j)σj | ≤ 1 then the product
on the right side of (14) does not change sign and has absolute value at least∏

i 6= j (2|i − j | − 1). This latter product is taken over n− 1 odd integers between 1
and 2n− 3, with each odd integer appearing at most twice. So if |x − (2 j)σj | ≤ 1
and n ≥ 3, then

∣∣∣∏
j 6=i

(x − (2i)σi )

∣∣∣≥ [ n−1
2 ]∏
`=1

(2`− 1)2 ≥
(

2
[n− 1

2

]
− 1

)2
≥

(n− 3
2

)2
.

To recapitulate, for |x − (2 j)σj | ≤ 1 and n ≥ 3, the polynomial fn(x) is equal to
x− (2 j)σj times a product that, within this closed interval, takes on a constant sign
and has absolute value at least ((n− 3)/2)2. Note that x − (2 j)σj takes values ∓1
at (2 j)σj ± 1. So for n ≥ 6, one of fn((2 j)σj ± 1) is ≤ −9

4 and the other is ≥ 9
4 .

Thus gn(x) := fn(x)+2 takes a negative value at exactly one of the two end points
of the closed interval

[(2 j)σj − 1, (2 j)σj + 1]

and it takes positive value in the middle. By continuity, gn(x) must have a root in
one of the open intervals

(15) ((2 j)σj − 1, (2 j)σj ) or ((2 j)σj , (2 j)σj + 1).

As we run through all 1≤ j ≤ n, these 2n open intervals are pairwise disjoint, and
the two open intervals in (15) are both contained in the positive x-axis if and only
if σj > 0. That means if n ≥ 6, then the degree-n polynomial gn(x) has exactly
n distinct real roots, and its unique root in the union of the intervals in (15) has the
same sign as σj . This completes the proof of the lemma. �

Lemma 3.2. As n→∞ we have the estimate log |disc(gn(x2))| � n2 log n.

Proof. For any polynomial G(x), from the definition of polynomial discriminant
we see that

|disc(G(x2))| = |disc(G(x))|2 · 2deg G
· |constant term of G(x)|.
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Consequently,

log |disc(gn(x2))| ≤ 2 log |disc(gn(x))| + 2n log 2+
n∑

i=1

log(2i)

� log |disc(gn(x))| + n log n.

By Lemma 3.1, if n ≥ 6 then the roots of gn(x) are pairwise distinct and each one
is of distance less than 1 from exactly one of the (2 j)σj . Thus

log |disc(gn(x))| ≤
∑

1≤i 6= j≤n

2 log |2i + 2 j + 2| � n2 log(2n+ 2)� n2 log n.

Combine this with (16) and the lemma follows. �

Proof of Theorem 1.2. Given 0≤ n′≤ n, choose σj ∈ {±1} (0≤ j ≤ n) so that exactly
n′ of them are positive. With respect to these σj , the corresponding polynomial
gn(x2) is Eisenstein at 2, and so it is irreducible over Q. By construction it has
exactly 2n′ real embedding. Denote by Nn/Q the degree 2n extension defined by a
root of gn(x2). It is totally real if n ≥ 6, by Lemma 3.1. By Lemma 3.2, we have
log(rdNn )� nNn

log(nNn
), and the theorem follows. �

4. Small root discriminants via Pisot numbers

A real algebraic integer θ is called a Pisot number if every conjugate of θ other
than θ itself has absolute value less than 1 (these other conjugates need not be real).
A celebrated theorem of Salem [1944] says that the set of Pisot numbers is a closed
subset of the real line.

Lemma 4.1. Any integer a ≥ 2 is a nonisolated limit point of the set of Pisot
numbers.

Proof. This is a standard fact about Pisot numbers; we give the details following
the hint in [Salem 1963, p. 21] since we need the explicit polynomials later on.
Consider the polynomial

fn,a(x)= xn(x − a)− 1.

Clearly fn,a(0) 6= 0, and

fn,a

(
an

n+ 1

)
=

(
an

n+ 1

)n( an
n+ 1

− a
)
− 1=

(
n

n+ 1

)n(
−an+1

n+ 1

)
− 1< 0.

Thus the roots of the derivative f ′n,a(x)= (n+1)xn−1(x−an/(n+1)) are not roots
of fn,a , whence fn,a is separable. Since fn,a(a)=−1 and

fn,a(a+1/n)=
(a+ 1/n)n

n
−1>

(1+ 1)n − n
n

≥
(n · 1n−1

· 1)− n
n

≥0 for n ≥ 2,
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it follows that fn,a has a real root in the interval (a, a+ 1/n) for n ≥ 2. And since
f ′n,a has no root in (a, a+ 1/n), the mean value theorem implies that fn,a has a
unique real root θn,a in this interval. Our next step is to show that the remaining
roots of fn,a all have absolute value less than 1.

First, suppose a > 2. By Rouché’s theorem, the number of roots of fn,a inside
the unit circle is equal to that of azn , counted with multiplicity. For future reference,
note that up until this point our argument does not require that a be an integer.

Take a > 2 to be an integer. Since fn,a has degree n+1, combine the conclusion
of the two paragraphs above and it follows that θn,a is a Pisot number for all n ≥ 2.
And since limn→∞ θn,a = a, we see that a is a nonisolated limit point of the set of
Pisot numbers.

Now, fix n ≥ 2, and let a→2 from the right side. By the conclusion of the
second paragraph (which is valid for a > 2), it follows that fn,2 has n roots with
absolute value at most 1. Suppose it does have a root ζ with absolute value 1. Then
ζ − ζ−n

= 2, which is impossible. Thus for any fixed n ≥ 2, all roots of fn,2 except
for θn,2 have absolute value less than 1. We can now continue as in the case of
integer a > 2 above, and the lemma follows. �

Proof of Theorem 1.3. First, note that fn,a is irreducible over Q; otherwise by
Gauss’s lemma, it has a nontrivial monic irreducible factor over Z with all roots
having absolute value less than 1, which is impossible. Thus Tn :=Q(θn,2) is an
extension of Q of degree n+ 1.

Since fn,2(0)=−1 and since f ′n,2 is negative on the interval (0, 1), that means
fn,2 has no real root on the interval [0, 1]. Thus θn,2 is the only real root of fn,2

on the positive real axis. Since f ′n,2 has no root on the negative real axis, the mean
value theorem implies that fn,2 has at most one negative real root. Consequently,
fn,2 has at most two real roots. Since fn,2 does have at least one real root and since
deg( fn,2)= n+ 1, it follows that r1(Tn)= 1 or 2 depending on whether n is even
or odd. It remains to bound the root discriminant of Tn .

As α runs through the roots of fn,2, we see that the absolute value of the
polynomial discriminant of fn,2 is

∏
α

| f ′n,2(α)| =
∣∣∣∏
α

α

∣∣∣n−1
· (n+ 1)n+1

·

∏
α

∣∣α− 2n
n+1

∣∣
= (n+ 1)n+1

·
∣∣ f
(
1− 2

n+1

)∣∣
= (n+ 1)n+1

·
∣∣(1− 2

n+1

)n(1− 2
n+1 − 2

)
− 1

∣∣
≤ 3(n+ 1)n+1 for n ≥ 2,

and the theorem follows. �
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