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GROWTH TIGHT ACTIONS

GOULNARA N. ARZHANTSEVA, CHRISTOPHER H. CASHEN AND JING TAO

We introduce and systematically study the concept of a growth tight action.
This generalizes growth tightness for word metrics as initiated by Grigorchuk
and de la Harpe. Given a finitely generated, nonelementary group G acting
on a G-space X , we prove that if G contains a strongly contracting element
and if G is not too badly distorted in X , then the action of G on X is a growth
tight action. It follows that if X is a cocompact, relatively hyperbolic G-space,
then the action of G on X is a growth tight action. This generalizes all previ-
ously known results for growth tightness of cocompact actions: every already
known example of a group that admits a growth tight action and has some
infinite, infinite index normal subgroups is relatively hyperbolic; conversely,
relatively hyperbolic groups admit growth tight actions. This also allows us
to prove that many CAT(0) groups, including flip-graph manifold groups and
many right angled Artin groups, and snowflake groups admit cocompact,
growth tight actions. These provide first examples of non relatively hyper-
bolic groups admitting interesting growth tight actions. Our main result ap-
plies as well to cusp uniform actions on hyperbolic spaces and to the action of
the mapping class group on Teichmüller space with the Teichmüller metric.
Towards the proof of our main result, we give equivalent characterizations
of strongly contracting elements and produce new examples of group actions
with strongly contracting elements.
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0. Introduction

The growth exponent of a set A⊂ X with respect to a pseudometric d is

δA,d := lim sup
r→∞

log #{a ∈A | d(o, a)6 r}
r

where # denotes cardinality and o ∈ X is some basepoint. The limit is independent
of the choice of basepoint.

Let G be a finitely generated group. A left invariant pseudometric d on G
induces a left invariant pseudometric d on any quotient G/0 of G by the formula
d(g0, g′0) := d(g0, g′0).

Definition 0.1. G is growth tight with respect to d if δG,d >δG/0,d for every infinite
normal subgroup 0 P G.

One natural way to put a left invariant metric on a finitely generated group is
to choose a finite generating set and consider the word metric. More generally,
pseudometrics on a group are provided by actions of the group on metric spaces.
Let X be a G-space, that is, a proper, geodesic metric space with a properly
discontinuous, isometric G-action G yX. The choice of a basepoint o ∈X induces
a left invariant pseudometric on G by dG(g, g′) := dX (g . o, g′. o).

Define the growth exponent δG of G with respect to X to be the growth ex-
ponent of G with respect to an induced pseudometric dG ; this depends only on
the G-space X, since a different choice of basepoint in X defines a pseudometric
that differs from dG by an additive constant. Likewise, let δG/0 denote the growth
exponent of G/0 with respect to a pseudometric on G/0 induced by dX .

Definition 0.2. G y X is a growth tight action if δG > δG/0 for every infinite
normal subgroup 0 P G.

Some groups admit growth tight actions for the simple reason that they lack any
infinite, infinite index normal subgroups. For such a group G, every action on a
G-space with positive growth exponent will be growth tight. Exponentially growing
simple groups are examples, as are irreducible lattices in higher rank semisimple
Lie groups, by the Margulis normal subgroup theorem [1991].
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Growth tightness1 for word metrics was introduced and studied by Grigorchuk
and de la Harpe [1997], who showed, for example, that a finite rank free group
equipped with the word metric from a free generating set is growth tight. On the
other hand, they showed that the product of a free group with itself, generated by
free generating sets of the factors, is not growth tight. Together with the normal
subgroup theorem, these results suggest that for interesting examples of growth
tightness we should examine “rank 1” type behavior. Further evidence for this
idea comes from the work of Sambusetti and collaborators, who in [Sambusetti
2002b; 2003; 2004; Dal’Bo et al. 2011] proved growth tightness for the action of the
fundamental group of a negatively curved Riemannian manifold on its Riemannian
universal cover.

In the study of nonpositively curved, or CAT(0), spaces there is a well established
idea that a space may be nonpositively curved but have some specific directions
that look negatively curved. More precisely:

Definition 0.3 [Ballmann and Brin 1995]. A hyperbolic isometry of a proper CAT(0)
space is rank 1 if it has an axis that does not bound a half-flat.

In Definition 2.17, we introduce the notion for an element of G to be strongly
contracting with respect to G y X. In the case that X is a CAT(0) G-space, the
strongly contracting elements of G are precisely those that act as rank 1 isometries
of X ; see Theorem 9.1.

In addition to having a strongly contracting element, we will assume that the
orbit of G in X is not too badly distorted. There are two different ways to make
this precise.

We say a G-space is C-quasiconvex if there exists a C-quasiconvex G-orbit; see
Definitions 1.3 and 1.4. This means that it is possible to travel along geodesics
joining points in the orbit of G without leaving a neighborhood of the orbit.

Theorem 6.4. Let G be a finitely generated, nonelementary group. Let X be a
quasiconvex G-space. If G contains a strongly contracting element, then G y X is
a growth tight action.

Alternatively, we can assume that the growth rate of the number of orbit points
that can be reached by geodesics lying entirely, except near the endpoints, outside
a neighborhood of the orbit is strictly smaller than the growth rate of the group:

Theorem 6.3. Let G be a finitely generated, nonelementary group. Let X be a
G-space. If G contains a strongly contracting element and there exists a C > 0 such

1Grigorchuk and de la Harpe define growth tightness in terms of “growth rate”, which is just the
exponentiation of our growth exponent. The growth exponent definition is analogous to the notion of
“volume entropy” familiar in Riemannian geometry, and is more compatible with the Poincaré series
in Section 1B.
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that the C-complementary growth exponent of G is strictly less than the growth
exponent of G, then G y X is a growth tight action.

See Definition 6.2 for a precise definition of the C-complementary growth
exponent. The proof of Theorem 6.4 is a special case of the proof of Theorem 6.3.
Using Theorem 6.4, we prove:

Theorem 8.6. If X is a quasiconvex, relatively hyperbolic G-space and G does not
coarsely fix a peripheral subspace, then G y X is a growth tight action.

This generalizes all previously known results for growth tightness of cocompact
actions: every example already known of a group that admits a growth tight action
and has some infinite, infinite index normal subgroups is relatively hyperbolic;
conversely, relatively hyperbolic groups admit growth tight actions [Arzhantseva
and Lysenok 2002; Sambusetti 2002a; Yang 2013; Sambusetti 2003; Sabourau
2013; Dal’Bo et al. 2011].

We also use Theorem 6.4 to prove growth tightness for actions on non-relatively
hyperbolic spaces. For instance, we prove that a group action on a proper CAT(0)
space with a rank 1 isometry is growth tight:

Theorem 9.2. If G is a finitely generated, nonelementary group and X is a quasi-
convex, CAT(0) G-space such that G contains an element that acts as a rank 1
isometry on X, then G y X is a growth tight action.

Two interesting classes of non-relatively hyperbolic groups to which Theorem 9.2
applies are nonelementary right angled Artin groups, which are non-relatively
hyperbolic when the defining graph is connected, and flip-graph manifolds. These
are the first examples of non-relatively hyperbolic groups that admit nontrivial
growth tight actions.

Theorem 9.3. Let 2 be a finite graph that is not a join and has more than one
vertex. The action of the right angled Artin group G defined by 2 on the universal
cover X of the Salvetti complex associated to 2 is a growth tight action.

Theorem 9.4. Let M be a flip-graph manifold. Let G and X be the fundamental
group and universal cover, respectively, of M. Then the action of G on X by deck
transformations is a growth tight action.

We even exhibit an infinite family of non-relatively hyperbolic, non-CAT(0)
groups that admit cocompact, growth tight actions:

Theorem 11.1. The Brady–Bridson snowflake groups BB(1, r) for r > 3 admit
cocompact, growth tight actions.

Using Theorem 6.3, we prove growth tightness for interesting nonquasiconvex
actions. We generalize a theorem of Dal’bo, Peigné, Picaud, and Sambusetti
[Dal’Bo et al. 2011] for Kleinian groups satisfying an additional parabolic gap
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condition — see Definition 8.9 — to cusp-uniform actions on arbitrary hyperbolic
spaces satisfying the parabolic gap condition:

Theorem 8.10. Let G be a finitely generated, nonelementary group. Let G yX be
a cusp uniform action on a hyperbolic space. Suppose that G satisfies the parabolic
gap condition. Then G y X is a growth tight action.

Once again, our theorems extend beyond actions on relatively hyperbolic spaces,
as we use Theorem 6.3 to prove:

Theorem 10.2. The action of the mapping class group of a hyperbolic surface on
its Teichmüller space with the Teichmüller metric is a growth tight action.

Mapping class groups, barring exceptional low complexity cases, are neither
relatively hyperbolic nor CAT(0).

In Part I of this paper we prove our main results, Theorem 6.3 and Theorem 6.4.
We show in Proposition 3.1 that if there exists a strongly contracting element for
G y X then every infinite normal subgroup 0 contains a strongly contracting
element h. We prove growth tightness by bounding the growth exponent of a subset
that is orthogonal, in a coarse sense, to every translate of an axis for h.

A dual problem, which is of independent interest, is to find the growth exponent
of the conjugacy class of h. In Section 7 we show that the growth exponent of
the conjugacy class of a strongly contracting element is exactly half the growth
exponent of the group, provided the strongly contracting element moves the base
point far enough.

In Part II we produce new examples of group actions with strongly contracting
elements. These include groups acting on relatively hyperbolic metric spaces
(Section 8), certain CAT(0) groups (Section 9), mapping class groups (Section 10),
and snowflake groups (Section 11). Our main theorems imply that all these groups
admit growth tight actions. These are first examples of growth tight actions and
groups which do not come from and are not relatively hyperbolic groups.

0A. Invariance. Growth tightness is a delicate condition. A construction of Dal’bo,
Otal, and Peigné [Dal’bo et al. 2000] — see Observation 8.8 — shows that there exist
groups G and noncocompact, hyperbolic, equivariantly quasi-isometric G-spaces
X and X ′ such that G y X is growth tight and G y X ′ is not.

In [Cashen and Tao 2014], we extend the techniques of this paper to produce
the first examples of groups that admit a growth tight action on one of their Cayley
graphs and a non-growth tight action on another. This answers in the affirmative
the following question of Grigorchuk and de la Harpe [1997]:

Question 1. Does there exist a word metric for which F2× F2 is growth tight?
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Recall that F2× F2 is not growth tight with respect to a generating set that is a
union of free generating sets of the two factors.

More generally, a product of infinite groups acting on the l1 product of their
Cayley graphs is not growth tight. Such l1 products and the Dal’bo, Otal, Peigné
examples are the only known general constructions of non-growth tight examples.
It would be interesting to have a condition to exclude growth tightness. One can
not hope to bound the growth exponents of quotients away from that of the group,
as Shukhov [1999] and Coulon [2013] have given examples of hyperbolic groups
and sequences of quotients whose growth exponents limit to that of the group. At
present, growth tightness can only be excluded for a particular action by exhibiting
a quotient of the group by an infinite normal subgroup whose growth exponent is
equal to that of the group.

0B. The Hopf property. A group G is Hopfian if there is no proper quotient of G
isomorphic to G.

Let D be a set of pseudometrics on G that is quotient-closed, in the sense that if
0 is a normal subgroup of G such that there exists an isomorphism φ : G→ G/0,
then for every d ∈D, the pseudometric on G obtained by pulling back via φ the
pseudometric on G/0 induced by d is also in D. For example, the set of word
metrics on G coming from finite generating sets is quotient-closed.

Suppose further that D contains a minimal growth pseudometric d0, i.e., that
δG,d0 = infd∈D δG,d , and that G is growth tight with respect to d0.

Proposition 0.4. Let G be a finitely generated group with a bound on the cardinali-
ties of its finite normal subgroups. Suppose that there exists a quotient-closed set D
of pseudometrics on G that contains a growth tight, minimal growth element d0, as
above. Then, G is Hopfian.

The hypothesis on bounded cardinalities of finite normal subgroups holds for all
groups of interest in this paper; see Theorem 1.12.

Proof. Suppose that 0 is a normal subgroup of G such that G ∼= G/0. Let d be the
pseudometric on G obtained from pulling back the pseudometric on G/0 induced
by d0. Since D is quotient-closed, d ∈ D. By minimality, δG,d0 6 δG,d , but by
growth tightness, δG,d 6 δG,d0 , with equality only if 0 is finite. Thus, the only
normal subgroups 0 for which we could have G ∼= G/0 are finite. However, if
G ∼= G/0 for some finite 0 then G has arbitrarily large finite normal subgroups,
contrary to hypothesis. �

Grigorchuk and de la Harpe [1997] suggested this as a possible approach to
the question of whether a nonelementary Gromov hyperbolic group is Hopfian,
in the particular case that D is the set of word metrics on G. Arzhantseva and
Lysenok [2002] proved that every word metric on a nonelementary hyperbolic
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group is growth tight. They conjectured that the growth exponent of such a group
achieves its infimum on some finite generating set and proved a step towards this
conjecture [Arzhantseva and Lysenok 2006]. Sambusetti [2002a] gave an examples
of a (nonhyperbolic) group for which the set of word metrics does not realize its
infimal growth exponent. In general, it is difficult to determine whether a given
group has a generating set that realizes the infimal growth exponent among word
metrics. Part of our motivation for studying growth tight actions is to open new
possibilities for the set D of pseudometrics considered above.

Torsion free hyperbolic groups are Hopfian [Sela 1999]. Reinfeldt and Weidmann
[2014] have announced a generalization of Sela’s techniques to hyperbolic groups
with torsion, and concluded that all hyperbolic groups are Hopfian.

0C. The rank rigidity conjecture. The rank rigidity conjecture (see [Caprace and
Sageev 2011; Ballmann and Buyalo 2008]) asserts that if X is a locally compact,
irreducible, geodesically complete CAT(0) space, and G is an infinite discrete group
acting properly and cocompactly on X, then one of the following holds:

(1) X is a higher rank symmetric space.

(2) X is a Euclidean building of dimension at least 2.

(3) G contains a rank 1 isometry.

In case (1), the Margulis normal subgroup theorem implies that G is trivially
growth tight, since it has no infinite, infinite index normal subgroups. Conjecturally,
the Margulis normal subgroup theorem also holds in case (2). Our Theorem 9.2
says that if X is proper then G y X is a growth tight action in case (3). Thus, a
non-growth tight action of a nonelementary group on a proper, irreducible CAT(0)
space as above would provide a counterexample either to the rank rigidity conjecture
or to the conjecture that the Margulis normal subgroup theorem applies to Euclidean
buildings.

The rank rigidity conjecture is known to be true for many interesting classes of
spaces, such as Hadamard manifolds [Ballmann 1995], 2-dimensional, piecewise
Euclidean cell complexes [Ballmann and Brin 1995], Davis complexes of Coxeter
groups [Caprace and Fujiwara 2010], universal covers of Salvetti complexes of right
angled Artin groups [Behrstock and Charney 2012], and finite dimensional CAT(0)
cube complexes [Caprace and Sageev 2011]; so Theorem 9.2 provides many new
examples of growth tight actions.

It is unclear when growth tightness holds if X is reducible. A direct product of
infinite groups acting via a product action on a product space with the l1 metric fails
to be growth tight. However, there are also examples [Burger and Mozes 1997] of
infinite simple groups acting cocompactly on products of trees. In [Cashen and Tao
2014], we find partial results in the case that the group action is a product action.
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0D. Outline of the proof of the main theorems. Sambusetti [2002a] proved that a
nonelementary free product of nontrivial groups has a greater growth exponent than
that of either factor. Thus, a strategy to prove growth tightness is to find a subset
of G that looks like a free product, with one factor that grows like the quotient
group we are interested in. Specifically:

(1) Find a subset A ⊂ G ⊂ X such that δA = δG/0. We will obtain A as a
coarsely dense subset of a minimal section of the quotient map G→ G/0; see
Definition 4.4.

(2) Construct an embedding of a free product set A ∗ Z2 into X. The existence
of a strongly contracting element h ∈ 0 is used in the construction of this
embedding; see Proposition 5.1.

(3) Show that δG/0 = δA,dX < δA∗Z/2Z,dX 6 δG . In this step it is crucial that A is
divergent; see Definition 1.7 and Lemma 6.1. We use the quasiconvexity and
complementary growth exponent to establish divergence.

This outline, due to Sambusetti, is nowadays standard. Typically, step (2) is
accomplished by a ping-pong argument, making use of fine control on the geometry
of the space X. Our methods are coarser than such a standard approach, and
therefore can be applied to a wider variety of spaces. We use, in particular, a
technique of Bestvina, Bromberg, and Fujiwara [Bestvina et al. 2014] to construct
an action of G on a quasitree. Verifying that the map from the free product set into
X is an embedding amounts to showing that elements in A do not cross certain
coarse edges of the quasitree.

Part I. Growth tight actions

1. Preliminaries

Fix a G-space X. From now on, d is used to denote the metric on X as well as
the induced pseudometric on G and G/0. Since there will be no possibility of
confusion, we suppress d from the growth exponent notation.

We denote by Br (x) the open ball of radius r about the point x and by Br (A) :=⋃
x∈A Br (x) the open r -neighborhood about the set A. The closed r -ball and closed

r -neighborhood are denoted Br (x) and Br (A), respectively.

1A. Coarse language. All of the following definitions may be written without
specifying C to indicate that some such C > 0 exists: Two subsets A and A′ of
X are C-coarsely equivalent if A⊂ BC(A′) and A′ ⊂ BC(A). A subset A of X is
C-coarsely dense if it is C-coarsely equivalent to X. A subset A of X is C-coarsely
connected if for every a and a′ in A there exists a chain a = a0, a1, . . . , an = a′ of
points in A with d(ai , ai+1)6 C .
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A pseudomap φ : X → Y assigns to each point in X a subset φ(x) of Y . A
pseudomap is C-coarsely well-defined if for every x ∈ X the set φ(x) of Y has
diameter at most C . Pseudomaps φ and φ′ with the same domain and codomain
are C-coarsely equivalent or C-coarsely agree if φ(x) is C-coarsely equivalent to
φ′(x) for every x in the domain. A C-coarsely well-defined pseudomap is called a
C-coarse map. From a C-coarse map we can obtain a C-coarsely equivalent map
by selecting one point from every image set. Conversely:

Lemma 1.1. If φ : X → Y is coarsely G-equivariant then there is an equivariant
coarse map coarsely equivalent to φ.

Proof. Suppose there is a C such that d(g . φ(x), φ(g . x)) 6 C for all x ∈ X
and g ∈ G. Define φ′(x) :=

⋃
g∈G g−1 . φ(g . x). Then, φ′ is G-equivariant and

C-coarsely equivalent to φ. �

Notation 1.2. If φ : X → Y is a pseudomap and A and A′ are subsets of X, let
dφ(A,A′) denote the diameter of φ(A)∪φ(A′).

Definition 1.3. A subset A ⊂ X is C-quasiconvex if for every a0, a1 ∈ A, there
exists a geodesic γ between a0 and a1 such that γ ⊂ BC(A). It is C-strongly
quasiconvex if every geodesic with endpoints in A stays in BC(A).

Definition 1.4. A G-space X is C-quasiconvex if it contains a C-quasiconvex
G-orbit.

For convenience, if X is a quasiconvex G-space we assume we have chosen a
basepoint o ∈ X such that G . o is quasiconvex.

A group is elementary if it has a finite index cyclic subgroup.

Definition 1.5. Let g ∈ G. The elementary closure of g, denoted by E(g), is the
largest virtually cyclic subgroup containing g, if such a subgroup exists.

A map φ : X → Y is an (M,C)-quasi-isometric embedding, for some M > 1
and C > 0, if, for all x0, x1 ∈ X :

1
M

d(x0, x1)−C 6 d(φ(x0), φ(x1))6 M d(x0, x1)+C

A map φ is C-coarsely M-Lipschitz if the second inequality holds, and is a quasi-
isometry if it is a quasi-isometric embedding whose image is C-coarsely dense.

An (M,C)-quasigeodesic is an (M,C)-quasi-isometric embedding of a coarsely
connected subset of R. If γ : I → X is a quasigeodesic we let γt denote the point
γ (t), and let γ denote the image of γ in X.

Definition 1.6. A quasigeodesic Q is Morse if for every M > 1 there exists a K > 0
such that every (M,M)-quasigeodesic with endpoints on Q is contained in the
K-neighborhood of Q.
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We will use notation to simplify some calculations. Let C be a “universal
constant”. For us this will usually mean a constant that depends on G y X and a
choice of o ∈X, but not on the point in X at which quantities a and b are calculated.

• For a 6 Cb, we write a ∗

≺ b.

• For 1
C b 6 a 6 Cb, we write a ∗

� b.

• For a 6 b+C , we write a
+

≺ b.

• For b−C 6 a 6 b+C , we write a
+

� b.

• For a 6 Cb+C , we write a ≺ b.

• For 1
C b−C 6 a 6 Cb+C , we write a � b.

1B. The Poincaré series and growth. Let (X , o, d) be a pseudometric space with
choice of basepoint. Let |x | := d(o, x) be the induced seminorm. Define the
Poincaré series of A⊂ X to be

2A(s) :=
∑
a∈A

exp(−s|a|)

Another related series is:

2′A(s) :=
∞∑

n=0

#(Bn(o)∩A) · exp(−sn)

The series 2A and 2′A have the same convergence behavior, since 2A(s) =
2′A(s) · (1 − exp(−s)). It follows that the growth exponent of A is a critical
exponent for 2′A and 2A: the series converge for s greater than the critical exponent
and diverge for s less than the critical exponent.

Definition 1.7. A⊂ X is divergent if 2A diverges at its critical exponent.

Since point stabilizers are finite, if A < G and we set A := A . o then 2A
∗

�2A
and 2′A

∗

�2′A. This implies δA = δA, so we can compute the growth exponent of A
with respect to the pseudometric on A induced by G yX by computing the growth
exponent of the A-orbit as a subset of X.

1C. The quasitree construction. We recall the method of Bestvina, Bromberg,
and Fujiwara [Bestvina et al. 2014] for producing group actions on quasitrees. A
quasitree is a geodesic metric space that is quasi-isometric to a simplicial tree. Man-
ning [2005] gave a characterization of quasitrees as spaces satisfying a “bottleneck”
property. We use an equivalent formulation:

Definition 1.8. A geodesic metric space satisfies the bottleneck property if there
exists a number 1 such that for all x and y in X, and for any point m on a geodesic
segment from x to y, every path from x to y passes through B1(m).
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Theorem 1.9 [Manning 2005, Theorem 4.6]. A geodesic metric space is a quasitree
if and only if it satisfies the bottleneck property.

Let Y be a collection of geodesic metric spaces, and suppose for each X, Y ∈ Y

we have a subset πY (X)⊂ Y , which is referred to as the projection of X to Y . Let
dπY (X, Z) := diamπY (X)∪πY (Z).

Definition 1.10 (projection axioms). A set Y with projections as above satisfies
the projection axioms if there exist ξ > 0 such that for all distinct X, Y, Z ∈ Y:

(P0) diamπY (X)6 ξ

(P1) At most one of dπX (Y, Z), dπY (X, Z), or dπZ (X, Y ) is strictly greater than ξ .

(P2) |{V ∈ Y | dπV (X, Y ) > ξ}|<∞

For a motivating example, let G be the fundamental group of a closed hyperbolic
surface, and let H be the axis in H2 of h ∈ G. Let Y be the distinct G-translates
of H, and for each Y ∈ Y, let πY be closest point projection to Y. In this example,
projection distances arise as closest point projection in an ambient space contain-
ing Y. Bestvina, Bromberg, and Fujiwara consider abstractly the collection Y and
projections satisfying the projection axioms, and build an ambient space containing
a copy of Y such that closest point projection agrees with the given projections, up
to bounded error:

Theorem 1.11 [Bestvina et al. 2014, Theorems A and B]. Consider a set Y of
geodesic metric spaces and projections satisfying the projection axioms. There
exists a geodesic metric space Y containing disjoint, isometrically embedded, totally
geodesic copies of each Y ∈ Y, such that for X, Y ∈ Y, closest point projection of X
to Y in Y is uniformly coarsely equivalent to πY (X).

The construction is equivariant with respect to any group action that preserves
the projections. Also, if each Y ∈Y is a quasitree, with uniform bottleneck constants,
then Y is a quasitree.

The basic idea is that Z is “between” X and Y in Y if dπZ (X, Y ) is large, and X
and Y are “close” if there is no Z between them. Essentially, Y is constructed by
choosing parameters C and K and connecting every point of πY (X) to every point of
πX (Y ) by an edge of length K if there does not exist Z ∈Y with dπZ (X, Y )>C . For
technical reasons one actually must perturb the projection distances by a bounded
amount first. Then, if C is chosen sufficiently large and K is chosen sufficiently
large with respect to C , the resulting space is the space Y of Theorem 1.11.

1D. Hyperbolically embedded subgroups. Dahmani, Guirardel, and Osin [Dah-
mani et al. 2011] define the concept of a hyperbolically embedded subgroup. This
is a generalization of a peripheral subgroup of a relatively hyperbolic group. We
will not state the definition, as it is technical and we will not work with this
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property directly, but it follows from Theorem 4.42 from that reference that E(h) is
hyperbolically embedded in G for any strongly contracting element h. The proof of
this theorem proceeds by considering the action of E(h) on a quasitree constructed
via the method of Bestvina, Bromberg, and Fujiwara.

We state some results on hyperbolically embedded subgroups that are related to
the work in this paper. These are not used in the proofs of the main theorems.

Theorem 1.12 [Dahmani et al. 2011, Theorem 2.23]. If G has a hyperbolically
embedded subgroup, then G has a maximal finite normal subgroup.

Recall that this theorem guarantees one of the hypotheses of Proposition 0.4.

Theorem 1.13. If G contains an infinite order element h such that E(h) is hyper-
bolically embedded, then G has an infinite, infinite index normal subgroup.

Proof. By [Dahmani et al. 2011, Theorem 5.15], for a sufficiently large n, the
normal closure of 〈hn

〉 in G is the free product of the conjugates of 〈hn
〉. �

This theorem says that our main results are true for interesting reasons, not
simply for lack of normal subgroups.

Minasyan and Osin [2015] produce hyperbolically embedded subgroups in certain
graphs of groups. We use these to produce growth tight examples in Theorem 9.5.

Theorem 1.14 [Minasyan and Osin 2015, Theorem 4.17]. Let G be a finitely
generated, nonelementary group that splits nontrivially as a graph of groups and
is not an ascending HNN-extension. If there exist two edges of the corresponding
Bass–Serre tree whose stabilizers have finite intersection then G contains an infinite
order element h such that E(h) is hyperbolically embedded in G.

2. Contraction and constriction

In this section we introduce properties called “contracting” and “constricting” that
generalize properties of closest point projection to a geodesic in hyperbolic space,
and verify that the “strong” versions of these properties are sufficient to satisfy the
projection axioms of Definition 1.10. These facts are well known to the experts2,
but as there is currently no published general treatment of this material, we provide
a detailed account.

2A. Contracting and constricting. In this section we define contracting and con-
stricting maps and show that the strong versions of these properties are equivalent.

Definition 2.1. A C-coarse map π :X→A is C-coarsely a closest point projection
if for all x there exists an a∈A with d(x,A)=d(x, a) such that diam{a}∪π(x)6C .

2For example, [Sisto 2011] shows that the projection axioms are satisfied for constricting elements,
without assuming that X is proper.
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Recall dπ (x0, x1) := diamπ(x0)∪π(x1).

Definition 2.2. π : X →A is (M,C)-contracting for C > 0 and M > 1 if

(1) π and IdA are C-coarsely equivalent on A, and

(2) d(x0, x1) <
1
M d(x0,A)−C implies dπ (x0, x1)6 C for all x0, x1 ∈ X.

We say π is strongly contracting if it is (1,C)-contracting and, for all x ∈ X,
d(x, π(x))− d(x,A)6 C .

Another formulation of strong contraction says that geodesics far from A have
bounded projections to A:

Definition 2.3. A coarse map π :X→A has the bounded geodesic image property
if there is a constant C such that for every geodesic L, if L ∩ BC(A) = ∅ then
diam(π(L))6 C .

Lemma 2.4. If d(x, π(x))−d(x,A) is uniformly bounded, then π has the bounded
geodesic image property if and only if it is strongly contracting.

Proof. First, assume that π has the bounded geodesic image property, for some
constant C . Let x be any point in X \ BC(A). For any y such that d(x, y) <
d(x,A)−C , every geodesic from x to y remains outside BC(A), so its projection
has diameter at most C .

For the converse, suppose π :X→A is a C-coarse map that is (1,C)-contracting
and d(x, π(x)) − d(x,A) 6 C for all x ∈ X. If C = 0 then balls outside of
BC(A) project to a single point, and we are done; so assume that C > 0. Let
L : [0, T ] → X be a geodesic that stays outside B3C(A). Let t0 := d(L0,A)−C ,
and let s := T −d(LT ,A)+C . If s 6 t0 then dπ (L0,LT )6 2C . Otherwise, define
ti+1 := ti + d(Lti ,A)−C , provided ti+1 < s. Each ti+1− ti > 2C , so we have a
partition of [0, T ] into subintervals [0, t0], [t0, t1], . . . , [tk−1, tk], [tk, s], [s, T ] with
k < (s− t0)/(2C), and if [a, b] is one of these intervals then dπ (La,Lb)6 C , by
strong contraction. Now,

d(L0,LT )6 d(L0, π(L0))+ d(π(L0), π(Lt0))+ d(π(Lt0), π(Ls))

+ d(π(Ls), π(LT ))+ d(π(LT ),LT )

6 d(L0, π(L0))+ d(π(LT ),LT )+C
(
2+ s−t0

2C

)
,

and
d(L0,LT )= d(L0,Lt0)+ d(Lt0,Ls)+ d(Ls,LT )

= d(L0,A)−C + s− t0+ d(LT ,A)−C,
so

s− t0 6 2
(
5C + d(L0, π(L0))− d(L0,A)+ d(LT , π(LT ))− d(LT ,A)

)
6 14C.

This means that k < 7, so dπ (L0,LT )6 C(3+ k) < 10C . �
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If π is only (M,C)-contracting then a similar argument shows that dπ (L0,LT )

is bounded in terms of C and log(M+1)/(M−1)(d(L0,A)d(LT ,A)).
We now introduce the notion of a constricting map. Using constricting maps will

simplify some of our proofs, but it turns out that the strong versions of constricting
and contracting are equivalent.

Definition 2.5. A path system is a transitive collection of quasigeodesics with
uniform constants that is closed under taking subpaths.

A path system is minimizing if, for some C > 0, it contains a path system
consisting of (1,C)-quasigeodesics.

Definition 2.6. Let PS be a path system. For M > 1 and C > 0, a coarse map
π : X →A is (M,C)-PS-constricting3 if:

(1) PS contains a path system consisting of (M,C)-quasigeodesics,

(2) π and IdA are C-coarsely equivalent on A, and

(3) for every P ∈ PS with endpoints x0 and x1, if dπ (x0, x1) > C then, for both
i ∈ {0, 1}, we have d(π(xi ),P)6 C.

A coarse map is constricting if it is (M,C)-PS-constricting for some path system
PS and strongly constricting if it is (1,C)-constricting for the path system consisting
of all geodesics.

Lemma 2.7. If π : X →A is constricting, then it is contracting.

Proof. Suppose π is (M,C)-PS-constricting C-coarse map for a path system PS
consisting of (M,C)-quasigeodesics. Suppose P : [0, T ] → X is a path in PS
with P0 = x and PT = y, and suppose z = Ps ∈ BC(A). Using the fact that P is
an (M,C)-quasigeodesic on the intervals [0, T ], [0, s], and [s, T ], one sees that
d(x, y)> (1/M2)(d(x,A)+ d(y,A)− 4C). Therefore, if

d(x, y) <
1

M2 d(x,A)−
4C
M2 ,

then P can not enter BC(A). This would contradict the constricting property, unless
dπ (x, y)6 C. Therefore, π is (M2,max{C, 4C/M2

})-contracting. �

Lemma 2.8. Let π :X→A be a C-coarse map that is (1,C)-PS-constricting. For
all x ∈ X and all r > 0, we have

{a ∈A | d(x, a)6 d(x,A)+ r} ⊂ {a ∈A | d(a, π(x))6 r + 5C}.

In particular, setting r = 0 shows that closest point projection to A is coarsely
well defined and coarsely equivalent to π .

3Sisto [2011] calls this property “PS-contracting”. We change the name to avoid conflict with the
better established “contracting” terminology of Definition 2.2.
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Proof. For x ∈ X and r > 0, let a ∈A be a point such that d(x, a)6 d(x,A)+ r .
Let P be a (1,C)-quasigeodesic from x to a in PS. If d(a, π(x)) > 2C, then
dπ (a, x) > C, so there is a point z ∈ P ∩BC(π(x)). Now,

d(x, z)+C > d(x, π(x))> d(x,A)> d(x, a)− r.

Since P is a (1,C)-quasigeodesic, d(x, a) > d(x, z)+ d(z, a)− 3C. As a result,
d(z, a)6 r + 4C, and d(a, π(x))6 r + 5C. �

Proposition 2.9. Let π : X →A. The following are equivalent:

(1) π is strongly constricting.

(2) π is constricting for some minimizing path system.

(3) π is strongly contracting.

(4) π has the bounded geodesic image property and d(x, π(x))− d(x,A) is uni-
formly bounded.

Proof. The fact that (1) implies (2) is immediate.
Suppose π is (1,C)-PS-constricting for a minimizing path system PS con-

sisting of (1,C)-quasigeodesics. Lemma 2.7 shows π is (1,C ′)-contracting. By
Lemma 2.8, π is coarsely a closest point projection, so d(x, π(x))− d(x,A) is
uniformly bounded. Thus, (2) implies (3).

Now suppose π is (1,C)-contracting and d(x, π(x))−d(x,A)6C for all x ∈X.
Take any geodesic L : [0, T ] → X. If dπ (L0,LT ) > 10C then L∩ B3C(A) 6= ∅,
as in Lemma 2.4. Let t = t0, t1 be the first and last times, respectively, such that
d(Lt ,A)6 3C. By Lemma 2.4, dπ (L0,Lt0)6 10C. Thus,

d(π(L0),Lt0)6 dπ (L0,Lt0)+ d(π(Lt0),Lt0)6 14C.

The same argument shows that d(π(LT ),Lt1)6 14C, so π is (1, 14C)-constricting
for the path system of all geodesics. Thus, (3) implies (1).

Finally, (3) is equivalent to (4) by Lemma 2.4. �

2B. Additional properties of contracting and constricting maps. We establish
some properties of contracting and constricting maps that will be useful in the
sequel.

Lemma 2.10. If π is a (1,C)-strongly constricting C-coarse map and dπ (x, y)>C,
then d(x, y)> d(x, π(x))+ dπ (x, y)+ d(π(y), y)− 6C.

Proof. Let L be a geodesic from x to y; by strong constriction, there exist s and t
such that d(Ls, π(x)) 6 C and d(Lt , π(y)) 6 C. The lemma follows from the
triangle inequality and the fact that π(x) and π(y) have diameter at most C. �

Lemma 2.11. If π : X →A is strongly constricting, then it is coarsely 1-Lipschitz.
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Proof. Let π be a C-coarse map that is (1,C)-constricting on the path system
of geodesics. Let x0 and x1 be arbitrary points, and let L be a geodesic from x0

to x1. If dπ (x0, x1) > 4C then L ∩ BC(xi ) 6= ∅ for each i , which implies that
d(x0, x1)> d(x0, π(x0))+dπ (x0, x1)+d(π(x1), x1)−8C. Thus, for all x0 and x1,
we have dπ (x0, x1)6 d(x0, x1)+ 8C. �

Lemma 2.12. Let π : X → A be an (M,C)-contracting C-coarse map such that
d(x, π(x))− d(x,A) 6 C for all x ∈ X. Fix K > 1. For all sufficiently large D,
there exists a Tmax such that if Q : [0, T ] → X is a (K , K )-quasigeodesic with
d(Q0, A)= D = d(QT ,A) and Q∩BD(A)=∅ then T 6 Tmax.

Proof. Let D > M(K 2C +C + K ). Let t0 := 0 and let ti+1 be the last time that
d(Qti ,Qtt+1)= (1/M)d(Qti ,A)−C, provided that ti+1< T. This subdivides [0, T ]
into at most 1+(T K )/(D/M−C−K ) intervals [t0, t1], . . . , [tk, T ], each of which
has endpoints whose π -images are distance at most C apart.

Since Q is a quasigeodesic, T 6 K d(Q0,QT )+ K 2. On the other hand:

d(Q0,QT )6 2D+ 2C + dπ (Q0,QT )6 2D+ 2C +C
(

1+
T K

D
M −C − K

)
Combined with the condition on D, this yields an upper bound on T. �

Corollary 2.13. If π :X→A is contracting and d(x, π(x))−d(x,A) is uniformly
bounded, then for all M > 1 and D > 0 there exists a K such that every (M,M)-
quasigeodesic with endpoints at distance at most D from A is contained in BK (A).

In particular, if A is a quasigeodesic, then it is Morse.

Lemma 2.14. Let Q : R→ X be a quasigeodesic, and let π : X →Q be a strongly
contracting projection. For all D > 0, there exists a K such that if P : [0, T ] → X
is a geodesic and t0 and t1 are such that d(P0,Qt0)6 D and d(PT ,Qt1)6 D, then
Q[t0,t1] ⊂ BK (P).

Proof. By Proposition 2.9, π is strongly constricting, so P passes close to every
point in π(P). Let i and j be numbers in the domain of P, with 0< j − i 6 1. Let
si and sj be such that Qsi ∈ π(Pi ) and Qsj ∈ π(Pj ). Then si and sj are boundedly
far apart, since π is coarsely 1-Lipschitz, by Lemma 2.11, and Q is a quasigeodesic.
Therefore, the diameter of Q[si ,sj ] is bounded, and we have already noted that Q(si )

and Q(sj ) are close to P, since they are in the image of π . �

Lemma 2.15. Let A and A′ be coarsely equivalent subsets of X. Let σ : A→ A′

and σ : A′ → A be C-coarse maps such that d(a, σ (a)) 6 C for all a ∈ A and
d(a′, σ (a′))6 C for all a′ ∈A′. Then, πA : X →A is strongly contracting if and
only if πA′ := σ ◦πA : X →A′ is strongly contracting.



GROWTH TIGHT ACTIONS 17

Proof. Suppose πA is (1,C)-contracting and d(x, π(x))−d(x,A)6C for all x ∈X.
If d(x, y)6 d(x,A′)− 2C 6 d(x,A)−C, then dπA′(x, y)6 dπA (x, y)+ 2C 6 3C,
so πA′ is (1, 3C)-contracting.

Take a point x and let a′ ∈A′ such that d(x,A′)= d(x, a′). Then,

d(x, σ (a′))−C 6 d(x, a′)6 d(x, πA′(x))6 d(x, πA(x))+ 2C,

so d(x, σ (a′))6 d(x,A)+ 3C. By Proposition 2.9, πA is strongly constricting, so
by Lemma 2.8, there is a constant D such that d(πA(x), σ (a′))6 3C + D. Thus,
πA′ is (5C + D)-coarsely a closest point projection, hence, strongly contracting. �

Lemma 2.16. Let π : X → A be strongly constricting. There exists a number K
such that if d(A, gA) > K then diamπ(gA) is bounded, independent of g.

Proof. Let π be (1,C)-strongly constricting. By Proposition 2.9, π is strongly
contracting, so by Corollary 2.13 there is a constant K such that a geodesic with
endpoints in A stays in the (K −C)-neighborhood of A. Therefore, a geodesic with
endpoints in gA stays in BK−C(gA). Choose x ∈ gA such that d(x,A)= d(gA,A).
For all y ∈ gA, if dπ (x, y) >C, then a geodesic from x to y passes within distance
C of π(x) and π(y). This means BC(A) ∩ BK−C(gA) 6= ∅, so d(A, gA) 6 K .
Thus, if d(A, gA) > K , then dπ (x, y)6 C, so diamπ(gA)6 2C. �

2C. Strongly contracting elements. We have defined contraction and constriction
for maps. We now give definitions for group elements:

Definition 2.17. An element h ∈ G is called contracting, with respect to G y X,
if i 7→ hi .o is a quasigeodesic and if there exists a subset A⊂ X on which 〈h〉 acts
cocompactly and a map π : X →A that is contracting.

An element h ∈ G is called constricting, with respect to G y X, if i 7→ hi . o is
a quasigeodesic and if there exists a subset A⊂ X on which 〈h〉 acts cocompactly,
a G-invariant path system PS, and a map π : X →A that is PS-constricting.

An element is strongly contracting or strongly constricting if the projection π is,
respectively, strongly contracting or strongly constricting.

For π and A as in the definition, Proposition 2.9 says π is strongly contracting if
and only if it is strongly constricting. Thus, Lemma 2.8 says closest point projection
to A is coarsely well defined and coarsely equivalent to π . Lemma 2.15 says that
the choice of the set A only affects the constants of strong contraction. It follows
that an element h is strongly contracting if and only if i 7→ hi . o is a quasigeodesic
and closest point projection to 〈h〉 . o is strongly contracting. In the remainder of
this section we produce more finely tailored choices for A and π . In particular, we
would like π to be compatible with the group action; see Remark 2.22.
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Proposition 2.18 (compare [Dahmani et al. 2011, Lemma 6.5]). Let G be a finitely
generated group, and let X be a G-space. Let h ∈ G be an infinite order element. If
there exists a strongly constricting π : X → 〈h〉 . o, then E(h)= H , where

H := {g ∈ G | g〈h〉 . o is coarsely equivalent to 〈h〉 . o}.

Proof. H is a group containing every finite index supergroup of 〈h〉. Let D be
the constant of Lemma 2.16, and let S := {g ∈ G | d(g〈h〉 . o, 〈h〉 . o)6 D}. Then,
Lemma 2.16 implies H ⊂ S. Since G yX is properly discontinuous, S is contained
in finitely many h-orbits, so 〈h〉< H has finite index. Therefore, E(h) exists and
is equal to H . �

Definition 2.19. If h is a strongly contracting element, define the (quasi-)axis of h,
with respect to the basepoint o, to be H := E(h) . o.

Lemma 2.20. If h is a strongly contracting element, then there exists an E(h)-
equivariant, strongly contracting coarse map πH : X →H.

Proof. By Proposition 2.9, Lemma 2.8, and Lemma 2.15 any choice of closest point
projection map to H is strongly contracting and coarsely E(h)-equivariant, so, by
Lemma 1.1, we can replace it by a coarsely equivalent, E(h)-equivariant coarse
map, which will still be strongly contracting, by Lemma 2.15. �

Definition 2.21. From the projection πH of Lemma 2.20, define strongly contract-
ing projections onto each translate of H by πgH : X → gH, x 7→ g . πH(g−1. x).

If g′H= gH then g−1g′ ∈ E(h), so Lemma 2.20 implies that πg′H(x)= πgH(x)
for all x ∈ X.

Remark 2.22. The projections of Definition 2.21 satisfy g . πH(x) = πgH(g . x)
for all x ∈ X and g ∈ G.

2D. Strongly contracting elements and the projection axioms. Let h ∈ G be a
strongly contracting element with respect to G y X. Let H be a quasi-axis of h
defined in Definition 2.19. We wish to apply Theorem 1.11 to the collection of
G-translates of H with the projections of Definition 2.21. To see that the hypotheses
of the theorem are satisfied, we first embed H into a geodesic metric space and then
verify the projection axioms of Definition 1.10.

Choose representatives 1 = g0, . . . , gn−1 for 〈h〉\E(h), so that for each i we
have d(gi . o, o)=ming∈〈h〉gi d(g . o, o). Let gn := h. Let Ĥ be the Cayley graph
of E(h) with respect to the generating set {g1, . . . , gn}. The graph Ĥ becomes a
geodesic metric space by assigning each edge length one, and it is a quasitree since
E(h) is virtually cyclic.

Choose representatives 1 = f0, f1, . . . for G/E(h). Let Y be a disjoint union
of copies of Ĥ , one for each coset fi E(h) ∈ G/E(h), denoted fi Ĥ . The orbit
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map fi Ĥ → fiH, defined by fi e 7→ fi e . o, is a quasi-isometric embedding, so
its inverse φ fiH : fiH→ fi Ĥ is a coarse map that is a quasi-isometry. Define
πfi Ĥ ( f j Ĥ) := φ fi (πfiH( fjH)). Since φ fi is a quasi-isometry, it suffices to check
the projection axioms on translates of H in X.

Lemma 2.23 (Axiom (P0)). There is a uniform bound on the diameter of πH(gH)
for g /∈ E(h).

Proof. Let πH : X → H be (1,C ′)-strongly constricting. Let Q : R� H be an
(M,C ′′)-quasigeodesic parametrization that agrees with i 7→ hi . o on the integers.
Replace C ′ and C ′′ by C :=max{C ′,C ′′}.

Let D := diam〈h〉\H. Let K be large enough such that whenever P is a geodesic
with d(Ps0,Qt0) 6 C and d(Ps1,Qt1) 6 C, we have P[s0,s1] ⊂ BK (Q[t0, t1]) and
Q[s0,s1] ⊂ BK (P[t0,t1]), as in Corollary 2.13 and Lemma 2.14.

Suppose g /∈ E(h). For a pair of points x0, x1 ∈ gH, take t0 and t1 such that
Qti ∈πH(xi ) for each i . Let P be a geodesic connecting x0 to x1. If dπH(x0, x1) >C,
then for each i there exists si such that d(Psi ,Qti )6 C.

Now, Q[t0,t1] is K-close to P[s0,s1], which in turn is K-close to a subinterval
of gH. Therefore, for each integer i ∈ [t0, t1] there is an integer αi such that
d(hi . o, ghαi g−1. o)6 2K + D.

If, for some i 6= j , the equation h−i ghαi g−1.o= h− j ghαj g−1.o is satisfied, then
h j−i
= ghαj−αi g−1, which implies 〈h〉 and 〈ghg−1

〉 are commensurable. However,
this would imply g ∈ E(h), contrary to hypothesis. Therefore, for each integer i
in [t0, t1] we get a distinct point h−i ghαi g−1. o ∈ B2K+D(o). Since the action of
G is properly discontinuous, the number of orbit points in B2K+D(o) is finite, so
diamπH(gH) is bounded, independent of g. �

Lemma 2.24 (Axiom (P1)). For all sufficiently large ξ and for any X, Y, Z ∈ Y,
at most one of dπX (Y, Z), dπY (X, Z), and dπZ (X, Y ) is greater than ξ .

Proof. Suppose πY is (1,C)-strongly constricting. Let ξ ′ be the constant from
Lemma 2.23. Let ξ>2ξ ′+14C. Suppose that dπX (Y, Z)>ξ . We show dπX (Y, Z)6ξ ;
the inequality dπZ (X, Y )6 ξ follows by a similar argument.

Take any point z ∈ Z , and let y ∈ Y be a point such that d(z, y) = d(z, Y ).
Let L : [0, T ] → X be a geodesic from z to y. For every point of L, y is the
closest point of Y. By Lemma 2.8, πY (L)⊂ B5C(y). Now, dπX (Y, Z) > ξ implies
dπX (L0,LT ) >C, so there are z′ ∈L and x ∈ X with d(x, z′)6 D. By Lemma 2.11,
πY is 8C-coarsely 1–Lipschitz, which means dπY (x, z′)6 9C. Thus,

dπY (X, Z)6 2ξ ′+ dπY (x, z)6 2ξ ′+ 5C + dπY (x, z′)6 2ξ ′+ 14C 6 ξ. �

Lemma 2.25 (Axiom (P2)). For all sufficiently large ξ and for all X, Y ∈ Y, the
set {V ∈ Y | dπV (X, Y ) > ξ} is finite.



20 GOULNARA N. ARZHANTSEVA, CHRISTOPHER H. CASHEN AND JING TAO

Proof. Let ξ ′ be the constant of Lemma 2.23. Suppose πH is (1,C)-strongly con-
stricting. Let ξ >C+2ξ ′. Take arbitrary X, Y ∈Y, and let L be a geodesic from some
point in πX (Y ) to some point in πY (X). If dπV (X, Y ) > ξ , then dπV (L0,LT ) >C, so
L comes within distance C of V. By proper discontinuity of the action, there are only
finitely many elements of Y that come within distance C of the finite geodesic L. �

Notation 2.26. Let Y be the quasitree produced by Theorem 1.11 from Y, and let
? ∈ Y be the vertex corresponding to o ∈ X. Furthermore, let π̂gĤ : Y → gĤ be
closest point projection to the isometrically embedded copy of gĤ in Y , which the
theorem says coarsely agrees with πgĤ .

Definition 2.27. Define uniform quasi-isometric embeddings φgH : gH→ Y for
each translate gH of H by sending gH to fi Ĥ via φ fi , where g ∈ fi E(h), and post-
composing by the isometric embedding of fi Ĥ into Y provided by Theorem 1.11.

Proposition 2.28. If there is a strongly contracting element for G yX , then G has
nonzero growth exponent.

Proof. [Bestvina et al. 2014, Proposition 3.23] says that G contains a free subgroup,
so it has exponential growth. �

3. Abundance of strongly contracting elements

In this section we show that strongly contracting elements are abundant.

Proposition 3.1. If G contains a strongly contracting element for G y X , then so
does every infinite normal subgroup.

In effect, the proposition reduces the problem of growth tightness for arbitrary
quotients of G to quotients by the normal closure of a strongly contracting element.

Given a strongly contracting element h ∈ G and an infinite normal subgroup 0 of
G we find an element g ∈ 0 such that f := ghng−1h−n

∈ 0 is strongly contracting
for all sufficiently large n. To prove f is strongly contracting we follow a standard
strategy by showing that an axis for f has “long” (� n) segments in contracting
sets, separated by “short” (= d(o, g . o)) hops between such segments. For each
x ∈ X there is, coarsely, a unique one of these segments such that the projection
of x transitions from landing at the end of the segment to landing at the beginning
of the segment. We use this transition point to define the projection to the f-axis,
and verify that this projection is strongly contracting.

We first prove some preliminary lemmas.

Lemma 3.2. Let h ∈ G be an infinite order element and let π : X → 〈h〉 . o be a
contracting coarse map such that d(x, π(x))−d(x,A) is uniformly bounded. Then,
i 7→ hi . o is a quasigeodesic.
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Proof. Take any α < β in Z. By the triangle inequality, d(hα. o, hβ . o) ∗≺ (β −α).
We now prove the opposite inequality. Let L : [0, T ]→ X be a geodesic from hα.o
to hβ.o. By Corollary 2.13, there exists a D such that for every i ∈ [0, T ]∩Z there
exists an α 6 αi 6 β such that d(Li , hαi . o) 6 D. Since the action of G on X is
properly discontinuous, there exists a maximum γ such that d(o, hγ . o)6 2D+ 1,
so αi+1−αi 6 γ for all i . Setting α0 := α and αdT e := β, we have

β −α =

dT e−1∑
i=0

αi+1−αi 6 γ dT e6 γ
(
d(hα. o, hβ . o)+ 1

)
. �

Fix a strongly contracting element h, and let Y be the quasitree of Notation 2.26,
with bottleneck constant 1.

Lemma 3.3. There exists K > 0 such that dπH(o, g1 . o)− dπH(g1 . o, g0 . o) > K
implies that g0 . ? and g1 . ? are contained in the same component of Y \B1(?).

Proof. Let D := diam〈h〉\Ĥ in Y . For each i ∈ {0, 1}, choose an mi such that
d(hmi . ?, π̂Ĥ (gi . ?))6 D. Choose a geodesic L from ? to h . ?. Take M > 0 such
that hm .L∩B1(?)=∅ when |m| ≥ M.

For each i , |mi | � d(hmi . ?, ?) � K , so for sufficiently large K , we have the
lower bound d(hmi . ?, ?) > 21+ D and |mi |> M. Furthermore, m0 and m1 must
have the same sign if K is large enough: by Lemma 2.14, the interval of H between
hm0 . o and hm1 . o stays close to a geodesic between hm0 . o and hm1 . o, so if m0

and m1 have different signs, then

dπH(g0 . o, g1 . o)
+

� d(hm0 . o, hm1 . o)
+

� d(o, hm0 . o)+ d(o, hm1 . o)
+

� dπH(o, g0 . o)+ dπH(o, g1 . o).

However, dπH(g0 . o, g1 . o)6 dπH(o, g1 . o)− K , so this would imply

K
+

≺ dπH(o, g0 . o)
+

≺−K,

which is false for sufficiently large K .
No geodesic between gi . ? and hmi . ? enters B1(?), since this would imply:

d(hm1 . ?, ?)6 21+ D.

For min{m0,m1} 6 m 6 max{m0,m1} − 1, the geodesic hm . L stays outside
B1(?) since m0 and m1 have the same sign and magnitude at least M, which implies
that |m|> M. By concatenating such geodesics, we construct a path from g0 . ? to
g1 . ? in Y \B1(?). �

Corollary 3.4. There exists an N > 0 such that for all n > N the points hn. ? and
hN . ? are in the same component of Y \B1(?).
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Proof. Take N large enough so that dπH(o, hn . o) > K + d(o, h . o)+ 2C for all
n > N. Then, dπH(o, hn+1. o)− dπH(h

n. o, hn+1. o)> K . Apply Lemma 3.3. �

Definition 3.5. Call the component of Y \ B1(g . ?) containing ghn . ? for all
sufficiently large n the gh∞ component and the component containing gh−n. ? for
all sufficiently large n the gh−∞ component.

Lemma 3.6. For some K > 0, suppose g0 and g1 are elements of G such that
g0H 6= g1H and dπg0H(g0 . o, g1 . o)6 K and dπg1H(g0 . o, g1 . o)6 K. Then, there
exists an N > 0 such that for all n > N , ε0, ε1 ∈ {±1}, and f0, f1 ∈ {g0, g1},

• the balls B1( f0hε0n/2. ?) and B1( f1hε1n/2. ?) in Y are disjoint unless f0 = f1

and ε0 = ε1,

• f0 . ? and f1 . ? are in the f0h−ε0∞ component of Y \B1( f0hε0n/2. ?), and

• f0hε0n. ? and f0hε0n f1 . ? are in the f0hε0∞ component of Y \B1( f0hε0n/2. ?).

Proof. B1( f0hn/2. ?) and B1( f0h−n/2. ?) are disjoint for all sufficiently large n
since i 7→ hi . ? is a quasigeodesic. In the other cases, f0H and f1H are distinct
axes, so f0 Ĥ and f1Ĥ are disjoint. For each i ∈ {0, 1}, the bounds

dπfiH( fi . o, f1−i . o)6 K

imply that the closest point projection π̂fi Ĥ ( f1−i Ĥ) of f1−i Ĥ to fi Ĥ is contained
in a bounded neighborhood of fi . ?. For any point y . ? ∈ B1( f1hε1n/2. ?) \ f1Ĥ ,
we have that π̂f1Ĥ (y Ĥ) is 21-close to f1hε1n/2. ?. Therefore,

dπf1Ĥ ( f0 Ĥ , y Ĥ)
+

� d( f1 . ?, f1hε1n/2. ?)� n,

so for n sufficiently large we can make dπf1Ĥ ( f0 Ĥ , y Ĥ) larger then the constant ξ
of projection axiom (P1), which implies dπf0 Ĥ ( f1Ĥ , y Ĥ)6 ξ . On the other hand,
B1( f0hε0n/2. ?) projects close to f0hε0n/2. ? in f0 Ĥ , so for large enough n the balls
have disjoint projections, which means the balls are disjoint.

For the second statement, suppose N is large enough so that for all n > N we
have d(o, hn/2. o)> K ′+ K + 2C, where K ′ is the constant of Lemma 3.3. Then,

dπf0H( f0hε0n/2. o, f0 . o)− dπf0H( f0 . o, f1 . o)> K ′,

so Lemma 3.3 implies f0.? and f1.? are in the same component of Y\B1( f0hε0n/2.?).
If, in addition, N is at least twice the constant of Corollary 3.4, then this is the
f0h−ε0∞ component.

The proof of the third statement is similar. �
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Âi+1
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Ẑ i V̂i Ẑ i+2

V̂i−1 Ẑ i+1 V̂i+1

Figure 1. Disjoint balls in Y.

Proof of Proposition 3.1. Strongly constricting is the same as strongly contracting,
by Proposition 2.9, so suppose h is a (1,C)-strongly constricting element. By
Lemma 2.8, there exists a D such that πH is D-coarsely equivalent to closest point
projection. Recall that D > C. By Lemma 2.11, there exists a D′ such that πH is
D′-coarsely 1-Lipschitz.

Let 0 be an infinite normal subgroup of G. Every infinite order element of E(h) is
strongly contracting, so if 0 contains such an element then we are done. Otherwise,
0 ∩ E(h) is finite. Since 0 is infinite, there exists an element g ∈ 0 such that
g /∈ E(h). We claim that for sufficiently large n the element f := ghng−1h−n

∈ 0

is strongly constricting.
For brevity, let f i+1/2 denote f i ghn . Let Âi := f i/2 Ĥ and Ai := f i/2H. Define

B0 := B1(hn/2 . ?), B1 := B1( f 1/2h−n/2 . ?), and B2k+i := f kBi for k ∈ Z. Let
Ẑ i := f i/2h(−1)i n . ? ∈ Y and Zi := f i/2h(−1)i n . o ∈ X. Let V̂i := f i/2. ? ∈ Y and
Vi := f i/2. o ∈ X. See Figure 1.

By repeated applications of Lemma 3.6, for large enough n, the balls Bi are
pairwise disjoint. There are two orbits of these balls under the f-action, so f is an
infinite order element. Furthermore, the balls are linearly ordered by separation,
consistent with the subscripts, since for all i we have that Bj is contained in the
f i/2h(−1)i+1

∞ component of Y \Bi for all j > i , and in the f i/2h(−1)i∞ component
for all j < i .

For any i and any j < i−1 the ball Bi−1 separates Â j from Âi in Y , so π̂Âi (Â j )

is contained in a bounded neighborhood of π̂Âi (Âi−1), which in turn we know is
contained in a bounded neighborhood of Ẑ i . Conversely, π̂Âi (Â j ) is contained in a
bounded neighborhood of V̂i for j > i . Since π̂Âi agrees with πAi up to bounded
error, the same statements are true for the axes in X. That is, there exists a K,
independent of n, such that for all i ,

• dπAi
(Zi ,A j )6 K if j < i , and

• dπAi
(Vi ,A j )6 K if j > i .

Define K ′ := 2K +C + 2D+ D′.
Suppose that for some x ∈ X there exists an i such that dπAi

(x,Vi ) > K ′. Then
for any j > i we have d(πAi (x), πAi (A j )) > D>C. Let y be a point of A j closest
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BK ′(Zi+1) BK ′(Vi+1) BK ′(Zi+3)

BK ′(Vi ) BK ′(Zi+2) BK ′(Vi+2)
x© y© x© y©

x© y© x© y©

Figure 2. Projections x© of x and y© of y to each axis.

to x . On any given geodesic from x to y, there is a point z ∈ BC+K (Vi ), since
dπAi
(x, y) > C. Now πA j is D-coarsely equivalent to closest point projection, and

y is closest to both x and z, so dπA j
(x, z)6 2D. However, z is (C + K )-close to Vi ,

and dπA j
(Vi ,Z j )6 K, so dπA j

(x,Z j )6 2D+C + K + D′+ K = K ′.
We have shown that dπAi

(x,Vi ) > K ′ implies dπA j
(x,Z j ) 6 K ′ for all j > i . A

similar argument shows that dπAi
(x,Zi ) > K ′ implies dπA j

(x,V j )6 K ′ for all j < i .
Assume that n is large enough so that

dπA0
(Z0,V0)= dπH(h

n. o, o) > 2K ′+ 2C + 2D+ d(o, g . o).

Define F :=
⋃

i∈Z{Vi }. We wish to define πF : X → F by sending a point x
to the point Vα where α is the greatest integer such that dπAα

(x,Vα) 6 K ′, but
we must verify that such an α exists. Fix an x ∈ X, and suppose that ι ∈ Z

is such that d(x,Aι) = min j∈Z d(x,A j ). Such an ι exists since the action is
properly discontinuous. Suppose that dπAι

(x,Vι) 6 K ′. By the assumption on n,
dπAι
(x,Zι) > K ′, so dπA j

(x,Vι)6 K ′ for all j < ι. A brief computation shows that

dπAι+1
(x,Zι+1)6 d(x,Aι+1)+ d(o, g . o)+ K ′+ 2C + D.

By Lemma 2.8, d(Zι+1, πAι+1(x))6 d(o, g . o)+ K ′+ 2C + 2D, which, again by
our assumption on n, implies dπAι+1

(x,Vι+1) > K ′. We conclude that α 6 ι. The
previous paragraph then tells us that dπA j

(x,Z j )6 K ′ for all j > α+ 1.
Now suppose x and y are points with πF (x)= Vi and πF (y)= V j for j > i + 1.

Then for each i+26 k 6 j , we have dπAk
(x, y)> dπAk

(Zk,Vk)−2K ′ >C. Figure 2
depicts a situation with j = i + 2 that shows j > i + 1 is necessary, since the
projections to Ai+1 may be close. By the strong constriction property for each Ak ,
every geodesic from x to y passes (C + K ′)-close to Zk and Vk . So every geodesic
passes within C+K ′ of πF (y)=V j and within C+K ′ of Zi+2, which is boundedly
close to πF (x)= Vi .

Therefore, πF is (1,max{d(V0,V2), C+ K ′+d(V0,Z2)})-strongly constricting.
Lemma 3.2 says i 7→ f i . o is a quasigeodesic, so f ∈ 0 is a strongly contracting
element. �
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4. A minimal section

Let X be a G-space with basepoint o. Suppose that there exists a strongly contracting
element for G yX. Let 0 be an infinite normal subgroup of G. By Proposition 3.1,
there exists a strongly contracting element h ∈ 0. Let H= E(h) .o be an axis for h,
and define equivariant projections to translates of H as in Definition 2.21. Suppose
πH is a (1,C)-strongly constricting C-coarse map.

Definition 4.1. For each element g0 ∈ G/0 choose an element g ∈ g0 such that
d(o, g . o)= d(o, g0. o)= d(0. o, g0. o). Let G := {g | g0 ∈ G/0}. We call G
a minimal section, and let G denote G . o.

Observe that 2′G/0(s)=2′G(s), so δG/0 = δG . The next lemma says, coarsely,
that the minimal section is orthogonal to translates of H.

Lemma 4.2. For every g ∈G and for every f ∈G we have dπf H(o, g .o)6 8C+D,
where D := diam〈h〉\H.

Proof. Suppose not. Then there exists an n 6= 0 such that

D > d(πf H(o), f hn f −1 . π f H(g . o))> dπf H(o, f hn f −1g . o)− 2C.

Thus, dπf H(o, g . o)− dπf H(o, f hn f −1g . o) > 6C. However,

d(o, f hn f −1g . o)

6 d(o, π f H(o))+ dπf H(o, f hn f −1g . o)+ d(πf H( f hn f −1g . o), f hn f −1g . o)

< d(o, π f H(o))+ dπf H(o, g . o)+ d(πf H( f hn f −1g . o), f hn f −1g . o)− 6C

= d(o, π f H(o))+ dπf H(o, g . o)+ d(πf H(g . o), g . o)− 6C

6 d(o, g . o) (by Lemma 2.10)

This contradicts minimality of G, since f hn f −1g = gg−1 f hn f −1g ∈ g0. �

Corollary 4.3. If d(g . o, g′. o)> 18C + 2D for g, g′ ∈ G, then there is no f ∈ G
such that g . o ∈ f H and g′. o ∈ f H.

Proof. If there were such an f , we would have dπf H(g .o, g′.o)> 2(8C+D), which
means either g or g′ would contradict Lemma 4.2. �

In light of Corollary 4.3, it will be convenient to pass to a coarsely dense subset
of G whose elements yield distinct translates of H:

Definition 4.4. Let K > 18C + 2D, and let A be a maximal subset of G such that
1 ∈ A and d(g . o, g′. o)> K for all distinct g, g′ ∈ A. Let A := A . o.
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By maximality, for every g ∈ G there is some a ∈ A such that d(a . o, g . o)6 K .
There are boundedly many points of G in a ball of radius K , so 2G(s) is bounded
below by 2A(s) and above by a constant multiple of 2A(s). In particular, 2A(s)
has the same convergence behavior as 2G(s), so δA = δG = δG/0.

Corollary 4.3 implies aH 6= a′H for distinct a, a′ ∈ A.

5. Embedding a free product set

Let A ⊂ G as in Definition 4.4, and let A∗ := A \ {1}. Consider the free product
set A∗∗Z2 :=

⋃
∞

k=1{(a1, . . . , ak) | ai ∈ A∗}. For any n > 0 we can map the free
product set into G by φn : (a1, . . . , ak) 7→ a1hna2hn

· · · akhn. Our goal is to show
δφn(A∗∗Z2) > δA. We establish the inequality in the next section. In this section we
show φn is an injection for all sufficiently large n. In fact, we prove something
stronger:

Proposition 5.1. The map A∗∗Z2→ G, sending (a1, . . . , ak) 7→ a1hn
· · · anhn . o

is an injection for all sufficiently large n.

The map is an injection because we have an action of G on the quasitree Y, and
for large enough n we have “quasi-edges” of the form [y, yhn

]. We have set things
up so that the ai do not backtrack across such edges. See Figure 3. We make this
precise:

Proof. Let a = (a1, . . . , ak) ∈ A∗∗ Z2. By Lemma 4.2, there is a K such that
dπf H(o, g . o) 6 K for every f ∈ G and every g ∈ G. The choice of A ⊂ G in
Definition 4.4 guarantees that the axes aH for a ∈ A are distinct. Let N be the
constant of Lemma 3.6 for this K , and choose n > N.

Note that the proof of Lemma 3.6 includes the fact that

d(o, hn/2. o)> K ′+ K + 2C,

where K ′ is the constant of Lemma 3.3. Therefore, if φn(a) . o= φn(a′) . o, then

dπφn(a)H(φn(a) . o, φn(a)h−n/2. o)− dπφn(a)H(φn(a) . o, φn(a′) . o)≥ K ′+C > K ′,

so Lemma 3.3 implies that φn(a) . ? and φn(a′) . ?, though they might not be equal,
are at least contained in the same component of Y \B1(φn(a)h−n/2. ?).

Define Vi (a) to be the a1hn
· · · ai h∞ component of Y \ B1(a1hn

· · · ai hn/2. ?)

for i 6 k (recall Definition 3.5). Lemma 3.6 implies that Vi (a) ⊃ Vi+1(a) and
φn(a) . ? ∈ Vk(a). Moreover, for i ≤min{k, k ′}, Vi (a) and Vi (a′) are disjoint unless
aj = a′j for all j 6 i .

If φn(a) .o= o, then Lemma 3.3 implies that ?∈ Vk(a)⊂ V1(a). This contradicts
the fact that ? is contained in the a1h−∞ component of Y \B1(a1hn/2.?). The same
argument shows that if a is a proper prefix of a′, that is, if a = (a1, . . . , ak) and
a′ = (a1, . . . , ak, a′k+1, . . . , a′k′) with k ′ > k, then φn(a) . o 6= φn(a′) . o.
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hn. ?
?

a1 . ?

a′1 . ?
a1hna2 . ?

a1hn. ?

a1hna2hn. ?

a′1hn. ?

B1(a1hna2hn/2. ?)

B1(hn/2. ?)B1(h−n/2. ?)

B1(a′1hn/2. ?)

B1(a1hn/2. ?)

Figure 3. A does not cross hn quasi-edges.

Suppose φn(a) .o= φn(a′) .o with k 6 k ′. Lemma 3.3 implies φn(a) .?∈ Vk′(a′),
so ai = a′i for all i 6 k. Since a cannot be a proper prefix of a′, we have k = k ′.
Hence, φn(a) . o= φn(a′) . o implies a = a′ for all sufficiently large n. �

6. The growth gap

A free product of groups has greater growth exponent than the factor groups, with
respect to a word metric, so we expect that φn(A∗ ∗Z2) should have a larger growth
exponent than A. To verify this intuition, one must show that the Poincaré series for
φn(A∗ ∗Z2) diverges at δA+ ε for some ε > 0. A clever manipulation of Poincaré
series yields the following criterion:

Lemma 6.1 [Dal’Bo et al. 2011, Criterion 2.4; Sambusetti 2002a, Proposition 2.3].
If the map

φn : A∗ ∗Z2→ G, (a1, . . . , ak) 7→ a1hn
· · · akhn

is an injection and exp(|hn
| · δA) < 2A(δA), then δφn(A∗∗Z2) > δA.

Because our methods are coarse, we have passed to a high power hn of h
and therefore do not have control over |hn

|. However, the criterion is satisfied
automatically if A, or, equivalently, G, is divergent, which, recalling Definition 1.7,
means 2A diverges at δA. The following definition will be used in a condition to
guarantee divergence of G.

Definition 6.2. Let CompG
Q, r ⊂ G .o be the set of points g .o such that there exists

a geodesic [x, y] of length r with x ∈ BQ(o) and y ∈ BQ(g . o), whose interior is
contained in X \BQ(G . o). Define the Q-complementary growth exponent of G to
be

δc
G := lim sup

r→∞

log # CompG
Q, r

r
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BQ(o)

o g . og0 . o g1 . o

x0 x1
[o, g . o]

Figure 4. Splitting a geodesic into three subsegments.

Theorem 6.3. Let G be a finitely generated, nonelementary group. Let X be a
G-space. If G contains a strongly contracting element and there exists a Q> 0 such
that the Q-complementary growth exponent of G is strictly less than the growth
exponent of G, then G y X is a growth tight action.

The proof of Theorem 6.3 follows in part the proof of [Dal’Bo et al. 2011,
Theorem 1.4] for geometrically finite Kleinian groups. For the divergence part of
the proof, the Kleinian group ingredients of [op. cit., Theorem 1.4] are inessential,
and our changes are mostly cosmetic. The real generalization is in the use of
Proposition 5.1 instead of a ping-pong argument.

Proof. Let 0 be an infinite, infinite index normal subgroup of G. By Proposition 3.1,
there is a strongly contracting element in 0. Let G be a minimal section of G/0. If
δG 6 δ

c
G then we are done since δc

G < δG , so suppose δG > δ
c
G .

Claim: G is divergent.
Assume the claim, and let A be a maximal separated set in G as in Definition 4.4.

Then A and G have the same critical exponent, and are both divergent. By
Proposition 5.1, for sufficiently large n the map φn : A∗∗Z2→ G is an injection.
By Lemma 6.1, δA < δφn(A∗∗Z). Thus, δG/0 = δA < δφn(A∗∗Z2) 6 δG .

It remains to prove the claim. Let r > 0, and suppose d(o, g . o) = r . Let
06 M0 6 r and M1 = r −M0. Choose a geodesic [o, g . o] from o to g . o, and let
[o, g . o](M0) denote the point of [o, g . o] at distance M0 from o.

First, we suppose that [o, g .o](M0) ∈X \BQ(G .o). Let [x0, x1] ⊂ [o, g .o] be
the largest subsegment containing [o, g .o](M0) such that (x0, x1)⊂X \BQ(G .o).
Let m0 = d(o, x0), and let m1 = d(x1, g . o). There exist group elements gi ∈ G
such that d(gi .o, xi )6 Q; see Figure 4. We have g .o= g0 · g−1

0 g1 · g−1
1 g .o. Now,

m0− Q 6 d(o, g0 . o)6 d(o, g0 . o)6 m0+ Q, and

m1− Q 6 d(o, g−1
1 g . o)6 d(o, g−1

1 g . o)6 m1+ Q.

Furthermore, g−1
0 g1 ∈ CompG

Q, r−(m0+m1). Thus, the point g . o can be expressed
as the product of an element of G of length m0 ± Q, an element of G of length
m1± Q, and the quotient of an element of CompG

Q, r−(m0+m1)
.
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(†) The same is also true if [o, g . o](M0) ∈ BQ(G . o), in which case we can take
m0 = M0 and m1 = r −m0. Then choose g0 = g1 so that the contribution from
CompG

Q, r−(m0+m1)
is trivial.

Let Vr,Q := #
(
G . o∩Br+Q(o) \Br−Q(o)

)
. For every M0+M1 = r ,

Vr,Q
∗

≺

M0∑
m0=0

M1∑
m1=0

Vm0,Q · Vm1,Q · # CompG
Q, r−(m0+m1)

Choose ξ > 0 such that δG > 2ξ + δc
G . Since

# CompG
Q, r−(m0+m1)

∗

≺ exp
(
(r − (m0+m1))(δG − ξ)

)
,

whenever r − (m0+m1) is sufficiently large, it follows that

(1) Vr,Q · exp(−r(δG − ξ))
∗

≺( M0∑
m0=0

Vm0,Q · exp(−m0(δG − ξ))

)
·

( M1∑
m1=0

Vm1,Q · exp(−m1(δG − ξ))

)
.

Set wi := Vi,Q · exp(−i(δG − ξ)) and Wi :=
∑i

j=1wi . Then, (1) and [Dal’Bo et al.
2011, Lemma 4.3] imply that

∑
i wi · exp(−is) diverges at its critical exponent,

which is

lim sup
i

logwi

i
=

(
lim sup

i

log Vi,Q

i

)
− (δG − ξ)= ξ.

So,∞=
∑

i wi · exp(iξ)=
∑

i Vi,Q · exp(−iδG)
∗

�2G(δG). �

Theorem 6.4. Let G be a finitely generated, nonelementary group. Let X be a
quasiconvex G-space. If G contains a strongly contracting element then G y X is
a growth tight action.

Proof. The proof is an easier special case of the proof of Theorem 6.3. If X is
Q-quasiconvex, then we can always choose to be in case (†) of the proof. �

7. The growth of conjugacy classes

Parkkonen and Paulin [2015] ask: given a finitely generated group G with a word
metric and an element h ∈G, what is the growth rate of the conjugacy class [h] of h?
In a hyperbolic group G there is a finite subgroup, the virtual center, consisting of
elements whose centralizer is finite index in G. The growth exponent of a conjugacy
class in the virtual center is clearly zero. Parkkonen and Paulin show that for every
element h not in the virtual center, δ[h] = 1

2δG . This generalizes an old result of
Huber [1956] for the case of G acting cocompactly on the hyperbolic plane and h
loxodromic.
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Since strongly contracting elements behave much like infinite order elements in
hyperbolic groups, it is natural to ask whether the growth exponent of the conjugacy
class of a strongly contracting element h also satisfies δ[h] = 1

2δG .
We show that the lower bound holds, and the upper bound holds if h moves the

basepoint sufficiently far with respect to the contraction constant for the axis.

Theorem 7.1. Let G be a nonelementary, finitely generated group, and let X be a
G-space. Let h be a strongly contracting element for G y X. Then, δ[h] > 1

2δG .
Let D := diam Z(h)\H, where Z(h) is the centralizer of h in G. Suppose πH

is a (1,C)-strongly constricting, C-coarse map. If d(o, h . o) > 15C + 2D, then
δ[h] =

1
2δG .

Corollary 7.2. For h strongly contracting, δ[hn] =
1
2δG for all sufficiently large n.

Proof. For n nonzero, E(hn) = E(h) and Z(hn) ⊃ Z(h), so the same C and D
work for hn as work for h. On the other hand, 〈h〉 is quasi-isometrically embedded,
so d(o, hn. o)� n. Thus, d(o, hn. o) > 15C + 2D for large enough n. �

It would be interesting to know whether the restriction on d(o, h . o) is really
necessary.

Question 2. Does there exist an action G yX such that h is a strongly contracting
element with δ[h] > 1

2δG?

Proof of Theorem 7.1. Define K := 6C + D and F := {g ∈ G | dπgH(o, g . o)6 K }.
First, we will show δF = δG . Then, we will relate δ[h] to δF .

For any r > 0 consider

φ : { f ∈ F \ E(h) | d(o, f . o)6 r} → {gH | g ∈ G \ E(h) and gH∩Br (o) 6=∅},

defined by φ( f ) := f H. For each axis gH meeting Br (o) there exists a g′ ∈ gE(h)
such that d(o, g′ . o) = d(o, gH) 6 r . Since πgH is within 5C of closest point
projection, by Lemma 2.8, we have dπg′H(o, g′. o) 6 6C 6 K . Therefore, g′ ∈ F
with φ(g′)= gH, so φ is surjective.

We estimate:

#{axes meeting Br (o)}>
|G . o∩Br (o)| × #{axes per orbit point}

maximum number of orbit points per axis
.

The basepoint belongs to [StabG(o) : E(h)∩ StabG(o)] distinct translates of H, so
the number of axes per orbit point is constant. The maximum number of orbit
points in Br (o) contained in a single axis is proportional to r, since each axis is a
quasi-isometrically embedded image of a virtually cyclic group. Combined with
surjectivity of φ, this gives

|F . o∩Br (o)|
∗

�
|G . o∩Br (o)|

r
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Thus,

δF = lim sup
r→∞

1
r

log|F . o∩Br (o)|> lim sup
r→∞

1
r

log |G .o ∩ Br (o)|
r

= lim sup
r→∞

1
r

log|G . o∩Br (o)| = δG .

The reverse inequality is trivial, since F ⊂ G, so δF = δG .
Now, consider the map ψ : F \ E(h)→ [h] \ E(h) defined by ψ( f ) := f h f −1.

Choose minimal length representatives e1, . . . , em of Z(h)\E(h). Associated to
each g ∈ G \ E(h), there is a g′ ∈ gE(h) such that d(o, gH)= d(o, g′. o). There
exist z ∈ Z(h) and i such that g′ = gzei . By setting f := g′e−1

i , we get

f h f −1
= gzei ei

−1hei ei
−1z−1g−1

= ghg−1.

Since ei has length at most D and πgH is 5C-close to closest point projection,
it follows that f ∈ F; hence, ψ is surjective. Furthermore, d(o, f h f −1 . o) 6
2d(o, f . o)+ d(o, h . o), by the triangle inequality.

On the other hand, ψ is boundedly many-to-one, since if f h f −1
= f ′h f ′−1 then

f ′ ∈ f E(h), so f H= f ′H. By definition of F , we then have dπf H(o, f .o)6 K and
dπf H(o, f ′. o)6 K , so d( f . o, f ′. o)6 2(C + K ). There are uniformly boundedly
many such f ′ for each f .

We conclude that ψ is a surjective, boundedly-many-to-one map such that
d(o, ψ( f ).o)

+

≺ 2d(o, f.o) for all f . We excluded E(h) from the domain and
range, but its growth exponent is zero, since it embeds quasi-isometrically into X,
so δ[h] = δ[h]\E(h) > 1

2δF\E(h) =
1
2δF =

1
2δG .

Now, dπf H( f h . o, f h f −1 . o)= dπf H(o, f . o)6 K for f ∈ F , so

dπf H(o, f h f −1. o) > d( f . o, f h . o)− 2(C + K ).

If d(o, h . o) > 15C + 2D = C + 2(C + K ), then dπf H(o, f h f −1. o) > C, so by
strong constriction,

d(o, f h f −1. o)> 2d(o, f . o)+ d(o, h . o)− 4(C + K ).

Thus, d(o, ψ( f ) . o)
+

� 2d(o, f . o) and δ[h] = 1
2δG . �

Part II. Examples of actions with strongly contracting elements

8. Actions on relatively hyperbolic spaces

Yang [2013] proved that the action of a finitely generated group G with a nontrivial
Floyd boundary on any of its Cayley graphs is growth tight. Relatively hyperbolic
groups have nontrivial Floyd boundaries by a theorem of Gerasimov [2012], so the
action of a relatively hyperbolic group on any of its Cayley graphs is growth tight.
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It is an open question whether there exists a group with a nontrivial Floyd boundary
that is not relatively hyperbolic.

There is also a notion of relative hyperbolicity of metric spaces, which we will
review in Section 8A. One motivating example of a relatively hyperbolic metric
space is a Cayley graph of a relatively hyperbolic group. Another is the universal
cover M̃ of a complete, finite volume hyperbolic manifold M. The fundamental
group π1(M) of such a manifold is a relatively hyperbolic group, so the action of
π1(M) on any of its Cayley graphs is growth tight by Yang’s theorem. However,
this does not tell us whether the action of π1(M) on M̃ is growth tight. This
question was addressed for a more general class of manifolds by Dal’bo, Peigné,
Picaud, and Sambusetti [Dal’Bo et al. 2011], who proved growth tightness results
for geometrically finite Kleinian groups. Using our main theorems, Theorem 6.3
and Theorem 6.4, we generalize their results to all groups acting on relatively
hyperbolic metric spaces.

8A. Relatively hyperbolic metric spaces.

Definition 8.1 (compare [Druţu 2009; Sisto 2012]). Let X be a geodesic metric
space and let P be a collection of uniformly coarsely connected subsets of X. We
say X is hyperbolic relative to the peripheral sets P if the following conditions are
satisfied:

(1) For each A there exists a B such that diam(BA(P0)∩BA(P1))6 B for distinct
P0, P1 ∈ P .

(2) There exists an ε ∈ (0, 1
2) and M > 0 such that if x0, x1 ∈ X are points such

that for some P ∈ P we have d(xi ,P) 6 ε · d(x0, x1) for each i , then every
geodesic from x0 to x1 intersects BM(P).

(3) There exist σ and δ so that for every geodesic triangle either:
(a) there exists a ball of radius σ intersecting all three sides, or
(b) there exists a P ∈ P such that Bσ (P) intersects all three sides and for each

corner of the triangle, the points of the outgoing geodesics from that corner
which first enter Bσ (P) are distance at most δ apart.

We say X is hyperbolic if it hyperbolic relative to P =∅.

If X is hyperbolic in the sense of Definition 8.1, then the only nontrivial condition
is (a), which is equivalent to the usual definition of hyperbolic metric space.

Definition 8.2. A group G is hyperbolic relative to a collection of finitely generated
peripheral subgroups if a Cayley graph of G is hyperbolic relative to the cosets of
the peripheral subgroups.

Sisto [2012] shows that Definition 8.2 is equivalent to Bowditch’s definition
[2012] of relatively hyperbolic groups.
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Definition 8.3 (compare [Groves and Manning 2007]). Let X be a connected graph
with edges of length bounded below. A combinatorial horoball based on X with
parameter a>0 is a graph whose vertex set is VertX×({0}∪N), contains an edge of
length 1 between (v, n) and (v, n+1) for all v ∈VertX and all n ∈ {0}∪N, and for
each edge [v,w]∈X contains an edge [(v, n), (w, n)] of length e−an

·length([v,w]).

Let X be hyperbolic relative to P. An augmented space is a space obtained
from X as follows. By definition, there exists a constant C such that each P ∈ P
is C-coarsely connected. For each P ∈ P choose a maximal subset of points that
pairwise have distance at least C from one another. Let these points be the vertex
set of a graph. For edges, choose a geodesic connecting each pair of vertices at
distance at most 2C from each other. Use this graph as the base of a combinatorial
horoball with parameter aP > 0. The augmented space is the space obtained from
the union of X with horoballs XP for each P ∈ P by identifying the base of XP
with the graph constructed in P.

Definition 8.4. Let X be a hyperbolic G-space, and let P be the collection of
maximal parabolic subgroups of G. Suppose there exists a G-invariant collection
of disjoint open horoballs centered at the points fixed by the parabolic subgroups.
The truncated space is X minus the union of these open horoballs. We say G y X
is cusp uniform if G acts cocompactly on the truncated space.

If G acts cocompactly on a G-space X ′ that is hyperbolic relative to a G-invariant
peripheral system P, then an augmented space X can be constructed G-equivariantly,
and G y X will be a cusp uniform action.

Several different versions of the following theorem occur in the literature on
relatively hyperbolic groups:

Theorem 8.5 [Bowditch 2012; Groves and Manning 2008; Sisto 2012]. If X is
hyperbolic relative to P, then any augmented space with horoball parameters
bounded below is hyperbolic.

If G y X is a cusp uniform action, then G is hyperbolic relative to the maximal
parabolic subgroups and the truncated space is hyperbolic relative to boundaries of
the deleted horoballs.

8B. Quasiconvex actions.

Theorem 8.6. If X is a quasiconvex, relatively hyperbolic G-space and G does not
coarsely fix a peripheral subspace then G y X is a growth tight action.

Proof. It follows from [Sisto 2012, Lemma 5.4] that every infinite order element
of G that does not coarsely fix a peripheral subspace is strongly constricting. We
conclude by Theorem 6.4. �
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Theorem 8.6 unifies the existing proofs of growth tightness for cocompact actions
on hyperbolic spaces [Sabourau 2013] and for actions of a relatively hyperbolic
group on its Cayley graphs [Yang 2013], and extends to actions on a more general
class of spaces.

Corollary 8.7. The action of a finitely generated group G with infinitely many ends
on any one of its Cayley graphs is growth tight.

Proof. Stallings’ theorem [1971] says that G splits nontrivially over a finite subgroup.
G is hyperbolic relative to the factor groups of this splitting. Since the splitting is
nontrivial, G does not fix any factor group, so Theorem 8.6 gives the result. �

Corollary 8.7 generalizes a result of Sambusetti [2002a, Theorem 1.4], who
proved it with additional constraints on the factor groups.

8C. Cusp uniform actions. Theorems 8.6 and 8.5 show that if G y X is a cusp
uniform action on a hyperbolic space then the action of G on the truncated space is
a growth tight action. A natural question is whether G yX is a growth tight action.
This action is not quasiconvex if the parabolic subgroups are infinite, as geodesics
in X will travel deeply into horoballs, and, indeed, an example of Dal’bo, Otal, and
Peigné [Dal’bo et al. 2000] shows G y X need not be growth tight.

To see how growth tightness can fail, consider the combinatorial horoball from
Definition 8.3. If X is, say, the Cayley graph of some group and we build the
combinatorial horoball with parameter a > 0 based on X, then the r-ball about a
basepoint o ∈ X in the horoball metric intersected with X ×{0} contains the ball
of radius C · exp(ar/2) in the X -metric, for a constant C depending only on a.
Thus, if the number of vertices of balls in X grows faster than polynomially in the
radius, then the growth exponent with respect to the horoball metric will be infinite.
Furthermore, even if growth in X is polynomial we can make the growth exponent in
the horoball be as large as we like by taking a to be sufficiently large. Dal’bo, Otal,
and Peigné construct non-growth-tight examples of relatively hyperbolic groups
with two cusps by taking one of the horoball parameters to be large enough so that
the corresponding parabolic subgroup dominates the growth of the group; that is,
the growth exponent of the parabolic subgroup is equal to the growth exponent
of the whole group. Quotienting by the second parabolic subgroup then does not
decrease the growth exponent, so this action is not growth tight.

Not only does this provide an example of a non-growth-tight action on a hy-
perbolic space, but since augmented spaces with different horoball parameters are
equivariantly quasi-isometric to each other, we have:

Observation 8.8. Growth tightness is not invariant among equivariantly quasi-
isometric G-spaces.

It is shown in [Dal’Bo et al. 2011, Theorem 1.4] that this is essentially the only
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way that growth tightness can fail for cusp uniform actions. Their proof is for
geometrically finite Kleinian groups, but our Theorem 6.3 generalizes this result.

Definition 8.9. Let G y X be a cusp uniform action on a hyperbolic space. Let P
be the collection of maximal parabolic subgroups of G. Then G y X satisfies the
parabolic gap condition if δP < δG for all P ∈ P.

Theorem 8.10. Let G be a finitely generated, nonelementary group. Let G y X
be a cusp uniform action on a hyperbolic space. Suppose that G y X satisfies the
parabolic gap condition. Then G y X is a growth tight action.

Proof. Let Q be the diameter of the quotient of the truncated space. Then the
Q-complementary growth exponent is the maximum of the parabolic growth ex-
ponents, which, by the parabolic gap condition, is strictly less than the growth
exponent of G. Apply Theorem 6.3. �

Theorem 8.11. Let G be a finitely generated group hyperbolic relative to a collec-
tion P of virtually nilpotent subgroups. Then there exists a hyperbolic G-space X
such that G y X is cusp uniform and growth tight.

Proof. Construct X as an augmented space by taking a Cayley graph for G and
attaching combinatorial horoballs to the cosets of the peripheral subgroups. Since
the peripheral groups are virtually nilpotent, they have polynomial growth in any
word metric [Gromov 1981]. It follows that the growth exponent of each parabolic
group with respect to the horoball metric is bounded by a multiple of the horoball
parameter. By choosing the horoball parameters small enough, we can ensure
G y X satisfies the parabolic gap condition, and apply Theorem 8.10. �

8D. Beyond relative hyperbolicity. In subsequent sections we provide further ex-
amples of growth tight actions. To show these are not redundant we will verify that
the groups are not relatively hyperbolic.

In this section we recall a technique for showing that a group is not relatively
hyperbolic, due to Anderson, Aramayona, and Shackleton [Anderson et al. 2007].
Another approach to the question, contemporaneous to and more general than the
one just cited, and also implying Theorem 8.13, was developed by Behrstock, Drut,u,
and Mosher [Behrstock et al. 2009].

Theorem 8.12 [Anderson et al. 2007, Theorem 2]. Let G be a finitely generated,
nonelementary group, and let S be a (possibly infinite) generating set consisting
of infinite order elements. Consider the “commutativity graph” with one vertex
for each element of S and an edge between vertices s and s ′ if some nontrivial
powers of s and s ′ commute. If this graph is connected and there is at least one pair
s, s ′ ∈ S such that 〈s, s ′〉 contains a rank 2 free abelian subgroup, then G is not
hyperbolic relative to any finite collection of proper finitely generated subgroups.
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To prove this theorem, one shows that the subgroup generated by S is contained
in one of the peripheral subgroups. Since S generates G this gives a contradiction,
because the peripheral subgroups are proper subgroups of G.

We will actually use a mild generalization of Theorem 8.12 to the case when S
generates a proper subgroup of G:

Theorem 8.13. Let G be a finitely generated, nonelementary group. Let S be a set
of infinite order elements whose commutativity graph is connected and such that
there is a pair s, s ′ ∈ S such that 〈s, s ′〉 contains a rank 2 free abelian subgroup.
Consider the “coset graph” whose vertices are cosets of 〈S〉, with an edge con-
necting g〈S〉 and h〈S〉 if g〈S〉g−1

∩ h〈S〉h−1 is infinite. If this graph is connected,
then G is not hyperbolic relative to any finite collection of proper finitely generated
subgroups.

Proof. Suppose G is hyperbolic relative to {P1, . . . , Pk}. As in the proof of
Theorem 8.12, 〈S〉 is contained in a conjugate of some Pi . We assume, without loss
of generality, that 〈S〉 ⊂ P1. Condition (1) of Definition 8.1 implies Pi ∩ g Pi g−1

is finite for g /∈ Pi . Thus, for g〈S〉 adjacent to 〈S〉 in the coset graph, g ∈ P1 and
g〈S〉g−1

⊂ P1. Connectivity of the coset graph implies that every element of G is
contained in P1, contradicting the hypothesis that P1 is a proper subgroup. �

We also note that Theorem 8.12 and Theorem 8.13 imply the, a priori, stronger
result that G has trivial Floyd boundary.

9. Rank 1 actions on CAT(0) spaces

A metric space is CAT(0) if every geodesic triangle is at least as thin as a triangle
in Euclidean space with the same side lengths. An isometry φ of a CAT(0) space
X is hyperbolic if infx∈X d(x, φ(x)) is positive and is attained. See, for example,
[Bridson and Haefliger 1999] for more background.

Let X be a CAT(0) G-space. Recall that our definition of “G-space” includes
the hypothesis that X is proper, so an element is strongly contracting if and only if
it acts as a rank 1 isometry:

Theorem 9.1 [Bestvina and Fujiwara 2009, Theorem 5.4]. Let h be a hyperbolic
isometry of a proper CAT(0) space X with axis A . Closest point projection to A
is strongly contracting if and only if A does not bound an isometrically embedded
half-flat in X.

Theorems 9.1 and 6.4 show:

Theorem 9.2. If G is a nonelementary, finitely generated group and X is a quasi-
convex, CAT(0) G-space such that G contains an element that acts as a rank 1
isometry on X, then G y X is a growth tight action.
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Recall from Section 0C that there are many interesting classes of CAT(0) spaces
that admit rank 1 isometries. In the remainder of this section we highlight a few
examples.

Let 2 be a simple graph. The right angled Artin group G(2) defined by 2 is
the group defined by the presentation

〈gv for v ∈ Vert(2) | gvgwg−1
v g−1

w = 1 for [v,w] ∈ Edge(2)〉.

The graph 2 also determines a cube complex constructed by taking a rose with
one loop for each vertex of 2, and then gluing in a k-cube to form a k-torus for
each complete k-vertex subgraph of 2. The resulting complex is called the Salvetti
complex, and its fundamental group is G(2). The universal cover of the Salvetti
complex turns out to be a CAT(0) cube complex. See [Charney 2007] for more
background on right angled Artin groups.

If 2 is a single vertex then G(2)∼= Z is elementary. If 2 is a join, that is, if it
is a complete bipartite graph, then G(2) is a direct product of right angled Artin
groups defined by the two parts. In all other cases, we find a growth tight action:

Theorem 9.3. Let 2 be a finite simple graph that is not a join and has more than
one vertex. The action of the right angled Artin group G(2) defined by 2 on the
universal cover X of the Salvetti complex associated to 2 is a growth tight action.

Proof. The universal cover X of the Salvetti complex of 2 is a cocompact, CAT(0)
G(2)-space. If 2 is not connected then X is hyperbolic relative to subcomplexes
defined by the components of 2, so G(2)y X is growth tight by Theorem 8.6. If
2 is connected then G(2) contains a rank 1 isometry by a theorem of Behrstock
and Charney [2012]. The result follows from Theorem 9.2. �

The defining graph of a right angled Artin group is a commutativity graph. If
this graph is connected then the group is not relatively hyperbolic by Theorem 8.12.

A flip-graph manifold is a compact three dimensional manifold M with boundary
obtained from a finite collection of Seifert fibered pieces that are each a product of
a circle with a compact oriented hyperbolic surface with boundary. These are glued
together along boundary tori by a map exchanging the fiber and base directions.
Such manifolds were studied by Kapovich and Leeb [1998], who show that the
universal cover of M admits a CAT(0) metric, and that an element of π1(M) that
acts hyperbolically is rank 1 if and only if it is not represented by a loop contained
in a single Seifert fibered piece. Thus, Theorem 9.2 implies the following:

Theorem 9.4. The action of the fundamental group of a flip-graph manifold by deck
transformations on its universal cover with its natural CAT(0) metric is a growth
tight action.
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To see that the fundamental group of a flip-graph manifold is not relatively
hyperbolic, apply Theorem 8.13 where S is the set of elliptic elements for the action
of G on the Bass–Serre tree of the defining graph of groups decomposition.

Theorems 9.3 and 9.4 give the first nontrivial examples of growth tight actions
on spaces that are not relatively hyperbolic.

The idea of the proof for flip-graph manifolds generalizes to other CAT(0) graphs
of groups via Theorem 1.14:

Theorem 9.5. Let G be a nonelementary, finitely generated group that splits non-
trivially as a graph of groups and is not an ascending HNN-extension. Suppose that
the corresponding action of G on the Bass–Serre tree of the splitting has two edges
whose stabilizers have finite intersection. Suppose there exists a cocompact, CAT(0)
G-space X. Then, G y X is a growth tight action.

Proof. By Theorem 1.14, G contains an infinite order element h such that E(h) is
hyperbolically embedded. A theorem of Sisto [2013] implies that any axis of h is a
Morse quasigeodesic. An element with an axis that bounds a half-flat is not Morse,
so h is rank 1, and the result follows by Theorem 9.2. �

10. Mapping class groups

Let S = Sg,p be a connected and oriented surface of genus g with p punctures. We
require S to have negative Euler characteristic.

Given two orientation preserving homeomorphisms φ,ψ : S → S, we will
consider φ and ψ to be equivalent if φ ◦ψ−1 is isotopic to the identity map on S.
Each equivalence class is called a mapping class of S, and the set Mod(S) of all
equivalence classes naturally forms a group called the mapping class group of S.

A mapping class f ∈Mod(S) is called reducible is there exists an f-invariant
curve system on S and irreducible otherwise. By the Nielsen–Thurston classification
of elements of Mod(S), a mapping class is irreducible and infinite order if and only
if it is pseudo-Anosov [Thurston 1998].

Let X be the Teichmüller space of marked hyperbolic structures on S, equipped
with the Teichmüller metric. See [Hubbard 2006; Papadopoulos 2007] for more
information.

Theorem 10.1 [Minsky 1996]. Each pseudo-Anosov element is strongly contracting
for Mod(S)y X.

For each ε > 0 there is a decomposition of X into a “thick part” X>ε and a “thin
part” X<ε according to whether the hyperbolic structure on S corresponding to the
point x ∈ X has any closed curves of length < ε. This decomposition is Mod(S)-
invariant, and Mod(S)yX>ε is cocompact; see [Mumford 1971; Farb and Margalit
2012]. Geodesics between points in the thick part can travel deeply into the thin
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part, so the action of Mod(S) on Teichmüller space is not quasiconvex. To prove
growth tightness, we need a bound on the complementary growth exponent. Such a
bound is provided by Eskin, Mirzakhani, and Rafi [Eskin et al. 2012, Theorem 1.7].

Theorem 10.2. The action of the mapping class group Mod(S) of S = Sg,p on its
Teichmüller space X with the Teichmüller metric is a growth tight action.

Proof. Let ζ = 6g−6+2p> 2. The growth exponent of Mod(S) with respect to its
action on X is ζ [Athreya et al. 2012]. (We remark that the result in that reference
is stated for closed surfaces, but their proof works in general. For our interest, it is
enough that the growth exponent of Mod(S) is bounded below by ζ . This can be
obtained from [Hamenstädt 2013; Eskin et al. 2012].)

Choose r0 and a maximal r0-separated set in the moduli space Mod(S)\X, and let
A be its full lift to X. Given r0 as above and δ = 1

2 , let ε be sufficiently small, as in
[Eskin et al. 2012, Theorem 1.7]. Let Q be the smallest number such that the ε-thick
part of X is contained in BQ(Mod(S) . o). Choose a finite subset {a1, . . . , an} ⊂A
such that

BQ(o) \BQ(Mod(S) . o)⊂
n⋃

i=1

Br0(ai ).

Suppose that g ∈ Mod(S) is such that there exists a geodesic [x, y] between
BQ(o) and BQ(g . o) whose interior stays in X \BQ(Mod(S) . o). Then there are
indices i and j such that x ∈ Br0(ai ) and y ∈ Br0(g . aj ). This means that every
element contributing to CompMod(S)

Q, r of Definition 6.2 also contributes to some
N1(Q1,ε, ai , aj , r) of [Eskin et al. 2012, Theorem 1.7]. The conclusion of that
theorem is that N1(Q1,ε, ai , aj , r)6 G(ai )G(aj ) exp(r · (ζ − 1

2)) for all sufficiently
large r , where G is a particular function on X. There are finitely many such sets,
and the function G is bounded on {a1, . . . , an}, so there is a constant C such
that CompMod(S)

Q, r 6 C · exp(r · (ζ − 1
2)) for all sufficiently large r . Thus, the Q-

complementary growth exponent is at most ζ − 1
2 < ζ . The theorem now follows

from Theorems 10.1 and 6.3. �

When the genus of S is at least 3 then there does not exist a cocompact, CAT(0)
Mod(S)-space [Bridson 2010]. The fact that such an Mod(S) is not relatively
hyperbolic (in fact, has trivial Floyd boundary) is an application of Theorem 8.12
appearing in [Anderson et al. 2007]. Therefore, Theorem 10.2 does not follow from
the results of the previous sections.

A natural question is whether the action of a mapping class group on its Cayley
graphs is growth tight. There is also a combinatorial model for the mapping
class group known as the marking complex. Finally, a mapping class group acts
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cocompactly on a thick part of the Teichmüller space. All of these spaces are quasi-
isometric, and Duchin and Rafi [2009] show that pseudo-Anosov elements are con-
tracting for the action of a mapping class group on any one of its Cayley graphs, but
we do not know whether one of these actions admits a strongly contracting element.

Question 3. Is the action of a mapping class group of a hyperbolic surface on one
of its Cayley graphs/marking complex/thick part of Teichmüller space growth tight?

The outer automorphism group of a finite rank nonabelian free group, Out(Fn) is
often studied in analogy with Mod(S). Algom-Kfir [2011] has proven an analogue
of Minsky’s theorem that says that a fully irreducible outer automorphism class
is strongly contracting for the action of Out(Fn) on its outer space, which is the
analogue of the Teichmüller space. However, we lack the analogue of the theorem
of Eskin, Mirzakhani, and Rafi that was used to control the complementary growth
exponent in the mapping class group case.

There is also an analogue of the thick part of Teichmüller space called the spine
of the outer space, on which Out(Fn) acts cocompactly.

Question 4. Is the action of Out(Fn) on one of its Cayley graphs/outer space/spine
of outer space growth tight?

11. Snowflake groups

Let

G := BB(1, r)= 〈a, b, s, t | aba−1b−1
= 1, s−1as = ar b, t−1at = ar b−1

〉

be a Brady–Bridson snowflake group with r > 3. Let L := 2r. These groups have
an interesting mixture of positive and negative curvature properties. G splits as an
amalgam of Z2

= 〈a, b〉 by two cyclic groups 〈ar b〉 and 〈ar b−1
〉, and the action

of G on the Bass–Serre tree T of this splitting satisfies Theorem 1.14, so G has
hyperbolically embedded subgroups. However, we can not automatically conclude
that such a hyperbolically embedded subgroup gives rise to a strongly contracting
element, as there does not exist a cocompact, CAT(0) G-space. If such a space
existed, then the Dehn function of G would be at most quadratic, but Brady and
Bridson [2000] have shown that the Dehn function of BB(1, r) is n2 log2 L > n2.

We will fix a G-space X and demonstrate two different elements of G that act
hyperbolically on T such that the pointwise stabilizer of any length 3 segment of
their axes is finite. One of these elements will be strongly contracting for the action
on X, and the other will not.

Theorem 11.1. G admits a cocompact growth tight action.

Observe that Theorem 8.13 with S := {a, b} shows that G is not relatively
hyperbolic.
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11A. The model space X . Let X be the Cayley graph for G with respect to the
generating set {a, ar b, ar b−1, s, t}, where the edges corresponding to ar b and ar b−1

have been rescaled to have length L := 2r. The point of scaling these edges is
that ar b, ar b−1, and a2r form an equilateral triangle of side length L , which will
facilitate finding geodesics in this particular model.

It is also useful to consider G as the fundamental group of the topological space
obtained from a torus by gluing on two annuli. Choose a basepoint for the torus and
for each boundary component of the annuli. For one annulus, the s-annulus, glue
the two boundary curves to the curves a and ar b in the torus, gluing basepoints
to the basepoint of the torus. For the other annulus, the t-annulus, glue the two
boundary curves to the curves a and ar b−1 of the torus. The resulting space is a
graph of spaces that Scott and Wall [1979] associated to the given graph of groups
decomposition of G.

The fundamental group of this space is G, which acts freely by deck transfor-
mations on the universal cover X ′. Choose the basepoint o of X ′ to be a lift of the
basepoint of the torus. The correspondence between a vertex g ∈ X and the point
g .o ∈X ′ inspires the following terminology: A plane is a coset g〈a, b〉 ∈G/〈a, b〉,
which corresponds to a lift of the torus at the point g .o ∈X ′. An s-wall is the set of
outgoing s-edges incident to a coset g〈a〉 ∈ G/〈a〉. This corresponds to a lift of the
s-annulus at the point g .o ∈X ′. A t-wall is the set of outgoing t-edges incident to a
coset g〈a〉 ∈G/〈a〉. This corresponds to a lift of the t-annulus at the point g .o∈X ′.
Each wall separates X (and X ′) into two complementary components. Notice that
the origins of consecutive edges in an s-wall are connected by a single a-edge of
length 1, while the termini of those edges are connected by a single ar b-edge of
length L . We say that crossing an s-wall in the positive direction scales distance by
a factor of L . The same is true for the t-walls.

11B. Geodesics between points in a plane. We will define a family of X-geodesics
joining 1 to every point of 〈a, b〉. This is similar to the argument of [Brady and
Bridson 2000].

From the fact that 〈a, b〉 is abelian, for every point ax by there is a geodesic from
1 to ax by of the form [1, (ar b)m]+ (ar b)m [1, (ar b−1)n]+ (ar b)m(ar b−1)n [1, a p

],
where [g, h] indicates a geodesic from g to h.

For a point of the form (ar b)m there is an ar b-edge path from 1 to (ar b)m of
length mL . This path is clearly inefficient, as it lies along the boundary of an
s−1-wall that scales distance by 1/L , so we can push the original edge path across
the wall to a path s−1ams of length 2+ m. We claim there is a geodesic from
1 to (ar b)m of the form [1, s−1

] + s−1
[1, am

] + s−1am
[s−1, 1]. We have already

exhibited a wall crossing path of length 2+m, which is shorter than any path from
1 to (ar b)m that stays in the plane 〈a, b〉. Thus, a geodesic must cross some walls.
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Every path from 1 to (ar b)m can, by rearranging subsegments and eliminating
backtracking, be replaced by a path of at most the same length and having the form
γs + γt + γ

′ where:
• γs = [1, s−1

] + s−1
[1, an

] + s−1an
[s−1, 1], if nontrivial;

• γt = s−1ans[1, t−1
] + s−1anst−1

[1, a p
] + s−1anst−1a p

[t−1, 1], if nontrivial;

• γ ′ = s−1anst−1a pt[1, aq
], if nontrivial.

The path γ = γs + γt + γ
′ is a path from 1 to

s−1anst−1a ptaq
= (ar b)n(ar b−1)paq

= ar(n+p)+qbn−p
= armbm,

so p = n−m and q =−Lp. Since p and q are proportional, γt and γ ′ are either
both trivial or both nontrivial. Suppose they are nontrivial. There is a symmetry
that exchanges γt with a path

γ ′t = s−1ans [1, s−1
] + s−1anss−1

[1, a−p
] + s−1anss−1a−p

[s−1, 1]

of the same length. However, γ ′t and γt + γ
′ have the same endpoints, and γ ′t is

shorter, so γ could not have been geodesic if γt and γ ′ are nontrivial. Thus, if γ is
geodesic then γ = γs . This reduces the problem of finding a geodesic from 1 to
(ar b)m to finding a geodesic from 1 to an.

A similar argument holds for geodesics from 1 to (ar b−1)m , so we can find
geodesics from 1 to any point in 〈a, b〉 if we know geodesics from 1 to powers of a.

For powers of a the idea is that amL , (ar b)m , and (ar b−1)m form an equilateral
triangle in the plane, but the latter two can be shortened by a factor of L by pushing
across a wall. Since L ≥ 6, the savings of a factor of L/2 in length outweighs the
added overhead from crossing walls.

For small powers of a we can find geodesics by inspection of the Cayley graph.
For 06 |p|6 L/2+ 3, the edge path a p from 1 to a p is a geodesic of length |p|.
For L/2+ 36 p 6 L the edge path s−1ast−1ata p−L is a geodesic from 1 to a p of
length 6+ L − p. We conclude that for m > 0 and −L/2+ 3≤ p ≤ L/2+ 3 there
is a geodesic from 1 to amL+p of the form

[1, s−1
] + s−1

[1, am
] + s−1am

[s−1, 1] + s−1ams [1, t−1
]

+ s−1amst−1
[1, am

] + s−1amst−1am
[t−1, 1] + s−1amst−1am t [1, a p

]

We can now find geodesics from 1 to powers of a by induction, and from these
we know a geodesic from 1 to any ax by. We see an example in Figure 5, where
trapezoids are walls and triangles are contained in planes. The top half boundary
and bottom half boundary of the figure each give geodesics of length 5 · 25

− 4
between 1 and aL5

. (This form of geodesic loop bears witness to the Dehn function
[Brady and Bridson 2000], and inspired the name “snowflake group” [Brady et al.
2009].)
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1 aL5

(ar b)L4

(ar b−1)L4

s−1

s−1aL4

t−1

t−1aL4

Figure 5. Snowflake: the boundary is a geodesic loop of length
2(5 · 25

− 4).

11C. Projections to geodesics in X . In this section we consider two different
geodesics: α(2n)= (s−1t)n and β(n)= s−n. These are geodesics since for each of
these paths, every edge crosses a distinct wall. Let T be the Bass–Serre tree of G,
and let o ∈ T be the vertex fixed by the subgroup 〈a, b〉. The orbit map g 7→ g . o
sends each of α and β isometrically to a geodesic in T . We will use πα to denote
closest point projection to α, both in X and in T , and similarly for β.

Both of these geodesics have the property that for any vertices at distance at least
three in the corresponding geodesic of the Bass–Serre tree, the pointwise stabilizers
of the pair of vertices is trivial. We might hope, in analogy to Theorem 9.5, that
these would be strongly contracting geodesics. As in Theorem 9.5, 〈s−1t〉 and 〈s〉
are hyperbolically embedded subgroups in G, but, of the two, we will see only s−1t
is strongly contracting.

Geodesic α. We claim that closest point projection πα : X → α is coarsely well
defined and strongly contracting. First, consider πα on 〈a, b〉. The geodesic α
enters 〈a, b〉 through the incoming t-wall V at 1, and exits through the outgoing
s−1-wall W at 1.

Lemma 11.2. For every v ∈ V and every w ∈ W there exists a geodesic from v

to w that includes the vertex 1.

Proof. The lemma follows from the discussion of geodesics in Section 11B. �
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Lemma 11.3. The orbit map X → T defined by g 7→ g . o coarsely commutes with
closest point projection to α. In particular, closest point projection to α in X is
coarsely well defined.

Proof. Suppose z ∈ X is some vertex that is separated from 1 by V, and suppose
there is an n > 0 such that α(n) ∈ πα(z). Let σ be a geodesic from z to α(n). Write
σ = σ1+σ2+σ3, where σ2 is the subsegment of σ from the first time σ crosses V
until the first time σ reaches W. By Lemma 11.2, we can replace σ2 by a geodesic
segment σ ′2+σ

′′

2 where the concatenation point is 1. This means that z is connected
to 1= α(0) by a path σ1+ σ

′

2. By hypothesis, the length of this path is at least the
length of σ, so σ ′′2 and σ3 are trivial and n = 0. It follows immediately that the orbit
map X → T commutes with πα up to an error of 4. (In fact, a little more work will
show the error is at most 2.) �

Lemma 11.4 (bounded geodesic image property for πα). For any geodesic σ in X,
if the diameter of πα(σ . o) is at least 5, then σ ∩α 6=∅.

Proof. Suppose α([−1, 3]).o⊂πα(σ.o). Then σ crosses the walls V, W, s−1tV, and
s−1tW. Write σ as a concatenation of geodesic subsegments σ1+σ2+σ3+σ4+σ5,
where σ1 is all of σ prior to the first V crossing, σ2 is the part of σ between the
first V crossing and the last W crossing, σ3 is the part between the last W crossing
and the first s−1tV crossing, which included edges labeled s−1 and t , σ4 is the part
from the first s−1tV crossing until the last s−1tW crossing, and σ5 is the remainder
of σ. We can apply Section 11B to replace σ2 by a geodesic σ ′2 + σ

′′

2 with the
same endpoints and concatenated at 1. Similarly, we can replace σ4 by a geodesic
σ ′4+σ

′′

4 with the same endpoints and concatenated at s−1t . But then we can replace
the subsegment σ2+ σ3+ σ4 of σ by the path σ ′′2 + [1, s−1t] + σ ′′4 with the same
endpoints. This path is strictly shorter unless σ ′′2 and σ ′′4 are trivial. This means that
[1, s−1t] ⊂ σ ∩α. �

By Proposition 2.9, this means the following:

Corollary 11.5. The element s−1t is strongly contracting for G y X.

Together with Theorem 6.4, this proves Theorem 11.1.

Geodesic β. Using out knowledge of geodesics from Section 11B, we see that the
closest point of the s−1-wall at 1 to the point aLk

is (ar b)Lk−1
, which is the midpoint

of a geodesic from 1 to aLk
. This geodesic coincides with β on the interval from 1

to s−k. It follows that πβ(aL j
)= β( j) for all j > 0.

For 0 < j < k there is a geodesic σj,k from aL j
to aLk

such that d(σj,k, β) =

d(aL j
, β); see Figure 6. Letting j and k − j grow large, the geodesics σj,k stay

outside large neighborhoods of β but have large projections to β. Therefore, πβ is not
strongly contracting, since it does not enjoy the bounded geodesic image property.
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β(0)= s0
= 1 aL3

aL5

s−3
s−5

Figure 6. Geodesics [aL3
, πβ(aL3

)] (dashed), [aL5
, πβ(aL5

)] (solid),
and σ3,5 = [aL3

, aL5
] (dash-dot).
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A FLAG STRUCTURE ON
A CUSPED HYPERBOLIC 3-MANIFOLD

ELISHA FALBEL AND RAFAEL SANTOS THEBALDI

A flag structure on a 3-manifold is an (X, G) structure where G = SL(3, R)

and X is the space of flags on the 2-dimensional projective space. We
construct a flag structure on a cusped hyperbolic manifold with unipotent
boundary holonomy. The holonomy representation can be obtained from
a punctured torus group representation into SL(3, R) which is equivariant
under a pseudo-Anosov.

1. Introduction

A flag structure on a 3-manifold is an (X,G) structure, where G = SL(3,R) and
X is the space of flags on the 2-dimensional projective space, that is, the space of
pairs: point and line containing it. The most direct construction of such structures
starts with a real projective surface or orbifold. The projectivization of its tangent
bundle is a Seifert manifold and has a natural flag structure. Other constructions on
Seifert manifolds are studied in [Barbot 2001]. Note that projective structures on
3-manifolds concern instead the group SL(4,R); see [Cooper et al. 2015].

Representations of fundamental groups of three manifolds into SL(3,R) were
obtained in [Falbel et al. 2015], following the method described in [Bergeron et al.
2014]; see also the CURVE project [Falbel et al. 2015–]. A fundamental question
is whether these representations correspond to holonomies of flag structures on the
manifold.

The goal of this paper is to construct a flag structure on a cusped hyperbolic
manifold with unipotent boundary holonomy; see Theorem 6.8. We introduce
a general method of construction via gluings of tetrahedra which are defined on
the flag space. The tetrahedra are canonical up to a finite choice related to an
order on the 0-skeleton of an ideal triangulation of the manifold, once one fixes a
decoration (that is a choice of a flag at each vertex) satisfying certain compatibility
conditions; see [Bergeron et al. 2014]. Definitions of simplices in Grassmannian
spaces (although not containing the case of flag space) were also considered in
[Gelfand and MacPherson 1982] and inspired our definition of tetrahedron. In

MSC2010: primary 57M50; secondary 57S30.
Keywords: flag structures, hyperbolic structures, SL(3, R) representations.
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the Appendix we describe a slicing of the tetrahedra which allows an algorithmic
treatment of the many compatibility verifications needed in the paper.

The method presented here can be considered as a flag structure analog of
Thurston’s construction [1981] of hyperbolic structures on cusped manifolds by
gluing ideal hyperbolic tetrahedra and of the construction of CR structures, as in
[Falbel 2008].

The holonomy representation of the structure we obtained is not faithful. It turns
out that the manifold m009 we analyzed here has holonomy group contained in
a triangle group of type (3, 3, 5); see the end of the Appendix. An isomorphic
triangle group was obtained in [Deraux 2015], where the holonomy representation
has values in PU(2, 1). These representations are Galois conjugates, as explained
in [Falbel et al. 2015]; indeed, they are all parametrized by solutions of a degree
four irreducible polynomial in one variable. Two solutions correspond to conjugate
representations in PU(2, 1) and the other two to two dual flag structures.

It is interesting to remark that the manifold m009 is fibered over the circle with
fiber a punctured torus. The representation into SL(3,R) of the fiber surface group
is then equivariant with respect to the mapping class group element defining the
bundle.

2. Flag structures on 3-manifolds

A flag structure on a 3-manifold is an (X,G) structure, where X is a homogeneous
space described in the following paragraph and G = SL(3,R)= PGL(3,R).

The homogeneous space X is the space of flags in P(R3). An affine flag in
V = R3 is a pair (line, plane), the line belonging to the plane. They project to
flags in P(V ), that is, pairs (point, line). Using the dual vector space V ∗ and the
projective spaces P(V ) and P(V ∗), define the spaces of flags Fl by the following:

Fl = {([p], [l]) ∈ P(V )×P(V ∗) | l(p)= 0}.

The action of SL(3,R) on V induces an action on P(V )×P(V ∗). Indeed, identify
V and V ∗ using the canonical scalar product and then, via this identification, the
contragredient action (that is g . v = (g−1)T v) on V ∗. We denote by π1 and π2 the
two projections of Fl into P(V ) and P(V ∗), respectively.

Observe that

Fl = SL(3,R)/B,

where B is the Borel subgroup of upper triangular matrices in SL(3,R). The flag
space is identified with the projectivization of the tangent bundle to P(V ), and
the differential action of SL(3,R) on the tangent bundle induces the above action.
Observe that, in fact, SL(3,R) acts on the unit tangent bundle of P(V ) (which has
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S3 as a double cover); therefore, the double cover of SL(3,R) (which is simply
connected) acts on the sphere S3.

Definition 2.1. A flag structure on a 3-manifold M is a (Fl,SL(3,R))-structure
on that manifold.

The involution 2(v,w)= (w, v) on Fl and the Cartan involution θ(g)= (g−1)
T

on SL(3,R) satisfy
2 ◦ g = θ(g) ◦2.

Given a flag structure on a 3-manifold, we call a dual flag structure the structure
obtained by using transition functions composed with θ .

2.2. Coordinates in P(V ). To facilitate visualization of the flags we will choose a
chart (called the preferred chart) on P(V ). Consider the hyperplane in R3 defined
by the three basis unit vectors, that is

x + y+ z = 1.

The chart is defined by projecting lines passing through the origin in that hyperplane
and imposing that

[1, 0, 0] 7→ (0, 0), [0, 1, 0] 7→ (1, 0), [0, 0, 1] 7→ (0, 1).

The chart is defined on the complement of the projectivization of the plane
x + y+ z = 0 and has the expression

[x, y, z] 7→
(

y
x + y+ z

,
z

x + y+ z

)
.

Observe that, on the hyperplane, [x, y, z] 7→ (y, z) and [1, 1, 1] 7→
( 1

3 ,
1
3

)
.

Given a flag [[x, y, z], [a, b, c]], with x + y+ z = 1, the point [x, y, z] and the
line on P(V ) defined by the image of the plane orthogonal to the vector (a, b, c)
are described in the chart above by:

• the point (y, z),

• the line defined by the vector (a− c, b− a) passing through the point (y, z).

Therefore, the line makes an angle θ with the first coordinate axis satisfying

(2.2.1) tan θ = b−a
a−c

with the horizontal direction. Figure 1 shows three flags corresponding to planes
passing through the three basis vectors in R3.
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p1 p2

p3

Figure 1. Three flags corresponding to planes passing through the
three basis vectors in R3.

  p1

p2

Figure 2. Two simple paths of flags projected into P(V ).

3. Edges

One can join a pair of flags by simple paths (see Figure 2), but there is a canonical
construction of a unique line containing two flags.

Consider two flags in generic position, that is, f1 = (p1, l1), f2 = (p2, l2) such
that li (pj ) 6= 0 if i 6= j . The action of SL(3,R) is transitive on these pairs. There
exists a unique point p12 such that li (p12) = 0, for i = 1, 2. Up to the action of
SL(3,R) we can normalize so that

p1 = (1,0,0), l1 = (0,1,0) and p2 = (0,1,0), l2 = (1,0,0).

The intersection point of the two lines is p12 = (0, 0, 1). Projective transformations
fixing the three points are diagonal and they preserve the line [p1, p2]. For each
line l passing through p12 we consider its intersection p with the line [p1, p2]; see
Figure 3. This defines a circle of flags (p, l) containing f1 and f2. It is divided

p1

p2

p12
p l

l1

l2

l12

Figure 3. A segment between two flags.
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p1

p2

p12 l1

l2

l12

Figure 4. Points and lines fixed by H 0
12.

into two segments with two given flags as boundaries. Following [Gelfand and
MacPherson 1982], we let H 0

12 be the connected component of the identity of
the group preserving the points p1, p2, p12. It preserves the lines l1, l2, l12 (see
Figure 4), and the two segments are orbits of its action on the space of flags whose
closure contains the flags f1 and f2. In the normalization above we have

H 0
12 =

h1 0 0
0 h2 0
0 0 h3


with hi > 0. The circle of flags is given by

p = [λ1, λ2, 0], l = [λ2,−λ1, 0].

More generally, if f1= (p1, l1), f2= (p2, l2) are two flags in generic position, then
the line containing the flags is(

λ1 p1+ λ2 p2,
λ2

l2(p1)
l2−

λ1

l1(p2)
l1

)
.

The line is divided into two segments, corresponding to the relative signs of λ1

and λ2. Observe that, if the two flags are in the preferred chart, then only one of
the segments is contained in the chart. Indeed, one of the flags in the circle is not
in the preferred chart as its corresponding point is at infinity for that chart.

The next lemma states a simple property of a segment between two flags. It is
the basic technical result we need to construct the tetrahedra of flags and will be
repeatedly used in the analysis of the example in the last section.

Lemma 3.1 (monotonicity lemma). Let f1 = (p1, l1), f2 = (p2, l2) be two flags.
Suppose they are contained in the preferred chart and the angles θ1 and θ2 of the
lines in the chart coordinates satisfy θ1 ≤ θ2. Then, along the finite segment from f1

to f2, the angles of the projected lines are increasing (and satisfy θ1 ≤ θ ≤ θ2).
If f ′2 = (p2, l

′

2) is another flag such that θ2 < θ
′

2 then, along the corresponding
segment from f1 to f ′2, the angles of the projected lines satisfy θ < θ ′.
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Proof. We use the preferred chart (see Figure 3). The two lines l1 and l2 intersect at
a point p12 (which might be at infinity). The lines belonging to the finite segment
of flags between f1 and f2 are lines passing through p between l1 and l2. The angle
of each line is also read at p12 and is clearly a monotone function between l1 and l2.

For the second assertion, in the preferred chart, suppose that the vertices p1, p2,
and p12 determine a finite triangle (otherwise the lines l1 and l2 are parallel and the
analysis is simpler). If f ′2 = (p2, l

′

2) is another flag such that θ2 ≤ θ
′

2, then p′12, the
intersection of l ′2 and l1, is on the side [p1, p12]. Therefore, the line passing through
p12 and a point t in [p1, p2] has smaller angle than the line passing through p′12
and t . �

4. Triangles

By a generic configuration of flags ([pi ], [li ]), 1≤ i ≤ n+1, we mean n+1 points
[pi ] in general position and n + 1 lines li in P(V ) such that lj (pi ) 6= 0 if i 6= j .
Recall that a configuration of ordered points in P(V ) is said to be in general position
when no three points are contained in the same line. Notice that we give priority
to the points in the above definition and don’t impose that the lines are in generic
position.

Let (e1, e2, e3) be the canonical basis of V and (e∗1, e∗2, e∗3) its dual basis. Up to
the action of SL(3,R), a generic configuration of three flags ([pi ], [li ]), 1≤ i ≤ 3,
can be normalized in these coordinates as

• p1 = (1, 0, 0), l1 = (0, 1, 1),

• p2 = (0, 1, 0), l2 = (1, 0, 1), and

• p3 = (0, 0, 1), l3 = (z, 1, 0), with z 6= 0.

Therefore, the only invariant of a generic configuration of three flags, up to SL(3,R),
is the triple ratio, given by

z =
l1(p2)l2(p3)l3(p1)

l1(p3)l2(p1)l3(p2)
∈ R×

Observe that the three lines of the triple of flags are linearly independent if and
only if z 6= −1.

Given three flags in general position, f1 = (p1, l1), f2 = (p2, l2), f3 = (p3, l3),
we may form a triangle (a 1-skeleton as in Figure 5) by choosing three edges as
above. There are 8 possible choices, namely for each pair of flags in a chart one
can choose either the bounded segment or the unbounded segment with end points
given by the two flags.

Fixing a choice of edges, we define a face as an embedded 2-simplex whose
boundary is the union of the three edges. Observe that this imposes a restriction on
the 1-simplex; it should be null-homotopic. This is equivalent to the condition that
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p1

p2

p3

Figure 5. A triangle of flags projected into P(V ).

both projections by π1 and π2 of the 1-skeleton should be null-homotopic. If the
edges are as in the previous section, then there is a restriction on the triple ratio of
a triple of flags:

Lemma 4.1. A triple of flags defines a null-homotopic canonical 1-skeleton if and
only if the triple ratio of the three flags is negative. In that case there are precisely
four canonical 1-skeletons which are null-homotopic.

The proof of the lemma consists of comparing the two possible situations in
Figure 6, corresponding to negative and positive triple ratios respectively. To obtain
the sign of the triple ratio one simply counts the number of times the lines separate
the points not contained in them.

(a) (b)

    

  

p1
p2

p3

    

  

p1
p2

p3

Figure 6. Each diagram shows three flags and the segments joining
them, projected in the preferred chart. We only draw the finite
triangle. The Euler number of a vector field parallel to the line
field along the triangle is 0 in case (a) and has absolute value 1 in
case (b). The triple ratio is negative in (a) and positive in (b).
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p12

l1

l2

l3

lt

l

Figure 7. A synthetic construction of the flag (p, l) in the face
F312. The triple ratio is negative and f3 is the source of the face.

Once the 1-skeleton is defined, we should define a 2-simplex whose boundary is
the given 1-skeleton. A particular canonical choice is given as a union of segments:

Definition 4.2. A face F123 in the flag space, with vertices fi , i = 1, 2, 3 (with neg-
ative triple ratio) and a choice of edges [ f1, f2], [ f2, f3], [ f3, f1], is the 2-skeleton,
which is the union of segments between f1 and ft , where ft ∈ [ f2, f3]; that is,

F123 = { f ∈ Fl | f ∈ [ f1, ft ] for ft ∈ [ f2, f3]}.

The flag f1 is called the source of the face. For example, in Figure 7 the edges are
bounded segments, f3 is the source of the face F312 and the triple ratio is negative.
Notice that with the same vertices and edges we can construct the face F213 in the
same way, but we can’t obtain the face F123 because as ft ∈ [ f2, f3], there is a flag
f0 = (p0, l0) ∈ [ f2, f3] such that p1 ∈ l0, so the flags f0 and f1 are not in general
position. Thus, given a triple of flags with negative triple ratio, the surface obtained
is embedded with boundary the union of edges only for two good choices of the
source.

If the triple of flags has positive triple ratio it will be impossible to fill up a
triangle unless we change the 1-skeleton in the following way: in the configuration
represented in Figure 8, there is a flag f0 = (p0, l0) ∈ [ f2, f3] such that p1 ∈ l0, so
the flags f0 and f1 are not in general position. In order to define the triangle we
should add, along the points p ∈ [p0, p1) the flags (p, l0) and over the point p1 the
flags π−1

1 (p1). In this way the projection of the 1-skeleton is twice the generator
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p1

p2

p3

p1tp12

p23

p13

l

l1

l2ltl3

Figure 8. A synthetic construction of the flag (p, l) in the face
F123. The triple ratio is positive.

and therefore it is null-homotopic. In this paper, though, we will only use triples
with negative ratio and good choices of the source of the face.

The 2-skeleton determines a triangle T123 ⊂ P(V ) when projected by π1 and
T ∗123 ⊂ P(V ∗) when projected by π2. That is,

π1(F123)= T123, π2(F123)= T ∗123.

5. Coordinates on a flag tetrahedron

In this section we recall the coordinates parametrizing configurations of four flags
in the projective space P(R3), as in [Bergeron et al. 2014; Falbel et al. 2015]; also
see [Fock and Goncharov 2007; Garoufalidis et al. 2011].

5.1. Coordinates for a tetrahedron of flags. Let ([pi ], [li ]), 1≤ i ≤ 4, be a generic
tetrahedron. Arrange these flags symbolically on a tetrahedron 1234 as in Figure 9.
We define a set of 12 coordinates on the edges of the tetrahedron, one for each
oriented edge.

To define the coordinate zi j associated to the edge i j , we first define k and l such
that the permutation (1, 2, 3, 4) 7→ (i, j, k, l) is even. The pencil of (projective)
lines through the point pi is a projective line P1(k). We have four points on this
projective line: the line ker(li ) and the each of the lines going through pi and one
of the pl , for l 6= i . We define zi j as the cross-ratio of four flags by

zi j := [ker(li ), (pi pj ), (pi pk), (pi pl)].
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z12

z13 z14

z21

z23
z24

z31

z32

z34

z41

z42

z43

Figure 9. The z-coordinates.

We follow the usual convention that the cross-ratio of four points p1, p2, p3, p4

on a line is the value at p4 of a projective coordinate taking value∞ at p1, 0 at p2,
and 1 at p3. Figure 9 displays the coordinates.

At each face (i jk), oriented as the boundary of the tetrahedron (1234), we
associate the triple ratio:

zi jk =
li (pj )lj (pk)lk(pi )

li (pk)lj (pi )lk(pj )
.

Observe that if the same face with opposite orientation (ik j) is common to a second
tetrahedron, then

zik j =
1

zi jk
.

Of course there are relations between the whole set of coordinates. Fix an even
permutation (i, j, k, l) of (1, 2, 3, 4). First, for each face (i jk), the triple ratio is
the opposite of the product of all cross-ratios “leaving” this face:

(5.1.1) zi jk =−zil z jl zkl .

Second, the three cross-ratios leaving a vertex are algebraically related. For instance,
in the vertex 1,

(5.1.2) z13 =
1

1−z12
and z14 = 1− 1

z12
,

and analogously for the other vertices. The next proposition shows that a tetrahedron
is uniquely determined, up to the action of SL(3,R), by four numbers.

Proposition 5.2 [Bergeron et al. 2014, Proposition 2.4.1]. The space of generic
tetrahedra is parametrized by the 4-tuple (z12, z21, z34, z43) of elements in R\{0, 1}.
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In particular, one can normalize the coordinates of four flags up to the action of
SL(3,R) as

f1 : p1 = (1, 0, 0), l1 = (0, z14, −1)=
(
−1, 1− 1

z12
, −1

)
,

f2 : p2 = (0, 1, 0), l2 =

( 1
z24
, 0, −1

)
= (1− z21, 0, −1),

f3 : p3 = (0, 0, 1), l3 = (z34, −1, 0),

f4 : p4 = (1, 1, 1), l4 =

(
z42,

1
z41
, −1

)
=

( 1
1−z43

,
z43

z43−1
, −1

)
.

6. Example: m009

The manifold m009 is an open manifold which has a complete hyperbolic structure
with finite volume. It is obtained by gluing three tetrahedra T0(ui j ), T1(vi j ), and
T2(wi j ) as shown in Figure 10.

The face identifications are

(234)0↔ (243)1, (142)0↔ (314)1, (134)0↔ (143)2,

(123)0↔ (213)2, (142)1↔ (241)2, (123)1↔ (342)2.

In [Falbel et al. 2015], we obtained a particular realization of these tetrahedra
by 4-tuples of flags giving rise to representations into SL(3,R) with unipotent
boundary holonomy. The invariants of the 4-tuple of flags all depend on

γ =− 1
2 +

1
2

√
5+ 4
√

5.
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w12

w21

w34 w43

Figure 10. Three tetrahedra glued to obtain the manifold m009.
The tetrahedra are numbered from 0 to 2 from left to right.
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Explicitly:

u12 = w34 =
γ +3
γ +1

, u21 = w43 = γ , u34 = w12 =
γ −2
γ

,

u43 = w21 =−1− γ , v12 = v34 =
1

γ +3
, v21 = v43 =

1
2−γ

.

The group obtained has rank one boundary holonomy, and one can chose generators,
called meridian gM and longitude gL , satisfying gM g2

L = 1.
The realization described above comes paired with another one giving rise to a

dual flag structure. It is also related to a representation of the fundamental group
in PU(2, 1) with boundary holonomy of rank one, which seems to give rise to a
uniformizable CR structure on m009 [Deraux 2015].

6.1. The tetrahedron T0. Using the coordinates above, the four flags fi = [pi , li ],
1 ≤ i ≤ 4, defining T0 can be represented in the preferred chart, as in Figure 11.
Setting

κ = 2γ + 1=
√

5+ 4
√

5,

the coordinates of the flags are

f1 =

[
[1, 0, 0],

[
0, 4

5+κ
,−1

]]
≈
[
[1, 0, 0], [0, 0.458,−1]

]
,

f2 =

[
[0, 1, 0],

[3−κ
2
, 0,−1

]]
≈
[
[0, 1, 0], [−0.367, 0,−1]

]
,

f1 f2

f3

f4

Figure 11. The four flags of tetrahedron T0 and segments joining
them projected in the preferred chart. Here θ4 < θ1 < θ2 < θ3.
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f3 =

[
[0, 0, 1],

[
−5+κ
−1+κ

,−1, 0
]]
≈
[
[0, 0, 1], [−0.463,−1, 0]

]
,

f4 =

[
[1, 1, 1],

[ 2
3+κ

,
1+κ
3+κ

,−1
]]
≈
[
[1, 1, 1], [0.297, 0.703,−1]

]
.

The angles at each flag in the preferred chart are computed using formula (2.2.1):

tan θ1 =
4

5+κ
=⇒ θ1 ≈ 0.43,

tan θ2 =−
−3+κ
−5+κ

=⇒ θ2 ≈ 0.53,

tan θ3 =−2−3+κ
−5+κ

=⇒ θ3 ≈ 0.86,

tan θ4 =
−1+κ
5+κ

=⇒ θ4 ≈ 0.30.

We choose the segments between the flags so that all of them are finite and
contained in the preferred chart.

Proposition 6.2. The four flags defining T0 and the 1-skeleton Ei j (defined by the
finite segments joining the flags i and j in the preferred chart) can be extended to a
simplex with faces F0

314, F0
342, F0

412, F0
312.

Proof. We first define an embedded 2-skeleton. In the last paragraph of the proof
below we fill it up to a 3-simplex.

We need to construct the four faces of the tetrahedron and verify that their
intersections are precisely their common edges. They are (writing F0

i jk = Fi jk , etc.,
to simplify the notation):

F314, F342, F412, F312.

Clearly, the first three faces only intersect in their common edges. The only
verification to be done is on the intersection of these faces with F312. We need to
prove that

F412 ∩ F312 = E12, F314 ∩ F312 = E31, F342 ∩ F312 = E32.

The argument uses Lemma 3.1 in a simple way. We choose the preferred chart.
Observe first, because θ4 < θ1 < θ2, that the segment E12 has all flags with angles
greater than the flags at the edges E14. By the lemma, F314 ∩ F312 = E31.

Observe that the line from p3 to p4 intersects the edge E12 at a point, say p,
whose flag has angle θ > θ4. Moreover, a simple drawing (see Figure 12) or
computation shows that the intersection point of l4 with the line l2 is between p2

and the intersection point between l1 and l2. This is sufficient to prove that the
angle of a flag along the segment E24 is smaller than the corresponding flag (along



64 ELISHA FALBEL AND RAFAEL SANTOS THEBALDI

    

  

  

   

   

 t
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p3

p4
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p24

Figure 12. Comparison of two flags over a point t ∈ p2 p4. At the
point t the flag of the face F312 has greater angle than the one of
the face F342.

the segment whose projection contains p3 and the projection of the flag in E24)
passing at the edge E12. This implies, again by the lemma, that F342 ∩ F312 = E32.

To analyze F412 ∩ F312, observe that if x belongs to the triangle p1 p2 p4 and is
to the left of the line p3 p4, then, because θ1 < θ2, the angle at x along the line
from p3 is greater than the angle along the line from p4. For a point to the right of
the line p3 p4, we conclude with an argument analogous to the previous paragraph.
This implies again that F412 ∩ F312 = E12.

The last part of the proof consists in completing the 2-skeleton to a 3-simplex.
We do it explicitly in the following way. For each point p in the preferred coordinate
chart in the triangle p1 p2 p3, there are two angles θ ≥ θ ′, the first one corresponding
to the face F312 and the other to one of the other three faces. We define a segment
of flags for each of these points by varying the angle from the first angle (at face
F312) to the one on the other face. That is, we consider all flags passing through p
with angles φ, with θ ≥ φ ≥ θ ′, where we have strict inequality outside the edges
of the triangle p1 p2 p3. �

6.3. The tetrahedra T1 and T2. In Figure 13 we show the three tetrahedra glued
according to g1 : (243)1→ (234)0 and g2 : (142)2→ (241)1. The three tetrahedra
are T0, g1(T1), and g1g2(T2).

The points in the figure are projections of the flags

f5 = [p5, l5] = g1[p1, l1] and f6 = [p6, l6] = g1g2[p3, l3].

Due to the face pairings, the faces of T1 and T2 are in part determined by the choice
of the faces of T0, namely, for T1, F1

432, and F1
134 and for T2, F2

413, and F2
312 are

determined. The remaining two pairs of faces can be chosen arbitrarily.
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Observe that F1
432 and F1

134 are represented, in the glued configuration, by F342

and F543, respectively. Also, F2
413 and F2

312 are represented by F326 and F625.
The definition of each filled tetrahedron follows the same line as for T0, namely,

in the preferred chart we fix a point which is a projection of two flags in two
different faces. These two flags determine two angles. We then obtain a segment of
flags defined by varying the angles between these two angles. The 3-simplex is the
union of those segments.

We have to verify compatibilities in the definition, namely, that the side pairings
map the edges between themselves and that the tetrahedra defined by the faces
above do not intersect except in their common faces. We state the compatibility of
the edges as a lemma whose proof is a straightforward computation.

Lemma 6.4. The finite edges between the flags are compatible with the side pairings.
That is, the face pairings map finite edges onto finite edges.

Proof. The compatibility of the vertices is already verified by the definition of the
tetrahedra in the computations in [Falbel et al. 2015]. We need to verify that in
Figure 13, finite segments are mapped to finite segments by the side pairings. The
side pairings are given by the four maps s3, s4, s5, s6; see the Appendix. Clearly,
each transformation ga : (i jk)m→ (i ′ j ′k ′)n is completely determined by the vertices
of the two faces. The polyhedron side pairings si are determined by the ga .

In our case, a tedious verification shows that all maps s3, s4, s5, s6 are such that
they always map finite segments that are edges of a face of one tetrahedron of the

f1 f2

f3

f4

f5

f6

Figure 13. Gluing the 3 tetrahedra projected in the preferred chart.
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polyhedron into finite segments that are edges of the corresponding face in another
tetrahedron of the polyhedron. �

The next verification proves that T0, g1(T1), and g1g2(T2) are well defined and
form a polyhedron in the flag space. That is, as for T0, their faces intersect only at
common edges. Finally, we prove that the three tetrahedra intersect only at common
faces. The proof is a sequence of tedious arguments (Proposition A7), as in the
proof that T0 was well defined, but one can be convinced by carefully looking at
Figure 13.

Proposition 6.5. The gluing of the three tetrahedra T0, g1(T1), and g1g2(T2) forms
a polyhedron in the flag space.

6.6. The structure around the edges. There are three edges in the quotient man-
ifold, represented by the edges E23, E24, and E34 in the first tetrahedron T0. As
far as the topological gluing is concerned, the number of tetrahedra around each
edge are 8, 4, and 6 respectively (we show the schematic diagram of the gluing
for each edge in Figure 14). To prove that we have a genuine flag structure on the
quotient manifold, we should prove that the gluing of the tetrahedra around each of
the three edges has no branching. That is, that the gluing around each edge gives a
neighborhood of the edge.

We state the result in the following proposition. Its proof is a tedious verification
and is given in one particular case; see Proposition A9. We use a slicing of the
tetrahedra to describe the behavior of the structures around the edges. Heuristically,
one can understand the neighborhood of an edge by following the vertices of the
tetrahedra that one adjoins to the edge. Turning around the edge corresponds to
turning the angle of the projected line of the flag in the vertex in such a way that
increasing the angle makes the tetrahedron go up and decreasing the angle makes
the tetrahedron go down.

In Figure 15, we show that the 4 tetrahedra around the edge E24 (the complete
proof in this case is given in the Appendix). One can observe that the last point
adjoined has the projected line of angle lower than the others. The tetrahedra
adjoined will be below the original two. In Figure 16, we show 5 of the 6 tetrahedra
around the edge E34. Here we have to add three more points to the original 3
tetrahedra. Observe that the first two have lines of decreasing angle, but the last
point increases the angle in order to complete the turn. In Figure 17, we show the
vertices of the 8 tetrahedra around the edge E23.

A detailed proof of the following proposition is given in Proposition A9 for the
case E34. For the others two gluings around E23 and E34, the proof follows the
same lines.

Proposition 6.7. Along each of the three edges E23, E24, and E34 the gluing of the
tetrahedra defines a neighborhood.
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f1f10

f9

f8 f5
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2 g6(T2)

g1g−1
3 g5g−1

2 (T1)

g1g−1
3 g5(T2)

g1g−1
3 (T0)

g1(T1)

f4

f1

f14

f13

f12

f11

f6

f5

T0

g1g2g−1
4 g5g−1

6 g−1
3 g4(T2)g1g2g−1

4 g5g−1
6 g−1

3 (T0)

g1g2g−1
4 g5g−1

6 (T1)

g1g2g−1
4 g5(T2)

g1g2g−1
4 (T0)

g1g2(T2)

g1(T1)

Figure 14. Top left: schematics of a neighborhood around the
edge E24 = [ f2, f4], where the segments stand for the faces with
the common edge E24 denoted by the origin and the arcs and
the regions between two segments stand for the neighborhoods
contained in one tetrahedron. The remaining diagrams represent a
neighborhood around the edge E23 = [ f2, f3] (top right) and one
around the edge E34 = [ f3, f4] (bottom).

f7 = g1g6 f1

Figure 15. Tetrahedra around the edge E24.
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f8 = g1g−1
3 f3

f9 = g1g−1
3 g5 f4

f10 = g1g−1
3 g5g−1

2 f3

Figure 16. Tetrahedra around the edge E34.

f13 = g1g2g−1
4 g5g−1

6 f4

f14 = g1g2g−1
4 g5g−1

6 g−1
3 f3

f12 = g1g2g−1
4 g5 f4

f11 = g1g2g−1
4 f2

Figure 17. Vertices of tetrahedra around the edge E23. The group
of 6 points in the center can be zoomed to coincide with Figure 13.

As a consequence of the propositions, we obtain our conclusion:

Theorem 6.8. The manifold m009 has a flag structure whose holonomy map is
boundary unipotent.

Appendix

A1. Generators and side pairings. To help the reader check computations we list
explicitly the side pairings we use. Note that we simplify notation denoting matrices
by the same letters as the maps. First we let

u1 = 1− 1
u12
=

2
γ+3

, w1 = 1− 1
w12
=

2
2−γ

, v1 = 1− 1
v12
=−2− γ,

u2 = 1− u21 = 1− γ, w2 = 1−w21 = 2+ γ, v2 = 1− v21 =
γ−1
γ−2

,
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u3 = u34 =
γ−2
γ

, w3 = w34 =
γ+3
γ+1

, v3 = v34 =
1

γ+3
,

u4 =
1

1−u43
=

1
2+γ

, w4 =
1

1−w43
=

1
1−γ

, v4 =
1

1−v43
=
γ−2
γ−1

.

The generators are given by

F0
234 = g1(F1

243) g1 =

 −λ3 0 λ3

−λ1− λ3 λ1 λ3

−λ3+ λ2 0 λ3

, λ2 = λ1(v3− 1)(1− u4),

λ3 =
λ1

(v4−1)(1−u3)
,

F1
142 = g2(F2

241), g2 =

 0 δ3 δ2− δ3

δ1 0 δ2− δ1

0 0 δ2

, δ2 =
δ1v1(w2−1)
w2(v1−1)

,

δ3 =
δ1(1−v4)(1−w4)

v4w4
,

F0
142 = g3(F1

314), g3 =

α2 −α2−α1 α1

α2 α3−α2 0
α2 −α2 0

, α2 =
α1u2v4
1−u2

,

α3 =
α1u4(v1−1)

u4−1
,

F0
134 = g4(F2

143), g4 =

β1 −β1−β3 β3

0 −β3 β3

0 β2−β3 β3

, β2 =
β1u4(1−w3)

w3
,

β3 =
β1u3

w4(1−u3)
,

F0
123 = g5(F2

213), g5 =

 0 ε1 0
ε2 0 0
0 0 ε3

, ε2 = ε1u3w3,

ε3 =
ε1u2
w1

,

F1
123 = g6(F2

342), g6 =

−ζ1 0 ζ1

ζ2 0 0
−ζ3 ζ3 0

, ζ2 = ζ1v3(w2− 1),

ζ3 = ζ1v2(1−w4),

Thinking of the generators as hyperbolic transformations, we can obtain a pre-
sentation of the fundamental group of m009. Indeed, the side pairings of the
(hyperbolic) polyhedron formed by gluing the tetrahedra (as in Figure 13) according
to g1 : (243)1→ (234)0 and g2 : (142)2→ (241)1 are

s3 = g3g−1
1 , s4 = g4g−1

2 g−1
1 , s5 = g5g−1

2 g−1
1 , s6 = g1g6g−1

2 g−1
1 .

The three edge cycles give the relations

s6s−1
3 , s−1

4 s5s−1
6 s−1

3 s4s−1
5 , s−1

3 s5s6s−1
4 ,
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and the presentation of the fundamental group 0=π1(m009) of the manifold m009
can be simplified to be

0 = 〈s3, s5 | [s−1
3 , s−1

5 ]s
−2
3 [s

−1
3 , s5]〉.

The manifold m009 is fibered over the circle. From the presentation, we know
that its fundamental group 0 has abelianization

0/[0,0] = Z/2Z ⊕ Z.

Indeed, from the presentation we observe that s2
3 ∈ [0,0]. We conclude that the

image of s5 in 0/[0,0] is nontrivial and generates an infinite cyclic group.
One can also check (using SnapPea for instance and comparing fundamental

groups) that m009 is the same as the manifold b++RRL which is the punctured torus
bundle defined by the pseudo-Anosov[

3 2
1 1

]
.

However, a computation with the matrices of s3 and s5 (we warn the reader that
we also write si for the image of si under the holonomy representation, by abuse of
notation) shows that the holonomy group is contained in a triangle group of type
(3, 3, 5). Indeed, s3 is of order 5, s3s5 and s2

3s5 are of order 3. On the other hand s5

is unipotent.

A2. Slicing tetrahedra and proof of Proposition 6.7. In this section we describe
a method to slice a tetrahedron according to directions of the flags contained on
it. This is the main technical tool that we used to show the compatibility of the
structure around an edge (Proposition 6.7) and can be implemented on a computer
to check other examples.

In order to analyze gluings of tetrahedra properly, it will be convenient, in a fixed
preferred chart, to deal with “constant angle” flags in a given face:

Definition A3. The constant angle θ path C123(θ) in a face F123 is the set of flags
f = (p, l) ∈ F123 such that, in the preferred chart, all lines l make an angle θ — see

(2.2.1). That is,

C123(θ)= { f ∈ F123 | f = (p, l)= (p, [a, b, c]) with tan θ = (b− a)/(a− c)}.

The following lemma ensures that the set C123(θ) is a path that, in the extreme
cases, has only one flag.

Lemma A4. Let F123 be a face with vertices fi = (pi , li ), i = 1, 2, 3 such that, in
the preferred chart, each line li makes an angle θi with θi 6= θj , i 6= j . Then, to any
angle θ such that

min{θ1, θ2, θ3} = θm ≤ θ ≤ θM =max{θ1, θ2, θ3},
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the set C123(θ) is a curve in the face and so we have the disjoint union

F123 =
⋃

θm≤θ≤θM

C123(θ).

Proof. We use the preferred chart, and, without loss of generality, we consider
the face F312 as in Figure 7. So, p1 = (0, 0), p2 = (1, 0), p3 = (0, 1). Let
l1 = (a1u, b1u), l2 = (a2v+ 1, b2v), and l3 = (a3w, b3w+ 1) for u, v, w ∈ R. We
first parametrize a flag (p, l) ∈ F312 in terms of the coordinates in the preferred
chart. The parametrization is in terms of the coordinates of the point p, which,
by abuse of notation, we consider already in the preferred coordinate chart. For
p = (y, z) ∈ π1(F312),

−−→p1 p2 = (r p1+ (1− r)p2)= ((1− r), 0)
−→pp3 = (sp+ (1− s)p3)= (sy, sz+ (1− s)).

Let pt =
−−→p1 p2 ∩

−→pp3, so pt = (y/(1− z), 0). Then,

p12 = l1 ∩ l2 =

(
a1b2

a1b2− a2b1
,

b1b2

a1b2− a2b1

)
,

−−−→pt p12 = (r pt + (1− r)p12)

=

(
r y

1− z
+
(1− r)a1b2

a1b2− a2b1
,
(1− r)b1b2

a1b2− a2b1

)
.

Let q =−−−→pt p12 ∩ l3. Then,

q = (qy, qz)=

(
a3
(
y(b1b2+ a2b1− a1b2)+ a1b2(1− z)

)
b3 y(a1b2− a2b1)+ b2(1− z)(a3b1− a1b3)

,

b1b2
(
yb3+ a3(1− z)

)
b3 y(a1b2− a2b1)+ b2(1− z)(a3b1− a1b3)

)
.

Since l =−→pq ,

tan θ =
qz − z
qy − y

=
yb3

(
b1b2− z(a1b2− a2b1)

)
+ a3b1b2(1− z)2+ zb2a1b3(1− z)

y
(
a3b1b2+ (a3+ yb3)(a2b1− a1b2)

)
+ b2(1− z)

(
a3a1+ y(a1b3− a3b1)

) .

Fixing θ, we obtain the equation of a conic in the preferred chart which always
contains p3 = (0, 1). The part of this conic inside π1(F312) is the projection
π1(C312(θ)). As for all θ such that θm ≤ θ ≤ θM , we have C312(θ) 6= ∅ and
conclude that F312 is the disjoint union of paths, as claimed. Notice that F312 has
only one flag with θ = θm and another one with θ = θM . �
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p1
p2

p3

p12

Figure 18. Path C312(θ) with constant θ in the face F312.

For example, in Figure 18, the red path is π1(C312(θ)) for a1=2, b1=1, a2=−1,
b2 = 3, a3 = 5, b3 =−1, and tan θ = 1/5. The blue path is a branch of a hyperbola
determined by the equation of Lemma A4. Notice that both lines coincide inside
π1(F312).

Definition A5. A slice S1234(θ) with constant θ in a tetrahedron T1234 is the set of
flags f = (p, l) ∈ T1234 such that, in the preferred chart, all lines l make an angle
θ ; that is,

S1234(θ)= { f ∈ T1234 | f = (p, l)= (p, [a, b, c]) with tan θ = (b− a)/(a− c)}.

Proposition A6. Suppose that T1234 is a finite tetrahedron with vertices fi = (pi , li ),
i = 1, 2, 3, 4, such that, in the preferred chart, each line li makes an angle θi with
θi 6= θj , i 6= j . Then, for any angle θ such that

min{θ1, θ2, θ3, θ4} = θm ≤ θ ≤ θM =max{θ1, θ2, θ3, θ4},

the set S1234(θ) has three or four vertices (each one in a distinct edge). Furthermore,
the tetrahedron is a disjoint union of slices, that is,

T1234 =
⋃

θm≤θ≤θM

S1234(θ).

Proof. Without loss of generality, we can consider that the tetrahedron T1234 is
T0, as defined in 6.1, represented in the preferred chart in Figure 11 and analyzed
in Proposition 6.2. Then, θi is such that θm = θ4 < θ1 < θ2 < θ3 = θM , and the
tetrahedron’s faces are the good faces F314, F342, F412, and F312. The slices of T0

will be denoted S0(θ).
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Figure 19. Slices in T0 for θ2 ≤ θ ≤ θ3, θ1 ≤ θ ≤ θ2, and θ4 ≤ θ ≤ θ1.

In the first case, let θ satisfy θ2 ≤ θ ≤ θ3 = θM . Then, by Lemma A4, there are
three curves C314(θ),C342(θ), and C312(θ) in the respective faces with the common
vertex f3. Considering the common edges between faces, let fa =C314∩C342 ∈ E34,
fb = C314 ∩C312 ∈ E13, and fc = C342 ∩C312 ∈ E23. We obtain the slices as in
Figure 19 (for simplicity the paths are depicted as straight lines).

By the monotonicity lemma (Lemma 3.1), each one of these curves separates the
respective faces into two parts: one near the vertex f3 where θ ′ > θ and the other
near the two other vertices of the face where θ ′′<θ . Consider a point p in P(R3) as
in Figure 19. There exist two flags in the faces of T0 which project onto p, namely,
(p, d) ∈ F312 and (p, d ′) ∈ F314 with θd > θ and θd ′ < θ . Then, by the definition
of T0 as a 3-simplex (see Proposition 6.2), for all p inside the area delimited by
π1(C312(θ)), π1(C314(θ)), and π1(C342(θ)), there exists a flag f ′ = (p, l ′) ∈ T0

such that θ ′ = θ , so f ′ ∈ S0(θ). Clearly, C312(θ) ⊂ S0(θ), C314(θ) ⊂ S0(θ), and
C342(θ) ⊂ S0(θ). Furthermore S0(θ) has three vertices: fa ∈ E34, fb ∈ E13, and
fc ∈ E24, as claimed.

In the other cases, as in Figure 19, the argument is the same, and this concludes
the first part of the proof.

The second part follows clearly, as for all θ such that θm ≤ θ ≤ θM , we have
S0(θ) 6=∅. �

Figure 20 shows the exact slices in T0 for tan θ = 0.4 and tan θ = 0.5.

Proposition A7. The gluing of the three tetrahedra T0, g1(T1), and g1g2(T2) forms
a polyhedron in the flag space.

Proof. Observe that θ5 ≤ θi ≤ θ3 for all i = 1, . . . , 6. We can construct the slices in
each tetrahedron for θ from θ5 to θ3 and see that they only intersect in the common
path contained in the common face between two tetrahedra. In Figure 21, we show
the slices for tan θ = 0.4 (θ4 < θ < θ1), tan θ = 0.5 (θ6 < θ < θ2), and tan θ = 0.8
(θ2 < θ < θ3). The other two cases θ5 < θ < θ4 and θ1 < θ < θ6 are similar. �

Now consider the tetrahedron 2457 with vertices f2, f4, f5 = g1[p1, l1], and
f7 = g1g6[p1, l1]. It is one of the four tetrahedra around the edge E24 in Figure 15.
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Figure 20. Left: slice in T0 for tan θ = 0.4, exemplifying the case
θ4 < θ < θ1 < θ2 < θ3. Right: slice for tan θ = 0.5, corresponding
to θ4 < θ1 < θ < θ2 < θ3.
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Figure 21. Slices in the gluing of T0, g1(T1) and g1g2(T2) for
tan θ = 0.4, that is, θ4 < θ < θ1, tan θ = 0.5, that is, θ6 < θ < θ2,
and tan θ = 0.8, that is, θ2 < θ < θ3.

The following lemma describes the position of the projection of certain slices. It
will be important in order to construct slices around an edge in the next proposition.

Lemma A8. Consider the tetrahedron 2457, in the preferred chart, and the projec-
tion of the path C725(θp), that is π1(C725(θp)). Then, for all f p = (p, lp) ∈ E24, we
have q = π1(E24)∩π1(C725(θp)) ∈ [p2, p].

In other words the projection of the path C725(θp) intersects the projection of the
edge E24, that is π1(E24), between p2=π1( f2) and p=π1( f p), where f p= (p, lp)

is the flag in the edge E24 such that the line lp makes an angle θp.

Proof. The projection of the tetrahedron is represented in Figure 22 with a detail
in the lower diagram. Let f p = (p, lp) ∈ E24, and let θp be the angle of lp in the
preferred chart. By definition, p∈ lp and p24= l2∩l4∈ lp. As θ7<θ5<θ4<θp<θ2,
the path C725(θp) has one end in E25 and another in E27, so clearly π1(C725(θp))

intersects π1(E24) or π1(E45).
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Figure 22. Top: tetrahedron 2457. Relative position of p and q
in the edge E24. Bottom: detail of the same tetrahedron, showing
the relative position of p and q in the edge E24.

Suppose first that it intersects E24. Let fq = (q, lq) ∈ C725(θp) such that q =
π1(E24) ∩ π1(C725(θp)). Suppose, towards a contradiction, that q ∈ [p, p4]. By
definition, lp and lq are parallel. Let a = lq ∩ l7 and let b be the intersection
between π1(E25) and the straight line through p7 and q. Notice that b and p25

are on opposite sides with respect to l7 but are on the same side with respect to lq .
As a = lq ∩ l7, the points a, b, and p25 don’t lie in the same straight line, which
contradicts the definition of the face F725. Indeed, if fq ∈ F725, then a, b, and p25

should lie in the same straight line. We conclude that q 6∈ [p, p4].
By the same construction and arguments we obtain that π1(C725(θp)) doesn’t

intersect π1(E45). Thus, π1(C725(θp)) intersects π1(E24) between p and p2. �

Proposition A9. Along the edge E24, the gluing of the tetrahedra defines a neighbor-
hood.

Proof. Consider the gluing of four tetrahedra along E24, represented in Figure 15.
Consider also the tetrahedron g1g6(T2) with vertices f2, f4, f5, and f7 such that
θ7 < θ5 < θ4 < θ1 < θ2. Observe first that, by Lemma A8, for all θ such that θ4 <

θ < θ2 (that is, tan θ4 ≈ 0.313< tan θ < tan θ2 ≈ 0.580), the slice S2457(θ) projects
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Figure 23. Slice S2457(θ) in g1g6(T2) for tan θ = 0.4 (top) and
tan θ = 0.5 (bottom).

to a preferred chart in a “triangle” with vertices in the edges [p7, p2], [p2, p4], and
[p2, p5], as shown in Figure 23 for tan θ = 0.4< tan θ1 ≈ 0.458 (top diagram) and
tan θ = 0.5> tan θ1 (bottom).

As a consequence, the unique form of the slices S2457(θ) (they all project to the
triangles described above), the form of the slices S1234(θ), S1247(θ), and S2345(θ)

are unique too. Indeed, the slices have common paths, for example, C425(θ) =

S2457(θ)∩S2345(θ), and two paths inside a tetrahedron don’t intersect. Therefore, we
obtain slices in each one of the four tetrahedra as in Figure 24 for tan θ =0.4< tan θ1

and in Figure 25 for tan θ = 0.5 > tan θ1. Thus, all neighborhoods of a point
p ∈ π1(E24) are as in Figure 26 for θ4 < θ < θ1 < θ2 or as in Figure 27 for
θ4 < θ1 < θ < θ2. Figures 23 to 27 are obtained through exact computations. �

 
 

 
 p

p

p
p

Figure 24. Slices in each tetrahedron with common edge E24 for
tan θ = 0.4.
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Figure 25. Slices in each tetrahedron with common edge E24 for
tan θ = 0.5.
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Figure 26. Neighborhood of p such that f = (p, l) ∈ E24 for
θ7 < θ5 < θ4 < θ < θ1 < θ2 < θ3.
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Figure 27. Neighborhood of p such that f = (p, l) ∈ E24 for
θ7 < θ5 < θ4 < θ1 < θ < θ2 < θ3.
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We prove a new upper bound for the first eigenvalue of the Dirac operator
of a compact hypersurface in any Riemannian spin manifold carrying a non-
trivial twistor-spinor without zeros on the hypersurface. The upper bound
is expressed as the first eigenvalue of a drifting Schrödinger operator on the
hypersurface. Moreover, using a recent approach developed by O. Hijazi and
S. Montiel, we completely characterize the equality case when the ambient
manifold is the standard hyperbolic space.

1. Introduction

Let Mn ι
↪→ M̃n+1 be an oriented, compact (without boundary), connected hyper-

surface of an (n+ 1)-dimensional Riemannian manifold (M̃n+1, g) equipped with
the induced Riemannian metric, also denoted by g.

It is by now a well-known approach to use the min-max characterization of
eigenvalues to derive upper bounds for the spectrum of differential operators on M
in terms of extrinsic geometric data. For example, if we consider the first positive
eigenvalue λ1(1) of the Laplace operator 1 := − trg(Hessg), where Hessg denotes
the Hessian of M, a famous result of R.C. Reilly [1977] states that if M̃ is the
Euclidean space Rn+1, then

(1) λ1(1)≤
n

Vol(M)

∫
M

H 2 dvg,

where H denotes the normalized mean curvature of M. The proof of this result
uses, in an essential way, the Rayleigh characterization of λ1(1) by choosing
a modification of the coordinates functions as test functions. Moreover, it is a
straightforward observation to see that equality occurs if and only if M is a totally
umbilical round sphere. As observed in [El Soufi and Ilias 1992], this method
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directly applies for hypersurfaces in the unit sphere Sn+1, leading to the counterpart
of (1) in this situation:

(2) λ1(1)≤
n

Vol(M)

∫
M
(H 2
+ 1) dvg.

If the ambient manifold M̃ is the standard hyperbolic space, there is also an optimal
upper bound proved by A. El Soufi and S. Ilias [1992, Theorem 1] which improves
a previous result of E. Heintze [1988] and which states that

(3) λ1(1)≤
n

Vol(M)

∫
M
(H 2
− 1) dvg,

with equality if and only if M is a totally umbilical round sphere. All three estimates
above follow actually from a much more general one, valid for submanifolds of any
codimension [El Soufi and Ilias 1992], assuming solely that the ambient manifold
is conformally equivalent to an open subset of the sphere of the same dimension:
under that assumption,

(4) λ1(1)≤
n

Vol(M)

∫
M
(H 2
+ R(ι)) dvg,

[op. cit., Theorem 2], where R(ι) is the normalized trace of the ambient sectional
curvature on the tangent planes; see the precise definition after (15).

Now if we assume the existence of a spin structure on M̃ (which is the case for
most classical ambient spaces), it induces a spin structure on the hypersurface M,
and so we can define the spinor bundle 6M over M as well as the associated Dirac
operator DM (see Section 2 and the references therein). When the ambient space
M̃ is the space form of constant sectional curvature κ ∈ {0, 1,−1}, C. Bär [1998]
proved that

(5) λ1(D2
M)≤

n2

4 Vol(M)

∫
M
(H 2
+ κ) dvg

if κ = 0, 1 and

(6) λ1(D2
M)≤

1
4 n2 sup

M
(H 2
+ 1)

for κ =−1. Here λ1(D2
M) denotes the first nonnegative eigenvalue of the square of

the Dirac operator DM of (M, g). Those estimates are consequences of the min-max
characterization of λ1(D2

M) and the fact that the space forms Rn+1, Sn+1, and Hn+1

carry, respectively, parallel, real Killing, and imaginary Killing spinors. In fact,
taking the restriction of such a spinor field to the hypersurface as a test section in
the Rayleigh quotient of λ1(D2

M) gives the previous inequalities immediately. Note
that these upper bounds hold for more general ambient manifolds since the proof
only relies on the existence of one such particular field. For example, (5) with κ = 0



A NEW UPPER BOUND FOR THE DIRAC OPERATOR ON HYPERSURFACES 81

holds for compact oriented hypersurfaces in Calabi–Yau manifolds, hyper-Kähler
and some other 7- and 8-dimensional special Riemannian manifolds. It also appears
that both inequalities in (5) are sharp since round geodesic spheres in the Euclidean
space Rn+1 and in the round sphere Sn+1 satisfy the equality case. O. Hijazi and
S. Montiel [2013] proved that when κ = 0 those are the only hypersurfaces for
which equality is achieved. The limiting case for hypersurfaces in the sphere seems
to be out of reach at this time and could be considered as a spinorial analogue of
the Yau conjecture about the first eigenvalue of the Laplace operator of minimal
hypersurfaces in the unit sphere. However, there are nonminimal hypersurfaces in
the sphere that satisfy the limiting case in (5); see, e.g., [Ginoux 2003a; Ginoux
2008].

Regarding the proof of (6), it is not difficult to observe that there are no hyper-
surfaces which satisfy the equality case. Modifying the computation of the Rayleigh
quotient for λ1(D2

M), this estimate can be improved [Ginoux 2003b, Theorem 1]
into

(7) λ1(D2
M)≤

1
4 n2 sup

M
(H 2
− 1),

where equality occurs for totally umbilical round spheres in Hn+1. As we will see in
Corollary 4.2, those are in fact the only hypersurfaces for which (7) is an equality.

In this paper, we prove a new upper bound for the first eigenvalue of the Dirac op-
erator of M when the ambient manifold M̃ carries a twistor-spinor; see Theorem 3.3.
This bound coincides with the first eigenvalue of an elliptic differential operator of
order two whose definition depends, among others, on the norm of the twistor-spinor
along the hypersurface — see (15) — and which belongs to a particular class of
operators: the drifting Schrödinger operators, that is, of the form drifting Laplacian
plus potential; see Remarks 3.2. It is important to note that this estimate contains
all the (up to date) known upper estimates à la Reilly; see Remarks 3.4. In a second
part, we adapt the approach developed by Hijazi and Montiel [2013] to prove that,
assuming the existence of imaginary Killing spinors for two opposite constants
on M̃, the only hypersurfaces satisfying the equality case in our previous estimate
are the totally umbilical ones; see Theorem 4.1. In particular, only the geodesic
hyperspheres satisfy that limiting case in the hyperbolic space; see Corollary 4.2.
We also examine the setting of pseudohyperbolic spaces; see Corollary 4.7.

2. Preliminaries and notation

In this section, we briefly introduce the geometric setting and fix the notation of
this paper. For more details on those preliminaries, see examples in [Lawson and
Michelsohn 1989], [Friedrich 2000], or [Ginoux 2009, Chapter 1].
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We consider Mn ι
↪→ M̃n+1 an oriented n-dimensional Riemannian hypersurface

with n ≥ 2, isometrically immersed into an (n+ 1)-dimensional Riemannian spin
manifold (M̃n+1, g) with a fixed spin structure. We denote by ν the unit inner
normal vector field induced by both orientations, that is, such that (E1, . . . , En, νx)

is an oriented basis of Tx M̃ |M if and only if (E1, . . . , En) is an oriented basis of
Tx M for x ∈ M. We endow M with the spin structure induced by the one on M̃ and
let 6M→ M denotes the associated spinor bundle. Setting

6 :=

{
6M if n is even,
6M ⊕6M if n is odd,

the bundles 6 and the restriction 6M̃ |M to M of the spinor bundle of M̃ can be
identified in such a way that:

• The natural Hermitian inner products — both of which we denote by 〈 · , · 〉—
coincide.

• Clifford multiplication “ · ” on M̃ and “ ·
M

” on M are related by

(8) X ·
6
:= X · ν · '

{
X ·

M
if n is even,

X ·
M
⊕−X ·

M
if n is odd,

for all X ∈ TM.

• The spin Levi–Civita connections ∇̂ on 6M̃ and ∇ on 6 are related by the
spin Gauss formula

(9) ∇̂Xϕ =∇Xϕ+
1
2 A(X) · ν ·ϕ,

for all X ∈ 0(TM) and ϕ ∈ 0(6). Here A := −∇̂ν denotes the Weingarten
map of the immersion.

The extrinsic Dirac operator of M is the first order elliptic differential operator
of order one acting on sections of 6 locally given by

D :=
n∑

j=1

e j · ν · ∇e j .

It is a well-known fact that it defines an essentially self-adjoint operator with respect
to the L2-scalar product on 6 so that if M is compact, its spectrum is an unbounded
sequence of real numbers. In this article, we adopt the convention that the spectrum
spec(P)with multiplicities of a given elliptic self-adjoint operator P will be denoted
by a sequence (λk(P))k≥1, with the convention that λ1(P) is the smallest eigenvalue
if spec(P) is bounded below and is the smallest nonnegative eigenvalue otherwise.

With respect to the previous identifications, the Dirac operator D is nothing but
the Dirac operator DM of (M, g) if n is even and DM ⊕−DM if n is odd, so that
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studying the spectrum of the intrinsic Dirac operator DM for the spin Riemannian
structure induced on the hypersurface M is equivalent to study the spectrum of the
extrinsic Dirac operator D on the hypersurface M. It is also relevant here to recall
that the commutator of D and D2 with functions are given by

(10) D( f ϕ)= f Dϕ+∇ f · ν ·ϕ

and

(11) D2( f ϕ)= f D2ϕ− 2∇∇ f ϕ+ (1 f )ϕ,

for all f ∈ C∞(M) and ϕ ∈ 0(6). Here H := 1
n tr(A) denotes the mean curvature

function of M in M̃.
Another operator of particular interest in this work is the Dirac–Witten operator

D̂ on M. It is also a first order elliptic operator acting on the restricted spinor bundle
6 and locally defined by D̂ :=

∑n
j=1 e j · ∇̂e j . It is related to the extrinsic Dirac

operator by the following formula

(12) Dϕ =−ν · D̂ϕ+ 1
2 nHϕ

and to its square by

(13) D2ϕ = D̂2ϕ+ 1
4 n2 H 2ϕ+ 1

2 n∇H · ν ·ϕ,

for every ϕ ∈ 0(6).

3. Upper bounds in terms of a Laplace-type operator

In this section, we prove a new upper bound for the smallest eigenvalue of the
squared Dirac operator D2 when the ambient manifold M̃ is endowed with a twistor-
spinor. Recall that a twistor-spinor on a Riemannian spin manifold (M̃n+1, g) is a
section ψ ∈ 0(6M̃) satisfying

(14) ∇̂Xψ =−
1

n+1 X ·
M̃

DM̃ψ

for all X ∈ 0(TM̃). Here DM̃ represents the Dirac operator of M̃. Nonzero twistor-
spinors have a discrete vanishing set and only exist for particular conformal classes;
see, for example, the standard reference [Baum et al. 1991] or, for a short account,
[Ginoux 2009, Appendix A]. It should also be pointed out that parallel spinors,
and real and imaginary Killing spinors are twistor-spinors which are, in addition,
eigensections for the Dirac operator DM̃ associated to the eigenvalue zero, or to real
or purely imaginary eigenvalues, respectively. They exist on each simply connected
complete space form of constant curvature. Assume now that such a spinor field
ψ is given on M̃ and also assume that it has no zero on the hypersurface M. We
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define the differential operator Lψ acting on smooth functions on M by

(15) Lψ f :=1 f − 2g(∇ ln|ψ |,∇ f )+ 1
4 n2(H 2

+ R(ι)) f.

for f ∈ C∞(M). Here

R(ι) := 1
n(n−1)(S̃− 2 r̃ic(ν, ν)),

S̃ and r̃ic are respectively the scalar curvature and the Ricci tensor (seen as a
symmetric 2-tensor) of the manifold M̃. Although this operator is not symmetric
with respect to the L2-scalar product on (Mn, g), we observe that it has the following
interesting analytic properties:

Proposition 3.1. The operator Lψ is elliptic, and if M is closed, it is self-adjoint
with respect to the L2-scalar product on (Mn, g), where g := |ψ |4/ng.

Proof. Since Lψ is of second order and its leading part is the scalar Laplacian,
it is clearly elliptic. Because g = |ψ |4/ng, we have dvg = |ψ |

2 dvg and for any
f, h ∈ C∞(M),∫

M
(Lψ f )h dvg =

∫
M

(
1 f − 2g(∇ ln|ψ |,∇ f )+ 1

4 n2(H 2
+ R(ι)) f

)
h|ψ |2 dvg.

Performing a partial integration, we have for the first term∫
M
(1 f )h|ψ |2 dvg =

∫
M

g(∇ f,∇h)|ψ |2+ g(∇ f,∇(|ψ |2))h dvg

=

∫
M

g(∇ f,∇h)|ψ |2+ 2g(∇ f,∇ ln|ψ |)h|ψ |2 dvg.

Therefore, the first-order term in ∇ ln|ψ | simplifies and we obtain∫
M
(Lψ f )h dvg =

∫
M

(
g(∇ f,∇h)+ 1

4 n2(H 2
+ R(ι)) f h

)
|ψ |2 dvg,

which is clearly symmetric in ( f, h). This implies that Lψ is formally self-adjoint
with respect to the metric g. Since M is closed, we conclude that Lψ is essentially
self-adjoint in L2(M). �

Remarks 3.2. (1) The operator Lψ defined in (15) is of the form drifting Laplacian
plus potential (the drifting Laplacian is also called Laplacian with drift, Bakry–
Émery Laplacian, weighted Laplacian, or Witten Laplacian in the literature); this is
the reason we refer to these operators as drifting Schrödinger operators. Indeed, a
drifting Laplacian is an operator of the form

C∞(M)
Lh
−→ C∞(M), f 7→1 f − g(∇h,∇ f )

for some function h ∈ C∞(M). It is elliptic and self-adjoint with respect to the
measure ehdµg. Actually, a drifting Laplacian is always unitarily equivalent to a
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Schrödinger operator: in the notation above, the operator Lh is unitarily equivalent
to 1− 1

21h+ 1
4 |∇h|2g; see, for example, [Setti 1998, p. 28].

(2) Note that if |ψ | is constant on M (which is the case if ψ is either a parallel or a
real Killing spinor on M̃), then the operator

Lψ =1+ 1
4 n2(H 2

+ R(ι))

does not depend on ψ .

Proposition 3.1 implies that the spectrum of Lψ is purely discrete. We will
denote by λ1(Lψ) its first eigenvalue, which satisfies the min-max characterization

(16) λ1(Lψ)= inf
f ∈C∞(M)r{0}

(∫
M f (Lψ f ) dvg∫

M f 2 dvg

)
.

We are now ready to give the precise statement of the first main result of this
paper, namely:

Theorem 3.3. Assume M is a closed oriented hypersurface isometrically immersed
in a Riemannian spin manifold (M̃n+1, g). If there exists a nontrivial twistor-spinor
ψ on M̃ with ψx 6= 0 for all x ∈ M, then

(17) λ1(D2
M)≤ λ1(Lψ).

Proof. We apply the min-max characterization of λ1(D2
M)= λ1(D2) using fψ as a

test section, where Lψ f = λ1(Lψ) f . The following computations rely on a large
extent on those in the proof of [Ginoux 2009, Theorem 5.2.3].

First, if f ∈ C∞(M) is an arbitrary smooth function on M, then using (11), (13),
and (9) and the fact that ψ is a twistor-spinor on M̃,

(18) D2( fψ)
(11)
= f D2ψ − 2∇∇ fψ + (1 f )ψ

(13)
= f

(
D̂2ψ + 1

4 n2 H 2ψ + 1
2 n∇H · ν ·ψ

)
− 2∇∇ fψ + (1 f )ψ

(9)
= f

(
D̂2ψ + 1

4 n2 H 2ψ + 1
2 n∇H · ν ·ψ

)
− 2

(
∇̂∇ fψ −

1
2 A(∇ f ) · ν ·ψ

)
+ (1 f )ψ

= f
(
D̂2ψ + 1

4 n2 H 2ψ + 1
2 n∇H · ν ·ψ

)
+

2
n+1∇ f · DM̃ψ

+ A(∇ f ) · ν ·ψ + (1 f )ψ.

Next we compute D̂2ψ, again using the fact thatψ is a twistor-spinor, which implies,
in particular, the following identity; see, e.g., [Ginoux 2009, Proposition A.2.1]:

(19) ∇̂X (DM̃ψ)=
n+1
n−1

(
−

1
2 R̃ic(X) ·ψ + 1

4n S̃X ·ψ
)
,
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for every X ∈ 0(TM̃) and where R̃ic denotes the Ricci tensor of (M̃n+1, g) (seen
as an endomorphism of the tangent bundle of M̃). Thus we have

(20) D̂2ψ = D̂
( n∑

j=1

e j · ∇̂e jψ

)
(14)
=

n
n+1 D̂(DM̃ψ)

(19)
=

n
n−1

n∑
j=1

(
−

1
2 e j · R̃ic(e j ) ·ψ +

1
4n S̃e j · e j ·ψ

)
=

n
n−1

( 1
2 S̃ψ + 1

2ν · R̃ic(ν) ·ψ − 1
4 S̃ψ

)
=

n
n−1

( n(n−1)
4 R(ι)ψ + 1

2ν · R̃ic(ν)> ·ψ
)

=
1
4 n2 R(ι)ψ + n

2(n−1)ν · R̃ic(ν)> ·ψ,

where R̃ic(ν)> :=
∑n

j=1 r̃ic(ν, e j )e j denotes the tangential projection of R̃ic(ν)
on TM. Combining (18) with (20), we deduce that

(21) D2( fψ)= 1
4 n2(H 2

+ R(ι)) fψ + 1
2 n f∇H · ν ·ψ + n

2(n−1) f ν · R̃ic(ν)> ·ψ

+
2

n+1∇ f · DM̃ψ + A(∇ f ) · ν ·ψ + (1 f )ψ.

Again, using the fact that ψ is a twistor-spinor on (M̃n+1, g), for every f ∈C∞(M),

Re〈D2( fψ), fψ〉
(21)
=

1
4 n2(H 2

+ R(ι)) f 2
|ψ |2+ 2

n+1 f Re〈∇ f · DM̃ψ,ψ〉

+ f (1 f )|ψ |2

=
1
4 n2(H 2

+ R(ι)) f 2
|ψ |2− g

(
f ∇ f,∇(|ψ |2)

)
+ f (1 f )|ψ |2

= f
(
1 f − 2g(∇ f,∇ ln|ψ |)+ 1

4 n2(H 2
+ R(ι)) f

)
|ψ |2

= f (Lψ f )|ψ |2.

The min-max principle for λ1(D2) implies that, for any f ∈ C∞(M)r {0},

λ1(D2)≤

∫
M Re〈D2( fψ), fψ〉 dvg∫

M | fψ |
2 dvg

=

∫
M f (Lψ f ) dvg∫

M f 2 dvg
;

therefore,

λ1(D2)≤ inf
f ∈C∞(M,R)r{0}

(∫
M f (Lψ f ) dvg∫

M f 2 dvg

)
,

which from (16) gives the inequality (17). �
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Remarks 3.4. (1) The estimate (17) contains all known upper estimates à la Reilly
for λ1(D2

M). Indeed, we observe that by taking f = 1 in the Rayleigh quotient
of Lψ ,

λ1(Lψ)≤
n2

4 Vol(M)

∫
M
(H 2
+ R(ι)) dvg

if |ψ | is constant, and

λ1(Lψ)≤ 1
4 n2 sup

M
(H 2
+ R(ι))

otherwise. Those give exactly the inequalities (5) in [Bär 1998] and (7) in [Ginoux
2003b]. On the other hand, for f = |ψ |−1 (with respect to the metric g defined
above), we deduce that

λ1(Lψ)≤
n2

4 Vol(M)

∫
M
(H 2
+ R(ι)) dvg +

1
Vol(M)

∫
M

∣∣d ln|ψ |
∣∣2 dvg,

which was proved in [Ginoux 2002, Theorem 1].

(2) It is interesting to compare (17) with (4). On the one hand, we do not obtain
in the spinorial setting the exact analogue of (4) for M̃ conformally equivalent
to an open subset of the sphere Sn+1. Of course, this must be expected since
otherwise in dimension 2 this would mean that the Willmore functional bounds
λ1(D2

M) ·Area(M2, g) from above; but there is no conformal upper bound for the
smallest positive Dirac eigenvalue on unit-area-metrics, as shown in [Ammann and
Jammes 2012, Theorem 1.1]. Note that this does not prevent the analogue of (3) to
possibly hold true for the Dirac operator, which is still an open question. On the
other hand, our assumption on M̃ in Theorem 3.3 is much more general since not
only open subsets of spheres with conformal metrics allow twistor-spinors. We refer
the reader to [Kühnel and Rademacher 1998] for the classification of Riemannian
spin manifolds with twistor-spinors.

We now look at the equality case of the previous estimate in the situation where
the twistor-spinor is also an eigenspinor for the Dirac operator of M̃. More precisely,
we prove:

Proposition 3.5. Under the same assumptions as in Theorem 3.3, assume moreover
that equality is achieved in (17).

(1) If ψ is a parallel spinor on M̃n+1, then

A(∇ ln| f |)=− 1
2 n∇H

for any eigenfunction f of Lψ associated with λ1(Lψ).
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(2) If ψ is a real Killing spinor on M̃ = Sn+1 or an imaginary Killing spinor on
M̃ = Hn+1, then the mean curvature H is constant and, in particular,

λ1(D2
M)=

1
4 n2(H 2

+ κ).

Proof. (1) If (17) is an equality and ψ is a parallel spinor, then the min-max
principle yields D2( fψ)= λ1(D2) fψ for any eigenfunction f of Lψ associated
with λ1(Lψ) = λ1(D2). But (21) together with R̃ic = 0 and DM̃ψ = 0 (both
provided by ∇̂ψ = 0) implies

λ1(D2) fψ = 1
4 n2 H 2 fψ + 1

2 n f∇H · ν ·ψ + A(∇ f ) · ν ·ψ + (1 f )ψ

= (Lψ f )ψ +
(
A(∇ f )+ 1

2 n f∇H
)
· ν ·ψ.

With λ1(D2)= λ1(Lψ), we deduce that(
A(∇ f )+ 1

2 n f∇H
)
· ν ·ψ = 0

which, since ψ 6= 0, gives A(∇ f )+ 1
2 n f∇H = 0. Since any eigenfunction for Lψ

associated with the eigenvalue λ1(Lψ) is either positive or negative, we easily reach
the conclusion.

(2) Assume first that M̃n+1 carries real Killing spinors and let ψ be a nonzero
(ε/2)-Killing spinor for some ε ∈ {±1}; that is, ∇̂Xψ =

ε
2 X ·ψ for all X ∈ 0(TM̃).

Again, one obtains D2( fψ) = λ1(D2) fψ for any eigenfunctions f ∈ C∞(M)
associated to λ1(Lψ). Fixing such an f , the identity (21) yields

λ1(D2) fψ = (Lψ f )ψ +
(
A(∇ f )+ 1

2 n f∇H
)
· ν ·ψ − ε∇ f ·ψ.

With λ1(D2)= λ1(Lψ), we deduce that(
A(∇ f )+ 1

2 n f∇H
)
· ν ·ψ − ε∇ f ·ψ = 0.

In particular, with the notation Yε := −ε∇ f and X := A(∇ f )+ 1
2 n f∇H , we have

(Yε + X ∧ ν) ·ψ = 0. At this point, we need the following claim:

Claim: Let α ∈
∧
∗

Rn+1
⊗C. If n is odd, then δn+1(α) = 0 if and only if α = 0.

If n is even, then the same equivalence holds for α ∈
∧
∗

Rn
⊗C.

Proof of Claim. Recall that the spinor representation δk : Clk −→ EndC(6k) of the
complex Clifford algebra in dimension k is a complex-linear isomorphism for k
even (but obviously not for k odd). So if n is odd, the claim follows directly from
this fact. If n is even and α ∈

∧
∗

Rn
⊗C, then 6n ∼=6n+1 and it is a simple trick

to rewrite δn+1(α) in the form δn(α̌) for a form α̌ ∈
∧
∗

Rn
⊗C having the same

coefficients as α in the canonical basis of
∧
∗

Rn
⊗C, up to sign and some power

of i . Namely, write

α =
∑

1≤ j1<···< jk≤n

αj1,..., jk e∗j1 ∧ · · · ∧ e∗jk ,
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where (e1, . . . , en, en+1) is the canonical basis of Rn+1. Let ωC
n denotes the complex

volume form on Rn as defined in the proof of Proposition 3.5, which acts on 6n

via δn(ω
C
n ) = Id6+n ⊕− Id6−n . Since, for all v ∈ Rn, δn+1(ien+1) = δn(ω

C
n ) and

δn(v)= δn+1(v) ◦ δn+1(en+1), after some calculation,

δn+1(α)=
∑

k even
1≤ j1<···< jk≤n

αj1,..., jk δn(ej1) ◦ · · · ◦ δn(ejk )

+ i
∑
k odd

1≤ j1<···< jk≤n

αj1,..., jk δn(ej1) ◦ · · · ◦ δn(ejk ) ◦ δn(ω
C
n ).

Now it is an elementary computation to show that, for any β ∈
∧k

Rn,

δn(β) ◦ δn(e∗1 ∧ · · · ∧ e∗n)= (−1)k(k+1)/2δn(∗β),

where ∗ :
∧
∗

Rn
→

∧
∗

Rn is the Hodge-star operator. Therefore, we obtain

δn+1(α)=
∑

k even
1≤ j1<···< jk≤n

αj1,..., jk δn(ej1) ◦ · · · ◦ δn(ejk )

+ cn,k

∑
k odd

1≤ j1<···< jk≤n

αj1,..., jk δn(∗(e∗j1 ∧ · · · ∧ e∗jk ))= δn(α̌),

where we let cn,k := in/2+1 (−1)k(k+1)/2 and

α̌ :=
∑

k even
1≤ j1<···< jk≤n

αj1,..., jk e∗j1 ∧· · ·∧ e∗jk + cn,k

∑
k odd

1≤ j1<···< jk≤n

αj1,..., jk ∗(e
∗

j1 ∧· · ·∧ e∗jk ).

As a consequence, if δn+1(α)σ = 0 for all σ ∈6n+1 ∼=6n , then δn(α̌)= 0, and the
fact mentioned above implies α̌ = 0; since n is even, each form ∗(e∗j1 ∧ · · · ∧ e∗jk ) is
of odd degree when k is odd and therefore αj1,..., jk = 0 for all 1≤ j1 < · · ·< jk ≤ n;
that is, α = 0. This concludes the proof of the claim. �

If M̃n+1 is isometric to the standard round sphere Sn+1, then it carries a maximal
number (that is 2b

n+1
2 c) of linearly independent (ε/2)-Killing spinors. In that case,

(Yε+ X ∧ν) ·ψ = 0 holds pointwise for every ψ ∈6x M̃. If n is odd, then the claim
yields Yε + X ∧ ν = 0, which implies X = Yε = 0; that is, f and H are constant.
If n is even, then one may rewrite

Yε ·ψ + X · ν ·ψ = iYε · iν · ν ·ψ + X · ν ·ψ = (X − iYε yωC
M) · ν ·ψ,

where ωC
M := ib

n+1
2 ce∗1 ∧ · · · ∧ e∗n ∈ 0(

∧n T ∗M ⊗C) is the complex volume form
on M. Again, the claim yields X − iYε yωC

M = 0. If n > 2, then comparing the
degrees yields X = Yε = 0; that is, f and H are constant. If n = 2, then an
elementary computation gives Z y ωC

M = i J (Z) for every Z ∈ 0(TM), where J
is the Kähler structure associated to the metric and the orientation on (M2, g). In
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that case, one obtains X + J (Yε) = 0. However on the standard sphere S3, both
spaces of ±1

2 -Killing spinors have maximal dimension 2, therefore X + J (Yε)= 0
for both ε ∈ {±1}, which implies X = Yε = 0 and hence that f and H are constant.

The case of imaginary Killing spinors is much the same up to replacing ε by iε.
One obtains at the end (iYε + X ∧ ν) ·ψ = 0 for all (iε/2)-Killing spinors ψ on
M̃n+1. The same arguments as above lead to X = Yε = 0. Notice that in the case
n = 2, one does not need the existence of maximal spaces of (iε/2)-Killing spinors
for both ε ∈ {±1} since X and Yε are real vector fields on M. �

Remark 3.6. It is quite surprising that in the case where ψ is a parallel spinor we
cannot conclude that the mean curvature of M must be constant. In fact, we are left
to prove that if there exists a smooth positive function f ∈ C∞(M) such that

1 f + 1
4 n2 H 2 f = λ1(D)2 f and A(∇ ln f )=− 1

2 n∇H,

then f (or, equivalently, H ) is constant on M.

4. The equality case in the presence of imaginary Killing spinors

In this section, we focus on the equality case of our estimate (17) when the ambient
manifold M̃ carries an imaginary Killing spinor. According to Proposition 3.5, it
also corresponds to the equality case of the inequality (7). It is obvious to check that
totally umbilical round spheres in the hyperbolic space Hn+1 satisfy the equality
in this estimate; however, it is still unknown if they are the only ones. In fact, if
the hypersurface is embedded, then this result easily follows from the Alexandrov
theorem in the hyperbolic space; see [Montiel 1999]. However, if the hypersurface
is only assumed to be immersed, then the question is still open. In order to settle
this problem, we adopt a method introduced in [Hijazi and Montiel 2013] which
relies on the fact that such hypersurfaces are critical points for some eigenvalue
functional associated to some Dirac-type operator on M. The main result of this
section concerns the case when M̃ =Hn+1 but actually we will prove the following
more general statement:

Theorem 4.1. Let Mn be an oriented, compact, connected hypersurface immersed
in a Riemannian spin manifold (M̃n+1, g). If M̃ carries an (iε/2)-Killing spinor
for some ε ∈ {±1}, then (7) (as well as (17)) holds and if equality holds then the
mean curvature H is constant. Moreover, if M̃ also carries a (−iε/2)-Killing
spinor, then equality holds if and only if M is totally umbilical with constant mean
curvature.

Since the standard hyperbolic space Hn+1 has both (i/2)- and (−i/2)-Killing
spinors (see, e.g., [Baum 1989a]), the previous result immediately implies the next:
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Corollary 4.2. The only oriented, compact, connected hypersurfaces immersed
into the hyperbolic space Hn+1 satisfying λ1(D2

M) =
1
4 n2(H 2

− 1) are the totally
umbilical round spheres.

In Section 4D, we will discuss the case of pseudohyperbolic spaces.

4A. The Hijazi–Montiel approach in the presence of imaginary Killing spinors.
Assume that the ambient manifold M̃ carries an (i/2)-Killing spinor 9 ∈ 0(6M̃).
After restriction to M, it is a straightforward computation to show that 9 satisfies
the modified Dirac equation

(22) D+9 = n
2 H9

where D+ is a zero order modification of the extrinsic Dirac operator defined by

(23) D+ϕ := Dϕ− n
2 iν ·ϕ

for ϕ ∈0(6). Note that we do not assume that the mean curvature H is constant for
the moment. Suppose however that H is positive everywhere on M, and consider
the metric conformally related to g on M, defined by g := H 2g. It is a well-known
fact [Hitchin 1974; Hijazi 1986] that under a conformal change of the metric, there
exists a bundle isometry ϕ 7→ ϕ, 6→6, between the two extrinsic spinor bundles
6 and 6 over (Mn, g) and (Mn, g). Under this identification, the extrinsic Dirac
operators D and DH associated to g and g and acting respectively on 6 and 6 are
related by

(24) DHϕ = H−(n+1)/2 D(H (n−1)/2ϕ)

for all ϕ ∈ 0(6). Now consider on 6 the zero order modification of the extrinsic
Dirac operator DH given by

DH
+
ϕ := DHϕ− n

2 H−1Iνϕ

where Iν is the Hermitian endomorphism of 6 defined by Iνϕ := iν ·ϕ for all
ϕ ∈ 0(6). Notice that DH

+
is an elliptic and self-adjoint differential operator of

order one which, since M is assumed to be compact, has a discrete spectrum. In the
following, we will denote by λ1(DH

+
) the first nonnegative eigenvalue of DH

+
. Now

for every ϕ ∈ 0(6), consider the spinor field ϕH := H−(n−1)/2ϕ ∈ 0(6) which is
easily seen to satisfy

DH
+
ϕH = H−(n+1)/2 D+ϕ,

using the conformal covariance (24) of D. Using (22) on the (i/2)-Killing spinor
9 ∈ 0(6M̃) in the previous identity gives DH

+
9H =

n
29H . This immediately

implies that λ1(DH
+
)≤ n

2 . Furthermore, if the mean curvature H is constant, it is
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an easy computation using {D, iν · } = 0 to show that

Spec((DH
+
)2)=

{
λk((DH

+
)2)=

H−2
(
λk(D)2+ 1

4 n2
)

λk(D)
∈ Spec(D)

}
,

so that λ1(DH
+
) = n

2 if and only if λ1(D2) = n2

4 (H
2
− 1). Thus, we have proved

this:

Proposition 4.3. Let M be an orientable, compact, connected hypersurface im-
mersed in a Riemannian spin manifold (M̃n+1, g) admitting a (i/2)-Killing spinor,
and suppose that the mean curvature of M, after a suitable choice of the unit normal,
satisfies H > 0. Then the first nonnegative eigenvalue of DH

+
satisfies λ1(DH

+
)≤ n

2 .
Moreover, if H is constant, equality occurs if and only if equality occurs in (7).

From this proposition, we deduce that any immersion for which (7) — or equiva-
lently (17) — is an equality realizes a maximum for the map

F+1 : Imm+(M, M̃)→ R, ι 7→ λ1(D
Hι
+ ),

where Imm+(M, M̃) denotes the space of isometric immersions of M in M̃ with
nonvanishing mean curvature Hι. This characterization of hypersurfaces satisfying
the equality case in (7) leads to the study of the critical points of the functional F+1 .

Remark 4.4. If the manifold M̃ carries a (−i/2)-Killing spinor, then Proposition 4.3
is true with the operators D+ and DH

+
replaced respectively by

D− := D+ n
2 iν · : 0(6)→ 0(6)

and

(25) DH
−
:= DH

+
n
2 H−1Iν : 0(6)→ 0(6).

In this situation, the corresponding functional is defined by

iF−1 : ι 7→ λ−1 (D
Hι
− )

where λ−1 (D
Hι
− ) is the first nonnegative eigenvalue of DHι

− .

4B. Derivatives of the functional F±
1 . As explained in the previous section we

are led to study the first derivatives of the functional F±1 at least in a particular
situation. As above, we start with an immersion ι= ι0 :M→ M̃ with positive mean
curvature (not necessarily constant) and such that λ1(DH

+
)= n

2 . Note that here we
do not assume the existence of imaginary Killing spinor fields on M̃ .

Now we deform the immersion ι along normal geodesics; that is, we consider, for
ε > 0 sufficiently small, the map F : ]−ε, ε[×M→ M̃, (t, x) 7→ expι(x)(tνx). Note
that, choosing ε > 0 sufficiently small, the map F is smooth and F(t, · ) : M→ M̃
is an immersion such that F(0, · )= ι. In fact, the map t 7→ F(t, x) is the geodesic
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starting from ι(x) with speed vector νx , and so it is analytic. For each t ∈ ]−ε, ε[,
we denote by gt := F(t, · )∗g the induced metric on M, by νt the unit normal field
inducing the orientation of M, by Ht :=−

1
n tr(∇̂νt) the mean curvature of F(t, · )—

which, up to making ε > 0 smaller, may be assumed to be positive on M for all
t ∈ ]−ε, ε[— and we set gt := H 2

t gt .
We also denote by DHt the Dirac operator associated to the metric gt and let

DHt
+ :=DHt−

n
2 H−1

t Iνt :0(6t)→0(6t), where Iνt is the Hermitian endomorphism
of 6t defined by Iνtϕ := iνt ·ϕ. Here 6t denotes the extrinsic spinor bundle over
M endowed with the spin structure induced by M̃ and the Riemannian metric gt .
Since we perturb the immersion analytically, the family (DHt

+ ) with t ∈]− ε, ε[
is an analytic family of unbounded closed self-adjoint operators with compact
resolvent, therefore the spectrum of DHt

+ can be written as a sequence (µ+k (t))k∈N,
where each eigenvalue µ+k (t) depends analytically on t and where corresponding
eigenvectors can be found to also depend analytically on t ; see [Kato 1995]. We
denote by λ+1 (t) any branch of that spectrum with λ+1 (0)= λ1(DH

+
), the smallest

nonnegative eigenvalue of DH
+
= DH0

+ . Following [Bär et al. 2005], we denote
by τ t

0 : 60 = 6 → 6t the parallel transport along the curves s 7→ (s, x) in the
so-called generalized cylinder

(
]−ε, ε[ × M, dt2

⊕ gt
)
, for all t ∈ ]−ε, ε[. Then

for any analytic family (8t)t of eigenvectors associated to λ+1 (t), differentiating
the identity

λ+1 (t)
∫

M
|8t |

2 dvgt =

∫
M

Re
〈
DHt
+ 8t ,8t

〉
dvgt

at t = 0 yields

dλ+1
dt
(0)

∫
M
|80|

2 dvg0 =

∫
M

Re
〈 d
dt

∣∣∣
t=0
(τ 0

t DHt
+ τ

t
080),80

〉
dvg0 .

Now we have τ 0
t DHt
+ τ

t
0 = τ

0
t DHt τ t

0−
n
2 H−1

t τ 0
t Iνt τ

t
0 and, since the variation of ι is a

geodesic normal one, the vector field νt =
∂
∂t is parallel along the curves s 7→ (s, x),

so that τ 0
t Iνt τ

t
0 = Iν0 = Iν for all t ∈ ]−ε, ε[. With the formula for the first variation

of the Dirac operator by J.-P. Bourguignon and P. Gauduchon [1992] (see also [Bär
et al. 2005]), we deduce that

dλ+1
dt
(0)

∫
M
|80|

2 dvg0

=−
1
2

∫
M

g0

(
T80

,
∂gt

∂t
(0)
)

dvg0 +
n
2

∫
M

H−2 ∂Ht

∂t

∣∣∣
t=0

Re
〈
Iν80,80

〉
dvg0,

where
T80

(X, Y ) := 1
2 Re

〈
X ·

6
∇Y80+ Y ·

6
∇X80,80

〉
is the so-called energy–momentum tensor associated to 80. Here ·

6
is the Clifford

multiplication on 6 defined by (8) and ∇ is the spin Levi–Civita connection with
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respect to the metric g0. Note that we kept the same notation for the Hermitian
scalar products on 6 and 6. Now fix an eigenvector 80 ∈ 0(6) for the Dirac-type
operator DH

+
associated with λ1(DH

+
) and let 90 := H (n−1)/280. We compute

dλ+1 /dt(0) in terms of 90 ∈ 0(6) and of geometric quantities attached to ι. First,
since ∂F/∂t(0, · )= ν, we have on the one hand (see [Montiel 1999])

∂gt
∂t
(0)= ∂

∂t

∣∣∣
t=0
(H 2

t gt)=
1
n 2H

(
|A|2+ r̃ic(ν, ν)

)
g− 2H 2g(A· , · ).

On the other hand, using the isomorphism 6→6, we may write (see, e.g., [Ginoux
2009, Section 1.3])

T80
(X, Y )= H−n+2 T90(X, Y ),

for all X, Y ∈ 0(TM), where T90 is the energy–momentum tensor associated to 90

defined by

T90(X, Y ) := 1
2 Re

〈
X ·

6
∇Y90+ Y ·

6
∇X90, 90

〉
.

Therefore, assuming without loss of generality that
∫

M |80|
2 dvg0 = 1, we compute

dλ+1
dt
(0)= 1

n

∫
M

H−1(
|A|2+ r̃ic(ν, ν)

)(n
2 Re〈iν ·90, 90〉− g(T90, g)

)
dvg

+

∫
M

g(T90, A) dvg.

But since g(T90, g)= trg(T90)= Re〈D90, 90〉, we obtain

dλ+1
dt
(0)=−1

n

∫
M

H−1(|A|2+ r̃ic(ν, ν))Re〈D+90, 90〉 dvg +

∫
M

g(T90, A) dvg.

However, since 80 ∈0(6) is an eigenspinor for DH
+

associated with the eigenvalue
λ+1 (0)=

n
2 and from the equivalence

(26) DH
+
80 =

n
280 ⇐⇒ D+90 =

n
2 H90,

one concludes that

(27)
dλ+1
dt
(0)=−1

2

∫
M
(|A|2+ r̃ic(ν, ν))|90|

2 dvg +

∫
M

g(T90, A) dvg.

To compute the remaining term g(T90, A), we define a new covariant derivative by
∇̂
+

X := ∇̂X − (i/2)X · on 6. Then a lengthy but direct calculation using the spin



A NEW UPPER BOUND FOR THE DIRAC OPERATOR ON HYPERSURFACES 95

Gauss formula (9) yields that for any ϕ ∈ 0(6),

|∇̂
+ϕ|2 :=

n∑
j=1

|∇̂
+

e j
ϕ|2

=

n∑
j=1

∣∣∇e jϕ+
1
2 A(e j ) · ν ·ϕ−

i
2 e j ·ϕ

∣∣2
= |∇ϕ|2+ 1

4(|A|
2
+ n)|ϕ|2− g(Tϕ, A)−Re

〈
iν · (Dϕ− 1

2 nHϕ), ϕ
〉
.

For ϕ =90, we deduce, using the right-hand side of (26), that

g(T90, A)= |∇90|
2
− |∇̂

+90|
2
+

1
4(|A|

2
− n)|90|

2.

Now integrating this identity over M with the help of the famous Schrödinger–
Lichnerowicz formula

D2
=∇

∗
∇ +

1
4 S

gives∫
M

g(T90, A) dvg

=

∫
M

(
Re〈D290, 90〉−

1
4 S|90|

2
− |∇̂

+90|
2
+

1
4(|A|

2
− n)|90|

2) dvg.

Here S stands for the scalar curvature of (Mn, g). On the other hand, from (10),
(26), and the anticommutativity rule {D, iν· } = 0+, we check that

D290 =
1
4 n2(H 2

− 1)90+
1
2 n∇H · ν ·90,

so that Re〈D290, 90〉 =
1
4 n2(H 2

− 1)|90|
2, and hence∫

M
g(T90, A) dvg =

∫
M

( 1
4(n

2(H 2
− 1)− S+ |A|2− n)|90|

2
− |∇̂

+90|
2) dvg.

The Gauss formula for the scalar curvature provides

S = S̃− 2r̃ic(ν, ν)+ n2 H 2
− |A|2,

from which∫
M

g(T90, A) dvg

=−

∫
M

( 1
4(S̃+ n(n+ 1))− 1

2(|A|
2
+ r̃ic(ν, ν))

)
|90|

2 dvg −

∫
M
|∇̂
+90|

2 dvg

follows. Inserting this identity in (27), we finally deduce that

dλ+1
dt
(0)=−

∫
M

(
|∇̂
+90|

2
+

1
4(S̃+ n(n+ 1))|90|

2) dvg.
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It is worth noticing that this formula holds if we assume that it is the first nonnegative
eigenvalue λ1(DH

−
) of DH

−
which satisfies λ1(DH

−
) = n

2 instead of λ1(DH
+
); in

this situation, ∇̂+ has to be replaced with the covariant derivative defined by
∇̂
−

X := ∇̃X +
i
2 X · .

From this computation, it is now straightforward to give a necessary condition
for an immersion ι to be a critical point of F±1 :

Theorem 4.5. Let M be an oriented, compact, connected hypersurface isometri-
cally immersed in a Riemannian spin manifold (M̃n+1, g). Assume that the scalar
curvature S̃ of M̃ is greater or equal to −n(n+ 1) and that the mean curvature H
of M with respect to a suitable choice of the normal is positive. If λ1(DH

ε )=
n
2 for

some ε ∈ {±1} and it is critical for all the variations of the hypersurface M in M̃,
then S̃ = −n(n + 1) and ∇̃X9 =

iε
2 X ·9 for all X ∈ 0(TM) for all 9 ∈ 0(6)

satisfying
Dε9 =

n
2 H9.

4C. Proof of Theorem 4.1. If M̃ carries a (iε/2)-Killing spinor for some ε ∈ {±1},
then from Theorem 3.3 and Remarks 3.4, the inequalities (17) and (7) hold. More-
over, if equality holds in (17), then Proposition 3.5 implies that the mean curvature
is constant and then λ1(D)2 = 1

4 n2(H 2
− 1).

Assume now that M̃ carries an (i/2)- as well as a (−i/2)-Killing spinor. From
Proposition 4.3, we deduce that such an immersion is a maximum for the functional
F+1 and thus dλ+1 /dt(0)= 0. Let8 be a nonzero (−i/2)-Killing spinor on M̃ so that
D−8= n

2 H8. From this equation and since H is constant, a direct computation
shows that the spinor 8̃ := H8− iν ·8 satisfies D+8̃= n

2 H8̃. On the other hand,
since the existence of a (±i/2)-Killing spinor on M̃ implies that M̃ is an Einstein
manifold with scalar curvature S̃=−n(n+1) (see [Baum et al. 1991], for example),
Theorem 4.5 applies and we get that ∇̂X 8̃=

i
2 X · 8̃ for all X ∈ 0(TM); that is,

i
2 X · (H8− iν ·8)= ∇̂X (H8− iν ·8)

= H
(
−

i
2 X ·8

)
+ i A(X) ·8− iν ·

(
−

i
2 X ·8

)
= i A(X) ·8− i

2 H X ·8− i
2 X · iν ·8.

This implies that (A(X)− H X) ·8 = 0 for all X ∈ 0(TM), and since 8 has no
zero, M is totally umbilical. This concludes the proof of Theorem 4.1.

4D. The case of pseudohyperbolic spaces. In this section, we examine the case
of other complete ambient manifolds M̃ carrying imaginary Killing spinors. These
manifolds have been classified by H. Baum [1989b; 1989a] and are known as
pseudohyperbolic spaces. For the sake of completeness and since we need an
additional argument for our purpose, we recall the result of those references and
give a sketch of the proof:
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Proposition 4.6. Let (M̃n+1, g) be a complete Riemannian spin manifold admitting
a nonzero (iε/2)-Killing spinor for some ε ∈ {±1}. Then (M̃n+1, g) is isometric to
either the real hyperbolic space of constant sectional curvature−1 or to the warped
product (R× N , dt2

⊕ e2t gN ), where (N n, gN ) is a complete nonflat Riemannian
spin manifold carrying at least one nonzero parallel spinor. In the latter case, if n is
odd, denote by K0(N , gN ) the space of parallel spinors on (N n, gN ) for the induced
metric and spin structure, and if n is even, denote by Kε0(N , gN ) its projection onto
the half-spinors bundle 6εN. Then, the map{
Kε0(N , gN )→

{iε
2 -Killing spinors on M̃

}
, ϕ 7→ e

t
2ϕ if n is even,

K0(N , gN )→
{iε

2 -Killing spinors on M̃
}
, ϕ 7→ e

t
2
(
ϕ⊕ εi ∂

∂t ·ϕ
)

if n is odd,

is a well-defined monomorphism. Moreover, if N is compact, then this is actually
an isomorphism.

Proof. Let ϕ be a nonzero (iε/2)-Killing spinor on the manifold (M̃n+1, g). As
Baum showed (see [1989b] and references therein), if (M̃, g) is not isometric to
the hyperbolic space, then there must exist a unit smooth vector field ξ on M̃
with iξ ·ϕ = εϕ on M̃. From this relationship, the foliated structure of M̃ can be
deduced as follows. First note that ξ = (εV )/|V |, where g(V, X) := i〈X · ϕ, ϕ〉
for all X ∈ 0(TM̃), and, in particular, V = ε∇|ϕ|2 has no zeros on M̃. Since
∇̂X V = ε|ϕ|2 X (that is V is a closed conformal vector field on M̃), one deduces
that ∇̂Xξ = X−g(X, ξ)ξ for all X ∈0(TM̃), and as a consequence the flow of ξ —
which is well-defined and complete since (M̃, g) is complete — preserves the level
hypersurfaces of |ϕ|2 = |V |. On the other hand, the second fundamental form of
each such hypersurface with respect to ξ is − Id, the Lie derivative of the metric in
the direction of ξ is given by Lξg = 2g|ξ⊥×ξ⊥ , and hence, setting

N := {x ∈ M̃ : |ϕ|2(x)= 1} ⊂ M̃,

the flow of ξ provides a diffeomorphism R× N → M̃ identifying ξ with ∂
∂t and

pulling back the metric g onto dt2
⊕ e2t gN , where gN is the metric induced from g

onto N. This done, the spin Gauss formula (9) implies that, for any X ∈ 0(TN ),

iε
2 X ·ϕ = ∇̂Xϕ =∇

6N
X ϕ− 1

2 X · ξ ·ϕ =∇6N
X ϕ+ iε

2 X ·ϕ,

from which ∇6Nϕ|N = 0 follows: the restriction of ϕ onto any level hypersurface
of |ϕ|2 is a parallel spinor. Here ∇6N stands for the spin Levi–Civita connection
on 6 := 6M̃ |N . When n is even, the condition iξ · ϕ = εϕ actually implies that
ϕ ∈ 0(6εN ) since iξ · coincides with the Clifford action of the complex volume
form of (N, gN ). When n is odd, the spinor ϕ|N can be rewritten in the form
ϕ|N = ϕ0⊕ εi ∂∂t ·ϕ0, where ϕ0 ∈ 0(6N ) is parallel. The dependence on t of ϕ is
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easily computed thanks to

∂ϕ

∂t
= ∇̂ ∂

∂t
ϕ = iε

2
∂

∂t
·ϕ = 1

2ϕ,

from which ϕ(t, · )= e
t
2ϕ(0, · ) follows. This gives the formulas for the above map,

which is obviously a right inverse to the “restriction” map{{ iε
2 -Killing spinors on M̃

}
→ Kε0(N, gN ), ϕ 7→ ϕ|{0}×N if n is even,{ iε

2 -Killing spinors on M̃
}
→ K0(N, gN ), ϕ 7→ ϕ+|{0}×N if n is odd.

In case N is compact, this restriction map is surjective, a remark which is missing in
[Baum 1989a]. To establish this, let ψ be any further nonzero (iε/2)-Killing spinor
on (M̃n+1, g). Again, ψ splits (M̃n+1, g) as a warped product (R×Pn, ds2

⊕e2s g6),
where (Pn, gP) is complete, spin, and carries a nonzero parallel spinor. Now, using
[Montiel 1999], the latter splitting must “coincide” (in a sense that is made precise
below) with the former. Namely, for all t ∈ R, the hypersurface {t}× N is a totally
umbilical compact hypersurface of M̃ with constant mean curvature. Therefore, by
applying [op. cit., Lemma 4] to the foliation of M̃ induced by ψ (whose leaves are
not assumed to be compact), we easily conclude that for each t ∈ R, there exists an
s ∈R such that {t}×N ={s}×P ; in particular, P itself must be compact. The same
argument shows that, for each s ∈R, there exists a t ∈R with {s}×P ={t}×N. This
yields that, if 8 : R× P→ R× N, (s, x) 7→ (φ1(s, x), φN (s, x)), is the isometry
induced by both splittings, then the component map φ1 already only depends on s.
By 8∗(dt2

⊕ e2t gN ) = ds2
⊕ e2s gP and the existence of an inverse map for 8

of a similar form, one deduces on the one hand that ∂φN
∂s (s, x) = 0 and hence

(φ′1(s))
2
= 1 for all s ∈R, and on the other hand that e2s gP = e2φ1(s)(φN )

∗gN holds
for all s ∈ R. This in turn implies the existence of an s0 ∈ R with φ1(s) = s − s0

and gP = e−2s0(φN )
∗gN . Thus, up to homotheties on the metrics gP and gN , the

Riemannian manifolds (P, gP) and (N , gN ) are isometric and, up to translations
in s, the splittings R× P and R× N coincide. By the first part of the proof, ψ
must come from a parallel spinor on N and hence lie in the image of the map of
Proposition 4.6. This concludes the proof. �

From the previous result, we deduce a characterization of hypersurfaces for
which inequality (17) is an equality when M̃ is a pseudohyperbolic space in several
situations. In fact, as we will see, we are left with the case n is even, the manifold
(N n, gN ) has only positive (or only negative) nonzero parallel spinors, and M is
only immersed in M̃. Indeed:

Corollary 4.7. Let (M̃n+1, g) := (R×N , dt2
⊕e2t gN ), where (N n, gN ) is a closed

nonflat Riemannian spin manifold endowed with at least one nonzero parallel spinor
and assume that M̃ carries the induced spin structure (in particular, (M̃, g) admits
an imaginary Killing spinor for at least one of the constants ± i

2 ). Let Mn ↪→ M̃
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be any immersed closed orientable hypersurface carrying the induced metric and
spin structure and suppose that one of the following supplementary conditions is
fulfilled:

(a) n is odd.

(b) n is even and (N n, gN ) has nonzero positive and negative parallel spinors.

(c) n is even and Mn bounds a domain in M̃.

Then, M satisfies the equality case in (17) (and so in (7)) if and only if M = {t}× N
for some t ∈ R.

Proof. From Proposition 3.5, if Mn ↪→ M̃n+1 satisfies the equality case in (17),
then its mean curvature H must be constant. If either (a) or (b) is fulfilled, then
by Proposition 4.6, the manifold (M̃, g) admits nonzero imaginary Killing spinors
for both constants ± i

2 , therefore Proposition 3.5 implies that M is totally umbilical
which, combined with [Montiel 1999, Lemma 4], yields M = {t} × N for some
t ∈ R. If (c) is fulfilled, this time [Montiel 1999, Theorem 10] applies and yields
again M = {t}× N for some t ∈ R. This shows the “only if” part of the corollary.
The “if” part is easy to see since λ1(DM)= 0 because of parallel spinors on N, and
on the other hand |H | = 1 by the explicit form of the metric. �
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GAMES AND ELEMENTARY EQUIVALENCE OF II1-FACTORS

ISAAC GOLDBRING AND THOMAS SINCLAIR

We use Ehrenfeucht–Fraïssé games to give a local geometric criterion for
elementary equivalence of II1-factors. We obtain as a corollary that two
II1-factors are elementarily equivalent if and only their unitary groups are
elementarily equivalent as Z4-metric spaces.

Introduction

While most mathematicians are concerned with determining when two objects in
their field are isomorphic, logicians tend to be concerned with the coarser notion of
elementary equivalence. Two (classical) structures M and N are said to be elementar-
ily equivalent if and only if for any first-order sentence σ (in the language appropriate
to the study of M and N ), we have σ is true in M if and only if σ is true in N .
For structures appearing in analysis, a continuous logic is used in which sentences
can now take a continuum of “truth” values; the appropriate notion of elementary
equivalence is that the truth values of all sentences are the same in both structures.

The model-theoretic study of tracial von Neumann algebras began in earnest in
[Farah et al. 2013; 2014a; 2014b]. At the moment, there are only three distinct
elementary equivalence classes of II1-factors known. (This should not be so surpris-
ing as it took a while for many isomorphism classes of II1-factors to be discovered
and elementary equivalence is a much coarser notion.) Indeed, it was observed
in [Farah et al. 2014b] that Property (0) and the property of being McDuff are
both elementary properties (for separable II1-factors). Thus, if we let MDL be a
separable II1-factor that has Property (0) but is not McDuff (see [Dixmier and
Lance 1969]), then MDL, the hyperfinite II1-factor R and the free group factor
L(F2) are mutually nonelementarily equivalent. Amongst those studying II1-factors
from a model-theoretic point of view, it is widely agreed that there should be
more than three elementary equivalence classes of II1-factors; in fact, there should
probably be continuum many elementary equivalence classes. At the moment, we
cannot even answer the question: is R⊗ L(F2) elementarily equivalent to R? In

Goldbring’s work was partially supported by NSF grant DMS-1007144. Sinclair was supported by an
NSF RTG Assistant Adjunct Professorship.
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order to accomplish these goals, we need more tools for understanding elementary
equivalence of II1-factors.

Ehrenfeucht–Fraïssé games have long been a tool in model theory for establishing
that structures are elementarily equivalent. In [Heinrich and Henson 1986], the
authors exhibit an Ehrenfeucht–Fraïssé-type game used to establish elementary
equivalence for Banach spaces. In this note, we adapt the game from [loc. cit.] and
combine it with an argument of Kirchberg [1993] in order to characterize elementary
equivalence for II1-factors belonging to the class Kop (to be defined below). We
should note that, currently, we do not know of a II1-factor that does not belong
to the class Kop and the existence of such a factor would already lead to two new
theories of II1-factors!

Recall Dye’s theorem [1955], which states that any two factors not of type I2n

(e.g., any two II1-factors) are isomorphic if and only if their unitary groups are
isomorphic (even as discrete groups). Combining Dye’s theorem with the Keisler–
Shelah theorem (which states that two structures are elementarily equivalent if
and only if they have isomorphic ultrapowers) and the fact that the functors of
taking ultrapowers and taking unitary groups commute, we see that two II1-factors
are elementarily equivalent if and only if their unitary groups are elementarily
equivalent as metric groups (with respect to the `2 metric). Using the aforementioned
Ehrenfeucht–Fraïssé games and some further arguments, our main result is that we
can improve upon the previous sentence, essentially removing the group structure:

Theorem 0.1. Suppose that M and N are II1-factors belonging to the class Kop.
Then M and N are elementarily equivalent if and only if U (M) and U (N ) are
elementarily equivalent as Z4-metric spaces.

Here, by a Z4-metric space, we mean a metric space X equipped with an action of
Z4 on X by isometries. Unitary groups of von Neumann algebras will always be con-
sidered as Z4-metric spaces by having the generator of Z4 act by multiplication by i .

In this paper, we assume that the reader is familiar with some basic model theory
and von Neumann algebra theory. Good references for continuous model theory
are [Ben Yaacov et al. 2008] and [Farah et al. 2014a]; the latter is geared towards
the model-theoretic study of operator algebras.

All normed spaces are assumed to be over the complex numbers, C. For a normed
space X , we denote the closed unit ball by (X)1 := {x ∈ X : ‖x‖ ≤ 1}.

For the reader’s convenience, we now recall the original notion of Ehrenfeucht–
Fraïssé games in the context of continuous logic. This has not appeared in the
literature but has appeared in some online lecture notes of Bradd Hart [2012]. Fix
an arbitrary language L and atomic formulae ϕ1(Ex), . . . , ϕk(Ex) in the variables
Ex = (x1, . . . , xn) and ε > 0. The Ehrenfeucht–Fraïssé game G(ϕ1, . . . , ϕk, ε) is
played with L-structures M and N as follows: First Player I chooses a1 ∈ M or
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b1∈N respecting the sort of x1. Player II chooses b2∈N or a2∈M respectively. The
players alternate in this manner until they have produced sequences a1, . . . , an ∈ M
and b1, . . . , bn ∈ N . Player II then wins the game if and only if for each i = 1, . . . , k,
we have |ϕi (Ea)M

−ϕi (Eb)N
|≤ ε. It is then a theorem that M ≡ N if and only Player II

has a winning strategy in each G(ϕ1, . . . , ϕk, ε).

1. The class Kop

Given a C∗ algebra A, recall that its opposite algebra Aop is the algebra obtained
from A by multiplying elements in the opposite order; that is, for a, b ∈ A, we have
a ·op b := b · a. It is immediate that Aop is once again a C∗ algebra. Furthermore,
if A is a von Neumann algebra, then Aop is also a von Neumann algebra. Note also
that if (Ai : i ∈ I ) is a family of C∗ algebras (resp. tracial von Neumann algebras)
and U is an ultrafilter on I , then

(∏
U Ai

)op ∼=
∏

U Aop
i via the identity map, where

the ultraproduct is understood to be the usual C∗ algebra ultraproduct (resp. tracial
ultraproduct).

Many of the naturally occurring tracial von Neumann algebras are isomorphic
to their opposites, e.g., R and L(G) (G any group). There are examples of tracial
von Neumann algebras that are not isomorphic to their opposites (see [Connes
1975]). During a seminar talk given by the first author at Vanderbilt University,
Jesse Peterson asked whether or not the class of all tracial von Neumann algebras
isomorphic to their opposites is an axiomatizable class. While we do not know the
answer to this question (although we suspect the answer is negative), the answer is
positive if one replaces the word “isomorphism” by “elementary equivalence” as
we show in the following:

Proposition 1.1. The class of all tracial von Neumann algebras that are elementar-
ily equivalent to their opposites is an elementary class.

Definition 1.2. We let Kop denote the class of all tracial von Neumann algebras
elementarily equivalent to their opposites.

Proof of Proposition 1.1. We present a proof suggested to us by Todor Tsankov as
well as independently by the anonymous referee. There is a collection of axioms
for the class Kop: for every term t , recursively define the term top by defining
(t1 · t2)op

:= top
2 · t

op
1 . Then one can recursively define, for any formula ϕ, the

formula ϕop, the key clause being the atomic formulae, where one replaces every
occurrence of a term t by the term top. Then the conditions |σ − σ op

| = 0, as σ
ranges over all sentences, axiomatizes the class Kop. �

We remark in passing that alternately by [Ben Yaacov et al. 2008, Proposi-
tion 5.14], it suffices to show that Kop is closed under isomorphisms, ultraproducts,
and ultraroots. We leave it as an exercise to verify these properties for Kop.
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Since R and L(F2) are isomorphic to their opposites, they belong to Kop. More-
over, the example MDL of a II1-factor with Property (0) that is not McDuff given
by Lance and Dixmier [1969] is also isomorphic to its opposite. Thus, we have this:

Corollary 1.3. If there is a II1-factor that does not belong to Kop, then there are at
least five theories of II1-factors.

Proof. If N is a II1-factor that does not belong to Kop, then the theories of N
and N op differ from each other and from the three known theories of II1-factors. �

Question 1.4. Are there more “explicit” axioms for the class Kop? Can one use
typical model-theoretic preservation theorems to show that Kop is universally ax-
iomatizable or ∀∃-axiomatizable?

Question 1.5. Is there a single sentence σ such that adding the condition “σ = 0”
to the axioms for II1-factors gives an axiomatization of Kop?

A negative answer to the last question implies that there must be infinitely many
elementary equivalence classes of II1-factors not belonging Kop. Indeed, if there
are only finitely many elementary equivalence classes of II1-factors not belonging
to Kop, then the class of II1-factors not belonging to Kop is readily verified to be
elementary as well, whence a typical compactness argument is used to show that
the last question has a positive answer.

2. Model theory of Banach pairs

In order to frame the main results of the paper in the next section on the model theory
of II1-factors, we introduce a class of linear (unbounded) metric structures (“Banach
pairs”) for which II1-factors will be the primary set of examples. The important fact
which we will see is that the theory of a II1-factor regarded as a Banach pair will
determine its theory as II1-factor. For this reason we feel it is justified to introduce
this treatment, despite several existing approaches in the literature for dealing with
linear metric structures, e.g., [Ben Yaacov 2008; Ben Yaacov et al. 2008; Henson
and Moore 1983], with at least one treatment [Farah et al. 2014a] being devoted to
C∗-algebras and tracial von Neumann algebras.

Definition 2.1. A Banach pair (X, C) consist of a normed space X and a distin-
guished subset C ⊂ (X)1 which is

• complete;

• roundly convex, i.e., λx+µy ∈C for all x, y ∈C and λ,µ∈C with |λ|+|µ|≤1;

• generating, i.e.,
⋃

n n · C = X .

The main examples of Banach pairs we will be interested in are where X = M ,
a tracial von Neumann algebra equipped with the 2-norm ‖x‖2 := tr(x∗x)1/2, and
C = (M)1, the (norm) closed unit ball.
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A Banach pair (X, C) can be interpreted as a structure for the language LBP below:

• There is one sort each for C and X .

• There is a sequence of domains of quantification Cn for X .

• There are function symbols ım,n : Cm→ Cn for m ≤ n to be interpreted as the
usual inclusion maps.

• X is given the usual complex normed space axioms.

• There are axioms which show 0X ∈ C1 ⊂ (X)1.

• There are axioms to show each Cn is roundly convex.

For a Banach pair (X, C) and x ∈ X , we define ‖x‖C := inf{t > 0 : x ∈ t · C},
which can be checked to be a Banach norm on X . However, note that ‖ · ‖C is a
definable predicate if and only if it is uniformly continuous with respect to the usual
norm. (In the case that X is a tracial von Neumann algebra, this will be the case if
and only if X is finite-dimensional.)

As an LBP-structure, the ultrapower (X, C)U can be identified with the Banach
pair (X U , C U ), where X U is the quotient space of {(xi ) : limU‖xi‖C <∞} modulo
the subspace {(zi ) : limU‖zi‖C <∞, limU‖zi‖ = 0} and C U

⊂ X U is defined in
the obvious way.

We say that two Banach pairs (X, C) and (Y,D) are isomorphic (written (X, C)∼=
(X,D)) if they are isomorphic as LBP-structures, that is, if there is an isometry
T : X → Y so that T (C) = D. By definition, the aforementioned Banach pairs
are elementarily equivalent (written (X, C)≡ (Y,D)) if Th(X, C)= Th(Y,D). As
a consequence of the Keisler–Shelah theorem in continuous logic, we have that
(X, C)≡ (Y,D) if and only if there is an ultrafilter so that (X, C)U ∼= (Y,D)U . See
[Henson and Iovino 2002, §10] for a proof of this fact in the context of normed
spaces or [Heinrich and Henson 1986, §3] for a more explicit construction for
Banach spaces.

Our main observation in this section is that for Banach pairs (X, C) and (Y,D)
elementary equivalence can be characterized in terms of the pairs “having the
same local geometric structure” by the use of Ehrenfeucht–Fraïssé games. For the
very similar case of Banach spaces, this was done by Heinrich and Henson [1986,
Theorem 4] and the case of normed spaces is largely similar (see [Henson and
Iovino 2002, Remark 10.10]).

We now describe precisely what we mean when we say that two Banach pairs
(X, C) and (Y,D) have the same local geometric structure. For E a subspace of X
and F a subspace of Y , we say that a linear bijection T : E → F is an ε-almost
isometry if ‖T ‖, ‖T−1

‖ ≤ 1+ε and T (E ∩C)⊂ε F ∩D and T−1(F ∩D)⊂ε E ∩C.
(We write A ⊂ε B if supx∈A infy∈B‖x − y‖ ≤ ε.)
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The following is adapted from [Heinrich and Henson 1986, §2]; see also [Henson
and Moore 1983, §8]. We describe a game G(n, ε) played by two players with
Banach pairs (X, C) and (Y,D), where ε > 0 and n are fixed parameters.

Step 1. Player I chooses a one-dimensional subspace, either E1 ⊂ X or F1 ⊂ Y .
Player II then chooses a subspace, respectively F1 ⊂ Y or E1 ⊂ X and a linear
bijection T1 : E1→ F1.

Step i . Player I chooses an at most one-dimensional extension, either Ei ⊃ Ei−1 or
Fi ⊃ Fi−1. Player II then chooses a subspace, respectively Fi ⊂ Y or Ei ⊂ X , and
a linear bijection Ti : Ei → Fi which extends Ti−1.

Step n. The players make their choices, and the game terminates. Player II wins if
Tn : En→ Fn is an ε-almost isometry; otherwise, Player I wins.

During the course of proofs, we may speak of Player I playing xi ∈ X , in which
case we mean that Player I plays span(Ei−1 ∪ {xi }). We may then also say that
Player II responds with yi ∈ Y , in which case we mean that Player II plays the
linear bijection Ti extending Ti−1 that sends xi to yi .

Definition 2.2. We say that Banach pairs (X, C) and (Y,D) are locally equivalent
(written (X, C)∼=loc (Y,D)) if for every ε > 0 and every n, Player II has a winning
strategy for the game G(n, ε).

Remark 2.3. Since ε is arbitrary, and we need only deal with at most one-dimen-
sional extensions, we see that local isomorphism remains the same under an alternate
version of ε-almost isometry, namely, the existence of linear bijections T : E→ F ,
S : F→ E with strict containment T (E ∩ C) ⊆ F ∩D and S(F ∩D) ⊆ E ∩ C so
that ‖ST − idE‖, ‖T S− idF‖< ε and ‖T ‖, ‖S‖< 1+ ε.

Proposition 2.4. The following statements are equivalent:

(1) (X, C)≡ (Y,D).

(2) There exists an ultrafilter so that (X, C)U ∼= (Y,D)U as Banach pairs.

(3) (X, C)∼=loc (Y,D).

As noted above, (1)⇐⇒ (2) is the Keisler–Shelah theorem applied to the language
of Banach pairs. The proof of (2)⇒ (3) is straightforward using representing
sequences. Therefore we only need to prove (3)⇒ (1). The proof is more or less
identical to the Banach space version as in [Heinrich and Henson 1986]. However,
since we are working in a different logic, we sketch a (nearly complete) proof here
for the convenience of the reader.

Sketch of (3)⇒ (1). First, we work with the notion of ε-almost isometry as described
in Remark 2.3. Let σ be a sentence of the form infv1 supv2

· · · Qvnρ(v1, . . . , vn),
where Q is inf if n is odd and sup if n is even and where ρ is quantifier-free. (We
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suppress mention of the sorts Ci corresponding to each vi .) Fix ε > 0. It suffices to
show that σ (Y,D) ≤ σ (X,C)+ ε for all ε > 0. Indeed, by symmetry of the relation of
local equivalence, this shows that all sentences of the above form have the same
truth values in (X, C) and (Y,D). Since any sentence in prenex normal form is
equivalent to one of the above form (by adding dummy variables) and since the
set of sentences in prenex normal form is dense in the set of all sentences (see
[Ben Yaacov et al. 2008, §6]), we obtain that (X, C)≡ (Y,D).

Fix a sufficiently small δ > 0. (We will see exactly how small δ needs to be in
a moment.) Fix a winning strategy S for Player II in G(n, δ). Call a play of the
game G(n, δ) regular if

• for odd i , Player I plays xi ∈ X , while for even i , Player I plays yi ∈ Y ;

• for each i , Player I’s move at Round i is always in the sort corresponding to
the variable vi ;

• Player II always plays according to S.

We say that sequences x1, . . . , xk ∈ X and y1, . . . , yk ∈ Y correspond if they are
the results of the first k rounds of a regular play of G(n, δ).

For 0 ≤ l ≤ n, let σl(v1, . . . , vn−l) denote the formula obtained from σ by
removing the first n− l quantifiers. One now proves, by induction on l (0≤ l ≤ n),
that if x1, . . . , xn−l ∈ X and y1, . . . , yn−l ∈ Y correspond, then

σl(y1, . . . , yn−1)
(Y,D)
≤ σl(x1, . . . , xn−1)

(X,C)
+ ε.

The base case l=0 follows from the fact that Tn :span(x1, . . . , xn)→span(y1, . . . , yn)

is a δ-almost isometry if δ is chosen sufficiently small. We now prove the induc-
tion step. Suppose that the claim holds for l and that x1, . . . , xn−l−1 ∈ X and
y1, . . . , yn−l−1 ∈ Y correspond. Let r := σl+1(x1, . . . , xn−l−1)

(X,C). First suppose
that n− l is odd, so that σl+1(v1, . . . , vn−l−1)= infvn−l σl(v1, . . . , vn−l). Fix η > 0
and let xnl ∈ X be of the same sort as vn−l so that σl(x1, . . . , xn−l)

(X,C)
≤ r + η.

Let yn−l ∈ Y be Player II’s response to xn−l according to the strategy S. Then, by
induction,

σl(y1, . . . , yn−l)
(Y,D)
≤ σl(x1, . . . , xn−l)

(X,C)
+ ε ≤ r + ε+ η.

Letting η go to 0 yields the desired result. The case that n− l is even is similar and
is left to the reader. �

3. Elementary equivalence of II1-factors

We say that two tracial von Neumann algebras M and N are locally equivalent
if the associated Banach pairs (M, (M)1) and (N , (N )1) are locally equivalent.
Somewhat miraculously, it turns out that for II1-factors belonging to Kop, local
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equivalence is the same as elementary equivalence. This essentially follows from
an argument of Kirchberg [1993]. First, we need to recall a fact about Jordan
morphisms between von Neumann algebras.

Given a C∗ algebra A, the special Jordan product on A is the operation ◦ defined
by a ◦b := 1

2(ab+ba) for all a, b ∈ A. If B is also a C∗ algebra, then a linear map
T : A→ B is a Jordan morphism if it preserves the special Jordan product and the
involution. We need the following:

Fact 3.1 (See [Hanche-Olsen and Størmer 1984, Corollary 7.4.9]). If M and N are
von Neumann algebras and T : M→ N is a normal Jordan homomorphism, then T
is the sum of a ∗-homomorphism and a ∗-antihomomorphism.

Recall that a map A→ B between C∗ algebras is a ∗-antihomomorphism if and
only if it is a ∗-homomorphism A→ Bop.

Suppose that M and N are von Neumann algebras and T : M→ N is a unital,
bijective, normal Jordan homomorphism. Write T = T1+ T2, where T1 : M→ N
and T2 : M→ N op are ∗-homomorphisms. Since Ti (1) is a projection for i = 1, 2
and T1(1)+ T2(1) = 1, we have that T1(1) and T2(1) are orthogonal projections.
Since T (M)= N , it follows that each Ti (1) is a central projection. Thus, if N is a
factor, it follows that {T1(1), T2(1)} = {0, 1}, whence T is either an isomorphism
or an anti-isomorphism.

The following is basically Proposition 4.6 in [Kirchberg 1993].

Proposition 3.2 (Kirchberg). Suppose that M and N are II1-factors. If there is an
isometry T : L2(M, trM)→ L2(N , trN ) so that T maps M onto N contractively,
then M ∼= N or M ∼= N op.

Proof. We first show that T maps unitaries to unitaries. If u ∈ M is a unitary, we
have

1= ‖u‖22 = ‖T (u)‖
2
2 = 〈T (u), T (u)〉 = 〈T (u)∗T (u), 1〉.

On the other hand,

‖T (u)∗T (u)‖2 ≤ ‖T (u)‖ · ‖T (u)‖2 ≤ 1.

It follows that T (u)∗T (u)= 1. We thus have that T ′(x) := T (1)∗T (x) is unital, con-
tractive, trace-preserving, and takes unitaries to unitaries. By the same reasoning as
in the proof of [Kirchberg 1993, Proposition 4.6], T ′ is a weakly continuous Jordan
morphism and the result follows from the discussion preceding this proposition. �

Corollary 3.3. Suppose that M and N are II1-factors. Then M is locally equivalent
to N if and only if M is elementarily equivalent to N or to N op. In particular, if M
and N are II1-factors belonging to the class Kop, then M is locally equivalent to N
if and only if M is elementarily equivalent to N.
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Proof. By the downward Löwenheim–Skolem theorem (see [Farah et al. 2014a,
Section 4.2]), we may suppose that M and N are separable. Suppose that M is locally
equivalent to N . Then by Proposition 2.4, there is an isometry L2(M U )→ L2(N U )

that maps M U into N U contractively. By Proposition 3.2, M U is isomorphic to
either N U or (N U )op. It follows that M is elementarily equivalent to either N
or N op. The converse is trivial. �

We now introduce a more useful test for determining elementary equivalence
which works in the more specific case of Banach pairs (M, (M)1), where M is a
II1-factor (or more generally a tracial von Neumann algebra) equipped with the
2-norm, and (M)1 is the (operator norm) unit ball of M .

We define the game GvN(n, ε) in parameters n and ε > 0 which is played by two
players with II1-factors M and N as follows.

Step i . Player I chooses a unitary, either ui ∈U (M) or vi ∈U (N ). Player II then
chooses a unitary, respectively vi ∈U (N ) or ui ∈U (M), in the same manner.

Step n. The players make their choices, and the game terminates. Player II wins if
|〈ui , u j 〉− 〈vi , v j 〉|< ε for all 1≤ i, j ≤ n; otherwise, Player I wins.

Theorem 3.4. The II1-factors M and N are locally equivalent if and only if
Player II has a winning strategy for the game GvN(n, ε) for all parameters (n, ε).

In order to prove this result we will first need one lemma.

Lemma 3.5. Let M and N be II1-factors, E ⊂ M and F ⊂ N be subspaces, and
T : (E, E ∩ (M)1)→ (F, F ∩ (N )1) be an ε-almost isometry. If u ∈ E is a unitary,
then there exists a unitary v ∈ N so that ‖T (u)− v‖2 ≤ 4

√
ε.

Proof. In a II1-factor, a u is a unitary if and only if it is a contraction with ‖u‖2 = 1.
By definition, we see that there exists a contraction y ∈ N with ‖y− T (u)‖2 ≤ ε.
In particular, ‖y‖2 ≥ 1− 2ε. By a standard estimate we have that∥∥1−|y|

∥∥2
2≤ 1+

∥∥|y|∥∥2
2−2 tr|y| = 1+ tr(|y|2)−2 tr|y| ≤ 1− tr|y| ≤ 1−‖y‖2≤ 2ε,

whence writing y = v|y| for v ∈U (N ) we have that ‖T (u)− v‖2 ≤ 4
√
ε. �

Proof of Theorem 3.4. First suppose that M and N are locally equivalent. Fix n
and ε > 0; we describe a winning strategy for Player II in the game GvN(n, ε). For
simplicity, we suppose that n = 2 and describe a winning strategy for Player II;
the general case is no more difficult, only the notation is more cumbersome. Fix δ
sufficiently small (to be specified later) and fix a winning strategy S for Player II
in the game G(2, δ). Suppose that Player I first plays u1 ∈U (M). (The case that
Player I first plays a unitary in N is similar.) Let y1 ∈ N be Player II’s response
to u1 in the game G(2, δ) according to S. Since u1 7→ y1 determines a δ-almost
isometry, by Lemma 3.5, there is v1 ∈ U (N ) such that ‖y1 − v1‖2 ≤ 4

√
δ. Now
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suppose that Player II responds with v2 ∈U (N ). (The case that Player II responds
with a unitary in M is similar.) Let x2 ∈ M be Player II’s response to (u1, y1, v2) in
the game G(2, δ) according to S. Since u1 7→ y1, x2 7→ v2 determines a δ-almost
isometry, we once again have u2 ∈U (M) such that ‖x2− u2‖2 ≤ 4

√
δ.

We need to verify that |〈ui , u j 〉 − 〈vi , v j 〉| < ε for i, j = 1, 2. If δ is chosen
small enough so that a δ-almost isometry preserves inner products within an error
of ε/3 (use, for example, the polarization identity) and such that perturbing entries
of an inner product by a distance of no more than 4

√
δ changes the inner product

by an amount not exceeding ε/3, then the desired estimates hold. For example,

〈u1, u2〉 ∼ε/3 〈u1, x2〉 ∼ε/3 〈y1, v2〉 ∼ε/3 〈v1, v2〉.

We now prove the converse. Suppose that Player II has a winning strategy in
all of the games GvN(n, ε); we show that M and N are elementarily equivalent as
Banach pairs. By symmetry, it is enough to show that σ (M,(M)1) ≤ r implies that
σ (N ,(N )1)≤ r for any positive real number r and any prenex normal form sentence σ .
Since σ −. r is equivalent to a prenex normal form sentence, it is enough to prove
that σ (M,(M)1) = 0 implies σ (N ,(N )1) = 0 for any prenex normal form sentence σ .

Towards this end, we introduce the “unitary transform” of a sentence in prenex
normal form. Suppose that σ is a sentence in prenex normal form, say

σ = Q1x1 · · · Qnxnϕ(Ex),

where ϕ(Ex) is quantifier-free. We form the new sentence σ u as follows:

• If Qi = inf and xi is of sort ni , replace each occurrence of the variable xi by
the term ti (ui , vi ) := ni · ((ui +vi )/2), where ui and vi are variables of sort C1,
and replace the quantifier Qi xi by the quantifiers Qi ui Qivi .

• The quantifier-free part of σ u should now be

max
(
ϕ,maxi

(
max(1−. ‖ui‖2, 1−. ‖vi‖2)

))
.

For example, if σ = supx1
infx2 ϕ(x1, x2), where x2 is of sort C1 (for simplicity),

then σ u
= supx1

infu2 infv2 ϕ(x1, (u2+ v2)/2).
Also, we let σ uu be the “formula” defined in the exact same way as σ u except

that we only allow quantifiers over the unitary groups rather than the entire unit
ball. (Formally, σ uu is not a formula in the sense of continuous logic, but it will be
useful in the remainder of the proof.)

Claim 1. We have σ (M,(M)1) = 0 if and only if (σ u)(M,(M)1) = 0 (and the corre-
sponding statement for (N , (N )1)).

Claim 1 follows from the fact that, in a finite von Neumann algebra, any con-
traction is an average of two unitaries. Indeed if x is a contraction in a finite von
Neumann algebra, then it has polar decomposition x = u|x |, where u is a unitary.
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As |x | is a self-adjoint contraction, by functional calculus it may be written as the
average of two unitaries.

Claim 2. We have (σ u)(M,(M)1) = 0 if and only if (σ uu)(M,(M)1) = 0 (and the
corresponding statement for (N , (N )1)).

The backwards direction of Claim 2 is trivial; the forwards direction follows
from the fact that if x is a contraction in a finite factor and ‖x‖2 ≥ 1− ε, then there
is a unitary u so that ‖u− x‖2 ≤ 2

√
ε.

Finally, suppose that σ is a sentence in prenex normal form and σ (M,(M)1) = 0.
Then by Claims 1 and 2, we have (σ uu)(M,(M)1) = 0. Since atomic formulae are of
the form ‖λ1x1+· · ·+λnxn‖2 and arbitrary quantifier-free formulae are continuous
combinations of atomic formulae, it follows from a winning strategy for Player II
in GvN(n, ε) (for suitably small ε) that (σ uu)(N ,(N )1) = 0, whence σ (N ,(N )1) = 0 by
Claims 1 and 2 again. �

Suppose now that Li = {8}, where 8 is a unary function symbol with modulus
of uniform continuity 18(ε)= ε. If M is a tracial von Neumann algebra, we view
U (M) as an Li -structure by interpreting8 as multiplication by i . We then have this:

Corollary 3.6. Let M and N be II1-factors. Then M and N are locally equivalent
if and only if U (M) and U (N ) are elementarily equivalent as Li -structures.

Proof. If M and N are locally equivalent, then M is elementarily equivalent to either
N or N op. It follows that there is an ultrafilter U such that M U is isomorphic to
N U or (N op)U . In either case, (U (M))U =U (M U ) is isomorphic to (U (N ))U =
U (N U ) as Li -structures, whence U (M) and U (N ) are elementarily equivalent as
Li -structures.

Conversely, assume that U (M) and U (N ) are elementarily equivalent as Li -
structures. Then Player II has a winning strategy for the Ehrenfeucht–Fraïssé games
for U (M) and U (N ) as Li -structures. It then follows that Player II has a winning
strategy in the games GvN for M and N . Indeed, this follows from the fact that

<〈ui , u j 〉 = 1− 1
2 d(ui , u j )

2, =〈ui , u j 〉 = 1− 1
2 d(ui , i · u j )

2. �

Remark 3.7. Notice that the proof of the previous corollary gives an alternative
proof of the forward direction of Theorem 3.4.

Corollary 3.8. Let M and N be II1-factors in the class Kop. Then M and N are
elementarily equivalent if and only if U (M) and U (N ) are elementarily equivalent
as Li -structures.

Corollary 3.9. Let M and N be II1-factors. Suppose that for every ε there is a
(1+ ε)-Lipschitz homeomorphism f :U (M)→U (N ); that is, f is bijective with

(1+ ε)−1
‖u− v‖2 ≤ ‖ f (u)− f (v)‖2 ≤ (1+ ε)‖u− v‖2
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that is further assumed to preserve the action by Z4. Then M and N are locally
isomorphic.

We will say that M and N are approximately Lipschitz isometric if the condition
of the previous corollary is satisfied. Although this relation ought to be in principle
much stronger than elementary equivalence, to the best of our knowledge the results
of [Farah et al. 2014b] heretofore furnish the only known examples of properties
invariant under this relation namely, the McDuff property and property (0). It is,
however, tempting to speculate that approximate Lipschitz isometry ought to be
equivalent to isomorphism (up to opposites).

In lieu of this, it would be highly interesting to determine whether hyperfiniteness
is an invariant of approximate Lipschitz isometry. If true, this would be in contrast
with [Farah et al. 2014b, Theorem 4.3] which shows in particular that hyperfiniteness
is not an invariant of elementary equivalence. Though one can show, essentially
by Fact 3.1 and Proposition 3.2 (see also [Takesaki 2003, Chapter XIV.2]), that for
every n, there exists ε > 0 so that for any ε-approximate Lipschitz embedding θ
of Mn into a II1-factor N , there is a ∗-homomorphism θ ′ :Mn→ N so that the image
of the unit ball under θ is ε-contained in 2-norm in the image unit ball under θ ′

of Mn , this still does not seem sufficient, unless ε could be taken independent of n.

4. Further remarks and open problems

Of course, Corollary 3.8 raises the question: which Z4-metric spaces arise as
unitary groups of II1-factors? Even more importantly, what are the theories of
such Z4-metric spaces? Ignoring the extra structure for a moment, an important
example of a complete theory of (noncompact) metric spaces is the theory of the
Urysohn metric space. (See, for example, [Ealy and Goldbring 2012].) Recall
that the Urysohn metric space is the unique (up to isometry) complete, separable
metric space that is universal (that is, every separable metric space isometrically
embeds) and ultrahomogeneous (every isometry between finite — even compact —
subspaces extends to an isometry of the entire space). However, the Urysohn space
(or rather, its bounded counterpart, the Urysohn sphere) could never be isometric to
the unitary group of a II1-factor as the latter’s metric is always negative definite.

Note that for M with separable predual, U (M) isometrically embeds naturally
in S∞, the Hilbert sphere in `2. The space S∞ is the “Hilbertian Urysohn sphere”
in the sense described in [Nguyen Van Thé 2010, Section 1.4.2].

It is well worth pointing out the following proposition, which is an immedi-
ate consequence of Ozawa’s fundamental result [2004] on the nonexistence of a
universal, separable II1-factor.

Proposition 4.1. For any separable II1-factor M , U (M) is not universal among all
Z4-metric spaces which embed (as Z4-metric spaces) in S∞.
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Proof. Suppose, towards a contradiction, that there is a II1-factor M for which
U (M) is universal among all Z4-metric spaces which embed in S∞. In particular,
for any II1-factor N with separable predual, U (N ) isometrically embeds in U (M)
in a way which commutes with the action of i . Since this embedding respects
the inner product, it is not hard to see it must extend to an isometric embedding
L2(N )→ L2(M) which takes N into M contractively. Thus, as above, there is a
unital injective ∗-homomorphism N ↪→ pMp⊕ ((1− p)M(1− p))op, whence N
embeds in either M or Mop since N is a factor. However, this would contradict the
fact that there is no separable universal II1-factor [Ozawa 2004] (pick M ?Mop). �

Question 4.2. Can U (M) ever be universal among all metric spaces which embed
in S∞?

Proposition 4.1 is good evidence that the answer to the previous question is no.
We remark that a positive answer to the previous question would be equivalent
to demonstrating the existence of a separable II1-factor for which there is an
isometric embedding S∞ ↪→ U (M). We currently do not know whether S∞

embeds isometrically in the unitary group of any II1-factor. The existence of such
an embedding ought to have striking consequences as the following proposition,
which is similar in spirit, demonstrates.

Proposition 4.3. Suppose M is a separable II1-factor belonging to the class Kop.
Further suppose that, for each n, the n-dimensional complex spheres Sn isometri-
cally embed in U (M) with respect to the natural Z4-actions. Then M is a locally
universal II1-factor; that is, every separable II1-factor embeds into an ultrapower
of M. In particular, if , for each n, the n-dimensional complex spheres Sn iso-
metrically embed in U (R) with respect to the natural Z4-actions, then Connes’
embedding problem has a positive answer.

Proof. Suppose that M satisfies the assumption of the proposition and let N be
a II1-factor. Let F be any finite subset of U (N ). Then choosing an orthogonal
projection P onto a suitably large finite-dimensional subspace so that ‖P(u)‖>1−ε
for all u ∈ F ∪ i F , we can correct to an (effective in) ε-almost Z4-embedding of F
into some Sn , and therefore also in U (M). But Z4-embeddings preserve inner
products, whence pairs of inner products in F can be modeled arbitrarily well
in U (M). As above, Kirchberg’s argument shows that N embeds in M U . �

We now remark how our main result recasts Kirchberg’s characterization of
Rω-embeddability in a game-theoretical light. Let (A, tr) be an arbitrary tracial
C∗-algebra which we view as a normed space with respect to the 2-norm. To
introduce a bit of terminology, we say that a subspace E ⊂ A is ε-almost repre-
sentable in R if there exists a subspace F ⊂R and a linear bijection T : E→ F
so that ‖T ‖, ‖T−1

‖ ≤ 1+ ε and T (E ∩ (A)1) ⊂ε F ∩ (R)1. Then by [Kirchberg
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1993, Proposition 4.6], A is Rω-embeddable if and only if for every ε > 0, every
finite-dimensional subspace of A is ε-representable in R.

Let us introduce the following “one-sided, one-round game” GR(n, ε) for which
the winning condition is that, for all u1, . . . , un ∈ U (A) which are linearly inde-
pendent, there exist n unitaries v1, . . . , vn ∈U (R) so that the map

T : span{u1, . . . , un} → span{v1, . . . , vn}

defined by T (ui )= vi satisfies ‖T ‖, ‖T−1
‖ ≤ 1+ ε.

Proposition 4.4. There is a constant N = N (n, ε) so that every n-dimensional
subspace E of any tracial C∗-algebra (A, tr) is ε-almost representable in R if
GR(N , ε/4) is winnable.

Proof. We first claim that there is a uniform constant K (n, ε) so that for every
n-dimensional subspace E ⊂ A of any tracial C∗-algebra (A, tr) there exists a set
of unitaries ū = {u1, . . . , ul} ⊂U (A) with l ≤ K so that every element of E ∩ (A)1
is ε-approximated in 2-norm by a convex combination of elements of ū.

Indeed, choose an (ε/2)-net x1, . . . , xm ∈ E∩(A)1. The cardinality of such a net
is bounded in particular by the (ε/4)-covering number of the unit ball in `2

n . We may
perturb each xi so that ‖xi‖< 1− ε/4 and still have an ε-net for E ∩ (A)1. By the
main result of [Popa 1981], there is a constant C depending only on ε so that each xi

is a convex combination of at most C unitaries in U (A), whence the claim follows.
We next claim that if A is infinite-dimensional and if E⊂ A is a finite-dimensional

subspace, then for every ε > 0 and u ∈ U (A), there exists u′ ∈ U (A) with
‖u − u′‖2 < ε and so that u′ is linearly independent from E . To see this, let
PE : L2(A)→ E be the orthogonal projection onto E . By the Kaplansky density the-
orem, we have that U (A) is 2-norm dense in U (A′′). Since M := A′′⊂B(L2(A, tr))
is infinite-dimensional, it contains a diffuse abelian subalgebra. Therefore, there
is a projection p ∈ M with trace tr(p) = 1− ε2/2 and a sequence of unitaries
vn ∈U (M) so that vn→ p weakly. Since PE is a finite-rank operator, we thus have
that PE(uvn)→ PE(up) strongly, whence

‖PE(uvn)‖2→‖PE(up)‖2 ≤ ‖p‖2 =
√

1− ε2/2.

It is now easy to see that choosing n sufficiently large and u′ ∈U (A) sufficiently
close to uvn works.

We now can proceed with the proof of the proposition. Let

E = span{u1, . . . , un} ⊂ A.

(Every n-dimensional subspace of a C∗-algebra is a subspace of a space spanned by
at most 4n unitaries, so we may assume this is the case without loss of generality.)
By the previous claims, we can extend u1, . . . , un to u1, . . . , un, un+1, . . . , us
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(s ≤ n+ K (n, ε)) to a complete collection of linearly independent unitaries so that
all elements in E ∩ (A)1 are 2ε-approximated in 2-norm by a convex combination
of unitaries in the collection. If GR(s, ε/4) is winnable, then it is easy to check
that for S = T |E , we have that S(E ∩ (A)1)⊂ε S(E)∩ (R)1, and we are done. �

Problem 4.5. Let C ⊂ `2
n be a convex subset of the unit ball in n-dimensional

Hilbert space. For every ε > 0, does there exist a II1-factor M so that (`2
n, C) is

ε-represented in M? Can one always choose a locally universal II1-factor (in the
sense of [Farah et al. 2014b]) or even R?
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GROSSBERG–KARSHON TWISTED CUBES
AND HESITANT WALK AVOIDANCE

MEGUMI HARADA AND EUNJEONG LEE

Let G be a complex semisimple simply connected linear algebraic group.
Let λ be a dominant weight for G and I= (i1, i2, . . . , in) a word decompo-
sition for an element w = si1 si2 · · · sin of the Weyl group of G, where the si

are the simple reflections. In the 1990s, Grossberg and Karshon introduced
a virtual lattice polytope associated to λ and I, which they called a twisted
cube, whose lattice points encode (counted with sign according to a density
function) characters of representations of G. In recent work, Harada and
Jihyeon Yang proved that the Grossberg–Karshon twisted cube is untwisted
(so the support of the density function is a closed convex polytope) precisely
when a certain torus-invariant divisor on a toric variety, constructed from
the data of λ and I, is basepoint-free. This corresponds to the situation in
which the Grossberg–Karshon character formula is a true combinatorial
formula, in the sense that there are no terms appearing with a minus sign.
In this note, we translate this toric-geometric condition to the combinatorics
of I and λ. More precisely, we introduce the notion of hesitant λ-walks
and then prove that the associated Grossberg–Karshon twisted cube is un-
twisted precisely when I is hesitant-λ-walk-avoiding. Our combinatorial
condition imposes strong geometric conditions on the Bott–Samelson vari-
ety associated to I.
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Introduction

Let G be a complex semisimple simply connected linear algebraic group. Build-
ing combinatorial models for G-representations is a fruitful technique in modern
representation theory; a famous example is the theory of crystal bases and string
polytopes. In a different direction, given a dominant weight λ and a choice of word
expression I = (i1, i2, . . . , in) of an element w = si1si2 · · · sin in the Weyl group,
Grossberg and Karshon [1994] introduced a combinatorial object called a twisted
cube (C(c, `), ρ), where C(c, `) is a subset of Rn and ρ is a support function with
support precisely C(c, `). The lattice points of C(c, `) encode (counted with± sign
according to ρ) the character of the G-representation Vλ [Grossberg and Karshon
1994, Theorems 5 and 6]. Here the parameters c and ` are determined from λ and I.
These twisted cubes are combinatorially much simpler than general string polytopes
but they are not true polytopes in the sense that their faces may have various angles
and the intersection of faces may not be a face (cf. [Grossberg and Karshon 1994,
§2.5 and Figure 1 therein]), and in general they may be neither closed nor convex
(see Example 1.2). In particular, the Grossberg–Karshon character formula is not a
purely combinatorial positive formula, since it may involve minus signs.

The main result of this note gives necessary and sufficient conditions on a
dominant weight λ and a (not necessarily reduced) word expression I= (i1, . . . , in)

of an element w ∈ W such that the associated Grossberg–Karshon twisted cube
is untwisted (cf. Definition 1.3), i.e., C(c, `) is a closed convex polytope and ρ
is identically equal to 1 on C(c, `). This is precisely the situation in which the
Grossberg–Karshon character formula is a true combinatorial formula, in the sense
that it is a purely positive formula (with no terms appearing with a minus sign). In
addition, an anonymous referee pointed out to us that the combinatorial condition
on I and λ in our result also has interesting geometric consequences: it implies
that (the image in a flag variety of) the corresponding Bott–Samelson variety is a
toric Schubert variety in the sense of [Karuppuchamy 2013]; see Remark 2.10.

In order to state our result it is useful to introduce some terminology (see Section 2
for details). Roughly, we say that a word I = (i1, . . . , in) is a diagram walk (or
simply walk) if successive roots are adjacent in the Dynkin diagram: for instance,
in type A5 d d d d d

1 2 3 4 5
the word I = (2, 4, 5) with corresponding simple roots (s2, s4, s5) is not a walk
since s2 and s4 are not adjacent, but I= (1, 2, 3, 2, 1) is a walk. Moreover, given
a dominant weight λ= λ1$1+ · · ·+ λr$r written as a linear combination of the
fundamental weights {$1, . . . ,$r }, we say I= (i1, i2, . . . , in) is a λ-walk if it is a
walk and if it ends at a root which appears in λ, i.e., λin > 0. A hesitant λ-walk is a
word I= (i0, i1, . . . , in) where i0 = i1, so there is a repetition at the first step, and
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the subword (i1, i2, . . . , in) is a λ-walk. Finally, a word is hesitant-λ-walk-avoiding
if there is no subword which is a hesitant λ-walk. With this terminology we can
state the main result of this paper.

Theorem. Let I = (i1, i2, . . . , in) be a word decomposition of an element w =
si1si2 · · · sin of the Weyl group W and let λ=λ1$1+λ2$2+· · ·+λr$r be a dominant
weight. Then the corresponding Grossberg–Karshon twisted cube (C(c, `), ρ) is
untwisted if and only if I is hesitant-λ-walk-avoiding.

We note that pattern avoidance is an important notion in the study of Schubert
varieties and Schubert calculus, first pioneered by Lakshmibai and Sandhya [1990]
and further studied by many others (see, e.g., [Abe and Billey 2014] and references
therein). It would be interesting to explore the relation between our notion of
hesitant-λ-walk-avoidance with the other types of pattern avoidance in the theory
of flag and Schubert varieties.

We additionally remark that Kiritchenko has recently defined divided-difference
operators Di on polytopes and, using these Di inductively together with a fixed
choice of reduced word decomposition for the longest element in the Weyl group
of G, she constructs (possibly virtual) polytopes whose lattice points encode the
character of irreducible G-representations [Kiritchenko 2013, Theorem 3.6]. Kir-
itchenko’s virtual polytopes are generalizations of both Gel’fand–Cetlin polytopes
and the Grossberg–Karshon twisted polytopes. It would be interesting to explore
whether our methods can be further generalized to study Kiritchenko’s virtual
polytopes (see Section 5).

This paper is organized as follows. In Section 1 we recall the necessary defini-
tions and background from previous papers. In particular, we recall the results of
Harada and Yang [2015, Proposition 2.1 and Theorem 2.4] which characterize the
untwistedness of the Grossberg–Karshon twisted cube in terms of the Cartier data
associated to a certain toric divisor on a toric variety; this is a key tool for our proof.
In Section 2 we introduce the notions of diagram walks and hesitant λ-walks and
state our main theorem. We prove the sufficiency of hesitant-λ-walk-avoidance in
Section 3. The proof of necessity, which occupies Section 4, is in part a case-by-case
analysis according to Lie type. We briefly record some open questions in Section 5.

1. Background

We begin by recalling the definition of twisted cube given by Grossberg and Karshon
[1994, §2.5]. We follow the exposition in [Harada and Yang 2015]. Fix a positive
integer n. A twisted cube is a pair (C(c, `), ρ) where C(c, `) is a subset of Rn and
ρ : Rn

→ R is a density function with support precisely equal to C(c, `). Here
c={c jk}1≤ j<k≤n and `={`1, `2, . . . , `n} are fixed integers. (The general definition
in [Grossberg and Karshon 1994] only requires the `i to be real numbers, but since
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we restrict our attention to the cases arising from representation theory, our `i will
always be integers.) In order to simplify the notation in what follows, we define the
following functions on Rn:

(1-1)
An(x)= An(x1, . . . , xn)= `n,

A j (x)= A j (x1, . . . , xn)= ` j −
∑
k> j

c jk xk for all 1≤ j ≤ n− 1.

We also define a function sgn :R→{±1} by sgn(x)= 1 for x < 0 and sgn(x)=−1
for x ≥ 0.

We now give the precise definition.

Definition 1.1. Let n, c, `, and A j be as above. Let C(c, `) denote the following
subset of Rn:

(1-2) C(c, `) :=
{x = (x1, . . . , xn) ∈ Rn

| ∀ 1≤ j ≤ n, A j (x) < x j < 0 or 0≤ x j ≤ A j (x)}.

Moreover, we define a density function ρ : Rn
→ R by

(1-3) ρ(x)=
{
(−1)n

∏n
k=1 sgn(xk) if x ∈ C(c, `),

0 else.

Evidently supp(ρ)= C(c, `). We call the pair (C(c, `), ρ) the twisted cube associ-
ated to c and `.

A twisted cube may not be a cube in the standard sense. In particular, the set C
may be neither convex nor closed, as the following example shows. See also the
discussion in [Grossberg and Karshon 1994, §2.5].

Example 1.2. Let n = 2 and let `= (`1 = 3, `2 = 5) and c= {c12 = 1}. Then

C = {(x1, x2) ∈ R2
| 0≤ x2 ≤ 5 and (3− x2 < x1 < 0 or 0≤ x1 ≤ 3− x2)}.

See the figure. The value of the density function ρ is recorded within each region.
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Note in particular that C does not contain the points {(0, x2) | 3< x2 < 5} and
the points {(x1, x2) | 3< x2 < 5 and x1 = 3− x2}, so C is not closed, and it is also
not convex.
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As mentioned in the introduction, the main goal of this note is to give necessary
and sufficient conditions for the untwistedness of the twisted cube, stated in terms
of the combinatorics of the defining parameters. The following makes the notion
precise.

Definition 1.3 (cf. [Harada and Yang 2015, Definition 2.2]). We say that the
Grossberg–Karshon twisted cube (C = C(c, `), ρ) is untwisted if C is a closed
convex polytope and if the support for ρ is constant and equal to 1 on C and 0
elsewhere. We say the twisted cube is twisted if it is not untwisted.

The main result of [Harada and Yang 2015] characterizes the untwistedness of
the Grossberg–Karshon twisted cube in terms of the basepoint-freeness of a certain
toric divisor on a toric variety constructed from the data of c and `, which in turn
can be stated in terms of the so-called Cartier data {mσ } associated to the divisor.
In particular, in this paper we will not require the geometric perspective; instead we
work with the integer vectors mσ , which can be derived directly from the constants
c and `. Before quoting the relevant result from [Harada and Yang 2015] we need
some terminology.

Let {e+1 , . . . , e+n } be the standard basis of Rn . For σ = (σ1, . . . , σn) ∈ {+,−}
n ,

define mσ = (mσ,1, . . . ,mσ,n) =
∑

mσ,ke+k ∈ Zn as follows, using the functions
Ak(x) defined in (1-1):

(1-4) mσ,k =

{
0 if σk =+,

Ak(mσ,k+1, . . . ,mσ,n) if σk =−.

We will also need a certain polytope PD:

(1-5) PD = {x ∈ Rn
| 0≤ x j ≤ A j (x) for all 1≤ j ≤ n} ⊆ Rn.

Theorem 1.4 (cf. [Harada and Yang 2015, Proposition 2.1]). Let n, c, and ` be as
above and let (C(c, `), ρ) denote the corresponding Grossberg–Karshon twisted
polytope. Then (C(c, `), ρ) is untwisted if and only if mσ,k ≥ 0 for all σ ∈ {+,−}n

and for all k with 1≤ k ≤ n.

Recall that the goal of this note is to analyze the case when the defining parameters
for the Grossberg–Karshon twisted polytope arise from certain representation-
theoretic data. We now briefly describe how to derive the c and ` in this case.

Following [Grossberg and Karshon 1994], let G be a complex semisimple simply
connected linear algebraic group of rank r over an algebraically closed field k.
Choose a Cartan subgroup H ⊂ G and a Borel subgroup. Let {α1, . . . , αr } denote
the simple roots, {α∨1 , . . . , α

∨
r } the coroots, and {$1, . . . ,$r } the fundamental

weights (characterized by the relation 〈$i , α
∨

j 〉 = δi j ). Let sαi ∈ W denote the
simple reflection in the Weyl group corresponding to the root αi .



124 MEGUMI HARADA AND EUNJEONG LEE

Fix a choice λ = λ1$1 + · · · + λr$r in the weight lattice, where λi ∈ Z. Let
I= (i1, . . . , in) be a sequence of elements in [r ] := {1, 2, . . . , r}; this corresponds
to a (not necessarily reduced) decomposition of an element w = sαi1

sαi2
· · · sαin

in W . For simplicity, we introduce the notation β j := αi j , so β j is the j-th simple
root appearing in the word decomposition. For such λ and I we define constants c
and ` by the formulas (cf. [Grossberg and Karshon 1994, §3.7])

(1-6) c jk = 〈βk, β
∨

j 〉

for 1≤ j < k ≤ n, and

(1-7) `1 = 〈λ, β
∨

1 〉, . . . , `n = 〈λ, β
∨

n 〉.

Note that if the j-th simple reflection in the given word decomposition I is equal
to αi , then ` j = λi , and that the constants c jk are matrix entries in the Cartan matrix
of G.

Example 1.5. Consider G = SL(3,C) with positive roots {α1, α2}, and let λ =
2$1+$2 and I= (1, 2, 1). Then (β1, β2, β3)= (α1, α2, α1) and we have

c12 = 〈α2, α
∨

1 〉 = −1,

c13 = 〈α1, α
∨

1 〉 = 2,

c23 = 〈α1, α
∨

2 〉 = −1,

`= (`1, `2, `3)=
(
〈λ, α∨1 〉 = 2, 〈λ, α∨2 〉 = 1, 〈λ, α∨1 〉 = 2

)
.

(1-8)

As mentioned in the introduction, in the setting above Grossberg and Karshon
derive a Demazure-type character formula for the irreducible G-representation
corresponding to λ, expressed as a sum over the lattice points Zn

∩ C(c, `) in
the Grossberg–Karshon twisted cube (C(c, `), ρ) [Grossberg and Karshon 1994,
Theorem 5 and Theorem 6]. The lattice points appear with a plus or minus sign
according the density function ρ. Hence their formula is a positive formula if ρ is
constant and equal to 1 on all of C(c, `). From the point of view of representation
theory it is therefore of interest to determine conditions on the weight λ and the
word decomposition I= (i1, i2, . . . , in) for an element w = si1si2 · · · sin such that
the associated Grossberg–Karshon twisted cube is in fact untwisted. This is the
motivation for this note.

2. Diagram walks, hesitant walk avoidance, and statement of main theorem

In order to state our main theorem we introduce some terminology. In what follows,
we fix an ordering on the simple roots as in Table 1; our conventions agree with
those in the standard textbook of Humphreys [1972]. In particular, given an index i
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8 Dynkin diagram

Ar (r ≥ 1) d d d d d
1 2 3 r−1 r

Br (r ≥ 2) d d d d d>
1 2 r−2 r−1 r

Cr (r ≥ 3) d d d d d<
1 2 r−2 r−1 r

Dr (r ≥ 4) d d d d dd!!
aa1 2 r−3 r−2

r−1

r

E6
d d d d dd
1 3 4 5 6

2

E7
d d d d d dd

1 3 4 5 6 7

2

E8
d d d d d d dd

1 3 4 5 6 7 8

2

F4
d d d d>

1 2 3 4

G2
d d<

1 2

Table 1. Dynkin diagrams for all Lie types.

with 1≤ i ≤ r , where r is the rank of G, we may refer to its corresponding simple
reflection si := sαi , where the index i refers to the ordering of the roots in Table 1.

Definition 2.1. Let I= (i1, i2, . . . , in) ∈ [r ]n be a (not necessarily reduced) word
decomposition of an elementw= si1si2 · · · sin of the Weyl group W . We say that I is
a diagram walk (or walk) if successive simple roots are adjacent in the corresponding
Dynkin diagram, or more precisely, if for each j ∈ [n−1] = {1≤ j ≤ n−1} the two
successive roots αi j and αi j+1 are distinct and there is an edge in the corresponding
Dynkin diagram connecting αi j and αi j+1 . We call i1 (or αi1) the initial root (of the
diagram walk I) and denote it by IR(I). We call in (or αin ) the final root (of the
diagram walk I) and denote it FR(I).

Example 2.2. (1) In type A, the words s2s3s4s5s4s3 and s1s2s1s2s3 are both dia-
gram walks. Note that the second word is not reduced.

(2) In type B, sr−2sr−1sr is a diagram walk.

(3) In type E8, s1s3s4s2s4s5 is a diagram walk.
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In what follows, we also find it useful to consider words which are almost
diagram walks, except that the word begins with a repetition (thus disqualifying it
from being a walk), i.e., the initial root appears twice.

Definition 2.3. Let I = (i0, i1, i2, . . . , in) be a (not necessarily reduced) word
decomposition of an element w = si0si1 · · · sin of the Weyl group W . We say that I

is a hesitant (diagram) walk if

• the length of the word is at least 2, i.e., n ≥ 1,

• the first two roots are the same, i.e., i0 = i1, and

• the subword (i1, . . . , in) is a diagram walk.

In other words, except for the hesitation at the first step, the remainder of the word
is a diagram walk. We refer to the subword (i1, . . . , in) as the walking component
of the hesitant walk.

A few remarks are in order. First, we emphasize that a hesitant walk, despite the
terminology, is not actually a diagram walk; it becomes a diagram walk only after
deleting the first entry in the word. Furthermore, it is clear that a hesitant (diagram)
walk is never a reduced word decomposition (because of the two repeated roots at
the beginning). On the other hand, it is possible for a reduced word decomposition
to contain a hesitant walk as a subword: for instance, for G = SL(4,C), the reduced
word decomposition s1s2s3s1s2s1 for the longest element in the Weyl group S4

contains s1s1s2 as a subword, which is a hesitant walk.

Definition 2.4. Let I = (i1, i2, . . . , in) be a word decomposition of an element
w = si1si2 · · · sin of the Weyl group W . We say that I is hesitant-walk-avoiding if
there is no subword J= (i j0, i j1, . . . , i js ) of I which is a hesitant walk.

Example 2.5. Let G = SL(4,C) with Weyl group S4. The reduced word decom-
position s1s2s3 is hesitant-walk-avoiding.

In what follows we will also be interested in dominant weights λ in the character
lattice X (H) associated to G. As in Section 1, we may express λ as a linear
combination of the fundamental weights $1, . . . ,$r corresponding to the simple
roots α1, . . . , αr . Thus we write

λ= λ1$1+ · · ·+ λr$r

and since we assume λ is dominant, λi ≥ 0 for all i = 1, . . . , r .

Definition 2.6. Let λ be as above. We say that a simple root αi appears in λ if the
corresponding coefficient is strictly positive, i.e.,

(2-1) λi = 〈λ, α
∨

i 〉> 0.
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We now introduce some terminology which relates diagram walks and hesitant
walks to the dominant weight λ.

Definition 2.7. Let λ and I be as above. We will say that I is a λ-walk if

• I is a diagram walk, and

• the final root FR(I) of the walk I appears in λ.

Similarly, we say that I is a hesitant λ-walk if it is a hesitant walk and the final root
of its walking component appears in λ. Finally, a word I is hesitant-λ-walk-avoiding
if there is no subword J of I which is a hesitant λ-walk.

Example 2.8. Let G = SL(4,C) with Weyl group S4. Consider the reduced word
decomposition I= (1, 2, 3, 1, 2, 1) of the longest element w0 = s1s2s3s1s2s1 of S4

and λ= 3$3. Then I is hesitant-λ-walk-avoiding.

Given the terminology introduced above we may now state our main theorem.

Theorem 2.9. Let I = (i1, i2, . . . , in) be a word decomposition of an element
w = si1 · · · sin of W and let λ= λ1$1+ λ2$2+ · · ·+ λr$r be a dominant weight.
Let c= {c jk} and `= (`1, . . . , `n) be determined from λ and I as in (1-6) and (1-7).
Then the corresponding Grossberg–Karshon twisted cube (C(c, `), ρ) is untwisted
if and only if I is hesitant-λ-walk-avoiding.

The proof of the above theorem occupies Sections 3 and 4.

Remark 2.10. We thank the anonymous referee for pointing out that the combina-
torial criterion of hesitant-λ-walk-avoidance has the following interesting geometric
consequence. Since we have not introduced in this paper the objects in the following
discussion, we keep our comments brief (the reader may consult, e.g., [Grossberg
and Karshon 1994] for definitions). For a word I= (i1, . . . , in), let Z(I) denote
the associated Bott–Samelson variety and let πI : Z(I)→ G/B be the natural
morphism. For a dominant weight λ, let ϕλ : G/B→ P(Vλ) denote the Plücker
embedding. Let Pλ denote the parabolic subgroup of G corresponding to the set
of all simple roots not appearing in λ in the sense of Definition 2.6; note that
if λ is strictly dominant, then Pλ = B, and also that ϕλ factors through G/Pλ.
Now let I′ be the word obtained from I by deleting all the simple roots in I

that do not appear in λ. If I is hesitant-λ-walk-avoiding, then in particular any
simple root appearing in λ can occur at most once, so the simple roots occurring
in I′ are pairwise distinct. Note that by the definition of Pλ, the images of Z(I)
and Z(I′) in G/Pλ are the same, and hence also in P(Vλ) via ϕλ. Furthermore,
because the simple roots occurring in I′ are pairwise distinct, from the classification
of toric Schubert varieties in [Karuppuchamy 2013] it follows that the Schubert
variety Xw(I′) (as well as Z(I′)) is actually a toric variety. (Here w(I′) denotes the
product in the Weyl group W of the simple reflections in the word I′ and Xw(I′)
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denotes the corresponding Schubert variety.) Thus we see that the combinatorial
criterion of Theorem 2.9 places quite strong conditions on the geometry of the
associated Bott–Samelson variety and its images.

3. Proof of the main theorem: sufficiency

We begin the proof of Theorem 2.9 by first proving the “if” part of the statement, i.e.,
that hesitant-λ-walk-avoidance implies the untwistedness of the Grossberg–Karshon
twisted cube.

We need some preliminary lemmas. Recall that the mσ = (mσ,1, . . . ,mσ,n) are
integer vectors defined by (1-4) associated to the defining constants c and ` of the
twisted cube.

Lemma 3.1. Let {ci j }1≤i< j≤n and `1, . . . , `n be fixed integers. Assume that `i ≥ 0
for all i . If there exists an element σ of {+,−}n and k ∈ [n] such that mσ,k > 0
and mσ,i ≥ 0 for i > k, then there exists an increasing sequence J of indices
1≤ j1 < j2 < · · ·< js ≤ n, with s ≥ 1, such that

(1) j1 = k,

(2) ` js > 0, and

(3) c jt jt+1 < 0 for t = 1, . . . , s− 1.

Proof. Let σ and k be as above. We may explicitly construct the subsequence J as
follows. First suppose `k > 0. In this case, the subsequence J= ( j1 = k) satisfies
the three required conditions (the third being vacuous), so we are done. If on the
other hand `k = 0, we set j1 = k and then define j2 as follows. By assumption
mσ,k > 0, so we know σk =−, and by the definition of the mσ we know

(3-1) mσ,k = `k −
∑
i>k

cki mσ,i =−
∑
i>k

cki mσ,i .

Since mσ,i ≥ 0 for i ≥ k by assumption, in order for mσ,k to be strictly positive there
must exist an index J > k with ck J < 0 and mσ,J > 0. Choose j2 to be the minimal
such index. If ` j2 > 0, then the sequence J= ( j1= k, j2) satisfies the three required
conditions and we are done. Otherwise, we may repeat the above argument as many
times as necessary (i.e., as long as ` jt = 0). Since the indices jt are bounded above
by n, this process must stop, i.e., there must exist some s ≥ 1 such that the sequence
J= ( j1, . . . , js) found in this manner satisfies the requirements. �

In the case when the constants c and ` are obtained from the data of a weight λ
and a word I we can interpret Lemma 3.1 using the terminology introduced in
Section 2.

Corollary 3.2. Let I = (i1, i2, . . . , in) be a word decomposition of an element
w = si1 · · · sin of W and let λ= λ1$1+ λ2$2+ · · ·+ λr$r be a dominant weight,
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i.e., λi ≥ 0 for all i . Let c, `, and {mσ }σ∈{+,−}n be determined from I and λ as
in (1-6), (1-7), and (1-4). If there exist an element σ of {+,−}n and k ∈ [n] such that
mσ,k > 0 and mσ,i ≥ 0 for i > k, then there exists a subword J= (i j1, i j2, . . . , i js )

of I, of length at least 1 (i.e., s ≥ 1), such that j1 = k and J is a λ-walk (i.e., it is a
diagram walk and the final root FR(J) appears in λ).

Proof. First observe that by the definition of the `i (1-7) and by the assumption
on λ, we have `i ≥ 0 for all i , and `i > 0 exactly when βi , the i-th simple root
in I, appears in λ. Let σ and k be as above. Then by Lemma 3.1 there exists a
subword J= (i j1 = ik, i j2, . . . , i js ) of length at least 1 such that j1 = k and FR(J)
appears in λ. It remains to check that J is a diagram walk. Recall that by definition
c j` = 〈β`, β

∨

j 〉. Hence c j` < 0 if and only if there is an edge in the corresponding
Dynkin diagram connecting the roots αi j and αi` , so by the conditions on J in
Lemma 3.1 we see that J is a diagram walk, as desired. �

The next result is the main technical fact we need.

Lemma 3.3. Let {ci j }1≤i< j≤n and `1, . . . , `n be fixed integers and let (C(c, `), ρ)
be the corresponding Grossberg–Karshon twisted cube. Assume that `i ≥ 0 for all i .
If (C(c, `), ρ) is twisted, then there exists an increasing subsequence J = ( j0 <
j1 < · · ·< js) of indices of length at least 2 (i.e., s ≥ 1) such that

(1) ` js > 0,

(2) c j0 j1 > 0, and

(3) c jt jt+1 < 0 for all t = 1, . . . , s− 1.

Proof. By Theorem 1.4, there exist an element σ of {+,−}n and an index k such
that mσ,k < 0. For such a choice of σ we may assume without loss of generality
that k is chosen to be the maximal such index, i.e., that mσ,k < 0 and mσ,s ≥ 0 for
s > k. Recall that by definition

mσ,k = `k −
∑
s>k

cksmσ,s .

By assumption mσ,k < 0, so we have
∑

s>k cksmσ,s > `k ≥ 0. Since mσ,s ≥ 0 for
s> k, this implies that there exists some p> k with ckp > 0 and mσ,p > 0. Applying
Lemma 3.1 we obtain an increasing sequence ( j1 = p, j2, . . . , js) of indices with
s ≥ 1 such that ` js > 0 and c jt jt+1 < 0 for all t = 1, . . . , s− 1. Then by choosing
j0= k< j1= p and since c j0 j1 = ckp > 0 by construction of p, we obtain a sequence
J= ( j0 = k, j1 = p, . . . , js) satisfying the required conditions. �

The proof of the “if” part of Theorem 2.9 is a straightforward consequence of
the above lemma.
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Proof of the “if” part of Theorem 2.9. We will prove the contrapositive. Suppose
the Grossberg–Karshon twisted cube (C(c, `), ρ) is twisted. By the dominance
assumption on λ and by the definition of the `i , we know `i ≥ 0 for all i . Thus we
may apply Lemma 3.3. Note also that ` js > 0 precisely when the root β js appears
in λ. Moreover, by definition, we know that c j0 j1 := 〈β j1, β

∨

j0〉 > 0 if and only if
β j0 = β j1 (equivalently, i j0 = i j1) and c jt jt+1 < 0 if and only if there is an edge in
the corresponding Dynkin diagram connecting the roots β jt and β jt+1 . Thus the
subword (i j0, i j1, . . . , i js ) of I corresponding to the subsequence ( j0, j1, . . . , js)
of indices obtained from Lemma 3.3 is a hesitant λ-walk, as desired. �

4. Proof of the main theorem: necessity

We now prove the “only if” part of Theorem 2.9, i.e., that untwistedness implies
hesitant-λ-walk-avoidance. Part of the proof will be a case-by-case analysis of the
possible Lie types of G.

For convenience, in Table 2 we recall the Cartan matrices for all Lie types (see,
for example, [Humphreys 1972, pp. 58–59]).

In the discussion below it will be useful to restrict our attention to hesitant
λ-walks which are minimal in an appropriate sense. We make this precise in the
definition below.

Definition 4.1. Let λ be a dominant weight and let I= (i0, . . . , in) be a hesitant
λ-walk. We say that I is minimal if

(1) {i1, . . . , in} are all distinct, i.e., the walking component of I visits any given
vertex of the Dynkin diagram at most once, and

(2) β0, . . . , βn−1 do not appear in λ if n ≥ 2.

Example 4.2. Let G = SL(6,C).

• Let λ=$2. The hesitant λ-walk J= (5, 5, 4, 3, 4, 3, 2) is not minimal since
the walking component revisits some vertices multiple times, but the subword
J′ = (5, 5, 4, 3, 2) is minimal.

• Let λ=$2+$5. In this case the hesitant λ-walk (5, 5, 4, 3, 2) is not minimal
since β0 = β1 = α5 already appears in λ. The subword (5, 5) is minimal.

It is clear from the definition that for any dominant λ 6= 0 and a hesitant λ-walk J,
there exists a subword J′ of J which is minimal in the sense of Definition 4.1.

Lemma 4.3. Let λ 6= 0 be a dominant weight and J= (i j0, i j1, . . . , i js ) a hesitant
λ-walk. Let c and ` be the constants associated to J and λ as defined in (1-6)
and (1-7). If J is minimal, then

(1) c jp jq = 0 if |p− q| ≥ 2 and 1≤ p, q ≤ s, and

(2) ` jp = 0 for 0≤ p ≤ s− 1 if s ≥ 2.
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Ar :



2 −1 0 · · · 0
−1 2 −1 0 · · · 0

0 −1 2 −1 0 · · · 0
· · · · · · · · · ·

0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 2


E6 :



2 0 −1 0 0 0
0 2 0 −1 0 0
−1 0 2 −1 0 0

0 −1 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 2



Br :


2 −1 0 · · · 0
−1 2 −1 0 · · · 0
· · · · · · · · · ·

0 0 0 · · · −1 2 −2
0 0 0 · · · 0 −1 2

 E7 :



2 0 −1 0 0 0 0
0 2 0 −1 0 0 0
−1 0 2 −1 0 0 0

0 −1 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 2



Cr :


2 −1 0 · · · 0
−1 2 −1 0 · · · 0
· · · · · · · · · ·

0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −2 2

 E8 :



2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0

0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2



Dr :



2 −1 0 · · · 0
−1 2 −1 · · · 0
· · · · · · · · · ·

0 0 · · −1 2 −1 0 0
0 0 · · −1 2 −1 −1
0 0 · · 0 −1 2 0
0 0 · · 0 −1 0 2


F4 :


2 −1 0 0
−1 2 −2 0

0 −1 2 −1
0 0 −1 2

 G2 :

[
2 −1
−3 2

]

Table 2. Cartan matrices for all Lie types.

Proof. By the minimality assumption, and since Dynkin diagrams have no loops,
we know that if |p − q| ≥ 2 and 1 ≤ p, q ≤ s (so jp and jq are in the walking
component of J) then the roots β jp are neither adjacent nor equal. This implies
that the corresponding entry in the Cartan matrix is 0, as desired. The second
statement is immediate from the minimality assumption since ` jp > 0 exactly when
β jp appears in λ. �

Lemma 4.4. Let {ci j }1≤i< j≤n and `1, . . . , `n be fixed integers and let (C(c, `), ρ)
be the corresponding Grossberg–Karshon twisted cube. Assume that `i ≥ 0 for
all i . If there exist two distinct indices i and j , 1 ≤ i < j ≤ n, with ci j > 1 and
`i = ` j > 0, then (C(c, `), ρ) is twisted.
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Proof. By Theorem 1.4, it suffices to show that there exists an element σ of {+,−}n

and some k with 1≤ k ≤ n such that mσ,k < 0. Let σ = (σ1, . . . , σn) ∈ {+,−}
n be

the element defined by

σk =

{
− if k = i or j,
+ otherwise,

and consider the associated mσ = (mσ,1, . . . ,mσ,n). Then by the definition of σ
and mσ we have

mσ, j = ` j −
∑
s> j

c jsmσ,s,

mσ,i = `i −

(
ci j mσ, j −

∑
s>i
s 6= j

cismσ,s

)
.

Since σk = + for k 6= i, j , we have that mσ,k = 0 for k 6= i, j . Hence the above
equations can be simplified to

mσ, j = ` j ,

mσ,i = `i − ci j mσ, j = `i − ci j` j .

By assumption `i = ` j , so
mσ,i = `i (1− ci j ).

Since ci j > 1 and `i > 0, we obtain mσ,i < 0, as desired. �

As in the previous section, the above lemma can be interpreted in terms of
hesitant λ-walks.

Corollary 4.5. Let I = (i1, i2, . . . , in) be a word decomposition of an element
w= si1 · · · sin of W and let λ=λ1$1+λ2$2+· · ·+λr$r be a dominant weight, i.e.,
λi ≥0 for all i . Let c={c jk}, `= (`1, . . . , `n), and {mσ }σ∈{+,−}n be determined from
I and λ as in (1-6), (1-7), and (1-4) and let (C(c, `), ρ) denote the corresponding
Grossberg–Karshon twisted cube. If I contains a subword J= ( j0, j1) of length 2
which is a hesitant λ-walk, then (C(c, `), ρ) is twisted.

Proof. By the definition of hesitant λ-walk, if J = ( j0, j1) is a hesitant λ-walk
then i j0 = i j1 (equivalently, β j0 = β j1) and β j0 = β j1 appears in λ. This implies
c j0 j1 = 2> 1 and ` j0 = ` j1 > 0. The result now follows from Lemma 4.4. �

Proof of the “only if” part of Theorem 2.9. Suppose J = {i j0, i j1, . . . , i js } is a
subword of I which is a hesitant λ-walk. We may without loss of generality
assume that J is minimal in the sense of Definition 4.1. We then wish to show that
(C(c, `), ρ) is twisted. If the length of J is 2, i.e., s = 1, then this follows from
Corollary 4.5. Thus we may now assume that the length is at least 3, i.e., s ≥ 2. To
prove that (C(c, `), ρ) is twisted, by Theorem 1.4 it is enough to find an element σ
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of {+,−}n and a k ∈ [n] such that mσ,k < 0. To achieve this, consider the element
σ = (σ1, . . . , σn) ∈ {+,−}

n defined by

σp =

{
− if p ∈ { j0, j1, . . . , js},
+ otherwise.

By the definition of mσ , we then have

mσ, js = ` js −
∑
p> js

c js pmσ,p,

mσ, jt = ` jt −

(
c jt jt+1mσ, jt+1 +

∑
p> jt

p 6= jt+1

c jt pmσ,p

)
for 1≤ t ≤ s− 1,

mσ, j0 = ` j0 −

(
c j0 j1mσ, j1 + c j0 j2mσ, j2 +

∑
p> j0

p 6= j1, j2

c j0 pmσ,p

)
.

(4-1)

Since J is a hesitant λ-walk, we know ` js > 0. On the other hand, by the minimality
assumption on J and Lemma 4.3, we know ` jt = 0 for all t with 0 ≤ t ≤ s − 1.
Moreover, again by minimality and Lemma 4.3, we know that c jt jr = 0 for jr > jt
and jr 6= jt+1. Also, by construction of the σ , for p 6∈ J= { j0, j1, . . . , js} we have
σp =+ and hence mσ,p = 0. Finally, since J is a hesitant λ-walk, we have β j0 = β j1
and hence c j0 j1 = 〈β j0, β

∨

j1〉 = 2. From these considerations we can simplify (4-1):

mσ, js = ` js > 0,

mσ, jt =−c jt jt+1mσ, jt+1 for 1≤ t ≤ s− 1,

mσ, j0 =−(2mσ, j1 + c j0 j2mσ, j2).

(4-2)

We now claim that mσ, j0 < 0; as already noted, this suffices to prove the theorem.
In order to prove this claim we need to know the values of the constants c jt jt+1

and c j0 j2 appearing in (4-2). By the assumption that J is a hesitant λ-walk, these
constants are equal to the corresponding entry of the Cartan matrices for simple
roots which are adjacent in the Dynkin diagram. For the case-by-case analysis
below we refer to the list of Dynkin diagrams and Cartan matrices in Tables 1 and 2.
Suppose first that the hesitant λ-walk only crosses edges of the form d d or
that if it crosses a double edge d d or triple edge d d then it does so only
by going in the direction agreeing with the arrow drawn on the edge in the Dynkin
diagram (e.g., in type B, if i jt = r − 1 and i jt+1 = r , and in type G, if i jt = 2 and
i jt+1 = 1). In this situation, the corresponding constants c jt jt+1 and c j0 j2 are all equal
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to −1. So we consider this case first. In this setting we have

mσ, js = ` js > 0,

mσ, jt = mσ, jt+1 for 1≤ t ≤ s− 1,

mσ, j0 =−(2mσ, j1 −mσ, j2),

(4-3)

so mσ, j1 = mσ, j2 = · · · = mσ, js = ` js and mσ, j0 =−` js < 0, as desired.
Next we consider the possibility that the hesitant λ-walk crosses a double edge

in a direction against the direction of the arrow on the edge. Since we assume the
hesitant λ-walk is minimal, it can only cross such an edge once. In particular, in
type B this implies that the hesitant λ-walk must be of the form i j0 = i j1 = r and
i j2 = r − 1, i j3 = r − 2, . . . , i js = r − s+ 1, while in type C it must be of the form
i j0 = i j1 = r − s+ 1, i j2 = r − s+ 2, . . . , i js−1 = r − 1 and i js = r , for some s ≥ 2.
We consider these cases next.

In type B consider the hesitant λ-walk of the form i j0 = i j1 = r and i j2 = r − 1,
i j3 = r − 2, . . . , i js = r − s + 1 for some s ≥ 2. In this case the equations (4-2)
become

mσ, js = ` js > 0,

mσ, js−1 = · · · = mσ, j2 = ` js ,

mσ, j1 = 2mσ, j2 = 2` js ,

mσ, j0 =−(2mσ, j1 + (−2)mσ, j2)=−2` js < 0,

so we obtain mσ, j0 < 0, as desired. In type C , consider the hesitant λ-walk i j0 =

i j1 = r − s+1, i j2 = r − s+2, . . . , i js−1 = r −1 and i js = r for s ≥ 2. Note that the
case s = 2 is already covered in the argument for type B above, so we may assume
s ≥ 3. It is straightforward to see that here we obtain from (4-2) that mσ, js = ` js > 0,
mσ, js−1 = · · · = mσ, j1 = 2` js , and mσ, j0 =−2` js < 0. Thus mσ, j0 < 0, as desired.

The only remaining cases are in the exceptional Lie types F and G, but many
cases of hesitant λ-walks in type F are already handled by the considerations for
types B and C above. Thus the only remaining cases are (4, 4, 3, 2, 1) in type F
and (1, 1, 2) in type G. Both are straightforward and left to the reader. �

5. Open questions

The study of Grossberg–Karshon twisted cubes is related to representation theory
and to the recent theory of Newton–Okounkov bodies and divided-difference opera-
tors on polytopes. In this paper we have introduced the notion of hesitant λ-walks
as well as hesitant-λ-walk-avoidance. Below, we briefly mention some possible
avenues for further exploration.

(1) The Grossberg–Karshon twisted cubes are a special case of the virtual poly-
topes produced by Kiritchenko’s divided-difference operators [Kiritchenko
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2013]. We may ask whether our methods generalize to Kiritchenko’s setting
to provide combinatorial conditions on a dominant weight λ and choice of
word decomposition I which guarantee that the corresponding virtual polytope
from Kiritchenko’s construction is a true polytope. (See also Kiritchenko’s
discussion in [2013, §3.3].)

(2) In the cases when the Grossberg–Karshon twisted polytope is untwisted (i.e., it
is a true polytope), it would be of interest to study the relationship between the
Grossberg–Karshon polytope and other polytopes appearing in representation
theory and Schubert calculus, such as Gel’fand–Cetlin polytopes, or (more
generally) string polytopes, or (even more generally) Newton–Okounkov bodies
of Bott–Samelson varieties (see [Kaveh 2011; Anderson 2013; Harada and
Yang ≥ 2015]).

(3) Pattern avoidance is a recurring and important theme in the study of Schubert
varieties. We may ask whether, and how, hesitant-λ-walk-avoidance relates to
the known results in this direction [Abe and Billey 2014].
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Let (π, V ) be a GLn(R)-distinguished, irreducible, admissible representa-
tion of GLn(C), let π ′ be an irreducible, admissible, GLm(R)-distinguished
representation of GLm(C), and let ψ be a nontrivial character of C which is
trivial on R. We prove that the Rankin–Selberg gamma factor at s = 1/2 is
γ (1/2, π ×π ′;ψ)= 1. The result follows as a simple consequence from the
characterization of GLn(R)-distinguished representations in terms of their
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1. Introduction

Let Gn(C)= GLn(C), Gn(R)= GLn(R). Let Bn = Bn(C) be the Borel subgroup
of upper triangular matrices in Gn(C). Denote the complex conjugation by x→ x̄ .
We identify Gn(C)/Gn(R) with the space of matrices

Xn = {x ∈ Gn(C) : x · x̄ = In},
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via the isomorphism gGn(R) 7→ g · ḡ−1. See [Serre 2002, Chapter 3, Section 1,
Lemma 1] for the proof of the surjectivity of this map. Given a representation π
of Gn(C), the representation π̄ is defined by the formula π̄(g) := π(ḡ).

The group Gn(C) acts on Xn by the twisted conjugation, where the action is
induced by the natural action l(g)g′Gn(R) := gg′Gn(R). Namely, we have

g′Gn(R)↔ g′ · ḡ′
−1
:= x and l(g)(g′Gn(R)) := gg′Gn(R)↔ gg′ḡ′

−1
ḡ−1.

Hence, the action of Gn(C) on X is given by l(g)x := gx ḡ−1.
For a topological vector space V , we denote by V ∗ the topological dual of V ,

i.e., the space of all continuous maps from V to C. In this paper we work with the
category of the admissible smooth Fréchet representations of moderate growth (see
[Wallach 1992, Section 11.5; Aizenbud et al. 2008, Section 2.1]).

A representation (π, V ) of Gn(C) is called Gn(R)-distinguished if there exists a
nonzero continuous linear map L : V → C such that

L(π(h)v)= L(v) for all v ∈ V, h ∈ Gn(R).

We denote the space of all such linear maps by (V ∗)Gn(R). We denote the set
of equivalence classes of irreducible representations of Gn(C) by Irr(Gn(C)) and
the set of equivalence classes of irreducible Gn(R)-distinguished representations
of Gn(C) by IrrGn(R)(Gn(C)).

Let ψ : C→ C× be a nontrivial unitary character which is trivial on R, for
example

ψ(x)= eπ(x−x̄).

We let Un(C) be the group of upper triangular matrices with unit diagonal and we
denote by θψ,n the character θψ,n :Un(C)→ C× defined by

θψ,n(u)= ψ
( n−1∑

i=1

ui,i+1

)
.

A ψ-form on V is a nonzero continuous linear form λ : V → C such that

λ(π(u)v)= θψ,n(u)v,

for each v ∈ V and each u ∈ Un(C). We say that π is a generic representation if
there exists a ψ-form on V .

Theorem 1.1. Let π ∈ IrrG t (R)(G t(C)) and let π ′ ∈ IrrGr (R)(Gr (C)). If ψ is a
nontrivial character of C with a trivial restriction to R then the value of the Rankin–
Selberg gamma factor at s = 1/2 is

γ

(
1
2
, π ×π ′;ψ

)
= 1.
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A similar theorem is proved in [Offen 2011, Theorem 0.1] for the p-adic case
(see also [Ok 1997]). See Section 5 for the definition of Rankin–Selberg integrals,
Rankin–Selberg gamma factors and for the proof of Theorem 1.1.

We will deduce Theorem 1.1 from the characterization of irreducible Gn(R)-
distinguished representations of Gn(C). Let χ be a character of Bn . We denote
by I (χ) the normalized parabolic induction representation

I (χ) := IndGn(C)
Bn

(χ)

of the character χ = (χ1, . . . , χn) from Bn to Gn(C). We remind the reader that
this space consists of smooth functions such that f (bg)= (χδ1/2)(b) f (g) for all
b ∈ Bn and all g ∈ Gn(C). The group Gn(C) acts on I (χ) by right translations, and
the group of permutations on n elements, Sn , acts naturally on the characters of Bn .
We will call a character χ = (χ1, χ2, . . . , χn) of Bn dominant if

|χ(t)| = |t1|λ1 |t2|λ2 · · · |tn|λn with λ1 ≥ λ2 ≥ · · · ≥ λn.

In Section 4 we will prove the following.

Theorem 1.2. Let π be an element of IrrGn(R)(Gn(C)) and let χ = (χ1, χ2, . . . , χn)

be a dominant character of Bn . Suppose π is the Langlands quotient of I (χ), that
is, the unique irreducible quotient of I (χ). Then there exists an involution w ∈ Sn

such that wχ = (χ−1). Moreover, we can choose this w such that for every fixed
point i of w we have χi (−1)= 1.

Remark 1.3. Note that the conditionsw(i)= i , χw(i)=χi
−1 and χi (−1)=1 imply

that χi is GL1(R)-distinguished. Indeed, χi = χi
−1 implies that χi is R+-invariant.

Together with the condition χi (−1) = 1 this means that χi is R×-invariant (i.e.,
GL1(R)-invariant).

As a consequence of Theorem 1.2 we obtain the following analogue of [Aizenbud
and Lapid 2012, Theorem B.1].

Theorem 1.4. Let π ∈ IrrGn(R)(Gn(C)) and suppose π is a generic representation
of Gn(C). Then π̄ ' π̃ , where π̃ is the contragredient representation of π .

Let (π, V ) be an irreducible representation of Gn(C). The existence of I (χ)
with the properties stated in Theorem 1.2 is a well-known fact (see [Wallach
1988, Theorem 5.4.1]). It is also well-known that the Langlands quotient of I (χ)
is generic if and only if I (χ) is irreducible (see Appendix A). Therefore, π̄ = I (χ̄)
and π̃= I (χ−1). Since π̄ is irreducible, for everyw0∈ Sn we have I (w0(χ̄))' I (χ̄).
In particular, for w ∈ Sn such that w(χ̄)= χ−1, we have

π̄ ' I (χ̄)' I (w(χ̄))' I (χ−1)' π̃ .
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A similar result was proved by Marie-Noelle Panichi in her Ph.D. thesis [2001,
Theorem 3.3.6].

The structure of the paper is as follows. In Section 3 we recall basic facts
about the structure of Gn(C). In Section 4 we prove Theorem 1.2 by analyzing
the geometry of the action of Bn on the variety Gn(C)/Gn(R). In Section 5, as an
application of our classification we deduce Theorem 1.1. In Section 8 we prove a
new type of integral identity for Whittaker functions on generic Gn(R)-distinguished
representations which in turn proves [Lapid and Mao 2014, Assumption 5.2]. A
similar identity was proved in the p-adic case in [Offen 2011, Corollary 7.2]. Our
proof is similar to the proof in the p-adic case, but in the archimedean case there
are many analytical difficulties. We overcome them in Sections 5–7.

Finally, in Appendix B we prove a converse-type theorem. We prove that if
(π, V )= I (χ) is an irreducible, generic, admissible unitary representation of Gn(C)

such that for every unitary character χ ′(z)= (z/|z|)2m with m ∈ Z we have

γ

(
1
2
, π ×χ ′, ψ

)
= 1,

then π is Gn(R)-distinguished. The proof is done by a combinatorial argument
combined with the Tadic–Vogan classification of the unitary dual of Gn(C).

2. Notation and preliminaries

Let M(a× b, F) be the space of matrices with a rows and b columns with entries
in F , where F is either R or C. Let ηn = (0, 0, . . . , 1) be an element of M(1×n,R),
and let Pn(R) be the subgroup of Gn(R) consisting of all n× n matrices with the
last row equal to ηn .

Let Un(F) be the group of all upper triangular matrices in M(n × n, F) with
unit diagonal. Let

Kn = {g ∈ Gn(C) : g · tḡ = I }

be the standard maximal compact subgroup of Gn(C).
For g ∈ Gn(C), define

‖g‖ :=

√√√√ n∑
i, j=1

|gi j |
2 and ‖g‖H :=max (‖g‖, ‖g‖−1).

The value ‖g‖H is called a norm on g (see [Wallach 1988, Section 2.A.2] for a
general discussion on norms on a reductive group).

Let G be a group and H its subgroup. We say that a function f : G → C is
H -finite if the dimension of the space spanned by right H -translations of f is finite.
In this work we will often consider Kn-finite functions on Gn(C).
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For V , a finite dimensional vector space over R, we denote by S(V ) the Schwartz
space of all infinitely differentiable functions f : V → C of rapid decay.

Let 8 ∈ S(V ), where V = M(a× b,C). We denote by 8̂ the Fourier transform
of 8. It is a function on the same space, defined by

8̂(X)=
∫
8(Y )ψ(−Tr( tXY )) dY.

For 8 ∈ S(Cn) and g ∈ Gn(C) we denote by (R(g)8)(x) := 8(xg) the right
translation of 8 by g.

For z = x + iy ∈ C we denote by |z| =
√

x2+ y2 the usual absolute value of z
and by |z|C = |z|2 = x2

+ y2 the square of the usual absolute value. Note that
µ(z A)= |z|Cµ(A), where A ⊂ C is an open set and µ is a Haar measure on C.

Let Wn equal Sn and let Wn,2 = {w ∈ Wn : w
2
= 1} be the set of involutions

in Wn . For w ∈Wn,2 set

Iw = {(i, j) : i > j, w(i) > w( j)},

and define for any function κ : Iw→ Z≥0 a character ακ of Bn by the formula

ακ(diag(t1, . . . , tn))=
∏

(i, j)∈Iw

[ ti
t j

]κ(i, j)
.

We will identify ακ with the one-dimensional representation of Bn on the vector
space C with the action of ακ . By abuse of notation we will denote both the function
and the one-dimensional representation by the same symbol, ακ .

For the convenience of the reader we write here notation and formulations of
some of the theorems that appear in [Aizenbud and Lapid 2012], in versions that
are suitable for this work.

Let G be an arbitrary group.

• For any G-set X and a point x ∈ X , we denote by G(x) the G-orbit of x and
by Gx the stabilizer of x .

• For any representation of G on a vector space V and a character χ of G, we
denote by V G,χ the subspace of (G, χ)-equivariant vectors in V .

• Given manifolds L ⊆ M , we denote by N M
L := (TM |L)/TL the normal bundle

to L in M and by CN M
L := (N

M
L )
∗ the conormal bundle. For any point y ∈ L ,

we denote by N M
L ,y the normal space to L in M at the point y and by CN M

L ,y
the conormal space to L in M at the point y.

• The symmetric algebra of a vector space V is denoted by

Sym(V )=
⊕
k≥0

Symk(V ).
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• The Fréchet space of Schwartz functions on a Nash manifold X is denoted
by S(X) and the dual space of Schwartz distributions by S∗(X) := S(X)∗.

• For any Nash vector bundle E over X we denote by S(X, E) the space of
Schwartz sections of E and by S∗(X, E) its dual space.

See [Aizenbud and Lapid 2012, p. 309] for more details.
Suppose X is a smooth manifold with G acting on X . Recall that X =

⋃l
i=1 X i

is called a G-invariant stratification if all sets X i are G-invariant and there is some
reordering X i1, X i2, . . . , X il of X1, . . . , Xl such that all the sets

X i1, X i1 ∪ X i2, . . . , X i1 ∪ X i2 ∪ · · · ∪ X ik , . . . , X = X i1 ∪ · · · ∪ X il

are open in X .

Lemma 2.1. Let a real algebraic Lie group G act on a real algebraic smooth
manifold X. Let X =

⋃l
i=1 X i be a G-invariant stratification, and let χ be a

character of G. If
S∗(X)G,χ 6= 0,

then there exist an 1≤ i ≤ l and k ≥ 0 such that

S∗(X i ,Symk(CN X
X i
))G,χ 6= 0.

This lemma is a special case of [Aizenbud and Lapid 2012, Proposition B.3].

Theorem 2.2 [Aizenbud and Lapid 2012, Theorem B.6]. Let G be a real algebraic
group acting transitively on a real algebraic smooth manifold Z and let ϕ : X→ Z
be a G-equivariant smooth map. Fix z ∈ Z and let Xz be the fiber of z. Let χ
be a tempered character of G [Aizenbud et al. 2008, Definition 5.1.1], and let
δG and δGz be the modulus characters of the groups G and Gz respectively. Then
S∗(X)G,χ is canonically isomorphic to S∗(Xz)

Gz,χδ
−1
Gz δG .

Moreover, for any G-equivariant bundle E on X , the space S∗(X, E)G,χ is
canonically isomorphic to S∗(Xz, E |Xz)

Gz,χδ
−1
Gz δG .

3. Some matrix spaces decompositions

In this section we obtain some matrix space decompositions that will be used in
this work. In the following lemma we analyze the structure of orbits of the action
of the Borel subgroup Bn on Xn . Let Wn = Sn be the Weyl group of Gn(C).

Lemma 3.1. There is a bijection between Bn\Xn = Bn\Gn(C)/Gn(R) and the
space of involutions Wn,2 = {w ∈Wn : w

2
= 1}.

Proof. Recall that Xn = {x ∈ Gn(C) : x · x̄ = I } and let x ∈ Xn . Let

T = {diag(d1, . . . , dn) : di ∈ C∗ for all i}
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be a maximal torus in Gn(C). From [Lapid and Rogawski 2003, Lemma 4.1.1] (see
also [Springer 1984]), the Bn-orbit of x intersects the normalizer

N (T ) := {g ∈ Gn(C) : gT g−1
= T }.

It is a well-known fact that N (T )= {d ·w : d ∈ T, w ∈Wn}. Thus, we may assume
x = dw, where w ∈ Wn and d = diag(d1, d2, . . . , dn). Note that w is uniquely
determined by x . Since x · x̄ = I , we have dw=w−1d̄−1. We obtain w=w−1 and
therefore w2

= 1, i.e., w ∈Wn,2.
Therefore, we can assume that w ∈Wn,2 in the decomposition x = dw. On the

other hand, it is clear that different involutions w,w′ ∈ Wn,2 belong to disjoint
orbits of Bn . Indeed, l(b)w := bwb̄−1

6= w′ for all b ∈ Bn .
It remains to show that the Bn-orbit of x = dw contains the point w, i.e., there is

some b ∈ Bn such that l(b)x =w. Since w is an involution it is enough to check the
claim for 1×1 and 2×2 matrices. For the 1×1 matrix x = (b)1×1, the assumption
x x̄ = I gives bb̄= 1, and we want to prove that b=µµ̄−1. Clearly, there is such a µ.

For a 2× 2 matrix of the form b =
( d1

0
0
d2

)
, the assumption

x = b
(

0 1
1 0

)
=

(
0 d1

d2 0

)
∈ X

gives the condition d1d̄2 = 1 on the entries d1, d2. We seek an invertible matrix(
µ1
0

0
µ2

)
such that

(3-1)
(
µ1 0
0 µ2

)(
0 d1

d2 0

)(
µ1
−1 0

0 µ2
−1

)
=

(
0 1
1 0

)
.

Matrix multiplication gives the condition d1µ1µ2
−1
= 1, and clearly there are such

a µ1 and µ2. �

In the next paragraph let us fix n and define G = Gn(C), H = Gn(R). Our goal
is to obtain a generalized Cartan decomposition G = K AH , where K is a maximal
compact subgroup of G consisting of all unitary matrices in G and A is a torus
which we will now describe. Let m = [n/2]. Note that H = Gσ and K = Gτ ,
where σ(g)= ḡ and τ(g)= g∗ = tḡ. Let g be the Lie algebra of G over the field C.
Following [Kobayashi 2007, Fact 2.1, p. 7], we take a to be a maximal abelian
subspace in

g−σ,−τ = {X ∈ g : τ X = σ X =−X}.

Following this recipe, let us define

a=

m∑
j=1

iR(E2 j+1,2 j − E2 j,2 j+1).
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Recall that

exp
(

0 i t
−i t 0

)
=

(
ch(t) i sh(t)
−i sh(t) ch(t)

)
and let A be the Lie group corresponding to a. Denote by a(t1, t2, . . . , tm) the n×n
matrix which consists of m 2× 2 diagonal blocks of the form exp

( 0
−i tj

i tj
0

)
, where

j = 1, 2, . . . ,m if n = 2m is even, and which consists of these blocks and ann = 1
in the last diagonal place if n = 2m+ 1 is odd. For example, if n = 4 then

a(t1, t2)=


cosh(t1) i sinh(t1) 0 0
−i sinh(t1) cosh(t1) 0 0

0 0 cosh(t2) i sinh(t2)
0 0 −i sinh(t2) cosh(t2)

.
We have

A = {a(t1, t2, . . . , tm) : t1, t2, . . . , tm ∈ R}.

Define
A+ = {a(t1, t2, . . . , tm) : t1 ≥ t2 ≥ · · · ≥ tm ≥ 0}.

Theorem 3.2. There is a decomposition G = K A+H. That is, every element g ∈ G
can be written as

(3-2) g = kah, where k ∈ K , a ∈ A+, h ∈ H.

Moreover, the a ∈ A+ in decomposition (3-2) is uniquely determined by g.

Remark 3.3. By taking the transpose of (3-2) we obtain a similar decomposition
G = H A+K . That is, every g ∈ G can be written as

(3-3) g = hak, where h ∈ H, a ∈ A+, k ∈ K ,

and a ∈ A+ in this decomposition is uniquely determined by g. Actually, after
taking the transpose of (3-2), we obtain that at

∈ A and in general at /∈ A+. But the
permutation group Sn is naturally contained in both K and H and we can replace
a ∈ A with a′ = w1aw2 such that a′ ∈ A+.

Proof of Theorem 3.2. To prove the existence part we will show that G = K AH .
Since permutation matrices are clearly in H ∩ K , the equality G = K A+H will
easily follow from the equality G = K AH . Let g ∈ G. Our goal is to achieve a
decomposition g = kah with h ∈ H , a ∈ A, and k ∈ K . Suppose that g is of such
a form. Then, since h∗ = th, a∗ = a, and k∗ = k−1 we get

(3-4) g∗g = tha2h, h ∈ H, a ∈ A.

On the other hand, suppose that every matrix of the form g∗g can be written as (3-4).
Then write g = ((g∗)−1 tha)ah, and let us show that k = (g∗)−1 tha is a unitary
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matrix. Indeed,

k∗k = a∗( th)∗((g∗)−1)∗(g∗)−1 tha = ah(g∗g)−1 tha = ah( tha2h)−1 tha = I.

Therefore, to prove the existence part of the theorem, it is enough to prove that
every matrix of the form g∗g can be written in the form (3-4). For this purpose write
g∗g = x + iy, x, y ∈ H . Then x = tx is symmetric, and y =− ty is antisymmetric.
Also, tvg∗gv > 0 for every 0 6= v ∈ Rn . Hence, x is a positive definite matrix; that
is, tvx( tx)v = tvg∗gv > 0 for every 0 6= v ∈Rn . Thus, there is a matrix h ∈ H such
that thxh = I . Then thg∗gh = I + i( thyh). The matrix z := thyh is antisymmetric
and it is a standard fact in linear algebra that it is diagonalizable by a real orthogonal
matrix. Consequently, h′zh′−1

= d, with d consisting of m = bn/2c 2× 2 blocks
of the form (

d2i−1,2i−1 d2i−1,2i

d2i,2i−1 d2i,2i

)
=

(
0 λi

−λi 0

)
in the case when n is even, and m such blocks and the last row zero in the case
when n is odd. Note also that the numbers λi are uniquely determined up to a
permutation by the matrix gg∗ since they are eigenvalues of hy th. Clearly, every
2× 2 block of the form

( 1
−iλ

iλ
1

)
can be transformed by a diagonal matrix

( d1
0

0
d2

)
to

the form (
ch(µ) i sh(µ)
−i sh(µ) ch(µ)

)
= exp

(
µ

(
0 i
−i 0

))
.

Taking in every block a of the form exp
(
µ
2

( 0
−i

i
0

))
proves the existence of the

decomposition g∗g= tha2h and thus establishes the existence of the decomposition
g = kah.

We now prove the uniqueness part of the theorem. Note that H acts on the
space of positive definite matrices of the form g∗g by h · x := h txh. Let us take
h, b, c ∈ H and suppose h · (I + ib) = I + ic. Then h is an orthogonal matrix,
thh = I , and thus c = h−1bh. In particular, the eigenvalues of b and c are equal.
Now, to prove the uniqueness of a ∈ A+ in the decomposition (3-2) let us write
a = Re(a)+ i Im(a) and note that H ·a = H · (I + i Im(a)). Since the eigenvalues
of i Im(a) are ± sinh(λ1), . . . ,± sinh(λn) we see that if a1, a2 ∈ A+ and a1 6= a2,
then H ·(I+ i Im(a1)) 6= H ·(I+ i Im(a2)), and therefore H ·a1 6= H ·a2. It follows
that the a2

∈ A+ part in g∗g = tha2h is uniquely determined by g. As a result,
a ∈ A+ is uniquely determined by g. �

4. Proof of Theorem 1.2

In this paragraph n is fixed and G=Gn(C), H =Gn(R), and B= Bn(C). We denote
by M the standard maximal torus in G and by W2 = Wn,2 the set of involutions
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in Sn . As a starting point of the proof, observe that

I (χ)∗ = S∗(G)B,χδ
−

1
2

0 ,

where B acts on the space of tempered distributions S∗(G) from the left. We have

HomH (I (χ),C)= S∗(G/H)B,χδ
−

1
2

0 .

We will stratify X := G/H by B-orbits. By Lemma 3.1, we have B\X = W2.
Suppose HomH (I (χ),C) 6= 0. By Lemma 2.1 there exists an involution w ∈ W2

and a k ≥ 0 such that

S∗
(
B(w),Symk(CN X

B(w))
)B,χδ

−
1
2

0 6= 0.

Note that B acts on B(w) transitively, the stabilizer of w under the action of B is
Bw, and δ1/2

0 |Bw = δBw . Therefore, by Frobenius reciprocity (Theorem 2.2),

S∗
(
B(w),Symk(CN X

B(w))
)B,χδ

−
1
2

0 = S∗
(
{w},Symk(CN X

B(w),w)
)Bw,χδ

−
1
2

0 δ−1
Bw δ0

= S∗
(
{w},Symk(CN X

B(w),w)
)Bw,χ

=
(
Symk(N X

B(w),w)⊗R C
)Bw,χ

.

Observe that Mw
⊂ Bw. Hence

(
Symk(N X

B(w),w)⊗R C
)Bw,χ

6= 0 implies(
Symk(N X

B(w),w)⊗R C
)Mw,χ

6= 0.

Note that

Mw
= {t ∈ M : t−1wt̄ = w} = {t ∈ M : t = wt̄w}

= {t = diag(t1, t2, . . . , tn) ∈ M : ti = tw(i) for 1≤ i ≤ n}.

It will be useful to obtain one more formula for Mw. It is easy to see, by examining
the case of 1× 1 and 2× 2 matrices, that

(4-1) Mw
= {t (wt̄w)a : t ∈ M, a = diag(a1, a2, . . . , an),

ai = 1 if w(i) 6= i, ai =±1 if w(i)= i}.

In the next lemma we perform a calculation of the normal space N X
B(w),w. Note that

this is a finite-dimensional vector space over R. Since the group Mw preserves the
tangent space T B(w)

w and clearly preserves the tangent space T X
w , there is an action

of Mw on the normal space N X
B(w),w. By taking the scalar extension N X

B(w),w⊗C,
we get a complex representation of Mw. Since Mw is abelian, this representation
decomposes into a direct sum of irreducible, one-dimensional representations.
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Lemma 4.1. We have

N X
B(w),w⊗R C=

⊕
{(i, j)∈Iw}

αδ(i, j)

as a representation of Mw.

Before proving this lemma, we give the following corollary.

Corollary 4.2. We have

Sym(N X
B(w),w⊗R C)=

⊕
κ:Iw→Z≥0

ακ

as a representation of Mw.

Proof of Lemma 4.1. Let us denote by ei, j the elementary matrix with 1 at the
(i, j)-th entry and zeros in all other entries. The tangent space of X at w is equal to

T X
w = {A ∈Matn(C) : Aw+w Ā = 0} = {A ∈Matn(C) : wAw =− Ā}

= SpanR{−ei, j + ew(i),w( j),
√
−1(ei, j + ew(i),w( j)) : 1≤ i, j ≤ n}.

On the other hand,

T B(w)
w = {−Aw+w Ā : A ∈Matn(C), A is upper triangular}.

Since ei, jw = ei,w( j) and wei, j = ew(i), j , we obtain that

T B(w)
w = SpanR{−ei,w( j)+ ew(i), j ,

√
−1(ei,w( j)+ ew(i), j ) : 1≤ i ≤ j ≤ n}

= SpanR{−ei, j + ew(i),w( j),
√
−1(ei, j + ew(i),w( j)) : i ≤ w( j)}

= SpanC{ei, j , ew(i),w( j) : i ≤ w( j)} ∩ T X
w

= SpanC{ei, j : i ≤ w( j) or j ≥ w(i)} ∩ T X
w .

Hence

(4-2)

N X
B(w),w

∼= SpanC{ei, j : i >w( j), w(i) > j} ∩ T X
w

= SpanC{ei,w( j) : i > j, w(i) > w( j)} ∩ T X
w

= SpanC{ei,w( j) : (i, j) ∈ Iw} ∩ T X
w .

Let us denote V = SpanC{ei,w( j) : (i, j) ∈ Iw}. Note that if ei,w( j) ∈ V then also
ew(i), j ∈ V , since w is an involution and for an involution

(i, j) ∈ Iw⇐⇒ (w(i), w( j)) ∈ Iw.
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Let us use the lexicographic ordering on pairs (i, j): write (i, j) < (i ′, j ′) if i < i ′

or if i = i ′ and j < j ′. Then we may rewrite (4-2) as

(4-3) N X
B(w),w

∼= SpanR{
√
−1ei,w( j) : (i, j) ∈ Iw, (i, j)= (w(i), w( j))}

⊕SpanR{ei,w( j)− ew(i), j ,
√
−1(ei,w( j)+ ew(i), j ) :

(i, j) ∈ Iw, (i, j) < (w(i), w( j))}.

For t = diag(t1, . . . , tn) ∈ M we have

tei, j t̄−1
= (ti/t̄ j )ei, j ,

and for t ∈ Mw we also have

tei,w( j) t̄−1
= (ti/tw( j))ei,w( j) = (ti/t j )ei,w( j).

Therefore, the action of Mw on ei,w( j) is given by αδ(i, j). We obtain that, as a
representation of Mw,

N X
B(w),w⊗R C

∼=

⊕
{(i, j)∈Iw :(i, j)=(w(i),w( j))}

αδ(i, j)⊕
⊕

{(i, j)∈Iw :(i, j)<(w(i),w( j))}

(αδ(i, j)⊕αδ(w(i),w( j)))

=

⊕
{(i, j)∈Iw :(i, j)=(w(i),w( j))}

αδ(i, j)⊕
⊕

{(i, j)∈Iw :(i, j)<(w(i),w( j))}

αδ(i, j)⊕
⊕

{(i, j)∈Iw :(i, j)>(w(i),w( j))}

αδ(i, j)

=

⊕
{(i, j)∈Iw}

αδ(i, j). �

Lemma 4.3. If (Symk(N X
B(w),w)⊗R C)Mw,χ

6= 0 then k = 0, w(χ) = χ̄−1, and
χi (−1)= 1 for all 1≤ i ≤ n such that w(i)= i .

Proof. Note that, for t ∈ M and w ∈W2, the element wtw is also diagonal and its
diagonal entries are the permutation of diagonal entries of t by w, i.e.,

(wtw)i i = tw(i),w(i).

By (4-1), if ακ |Mw = χ |Mw , then for every t ∈ M we have

ακ(t (wt̄w))= ακ(t)w(ακ)(t)= χ(t)χ(w(t))= χ(t (wt̄w)).

That is,

(4-4) (ακ |Mw = χ |Mw)⇒ (ακw(ακ)= χ̄w(χ)).

To obtain (4-4) just put a = 1 in (4-1). The set of κs that satisfy

(4-5) ακw(ακ)= χ̄w(χ)
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is {κ ≡ 0} if w(χ) = χ−1 and is empty otherwise. Indeed, we take the absolute
value on both sides of (4-5) to obtain

(4-6)
∏

(i, j)∈Iw

∣∣∣ ti
t j

∣∣∣κ(i, j)+κ(w(i),w( j))
=

n∏
i=1

|ti |λi+λw(i) .

First, we will deduce from the last equation that the right-hand side of this equation
is 1. Note that from (4-6) it follows, by substituting ti = c for all i with a generic
c ∈ C∗, that

λ1+ · · ·+ λn = 0.

Since no pair (1, i) belongs to Iw, it follows that λ1+ λw(1) ≤ 0. Let i be the first
index such that λi +λw(i) > 0. Then on the left-hand side of (4-6) the power of |ti |
is positive, thus there is a j such that (i, j) ∈ Iw. Hence i > j , w(i) > w( j) and
from the assumption λ1 ≥ λ2 ≥ · · · ≥ λn we obtain λi ≤ λ j and λw(i) ≤ λw( j). Thus

0< λi + λw(i) ≤ λ j + λw( j) ≤ 0,

a contradiction! Therefore, for every i , there is an inequality λi + λw(i) ≤ 0. Since
the sum of all λs is equal to 0, we obtain λi + λw(i) = 0 for every i . Hence, λ1 ≥ 0
and λn ≤ 0.

Now, we can deduce κ ≡ 0. Let j be the minimal index such that there exists a
pair (i, j) ∈ Iw with the property

κ(i, j) 6= 0 or κ(w(i), w( j)) 6= 0.

The power of |t j | on the right-hand side of (4-5) must equal 0, thus there is a pair
( j, k)∈ Iw such that κ( j, k) 6=0 or κ(w( j), w(k)) 6=0. In both cases we obtain a con-
tradiction to the minimality of j . As a conclusion, we obtain that (4-5) implies κ≡ 0.

Suppose now that w(χ) = χ−1 and thus κ ≡ 0. Then ακ = 1, the identity
character. We want to prove that χi (−1) = 1 for all i such that w(i) = i . This
follows from χ(a)= ακ(a)= 1 for a = diag(a1, . . . , an), where ai =±1 whenever
w(i)= i and ai = 1 otherwise. �

5. Calculation of Rankin–Selberg gamma factors

In this section we recall the notion of Rankin–Selberg integrals and apply the
results of previous sections to calculate special values of Rankin–Selberg gamma
factors. The exposition and notation follows [Jacquet 2009]. Let χ : Bn→ C× be
a multiplicative character and let λ : I (χ)→ C be a ψ-form on I (χ). Recall that
such a λ always exists and it is unique up to a scalar multiple. If f ∈ V , g ∈ Gn ,
we set

Wf (g)= λ(R(g) f ).
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Let W(I (χ), ψ) be the space spanned by the functions of the form Wf .
For every n, we denote by wn the n× n permutation matrix whose antidiagonal

entries are 1. If n > n′, we define

wn,n′ =

(
1n′ 0
0 wn−n′

)
.

If f ∈ I (χ), then the function f̃ is defined by

f̃ (g) := f (wn
tg−1).

Let π be an irreducible representation of Gn(C) and let π ′ be an irreducible represen-
tation of Gm(C). Suppose π is the Langlands quotient of I (χ) and π ′ is the Lang-
lands quotient of I (χ ′). We choose a ψ-form λ on I (χ) and a ψ̄-form λ′ on I (χ ′).
Rankin–Selberg integrals are defined as follows. For f ∈ I (χ), f ′ ∈ I (χ ′), set

W =Wf , W ′ =Wf ′ .

For W =Wf , set

W̃f :=Wf (wn
tg−1).

Note that W̃f (g)=W f̃ (g) and W f̃ (g) ∈W(I (χ−1), ψ̄).
If n > n′, we set

(5-1) 9(s,W,W ′)=
∫

W
(

g 0
0 1n−n′

)
W ′(g)| det g|

s− n−n′
2

C
dg.

In addition, for 0≤ j ≤ n− n′− 1, we set

(5-2) 9j (s,W,W ′)=
∫

W

g 0 0
X 1 j 0
0 0 1n−n′− j

W ′(g)| det g|
s− n−n′

2
C

d X dg.

Here X is integrated over the space M(m × j,C) of matrices with m rows and
j columns. In each integral, g is integrated over the quotient Un(C)\Gn(C).

If n = n′, we let 8 be a Schwartz function on Cn and we set

(5-3) 9(s,W,W ′,8)=
∫

W (g)W ′(g)8((0, 0, . . . , 0, 1)g)| det g|sC dg.

The Rankin–Selberg gamma factor γ (s, π × π ′, ψ) is a proportionality factor
appearing in functional equations on certain Rankin–Selberg integrals. We quote
here [Jacquet 2009, Theorem 2.1].
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Theorem 5.1. (1) The integrals (5-1), (5-2), and (5-3) converge for Re(s)� 0.

(2) Each integral extends to a meromorphic function of s which is a holomorphic
multiple of L(s, π × π ′) bounded at infinity in vertical strips. See [Jacquet
2009] for the definition of L(s, π ×π ′).

(3) The following functional equations are satisfied. If n > n′,

9(1− s, W̃ , W̃ ′)= ωI (χ)(−1)n−1ωI (χ ′)(−1)γ (s, I (χ)× I (χ ′), ψ)9(s,W,W ′).

If n > n′+ 1 and β = n− n′− 1− j ,

9j (1−s, π(wn,n′)W̃ , W̃ ′)=ωI (χ)(−1)n
′

ωI (χ ′)(−1)γ (s, π×π ′, ψ)9β(s,W,W ′).

If n = n′,

9(1− s, W̃ , W̃ ′, 8̂)= ωI (χ)(−1)n−1γ (s, π ×π ′, ψ)9(s,W,W ′,8).

We will calculate the special values of the Rankin–Selberg gamma factor of
Gn(R)-distinguished representations. The main tool will be the classification of such
representations obtained in Theorem 1.2 and basic properties of Rankin–Selberg
gamma factors from [Jacquet 2009, Lemma 16.3].

Let us recall some facts about one-dimensional Tate gamma factors. Let χ be a
one-dimensional character χ :C∗→C∗. We have the following functional equation
for Tate gamma factors:

(5-4) γ (s, χ, ψ)γ (1− s, χ−1, ψ−1)= 1.

Since we assume ψ is trivial on R, we obtain ψ−1 = ψ , and for s = 1/2 we get

(5-5) γ

(
1
2
, χ, ψ

)
γ

(
1
2
, χ−1, ψ

)
= 1.

For a real character χ , that is, for χ satisfying χ2
= 1, we obtain γ (1/2, χ, ψ)2= 1,

and thus γ (1/2, χ, ψ) ∈ {1,−1}. The value of γ (1/2, χ, ψ) depends on χ(−1).
Whenever χ(−1)= 1 we obtain

(5-6) γ

(
1
2
, χ, ψ

)
= 1.

Proof of Theorem 1.1. Recall that if π is the Langlands quotient of I (χ) and π ′ is
the Langlands quotient of I (χ ′), then

γ (s, π ×π ′, ψ)= γ (s, I (χ)× I (χ ′), ψ).

It is well-known that χ = (χ1, . . . , χt), where the χi s are one-dimensional char-
acters of C. Similarly, χ ′ = (χ ′1, . . . , χ

′
r ), where the χ ′i s are one-dimensional
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characters of C. Thus,

(5-7) γ (s, I (χ)× I (χ ′), ψ)=
t∏

i=1

γ (s, χi × I (χ ′), ψ)=
t∏

i=1

r∏
j=1

γ (s, χiχ
′

j , ψ).

Using Theorem 1.2, there exist involutionsw∈ St andw′ ∈ Sr such thatw(χ)= χ̄−1

andw′(χ ′)= χ̄ ′
−1

and for every fixed point i ofw, and j ofw′, we have χi (−1)= 1
and χ ′j (−1)= 1. The formula in (5-7) may be rewritten as

γ (s, I (χ)× I (χ ′), ψ)= I1 I2,

where

I1 =
∏

{(i, j):(w(i),w′( j))=(i, j)}

γ

(
1
2
, χiχ

′

j , ψ

)
,

I2 =
∏

{(i, j): i<w(i) or (i=w(i) andw′( j)< j)}

γ

(
1
2
, χiχ

′

j , ψ

)
γ

(
1
2
, χw(i)χ

′

w′( j), ψ

)
.

Let us prove that every term appearing in the product I1 is 1. Indeed, by Theorem 1.2
the character χiχ

′

j appearing as the argument in the gamma factor in I1 is a real
character satisfying χχ ′j (−1)= 1, and therefore, by (5-6), we get

γ

(
1
2
, χiχ

′

j , ψ

)
= 1.

Each term in the product I2 also equals 1, since χw(i)χ
′

w′( j) = (χiχ
′

j )
−1 and by

applying (5-5). Finally, I1 = I2 = 1 and we obtain

γ

(
1
2
, π ×π ′, ψ

)
= 1. �

We will need the following technical result about Rankin–Selberg integrals in
Section 8.

Lemma 5.2. Let (π, V ), (π ′, V ′) be generic representations of Gn(C) and let

W(π, ψ), W(π ′, ψ−1)

be their Whittaker models. Suppose (π, V ) is unitarizable and (π ′, V ′) is tempered.
Let W ∈W(π, ψ)), W ′ ∈W(π ′, ψ−1), and 8 ∈ S(Cn). Then the Rankin–Selberg
integral ∫

Un(C)\Gn(C)

W (g)W ′(g)8((0, 0, . . . , 0, 1)g)| det g|sC dg

converges absolutely at s = 1/2.
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Proof. Define

Tn = {diag(t1, . . . , tn) : ti ∈ R and t1 ≥ t2 ≥ · · · ≥ tn > 0}

and let Kn be a maximal compact subgroup of Gn(C) consisting of all unitary
matrices in Gn(C). Let δ be the modular character of Bn(C). By [Lapid and Mao
2014, Lemma 2.1], we know that there exist a λ >−1/2, a d > 0 and a continuous
seminorm µ on W(π, ψ) such that

|W (tk)| ≤ δ
1
2 (t)| det t |λC|tn|

−nλ
C

(1+‖ log t‖)dµ(W )

for all t ∈ Tn , k ∈ Kn and every W ∈W(π, ψ). Similarly, there exist an ε < 0 such
that λ+ε >−1/2, a d ′> 0 and a continuous seminorm µ′ on W(π ′, ψ−1) such that

|W ′(tk)| ≤ δ
1
2 (t)| det t |εC|tn|

−nε
C
(1+‖ log t‖)d

′

µ′(W ′)

for all t ∈ Tn , k ∈ Kn and every W ′ ∈ W(π ′, ψ−1). Let us define λ := λ+ ε,
d := d + d ′. All that matters for the estimates is that λ > 1/2 and d > 0. There is
a φ ∈ S(R) such that

|W (tk)W ′(tk)8((0, 0, . . . , 0, 1)g)|

≤ δ(t)| det t |λC|tn|
−nλ
C

(1+‖ log t‖)dφ(tn)µ(W )µ′(W ′)

for all t ∈ Tn , k ∈ Kn , every W ∈W(π, ψ) and every W ′ ∈W(π ′, ψ−1). For fixed
functions W , W ′ the numbers µ(W ), µ′(W ′) are constant and we can move them
to the function φ. Thus we can rewrite the last estimate as

|W (tk)W ′(tk)8((0, 0, . . . , 0, 1)g)| ≤ δ(t)| det t |λC|tn|
−nλ
C

(1+‖ log t‖)dφ(tn)

for all t ∈ Tn , k ∈ Kn . Let us rewrite the expression∫
Un(C)\Gn(C)

|W (g)W ′(g)8((0, 0, . . . , 0, 1)g)|| det g|Re(s)
C

dg

using the Iwasawa decomposition to obtain

(5-8)
∫
Kn

∫
Tn

|W (tk)W ′(tk)8((0, 0, . . . , 0, 1)g)|| det t |Re(s)
C

δ−1(t) dt dk.
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For f : Gn(C)→ C such that the following integrals are absolutely convergent,
we have ∫

Gn(C)

f (g) dg =
∫

Un(C)

∫
Tn

∫
Kn

f (tuk) du dt dk

=

∫
Un(C)

∫
Tn

∫
Kn

f ((tut−1)tk) du dt dk

=

∫
Un(C)

∫
Tn

∫
Kn

f (utk)δ−1(t) du dt dk.

Let us define αi (t)= ti/ti+1 for t ∈ Tn . Note that

det t =
n−1∏
i=1

αi (t)i tn
n .

The integrand in (5-8) is bounded by

|W (tk)W ′(tk)8(ηng)|| det t |Re(s)
C

δ−1(t)

≤ (1+‖ log t‖)dφ(tn)
(n−1∏

i=1

αi (t)2i(Re(s)+λ)
)

t2n Re(s)
n .

There exists an e > 0 such that

(1+‖ log t‖)d ≤
(n−1∏

j=1

(1+ logα j (t))e
)
(1+ log |tn|)e

for all t ∈ Tn . We have the estimate∫
Tn

(1+‖ log t‖)eφ(tn)| det t |Re(s)+λ
C

|tn|−nλ
C

dt

≤

n−1∏
j=1

∞∫
1

(1+ log t j )
e t2 j (Re(s)+λ)

j d×t j ×

∞∫
0

(1+ | log tn|)eφ(tn) t2n Re(s)
n d×tn.

It follows that the integral absolutely converges for s satisfying Re(s) > −λ and
Re(s)> 0. As λ>−1/2, we obtain the absolute convergence of the Rankin–Selberg
integral at s = 1/2. �

6. Integral representation of Whittaker functions

Let n ≥ 2 be fixed and let K =Un(C) be a maximal compact subgroup of Gn(C).
The next lemma gives a convenient formula for the Gn(R)-period of a unitary and
generic representation (π, V ) ∈ IrrGn(R)(Gn(C)). It is proved in [Lapid and Mao
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2014, Lemma 1.2]. We state it and, for the convenience of the reader, provide a full
proof here.

Lemma 6.1 [Lapid and Mao 2014, Lemma 1.2]. Let (π, V ) ∈ IrrGn(R)(Gn(C)) be
unitarizable and generic and let W(π, ψ) be its Whittaker model. The functional

µ :W 7→
∫

Un−1(R)\Gn−1(R)

W (h) dh

defines a Pn(R)-invariant functional on W(π, ψ). Moreover, there exists an N > 0
and a seminorm ν on W(π, ψ) such that for all g ∈ Gn(C) and W ∈W(π, ψ) we
have the inequality

|µ(π(g)W )| ≤ ‖g‖N
Hν(W ).

Proof. By [Wallach 1992, Theorem 15.2.5], there exist a continuous seminorm ν ′

on W(π, ψ), a λ >−1/2 and a d > 0 such that

|W (tk)| ≤ δ
1
2 (t)| det t |λC|tn|

−nλ
C

(1+‖ log t‖)dν ′(W )

for every W ∈W(π, ψ), t ∈ Tn , and k ∈ Kn . For g ∈ Gn−1(R) we have tn = 1. Let
us denote

Tn−1 = {t ∈ Tn : tn = 1}.

Let δ0(t) be the modular character of Bn(R). For t ∈ Bn(R) we have that
δ1/2(t)= δ0(t). Multiplying ν ′ by a scalar we have the estimate

(6-1)

∫
Un−1(R)\Gn−1(R)

|W (h)| dh ≤
∫

Kn−1(R)

∫
Tn−1

|W (tk)|δ−1
0 (t) dt dk

≤ ν ′(W )

∫
Tn−1

| det t |λC(1+‖ log t‖)d dt

for every W ∈W(π, ψ). By the estimates of the previous lemma we obtain that the
last integral converges absolutely for λ >−1/2. It follows that |µ(W )| ≤ ν ′′(W )

for a continuous seminorm ν ′′ on W(π, ψ). Since π is of moderate growth, there
exist another continuous seminorm ν on W(π, ψ) and an N > 0 such that

|µ(π(g)W )| ≤ ν ′′(π(g)W )≤ ‖g‖N
Hν(W )

for every W ∈W(π, ψ) and every g ∈ G. �

We will identify the functional µ on W(π, ψ) with the corresponding linear
functional on V , which we will, by abuse of notation, also denote by µ. By the
uniqueness of the Whittaker model, this identification defines µ ∈ V ∗ in a unique
way, up to a scalar multiple. Since µ ∈ (V ∗)Pn(R) and (V ∗)Pn(R) = (V ∗)Gn(R) (see
[Kemarsky 2015, Theorem 1.1]), we obtain that µ ∈ (V ∗)Gn(R). Clearly, µ 6= 0.
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The functional µ defines an embedding of V into the space of functions on
Gn(R)\Gn(C) via

V 3 v 7→ (g 7→ µ(π(g)v)).

By abuse of notation we denote this embedding again by µ. Denote the image of
the embedding µ by CGn(R)(π). In the other direction, we can define a map

θ : CGn(R)(π)→W(π, ψ)

by

(6-2) θ : f 7→
(

g 7→
∫

Un(R)\Un(C)

f (ug)ψ−1(u) du
)
.

In this section we will prove that for every n there exists an irreducible representation
(π, V ) of Gn(C) that is Gn(R)-distinguished and such that the integral (6-2) is
absolutely convergent for every K-finite vector in (π, V ).

Suppose that we have a generic representation (π, V ) ∈ IrrGn(R)(Gn(C)) and that
the integral (6-2) is absolutely convergent for a K-finite function f ∈ CGn(R)(π).
Then, from [Lapid and Mao 2014], the composition of maps θ(µ( f )) is equal to c f
for some constant 0 6= c ∈ C.

Lemma 6.2. Let (π, V ) ∈ IrrGn(R)(Gn(C)) be a generic representation. Suppose
the integral ∫

Un(R)\Un(C)

W (u)ψ−1(u) du

absolutely converges for every Kn-finite function W ∈W(π, ψ). Then for every
W ∈W(π, ψ) there exists an f ∈ CGn(R)(π) such that

W (g)=
∫

Un(R)\Un(C)

f (ug)ψ−1(u) du.

Recall the decomposition (3-3):

Gn(C)= Gn(R)A+K .

The involution g → tg−1 preserves this decomposition. Let W̌ (g) = W ( tg−1).
The Whittaker model W(π̃, ψ−1) of the contragredient representation of (π, V ) is
given by

W(π̃, ψ−1)= {W̌ :W ∈W(π, ψ)}.

If the conditions of Lemma 6.2 are satisfied for W(π, ψ) then they are also satisfied
for the contragredient representation W(π̃, ψ−1). Explicitly, if W ∈ W(π, ψ)
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is equal to

W (g)=
∫

Un(R)\Un(C)

f (ug)ψ−1(u) du,

then we have
W̌ (g)=

∫
Un(R)\Un(C)

f̌ (ug)ψ(u) du,

where f̌ (g) := f ( tg−1).

Lemma 6.3. Let N > 0. Then there exists a (π, V ) ∈ IrrGn(R)(Gn(C)) such that for
every K-finite function f ∈ V there is a constant C > 0, depending only on f , that
satisfies, for every k ∈ K , a ∈ A, h ∈ Gn(R), the inequality

(6-3) | f (hak)| ≤ C( f )‖a‖−N
H .

Proof. By [Flensted-Jensen 1980], there exists a relatively discrete series H :=
L2

ds(Gn(R)\Gn(C)). Moreover, every irreducible representation in H is isomorphic
to some I (χ), where

χ(z)= ((z/|z|)i1, (z/|z|)i2, . . . , (z/|z|)in )

and i1, . . . , in ∈ Z. If C > 0 is big enough and if |ik − i j | > C > 0 for all i 6= j ,
then the Gn(R)\Gn(C) model of the space I (χ) lies in H, and the (g, K )-module
generated by a K-finite function 0 6= fλ ∈ I (χ) satisfies the properties of the lemma.
Indeed, by [Flensted-Jensen 1980, p. 254] (see also [Kassel and Kobayashi 2013,
Proposition 5.1]), if C > 0 is big enough and if |ik− i j |>C > 0 for all j 6= k, then
fλ(hak)≤ C ′‖a‖−N for all h ∈ H , a ∈ A+, and k ∈ K .

Clearly, fλ and right translations of fλ by K satisfy the properties of our lemma.
We should prove that the derivatives of fλ also satisfy similar growth properties.
This is achieved by a classical idea, which is attributed to Harish-Chandra (see also
an expository article by [Cowling et al. 1988]). The function fλ is K-finite, hence
there exists a smooth function eα of compact support such that fλ ∗ eα = fλ. Thus,
for X ∈ g we have d X ( fλ)= fλ ∗d X (eα). It follows that the derivatives of fλ have
the same decay properties that fλ has.

Finally, the (g, K )-module generated by fλ is of finite length. Consequently,
it contains an irreducible admissible (g, K )-submodule satisfying the decay prop-
erty (6-3). �

If every K-finite function in (π, V ) satisfies (6-3) we say that the representation
(π, V ) decays faster than N . Note that if (π, V ) decays faster than N , then its
contragredient (π̃, Ṽ ) also decays faster than N . Indeed, we can realize (π̃, Ṽ )
as Ṽ = { f̌ : f ∈ V }, where f̌ (g) := f ( tg−1). If g = hak, then tg−1

=
th−1a tk−1.

Hence, the property of fast decay is true for f̌ if and only if it is true for f .
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To obtain estimates of convergence of integrals over the unipotent matrices we
need the next elementary result. Define �n as the subset of all upper triangular
unipotent matrices in Gn(C) with ui j purely imaginary for j > i . Note that �n is a
fundamental domain for Un(R)\Un(C).

Lemma 6.4. There exist a C > 0 and d > 0, which depend only on n, such that for
every u ∈�n we have

‖u‖ ≤ C‖uū−1
‖

d .

Proof. The proof is by induction on n. For n = 2 it follows by direct computation:
if u =

( 1
0

i x
1

)
, then uū−1

=
( 1

0
2i x
1

)
and the claim is satisfied.

For a general n, let us define Aj to be the set of the entries in the j-th upper
diagonal in g:

A0 = {g11, g22, . . . , gnn}, A1 = {g12, g23, . . . , g(n−1)n}, . . . , An−1 = {g1n}.

Define Bj :=
⋃

0≤i< j Ai . The crucial observation is that entry (i, j) of ū−1 with
indices satisfying j − i = k equals

ū−1
i j = ui j + Pi j (u),

where Pi j ∈ C[Bk] is a fixed polynomial which depends only on the entries ulm

with indices l −m < k. Similarly,

(uū−1)i j = 2ui j + Qi j (u),

where Qi j ∈ C[Bk] is a fixed polynomial which depends only on the entries ulm

with indices l −m < k. For example, let n = 3. Then

u =

1 i x iy
0 1 i z
0 0 1

, ū−1
=

1 i x iy− xz
0 1 i z
0 0 1

, uū−1
=

1 i x 2iy− 2xz
0 1 i z
0 0 1

.
Thus P12 = P23 = 0, P13 =−xz, Q12 = Q23 = 0, Q13 =−2xz. Define v = uū−1

and define “partial seminorms” of u by

‖u‖k =
√ ∑
(i, j): j−i≤k

|ui j |
2.

We will prove by induction on k, with base k = 1, that for every k, there exist
Ck, dk > 0 such that ‖u‖2k ≤ Ck‖v‖

dk
k . As ‖u‖n = ‖u‖, the result follows.

Let k = 1. For C1 = 1, d1 = 1 we obtain the desired inequality. Suppose the
claim is true for k− 1; that is, suppose

‖u‖2k−1 ≤ Ck−1‖v‖
dk−1
k−1 .
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We want to show a similar inequality for k. There exist C, d > 0 such that for every
1≤ i ≤ n− k we have |vi,i+k | ≥ |ui,i+k | −C‖u‖dk−1. For example, one can choose

d =max{deg(Pi j ) : i − j = k}

and a big enough constant C . Let u be a given upper triangular unipotent matrix
with purely imaginary entries above the diagonal. There exist constants C ′, C ′′

such that if for all i we have |ui,i+k | ≤ 2C‖u‖dk−1, then

‖u‖2k = ‖u‖
2
k−1+

∑
i

|ui,i+k |
2
≤ C ′‖u‖2d

k−1 ≤ C ′′‖v‖2ddk−1
k−1 ≤ C ′′‖v‖2ddk−1

k .

On the other hand, if for some i we have |ui,i+k | > 2C‖u‖dk−1, then we have the
inequality |vi,i+k |> |ui,i+k |/2 and there exists a constant C ′′′ such that

n−k∑
i=1

|ui,i+k |
2
≤ C ′′′

n−k∑
i=1

|vi,i+k |
2
≤ C ′′′‖v‖k ≤ C ′′′‖v‖2ddk−1

k .

Therefore, in both cases there are constants Ck , dk such that

‖u‖2k ≤ Ck‖v‖
dk
k . �

Corollary 6.5. There exist a C > 0 and d > 0, which depend only on n, such that
for every u ∈�n we have

‖u‖H ≤ C‖uū−1
‖

d
H .

Proof. From Lemma 6.4 we know that there exist C1, d1 > 0 such that for every
u ∈�n we have ‖u‖<C1‖uū−1

‖
d1 . Similarly, one proves that there exist C2, d2> 0

such that for every u ∈�n we have ‖u‖< C2‖ūu−1
‖

d2 . Define C =max{C1,C2},
d =max{d1, d2}. Then ‖u‖H ≤ C‖uū−1

‖
d
H for every u ∈�n . �

Lemma 6.6. Let N > 0 be sufficiently large. Then, for every irreducible, Gn(R)-
distinguished representation (π, V ) of Gn(C) with decay faster than N , the integral∫

Un(R)\Un(C)

f (ug) du

absolutely converges for every g ∈ Gn(C) and every K-finite function f ∈ V .

Proof. Let (π, V ) be a Gn(R)-distinguished representation of Gn(C) such that for
every K-finite function f ∈ V there exists a C > 0 depending only on f such that

| f (hak)|< C‖a‖−N
H

for every h ∈Gn(R), a ∈ A+, k ∈ K . Let ug= hak. Then (ug)−1ug= ḡ−1(ū−1u)g.
Since g is fixed, there exists a C1 > 0 such that for every matrix u ∈ Gn we have

C−1
1 ‖ū

−1u‖< ‖(ug)−1ug‖< C1‖ū−1u‖.
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By Lemma 6.4, for u ∈� we have

‖u‖< C2‖ū−1u‖d .

On the other hand,

(ug)−1ug = k̄−1(aā−1)k = k̄−1a2k.

Note that k ∈ K is a unitary matrix, and therefore

‖k̄−1a2k‖ = ‖a2k‖ = ‖a2
‖.

Combining these inequalities we get

‖a2
‖ = ‖(ug)−1ug‖> C3‖uū−1

‖> C4‖u‖1/d .

Finally, we obtain that there exist constants C , d ′ such that for ug = hak, where
u is in �n and g ∈ Gn is fixed, we have

‖a‖> C‖u‖1/d
′

.

Therefore,

(6-4)
∫

Un(R)\Un(C)

| f (ug)| du ≤
∫
�

C‖u‖−N/d ′
H du.

The integral in (6-4) converges for N big enough, thus the lemma is proved. �

Corollary 6.7. Let N > 0 be sufficiently large. Then, for every irreducible Gn(R)-
distinguished representation (π, V ) of Gn(C) with decay faster than N , the integral
(6-2) is absolutely convergent.

7. Archimedean Asai integrals

Nonarchimedean Asai integrals were introduced by Flicker [1988] who then used
them to analyze the local and global Asai L and ε-factors [1993]. In this section
we introduce an archimedean analog of Asai integrals and prove that they are of
moderate growth. We also state a functional equation analogous to [Offen 2011,
Lemma 4.2] that is satisfied by the integrals.

Let (π, V ) be a generic irreducible unitarizable representation of Gn(C) and let
W(π, ψ) be its Whittaker model. For W ∈W(π, ψ), we define an archimedean
Asai integral to be

(7-1) Z(s,W,8)=
∫

Un(R)\Gn(R)

W (g)8((0, 0, . . . , 0, 1)g)| det g|sR dg.



GAMMA FACTORS OF DISTINGUISHED REPRESENTATIONS OF GLn(C) 161

Lemma 7.1. Let 8 ∈ S(Cn) and Re(s) ≥ 1. Then W 7→ Z(s,W,8) defines a
continuous functional on W(π, ψ) for Re(s)≥ 1. That is, there exist a continuous
seminorm µ on W(π, ψ) and a continuous seminorm ν on S(Cn) such that

|Z(s,W,8)| ≤ µ(W )ν(8)

for every 8 ∈ S(Cn) and every W ∈ W(π, ψ). As a consequence, there exist
an N > 0, a continuous seminorm µ′ on W(π, ψ) and a continuous seminorm ν

on S(Cn) such that∫
Un(R)\Gn(R)

|W ′(hg)8((0, 0, . . . , 0, 1)hg)|| det h|R dh ≤ µ′(W )ν ′(8) ‖g‖N
H

for every g ∈ G and every W ′ ∈W(π, ψ).

Proof. Let δ0 be the modulus function of Bn(R). Using the Iwasawa decomposition
we obtain
(7-2)

|Z(s,W,8)| ≤
∫

Kn(R)

∫
Tn

|W (tk)8((0, 0, . . . , 0, 1)tk)|| det(t)|Re(s)
R δ−1

0 (t) dt dk.

By [Lapid and Mao 2014, Corollary 2.2] there exist a λ > −1/2, a d > 0 and a
continuous seminorm µ on W(π, ψ) such that

|W (tk)| ≤ δ
1
2 (t)| det t |2λR |tn|

−2nλ
R (1+‖ log t‖)dµ(W )

for every t ∈ Tn , every k ∈ Kn and every W ∈W(π, ψ). Note that

δ
1
2 (t)δ0(t)−1

= 1

for all t ∈ Tn . The expression8((0, 0, . . . , 0, 1)tk)=8((0, 0, . . . , 0, tn)k) does not
depend on t1, t2, . . . , tn−1. As in the proof of Lemma 5.2, we obtain for some e> 0

|Z(s,W,8)| ≤ µ(W )

n−1∏
j=1

∞∫
1

t j (2λ+Re(s))
j (1+ log t)ej d×t j

×

∫
Kn(R)

∞∫
0

tn Re(s)
n (1+ | log tn|)e8((0, 0, . . . , 0, tn)k) d×tn dk.

Thus, Z(s,W,8) converges absolutely for Re(s) >max(−2λ, 0). Since λ>−1/2
for π unitary and generic (see [Lapid and Mao 2014, p. 8]), the integral converges
absolutely for Re(s)≥ 1. For such s, there is a continuous seminorm ν on S(Rn)
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such that∣∣∣∣ ∫
Kn(R)

∞∫
0

tn Re(s)
n (1+ | log tn|)e8((0, 0, . . . , 0, tn)k) d×tn dk

∣∣∣∣≤ ν(8)
for every 8 ∈ S(Rn). As a consequence, there exist a continuous seminorm µ

on S(Rn) and a continuous seminorm ν on W(π, ψ) such that

|Z(s,W,8)| ≤ µ(8)ν(W )

for every 8 ∈ S(Rn) and every W ∈W(π, ψ). Thus there exist M1,M2 > 0 and
continuous seminorms µ′ on S(Rn) and ν ′ on W(π, ψ) such that

|Z(s, π(g)W, R(g)8)| ≤ µ(R(g)8)ν(π(g)W )≤ ‖g‖M1
H ‖g‖

M2
H µ′(8)ν ′(W )

for every g ∈ G and every W ∈W(π, ψ). �

The next lemma provides a functional equation for archimedean Asai integrals.

Lemma 7.2. Let π be an irreducible, unitary, nondegenerate, Gn(R)-distinguished
representation of Gn(C). For every 8 ∈ S(Cn) and W ∈W(π, ψ) we have

Z(1, W̃ , 8̂|Rn )= c(π)Z(1,W,8|Rn ).

Proof. For the proof see [Offen 2011, Lemma 4.2]. �

We will use the following technical result in the next section.

Lemma 7.3. Let (π ′, V ′) be nondegenerate unitary representation of Gn(C) and
let W(π ′, ψ−1) be its Whittaker model. Then there exists an N > 0 such that for
every irreducible, Gn(R)-distinguished representation (π, V ) of Gn(C) with decay
faster than N and every function f ∈ CGn(R)(π), the following integral is absolutely
convergent:∫

Gn(R)\Gn(C)

| f (g)|| det g|
1
2
C

( ∫
Un(R)\Gn(R)

|W ′(hg)8((0, 0, . . . , 0, 1)hg)|| det h|R dh
)

dg.

Proof. This is an immediate consequence of Lemma 7.1. �

8. Equality of two functionals

Let (π, V ) ∈ IrrGn(R)(Gn(C)) be generic and unitarizable and let W(π, ψ) be its
Whittaker model. Define linear functionals µ, µ̃ ∈ V ∗ on W(π, ψ)) by

µ :W 7→
∫

Un−1(R)\Gn−1(R)

W (g) dg and µ̃ :W 7→
∫

Un−1(R)\Gn−1(R)

W
((

0 1
In−1 0

)(
g 0
0 1

))
dg.
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Since µ, µ̃ ∈ (V ∗)Pn(R) and (V ∗)Pn(R) = (V ∗)Gn(R) (see [Kemarsky 2015, Theo-
rem 1.1]), we obtain thatµ, µ̃∈ (V ∗)Gn(R). Clearly, the functionalsµ, µ̃ are nonzero.
The space of Gn(R)-invariant continuous functionals on V is one-dimensional (see
[Aizenbud and Gourevitch 2009, Theorem 8.2.5]), thus there exists a proportionality
constant c(π) 6= 0 such that µ̃= c(π)µ.

The goal of this section is to calculate the proportionality factor c(π) by proving
the following theorem.

Theorem 8.1. Let (π, V ) ∈ IrrGn(R)(Gn(C)). Then c(π)= 1.

We now state an archimedean analogue of [Offen 2011, Lemma 6.1].

Lemma 8.2. Let π ′ ∈ IrrGn(R)(Gn(C)) be generic and unitarizable. Then there
exists a generic and unitarizable π ∈ IrrGn(R)(Gn(C)) such that

γ

(
1
2
, π ×π ′;ψ

)
= c(π ′).

Note that for π , π ′ as in Lemma 8.2 we already know that γ (1/2, π×π ′, ψ)= 1.
As a result, the equality c(π ′)= 1 follows.

The proof of Lemma 8.2 is similar to the proof of [Offen 2011, Lemma 6.1]. How-
ever, in the archimedean case, there are convergence issues that we need to check.

Proof of Lemma 8.2. Let W ∈W(π, ψ), W ′ ∈W(π ′, ψ−1), and 8 ∈ S(Cn). The
idea is to prove an equality of Rankin–Selberg integrals of the type

(8-1) 9

(
1
2
, W̃ , W̃ ′; 8̂

)
= c(π ′)9

(
1
2
,W,W ′;8

)
.

Actually, it is enough to prove such an equality for a pair of functions W ∈W(π, ψ)

and W ′ ∈ W(π ′, ψ) such that at least one of the integrals 9(1/2, W̃ , W̃ ′; 8̂),
9(1/2,W,W ′;8) is nonzero (and thus both integrals are nonzero).

We will obtain the necessary convergence estimates for every Kn-finite function
W ∈W(π, ψ) and every function W ′ ∈W(π ′, ψ). By our classification of Gn(R)-
distinguished representations of Gn(C), the central character ωπ of the Gn(R)-
distinguished representation satisfies ωπ (−1)= 1. Thus, by Theorem 5.1, we have
the equality

9(1− s, W̃ , W̃ ′; 8̂)= γ (s, π ×π ′, ψ)9(s,W,W ′;8).

Let f ∈ CGn(R)(π) be such that

W (g)=
∫

Un(R)\Un(C)

f (ug)ψ−1(u) du.
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We will prove the absolute convergence of the following integrals at s = 1/2:

(8-2)
∫

Un(C)\Gn(C)

|W (g)W ′(g)8((0, 0, . . . , 0, 1)g)|| det g|sC dg

≤

∫
Un(C)\Gn(C)

( ∫
Un(R)\Un(C)

| f (ug)|du
)

×|W ′(g)8((0, 0, . . . , 0, 1)g)|| det g|sC dg

=

∫
Un(C)\Gn(C)

| f (g)W ′(g)8((0, 0, . . . , 0, 1)g)|| det g|sC dg

=

∫
Gn(R)\Gn(C)

| f (g)|| det g|sC

×

( ∫
Un(R)\Gn(R)

|W ′(hg)8((0, 0, . . . , 0, 1)hg)|| det h|2s
R dh

)
dg.

The left-hand side of (8-2) is absolutely convergent by Lemma 5.2 and the integrals
on the right-hand side of (8-2) are absolutely convergent by Lemmas 7.1 and 7.3.
Using absolute convergence for s = 1/2 of the integrals appearing in (8-2) we
obtain the equality (8-1) by the following argument:

9

(
1
2
,W,W ′;8

)
=

∫
Un(C)\Gn(C)

W (g)W ′(g)8((0, 0, . . . , 0, 1)g)| det g|
1
2
C

dg

=

∫
Un(C)\Gn(C)

( ∫
Un(R)\Un(C)

f (ug)ψ−1
n (u)du

)
W ′(g)8((0, 0, . . . , 0, 1)g)| det g|

1
2
C

dg

=

∫
Un(C)\Gn(C)

f (g)W ′(g)8((0, 0, . . . , 0, 1)g)| det g|
1
2
C

dg

=

∫
Gn(R)\Gn(C)

f (g)| det g|
1
2
C

( ∫
Un(R)\Gn(R)

W ′(hg)8((0, 0, . . . , 0, 1)hg)| det h|R dh
)

dg

=

∫
Gn(R)\Gn(C)

f (g)| det g|
1
2
C

Z(1, π ′(g)W ′,8(·g)|Rn ) dg.

Define f ∗(g) := f ( tg−1). Then, clearly, f ∗ ∈ CGn(R)(π̃). Applying the change of
variables u→ wn

tu−1w−1
n and the fact that f (wng) = f (g), it follows from the
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definitions that

W̃ (g)=
∫

Un(R)\Un(C)

f ∗(ug)ψ(u) du.

The same computation applied to π̃ and π̃ ′ yields

9

(
1
2
, W̃ , W̃ ′; 8̂

)
=

∫
Gn(R)\Gn(C)

f ∗(g)| det g|
1
2
C

Z(1, π̃ ′(g)W̃ ′, 8̂(·g)|Rn ) dg.

By Lemma 7.2,

Z(1, π̃ ′( tg−1)W̃ ′, 8̂(· tg−1)|Rn )= c(π ′)| det g|C Z(1, π ′(g)W ′,8(·g)|Rn ).

Finally, we obtain

9

(
1
2
, W̃ , W̃ ′; 8̂

)
= c(π ′)9

(
1
2
,W,W ′;8

)
for every Kn-finite function W ∈W(π, ψ), W ′ ∈W(π ′, ψ−1) and every8∈S(Cn).
It is well-known that there exist Kn-finite W ∈W(π, ψ), W ′ ∈W(π ′, ψ−1) such
that 9(1/2,W,W ′;8) 6= 0. It follows that c(π ′)= γ (1/2, π ×π ′;ψ). �

Appendix A: Generic Langlands quotient

In this section we sketch a proof of the well-known fact that the Langlands quotient
of I (χ) is generic if and only if I (χ) is irreducible. This fact follows from the papers
of Kostant [1978] and Vogan [1978]. For the convenience of the reader we rewrite
it here. Similar results for GLn(R) were obtained by Casselman and Zuckerman.

Let g= Mn(C) be the Lie algebra of Gn(C) and let K be the standard maximal
compact subgroup of Gn(C).

Definition. An irreducible (g, K )-module X is called large if its annihilator in the
universal enveloping algebra U (g) is a minimal primitive ideal. We will say that
a smooth irreducible representation (π, V ) of Gn(C) is large if the corresponding
(g, K )-module consisting of K-finite vectors in V is large.

Let χ = (χ1, χ2, . . . , χn) be a character of Bn(C) and suppose |χ j (t)| = |t |λ j

with λ1 ≥ λ2 ≥ · · · ≥ λn . By [Vogan 1978, Theorem 6.2], if (σ,W ) is an irre-
ducible subrepresentation of I (χ) then (σ,W ) is large. Suppose (π, V ) is the
Langlands quotient of I (χ) and suppose (π, V ) is generic. Then by Kostant’s
theorem (π, V ) is large. On the other hand, [Vogan 1978, Corollary 6.7] states
that there is a unique large composition factor in the composition series for I (χ).
We obtain (π, V )' (σ,W ) and thus (σ,W )= I (χ); that is, I (χ) is an irreducible
representation.
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Appendix B: Gamma factors: converse direction

Fix a smooth, irreducible, generic and admissible representation (π, V ) of Gn(C).
Suppose we know that

(B-1) γ

(
1
2
, π ×π ′, ψ

)
= 1

for every m ≤ k and every smooth irreducible Gm(R)-distinguished representation
(π ′, V ′) of Gm(C). What is the minimal k such that (B-1) implies that (π, V ) is
Gn(R)-distinguished? In this section we give an answer to this question in the case
when (π, V ) is a unitary representation.

In the following two theorems we prove that k = 1 is enough. Theorem B.1 is a
particular case of Theorem B.2. Nevertheless we state and prove it since the proof
of Theorem B.1 is simpler than and may aid in the understanding of the proof of
Theorem B.2.

Theorem B.1. Let χ = (χ1, χ2, . . . , χn) be a unitary character of Bn and suppose
that χ j (z)= |z|

sj
C
(z/|z|)kj with sj purely imaginary and kj ∈ Z for every 1≤ j ≤ n.

Suppose (π, V )= I (χ) is a smooth, generic and irreducible representation of Gn(C).
Finally, suppose

γ

(
1
2
, π ×χ ′, ψ

)
= 1

for every R×-distinguished unitary character χ ′ : C×→ R×. Then there exists an
involution w ∈ Sn such that wχ = (χ−1). Moreover, one can find an involution
w ∈ Sn such that wχ = (χ−1) and such that, for every fixed point w(i) = i , the
integer ki is even.

Proof. Observe that every R×-distinguished unitary character χ ′ : C→ R× is of
the form χ(z)= (z/|z|)2m for m ∈ Z. By [Jacquet 2009, Lemma 16.3] we have

γ

(
1
2
, Ind(χ)×χ ′, ψ

)
=

n∏
i=1

γ

(
1
2
, χiχ

′, ψ

)
,

where γ (1/2, χiχ
′, ψ) is the one-dimensional Tate gamma factor. Following Tate

[Cassels and Frölich 1967], denote cm(z)= (z/|z|)m and recall that the Tate gamma
factor is given by

γ (s, cm, ψ)= εm
(2π)1−s0

(
s+ |m|2

)
(2π)s0

(
(1− s)+ |m|2

) ,
where

εm =

{
1 if m is even or m > 0,
−1 if m is odd and m < 0.
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Let us rewrite the equality γ (1/2, Ind(χ)×χ ′, ψ)= 1 as

(B-2)
n∏

i=1

ε2m+ki

(2π)
1
2−si

(2π)
1
2+si

0
(1

2 + si +
|ki+2m|

2

)
0
(1

2 − si +
|ki+2m|

2

) = 1

for every m ∈ Z. The product in (B-2) breaks into three products:

pm,1 =

n∏
i=1

ε2m+ki ,

pm,2 =

n∏
i=1

(2π)
1
2−si

(2π)
1
2+si
= (2π)−2s1−2s2−···−2sn ,

pm,3 =

n∏
i=1

0
( 1

2 + si +
|ki+2m|

2

)
0
(1

2 − si +
|ki+2m|

2

) .
Note that the term pm,2 is constant (does not depend on m) and the term pm,1

stabilizes (that is, pm,1 = pm+1,1 for large enough and for small enough m). Also,
we have |ki +m| = ki +m for m large enough. Let us take m large enough and
look at the expression

pm+1,1 pm+1,2 pm+1,3

pm,1 pm,2 pm,3
.

By our assumption this fraction equals 1 for every m. For m large enough we
have pm+1,1 pm+1,2 = pm,1 pm,2, so pm+1,3/pm,3 = 1. By the functional equation
0(z+ 1)= z0(z) we obtain

1=
pm+1,3

pm,3
=

n∏
i=1

( 1
2 + si +

ki+2m
2

)( 1
2 − si +

ki+2m
2

) .
Thus,

n∏
i=1

(
1
2
+ si +

ki + 2m
2

)
=

n∏
i=1

(
1
2
− si +

ki + 2m
2

)
for large enough m ∈ Z. Since both sides are polynomials in m, the polynomials
are equal. As a consequence, the zeros of these two polynomials coincide; that is,
for every 1≤ i ≤ n there exists a 1≤ j ≤ n such that

1
2
− si +

ki

2
=

1
2
+ sj +

kj

2
.

By our assumption the si s are purely imaginary and the ki s are integers. Thus,
−si = sj and ki = kj . Note that s̄i =−si and this means exactly that we can define
w(i)= j , w( j)= i and χ j = χ̄i

−1
= χw(i). Therefore, there exists an involution

w ∈ Sn such that w(χ)= χ̄−1.
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From the proof of the existence of an involution w it follows that
∑n

j=1 sj = 0
and that the products pm,2 = 1 and pm,3 = 1 for every m ∈ Z. This establishes the
existence of an involution w ∈ Sn such that w(χ) = χ̄−1. It remains to establish
the second property: existence of an involution such that, in addition, for every
fixed point w( j)= j of the involution the corresponding integer kj is even. Note
that if i is a fixed point of w then si = 0. Without loss of generality assume that if
w(i)= i and w( j)= j , then ki 6= kj . Otherwise we can define an involution w′ by
w′(i)= j , w′( j)= i and w′(l)= w(l) for l 6= i, j and the new involution w′ also
satisfies w′(χ)= χ̄−1.

Assume on the contrary thatw(i)= i but that ki is odd. Then take two consecutive
products pm,1 and pm+1,1 for m = (−ki −1)/2. Observe that ε2m+ki =−ε2(m+1)+ki

and that the other terms appearing in the products pm,1 and pm+1,1 equal each other
respectively. As a consequence, pm+1,1=−pm,1. But from the preceding paragraph
we have pm,2= pm+1,2= 1 and also pm,3= pm+1,3= 1 and thus pm+1,1= pm,1= 1.
Contradiction!

Therefore, if w(i)= i then the integer ki is even; that is, χi (−1)= 1. �

A small modification of this proof gives a stronger theorem.

Theorem B.2. Let χ = (χ1, χ2, . . . , χn) be a character of Bn and suppose that
χ j (z) = |z|

sj
C
(z/|z|)kj with −1/2 < Re(sj ) < 1/2 and kj ∈ Z for every 1 ≤ j ≤ n.

Suppose (π, V )= I (χ) is a smooth, generic, irreducible representation of Gn(C).
Finally, suppose

γ

(
1
2
, π ×χ ′, ψ

)
= 1

for every R×-distinguished unitary character χ ′ : C×→ R×. Then there exists an
involution w ∈ Sn such that wχ = (χ−1). Moreover, one can find an involution
w ∈ Sn such that wχ = (χ−1) and such that, for every fixed point w(i) = i , the
integer ki is even.

Proof. By the same argument as in the previous theorem we obtain that for every
1≤ i ≤ n there exists a 1≤ j ≤ n such that

1
2
− si +

ki

2
=

1
2
+ sj +

kj

2
.

By subtracting 1/2 from both sides of this equality and taking real parts we can
replace sj by Re(sj ). Thus we can assume that for every 1 ≤ i ≤ n we have
−1/2 < si < 1/2 and also for every 1 ≤ i ≤ n there exists a 1 ≤ j ≤ n such that
−si + ki/2 = sj + kj/2. Multiply both sides of this equation by 2 and replace si

by 2si . Then, we can assume that for every 1 ≤ i ≤ n we have −1 < si < 1 and
also for every 1≤ i ≤ n there exists a 1≤ j ≤ n such that

−si + ki = sj + kj .



GAMMA FACTORS OF DISTINGUISHED REPRESENTATIONS OF GLn(C) 169

Let us call this condition the “antisymmetry condition”. The claim is that the
“antisymmetry condition” implies that there exists an involution w ∈ Sn such that
w(χ) = χ̄−1; that is, if w(i) = j then si = −sj and ki = kj . The proof of the
existence of an involution w is by induction on n. Clearly, for n = 1 the condition
−s1+ k1 = s1+ k1 gives us s1 = 0 and thus the identity involution w(1)= 1 works.
For a general n it is enough that the “antisymmetry condition” implies that there
is a pair i , j such that si = −sj and ki = kj . Note that if i = j then si = −si

implies si = 0.
Suppose on the contrary that there are {si }

n
i=1 ⊂ (−1, 1) and {ki }

n
i=1 ⊂ Z that

satisfy the “antisymmetry condition”, but there is no pair of indices 1≤ i , j ≤ n
that satisfy si = −sj and ki = kj . In particular, there is some 1 ≤ i ≤ n such that
−s1+ k1 = si + ki . By our assumption we have i > 1, so without loss of generality
assume i = 2. Let us assume s1 > 0; the proof in the case s1 < 0 is similar and
s1= 0 is not possible by our assumption. We obtain k1−k2= s1+s2. The left-hand
side is an integer and we have −1< s1+ s2 < 2. Thus s1+ s2 = 0 or s1+ s2 = 1.
The case s1 + s2 = 0 is not possible by our assumption, thus s1 + s2 = 1 and as
a corollary s2 > 0 and k2 = k1 − 1. Similarly, there is some 1 ≤ i ≤ n such that
−s2+ k2 = si + ki . By the same argument we obtain si > 0 and ki = k2− 1. Thus
i 6= 1, 2 and without loss of generality we can assume i = 3. Continuing in this
manner we obtain an infinite sequence of integers kj such that kj = k1+ ( j − 1).
Contradiction!

Thus there is a pair of indices 1 ≤ i , j ≤ n such that si = −sj and ki = kj .
Removing them from our sequence of length n we obtain a shorter sequence which
satisfies the “antisymmetry condition”.

Thus, we have proved that there is an involution w ∈ Sn such that w(χ)= χ̄−1.
The rest of the argument, that is, the proof of the existence of an involution w such
that for every fixed point j of the involution the corresponding integer kj is even, is
the same as in the proof of the previous theorem. �

As a corollary, using the Tadic–Vogan classification of the unitary dual of Gn(C),
we obtain the following theorem.

Theorem B.3. Let χ = (χ1, χ2, . . . , χn) be a character of Bn and suppose that
(π, V ) = Ind(χ) is a smooth, generic, irreducible, and unitary representation
of Gn(C). Suppose

γ

(
1
2
, π ×χ ′, ψ

)
= 1

for every R×-distinguished unitary character χ ′ : C×→ R×. Then there exists an
involution w ∈ Sn such that wχ = (χ−1). Moreover, one can find an involution
w ∈ Sn such that wχ = (χ−1) and such that, for every fixed point w(i) = i , the
integer ki is even.
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Proof. Let us define χ j (z)= |z|
sj
C
(z/|z|)kj , where sj ∈ C and kj ∈ Z. The theorem

follows from Theorem B.2 and the fact that the unitaricity of Ind(χ) implies
−1/2< Re(sj ) < 1/2 for every 1≤ j ≤ n (see [Tadić 1985, Theorem A]). �

Finally, by [Panichi 2001, Theorem 3.3.6] we know that an irreducible tempered
representation (π, V ) of Gn(C) is Gn(R)-distinguished if and only if there exists
an involution w ∈ Sn such that wχ = (χ−1) and such that, for every fixed point
w(i)= i , the integer ki is even. Therefore, an irreducible tempered representation
(π, V ) of Gn(C) is Gn(R)-distinguished if and only if

γ

(
1
2
, π ×χ ′, ψ

)
= 1

for every R×-distinguished unitary character χ ′ : C×→ R×.
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THE W -ENTROPY FORMULA FOR THE WITTEN LAPLACIAN
ON MANIFOLDS WITH TIME DEPENDENT METRICS

AND POTENTIALS

SONGZI LI AND XIANG-DONG LI

We develop a new approach to prove the W-entropy formula for the Witten
Laplacian via warped product on Riemannian manifolds, giving a natural
geometric interpretation of the quantities appearing in the W-entropy for-
mula. We also prove the W-entropy formula for the Witten Laplacian on
compact Riemannian manifolds with time dependent metrics and poten-
tials, as well as for the backward heat equation associated with the Witten
Laplacian on compact Riemannian manifolds equipped with Lott’s modi-
fied Ricci flow. Our results extend to complete Riemannian manifolds with
negative m-dimensional Bakry–Émery Ricci curvature, and to compact Rie-
mannian manifolds with K-super m-dimensional Bakry–Émery Ricci flow.
As an application, we prove that the optimal logarithmic Sobolev constant
on compact manifolds equipped with the K-super m-dimensional Bakry–
Émery Ricci flow is decreasing in time.

1. Introduction

Let M be a complete Riemannian manifold with a fixed Riemannian metric g and a
fixed potential φ ∈ C2(M). Let dµ= e−φ dv, where dv is the Riemannian volume
measure on (M, g). The Witten Laplacian (also called the weighted Laplacian),

L =1−∇φ · ∇,

is a self-adjoint and nonnegative operator on L2(M, µ). By Itô’s calculus, one can
construct the symmetric diffusion process X t associated to the Witten Laplacian by
solving the SDE

dX t =
√

2 dWt −∇φ(X t) dt,
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where Wt is the Brownian motion on M . Moreover, it is well known that the
transition probability density function of the diffusion process X t is exactly the
fundamental solution to the heat equation of L , i.e., the heat kernel of the Witten
Laplacian L . In view of this, it is a fundamental problem to study the heat equation
and related properties for the Witten Laplacian on manifolds.

In recent years, important progress has been made in the study of the heat
equation associated with the Witten Laplacian by using new ideas and new methods
from geometric analysis, PDEs and probability theory. In particular, F. Otto [2001]
introduced an infinite dimensional Riemannian structure on the Wasserstein space
of probability measures on Rn and proved that the heat equation

(1) ∂t u = Lu

can be realized as the reverse gradient flow of the Boltzmann–Shannon entropy1

H(u)=−
∫

M
u log u dµ.

See also [Otto and Villani 2000; Sturm 2005; von Renesse and Sturm 2005; Villani
2003; 2009] for the extension of Otto’s work to Riemannian manifolds.

The Witten Laplacian is a natural extension of the standard Laplace–Beltrami
operator and has a close connection to differential geometry, probability theory,
quantum field theory and statistical mechanics. In view of this, it is natural to raise
the question whether one can extend the results which hold for the standard Laplace–
Beltrami operator to the Witten Laplacian on manifolds. The main tool which
makes such an extension possible is the so-called Bakry–Émery Ricci curvature
associated to L [Bakry and Émery 1985],

Ric(L)= Ric+∇2φ,

which plays the same role as the Ricci curvature for the standard Laplace–Beltrami
operator. We refer the reader to [Bakry and Qian 1999; Bakry and Ledoux 2006; Li
2005] for the Li–Yau Harnack estimates and the heat kernel estimates to the heat
equation (1), and to [Li 2005] for the extension of S.-T. Yau’s Strong Liouville
theorem for the positive L-harmonic functions and the L1-uniqueness of the heat
equation on complete Riemannian manifolds. See also [Andrews and Ni 2012;
Bakry and Qian 2000; Fang et al. 2009; Futaki et al. 2013; Otto and Villani 2000;
von Renesse and Sturm 2005; Villani 2003; 2009; Wei and Wylie 2009] for other
results on the Witten Laplacian and Bakry–Émery Ricci curvature on manifolds
with weighted measures.

1Equivalently, the heat equation (1) is the gradient flow of Ent(u)=−H(u) on the Wasserstein
space P2(R

n) equipped with Otto’s infinite dimensional Riemannian metric.
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The Bakry–Émery Ricci curvature has been essentially used in Perelman’s work
on the entropy formula for Ricci flow. Perelman [2002] first introduced the F-
functional on the space of Riemannian metrics and smooth functions, i.e., M =

{Riemannian metric g on M}×C∞(M), as follows:

F(g, f )=
∫

M
(R+ |∇ f |2)e− f dv,

where f ∈ C∞(M), R denotes the scalar curvature on (M, g), and dv denotes the
volume measure. Under the constraint condition which requires that

dm = e− f dv

is a fixed weighted measure on (M, g), Perelman proved that the gradient flow of
F with respect to the standard L2-metric on M is given by the modified Ricci flow

∂t g =−2(Ric+∇2 f ),

and f satisfies the so-called conjugate heat equation

∂t f =−1 f − R.

Moreover, Perelman [2002] introduced the W-entropy and proved its monotonicity
for the Ricci flow on compact manifolds. This result plays an important role in the
proof of the no local collapsing theorem and in the final resolution of the Poincaré
and geometrization conjectures (see also [Cao and Zhu 2006; Morgan and Tian
2007; Kleiner and Lott 2008]). Since then, many people have derived the W-entropy
formula for various geometric evolution equations and used it to study further
analysis and geometric properties of manifolds. See, e.g., [Chow et al. 2006; Chang
et al. 2011; Kleiner and Lott 2008; Ni 2004a; 2004b; Ecker 2007; Lu et al. 2009;
Kotschwar and Ni 2009].

In [Li 2012] (see also [Li 2007; 2011; 2014]), inspired by Perelman’s work on the
W-entropy formula for Ricci flow, the second author proved the W-entropy formula
for the fundamental solution of the Witten Laplacian on complete Riemannian
manifolds with the bounded geometry condition. This extends a previous result due
to Ni [2004b; 2004a], who proved an analogue of Perelman’s W-entropy formula
for the heat equation ∂t u = 1u on complete Riemannian manifolds with a fixed
metric. More precisely, we have:

Theorem 1.1 [Li 2007; 2012; 2011; 2014]. Let (M, g) be a compact Riemannian
manifold, or a complete Riemannian manifold with the bounded geometry con-
dition,2 and φ ∈ C4(M) with ∇φ ∈ C3

b(M). Let m ≥ n, and u = e− f/(4π t)m/2

be a positive solution of the heat equation ∂t u = Lu when M is compact, or the

2We say that (M, g) satisfies the bounded geometry condition if the Riemannian curvature tensor
Riem and its covariant derivatives ∇k Riem are uniformly bounded on M , k = 1, 2, 3.
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fundamental solution associated with the Witten Laplacian, i.e., the heat kernel to
the heat equation ∂t u = Lu, when M is complete. Let

Hm(u, t)=−
∫

M
u log u dµ− m

2
(1+ log(4π t)).

Define

Wm(u, t)= d
dt
(t Hm(u)).

Then

(2) Wm(u, t)=
∫

M

(
t |∇ f |2+ f −m

) e− f

(4π t)m/2
dµ

and

(3) d
dt

Wm(u, t)=−2
∫

M
t
(∣∣∣∇2 f − g

2t

∣∣∣2+Ricm,n(L)(∇ f,∇ f )
)

u dµ

−
2

m−n

∫
M

t
(
∇φ · ∇ f + m−n

2t

)2
u dµ,

where

Ricm,n(L)= Ric+∇2φ−
∇φ⊗∇φ

m−n

is the m-dimensional Bakry–Émery Ricci curvature associated with the Witten
Laplacian L.

In particular, if (M, g, φ) is compact or satisfies the bounded geometry condition
and Ricm,n(L)≥ 0, then the W-entropy is decreasing in time t , i.e.,

d
dt

Wm(u, t)≤ 0, for all t ≥ 0.

The purpose of this paper is to extend the W-entropy formula in Theorem 1.1 to the
heat equation (1) associated with the time dependent Witten Laplacian on compact
Riemannian manifolds equipped with time dependent metrics and potentials. In
view of Perelman’s work using the W-entropy formula for the Ricci flow to remove
“the major stumbling block in Hamilton’s approach to geometrization” [Perelman
2002], it might be possible that the W-entropy formula for the time dependent
Witten Laplacian can bring some new insights to the study of geometric analysis on
Riemannian manifolds with time dependent metrics and potentials. Our results can
be regarded as the m-dimensional analogue of Perelman’s results for the Ricci flow,
where the Ricci curvature for the Ricci flow is replaced by the m-dimensional Bakry–
Émery Ricci curvature, and the Laplacian is replaced by the Witten Laplacian.

We are now in a position to state the main results of this paper.
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Theorem 1.2. Let (M, g(t), t ∈ [0, T ]) be a family of compact Riemannian man-
ifolds with potential functions φ(t) ∈ C∞(M), t ∈ [0, T ]. Suppose that g(t) and
φ(t) satisfy the conjugate equation

∂φ

∂t
=

1
2

Tr
(
∂g
∂t

)
.

Let
L =1g(t)−∇g(t)φ(t) · ∇g(t)

be the time dependent Witten Laplacian on (M, g(t), φ(t)). Let u be a positive
solution of the heat equation

∂t u = Lu

with initial data u(0) satisfying
∫

M u(0) dµ(0)= 1. Let

Hm(u, t)=−
∫

M
u log u dµ− m

2
(1+ log(4π t)).

Define

Wm(u, t)= d
dt
(t Hm(u)).

Then

Wm(u, t)=
∫

M

(
t |∇ log u|2− log u− m

2
(2+ log(4π t))

)
u dµ,

and

(4) d
dt

Wm(u, t)=−2t
∫

M

∣∣∣∇2 log u+ g
2t

∣∣∣2u dµ

−
2t

m−n

∫
M

(
∇φ · ∇ log u− m−n

2t

)2
u dµ

− 2
∫

M
t
(1

2
∂g
∂t
+Ricm,n(L)

)
(∇ log u,∇ log u)u dµ.

In particular, if {g(t), φ(t), t ∈ (0, T ]} satisfies the m-dimensional Perelman super
Ricci flow and the conjugate equation

1
2
∂g
∂t
+Ricm,n(L)≥ 0,(5)

∂φ

∂t
=

1
2

Tr
(
∂g
∂t

)
,(6)

then Wm(u, t) is decreasing in t ∈ (0, T ], i.e.,

d
dt

Wm(u, t)≤ 0, for all t ∈ (0, T ].
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As an application of the W-entropy formula for the Witten Laplacian on manifolds
with time dependent metrics and potentials, in the following theorem we prove that
the optimal logarithmic Sobolev constant associated with the Witten Laplacian on
compact manifolds equipped with the m-dimensional Perelman super Ricci flow is
decreasing in time.

Theorem 1.3. Let (M, g(t), φ(t), t ∈ [0, T ]) be as in Theorem 1.2. Then, for any
fixed t ∈ [0, T ], there exists a positive and smooth function u = e−v/2 such that v
achieves the optimal logarithmic Sobolev constant µ(t) defined by

µ(t) := inf
{

Wm(u, t) :
∫

M

e−v

(4π t)m/2
dµ= 1

}
.

Indeed, u = e−v/2 is a solution to the nonlinear PDE

−4t Lu− 2u log u−mu = µ(t)u.

Moreover, if {g(t), φ(t), t ∈ [0, T ]} satisfies the m-dimensional Perelman super
Ricci flow (5) and the conjugate equation (6), then µ(t) is decreasing in t on [0, T ].

Remark 1.4. We believe that, via the approach used in [Li 2012; 2011; 2014], it
would be possible to further extend the W-entropy formula in Theorem 1.2 to the
fundamental solution of the heat equation associated with the Witten Laplacian
on complete Riemannian manifolds with time dependent metrics and potentials
satisfying the bounded geometry condition. Technically, this would require some
Hamilton-type gradient estimates for the logarithm of the heat kernel of the Witten
Laplacian on complete Riemannian manifolds with time dependent metrics and
potentials satisfying the uniformly bounded geometry condition.3 We will study
this problem in a forthcoming paper. If this can be verified, we can derive, for a
family {g(t), φ(t), t ∈ (0, T ]} of metrics and potentials satisfying (5) and (6) on a
complete Riemannian manifold M with the uniformly bounded geometry condition,
that

d
dt

Wm(u, t)= 0, for some t = τ ∈ (0, T ]

if and only if at time t = τ , we have

∇
2 log u =− g

2τ
,

1
2
∂g
∂t
+Ricm,n(L)= 0, and ∇φ · ∇ log u = m−n

2τ
.

By the same argument as used in [Li 2012; 2011; 2014], we can further prove
the following rigidity result. Let {g(t), φ(t), t ∈ (0, T ]} be a family of metrics and
potentials satisfying (5) and (6) on a complete Riemannian manifold M with the

3We say that (M, g(t), φ(t), t ∈ [0, T ]) satisfies the uniformly bounded geometry condition if
there exists some N ∈N such that for all ε∈ (0, T ), the k-th order covariant derivatives ∇k Riem(g(t))
of the Riemannian curvature tensor Riem(g(t)), as well as the k-th order covariant derivatives ∇kφ(t)
of φ(t), are uniformly bounded on [ε, T ]×M for k = 0, . . . , N .
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uniformly bounded geometry condition. Let u be the fundamental solution to the
heat equation ∂t u = Lu. Then

d
dt

Wm(u, t)= 0, for some t = τ ∈ (0, T ],

if and only if (M, g(τ )) is isometric to Rn , φ(τ) is identically equal to a constant,
m = n, ∂g/∂t = 0, ∂φ/∂t = 0 at t = τ , and

u(x, τ )= e−‖x‖
2/4τ

(4πτ)n/2
, for all x ∈ M = Rn.

The rest of this paper is organized as follows. In Section 2, we give a new proof
of Theorem 1.1.4 In Section 3, we prove the dissipation formula of the Boltzmann–
Shannon entropy for the heat equation of the Witten Laplacian on compact manifolds
with time dependent metrics and potentials. In Section 4, we prove Theorem 1.2
and Theorem 1.3. In Section 5, we use Perelman’s W-entropy formula for Ricci
flow to derive the W-entropy formula for the backward heat equation of the Witten
Laplacian on compact Riemannian manifolds equipped with a modified Ricci flow
introduced by Lott [2009]. In Section 6, we extend Theorem 1.1 and Theorem 1.2
to the case Ricm,n(L)≥−K and compact K-super m-dimensional Bakry–Émery
Ricci flow.

2. A new proof of Theorem 1.1

To prove Theorem 1.1, we first recall some elementary geometric formulas on
warped product metrics.

Let m ∈ N, m ≥ n. Let M̃ = M × N , where (N , gN ) is a compact Riemannian
manifold with dimension q = m − n. Let φ ∈ C2(M). We consider the warped
product metric

(7) g̃ = gM ⊕ e−2φ/q gN .

on M̃ . Let νN be the volume measure on N . Then the volume measure on (M̃, g̃)
is given by

d volM̃ = e−φ d volM ⊗ dνN

Define
dµ= e−φ d volM .

Then
d volM̃ = dµ⊗ dνN .

4 One of the advantages of our new proof is that it gives a natural geometric interpretation of the
third term appearing in the W-entropy formula (3). See Remark 2.2.
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Without loss of generality, we may assume that

νN (N )= 1.

Let 0̃ be the Christoffel symbol on (M̃, g̃). By direct calculation, we verify that

0̃k
i j = 0

k
i j , 0̃k

αβ = q−1gkl∂lφgαβ, 0̃
γ

αβ = 0
γ

αβ,

0̃αi j = 0, 0̃k
iα = 0, 0̃

β

iα = 0.

Let ∇̃ be the Levi-Civita connection on (M̃, g̃). For any f ∈ C2(M), using the
formulas

∇̃
2
i j f = ∂i∂ j f − 0̃k

i j∂k f, ∇̃2
iα f = ∂i∂α f − 0̃k

iα∂k f, ∇̃2
αβ f = ∂α∂β f − 0̃k

αβ∂k f,

we have

∇̃
2
i j f =∇2

i j f,(8)

∇̃
2
αβ f =−q−1gkl∂lφ∂k f gαβ,(9)

∇
2
iα f = 0.(10)

Hence

(11)
∣∣∣∇̃2 f − g̃

2t

∣∣∣2 = ∣∣∣∇2 f − g
2t

∣∣∣2+ ∣∣∣∇̃2
αβ f −

gαβ
2t

∣∣∣2
=

∣∣∣∇2 f − g
2t

∣∣∣2+ ∣∣∣gkl∂lφ∂k f gαβ
q

+
gαβ
2t

∣∣∣2
=

∣∣∣∇2 f − g
2t

∣∣∣2+ ∣∣∣(∇φ ·∇ f
m−n

+
1
2t

)
gαβ

∣∣∣2
=

∣∣∣∇2 f − g
2t

∣∣∣2+ 1
m−n

(
∇φ · ∇ f + m−n

2t

)2
.

The following result was obtained in a private discussion between Bing-Long
Chen and the second author in January 2006.

Theorem 2.1. The Laplace–Beltrami operator on (M̃, g̃) is given by

1M̃ = L + e−2φ/(m−n)1N .

Proof. The proof can be given by a direct calculation. �

Proof of Theorem 1.1. To avoid technical issues, we only consider the case of
compact manifolds. Let u = e− f/(4π t)m/2 : M→ [0,∞) be a positive solution to
the heat equation ∂t u = Lu. Then it satisfies the heat equation

∂t u =1M̃ u
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on (M̃, g̃). Since f depends only on the variable in the M-direction, we have
∇̃ f =∇ f . Therefore, the W-entropy functional Wm(u, t) defined by (2) coincides
with the W-entropy functional

(12) W̃m(u, t)=
∫

M̃

[
t |∇̃ f |2+ f −m

] e− f

(4π t)m/2
d volM̃

defined on (M̃, g̃). Applying to (M̃, g̃) the W-entropy formula for the heat equation
∂t u =1u on compact Riemannian manifolds with fixed metrics due to Ni [2004b;
2004a], we have

(13) d
dt

W̃m(u, t)=−2
∫

M̃
t
(∣∣∣∇̃2 f − g̃

2t

∣∣∣2+ R̃ic
(
∇̃ log u, ∇̃ log u

))
u dµdvN .

By (11), we have

(14)
∣∣∣∇̃2 f − g̃

2t

∣∣∣2 = ∣∣∣∇2 f − g
2t

∣∣∣2+ 2
m−n

(
∇φ · ∇ f + m−n

2t

)2
.

On the other hand, by [Besse 1987; Lott 2003; Li 2005], we have

(15) R̃ic
(
∇̃ log u, ∇̃ log u

)
= Ricm,n(L)(∇ log u,∇ log u).

From (13), (14) and (15), we obtain (3). This finishes the new proof of Theorem 1.1
in the case of compact manifolds. �

Remark 2.2. One of the advantages of the above proof is that when m ∈ N and
m > n, the quantity

1
m−n

(
∇φ · ∇ f + m−n

2t

)2

appearing in the W-entropy formula in Theorem 1.1 has a natural geometric inter-
pretation. It corresponds to the vertical component of the quantity

∣∣∇̃2 f − g̃/2t
∣∣2

on the warped product manifold M̃ = M × N equipped with the metric

g̃ = g⊕ e−2φ/(m−n)gN .

In the case where (M, g) is a complete Riemannian manifold with the bounded
geometry condition, similarly to [Lott 2003; Charalambous and Lu 2015], by
introducing a sequence of warped product metrics {g̃ε} on M̃ = M × N defined by

g̃ε = g⊕ ε2e−2φ/(m−n)gN ,

and using the fact that the heat kernel of the Laplace–Beltrami 1(M̃,g̃ε) on (M̃, g̃ε)
(with renormalized volume measure) converges in the C2,α

∩W 2,p-topology to the
heat kernel of the Witten Laplacian L =1M−∇φ ·∇ on (M, g, µ), we can use the
same approach as in the compact case to give a new proof of the W-entropy formula
for the heat kernel of the Witten Laplacian on complete Riemannian manifolds
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satisfying the bounded geometry condition in Theorem 1.1. We will study this
problem in detail in the future.

Remark 2.3. We would like to mention that, after the first version of this paper [Li
and Li 2014b] was posted online in March 2013, N. Charalambous and Z. Lu posted a
preprint [2015] in which they used the warped product approach to prove the Li–Yau
differential Harnack inequality on complete Riemannian manifolds with weighted
volume measure. Recently we also found a paper by H. Guo, R. Philipowski and
A. Thalmaier [2015], in which they studied the Boltzmann entropy dissipation
formula on manifolds with time dependent metrics. We would also like to point
out that G. Huang and H. Li [2014] extended the W-entropy formula for the heat
equation of the Witten Laplacian in Theorem 1.1 to the porous medium equation
for the Witten Laplacian on compact Riemannian manifolds with fixed metric and
potential. We can use the same method developed in Section 2 to give a new proof
of their result. See also related works of Y.-Z. Wang et al. [2013; 2014].

3. Dissipation formula of the Boltzmann–Shannon entropy

Let (M, g(t), φ(t)) be as in Theorem 1.2. Following [Bakry and Émery 1985; Lott
2003; Li 2005], we introduce the Bakry–Émery Ricci curvature associated with L
as

Ric(L)= Ric+∇2φ.

The purpose of this section is to prove the following dissipation formula for the
Boltzmann–Shannon entropy associated with the Witten Laplacian on manifolds
with time dependent metrics and potentials.

Theorem 3.1. Let u be a positive solution to the heat equation ∂t u = Lu. Let

H(u, t)=−
∫

M
u log u dµ

be the Boltzmann–Shannon entropy associated with the Witten Laplacian L. Then

(16) ∂2

∂t2 H(u, t)

=−2
∫

M

(
|∇

2 log u|2+
(1

2
∂g
∂t
+Ric(L)

)
(∇ log u,∇ log u)

)
u dµ.

Proof. By direct calculation, we have

∂

∂t
H(u, t)=−

∫
M
∂t u(log u+ 1) dµ=−

∫
M

Lu(log u+ 1) dµ.

Integrating by parts yields

∂

∂t
H(u, t)=

∫
M

∣∣∇ log u
∣∣2
g(t)u dµ,
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which further implies that, as ∂t(dµ)= 0, we have

(17) ∂2

∂t2 H(u, t)=
∫

M

∂

∂t
(∣∣∇ log u

∣∣2
g(t)u

)
dµ

=

∫
M

[
∂gi j

∂t
∇i log u∇j log u

]
u dµ+

∫
M

∂

∂t

[
|∇u|2

u

]
g(t) fixed

dµ

=

∫
M

[
−
∂gi j

∂t
∇i log u∇j log u

]
u dµ+

∫
M

∂

∂t

[
|∇u|2

u

]
g(t) fixed

dµ

=

∫
M

(
−
∂g
∂t
(∇ log u,∇u)+ ∂

∂t

[
|∇u|2

u

]
g(t) fixed

)
dµ,

where [·]g(t) fixed means that the quantity |∇u|2 in [·] is defined under a fixed
metric g(t). We have also used the facts |∇ log u|2 = gi j

∇i log u∇j log u and
∂t gi j
=−∂t gi j .

By the entropy dissipation formula in [Bakry and Émery 1985; Li 2014], we have

(18)
∫

M

∂

∂t

[
|∇u|2

u

]
g(t) fixed

dµ

=−2
∫

M

[
|∇

2 log u|2+Ric(L)(∇ log u,∇ log u)
]
u dµ.

Combining (17) and (18) completes the proof of Theorem 3.1. �

As an easy consequence of Theorem 1.2, we have the following corollary.

Corollary 3.2. Let (M, g(t)) be a closed manifold with a potential φ(t). Suppose
that (g(t), φ(t)) satisfies the Perelman super Ricci flow and the conjugate equation:

∂g
∂t
≥−2 Ric(L), ∂φ

∂t
=

1
2

Tr
(
∂g
∂t

)
.

Let u be a positive solution to the heat equation ∂t u = Lu. Then the Boltzmann–
Shannon entropy

H(u, t)=−
∫

M
u log u dµ

is concave in time t , i.e.,
d2

dt2 H(u, t)≤ 0.

4. Proofs of Theorem 1.2 and Theorem 1.3

Following [Li 2014], we introduce

W (u, t)= d
dt
(t H(u, t)).

By direct calculation, we can prove the following.
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Proposition 4.1. We have

W (u, t)=
∫

M

[
t |∇ log u|2− log u

]
u dµ,

and

(19) d
dt

W (u, t)

=−2
∫

M
t
(
|∇

2 log u|2+
(1

2
∂g
∂t
+Ric(L)

)
(∇ log u,∇ log u)

)
u dµ

+ 2
∫

M
|∇ log u|2u dµ.

Remark 4.2. From (19), we can derive that if

1
2
∂g
∂t
+Ric(L)− 1

t
≥ 0,

then
d
dt

W (u, t)≤ 0.

Let
Hm(u, t)=−

∫
M

u log u dµ− m
2
(
1+ log(4π t)

)
.

Following [Perelman 2002; Ni 2004a; 2004b; Li 2012; 2014], we define Wm(u, t)
by the Boltzmann entropy formula

(20) Wm(u, t)= d
dt
(t Hm(u)).

We can verify that Wm(u, t) coincides with the expression given in Theorem 1.2,
namely

Wm(u, t)=
∫

M

(
t |∇ log u|2− log u− m

2
(2+ log(4π t))

)
u dµ.

Proof of Theorem 1.2. By (20) and (16) in Theorem 3.1, we have

(21) d
dt

Wm(u, t)

=−2
∫

M
t
(
|∇

2 log u|2+
(1

2
∂g
∂t
+Ric(L)

)
(∇ log u,∇ log u)

)
u dµ

+ 2
∫

M
|∇ log u|2u dµ− m

2t
.

Note that

2t |∇2 log u|2+ m
2t
= 2t

∣∣∣∇2 log u+ g
2t

∣∣∣2+ m−n
2t
− 21 log u.

Hence
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d
dt

Wm(u, t)=−m−n
2t
− 2t

∫
M

∣∣∣∇2 log u+ g
2t

∣∣∣2u dµ

+ 2
∫

M
|∇ log u|2u dµ+ 2

∫
M
(1 log u)u dµ

− 2
∫

M
t
(1

2
∂g
∂t
+Ric(L)

)
(∇ log u,∇ log u)u dµ.

Integrating by parts yields∫
M
(1 log u)u dµ=

∫
M
(L log u+∇φ · ∇ log u)u dµ

=−

∫
M
|∇ log u|2u dµ+

∫
M
(∇φ · ∇ log u)u dµ,

whence

d
dt

Wm(u, t)=−m−n
2t
− 2t

∫
M

∣∣∣∇2 log u+ g
2t

∣∣∣2u dµ+ 2
∫

M
(∇φ · ∇ log u)u dµ

− 2
∫

M
t
(1

2
∂g
∂t
+Ric(L)

)
(∇ log u,∇ log u)u dµ.

Note that

m−n
2t
+ 2t Ric(L)(∇ log u,∇ log u)− 2∇φ · ∇ log u

= 2t Ricm,n(L)(∇ log u,∇ log u)+ 2t
m−n

(
∇φ · ∇ log u− m−n

2t

)2
.

We conclude that

d
dt

Wm(u, t)=−2t
∫

M

∣∣∣∇2 log u+ g
2t

∣∣∣2u dµ− 2t
m−n

∫
M

(
∇φ·∇ log u−m−n

2t

)2
u dµ

− 2
∫

M
t
(1

2
∂g
∂t
+Ricm,n(L)

)
(∇ log u,∇ log u)u dµ.

This proves the W-entropy formula in Theorem 1.2, and the monotonicity result
follows. �

Proof of Theorem 1.3. The proof is similar to the one used by Perelman [2002]. See
also [Li 2012]. By definition, we have

(22) µ(t)= inf
u

{∫
M

[
4t |∇u|2− u2 log u2

−mu2](4π t)−m/2 dµ
}
,

where the infimum is taken over all u such that∫
M
(4π t)−m/2u2 dµ= 1.
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Indeed, µ(t) is the optimal constant in the logarithmic Sobolev inequality stating
that for all u satisfying the above condition,∫

M
u2 log u2(4π t)−m/2 dµ≤ µ(t)+m+ 4

∫
M

t |∇u|2(4π t)−m/2 dµ.

By a similar argument as used in [Perelman 2002; Cao and Zhu 2006; Kleiner and
Lott 2008; Morgan and Tian 2007], we can prove that the minimization problem (22)
has a nonnegative minimizer u ∈ H 1(M, µ), which satisfies the Euler–Lagrange
equation

−4t Lu− 2u log u−mu = µ(t)u.

By the regularity theory of elliptic PDEs, we have u ∈ C1,α(M). By an argument
due to Rothaus [1981], we can further prove that u is strictly positive and smooth.
Hence v =−2 log u is also smooth. Moreover, as a consequence of Theorem 1.2,
we can derive that µ(t) is a decreasing function in t on [0, T ], provided that
{g(t), φ(t), t ∈ [0, T ]} satisfies the m-dimensional Perelman super Ricci flow (5)
and the conjugate equation (6). This completes the proof of Theorem 1.3. �

Remark 4.3. Let m ∈ N and m > n. Let (N , gN ) be a compact Riemannian
manifold of dimension q = m − n. Let M = M × N be the product manifold
equipped with the time dependent warped product metric

g̃(t)= g(t)⊕ e−2φ(t)/(m−n)gN .

Similarly to Remark 2.2, the quantity

1
m−n

(
∇φ(t) · ∇ log u− m−n

2t

)2

appearing in the W-entropy formula in Theorem 1.2 has a natural geometric interpre-
tation. It corresponds to the vertical component of the quantity

∣∣∇̃2 log u+ g̃(t)/2t
∣∣2

on (M, g̃(t)).

Remark 4.4. Perelman [2002] gave an interpretation of the W-entropy using the
Boltzmann entropy formula from statistical mechanics. In [Li 2012; 2011], the
second author gave a probabilistic interpretation of the W-entropy for the Ricci flow,
the heat equation of the Witten Laplacian and the Fokker–Planck heat equation.
Note that, as in [Li 2012; 2011; 2014], we have

Hm(u, t)= H(u, t)− H(γ, t)

where H(u, t) is the Boltzmann–Shannon entropy associated with the heat equation
to the Witten Laplacian on (M, g(t), φ(t)), and H(γ, t) is the Boltzmann–Shannon
entropy of the Gaussian heat kernel γ (x, t) on Rm for m ∈ N with m ≥ n,

γ (x, t)= 1
(4π t)m/2

e−‖x‖
2/4t , x ∈ Rm, t > 0.
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Thus, in view of its definition (20), the W-entropy Wm(u, t) can be regarded as the
byproduct of the Boltzmann–Shannon entropy. This gives a probabilistic interpreta-
tion of the W-entropy Wm(u, t).

On the other hand, similarly to [Perelman 2002], we can also give a heuristic
interpretation of the W-entropy using the Boltzmann entropy formula from statistical
mechanics. Suppose that there exists a canonical ensemble with a “density of state
measure” g(E) d E such that the partition function Zβ =

∫
R+

e−βE g(E) d E is given
by

(23) log Zβ = Hm(u, t),

where t = β−1. (Here, as in [Perelman 2002], we do not discuss the issue of
whether such a “density of state measure” exists or not.) Then, formally applying
the Boltzmann entropy formula from statistical mechanics, the thermodynamical
entropy of this canonical ensemble is given by

S = log Zβ −β
∂

∂β
log Zβ .

Using the fact ∂

∂β
=
∂

∂t
∂t
∂β
=−

1
β2

∂

∂t
=−t2 ∂

∂t
, we can prove

S =Wm(u, t).

Moreover, formally using the formula

d S
dβ
=−β

∂2

∂β2 log Zβ,

from statistical mechanics, we can reprove the W-entropy formula in Theorem 1.2.

5. The W-entropy for the Ricci flow on warped product manifolds

Let m ∈ N and m ≥ n. Let Tq be the q-dimensional torus with a fixed flat metric
given in local coordinates by

∑q
i=1 dx2

i , where q = m − n. Let M̃ = M ×Tq be
equipped with a time dependent warped product metric

g̃(t)=
n∑

i, j=1

gi j (t) dx i dx j
+ u(t)2/q

q∑
α=1

dx2
α.

Lott [2009] studied the Ricci flow g̃(t) on the warped product manifold M̃ =
M×Tq , which consists of a modified Ricci flow for the Riemannian metric g(t) and
a forward heat equation for a potential function ψ(t)=− log u(t) on the manifold
M . In this section, we use Perelman’s W-entropy formula for the Ricci flow g̃(t) on
the warped product manifold M̃ to derive the W-entropy formula for the backward
heat equation associated with the Witten Laplacian L =1g(t)−∇g(t)ψ(t) · ∇g(t)
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on the compact manifold M equipped with Lott’s modified Ricci flow g(t) and the
time dependent potential ψ(t).

We first recall Lott’s Ricci flow on M̃ = M ×Tq . Let u = e−ψ . Let R̃ic be the
Ricci curvature on (M̃, g̃), and Ric the Ricci curvature on (M, g). By calculation
on warped product manifolds [Besse 1987; Lott 2003; 2009], we have

(24) R̃ic= Ricq
ψ +

1
q
(1ψ − |∇ψ |2)u2/q

q∑
i=1

dx2
i ,

where Ricq
ψ is the m-dimensional Bakry–Émery Ricci curvature on (M, g) with

respect to the potential function ψ , i.e.,

Ricq
ψ = Ric+Hessψ − 1

q
∇ψ ⊗∇ψ.

See [Bakry and Émery 1985; Li 2012; 2011; 2014]. Below we will also use the
notation Ricq to denote R̃ic. By (24), the scalar curvature Rq on (M̃, g̃) is given by

Rq = R+ 21ψ −
(

1+ 1
q

)
|∇ψ |2.

The Ricci flow on M̃ is defined by

(25) ∂t g̃ =−2R̃ic.

According to [Lott 2009], the Ricci flow equation (25) is equivalent to the equations

∂t g =−2 Ricq
ψ ,(26)

∂tψ =1ψ − |∇ψ |
2.(27)

Note that the first equation (26) is indeed a modified Ricci flow equation for the
metric g(t) on M , and the second one (27) is a forward heat equation for the
potential function ψ(t) on (M, g(t)). The systems (26) and (27) are different from
Perelman’s (modified) Ricci flow and the conjugate heat equation introduced in
[Perelman 2002], i.e.,

∂g
∂t
=−2(Ric+∇2 f ),

∂ f
∂t
=−1 f − R,

and are also different from the m-dimensional Perelman Ricci flow and the conjugate
heat equation

∂g
∂t
=−2

(
Ric+∇2 f − ∇ f ⊗∇ f

m−n

)
,

∂ f
∂t
=−1 f + |∇ f |2

m−n
− R.
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Let φ be a positive solution to the conjugate heat equation on (M̃, g̃),

(28) ∂tφ =−1M̃φ+ Rqφ.

Let τ ∈ [0, T ] be such that
∂tτ =−1,

and η such that
φ = (4πτ)−(n+q)/2e−η.

We then have
∂tη =−1M̃η+ |∇η|

2
− Rq +

n+q
2τ

.

Following [Perelman 2002], the W-entropy for the Ricci flow g̃(t) on the warped
product manifold M̃ is defined by

W (g̃, η, τ )=
∫

M̃

[
τ
(∣∣∇̃η∣∣2M̃ + Rq

)
+ η− (n+ q)

]
φ d volM̃ ,

where d volM̃ is the volume form u d volM d volTq on (M̃, g̃).
Applying Perelman’s [2002] W-entropy formula for the Ricci flow to (M̃, g̃), we

have

(29) d
dτ

W (g̃, η, τ )=−2τ
∫

M̃

∣∣∣R̃ic+ H̃ess η− g̃
2τ

∣∣∣2
M̃
φ d volM̃ .

By Theorem 2.1, the Laplace–Beltrami on (M̃, g̃) is given by

1M̃ = L + u−2/q1Tq ,

where
L =1−∇ψ · ∇.

Here 1 and ∇ are the Laplace–Beltrami operator and the gradient operator on
(M, g), respectively. In the case that φ is a function depending only on the variable
of the horizontal direction, the conjugate heat equation (28) turns out to be the
backward heat equation associated with the Witten Laplacian on (M, g(t)),

(30) ∂tφ =−Lφ+ Rqφ.

In this case, η is a function depending only on the variable in M . Thus,

W (g̃, η, τ )=
∫

M×Tq

[
τ(|∇η|2+ Rq)+ η− (n+ q)

]
φu d volM d volTq

=

∫
M

[
τ
(
|∇η|2+ R+ 21ψ −

(
1+ 1

q

)
|∇ψ |2

)
+ η− (n+ q)

]
φ dµ.
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Here dµ= u d volM , and we assume vol(Tq)= 1. Note that for any vector field v
on M̃ , by (8), (9) and (10) we have

(31) H̃ess v = Hess v− 1
q

u2/q
〈∇ψ,∇v〉

q∑
α=1

dx2
α.

Substituting (24) and (31) into (29), we have

d
dτ

W (g̃, η, τ )=−2τ
∫

M

∣∣∣R̃ic+ H̃ess η− g̃
2τ

∣∣∣2
M̃
φ dµ

=−2τ
∫

M

∣∣∣Ricq
ψ +Hess η− g

2τ

+
1
q

(
1ψ − |∇ψ |2−〈∇ψ,∇η〉−

q
2τ

)
u2/q

q∑
α=1

dx2
α

∣∣∣2
M̃
φ dµ

=−2τ
∫

M

(∣∣∣Ricq
ψ +Hess η− g

2τ

∣∣∣2
+

1
q

(
1ψ − |∇ψ |2−〈∇ψ,∇η〉−

q
2τ

)2 )
φ dµ.

Thus we have proved the following W-entropy formula for the backward heat
equation associated with the Witten Laplacian on compact manifolds equipped with
Lott’s modified Ricci flow and time dependent potentials.

Theorem 5.1. Let (M, g(t), ψ(t)) be a compact manifold with a family of Rie-
mannian metrics g(t) and potentials ψ(t) which satisfy

∂t g =−2
(

Ric+Hessψ − 1
q
∇ψ ⊗∇ψ

)
,

∂tψ =1ψ − |∇ψ |
2.

Let dµ = e−ψd volM , and L = 1−∇ψ · ∇. Let φ be a positive solution to the
backward heat equation of the Witten Laplacian on M , i.e.,

∂tφ =−Lφ+ Rqφ,

where Rq = R+ 21ψ − (1+ 1/q)|∇ψ |2. Define the W-entropy Wq(g, ψ, η, τ ) by

Wq(g, ψ, η, τ )=
∫

M

[
τ
(
|∇η|2+ Rq

)
+ η− (n+ q)

]
φ dµ,

where φ = (4πτ)−(n+q)/2e−η, and (η, τ ) satisfies

∂tη =−Lη+ |∇η|2− Rq +
n+q
2τ

, ∂tτ =−1.
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Then
d

dτ
Wq(g, ψ, η, τ )

=−2τ
∫

M

(∣∣∣Ricq
ψ +Hess η− g

2τ

∣∣∣2+ 1
q

(
1ψ−|∇ψ |2−〈∇ψ,∇η〉−

q
2τ

)2 )
φ dµ.

In particular, Wq(g, ψ, η, τ ) is decreasing in the backward time τ , and the mono-
tonicity is strict unless

Ricq
ψ +Hess η = g

2τ
,

1ψ − |∇ψ |2 = 〈∇ψ,∇η〉−
q
2τ
.

As an application of the W-entropy formula in Theorem 1.3, we have:

Theorem 5.2. Let (M, g(t), ψ(t)) be a compact manifold with a family of Rie-
mannian metrics g(t) and potentials ψ(t) which satisfy

∂t g =−2
(

Ric+Hessψ − 1
q
∇ψ ⊗∇ψ

)
,

∂tψ =1ψ − |∇ψ |
2.

Then there exists a positive and smooth function u = e−η/2 such that η achieves the
optimal logarithmic Sobolev constant µ(τ) defined by

µ(τ) := inf
{

Wq(g, ψ, η, τ ) :
∫

M

e−η

(4πτ)(n+q)/2 dµ= 1
}
,

where

Wq(g, ψ, η, τ )=
∫

M

(
τ(|∇η|2+ Rq)+ η− (n+ q)

)
φ dµ,

Indeed, u = e−η/2 is a solution to the nonlinear PDE

−4τ Lu+ τ Rqu− 2u log u− (n+ q)u = µ(τ)u.

Moreover, µ(τ) is decreasing in τ on [0, T ].

Proof. The proof is similar to Perelman’s [2002] monotonicity theorem for the
µ-invariant for Ricci flow. See also [Cao and Zhu 2006; Chow et al. 2006; Kleiner
and Lott 2008; Morgan and Tian 2007] and the proof of Theorem 1.3. �

6. The W-entropy formula for the Witten Laplacian with negative
Bakry–Émery Ricci curvature

The W-entropy formula (3) only implies the monotonicity of the W-entropy for
the Witten Laplacian on complete Riemannian manifolds with nonnegative m-
dimensional Bakry–Émery Ricci curvature, and the W-entropy formula (4) only
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implies the monotonicity of the W-entropy for the Witten Laplacian on compact
Riemannian manifolds with time dependent metrics and potentials satisfying the
super m-dimensional Bakry–Émery Ricci flow and the conjugate heat equation. On
the other hand, J. Li and X. Xu [2011] introduced a W-entropy for the heat equation
∂t u =1u on complete Riemannian manifolds with Ricci curvature bounded from
below by a negative constant. In this section, we combine the ideas in [Li and Xu
2011; Li 2012; 2014] and Section 4 to extend Theorem 1.1 to the Witten Laplacian
on complete Riemannian manifolds with Ricm,n(L) bounded from below by a
negative constant, and extend Theorem 1.2 to the Witten Laplacian on compact
Riemannian manifolds with time dependent metrics and potentials satisfying the
K-super m-dimensional Bakry–Émery Ricci flow and the conjugate heat equation.

Recall the following entropy dissipation formulas on complete Riemannian
manifolds.

Theorem 6.1 [Li 2012; 2014]. Let (M, g) be a complete Riemannian manifold
with the bounded geometry condition, and φ ∈ C4(M) with ∇φ ∈ C3

b(M). Let u be
the fundamental solution to the heat equation ∂t u = Lu. Let

H(u, t)=−
∫

M
u log u dµ.

Then
d
dt

H(u, t)=
∫

M

|∇u|2

u
dµ,

and

d2

dt2 H(u, t)=−2
∫

M

(
|∇

2 log u|2+Ric(L)(∇ log u,∇ log u)
)
u dµ.

Proposition 6.2. Let m ≥ n and K ≥ 0 be constants. Under the same assumptions
as in Theorem 6.1, define

Hm,K (u, t)=−
∫

M
u log u dµ− m

2
(
1+ log(4π t)

)
−

m
2

K t
(

1+ K t
6

)
,

Then
d
dt

Hm,K (u, t)=
∫

M

(
|∇u|2

u2 −
m
2t
−

mK
2

(
1+ K t

3

))
u dµ.

In particular, if Ricm,n(L)≥−K , then

d
dt

Hm,K (u, t)≤ 0,

Proof. By Theorem 6.1, we have

d
dt

Hm,K (u, t)=
∫

M

(
|∇u|2

u2 −
m
2t
−

mK
2

(
1+ K t

3

))
u dµ.
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By the same argument as in [Li and Xu 2011], or using the warped product approach
as in [Charalambous and Lu 2015] and the Li–Yau-type differential Harnack in-
equality obtained by J. Li and X. Xu [2011], we can prove that, if Ricm,n(L)≥−K ,
then

|∇u|2

u2 −

(
1+ 2K t

3

)
∂t u
u
≤

m
2t
+

mK
2

(
1+ K t

3

)
.

From this we may use the fact
∫

M ∂t u dµ=
∫

M Lu dµ= 0 to conclude

d
dt

Hm,K (u, t)≤ 0. �

We now prove the main result of this section.

Theorem 6.3. Let m ≥ n and K ≥ 0 be constants. Under the same assumptions as
in Theorem 6.1, define the W-entropy by the Boltzmann formula

Wm,K (u, t)= d
dt
(t Hm,K (u)).

Set u = e− f

(4π t)m/2
. Then

(32) Wm,K (u, t)=
∫

M

(
t |∇ f |2+ f −m

(
1+ K t

2

)2 )
u dµ,

and

(33) d
dt

Wm,K (u, t)=

− 2t
∫

M

(∣∣∣∇2 f −
( 1

2t
+

K
2

)
g
∣∣∣2+ (Ricm,n(L)+ K g)(∇ f,∇ f )

)
u dµ

−
2t

m−n

∫
M

(
∇φ · ∇ f + (m− n)

( 1
2t
+

K
2

))2
u dµ.

In particular, if Ricm,n(L)≥−K , then

d
dt

Wm,K (u, t)≤ 0.

Proof. We can prove (32) by direct calculation. By Theorem 6.1, we have

d
dt

Wm,K (u, t)= d
dt

W (u, t)− m
2t
−mK

(
1+ K t

2

)
=−2

∫
M

t
(
|∇

2 log u|2+Ric(L)(∇ log u,∇ log u)
)

u dµ

+ 2
∫

M
|∇ log u|2u dµ− m

2t
−mK

(
1+ K t

2

)
.

Defining

κ(t)= K
(

1+ K t
2

)
, λ(u, t)=

∣∣∣∇2 log u+ g
2t
+

K g
2

∣∣∣2,
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note that

2t |∇2 log u|2+ m
2t
+mκ(t)= 2tλ(u, t)−2(1+K t)1 log u+ (m−n)

( 1
2t
+κ(t)

)
.

Integrating by parts yields

d
dt

Wm,K (u, t)=−2
∫

M
t
(
λ(u, t)+ (Ric(L)+ K g)(∇ log u,∇ log u)

)
u dµ

+ 2(1+ K t)
∫

M
(∇ log u · ∇φ)u dµ+ (m− n)

( 1
2t
+ κ(t)

)
=−2

∫
M

t
(
λ(u, t)+ (Ricm,n(L)+ K g)(∇ log u,∇ log u)

)
u dµ

−
2t

m−n

∫
M

(
∇ log u · ∇φ− (m− n)

( 1
2t
+

K
2

))2
u dµ.

In particular, if Ricm,n(L)≥−K g, Wm,K (u, t) is monotone decreasing. �

Remark 6.4. Suppose that Ricm,n(L)≥−K . By Theorem 6.3, d
dt

Wm,K (u, t)= 0
if and only if

Ricm,n(L)=−K g, ∇2 f =
( 1

2t
+

K
2

)
g, ∇φ · ∇ f =−(m− n)

( 1
2t
+

K
2

)
.

In particular, if m = n and φ =C is a constant, then (M, g) is an Einstein manifold
with Ric=−K , and the potential f satisfies the shrinking gradient Ricci soliton
equation (see [Li and Xu 2011])

1
2

Ric+∇2 f = g
2t
.

In general, (M, g) is a quasi-Einstein manifold with the metric g such that
Ricm,n(L)=−K g, and the potential f satisfies the shrinking gradient quasi-Ricci
soliton equation

1
2

Ricm,n(L)+∇2 f = g
2t
.

Remark 6.5. Similarly to Section 2, in the case that m ∈ N, m ≥ n and M is a
compact Riemannian manifold, we can give a new proof of Theorem 6.3 via the
warped product method. Let M̃ = M×N , where (N , gN ) is a compact Riemannian
manifold with dimension q =m−n. Consider the following warped product metric
on M̃ :

g̃ = gM ⊕ e−2φ/q gN .
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Applying the W-entropy formula due to J. Li and X. Xu [2011] for the heat equation
∂t u =1M̃ u on (M̃, g̃), we have

(34) d
dt

W̃m,K (u, t)

=−2
∫

M̃
t
(∣∣∣∇̃2 f − g̃

2t
−

K g̃
2

∣∣∣2+ (R̃ic+ K g̃
)(
∇̃ log u, ∇̃ log u

))
u dµdvN .

From (11), we get

(35)
∣∣∣∇̃2 f − g̃

2t
−

K g̃
2

∣∣∣2
=

∣∣∣∇2 f − g
2t
−

K g
2

∣∣∣2+ 2
m−n

(
∇φ · ∇ f + (m− n)

( 1
2t
+

K
2

))2
.

On the other hand, by [Besse 1987; Lott 2003; Li 2005], we have

(36)
(
R̃ic+ K g̃

)(
∇̃ log u, ∇̃ log u

)
=
(
Ricm,n(L)+ K g

)(
∇ log u,∇ log u

)
.

From (34), (35) and (36), we reprove (33). Note that (35) also gives a natural
geometric interpretation of the third term in the W-entropy formula (33).

We now extend Theorem 6.3 to the Witten Laplacian on compact manifolds with
time dependent metrics and potentials.

Theorem 6.6. Let m ≥ n and K ≥ 0 be constants. Under the same assumptions as
in Theorem 1.2, define

Hm,K (u, t)=−
∫

M
u log u dµ− m

2
(1+ log(4π t))− m

2
K t
(

1+ K t
6

)
and

Wm,K (u, t)= d
dt
(
t Hm,K (u)

)
.

Set u = e− f/(4π t)m/2. Then

Wm,K (u, t)=
∫

M

(
t |∇ f |2+ f −m

(
1+ K t

2

)2 ) e− f

(4π t)m/2
dµ,

and

d
dt

Wm,K (u, t)=−2t
∫

M

∣∣∣∇2 f − g
2t
−

K g
2

∣∣∣2 e− f

(4π t)m/2
dµ

− 2t
∫

M

(1
2
∂g
∂t
+Ricm,n(L)+ K g

)
(∇ f,∇ f ) e− f

(4π t)m/2
dµ

−
2t

m−n

∫
M

(
∇φ · ∇ f + (m− n)

( 1
2t
+

K
2

))2 e− f

(4π t)m/2
dµ.
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In particular, if {g(t), φ(t), t ∈ (0, T ]} is the K-super m-dimensional Bakry–Émery
Ricci flow and satisfies the conjugate equation

1
2
∂g
∂t
+Ricm,n(L)≥−K g,(37)

∂φ

∂t
=

1
2

Tr
(
∂g
∂t

)
,(38)

then Wm,K (u, t) is decreasing in t ∈ (0, T ], i.e.,
d
dt

Wm,K (u, t)≤ 0, for all t ∈ (0, T ].

Proof. By (19), and replacing Ric(L) by 1
2
∂g
∂t
+Ric(L), the proof is similar to the

proof of Theorem 6.3. �

Finally, as an application of Theorem 6.6, we have the following.

Theorem 6.7. Let (M, g(t), φ(t), t ∈ [0, T ]) be as in Theorem 6.6. Then there
exists a positive and smooth function u = e−v/2 such that v achieves the optimal
logarithmic Sobolev constant µK (t) defined by

µK (t) := inf
{

Wm,K (u, t) :
∫

M

e−v

(4π t)m/2
dµ= 1

}
.

Indeed, u = e−v/2 is a solution to the nonlinear PDE

−4t Lu− 2u log u−m
(

1+ K t
2

)2
u = µK (t)u.

Moreover, if {g(t), φ(t), t ∈ [0, T ]} satisfies the K-super m-dimensional Bakry–
Émery Ricci flow (37) and the conjugate equation (38), then µK (t) is decreasing in
t on [0, T ].

Proof. The proof is similar to the proof of Theorem 1.3. �

Note added in proof

In a recent preprint, the authors introduced the W-entropy and proved the W-entropy
formula for the heat equation of the Witten Laplacian on complete Riemannian
manifolds with the CD(K ,∞) condition (i.e., Ric(L) ≥ K ) and extended the
corresponding result to the heat equation of the time dependent Witten Laplacian
on compact Riemannian manifolds equipped with the K-super Perelman Ricci flow
with respect to the Bakry–Émery Ricci curvature (i.e., 1

2
∂g
∂t +Ric(L)≥ K g). See

[Li and Li 2014a].
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A DIAGRAMMATIC CATEGORIFICATION
OF THE AFFINE q-SCHUR ALGEBRA Ŝ(n, n) FOR n ≥ 3

MARCO MACKAAY AND ANNE-LAURE THIEL

This is a follow-up to our 2013 paper “Categorifications of the extended
affine Hecke algebra and the affine quantum Schur algebra Ŝ(n, r) for
3 ≤ r < n” in which we categorified the affine q-Schur algebra Ŝ(n, r) for
2 < r < n using a quotient of the categorification of Uq(ŝln) of Khovanov
and Lauda (2009, 2010, 2011). In this paper we categorify Ŝ(n, n) for n ≥ 3
using an extension of the aforementioned quotient.
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1. Introduction

The affine q-Schur algebra Ŝ(n, r) was first defined and studied by Ginzburg and
Vasserot [1993] and later also studied by Green [1999] and Lusztig [1999]. Let us
assume that n, r ≥ 3. Then Ŝ(n, r) is a quotient of Uq(ŝln) and Uq(ĝln) if r < n.
In [Mackaay and Thiel 2013] we defined a quotient of Khovanov and Lauda’s
categorification U(ŝln), denoted Ŝ(n, r), and showed that the Grothendieck group
of its Karoubi envelope (idempotent completion) was exactly isomorphic to Ŝ(n, r)
for 2< r < n. In order to establish the isomorphism, we used Doty and Green’s
[2007] idempotented presentation of Ŝ(n, r) for 2< r < n.

In this paper we address the case n = r , which is slightly more complicated
because Ŝ(n, n) is not a quotient of Uq(ŝln) or Uq(ĝln) but of the strictly larger
algebra Ûq(ĝln) called the extended affine general linear quantum algebra [Green
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project number PTDC/MAT/101503/2008, New Geometry and Topology.
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1999]. Therefore, we have to extend the Khovanov–Lauda calculus of the cor-
responding quotient of U(ŝln) by adding certain generating 1- and 2-morphisms
and relations. We denote that extended 2-category by Ŝ(n, n) and show that the
Grothendieck group of its Karoubi envelope is isomorphic to Ŝ(n, n) for n ≥ 3. For
that isomorphism we use Deng, Du and Fu’s presentation of Ŝ(n, n) [Deng et al.
2012], which extends Doty and Green’s.

A little warning should be made. The results in this paper are not sufficient to
categorify Ûq(ĝln) diagrammatically, because that would require a categorification
of Ŝ(n, r) for 2< n< r too. However, no presentation of Ŝ(n, r) of Drinfeld–Jimbo
type is known in that case, so even on the decategorified level there is an open
question that would need to be solved first. For more information on this problem,
see Question 4.3.2 in [Green 1999] and Chapter 5 in [Deng et al. 2012].

There is another technical detail that we should explain beforehand. In [Mackaay
and Thiel 2013], we introduced a new degree-2 variable y and a y-deformation of
the relations in Khovanov and Lauda’s U(ŝln), denoted U(ŝln)[y]. The correspond-
ing Schur quotients were denoted Ŝ(n, r)[y]. This y-deformation was introduced in
order to establish a precise relation between Ŝ(n, r)[y] and an extension of the affine
singular Soergel bimodules built from Soergel’s reflection faithful representation
of the affine Weyl group, which were defined and studied by Williamson [2011].
However, we also proved that the ideals generated by y are virtually nilpotent, so
that the Grothendieck groups of U(ŝln)[y] and Ŝ(n, r)[y] are isomorphic to those of
U(ŝln) and Ŝ(n, r). Furthermore, for y = 0, the 2-representations in [Mackaay and
Thiel 2013] give 2-functors from U(ŝln) to certain extensions of the affine Soergel
bimodules built from the geometric representation of the affine Weyl group, which is
not reflection faithful but still has some nice properties (for more information on this
topic, see Section 3.1 in [Elias and Williamson 2013] and the results in [Libedinsky
2008]). In order to keep the calculations simple in this paper, we put y = 0 here. It
would not be hard to give the y-deformed relations in the definition of Ŝ(n, n), which
would give a 2-category Ŝ(n, n)[y], but some of the subsequent calculations would be
much harder in the y-deformed setting, e.g., the ones in the proof of Proposition 3.5.

In general, it would be interesting to know more about the relation between
Ŝ(n, r), for n ≥ r , and its y-deformation and the 2-category of affine singular
Soergel bimodules.

Knowing more about this relation might also help to establish a connection with
the work by Lusztig [1999] and Ginzburg and Vasserot [1993] on perverse sheaves
and affine quantum gln .

2. Affine quantum algebras

In this section, we first recall the definition of the extended affine quantum general
linear algebra Ûq(ĝln) and its subalgebras Uq(ĝln) and Uq(ŝln). After that, we
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recall the definition of the affine quantum Schur algebras Ŝ(n, r), due to Green
[1999]. Furthermore, we recall an idempotented presentation of the affine quantum
Schur algebras, due to Doty and Green [2007] for n > r and to Deng, Du and
Fu [Deng et al. 2012] for n = r .

The (extended) affine quantum general and special linear algebras. For the rest
of this paper, let n ≥ 3.

Since in this paper we are only interested in the affine quantum general and special
linear algebras at level 0, i.e., the q-analogue of the loop algebras without central
extension, we can work with the normal gln-weight lattice, which is isomorphic
to Zn . Let εi = (0, . . . , 1, . . . , 0) ∈ Zn , with 1 being on the i-th coordinate, and
αi = εi − εi+1 ∈ Zn for i = 1, . . . , n, where the subscripts have to be understood
modulo n; e.g., αn = εn − ε1 = (−1, 0, . . . , 0, 1). We also define the Euclidean
inner product on Zn by 〈εi , ε j 〉 = δi, j .

Definition 2.1 [Green 1999]. The extended quantum general linear algebra Ûq(ĝln)

is the associative unital Q(q)-algebra generated by R±1, K±1
i and E±i for i =

1, . . . , n, subject to the relations

Ki K j = K j Ki , Ki K−1
i = K−1

i Ki = 1,(2-1)

Ei E− j − E− j Ei = δi, j
Ki K−1

i+1− K−1
i Ki+1

q − q−1 ,(2-2)

Ki E± j = q±〈εi ,α j 〉E± j Ki ,(2-3)

E2
±i E
± j − (q + q−1)E±i E± j E±i + E

± j E2
±i = 0 if |i − j | = 1 mod n,(2-4)

E±i E± j − E± j E±i = 0 else,(2-5)

R R−1
= R−1 R = 1,(2-6)

R X i R−1
= X i+1 for X i ∈ {E±i , K−1

i }.(2-7)

In all equations, the subscripts have to be read modulo n.

Definition 2.2. The affine quantum general linear algebra Uq(ĝln) ⊆ Ûq(ĝln) is
the unital Q(q)-subalgebra generated by E±i and K±1

i for i = 1, . . . , n.
The affine quantum special linear algebra Uq(ŝln) ⊆ Uq(ĝln) is the unital

Q(q)-subalgebra generated by E±i and Ki K−1
i+1 for i = 1, . . . , n.

Remark 2.3. A little warning about the notation is needed here. Our notation
follows that of [Doty and Green 2007; Green 1999], which differs from that of
[Deng et al. 2012]. What we call Uq(ĝln), Deng, Du and Fu call U1(n). In [Deng
et al. 2012, Remark 5.3.2] they define Û , which is equal to our Ûq(ĝln). Finally,
their U(ĝln) is the quantum loop algebra of gln (see their Definition 2.3.1), which
contains U1(n), i.e., our Uq(ĝln), as a proper subalgebra. In their notation, Û is
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not a subalgebra of U(ĝln) because R ∈ Û would have to be equal to an infinite
linear combination of generators of the latter.

We will also need the bialgebra structure on Ûq(ĝln).

Definition 2.4 [Green 1999]. Ûq(ĝln) is a bialgebra with counit ε : Ûq(ĝln)→Q(q)
defined by

ε(E±i )= 0, ε(R±1)= ε(K±1
i )= 1,

and coproduct 1 : Ûq(ĝln)→ Ûq(ĝln)⊗ Ûq(ĝln) defined by

1(1)= 1⊗ 1,(2-8)

1(Ei )= Ei ⊗ Ki K−1
i+1+ 1⊗ Ei ,(2-9)

1(E−i )= K−1
i Ki+1⊗ E−i + E−i ⊗ 1,(2-10)

1(K±1
i )= K±1

i ⊗ K±1
i ,(2-11)

1(R±1)= R±1
⊗ R±1.(2-12)

As a matter of fact, Ûq(ĝln) is even a Hopf algebra, but we do not need the
antipode in this paper. Note that 1 and ε can be restricted to Uq(ĝln) and Uq(ŝln),
which are bialgebras too.

At level 0, we can also work with the Uq(sln)-weight lattice, which is isomorphic
to Zn−1. Suppose that V is a Uq(ĝln)-weight representation with weights λ =
(λ1, . . . , λn) ∈ Zn; i.e.,

V ∼=
⊕
λ

Vλ

and Ki acts as multiplication by qλi on Vλ. Then V is also a Uq(ŝln)-weight
representation with weights λ̄= (λ̄1, . . . , λ̄n−1)∈Zn−1 such that λ̄ j = λ j−λ j+1 for
j = 1, . . . , n− 1. Conversely, given a Uq(ŝln)-weight representation with weights
µ= (µ1, . . . , µn−1), there is not a unique choice of Uq(ĝln)-action on V . We can
fix this by choosing the action of K1 · · · Kn . In terms of weights, this corresponds
to the observation that, for any r ∈ Z, the equations

λi − λi+1 = µi ,(2-13)
n∑

i=1

λi = r(2-14)

determine λ= (λ1, . . . , λn) uniquely, if there exists a solution to (2-13) and (2-14)
at all. To fix notation, we define the map ϕn,r : Zn−1

→ Zn
∪ {∗} by

(2-15) ϕn,r (µ)= λ

if (2-13) and (2-14) have a solution, and put ϕn,r (µ) = ∗ otherwise. This map
already appeared in [Mackaay and Thiel 2013] and [Mackaay et al. 2013].
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As far as weight representations are concerned, we can restrict our attention
to Beilinson, Lusztig, and MacPherson’s idempotented version of these quantum
groups [Beilinson et al. 1990], denoted ˙̂U(ĝln), U̇(ĝln) and U̇(ŝln) respectively. To
understand their definitions, recall that Ki acts as qλi on the λ-weight space of any
weight representation. For each λ ∈ Zn , adjoin an idempotent 1λ to Ûq(ĝln) and
add the relations

1λ1µ = δλ,µ1λ,

E±i 1λ = 1λ±αi E±i ,

Ki 1λ = qλi 1λ,

R1(λ1,...,λn) = 1(λn,λ1,...,λn−1)R.

Definition 2.5. The idempotented extended affine quantum general linear algebra
is defined by

˙̂U(ĝln)=
⊕
λ,µ∈Zn

1λÛq(ĝln)1µ.

Of course one defines U̇(ĝln)⊂
˙̂U(ĝln) as the idempotented subalgebra generated

by 1λ and E±i 1λ for i = 1, . . . , n and λ ∈ Zn . Similarly for Ûq(sln), adjoin an
idempotent 1λ for each λ ∈ Zn−1 and add the relations

1λ1µ = δλ,µ1λ,

E±i 1λ = 1λ±αi E±i ,

Ki K−1
i+11λ = qλi 1λ.

Definition 2.6. The idempotented quantum special linear algebra is defined by

U̇(ŝln)=
⊕

λ,µ∈Zn−1

1λUq(ŝln)1µ.

Just to fix notation for future use.

Notation 2.7. For i = (µ1i1, . . . , µmim), with µ j =±, define

E i := Eµ1i1 · · · Eµm im ,

and define i3 ∈ Zn to be the n-tuple such that

E i 1λ = 1λ+i3 E i .

Following Khovanov and Lauda [2009; 2010; 2011], we call i a signed sequence
and denote the set of signed sequences by SSeq.

The affine q-Schur algebra. As we did in [Mackaay and Thiel 2013], we first
copy some facts about the action of Ûq(ĝln) on tensor space from [Doty and Green
2007; Green 1999]. After that we define the quotient Ŝ(n, r), for n ≥ r , and
give a presentation of that algebra. Note that the case n = r was not considered
in [Mackaay and Thiel 2013].



206 MARCO MACKAAY AND ANNE-LAURE THIEL

Tensor space. Let V be the Q(q)-vector space freely generated by {et | t ∈ Z}.

Definition 2.8 [Green 1999]. The following defines an action of Ûq(ĝln) on V :

Ei et+1 = et if i ≡ t mod n,(2-16)

Ei et+1 = 0 if i 6≡ t mod n,(2-17)

E−i et = et+1 if i ≡ t mod n,(2-18)

E−i et = 0 if i 6≡ t mod n,(2-19)

K±1
i et = q±1et if i ≡ t mod n,(2-20)

K±1
i et = et if i 6≡ t mod n,(2-21)

R±1et = et±1 for all t ∈ Z.(2-22)

Note that V is clearly a weight-representation of Ûq(ĝln), with et having weight
equal to εi for i ≡ t mod n. Therefore V is also a representation of ˙̂U(ĝln). Let r ∈
N>0 be arbitrary but fixed. As usual, one extends the above action to V⊗r using
the coproduct in Ûq(ĝln). Again, this is a weight-representation, and therefore
also a representation of ˙̂U(ĝln). There is also a right action of the extended affine
Hecke algebra Ĥ Âr−1

on V⊗r , whose precise definition is not relevant here, which
commutes with the left action of Ûq(ĝln).

Definition 2.9 [Green 1999]. The affine q-Schur algebra Ŝ(n, r) is by definition
the centralizing algebra

EndĤ Âr−1
(V⊗r ).

It turns out that the image of the representation ψn,r : Ûq(ĝln)→ End(V⊗r ) is
isomorphic to Ŝ(n, r). If n > r , then we can even restrict to Uq(ŝln)⊂ Ûq(ĝln), i.e.,

ψn,r (Uq(ŝln))∼= Ŝ(n, r).

If n = r , this is no longer true, as we will show below.

Presentation of Ŝ(n, r) for n>r . In this subsection, let n>r . As already mentioned,
the map

ψn,r : U̇(ĝln)→ End(V⊗r )→ Ŝ(n, r)

is surjective. This observation gives rise to the following presentation of Ŝ(n, r).
The proof can be found in [Doty and Green 2007, Theorem 2.6.1].

Theorem 2.10 [Doty and Green 2007]. For n > r , the Q(q)-algebra Ŝ(n, r) is
isomorphic to the associative unital Q(q)-algebra generated by 1λ and E±i for
λ ∈3(n, r) and i = 1, . . . , n, subject to the relations
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1λ1µ= δλ,µ1λ,(2-23)

E±i 1λ= 1λ±αi E±i ,(2-24)

(Ei E− j−E− j Ei )1λ= δi, j [λi−λi+1]1λ,(2-25) (
E2
±i E
± j−(q+q−1)E

±i E
± j E

±i+E
± j E2

±i
)
1λ= 0 if |i− j | = 1 mod n,(2-26)

(E±i E± j−E± j E±i )1λ= 0 else.(2-27)

In all equations the subscripts i, j have to be read modulo n, and the equations
hold for any λ ∈3(n, r). If λ±αi 6∈3(n, r), the corresponding idempotent is 0 by
convention.

We can restrict ψn,r even further and obtain a surjection ψn,r : U̇(ŝln)→ Ŝ(n, r),
which can be given explicitly on the generators. For any λ ∈ Zn−1, we have

ψn,r (E±i 1λ)= E±i 1ϕn,r (λ),

where ϕn,r : Zn−1
→3(n, r)∪{∗} is the map defined in (2-15). By convention, we

put 1∗ = 0.

Presentation of Ŝ(n, n). A presentation of Ŝ(n, n) of Drinfeld–Jimbo type is harder
to get, because

ψn,n(Uq(ŝln))= ψn,n(Uq(ĝln))

is a proper subalgebra of Ŝ(n, n). Therefore Green [1999] introduced Ûq(ĝln),
which contains the new invertible element R, and proved that Ŝ(n, n) is a quotient
of this extended algebra. As vector spaces, we get the Q(q)-linear isomorphism

Ŝ(n, n)∼= ψn,n(Uq(ŝln))⊕
⊕
t 6=0

Q[Rt , R−t
].

However, this is not an algebra isomorphism. In [Deng et al. 2012, Theorem 5.3.5],
the authors show which relations need to be added in order to get a presentation
of the algebra Ŝ(n, n). Let us first recall a slightly different presentation obtained
by adding two new elements, E±δ, instead of R±1. This presentation, also due to
Deng et al. [2012], turns out to be easier to categorify. As in [Mackaay and Thiel
2013], we write 1n := 1(1n). Recall that the divided powers are defined by

E (a)
±i :=

Ea
±i

[a]!
for i = 1, . . . , n.

Theorem 2.11 [Deng et al. 2012]. The Q(q)-algebra Ŝ(n, n) is generated by E±δ ,
E±i and 1λ, for i = 1, . . . , n and λ∈3(n, n), subject to the relations (2-23) through
(2-27) together with
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E±δ1λ = 1λE±δ = 0 for all λ 6= (1n),(i)

E±δ1n = 1n E±δ,(ii)

E+δE−δ1n = E−δE+δ1n = 1n,(iii)

Ei E+δ1n = E (2)i Ei−1 · · · E1 En · · · Ei+11n,(iv)

1n E+δEi = 1n Ei−1 · · · E1 En · · · Ei+1 E (2)i ,(v)

E−i E+δ1n = Ei−1 · · · E1 En · · · Ei+11n,(vi)

1n E+δE−i = 1n Ei−1 · · · E1 En · · · Ei+1,(vii)

E−i E−δ1n = E (2)
−i E

−(i+1) · · · E−n E−1 · · · E−(i−1)1n,(viii)

1n E−δE−i = 1n E−(i+1) · · · E−n E−1 · · · E−(i−1)E
(2)
−i ,(ix)

Ei E−δ1n = E−(i+1) · · · E−n E−1 · · · E−(i−1)1n,(x)

1n E−δEi = 1n E−(i+1) · · · E−n E−1 · · · E−(i−1)(xi)

for any i = 1, . . . , n.

To see that Theorem 2.11 really gives a presentation of Ŝ(n, n), recall the fol-
lowing definition given in [Deng et al. 2012, (5.3.1.1) and (5.3.1.2)]. (They use the
notation ρ where we use R):

Definition 2.12. Define

R−1
:= E+δ1n +

n∑
i=1

∑
(a1,...,an)∈3(n,n)

ai=0

E (ai−1)

i−1 · · · E
(a1)
1 E (an)

n · · · E (ai+1)

i+1 1(an,a1,...,an−1)

and

R := E−δ1n +

n∑
i=1

∑
(a1,...,an)∈3(n,n)

ai=0

E (ai−1)

−(i−1) · · · E
(a1)
−1 E (an)

−n · · · E
(ai+1)

−(i+1)1(a1,...,an).

Then note that

E (ai−1)

i−1 · · · E
(a1)
1 E (an)

n · · · E (ai+1)

i+1 1(an,a1,...,an−1)

= 1(a1,...,an)E
(ai−1)

i−1 · · · E
(a1)
1 E (an)

n · · · E (ai+1)

i+1
and

E (ai−1)

i−1 · · · E
(a1)
1 E (an)

n · · · E (ai+1)

i+1 1λ = 0

for all λ 6= (an, a1, . . . , an−1). Likewise, we have

E (ai−1)

−(i−1) · · · E
(a1)
−1 E (an)

−n · · · E
(ai+1)

−(i+1)1(a1,...,an)

= 1(an,a1,...,an−1)E
(ai−1)

−(i−1) · · · E
(a1)
−1 E (an)

−n · · · E
(ai+1)

−(i+1)
and

E (ai−1)

−(i−1) · · · E
(a1)
−1 E (an)

−n · · · E
(ai+1)

−(i+1)1λ = 0
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for all λ 6= (a1, . . . , an). These remarks show that Proposition 5.3.3 and Corol-
lary 5.3.4 in [Deng et al. 2012] imply that the presentation of Ŝ(n, n) in Theo-
rem 5.3.5 in that paper is equivalent to the one we have given in Theorem 2.11. In
particular, the relations in Theorem 2.11 imply the following relations, which are
exactly the ones in [Deng et al. 2012, Theorem 5.3.5]:

Corollary 2.13. In Ŝ(n, n), we have

R R−1
= R−1 R = 1, RE±i R−1

= E±(i+1), R1λR−1
= 1(λn,λ1...,λn−1).

As usual, we read the indices modulo n.

Therefore, the surjective algebra homomorphism

ψn,n :
˙̂U(ĝln)→ Ŝ(n, n)

can be defined as

ψn,n(1λ)=
{

1λ if λ ∈3(n, n),
0 else,

and
ψn,n(E±i 1λ)= E±iψn,n(1λ), ψn,n(R±11λ)= R±1ψn,n(1λ).

In Lemma 3.2 and Corollary 5.6 in [Deng and Du 2013], the authors also show
that there exists an embedding

ιn : Ŝ(n, n)→ Ŝ(n+ 1, n),

which gives an isomorphism of algebras

Ŝ(n, n)∼=
⊕

λ,µ∈3(n,n)

1(λ,0) Ŝ(n+ 1, n)1(µ,0).

At that point of their paper they use a different presentation of the affine q-Schur
algebras, but by [Deng and Du 2013, Proposition 7.1] it is not hard to work out
the image under ιn of the generators of Ŝ(n, n) in Theorem 2.11. Note that we
have multiplied their images of E+n and E−n by −1, which is more convenient for
categorification and does not invalidate their results.

Proposition 2.14 [Deng and Du 2013]. The Q(q)-linear algebra homomorphism

ιn : Ŝ(n, n)→ Ŝ(n+ 1, n)

defined by

1λ 7→ 1(λ,0),

E±i 1λ 7→ E±i 1(λ,0),

En1λ 7→ En En+11(λ,0),
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E−n1λ 7→ E−(n+1)E−n1(λ,0),

E+δ1n 7→ En En−1 · · · E1 En+11(1n,0),

E−δ1n 7→ E−(n+1)E−1 · · · E−n1(1n,0)

for any 1≤ i ≤ n− 1 and λ ∈3(n, n), is an embedding and gives an isomorphism
of algebras

Ŝ(n, n)∼=
⊕

λ,µ∈3(n,n)

1(λ,0) Ŝ(n+ 1, n)1(µ,0).

3. A diagrammatic categorification of Ŝ(n, n)

Definition 3.1. The 2-category Ŝ(n, n) is defined as the quotient of U(ĝln) by the
ideal generated by all diagrams with regions whose labels are not contained in
3(n, n), just as in [Mackaay and Thiel 2013] (taking y = 0 in that paper), together
with the generating 1-morphisms

1nE+δ1n{t} and 1nE−δ1n{t},

for t ∈ Z, the following generating 2-morphisms of degree 0 (with notation in the
top row and the 2-morphisms below):

1E+δ1n{t} 1E−δ1n{t}
OO

δ

OO

δ
�� δ �� δ

OO

δ

δ

(1n)(1n) ��

δ

δ

(1n)(1n)
�� JJ

δ
(1n)

��TT

δ
(1n)

WW



δ (1n)
GG ��

δ (1n)

and the following generating 2-morphisms of degree 1 (again with notation in the
top row and 2-morphisms below):

δ,i δ,i

δ,i δ,i

i i−1 1 n i+2 i+1

δ

(1n)

������ ���� ��������

i i+1 n 1 i−2 i−1

δ

(1n)

������ ���� ��������

i i−1 1 n i+2 i+1

δ

(1n)

�������� ������������

i i+1 n 1 i−2 i−1

δ

(1n)

�������� ������������
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which are subject to the relations:

E+δ1n and E−δ1n are biadjoint inverses of each other,

OO �� OO

(1n)

(1n)

δ

= OO

(1n)(1n)

δ

and �� OO ��

(1n)

(1n)

δ

= ��

(1n)(1n)

δ

,(3-1)

OO��OO

(1n)

(1n)
δ

= OO (1n)(1n)

δ

and ��OO��

(1n)

(1n)
δ

= �� (1n)(1n)

δ

,(3-2)

��MM

δ

(1n)

=
QQ��

δ

(1n)

= 1,(3-3)

�� JJ

δ (1n)
WW



= ��

δ

OO (1n)

δ

and
��TT

δ (1n)
GG ��

= OO

δ

�� (1n)

δ

.(3-4)

We impose full cyclicity with respect to our generating 2-morphisms of degree 1;
for example, by using the adequate cups and caps we can rotate

δ,i
to obtain

δ,i+1
.

Furthermore, we impose the relations

������ ���� ��������

(1n)

i+1 i 1 n i+2

δ

=

•

i+1 i 1 n i+3 i+2

δ

(1n)

������ ���� ��������

−

•

i+1 i 1 n i+3 i+2

δ

(1n)

������ ���� ��������

,(3-5)

������ ���� ��������

(1n)

i−1 1 n i+1 i

δ

=

•

i−1 i−2 1 n i+1 i

δ

(1n)

������ ���� ��������

−

•

i−1 i−2 1 n i+1 i

δ

(1n)

������ ���� ��������

,(3-6)
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�������� ������������

(1n)

i+1 i 1 n i+2

δ

=

•

i+1 i 1 n i+3 i+2

δ

(1n)

�������� ������������

−

•

i+1 i 1 n i+3 i+2

δ

(1n)

�������� ������������

,(3-7)

�������� ������������

(1n)

i−1 1 n i+1 i

δ

=

•

i−1 i−2 1 n i+1 i

δ

(1n)

�������� ������������

−

•

i−1 i−2 1 n i+1 i

δ

(1n)

�������� ������������

,(3-8)

�
�
�
�
�
�
�
�
��
��
��
��(1n)

iδ

= OO

δ

(1n) ��

i

and �
�
�
�
�
�
�
�
��
��
��
�� (1n)

i δ

= OO

δ

(1n)��

i

,(3-9)

������ ���� ��������

������ �� ����������

i i−1 1 n i+2 i+1

δ (1n)

i i−1 1 n i+2 i+1

= OO OO · · · OO OO · · · OO OO

i i−1 1 n i+2 i+1

(1n)

•

− OO OO · · · OO OO · · · OO OO

i i−1 1 n i+2 i+1

(1n)

•

,

(3-10)

������ ���� ��������

������ �� ����������

j j−1 1 n j+2 j+1

δ (1n)

i i−1 1 n i+2 i+1

=

@@ @@ @@__ __ __

· · · · · ·

· · · · · ·

i i−1 j+1 j i+2 i+1

j i+2 i+1 i i−1 j+1

(1n).(3-11)

Note that cyclicity implies the analogous relations with all orientations reversed.
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Before giving the following lemma, we recall that the Karoubi envelope (or
idempotent completion) of Khovanov and Lauda’s 2-categories, e.g., Kar U(sln)
and Kar U(gln), contain the categorified divided powers E (a)

±i , which satisfy

Ea
±i = (E

(a)
±i )
⊕[a]!.

In [Khovanov et al. 2012] the 2-morphisms in Kar U(sl2) between the divided
powers were worked out explicitly. Using the fact that Kar U(sl2) can be embedded
into Kar U(ŝln) for any choice of simple root, we can use the results in [loc. cit.].
We do not need much of that calculus in this paper, but we do have to recall the
splitters (see the definitions below Lemma 2.2.3 and see (2.63) in [loc. cit.])

: E (2)
+i → E2

+i

i

i i

and : E2
+i → E (2)

+i

i

i i

and the relations (see (2.36), (2.64) and (2.65) in [loc. cit.])

i i

i i

=

i i

i i

,

i

=0,

i

•
= OO

i

,

i

•
= − OO

i

for any i = 1, . . . , n. By cyclicity, we get similar splitters and relations for E (2)
−i ,

i = 1, . . . , n.

Lemma 3.2.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

(1n)

i−1 i+1

i δ = OO OO · · · OO

i−1 i−2 i+1

(1n) and

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

(1n)

i−1 i+1

δ i = OO OO · · · OO

i−1 i−2 i+1

(1n) ,

(3-12)
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�
�
�
�
�
�
�
�
��
��
��
�� (1n)

i δ

= OO

δ

(1n)OO

i

and

������

��������

��

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

(1n)

i−1 i+1i

δ = OO OO · · · OO

i i−1 i+1

(1n),

(3-13)

�
�
�
�
�
�
�
�
��
��
��
��(1n)

iδ

= OO

i

(1n) OO

δ

and

������

��������

��

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

(1n)

i+1 ii−1

δ = OO OO· · · OO

i−1 i+1 i

(1n) .

(3-14)

By cyclicity, we get the analogous relations with all orientations reversed.

Proof. The equations in (3-12) follow directly from (3-10) and the relations (3.39)
and (3.40) in [Mackaay and Thiel 2013]. Note that one of the terms we get by
applying (3-10) has a bubble of degree −2, which is equal to 0, and the other term
has a bubble of degree 0 which is equal to −1 if it is counterclockwise and +1 if
it is clockwise.

We only prove the equations in (3-13). The equations in (3-14) can be proved
similarly. By the second relation in (3-9), curl removal and the evaluation of
degree-0 bubbles, we get

�
�
�
�
�
�
�
�
��
��
��
�� (1n)

i δ

=

OO

OO

OO

��

i

OO

δ

(1n) = OO

δ

(1n)OO

i

.

By (3-10) and the relations in (2.64) in [Khovanov et al. 2012], we get

������

��������

��

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

(1n)

i−1 i+1i

δ =

i

•

OO · · · OO

i−1 i+1

(1n)−

i

•

OO · · · OO

i−1 i+1

(1n) = OO OO · · · OO

i i−1 i+1

(1n).

�
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Lemma 3.3. We have

OO

δ

��MM

i

(1n) = �
�
�
�
�
�
�
�
��
��
��
�� (1n)

i i+1
= OO

δ

��MM

i+1

(1n).

Proof. The first equality is a direct consequence of the first relation in (3-9).
The second is a consequence of the first relation in (3-9) and the fact that

��MM

i+1

(1n) =
QQ��

i+1

(1n),

which follows from the infinite Grassmannian relation for bubbles. �

In order to formulate the following results, define

zm (1n) := −

(
QQ�� +

QQ�� + · · ·+
QQ��

i−1 i−2 m
)
(1n).

The sum of the bubbles is over the colors{
i − 1, i − 2, . . . ,m if 1≤ m ≤ i − 1,
i − 1, i − 2, . . . , 1, n, n− 1, . . .m if m ≥ i + 1.

These are exactly the colors of all the strands in the diagram on the left-hand side
of Lemma 3.4 between the strands i − 1 and m. By definition we take zi = 0 and
use the convention that 00

= 1.
Similarly, we define

ym (1n) := −

(
��MM
+ ��MM

+ · · ·+ ��MM
m m−1 i+2

)
(1n).

The sum of the bubbles is over the colors{
m,m− 1, . . . , i + 2 if i + 2≤ m ≤ n,
m,m− 1, . . . , 1, n, n− 1, . . . i + 2 if m ≤ i + 1.

These are exactly the colors of all the strands in the diagram on the left-hand side
of Lemma 3.4 between the strands m and i + 2. By definition we take yi+1 = 0
and use the convention that 00

= 1.
Note that

yi−1 = zi+2

by the infinite Grassmannian relation.
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Lemma 3.4. For any 1≤ m ≤ n and s, t ∈ N, we have

(3-15) ��
��
��
��
��
��
��
��

�
�
�
� (1n)

i

δ

••
t s

=

s∑
j=0

( s
j

)
OO

δ

i
��MM

•
s+t− j

z j
m (1n).

On the left-hand side of (3-15), the t dots are on the i-th strand and the s dots are
on the m-th strand. Similarly, we have

(3-16) ��
��
��
��
��
��
��
��

�
�
�
� (1n)

i

δ

•• t s

=

t∑
j=0

( t
j

)
OO

δ

i+1
QQ��

•
s+t− j

y j
m (1n).

On the left-hand side of (3-15), the t dots are on the m-th strand and the s dots are
on the (i+1)-th strand.

Proof. We only prove the first equation. The second can be proved in a similar way.
The proof is by induction with respect to s. For s = 0 and any 1≤m ≤ n and t ∈N,
the result follows from (3-9).

Suppose s > 0, t ∈ N and m 6= i + 1. The case m = i follows from (3-9), so we
can assume that m 6= i . First note the following:

(3-17) 0= (1n)
i

m

δ

•
t

= − ��
��
��
��
��
��
��
��

�
�
�
� (1n)

i

δ

•

m

•
t

+
�
�
�

�
�
�

(1n)
i

m

δ

−1

•
t

.

The first equality holds because the label of the region inside the curl does not
belong to 3(n, n); its (m+1)-th entry equals −1. The second equality follows
from resolving the curl. The minus sign is a consequence of our normalization of
degree-0 bubbles in [Mackaay and Thiel 2013], because the label λ of the region
just outside the bubble satisfies λm+1 = 0. Note that the bubble in the second term
has degree 2, since λm − λm+1 = 1 for any m 6= i, i + 1.
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Equation (3-17) implies

(3-18) ��
��
��
��
��
��
��
��

�
�
�
� (1n)

i

δ

m

•
s

•
t

=
�
�
�

�
�
�

(1n)
i

m

δ

−1

•
s−1

•
t

.

Now slide the m-bubble to the left. Note that the strand directly to the left of the
bubble has color m+1 (the colors are still taken modulo n). Thus, by the bubble-slide
relations and the degree-0 bubble relations in [Mackaay and Thiel 2013], we get

(3-19)
�
�
�

�
�
�

(1n)
i

m

δ

−1

•
s−1

•
t

= (1n)
i

δ

•
s−1
••

t

− (1n)
i

δ

s−1
•

m
•

t

.

The new bubble, in the second diagram on the right-hand side of (3-19), still has
color m of course. But now it is between the strands colored m + 2 and m + 1,
reading from left to right. The label, λ, of the region between these two strands
satisfies λm+1 = 1. Thus, by the degree-0 bubble relations in [Mackaay and Thiel
2013], the counterclockwise degree-0 m-bubble in that region is equal to 1, which
explains the positive sign of the first term on the right-hand side in (3-19). Note
that the label of the region containing the m-bubble in the second term satisfies
λm − λm+1 = 0, so the dotless m-bubble has degree 2, as it should.

Note that the m-bubble in the second term in (3-19) can be slid completely to the
left-hand side. After that, we can use (3-18) to eliminate the dot on the (m+1)-th
strand and slide the (m+1)-bubble completely to the left-hand side. Repeating this
for all strands between i − 1 and m, we get the following result:
(3-20)

��
��
��
��
��
��
��
��

�
�
�
� (1n)

i

δ

••
t s

= ��
��
��
��
��
��
��
��

�
�
�
� (1n)

i

δ

••
t+1

s−1
− ��

��
��
��
��
��
��
��

�
�
�
�

i

δ

••
t

s−1

(
QQ�� +

QQ�� +· · ·+
QQ��

)
i−1 i−2 m

(1n).
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Induction then proves the result for m 6= i + 1.
For m = i+1, we have to adapt our reasoning above, because the region between

the (i+2)-th and the (i+1)-th strands has label λ= (1i , 2, 0, 1n−(i+2)). In particular
λi+1= 2, so the left (i+1)-curl has degree 4 this time, which prevents us from using
induction. Therefore, we use a slightly different argument involving a right curl.

We still assume that s > 0 holds. First note that, by the resolution of the curl
and the degree-0 bubble relations in [Mackaay and Thiel 2013], we have

(3-21) 0 = (1n)
i i+2

δ

•
t

•
s−1

= (1n)
i

δ

•

i+2

•
t

•
s−1

−
��
��
��

��
��
��

(1n)
i

δ

−1

•
t

•
s−1

.

because the region between the (i+2)-th and the (i+1)-th strands is labeled
λ = (1i , 2, 0, 1n−(i+2)). In particular, we have λi+2 − λi+3 = −1 and λi+3 = 1,
which explains the signs of the terms on the right-hand side of (3-21).

We now slide the (i+2)-bubble in the second term on the right-hand side of (3-21)
to the right:

(3-22)
��
��
��

��
��
��

(1n)
i

δ

−1

•
t

•
s−1

= (1n)
i

δ

•
s

•
t

+ (1n)
i

δ

i+2

•
t

•
s−1

.

The sign of the first term on the right-hand side of (3-22) follows from the degree-0
bubble relations in [Mackaay and Thiel 2013].

Putting (3-21) and (3-22) together, we get

(3-23) (1n)
i

δ

•
t

•
s

= (1n)
i

δ

•

i+2

•
t

•
s−1

− (1n)
i

δ

i+2

•
t

•
s−1

.
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We can exchange the (i+2)-bubble on the right-hand side for an (i+1)-bubble on the
left-hand side by Lemma 3.3, and invert its orientation by the infinite Grassmannian
relation.

By the same reasoning as above, we get
(3-24)

(1n)
i

δ

•

i+2

•
t

•
s−1

= (1n)
i

δ

•
t+1

•
s−1

− �
�
�
�
�
�
�
�
��
��
��
��

δ

•
t(

QQ�� +
QQ�� +· · ·+

QQ��

)
i−1 i−2 i+2

i

•
s−1

.

Putting (3-23) and (3-24) together, we obtain

(1n)
i

δ

•
t

•
s

= (1n)
i

δ

•
t+1

•
s−1

− �
�
�
�
�
�
�
�
��
��
��
��

δ

•
t(

QQ�� +
QQ�� +· · ·+

QQ��

)
i−1 i−2 i+1

i

•
s−1

.

As before, the result follows by induction. �

Proposition 3.5.

��
��
��
��
��
��
��
��

�
�
�
� (1n)

i

δ

•• ••
si si+1

si−1 si+2

=

si−1∑
ji−1=0

si−2∑
ji−2=0

· · ·

si+1∑
ji+1=0

( si−1
ji−1

)
· · ·

( si+1
ji+1

)
z

ji−1
i−1 ···z

ji+1
i+1

OO

δ

i
��MM

•
si+···+si+1− ji−1−···− ji+1

(1n)

=

si∑
ji=0

si−1∑
ji−1=0

· · ·

si+2∑
ji+2=0

( si
ji

)
· · ·

( si+2
ji+2

)
y

ji
i ···y

ji+2
i+2

OO

δ

i+1
QQ��

•
si+···+si+1− ji−···− ji+2

(1n).
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Proof. We only prove the first equation. The second can be proved by similar
arguments.

We use induction with respect to the reverse lexicographical ordering of the dot
sequences (si , . . . , si+1). The base of the induction, si = · · · = si+1 = 0, has been
dealt with in Lemma 3.3.

The case si−1 = · · · = si+1 = 0 has been dealt with in Lemma 3.4. Suppose
there exists a j ∈ {i − 1, . . . , i + 1} with s j > 0. The argument below works for
arbitrary j , but let us assume that j = i − 1 for simplicity.

By the same arguments as used in the proof of Lemma 3.4, we get

(3-25) ��
��
��
��
��
��
��
��

�
�
�
� (1n)

i

δ

•• ••
si si+1

si−1 si+2

= ��
��
��
��
��
��
��
��

�
�
�
� (1n)

i

δ

•• ••
si+1 si+1

si−1−1 si+2

− ��
��
��
��
��
��
��
��

�
�
�
� (1n)

i

δ

•• ••
si si+1

si−1−1 si+2

QQ��

i−1

.

Induction on both terms on the right-hand side of (3-25) proves the proposition. �

Proposition 3.5 also allows us to derive two bubble-slide formulas. The other
two, for bubbles with the opposite orientation, can be obtained using the infinite
Grassmannian relation and induction. Since we do not need them in this paper, we
omit them.

Corollary 3.6. We have

(3-26)
s∑

j=0

( s
j

)
OO

δ

i
��MM

•
s− j

z j
i+1 (1n) = OO

δ

i+1
QQ��

•
s

(1n)

and

(3-27) OO

δ

(1n)

s∑
j=0

( s
j

)i+1
QQ��

•
s− j

y j
i = OO

δ

i
��MM

•
s

(1n) .
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Proof. These two bubble-slide relations follow immediately from Lemma 3.4.
For (3-26), apply (3-15) and (3-16) with t = 0,m = i + 1. For (3-27), apply (3-15)
and (3-16) with s = 0,m = i . �

4. Two useful 2-functors

Definition 4.1. Let the 2-functor 9n,n : U(ŝln)
∗
→ Ŝ(n, n)∗ be defined just as 9n,r

in Section 3.5.3 in [Mackaay and Thiel 2013]; i.e., on objects and 1-morphisms it
is determined by

µ 7→ ϕn,n(µ)=: λ,

Ei 1µ 7→ Ei 1λ.

By convention, we put 1∗ := 0. On 2-morphisms it is determined by sending any
diagram in U(ŝln) which is not a left cap or cup to the same diagram in Ŝ(n, n) and
applying ϕn,n to the labels of the regions in the diagram. The images of the left caps
and cups also have to be multiplied by certain signs. To be more precise, define

(4-1) �� i,µ 7→ (−1)λi+1+1
�� i,λ and OO

i,µ
7→ (−1)λi+1 OO

i,λ
.

We define any diagram in Ŝ(n, n) to be equal to 0 if it contains regions labeled ∗.

Note that, unlike 9n,r for n > r , 9n,n is not essentially surjective. However, it
still has the following useful property.

Lemma 4.2. The 2-functor 9n,n is full.

Proof. The proof follows from the following two observations, which show how
to remove δ-strands from diagrams in HOMŜ(n,n)(Ei 1λ, E j 1λ), for any signed se-
quences i and j :

• Closed δ-diagrams always consist of disjoint δ-circles. By Corollary 3.6 we can
move any closed i-diagram, which is always equivalent to a linear combination
of disjoint i-circles, from the interior to the exterior of a δ-circle. By (3-3), we
can then remove the δ-circles with empty interior.

• Any δ-strand which is not part of a δ-circle has to be part of a diagram
obtained by gluing

δ, j
on top of

δ,i
or

δ,i
on top of

δ, j
for certain

1 ≤ i, j ≤ n. In both cases we can remove the δ-strand by applying (3-10)
or (3-11). �

Definition 4.3. We define the 2-functor In : Ŝ(n, n)→ Ŝ(n+ 1, n) as follows:

• On objects and 1-morphisms, use the map in Proposition 2.14.

• On 2-morphisms, take the identity on all i-strands, for 1≤ i ≤ n− 1, map all
n-strands to two parallel strands labeled n and n+ 1, e.g.,
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OO

n

(λ) 7→ OO OO

n n+1

(λ, 0) and ��

n

(λ) 7→ �� ��

n+1 n

(λ, 0),

map dots on n-strands to dots on the corresponding pairs of parallel strands as
follows:

OO

n

(λ)

•

7→ OO OO

n n+1

(λ, 0)
•

= OO OO

n n+1

(λ, 0)
•

and ��

n

(λ)

•

7→ �� ��

n+1 n

(λ, 0)
•

= �� ��

n+1 n

(λ, 0)
•

,

and map the generators involving δ-strands as follows:

OO

δ

(1n) 7→
OO OO · · · OO OO

n n−1 1 n+1

(1n) and ��

δ

(1n) 7→ �� �� · · · �� ��

n+1 1 n−1 n

(1n),

i i−1 1 n i+2 i+1

δ

(1n)

������ ���� ��������

7→

n n−1 i+1 i 1 n+1

i 1 n n+1 n−1 i+1

(1n),

i i+1 n 1 i−2 i−1

δ

(1n)

������ ���� ��������

7→

n+1 1 i−1 i n−1 n

i n−1 n+1 n 1 i−1

(1n),

with the image of the other two δ-splitters being defined likewise using
cyclicity.

Note that the two images of the dotted n-strands which are shown, are indeed
equal in Ŝ(n + 1, n). This follows from the relevant Reidemeister-2 relations,
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because the diagrams with the crossings in those relations are equal to 0 (the last
entry of the labels of their middle regions is equal to −1).

Lemma 4.4. For any n ≥ 3, In is well-defined.

Proof. We only have to prove that In preserves the relations involving n and
δ-strands, because In clearly preserves all other relations.

First consider the nil-Hecke relations which only involve n-strands. By cyclicity,
we can assume that all strands are oriented upward. We give the proof of well-
definedness with respect to one nil-Hecke relation in detail. The image of the
left-hand side of

(4-2)

??__

•

n n

λ −

??__

n n
•

λ =
OO OO

n n

λ

is given by
??__

•
??__

n nn+1 n+1

(λ, 0) −

??__ ??__

n nn+1 n+1
•
(λ, 0).

By the nil-Hecke relation for the n-strands, this is equal to

n nn+1 n+1

(λ, 0) =

n nn+1 n+1

(λ, 0),

which is equal to the image of the right-hand side of (4-2). Note that in the last
equality, we have omitted one term which is equal to 0 because it contains a region
whose label has a negative entry.

Well-definedness with respect to the other two nil-Hecke relations for n-strands
can be proved by similar arguments.

As for the other relations involving only n-strands, the first one we should look
at is the infinite Grassmannian relation. The image of the n-bubbles is given by

n

λ
•
♦+a

7→

n+1
n

(λ, 0)
• •
♦+a ♦

and

n

λ
•
♦+a

7→

n
n+1

(λ, 0)
• •
♦+a ♦

for any a ∈ N and λ ∈3(n, n). The notation ♦ is defined by

i

λ
•
♦+b

:=

i

λ
•

−(λi−λi+1)−1+b

and
i

λ
•
♦+b

:=

i

λ
•

λi−λi+1−1+b

,

for any b ∈ N.
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For♦+a<0, the image of the fake n-bubbles above is a definition. For♦+a≥0,
we have to prove that the image of the n-bubbles above is equal to the image assigned
to them by In . This is immediate if the two nested bubbles in the image are real (since
the numbers of dots match), but one of them could be fake, in which case a proof
is required. Let us give this proof for the counterclockwise n-bubbles. Note that

(4-3)

n

λ
•
♦+a

=

n

λ
•

−(λn−λ1)−1+a

.

By the definition above, the image of the left-hand side of (4-3) is given by
n+1

n

(λ, 0)
• •
♦+a ♦

= −

∑
b+c=a

n+1

•
♦+b

n

(λ, 0)
•
♦+c

.

The equality is obtained by applying a bubble-slide relation. By the definition
of In , the image of the right-hand side of (4-3) is given by

n+1
n

(λ, 0)
•
a′

=−

∑
b′+c=a′+λn

n+1

•
b′

n

(λ, 0)
•
♦+c

=−

∑
b′+c=a′+λn

n+1

•
♦+b′−λ1+1

n

(λ, 0)
•
♦+c

=−

∑
b+c=a

n+1

•
♦+b

n

(λ, 0)
•
♦+c

,

with a′=−(λn−λ1)−1+a. The first equality is obtained by applying a bubble-
slide relation, and the other equalities are obtained by reindexing. This finishes the
proof that both definitions of the image of the counterclockwise nonfake n-bubbles
are equal. The proof for the clockwise n-bubbles is similar and is left to the reader.

We now show that with the definitions above, the images of the bubbles satisfy the
infinite Grassmannian relation. To be more precise, we have to show that the relation

(4-4)
b∑

a=0

n

•
♦+b−a

n

•
λ

♦+a

= −δb,0

is preserved, for any b ∈ N. For b = 0, the image of (4-4) is given by
n+1

n

• •
♦ ♦

n

n+1
(λ, 0)

• •
♦ ♦

= −1.
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The equality follows immediately from the degree-0 bubble relations. For b > 0,
the image of (4-4) is given by

b∑
a=0

n+1
n

• •
♦+b−a ♦

n

n+1
(λ, 0)

• •
♦+a ♦

=

b∑
a=0

a∑
k=0

n+1
n

• •
♦+b−a ♦

n+1

•
♦+k

n

(λ, 0)
•

♦+a−k

=−

b∑
a=0

a∑
k=0

a−k∑
`=0

n n
n+1

• •

•
♦+b−a ♦+a−k−`

♦+`

n+1

(λ, 0)
•
♦+k

=−

b∑
a=0

a∑
c=0

c∑
k=0

n n
n+1

• •

•
♦+b−a ♦+a−c

♦+c−k

n+1

(λ, 0)
•
♦+k

=−

b∑
c=0

c∑
k=0

b−c∑
m=0

n n
n+1

• •

•
♦+b−c−m ♦+m

♦+c−k

n+1

(λ, 0)
•
♦+k

= 0.

The first two equalities follow from bubble-slide relations. The next two equalities
follow from reindexing, as indicated. The last equality follows from the infinite
Grassmannian relation: for the n-bubbles, if b > c (with c fixed), and for the
(n+1)-bubbles if b = c.

Knowing the images of the fake bubbles allows us to prove the other relations
involving only n-strands very easily. Let us do just one example; the other relations
can be proved in a similar fashion. We show that In preserves the relation

(4-5)

n

λ = −

λ1−λn∑
f=0

• λ1−λn− f

n

n

λ
•
♦+ f

.



226 MARCO MACKAAY AND ANNE-LAURE THIEL

The image of the left-hand side of (4-5) is given by

n n+1

(λ, 0),

which is equal to

−

λ1−1∑
f=0

•
•

n n+1

n+1

λ1−1− f
♦+ f

(λ, 0) = −
λ1−1∑
f=0

• •

n n+1

n
n+1

λ1−1− f ♦+ f
(λ, 0)

= −

λ1−λn∑
f=0

• •

•

n n+1

n
n+1

λ1−λn− f ♦+ f
♦

(λ, 0).

The first summation is obtained by resolving the (n+1)-curl. The second summation
can then be obtained by applying a Reidemeister-3 relation to the strands colored
n, n+ 1 and n. Note that only the terms which are shown survive; the other ones
are 0 because they are given by diagrams which contain a region whose label has
a negative entry. The last summation is obtained by first reindexing. Then an
argument similar to the one we used below (4-3) ensures that the nested bubbles,
before and after the equality, match and that the first λn − 1 terms of the reindexed
summation vanish (indeed in those terms, bubbles of negative degree appear, and
those are always 0). This last expression is equal to the image of the right-hand
side of (4-5), which finishes our proof that In preserves (4-5).

Next let us have a look at the relations involving i-strands of more than one color.
We just do one example in detail, the other relations can be proved in a similar
fashion. Consider the relation

(4-6)

n 1

λ = −•

n 1

λ + •

n 1

λ
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in Ŝ(n, n). The image of the term on the left-hand side is given by

n n+1 1

(λ, 0) =

n n+1 1

(λ, 0) = − •

n n+1 1

(λ, 0) + •

n n+1 1

(λ, 0).

The first and the second equalities follow from the Reidemeister-2 relations in
Ŝ(n+1, n). The linear combination at the end is exactly the image of the right-hand
side in (4-6), which proves that (4-6) is preserved by In .

It remains to be proved that In preserves the relations involving δ-strands. For the
relations (3-1) and (3-2), the proof follows immediately from the zigzag relations
for i-strands with i = 1, . . . , n + 1. For the relations in (3-3), the proof follows
immediately from the degree-0 i-bubble relations for i =1, . . . , n+1. Let us explain
the first relation in (3-4) in more detail, the second being similar. The image of

��

δ

OO (1n)

δ

is given by

· · · · · ·

n+1 1 n n 1 n+1

n+1 1 n n 1 n+1

(1n, 0) = · · · · · ·

n+1 1 n n 1 n+1

n+1 1 n n 1 n+1

(1n, 0)

= · · · =

· · · · · ·

· · · · · ·

n+1 1 n n 1 n+1

n+1 1 n n 1 n+1

(1n, 0),

which is indeed equal to the image of

�� JJ

δ (1n)
WW



.

The equalities above are obtained by repeatedly applying Reidemeister-2 relations on
the pairs of i-strands with λi−λi+1=−1 for all i =1, . . . , n+1. Note that the terms
with two i-crossings are all equal to 0, because they contain a region whose label has
one negative entry, and all bubbles in the other terms are of degree 0 and equal to−1.

The fact that relations (3-5), (3-6), (3-7) and (3-8) are preserved follows easily
from applying Reidemeister-2 and -3 relations to the images of the terms on their
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left-hand side. The dots appear after applying the Reidemeister-2 relation involving
the i and (i+1)-strands.

We prove the left relation in (3-9) for 1 ≤ i < n. The proof for i = n and the
proof of the right relation in (3-9) are similar and are left to the reader. The image
on the left-hand side of the first relation in (3-9) is given by

(4-7)

n n−1 i+1 i i−1 1 n+1 i

n n−1 i+1 i i−1 1 n+1 i

(1n, 0)

· · ·

· · ·

· · ·

· · ·

We claim that this is equal to

n n−1 i+1 i i−1 1 n+1 i

n n−1 i+1 i i−1 1 n+1 i

(1n, 0)

· · ·

· · ·

· · ·

· · ·

which is indeed the image of the right-hand side of (3-9). This follows from first ap-
plying Reidemeister-2 relations to (4-7) in order to straighten all j -strands for j 6= i :

n n−1 i+1 i i−1 1 n+1 i

n n−1 i+1 i i−1 1 n+1 i

(1n, 0)

· · ·

· · ·

· · ·

· · ·

then a Reidemeister-2 relation to the i-strands in the middle (note that the re-
gion at the top and the bottom between the i and the (i−1)-strand is labeled
(1, . . . , 1, 0, 1, . . . , 1) with 0 on the i-th position):

n n−1 i+1 i i−1 1 n+1 i

n n−1 i+1 i i−1 1 n+1 i

(1n, 0)

· · ·

· · ·

· · ·

· · ·

and finally Reidemeister-2 relations in order to straighten the downward i-strand.
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Finally, the fact that In preserves the relations (3-10) and (3-11) can be easily
proved by applying Reidemeister-2 and -3 relations to the images of the diagrams
on the left-hand sides of those two relations. �

5. The Grothendieck group

In this section we prove that Ŝ(n, n) categorifies Ŝ(n, n) (Theorem 5.4). All the
hard work has been done already, we just have to put everything together. In
the following lemma, we show that all relations in Ŝ(n, n), which are listed in
Theorem 2.11, hold up to isomorphism in Ŝ(n, n).

Lemma 5.1. In Ŝ(n, n), we have

E±δ1λ ∼= 1λE±δ ∼= 0 for all λ 6= (1n),(i)

E±δ1n ∼= 1nE±δ,(ii)

E+δE−δ1n ∼= E−δE+δ1n ∼= 1n,(iii)

EiE+δ1n ∼= E (2)i Ei−1 . . . E1En · · · Ei+11n,(iv)

1nE+δEi ∼= 1nEi−1 . . . E1En · · · Ei+1E (2)i ,(v)

E−iE+δ1n ∼= Ei−1 · · · E1En · · · Ei+11n,(vi)

1nE+δE−i ∼= 1nEi−1 · · · E1En · · · Ei+1,(vii)

E−iE−δ1n ∼= E (2)
−i E−(i+1) · · · E−nE−1 · · · E−(i−1)1n,(viii)

1nE−δE−i ∼= 1nE−(i+1) · · · E−nE−1 · · · E−(i−1)E (2)−i ,(ix)

EiE−δ1n ∼= E−(i+1) · · · E−nE−1 · · · E−(i−1)1n,(x)

1nE−δEi ∼= 1nE−(i+1) · · · E−nE−1 · · · E−(i−1)(xi)

for any i = 1, . . . , n.

Proof. The isomorphisms in (i) and (ii) are immediate.
For (iii), consider the 2-morphisms

�� JJ

δ
(1n) : 1n→ E−δE+δ1n,

WW



δ

(1n) : E−δE+δ1n→ 1n,

��TT

δ
(1n) : 1n→ E+δE−δ1n,

GG ��

δ

(1n) : E+δE−δ1n→ 1n.

Relations (3-3) and (3-4) show that these 2-morphisms are 2-isomorphisms.



230 MARCO MACKAAY AND ANNE-LAURE THIEL

Similarly, the isomorphisms in (iv) and (v) follow from the relations in (3-13)
and (3-14), and the isomorphisms in (vi) and (vii) follow from the relations in (3-9)
and (3-12).

The isomorphisms in (viii)–(xi) follow from the ones above by biadjointness. �

Recall that END(X) denotes the ring generated by all homogeneous 2-endomor-
phisms of a given 1-morphism X , whereas End(X)⊂ END(X) only contains the
ones of degree 0.

Lemma 5.2. For any t ∈ Z,

END(E t
+δ1n)∼= 1E t

+δ
END(1n)∼= END(1n)1E t

+δ
.

Proof. Note that for t = 0 there is nothing to prove. Let us now explain the proof
for t = 1. Given a diagram of the form

we can create a δ-bubble by (3-3) and apply (3-4) to obtain

=

This proves the lemma for t = 1. For t > 1, use the same trick repeatedly until you
are left with a closed diagram and t upward δ-strands. For t < 0, a similar trick can
be applied using the opposite orientation on the δ-strands. �

Let K0(Kar Ŝ(n, n)) be the split Grothendieck group of Kar Ŝ(n, n). This is a
Z[q, q−1

]-module, where the action of q is defined by

q[X ] := [X{1}].

Furthermore, let

K Q(q)
0 (Kar Ŝ(n, n)) := K0(Kar Ŝ(n, n))⊗Z[q,q−1]Q(q).
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Definition 5.3. Define the Q(q)-linear algebra homomorphism γn : Ŝ(n, n) →
K Q(q)

0 (Kar Ŝ(n, n)) by

γn(E i 1λ) := [Ei 1λ]⊗ 1 and γn(E t
+δ1n) := [E t

+δ1n]⊗ 1

for any signed sequence i , λ ∈3(n, n) and t ∈ Z.

Theorem 5.4. The homomorphism γn is well-defined and bijective.

Proof. Well-definedness follows from the corresponding statement for U(ŝln) by
Khovanov and Lauda [2010] and from Theorem 2.11 and Lemma 5.1.

Let us now show surjectivity. By Lemma 5.1, any indecomposable object in
Kar Ŝ(n, n) is isomorphic to an object of the form (X, e), where X is either of the
form E t

+δ for some t ∈Z or of the form Ei for some signed sequence i , and e is some
idempotent in End(X). By Lemmas 4.2 and 5.2, we see that End(E t

+δ)
∼= Q1E t

+δ
.

Therefore E t
+δ is indecomposable in Kar Ŝ(n, n). Note that its Grothendieck class

lies indeed in the image of γn . By Lemma 4.2 we know that EndŜ(n,n)(Ei ) is the
surjective image of the analogous endomorphism ring in U(ŝln) for any signed
sequence i . By [Khovanov and Lauda 2010, Theorem 1.1] and some general
arguments which were explained in detail in [Mackaay et al. 2013], and also used
in [Mackaay and Thiel 2013], this implies that the Grothendieck classes of all direct
summands of Ei in Kar Ŝ(n, n) are contained in the image of γn . This concludes
the proof that γn is surjective.

For injectivity, consider the following commutative diagram

Ŝ(n, n)

γn
��

ιn
// Ŝ(n+ 1, n)

γn+1
��

K Q(q)
0 (Kar Ŝ(n, n))

K0(In)⊗1
// K Q(q)

0 (Kar Ŝ(n+ 1, n))

where γn+1 is the isomorphism from [Mackaay and Thiel 2013, Theorem 6.4] and
In is defined in Definition 4.3. Since ιn and γn+1 are both injective, their composite
is also injective. The commutativity of the diagram above then implies that γn is
injective too. �
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SHOWING DISTINCTNESS OF SURFACE LINKS
BY TAKING 2-DIMENSIONAL BRAIDS

INASA NAKAMURA

For an oriented surface link S , we can take a satellite construction called
a 2-dimensional braid over S , which is a surface link in the form of a
covering over S . We demonstrate that 2-dimensional braids over surface
links are useful for showing the distinctness of surface links. We investigate
nontrivial examples of surface links with free abelian groups of rank two,
concluding that their link types are infinitely many.

1. Introduction

A surface link is the image of a smooth embedding of a closed surface into Euclidean
space R4. Two surface links are equivalent if there is an orientation-preserving self-
diffeomorphism of R4 carrying one to the other. In this paper, we assume that surface
links are oriented. In [Nakamura 2014a], we investigated a satellite construction
called a 2-dimensional braid over an oriented surface link, and introduced its
graphical presentation called an m-chart on a surface diagram. A 2-dimensional
braid over a surface link S is a surface link in the form of a covering over S , and
can be regarded as an analog to a double of a classical link. One of the expected
applications of the notion of a 2-dimensional braid is that it will provide us with a
method for showing the distinctness of surface links. The aim of this paper is to
demonstrate such use for 2-dimensional braids.

Our main theorem is as follows. For a positive integer k, let �1; �2; : : : ; �k

be the standard generators of the .k C 1/-braid group. Take X1 D �
2
1

and Xk D

�2
1
�2�3 � � � �k , and let � be a .k C 1/-braid with a positive half twist. Consider

Sk DSkC1.Xk ; �
2/, a torus-covering T 2-link determined from the .kC1/-braids

Xk and �2. We take the first component of Sk to be the one determined from the
first strand of Xk , and likewise the second component from the second strand; see
Section 2 for the construction. Here, a T 2-link is a surface link each of whose
components is of genus one.

MSC2010: primary 57Q45; secondary 57Q35, 57M25.
Keywords: surface link, 2-dimensional braid, chart, Roseman move, triple linking.
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Theorem 1.1. Abelian T 2-links of rank two, Sk and Sl , are not equivalent for
distinct positive integers k and l . Thus, the link types of abelian T 2-links of rank
two are infinitely many.

An abelian surface link of rank n is a surface link whose link group is a free
abelian group of rank n [Ito and Nakamura 2014]; note that n is the number of
the components. We remark that our abelian T 2-links of rank two cannot be
distinguished by using link groups, and that by a homological argument we cannot
show that their link types are infinitely many, but only that there are two link types;
see Section 2B. Our abelian T 2-link Sk of rank two is a sublink of the surface link
given in [Ito and Nakamura 2014], where we gave examples of abelian T 2-links of
rank four, and we showed that their link types are infinitely many by calculations
of triple linking numbers (see also Remark 2.3).

Triple linking numbers are integer-valued invariants of surface links with at
least three components, so we cannot use them directly for our case. In order to
overcome this situation, we take a 2-dimensional braid over Sk such that each
component of Sk is split into two components. This has four components, so we
can calculate triple linking numbers. A 2-dimensional braid over a surface link
is obtained from the “standard” 2-dimensional braid by the addition of braiding
information. Unfortunately, for the standard 2-dimensional braid, the triple linking
number is trivial (Proposition 5.1). However, addition of braiding information
makes a 2-dimensional braid with nontrivial triple linking, and enables us to show
that Sk and Sl are not equivalent for distinct positive integers k and l . For a similar
result, we refer to Suciu’s paper [1985] where it is shown that there are infinitely
many ribbon 2-knots in S4 with knot group the trefoil knot group.

The paper is organized as follows. In Section 2, we review torus-covering links
and explain our example Sk , and we review triple linking numbers of torus-covering
links. In Section 3, we discuss the notion of a 2-dimensional braid over a surface
link. In Section 4, we observe that a 2-dimensional braid of degree m over a surface
link is presented by a finite graph called an m-chart on a surface diagram, and
that 2-dimensional braids of degree m are equivalent if their surface diagrams with
m-charts are related by local moves called Roseman moves. In Section 5, we prove
Proposition 5.1. In Section 6, we calculate triple linking numbers of a certain
2-dimensional braid over Sk and prove Theorem 1.1.

2. Abelian T 2-links of rank two

The example Sk given in Theorem 1.1 is a surface link called a torus-covering
link. In this section, we review torus-covering T 2-links; see [Nakamura 2011] for
details. We briefly observe that Sk is an abelian surface link of rank two, and that
we cannot show that the link types of our examples are infinitely many by using a
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homological argument. Further, we review a formula for the triple linking numbers
of torus-covering links [Ito and Nakamura 2014].

2A. Torus-covering links. Let T be a standard torus in R4, the boundary of an
unknotted (standardly embedded) solid torus in R3 � f0g � R4.

Definition 2.1. A torus-covering T 2-link S is a surface link in the form of a 2-
dimensional braid over the standard torus T , i.e., S is a T 2-link in R4 such that S

is contained in a tubular neighborhood N.T / and �jS W S ! T is an unbranched
covering map, where � WN.T /! T is the natural projection.

Let S be a torus-covering T 2-link. Fix a base point x0D .x
0
0
;x00

0
/ of T DS1�S1.

Take two simple closed curves on T , mD@B2�fx00
0
g and l Dfx0

0
g�S1. Recall that

T is embedded as T D@.B2�S1/�R3�f0g�R4. Let us consider the intersections
S \ ��1.m/ � B2 �m and S \ ��1.l/ � B2 � l . They are regarded as closed
m-braids in the 3-dimensional solid tori, where m is the degree of the covering map
�jS WS!T . Cutting open the solid tori along the 2-disk ��1.x0/DB2�fx0g, we
obtain two m-braids a and b. The assumption that �jS is an unbranched covering
implies that a and b commute. We call the commutative braids .a; b/ the basis
braids of S . Conversely, starting from a pair of commutative m-braids .a; b/, we
can uniquely construct a torus-covering T 2-link with basis braids .a; b/ [Nakamura
2011, Lemma 2.8]. For commutative m-braids a and b, we denote by Sm.a; b/ the
torus-covering T 2-link with basis braids .a; b/.

2B. Our abelian T 2-links of rank two. We can verify that SkDSkC1.Xk ; �
2/ is

an abelian surface link as follows. The link group of a torus-covering link Sm.a; b/

is a quotient group of the classical link group of the closure of a such that the
abelianization is a free abelian group [Nakamura 2011, Proposition 3.1]. Since the
link group of the closure of Xk , a Hopf link, is a free abelian group of rank two, so
is the link group of Sk .

We remark that a homological argument cannot show that our examples are
infinitely many, but only that there are two link types. Let us consider the one-point
compactification of R4, and regard Sk to be in the Euclidean 4-sphere S4. Recall
that we take the first and second components F1 and F2 of Sk to be determined from
the first and second strands of Xk , respectively. By Alexander’s duality, we see that
H2.S

4 �F1IZ/ŠH1.F1IZ/, whence ŒF2�D �C k� 2H2.S
4 �F1IZ/, where

.�; �/ is a preferred basis of H1.F1IZ/ŠH2.S
4�F1IZ/ represented by a meridian

and a preferred longitude of F1. Similarly, let us denote by F 0
1

and F 0
2

the first and
second components of Sl . Then we can see that ŒF 0

2
�D�0C l�0 2H2.S

4�F 0
1
IZ/,

where .�0; �0/ is a preferred basis of H1.F
0
1
IZ/ŠH2.S

4�F 0
1
IZ/ represented by

a meridian and a preferred longitude of F 0
1
. Now, the standardly embedded tori F1

and F 0
1

are related by an orientation-preserving self-diffeomorphism of S4 if and
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only if �
�0

�0

�
DA

�
�

�

�
for

AD

�
˛ ˇ

ı 


�
2GLC.2IZ/

such that ˛ C ˇ C 
 C ı � 0 .mod 2/ [Montesinos 1983], which implies that
ŒF2�D ŒF

0
2
� 2H2.S

4�F1IZ/ if and only if k � l .mod 2/ (see [Iwase 1988]).

Remark 2.2. The abelian surface link S1, i.e., S2.�
2
1
; �2

1
/, is the twisted Hopf

2-link we will mention in the proof of Proposition 5.1; see also [Carter et al. 2001].

Remark 2.3. It is known [Kawauchi 1996, Theorem 6.3.1–Exercise 6.3.3] that for
classical links, the rank of an abelian link is at most two, and for abelian links of
rank two, there are exactly two link types: a positive and a negative Hopf link.

Remark 2.4. Set Tm D SkC1.Xk ;X
m
k
/ for an integer m. It is known ([Boyle

1993], see also [Iwase 1988; Nakamura 2011]) that Tm and Tn are equivalent for
m� n .mod 2/. Fix the first component of Tm in the form of the standard torus. By
a homological argument as above, we see that Tm cannot be taken to Tn for n¤m by
an orientation-preserving self-diffeomorphism of R4 relative to the first component.

2C. Triple linking numbers of torus-covering links. The triple linking number of
a surface link S is defined as follows [Carter et al. 2003, Definition 9.1]. For the
i-th, j -th, and k-th components Fi ;Fj ;Fk of S with i ¤ j and j ¤ k, the triple
linking number tlki;j ;k.S/ of the i -th, j -th, and k-th components of S is the total
number of positive triple points minus the total number of negative triple points
of a surface diagram of S such that the top, middle, and bottom sheet are from
Fi , Fj , and Fk , respectively. The triple linking number is a link bordism invariant
[Carter et al. 2004; 2001; Sanderson 1987; 1993]; for other properties, see [Carter
et al. 2003; 2004]. Triple linking numbers are useful for showing the distinctness
of surface links with at least three components [Ito and Nakamura 2014; Nakamura
2012; 2014b].

From [Ito and Nakamura 2014], we have a formula for the triple linking numbers
of a torus-covering T 2-link Sm.a; b/. Let Ai be the components of the closure
of a which are from the i-th component of Sm.a; b/. Take one of the connected
components of Ai and denote it by A1

i . We define by the classical linking number

lka
i;j D lk.A1

i ;Aj /;

where we regard A1
i and Aj as oriented links in R3. The notation lkb

i;j for the other
basis braid is defined similarly. Note that lka

i;j does not depend on the choice of
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a connected component A1
i [Ito and Nakamura 2014, Remark 5.5], and note that

lka
i;j is not always symmetric, i.e., lka

i;j is not always equal to lka
j ;i .

Now, for a torus-covering T 2-link, the triple linking number of the i-th, j -th,
and k-th components is given by

(2-1) tlki;j ;k.Sm.a; b//D� lka
j ;i lkb

j ;k C lka
j ;k lkb

j ;i ;

where i ¤ k and j ¤ k [Ito and Nakamura 2014, Theorem 5.4 and Remark 5.7].

3. Two-dimensional braids over a surface link

A 2-dimensional braid, also called a simple braided surface, over a 2-disk is anal-
ogous to a classical braid [Kamada 1992; 2002; Rudolph 1983]. We can modify
this notion to a 2-dimensional braid over a closed surface [Nakamura 2011], and
further to a 2-dimensional braid over a surface link [Carter et al. 2004, Section
2.4.2; Nakamura 2014a]. In this section, we review this notion of a 2-dimensional
braid over a surface link.

3A. Two-dimensional braids over a surface link. We use 2-dimensional braids
without branch points over a closed surface, so our definition here is restricted to
such surfaces; see [Nakamura 2011; 2014a] for the general definition.

Let † be a closed surface, let B2 be a 2-disk, and let m be a positive integer.

Definition 3.1. A closed surface z† embedded in B2 �† is called a 2-dimensional
braid over † of degree m if the restriction �jz† W

z†!† is an unbranched covering
map of degree m, where � W B2 �†!† is the natural projection.

Take a base point x0 of †. Two 2-dimensional braids over † of degree m are
equivalent if there is a fiber-preserving ambient isotopy of B2 �† rel ��1.x0/

which carries one to the other.

A surface link is said to be of type † when it is the image of an embedding of †.
Let S be a surface link of type†, and let N.S/ be a tubular neighborhood of S in R4.

Definition 3.2. A 2-dimensional braid zS over S is the image of a 2-dimensional
braid over † in B2 �† by an embedding B2 �†! R4 which identifies N.S/

with B2�† as a B2-bundle over a surface. We define the degree of zS as that of S .
Two 2-dimensional braids zS and zS 0 over surface links S and S 0 are equivalent

if there is an ambient isotopy of R4 carrying zS to zS 0 and N.S/ D B2 � S to
N.S 0/D B2 �S 0 as a B2-bundle over a surface.

Equivalent 2-dimensional braids over surface links are also equivalent as surface
links. A 2-dimensional braid zS over S is a specific satellite with companion S ; see
[Carter et al. 2004, Section 2.4.2] as well as [Lickorish 1997, Chapter 1].
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a double point curve a triple point a branch point

Figure 1. The singularity of a surface diagram.

3B. Standard 2-dimensional braids. In this section, we define the standard 2-
dimensional braid over a surface link S . Using this notion, we will explain in the
next section that a 2-dimensional braid is presented by a finite graph called an
m-chart on a surface diagram D of S . The standard 2-dimensional braid over S is
the 2-dimensional braid presented by an empty m-chart on D [Nakamura 2014a].

We first review surface diagrams of a surface link S ; see [Carter et al. 2004]. For
a projection p W R4! R3, the closure of the self-intersection set of p.S/ is called
the singularity set. Let p be a generic projection, meaning that the singularity set of
the image p.S/ consists of double points, isolated triple points, and isolated branch
points; see Figure 1. The closure of the singularity set forms a union of immersed
arcs and loops, called double point curves. Triple points form the intersection
points of the double point curves, and branch points form the end points. A surface
diagram of S is the image p.S/ equipped with over/under information along each
double point curve with respect to the projection direction.

We define the 2m-braid z�1 obtained from a 2-braid �1 as follows. More generally,
we construct an mn-braid Qb from an n-braid b, needed for the proof of Theorem 1.1.
Let Qm be m interior points of B2. For a standard generator �i of an n-braid, let z�i

be the mn-braid obtained from �i in the form of a Qm-bundle over �i by splitting
each strand into a bundle of m parallel strands with a negative half twist at the
initial points of each bundle; see Figure 2. The map taking �i to z�i determines a
homomorphism from the n-braid group to the mn-braid group. For an n-braid b,
let Qb denote the image of b by this homomorphism.

Definition 3.3. Let S be a surface link. A surface diagram D of S consists of
the following local parts: around (1) a regular point, i.e., a nonsingular point,

Figure 2. The 2m-braid z�1.
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(2) a double point curve, (3) a triple point, and (4) a branch point. The diagram
around a regular point (1) consists of an embedded 2-disk B2 with no singularities,
and the diagram around a double-point curve (2) can be expressed as the product of
a 2-braid �1 and an interval I .

We define the standard 2-dimensional braid over S locally for such local parts of
D as follows: for (1), it is m parallel copies of B2, and for (2), it is the product of the
2m-braid z�1 and I . Then, for the other cases (3) and (4), the standard 2-dimensional
braid is naturally defined [Nakamura 2014a, Definition 5.1 and Proposition 5.2].

4. Chart presentation of 2-dimensional braids and Roseman moves

In this section, we recall that a 2-dimensional braid of degree m over a surface link
S is presented by a finite graph called an m-chart on a surface diagram D of S . For
two 2-dimensional braids of degree m, they are equivalent if their surface diagrams
with m-charts are related by a finite sequence of local moves called Roseman moves.
See [Nakamura 2014a].

4A. Chart presentation of 2-dimensional braids over a surface link. The graphi-
cal method called an m-chart on a 2-disk was introduced to present a simple surface
braid which is a 2-dimensional braid over a 2-disk with trivial boundary condition
[Kamada 1992; 2002]. By regarding an m-chart on a 2-disk as drawn on a 2-sphere
S2, it presents a 2-dimensional braid over S2 [Kamada 1992; 2002; Nakamura
2011]. This notion can be modified to an m-chart on a closed surface, and further
to an m-chart on a surface diagram D of a surface link S [Nakamura 2011; 2014a].
A 2-dimensional braid over S is presented by an m-chart on D [Nakamura 2014a].

In this paper, we treat 2-charts with vertices of degree 2. We now review the
graphical form of an m-chart of a 2-dimensional braid over a surface link. See
[Nakamura 2014a] for details.

Let zS be a 2-dimensional braid over a surface link S . Let D be a surface diagram
of S by a projection p WR4!R3 which is generic with respect to both S and zS . We
can assume that the singularity set of the surface diagram p. zS/ is the union of the
singularity set of the diagram of the standard 2-dimensional braid over S and some
finite graph � [Nakamura 2014a, Theorem 5.5]. Project � to D by the projection
p.N.S//D B2 �D!D. Thus we obtain a finite graph on the surface diagram
D. An m-chart on a surface diagram D is such a finite graph equipped with certain
additional information of orientations and labels assigned to the edges, where m is
the degree of the 2-dimensional braid. Owing to the additional information, we can
regain the original 2-dimensional braid from the m-chart on D [Nakamura 2014a]
(see also [Kamada 2002]).

We can define an m-chart on D in graphical terms, where the labels of edges are
from 1 to m� 1; see [Nakamura 2014a, Definitions 5.3 and 5.4]. Around a double
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i

m� i

Figure 3. An m-chart around a double point curve. Here i is one
of 1; : : : ;m�1. For simplicity, we omit the over/under information
of each sheet.

point curve, an m-chart is as in Figure 3, with a vertex of degree 2. A 2-dimensional
braid over S is presented by an m-chart on D [Nakamura 2014a, Theorem 5.5].

4B. Roseman moves. Roseman moves are local moves of surface diagrams, as
illustrated in Figure 4. It is known [Roseman 1998] that two surface links are
equivalent if and only if their surface diagrams are related by a finite sequence
of Roseman moves and ambient isotopies of the diagrams in R3. In [Nakamura
2014a], we introduced the notion of Roseman moves for surface diagrams with
m-charts.

An m-chart is said to be empty if it is an empty graph.

Definition 4.1. We define Roseman moves for surface diagrams with m-charts by
the local moves as shown in Figures 4 and 5, where we regard the diagrams in
Figure 4 as equipped with empty m-charts.

l l
l l

l l
$

Figure 4. Roseman moves. We omit the over/under information
of each sheet.
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xy xy xy xy xy xy

i

i

m�i

m�i

i

i

m�i

i

i m�i

i i

m�i
i

Figure 5. Roseman moves for surface diagrams with m-charts,
where i 2 f1; : : : ;m�1g. We omit the over/under information of
each sheet, and orientations and labels of edges of m-charts.

Roseman moves for surface diagrams with m-charts, as illustrated in Figures 4
and 5, are well-defined. That is, for each pair of Roseman moves, the m-charts on
the indicated diagrams present equivalent 2-dimensional braids [Nakamura 2014a,
Theorem 6.2].

5. Triple linking numbers of standard 2-dimensional braids

Recall the triple linking numbers from Section 2C. We will say that a surface link
S has trivial triple linking if every triple linking number of S is zero or S consists
of less than three components.

Proposition 5.1. For the standard 2-dimensional braid zS over a surface link S , if
S has trivial triple linking, then so does zS .

Proof. Assume that S has trivial triple linking. Recall from [Carter et al. 2001] that
the link bordism class of a surface link is determined from triple linking numbers
and double linking numbers (another kind of link bordism invariant), and that a
surface link with trivial triple linking is link bordant to a split union of a finite
number of trivial spheres and surface links called twisted Hopf 2-links, which has
a surface diagram with no triple points (see also Remark 2.2). Hence, S is link
bordant to a surface link S 0 whose surface diagram has no triple points. By the
well-definedness of Roseman moves, zS is link bordant to the standard 2-dimensional
braid zS 0 over S 0. Since the surface diagram of a standard 2-dimensional braid has
triple points only around triple points of the companion surface [Nakamura 2014a],
the surface diagram of zS 0 has no triple points. Thus zS is link bordant to a surface
link with no triple points, which implies that zS has trivial triple linking. �
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6. Proof of Theorem 1.1

In this section, we consider a 2-dimensional braid zS over a surface link S presented
by a 2-chart consisting of a finite number of loops on a surface diagram of S . Here,
a loop is a union of edges connected by vertices of degree 2 as in Figure 3. For our
2-charts, the edges are labeled by 1 and the orientations are coherent around a vertex
of degree 2, so we can ignore the label information, and we regard the 2-chart on a
surface diagram of S as oriented loops. Further, we consider that the loops are on S

itself. By the well-definedness of Roseman moves, a 2-dimensional braid presented
by a 2-chart � on S is equivalent to the 2-dimensional braid presented by a 2-chart
f .�/ on f .S/ for an orientation-preserving self-diffeomorphism f of R4.

For a component F of a torus-covering T 2-link, we take a preferred basis
of H1.F IZ/ represented by a pair of simple closed curves .�; �/ such that �
is a connected component of F \ ��1.m/, and � of F \ ��1.l/. Recall that
� W N.T /! T is the natural projection for a standard torus T , and m and l are
simple closed curves on T given in Section 2A. We will use the same notation
.�; �/ for the preferred basis, and we call simple closed curves in the homology
classes � and � meridians and preferred longitudes of F , respectively. For a 2-chart
� on F consisting of loops, we can assume that the intersections of the chart loops
of � with a meridian � and a preferred longitude � of F are transverse. We assign
each intersection point the signC1 or �1 according to whether it presents a positive
or negative crossing, and we denote by I.�; �/ and I.�; �/ the sum of the signs
of the intersection points of � with � and �. Note that we can assume that the
chart loops are parallel by using local moves of charts called CI-moves of type
(1) [Kamada 2002], and I.�; �/ and I.�; �/ are well-defined for the homology
classes � and �.

For the torus-covering T 2-link S , we take the first and second components of
S as those determined from the first and second strands of each basis braid of S ,
respectively. Similarly, for the 2-dimensional braid zS , we take the i -th component of
zS as the one determined from the i -th strand of each basis braid of zS for iD1; 2; 3; 4.

We first calculate the triple linking numbers of a 2-dimensional braid of degree
2 over Sk as in Theorem 1.1.

Lemma 6.1. For the torus-covering T 2-link Sk for a positive integer k, let us con-
sider a 2-dimensional braid zSk of degree 2 over Sk , which is presented by a 2-chart
� consisting of loops on Sk so that it consists of 4 components. Then tlki;j ;3. zSk/D

tlki;j ;4. zSk/ for .i; j /D .1; 2/ or .2; 1/, and tlki;j ;1. zSk/D tlki;j ;2. zSk/ for .i; j /D
.3; 4/ or .4; 3/.

Proof. The 2-dimensional braid zSk is also a torus-covering T 2-link. We denote
by .a; b/ the basis braids presenting zSk . Since lkc

j ;3 D lkc
j ;4 for j D 2; 1, and

lkc
j ;1 D lkc

j ;2 for j D 4; 3 (c D a; b), by (2-1) we have the result. �
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Lemma 6.2. For the torus-covering T 2-link Sk , denote by F1 and F2 the first
and second components of Sk . Let .�i ; �i/ be a preferred basis of H1.Fi IZ/

for i D 1; 2. Consider a 2-dimensional braid zSk , as in Lemma 6.1, such that
I.�i ; �/ D 2pi and I.�i ; �/ D 2qi for integers pi and qi for i D 1; 2. Then we
have tlk1;2;3. zSk/D�kp1C q1 and tlk2;3;4. zSk/D�p2C q2.

Note that zSk consists of 4 components if and only if I.�i ; �/ and I.�i ; �/

are even for i D 1; 2, since these conditions are equivalent to the condition that
zSk \�

�1
i .�/ and zSk \�

�1
i .�/ are closed pure braids, where �i WN.Fi/! Fi is

the natural projection.

Proof. The 2-dimensional braid zSk is also a torus-covering T 2-link. We denote
by .a; b/ the basis braids presenting zSk . We use the notation given in Section 3B,
taking mD 2 and nD kC 1. Then, lka

2;1 is determined from the linking number
coming from the linking consisting of I.�1; �/ crossings and zXk . That is,

lka
2;1 D p1C lk

zXk

2;1
;

and similarly,

lkb
2;1 D q1C lkz�

2

2;1 :

By definition, for a braid c, the braid Qc has a negative (respectively positive)
half twist at the place which is a fiber of a point of each arc forming a positive
(respectively negative) crossing of c. Hence,

lk
zXk

2;1
D� lkXk

1;2

lkz�
2

2;1 D� lk�2

1;2;

from which it follows that

lka
2;1 D p1� lkXk

1;2

lkb
2;1 D q1� lk�2

1;2 :

Further, lka
2;3D lkXk

1;2
and lkb

2;3D lk�2

1;2. Thus tlk1;2;3. zSk/D�p1lk�2

1;2Cq1lkXk

1;2

by (2-1). Since lkXk

1;2
is the linking number of the closure of Xk , lkXk

1;2
D 1. Since

F1 and F2 are constructed by one strand and k strands of �2, respectively, we have
lk�2

1;2 D k. Thus tlk1;2;3. zSk/D�kp1C q1.
By the same argument, we have tlk2;3;4. zSk/ D �p2 lk�2

2;1Cq2 lkXk

2;1
by (2-1),

and lkXk

2;1
D 1. Since �2 is a pure braid, we see that lk�2

2;1D 1. Thus tlk2;3;4. zSk/D

�p2C q2. �
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Proof of Theorem 1.1. Let k and l be positive integers. We denote by F1 and F2

the first and second components of Sk , and by F 0
1

and F 0
2

the first and second
components of Sl .

First we show that for k ¤ l , there does not exist an orientation-preserving
self-diffeomorphism of R4 carrying F1 to F 0

1
and F2 to F 0

2
. Assume that there is

such a diffeomorphism f . Let us consider a 2-dimensional braid over Sk , denoted
by zS1

k
, which is presented by a 2-chart � on Sk such that � \F1 consists of loops

with I.�1; �/ D 2p and I.�1; �/ D 2q, where .�1; �1/ is a preferred basis of
H1.F1IZ/, and � \F2 D∅. Note that zS1

k
consists of 4 components.

Since f is an orientation-preserving diffeomorphism which carries F1 to F 0
1
,

f jF1
is an orientation-preserving diffeomorphism from a torus F1 to a torus F 0

1
.

Let

AD

�
˛ ˇ


 ı

�
2 GLC.2;Z/

be a matrix determined by

(6-1)
�
�0

1

�0
1

�
DA

�
f�.�1/

f�.�1/

�
;

where .�0
1
; �0

1
/ is a preferred basis of H1.F

0
1
IZ/.

Put � 0Df .�/. By f , zS1
k

is taken to a 2-dimensional braid zS1
l

over Sl , presented
by a 2-chart � 0 on Sl such that � 0 \F 0

1
consists of loops and � 0 \F 0

2
D ∅. We

see that I.f�.�1/; �
0/D I.�1; �/D 2p, and I.f�.�1/; �

0/D I.�1; �/D 2q. Set
p0 D I.�0

1
; � 0/=2 and q0 D I.�0

1
; � 0/=2; note that p0 and q0 are integers, since zS1

l

consists of 4 components. It follows from (6-1) that

(6-2)
�

p0

q0

�
DA

�
p

q

�
:

Since the triple linking numbers tlk1;2;3 for zS1
k

and zS1
l

are the same, Lemma 6.2
implies that

(6-3) �kpC q D�lp0C q0:

Hence, it follows from (6-2) that kp � q D .˛l � 
 /p C .ˇl � ı/q: Since this
equation holds true for any integers p and q,

(6-4)
�

k

�1

�
DAT

�
l

�1

�
;

where AT is the transposed matrix of A.
Next we consider another 2-dimensional braid over Sk , denoted by zS2

k
, presented

by a 2-chart z� on Sk such that z�\F1D∅ and z�\F2 consists of loops on F2, and
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moreover that z� \F2 is the preimage by the projection N.T /! T of a 2-chart �
on the standard torus T consisting of loops with I.m; �/D 2p and I.l ; �/D 2q,
where .m; l/ is a preferred basis of T . Note that I.�2; z�/D2kp and I.�2; z�/D2q,
where .�2; �2/ is a preferred basis of H1.F2IZ/.

Let g be an orientation-preserving diffeomorphism of R4 which carries F2

sufficiently close to F1 and .gjFi
/�D id� WH1.Fi IZ/!g�.H1.Fi/IZ/ for iD1; 2.

Further, we assume that T is sufficiently close to F1. Then�
m0

l 0

�
DA

�
.f ıg/�.m/

.f ıg/�.l/

�
;

where .m0; l 0/ is a preferred basis of T 0 D .f ıg/.T /. Put � 0 D .f ıg/.�/. Then
we have

(6-5)
�

I.m0; � 0/

I.l 0; � 0/

�
DA

�
I.m; �/

I.l ; �/

�
:

Put S 0D .f ıg/.Sk/. The surface link S 0 is in the form of a 2-dimensional braid
over T 0 of degree kC1. For the natural projection � 0 WN.T 0/D .f ıg/.N.T //!
T 0, a meridian m0, and a preferred longitude l 0 of T 0, let us consider S 0\� 0�1.m0/

and S 0\� 0�1.l 0/, which are closed .kC 1/-braids in the 3-dimensional solid tori.
In the same way as obtaining basis braids, we obtain .kC1/-braids from the closed
braids by cutting open the solid tori along the 2-disk � 0�1.x0

0
/, where x0

0
is the

intersection point of m0 and l 0. We denote the braids by a and b. Note that here T 0

is a standard torus, and hence .a; b/ are basis braids, but we can apply the same
argument if T 0 is not a standard torus. Since S 0 consists of two components, a and
b satisfy one of the following three cases.

Case 1: The closure of a is a link consisting of two components, and b is a pure
braid.

Case 2: Each of the closures of a and b is a link consisting of two components.

Case 3: The braid a is a pure braid, and the closure of b is a link consisting of
two components.

Set z� 0D .f ıg/.z�/. By f ıg, zS2
k

is taken to a 2-dimensional braid zS 0 presented
by a 2-chart z� 0 on S 0. We denote by F 0 the component .f ıg/.F2/ of S 0, and we
denote by .�0; �0/ a preferred basis of H1.F

0IZ/. Since z� \F2 is in the form of
the preimage by N.T /! T of the 2-chart � on T , z� 0\F 0 is in the form of the
preimage by N.T 0/! T 0 of the 2-chart � 0 on T 0. Hence, I.�0; z� 0/D i �I.m0; � 0/
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and I.�0; z� 0/D j � I.l 0; � 0/ for .i; j /D .k; 1/ for Case 1, .k; k/ for Case 2, and
.1; k/ for Case 3. Thus

(6-6)
�

I.�0; z� 0/

I.�0; z� 0/

�
D B

�
I.m0; � 0/

I.l 0; � 0/

�
;

where B is a diagonal matrix diag.i; j / such that .i; j /D .k; 1/ for Case 1, .k; k/
for Case 2, and .1; k/ for Case 3.

Put hD f ı .f ıg/�1. Then h is an orientation-preserving self-diffeomorphism
of R4 which carries S 0 to Sl . In particular, h carries F 0 to the second component
F 0

2
of Sl . Let

C D

�
˛0 ˇ0


 0 ı0

�
2 GLC.2;Z/

be a matrix determined by �
�0

2

�0
2

�
D C

�
h�.�

0/

h�.�
0/

�
;

where .�0
2
; �0

2
/ is a preferred basis of H1.F

0
2
IZ/. Put � 00 D h.z� 0/. Then

(6-7)
�

I.�0
2
; � 00/

I.�0
2
; � 00/

�
D C

�
I.�0; z� 0/

I.�0; z� 0/

�
:

Set p00 D I.�0
2
; � 00/=2 and q00 D I.�0

2
; � 00/=2, which are both integers. Since

I.m; �/D 2p and I.l ; �/D 2q, together with (6-5)–(6-7), we have

(6-8)
�

p00

q00

�
D .CBA/

�
p

q

�
:

By the composite diffeomorphism hıf ıgD f , zS2
k

is taken to a 2-dimensional
braid over Sl , which will be denoted by zS2

l
. Since tlk2;3;4 is the same for zS2

k
and

zS2
l

, together with I.�2; z�/D 2kp and I.�2; z�/D 2q, Lemma 6.2 implies that

(6-9) �kpC q D�p00C q00:

Since this equation holds true for any integers p and q, it follows from (6-8) that�
k

�1

�
D .CBA/T

�
1

�1

�
:

Thus, together with (6-4),

BT C T

�
1

�1

�
D

 
l

�1

!
;
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whence i.˛0� 
 0/D l and j .ˇ0� ı0/D�1. Let us assume k > l > 0. For Cases
1 and 2, k.˛0 � 
 0/ D l from the first equation. This contradicts the assumption
that k > l > 0. For Case 3, the second equation implies that k.ı0�ˇ0/D 1, which
contradicts the assumption that k > 1. Thus, for k ¤ l , there does not exist an
orientation-preserving self-diffeomorphism of R4 which carries F1 to F 0

1
and F2

to F 0
2
.

Next we show that for k ¤ l , there does not exist an orientation-preserving
self-diffeomorphism of R4 which carries F1 to F 0

2
and F2 to F 0

1
. We discuss a

similar argument as in the former case of a diffeomorphism which carries F1 to F 0
1

and F2 to F 0
2
, using the same notation except where noted.

Assume that there is such a diffeomorphism f , and consider � as before. Then,
since tlk1;2;3 for zS1

k
and tlk3;4;1 D tlk4;3;2 (see Lemma 6.1) for zS1

l
are the same,

and since tlk4;3;2 D� tlk2;3;4 [Carter et al. 2003], Lemma 6.2 implies that instead
of (6-3) we have

(6-10) �kpC q D p0� q0;

where p0 D I.�0
2
; � 0/=2 and q0 D I.�0

2
; � 0/=2. Hence instead of (6-4) we have

(6-11)
�

k

�1

�
DAT

�
�1

1

�
:

Next we will consider another 2-dimensional braid zS2
k

over Sk , presented by the
2-chart z� as in the former case. Then, by the same argument, we have (6-8), where
p00 D I.�0

1
; � 00/=2 and q00 D I.�0

1
; � 00/=2.

By the composite diffeomorphism hıf ıg, zS2
k

is carried to a 2-dimensional braid
over Sl , which will be denoted by zS2

l
. Since tlk2;3;4 for zS2

k
and tlk3;1;2 D tlk3;2;1

(see Lemma 6.1) for zS2
l

are the same, and since tlk3;2;1 D� tlk1;2;3 [Carter et al.
2003], together with I.�2; z�/D 2kp and I.�2; z�/D 2q, Lemma 6.2 implies that

(6-12) �kpC q D lp00� q00:

Since this equation holds true for any integers p and q, it follows from (6-8) that�
k

�1

�
D .CBA/T

�
�l

1

�
:

Thus, together with (6-11),

BT C T

�
�l

1

�
D

�
�1

1

�
;

whence i.�l˛0C 
 0/D�1 and j .�lˇ0C ı0/D 1. Let us assume k > l > 0. Since
at least one of i and j is k for Cases 1, 2, and 3, these equations contradict the
assumption that k>1. Thus, for k¤ l , there does not exist an orientation-preserving
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self-diffeomorphism of R4 carrying F1 to F 0
2

and F2 to F 0
1
. Thus Sk and Sl are

not equivalent for positive integers k ¤ l . �
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CORRECTION TO
MODULAR L-VALUES OF CUBIC LEVEL

ANDREW KNIGHTLY AND CHARLES LI

Volume 260:2 (2012), 527–563

In the paper in question, equation (2-23) is incorrect, and hence so are
equations (3-6) and (3-9). We correct the statements in this note. All other
statements in the paper, including the main theorems, are unaffected.

In [Knightly and Li 2012], equation (2-23) was quoted from an early draft of
[Knightly and Li 2015], which at the time contained an error. It should read

(2-23) f σ2 (zg)=
(p+ 1)ζ
2ωp(zd)

∑
w∈(Z/pZ)∗

ωp(w)θp

(
−

c
aw−

tb
d w
−1

p

)

for g =
( c

ap
dp−2

b

)
∈
(

Zp
pZ∗p

(1/p2)Z∗p
Zp

)
. It is a twisted Kloosterman sum.

Proposition 0.1 (Corrected Proposition 3.4). Let δ =
( 0

1
−1

0

)
, so that

Jδ(s, f σ )=
∫

Q∗p

∫
Qp

f σ
((

0 −y
1 x

))
θp(r x) dxχp(y)|y|k/2−s

p d∗y.

Then

(3-6) Jδ(s, f σ )= Jδ(s, f σ2 )=


(p3)k/2−s p(p+ 1)ωp(−r p2)

2ζχp(p3)
if p - r,

0 otherwise,
and

(3-7) Iδ(s)p = 0.

Proof. By (2-22), the matrix
( 0

1
−y

x

)
never belongs to Supp( f σ1 ), so Jδ(s, f σ ) =

Jδ(s, f σ2 ). Note that
( 0

1
−y

x

)
∈ Supp( f σ2 ) if and only if(
0 −py
p px

)
∈

(
Zp p−2Z∗p
pZ∗p Zp

)
.

MSC2010: primary 11F41; secondary 11F70.
Keywords: L-functions, relative trace formula, supercuspidal representations, Maass forms.
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In this case, we may write y = −p−3u for u ∈ Z∗p, and x ′ = px ∈ Zp. Then
dx ′ = p−1dx , and dropping the ′ from the notation, we have

Jδ(s, f σ2 )

= p
∫
Z∗p

∫
Zp

f σ2

((
p−1

p−1

)(
0 p−2u
p x

))
θp

(
−r x

p

)
dxχp(p−3)(p3)k/2−s d∗u

=
(p3)k/2−s p(p+1)ζωp(p)

2χp(p3)

∑
w∈(Z/pZ)∗

ωp(w)

∫
Z∗p

ωp(u)
∫
Zp

θp

(
−

t x
uw

p

)
θp

(
−r x

p

)
dx d∗u

by (2-23). Replacing u by (−uw)−1, the above is equal to

(p3)k/2−s p(p+1)ζωp(p)
2χp(p3)

∑
w∈(Z/pZ)∗

ωp(w)

∫
Z∗p

ωp(−uw)
∫
Zp

θp

(
(tu−r)x

p

)
dx d∗u.

Observe that w is eliminated, and the sum over w contributes p− 1. Furthermore,∫
Zp

θp

(
(tu− r)x

p

)
dx =

{
1 if u ∈ t−1r + pZp,

0 otherwise.

In particular, it vanishes if p | r . Assuming p - r ,

Jδ(s, f σ )=
(p3)k/2−s p(p+ 1)ζωp(p)

2χp(p3)
(p− 1)

∫
t−1r+pZp

ωp(−u) d∗u

=
(p3)k/2−s p(p+ 1)ζωp(p)

2χp(p3)
ωp(−t−1r)

since the coset has multiplicative measure 1/(p− 1). Equality (3-6) now follows,
using the fact that

ζωp(p)
ωp(t)

=
ζωp(p)2

ωp(pt)
=
ωp(p)2

ζ
.

For fixed t , summing (3-6) over ±ζ gives 0. Thus Iδ(s)p =
∑

σ Jδ(s, f σ )= 0. �

Proposition 0.2 (Corrected Proposition 3.5). For a ∈Q∗, let δa =
(a

1
−1

0

)
, so that

Jδa (s, f σ )=
∫

Q∗p

∫
Qp

f σ
((

ya y(xa− 1)
1 x

))
θp(r x) dxχp(y)|y|k/2−s

p d∗y.

Then Jδa (s, f σ1 ) vanishes unless a ∈ p2Zp and p - r . In this case, writing a = pap a0

for a0 ∈ Z∗p ∩Q∗, we have
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(3-8) Jδa (s, f σ1 )=


|a|2s−k

p p(p+ 1)ωp(pap)

2χp(a2)
θp

(
ta

r p3 −
r
a

)
if a0 ≡ 1 mod p,

0 otherwise.

The integral Jδa (s, f σ2 ) vanishes unless a ∈ p2Zp. For such a,

(3-9) Jδa (s, f σ2 )=


(p3)k/2−s p(p+ 1)ωp(−p2r)

2χp(p3)ζ
θp

(
−

ta
r p3

)
if p - r,

0 otherwise.

Finally, Iδa (s)p vanishes unless p - r and a= pap a0 for ap ≥ 2 and a0≡ 1 mod pZp.
If these conditions are satisfied, then
(3-10)

Iδa (s)p=
|a|2s−k

p p(p+1)ωp(pap)θp
(
−

r
a

)
χp(a2)

1p(a) for 1p(a)=
{

p−1 if ap > 2,
−1 if ap = 2.

Remark. Only (3-9) differs from the original statement.

Proof of (3-9). Consider

Jδa (s, f σ2 )=
∫

Q∗p

∫
Qp

f σ2

((
ya y(xa− 1)
1 x

))
θp(r x) dxχp(y)|y|k/2−s

p d∗y.

By (2-23), the integrand is nonzero precisely when(
p

p

)(
ya y(xa− 1)
1 x

)
=

(
pya py(xa− 1)

p px

)
∈

(
Zp p−2Z∗p
pZ∗p Zp

)
.

Taking the determinant, this says, in particular, that p2 y ∈ p−1Z∗p, so we may write
y = u/p3 for u ∈ Z∗p. Replacing px by x , we have

Jδa (s, f σ2 )=
(p3)k/2−s pωp(p)

χp(p3)

∫
Z∗p

∫
Zp

f σ2

(( ua
p2

u
p2

( xa
p − 1

)
p x

))
θp

(
−r x

p

)
dx d∗u.

From the upper left entry, the integrand is nonzero only if ap ≥ 2. Assuming the
latter, we also have xa/p− 1 ∈ Z∗p, so the upper right entry belongs to p−2Z∗p as
required. Hence by (2-23), the above is equal to

(p3)k/2−s p(p+ 1)ζωp(p)
2χp(p3)

∑
w∈(Z/pZ)∗

ωp(w)

∫
Z∗p

ωp(u)θp

(
−

uaw
p3

)
∫
Zp

ωp
( xa

p − 1
)
θp

(
−t xu−1

( xa
p − 1

)−1
w−1

p

)
θp

(
−r x

p

)
dx d∗u.
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Note that ωp(xa/p− 1)= ωp(−1) since p2
| a. For the same reason,

θp

(
−t xu−1

( xa
p − 1

)−1
w−1

p

)
= θp

(
tu−1w−1x

p

)
.

Therefore the above integral over Zp equals

ωp(−1)
∫
Zp

θp

(
(−r + tu−1w−1)x

p

)
dx =

{
ωp(−1) if u ∈ tr−1w−1

+ pZp,

0 otherwise.

In particular, Jδa (s, f σ2 )= 0 if p | r . Assuming p - r , Jδa (s, f σ2 ) equals

(p3)k/2−s p(p+1)ζωp(−p)
2χp(p3)

∑
w∈(Z/pZ)∗

ωp(w)

∫
tr−1w−1

+pZp

ωp(u)θp

(
−

uaw
p3

)
d∗u

=
(p3)k/2−s p(p+1)ζωp(−p)

2χp(p3)

∑
w∈(Z/pZ)∗

ωp(w)ωp(tr−1w−1)θp

(
−

tr−1a
p3

)
1

p−1

=
(p3)k/2−s p(p+1)ζωp(−p)

2χp(p3)
ωp(tr−1)θp

(
−

tr−1a
p3

)
.

Equation (3-9) follows upon using ζωp(p)/ωp(t)= ωp(p)2/ζ . �
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