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GAMES AND ELEMENTARY EQUIVALENCE OF II;-FACTORS

ISAAC GOLDBRING AND THOMAS SINCLAIR

We use Ehrenfeucht—Fraissé games to give a local geometric criterion for
elementary equivalence of II;-factors. We obtain as a corollary that two
II; -factors are elementarily equivalent if and only their unitary groups are
elementarily equivalent as Z4-metric spaces.

Introduction

While most mathematicians are concerned with determining when two objects in
their field are isomorphic, logicians tend to be concerned with the coarser notion of
elementary equivalence. Two (classical) structures M and N are said to be elementar-
ily equivalent if and only if for any first-order sentence o (in the language appropriate
to the study of M and N), we have o is true in M if and only if o is true in N.
For structures appearing in analysis, a continuous logic is used in which sentences
can now take a continuum of “truth” values; the appropriate notion of elementary
equivalence is that the truth values of all sentences are the same in both structures.

The model-theoretic study of tracial von Neumann algebras began in earnest in
[Farah et al. 2013; 2014a; 2014b]. At the moment, there are only three distinct
elementary equivalence classes of II;-factors known. (This should not be so surpris-
ing as it took a while for many isomorphism classes of II;-factors to be discovered
and elementary equivalence is a much coarser notion.) Indeed, it was observed
in [Farah et al. 2014b] that Property (I") and the property of being McDuff are
both elementary properties (for separable II;-factors). Thus, if we let Mp;. be a
separable II;-factor that has Property (I") but is not McDuff (see [Dixmier and
Lance 1969]), then Mpy, the hyperfinite II;-factor R and the free group factor
L(F,) are mutually nonelementarily equivalent. Amongst those studying II;-factors
from a model-theoretic point of view, it is widely agreed that there should be
more than three elementary equivalence classes of II;-factors; in fact, there should
probably be continuum many elementary equivalence classes. At the moment, we
cannot even answer the question: is R @ L([,) elementarily equivalent to R? In
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order to accomplish these goals, we need more tools for understanding elementary
equivalence of II;-factors.

Ehrenfeucht-Fraissé games have long been a tool in model theory for establishing
that structures are elementarily equivalent. In [Heinrich and Henson 1986], the
authors exhibit an Ehrenfeucht-Fraissé-type game used to establish elementary
equivalence for Banach spaces. In this note, we adapt the game from [loc. cit.] and
combine it with an argument of Kirchberg [1993] in order to characterize elementary
equivalence for II;-factors belonging to the class Ky, (to be defined below). We
should note that, currently, we do not know of a II;-factor that does not belong
to the class K, and the existence of such a factor would already lead to two new
theories of II;-factors!

Recall Dye’s theorem [1955], which states that any two factors not of type Ir»
(e.g., any two II;-factors) are isomorphic if and only if their unitary groups are
isomorphic (even as discrete groups). Combining Dye’s theorem with the Keisler—
Shelah theorem (which states that two structures are elementarily equivalent if
and only if they have isomorphic ultrapowers) and the fact that the functors of
taking ultrapowers and taking unitary groups commute, we see that two II;-factors
are elementarily equivalent if and only if their unitary groups are elementarily
equivalent as metric groups (with respect to the £, metric). Using the aforementioned
Ehrenfeucht-Fraissé games and some further arguments, our main result is that we
can improve upon the previous sentence, essentially removing the group structure:

Theorem 0.1. Suppose that M and N are 1I\-factors belonging to the class K.
Then M and N are elementarily equivalent if and only if U(M) and U(N) are
elementarily equivalent as Z4-metric spaces.

Here, by a Z4-metric space, we mean a metric space X equipped with an action of
Z4 on X by isometries. Unitary groups of von Neumann algebras will always be con-
sidered as Z4-metric spaces by having the generator of Z4 act by multiplication by i.

In this paper, we assume that the reader is familiar with some basic model theory
and von Neumann algebra theory. Good references for continuous model theory
are [Ben Yaacov et al. 2008] and [Farah et al. 2014a]; the latter is geared towards
the model-theoretic study of operator algebras.

All normed spaces are assumed to be over the complex numbers, C. For a normed
space X, we denote the closed unit ball by (X); :={x € X : ||x| < 1}.

For the reader’s convenience, we now recall the original notion of Ehrenfeucht—
Fraissé games in the context of continuous logic. This has not appeared in the
literature but has appeared in some online lecture notes of Bradd Hart [2012]. Fix
an arbitrary language £ and atomic formulae ¢;(X), ..., ¢x(X) in the variables
X = (x1,...,x,) and & > 0. The Ehrenfeucht-Fraissé game &(¢y, ..., ¢, €) is
played with L-structures M and N as follows: First Player I chooses a; € M or
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b1 € N respecting the sort of x;. Player Il chooses b, € N or a; € M respectively. The

players alternate in this manner until they have produced sequences ay, ..., a, € M
and by, ..., b, € N. Player Il then wins the game if and only if foreachi =1, ..., k,
we have |¢; (@)™ —¢; (I;)N | <e. Itis then a theorem that M = N if and only Player 11
has a winning strategy in each & (g1, ..., @, €).

1. The class IC,p

Given a C* algebra A, recall that its opposite algebra A7 is the algebra obtained
from A by multiplying elements in the opposite order; that is, for a, b € A, we have
a-op b :=b-a. It is immediate that A°” is once again a C* algebra. Furthermore,
if A is a von Neumann algebra, then A°? is also a von Neumann algebra. Note also
that if (A; :i € I) is a family of C* algebras (resp. tracial von Neumann algebras)
and I/ is an ultrafilter on 7, then ([],, A;)” =[], A via the identity map, where
the ultraproduct is understood to be the usual C* algebra ultraproduct (resp. tracial
ultraproduct).

Many of the naturally occurring tracial von Neumann algebras are isomorphic
to their opposites, e.g., R and L(G) (G any group). There are examples of tracial
von Neumann algebras that are not isomorphic to their opposites (see [Connes
1975]). During a seminar talk given by the first author at Vanderbilt University,
Jesse Peterson asked whether or not the class of all tracial von Neumann algebras
isomorphic to their opposites is an axiomatizable class. While we do not know the
answer to this question (although we suspect the answer is negative), the answer is
positive if one replaces the word “isomorphism” by “elementary equivalence” as
we show in the following:

Proposition 1.1. The class of all tracial von Neumann algebras that are elementar-
ily equivalent to their opposites is an elementary class.

Definition 1.2. We let K, denote the class of all tracial von Neumann algebras
elementarily equivalent to their opposites.

Proof of Proposition 1.1. We present a proof suggested to us by Todor Tsankov as
well as independently by the anonymous referee. There is a collection of axioms
for the class K,,: for every term ¢, recursively define the term 77 by defining
(t1 - )P :=1,” - 1;”. Then one can recursively define, for any formula ¢, the
formula ¢°7, the key clause being the atomic formulae, where one replaces every
occurrence of a term ¢ by the term ¢°?. Then the conditions |0 —o?”| =0, as o
ranges over all sentences, axiomatizes the class . O

We remark in passing that alternately by [Ben Yaacov et al. 2008, Proposi-
tion 5.14], it suffices to show that K, is closed under isomorphisms, ultraproducts,
and ultraroots. We leave it as an exercise to verify these properties for &C,).
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Since R and L([F;) are isomorphic to their opposites, they belong to K,,. More-
over, the example Mpr of a II;-factor with Property (I') that is not McDuff given
by Lance and Dixmier [1969] is also isomorphic to its opposite. Thus, we have this:

Corollary 1.3. If there is a Il -factor that does not belong to K, then there are at
least five theories of 11| -factors.

Proof. 1f N is a II-factor that does not belong to K,,, then the theories of N
and NP differ from each other and from the three known theories of II;-factors. [

Question 1.4. Are there more “explicit” axioms for the class K,,? Can one use
typical model-theoretic preservation theorems to show that K, is universally ax-
iomatizable or V3-axiomatizable?

Question 1.5. Is there a single sentence o such that adding the condition “o = 0”
to the axioms for II;-factors gives an axiomatization of /C,,?

A negative answer to the last question implies that there must be infinitely many
elementary equivalence classes of II;-factors not belonging K,,. Indeed, if there
are only finitely many elementary equivalence classes of II;-factors not belonging
to KCyp, then the class of II;-factors not belonging to K., is readily verified to be
elementary as well, whence a typical compactness argument is used to show that
the last question has a positive answer.

2. Model theory of Banach pairs

In order to frame the main results of the paper in the next section on the model theory
of II;-factors, we introduce a class of linear (unbounded) metric structures (“Banach
pairs”) for which II;-factors will be the primary set of examples. The important fact
which we will see is that the theory of a II;-factor regarded as a Banach pair will
determine its theory as II;-factor. For this reason we feel it is justified to introduce
this treatment, despite several existing approaches in the literature for dealing with
linear metric structures, e.g., [Ben Yaacov 2008; Ben Yaacov et al. 2008; Henson
and Moore 1983], with at least one treatment [Farah et al. 2014a] being devoted to
C*-algebras and tracial von Neumann algebras.

Definition 2.1. A Banach pair (X, C) consist of a normed space X and a distin-
guished subset C C (X); which is

o complete;
« roundly convex, i.e., Ax+uy €Cforallx, yeCand A, u € C with [A|+|u| <1;
« generating, i.e., | J,n-C=X.

The main examples of Banach pairs we will be interested in are where X = M,
a tracial von Neumann algebra equipped with the 2-norm ||x||; := tr(x*x)/2, and
C = (M), the (norm) closed unit ball.
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A Banach pair (X, C) can be interpreted as a structure for the language Lgp below:

There is one sort each for C and X.

There is a sequence of domains of quantification C, for X.

There are function symbols 2, , : C,, = C, for m <n to be interpreted as the
usual inclusion maps.

X is given the usual complex normed space axioms.

There are axioms which show Oy € C; C (X);.

o There are axioms to show each C, is roundly convex.

For a Banach pair (X, C) and x € X, we define ||x|c :=inf{r > 0:x €¢-C},
which can be checked to be a Banach norm on X. However, note that || - ||c is a
definable predicate if and only if it is uniformly continuous with respect to the usual
norm. (In the case that X is a tracial von Neumann algebra, this will be the case if
and only if X is finite-dimensional.)

As an Lgp-structure, the ultrapower (X, C)Y can be identified with the Banach
pair (XY, cY), where X is the quotient space of {(x;) : limy||x;[lc < oo} modulo
the subspace {(z;) : limy||zi|lc < 0o, limy|z;|| =0} and C¥ C X¥ is defined in
the obvious way.

We say that two Banach pairs (X, C) and (Y, D) are isomorphic (written (X, C) =
(X, D)) if they are isomorphic as Lpp-structures, that is, if there is an isometry
T : X — Y so that T(C) = D. By definition, the aforementioned Banach pairs
are elementarily equivalent (written (X, C) = (¥, D)) if Th(X, C) = Th(Y, D). As
a consequence of the Keisler—Shelah theorem in continuous logic, we have that
(X, C) = (Y, D) if and only if there is an ultrafilter so that (X, C)¥ = (Y, D)“. See
[Henson and Iovino 2002, §10] for a proof of this fact in the context of normed
spaces or [Heinrich and Henson 1986, §3] for a more explicit construction for
Banach spaces.

Our main observation in this section is that for Banach pairs (X, C) and (Y, D)
elementary equivalence can be characterized in terms of the pairs “having the
same local geometric structure” by the use of Ehrenfeucht—Fraissé games. For the
very similar case of Banach spaces, this was done by Heinrich and Henson [1986,
Theorem 4] and the case of normed spaces is largely similar (see [Henson and
Iovino 2002, Remark 10.10]).

We now describe precisely what we mean when we say that two Banach pairs
(X, C) and (Y, D) have the same local geometric structure. For E a subspace of X
and F a subspace of Y, we say that a linear bijection 7 : E — F is an ¢-almost
isometry if |T||, |T~'|<14+eand T(ENC) C, FNDand T~ (FND) c, ENC.
(We write A C¢ B if sup, ., infyepllx —y| <e.)
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The following is adapted from [Heinrich and Henson 1986, §2]; see also [Henson
and Moore 1983, §8]. We describe a game &(n, ¢) played by two players with
Banach pairs (X, C) and (Y, D), where ¢ > 0 and n are fixed parameters.

Step 1. Player I chooses a one-dimensional subspace, either £; C X or F; C Y.
Player II then chooses a subspace, respectively F; C Y or E; C X and a linear
bijection T} : E1 — F}.

Step i. Player I chooses an at most one-dimensional extension, either £; D E;_; or

F; D F;_;. Player II then chooses a subspace, respectively F; C Y or E; C X, and
a linear bijection T; : E; — F; which extends 7;_;.

Step n. The players make their choices, and the game terminates. Player II wins if
T, : E, — F, is an e-almost isometry; otherwise, Player I wins.

During the course of proofs, we may speak of Player I playing x; € X, in which
case we mean that Player I plays span(£;_; U {x;}). We may then also say that
Player II responds with y; € Y, in which case we mean that Player II plays the
linear bijection 7; extending 7;_; that sends x; to y;.

Definition 2.2. We say that Banach pairs (X, C) and (Y, D) are locally equivalent
(written (X, C) Zjoc (Y, D)) if for every ¢ > 0 and every n, Player II has a winning
strategy for the game &(n, ¢).

Remark 2.3. Since ¢ is arbitrary, and we need only deal with at most one-dimen-
sional extensions, we see that local isomorphism remains the same under an alternate
version of e-almost isometry, namely, the existence of linear bijections 7 : E — F,
S : F — E with strict containment T(ENC) C FND and S(FND) C ENC so
that |ST —idg||, |TS —idr| <e and |T||, |S|| < 1 +&.

Proposition 2.4. The following statements are equivalent:
(1) (X,0) =, D).
(2) There exists an ultrafilter so that (X, C)Y = (Y, D)Y as Banach pairs.
(3) (X, C) Zioc (Y, D).

As noted above, (1) <= (2) is the Keisler—Shelah theorem applied to the language
of Banach pairs. The proof of (2) = (3) is straightforward using representing
sequences. Therefore we only need to prove (3) = (1). The proof is more or less
identical to the Banach space version as in [Heinrich and Henson 1986]. However,
since we are working in a different logic, we sketch a (nearly complete) proof here
for the convenience of the reader.

Sketch of (3) = (1). First, we work with the notion of e-almost isometry as described
in Remark 2.3. Let o be a sentence of the form inf,, sup,, - - Qy,p(v1, ..., Vy),
where Q is inf if n is odd and sup if n is even and where p is quantifier-free. (We
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suppress mention of the sorts C; corresponding to each v;.) Fix ¢ > 0. It suffices to
show that 0 V'P) < ¢X:©) ¢ for all £ > 0. Indeed, by symmetry of the relation of
local equivalence, this shows that all sentences of the above form have the same
truth values in (X, C) and (Y, D). Since any sentence in prenex normal form is
equivalent to one of the above form (by adding dummy variables) and since the
set of sentences in prenex normal form is dense in the set of all sentences (see
[Ben Yaacov et al. 2008, §6]), we obtain that (X, C) = (Y, D).

Fix a sufficiently small § > 0. (We will see exactly how small § needs to be in
a moment.) Fix a winning strategy S for Player Il in &(n, §). Call a play of the
game &(n, §) regular if

« for odd i, Player I plays x; € X, while for even i, Player I plays y; € Y;

« for each i, Player I's move at Round i is always in the sort corresponding to
the variable v;;

« Player II always plays according to S.

We say that sequences xy, ..., x;y € X and yy, ..., yx € Y correspond if they are
the results of the first k rounds of a regular play of &(n, §).

For 0 <[ < n, let oy(vy, ..., v,—;) denote the formula obtained from o by
removing the first n — [ quantifiers. One now proves, by induction on / (0 <! < n),
that if xq,...,x,—y € X and yy, ..., y,—; € Y correspond, then

a1ty <o, x )9 e

The base case [ =0 follows from the fact that 7}, : span(xy, ..., x,) — span(y, ..., ¥»)
is a §-almost isometry if § is chosen sufficiently small. We now prove the induc-
tion step. Suppose that the claim holds for / and that x{,...,x,_;—; € X and
Vis--+s Yn—i—1 € Y correspond. Let r := o741 (xy, ..., Xn—i—1) %O First suppose
that n —[ is odd, so that o741 (vy, ..., Vp—;—1) =inf,, , 07(vy, ..., v,—). Fix n >0
and let x,, € X be of the same sort as v,_; so that o;(xy, ..., X)) X0 < 4 n.
Let y,—; € Y be Player II’s response to x,_; according to the strategy S. Then, by
induction,

11y V)PP <oy (xry o ) E O e <r et

Letting n go to 0 yields the desired result. The case that n —/ is even is similar and
is left to the reader. ]

3. Elementary equivalence of II;-factors

We say that two tracial von Neumann algebras M and N are locally equivalent
if the associated Banach pairs (M, (M);) and (N, (V)1) are locally equivalent.
Somewhat miraculously, it turns out that for II;-factors belonging to ,,, local
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equivalence is the same as elementary equivalence. This essentially follows from
an argument of Kirchberg [1993]. First, we need to recall a fact about Jordan
morphisms between von Neumann algebras.

Given a C* algebra A, the special Jordan product on A is the operation o defined
byaob:= %(ab +ba) for all a, b € A. If B is also a C* algebra, then a linear map
T : A — B is a Jordan morphism if it preserves the special Jordan product and the
involution. We need the following:

Fact 3.1 (See [Hanche-Olsen and Stgrmer 1984, Corollary 7.4.9]). If M and N are
von Neumann algebras and 7 : M — N is a normal Jordan homomorphism, then 7"
is the sum of a x-homomorphism and a x-antthomomorphism.

Recall that a map A — B between C* algebras is a x-antthomomorphism if and
only if it is a x-homomorphism A — B°P.

Suppose that M and N are von Neumann algebras and 7 : M — N is a unital,
bijective, normal Jordan homomorphism. Write T =T + 1>, where T} : M — N
and T, : M — N°P are x-homomorphisms. Since 7;(1) is a projection fori =1, 2
and T7(1) + T>(1) = 1, we have that 71(1) and 75(1) are orthogonal projections.
Since T (M) = N, it follows that each T;(1) is a central projection. Thus, if N is a
factor, it follows that {7 (1), T>(1)} = {0, 1}, whence T is either an isomorphism
or an anti-isomorphism.

The following is basically Proposition 4.6 in [Kirchberg 1993].

Proposition 3.2 (Kirchberg). Suppose that M and N are Il|-factors. If there is an
isometry T : L2(M, try) — LZ(N, try) so that T maps M onto N contractively,
then M = N or M = N°P,

Proof. We first show that T maps unitaries to unitaries. If u € M is a unitary, we
have
L=l = IT @3 = (T @), T ) = (T @)*T @), 1).

On the other hand,
IT@)*T @2 < 1T -T2 < 1.

It follows that 7 (u)*T (1) = 1. We thus have that 7/(x) := T (1)*T (x) is unital, con-
tractive, trace-preserving, and takes unitaries to unitaries. By the same reasoning as
in the proof of [Kirchberg 1993, Proposition 4.6], T’ is a weakly continuous Jordan
morphism and the result follows from the discussion preceding this proposition. []

Corollary 3.3. Suppose that M and N are I1|-factors. Then M is locally equivalent
to N if and only if M is elementarily equivalent to N or to N°P. In particular, if M
and N are Il\-factors belonging to the class KC,), then M is locally equivalent to N
if and only if M is elementarily equivalent to N.
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Proof. By the downward Lowenheim—Skolem theorem (see [Farah et al. 2014a,
Section 4.2]), we may suppose that M and N are separable. Suppose that M is locally
equivalent to N. Then by Proposition 2.4, there is an isometry L>(MY) — L?>(N¥)
that maps MY into NY contractively. By Proposition 3.2, MY is isomorphic to
either N¥ or (NY)°P. It follows that M is elementarily equivalent to either N
or N°P. The converse is trivial. (|

We now introduce a more useful test for determining elementary equivalence
which works in the more specific case of Banach pairs (M, (M);), where M is a
II; -factor (or more generally a tracial von Neumann algebra) equipped with the
2-norm, and (M), is the (operator norm) unit ball of M.

We define the game &N (7, €) in parameters n and ¢ > 0 which is played by two
players with II;-factors M and N as follows.

Step i. Player I chooses a unitary, either u; € U(M) or v; € U(N). Player II then
chooses a unitary, respectively v; € U(N) or u; € U (M), in the same manner.

Step n. The players make their choices, and the game terminates. Player II wins if
[{u;j,uj) —(vi,vj)| <eforall 1 <i,j <n;otherwise, Player I wins.

Theorem 3.4. The Il -factors M and N are locally equivalent if and only if
Player II has a winning strategy for the game &N(n, €) for all parameters (n, €).

In order to prove this result we will first need one lemma.

Lemma 3.5. Let M and N be 11;-factors, E C M and F C N be subspaces, and
T:(E,EN(M)) — (F, FN(N)1) be an e-almost isometry. If u € E is a unitary,
then there exists a unitary v € N so that || T (1) — v| < 4/e.

Proof. In a Il -factor, a u is a unitary if and only if it is a contraction with [Ju|, = 1.
By definition, we see that there exists a contraction y € N with ||y — T (u)]; < &.
In particular, ||y|» > 1 —2¢. By a standard estimate we have that

=13 < 1+ Iyl 3 =2 tlyl = 1+ u(yP) =2 trly] < T—trlyl < 1= [lyll2 <28,

whence writing y = v|y| for v € U(N) we have that ||T (1) — v, < 4./e. ([l

Proof of Theorem 3.4. First suppose that M and N are locally equivalent. Fix n
and ¢ > 0; we describe a winning strategy for Player II in the game &yn(n, €). For
simplicity, we suppose that n = 2 and describe a winning strategy for Player II;
the general case is no more difficult, only the notation is more cumbersome. Fix §
sufficiently small (to be specified later) and fix a winning strategy S for Player II
in the game &(2, §). Suppose that Player I first plays u; € U(M). (The case that
Player I first plays a unitary in N is similar.) Let y; € N be Player II's response
to u; in the game & (2, §) according to S. Since u; — y; determines a §-almost
isometry, by Lemma 3.5, there is vy € U(N) such that ||y; — vz < 4./5. Now
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suppose that Player II responds with v, € U (N). (The case that Player II responds
with a unitary in M is similar.) Let x, € M be Player II’s response to (u1, y1, v2) in
the game & (2, §) according to S. Since u; — yi, x» > v, determines a -almost
isometry, we once again have uy € U (M) such that ||x; — uz|l, < 4./5.

We need to verify that [(u;, u;) — (v;, v;)| < ¢ fori, j =1,2. If § is chosen
small enough so that a §-almost isometry preserves inner products within an error
of ¢/3 (use, for example, the polarization identity) and such that perturbing entries
of an inner product by a distance of no more than 44/8 changes the inner product
by an amount not exceeding €/3, then the desired estimates hold. For example,

(uy, uz) ~es3 (1, x2) ~es3 (¥1, v2) ~es3 (V1, V2).

We now prove the converse. Suppose that Player II has a winning strategy in
all of the games Byn(n, €); we show that M and N are elementarily equivalent as
Banach pairs. By symmetry, it is enough to show that o ™)1 < implies that
o V-1 <7 for any positive real number r and any prenex normal form sentence o .
Since o = r is equivalent to a prenex normal form sentence, it is enough to prove
that o M- 1) = 0 implies o ™M1 = 0 for any prenex normal form sentence o.

Towards this end, we introduce the “unitary transform” of a sentence in prenex
normal form. Suppose that o is a sentence in prenex normal form, say

o= Q1x1- QnXnp(X),
where ¢(X) is quantifier-free. We form the new sentence o“ as follows:

o If Q; = inf and x; is of sort n;, replace each occurrence of the variable x; by
the term ¢; (u;, v;) :=n; - ((u; +v;)/2), where u; and v; are variables of sort Cy,
and replace the quantifier Q;x; by the quantifiers Q;u; Q;v;.

 The quantifier-free part of o should now be
max (¢, max; (max (1 = [lu;[|2, 1 = vi[2))).

For example, if o = sup,, infy, @ (x1, x2), where x; is of sort C; (for simplicity),
then " = sup, infy, inf,, p(x1, (w2 +v2)/2).

Also, we let 0" be the “formula” defined in the exact same way as o except
that we only allow quantifiers over the unitary groups rather than the entire unit
ball. (Formally, o is not a formula in the sense of continuous logic, but it will be
useful in the remainder of the proof.)

Claim 1. We have ™M1 = 0 if and only if (¢*)™ M) = ( (and the corre-
sponding statement for (N, (N)p)).

Claim 1 follows from the fact that, in a finite von Neumann algebra, any con-
traction is an average of two unitaries. Indeed if x is a contraction in a finite von
Neumann algebra, then it has polar decomposition x = u|x|, where u is a unitary.
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As |x| is a self-adjoint contraction, by functional calculus it may be written as the
average of two unitaries.

Claim 2. We have (o*)M- MV = ( if and only if (¢**)M- MV = ( (and the
corresponding statement for (N, (N)y)).

The backwards direction of Claim 2 is trivial; the forwards direction follows
from the fact that if x is a contraction in a finite factor and ||x||» > 1 — &, then there
is a unitary u so that ||u — x|, < 2./e.

Finally, suppose that o is a sentence in prenex normal form and o™-*1) =0,
Then by Claims 1 and 2, we have (c")M.(M)1) — (. Since atomic formulae are of
the form [|[A;x; 4+ - -+ A,x, |2 and arbitrary quantifier-free formulae are continuous
combinations of atomic formulae, it follows from a winning strategy for Player 11
in BN (1, &) (for suitably small &) that (¢“*)N-(M1 = 0, whence o V-1 = by
Claims 1 and 2 again. ([

Suppose now that £; = {®}, where & is a unary function symbol with modulus
of uniform continuity A¢(g) = ¢. If M is a tracial von Neumann algebra, we view
U (M) as an L;-structure by interpreting ¢ as multiplication by i. We then have this:

Corollary 3.6. Let M and N be 11;-factors. Then M and N are locally equivalent
if and only if U(M) and U (N) are elementarily equivalent as L;-structures.

Proof. If M and N are locally equivalent, then M is elementarily equivalent to either
N or N°P. It follows that there is an ultrafilter ¢/ such that M ¥ is isomorphic to
NY or (N°P)Y_ In either case, (U(M))Y = U(MY) is isomorphic to (U(N))¥ =
U(NY) as £;-structures, whence U (M) and U (N) are elementarily equivalent as
L;-structures.

Conversely, assume that U(M) and U(N) are elementarily equivalent as ;-
structures. Then Player II has a winning strategy for the Ehrenfeucht—Fraissé games
for U(M) and U (N) as L;-structures. It then follows that Player II has a winning
strategy in the games ByN for M and N. Indeed, this follows from the fact that

Nuj,u;) =1—3dwi, up)?,  Suj,uj)=1-3dw;,i-u;)*. O
Remark 3.7. Notice that the proof of the previous corollary gives an alternative
proof of the forward direction of Theorem 3.4.

Corollary 3.8. Let M and N be 11;-factors in the class KC,,. Then M and N are
elementarily equivalent if and only if U(M) and U (N) are elementarily equivalent
as L;-structures.

Corollary 3.9. Let M and N be 11;-factors. Suppose that for every ¢ there is a
(1 + &)-Lipschitz homeomorphism f : U(M) — U(N); that is, f is bijective with

(A+e) u—vll2 < f@) = fF@ll2 < A+e)u—vl2
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that is further assumed to preserve the action by Z4. Then M and N are locally
isomorphic.

We will say that M and N are approximately Lipschitz isometric if the condition
of the previous corollary is satisfied. Although this relation ought to be in principle
much stronger than elementary equivalence, to the best of our knowledge the results
of [Farah et al. 2014b] heretofore furnish the only known examples of properties
invariant under this relation namely, the McDuff property and property (I'). It is,
however, tempting to speculate that approximate Lipschitz isometry ought to be
equivalent to isomorphism (up to opposites).

In lieu of this, it would be highly interesting to determine whether hyperfiniteness
is an invariant of approximate Lipschitz isometry. If true, this would be in contrast
with [Farah et al. 2014b, Theorem 4.3] which shows in particular that hyperfiniteness
is not an invariant of elementary equivalence. Though one can show, essentially
by Fact 3.1 and Proposition 3.2 (see also [Takesaki 2003, Chapter XIV.2]), that for
every n, there exists ¢ > 0 so that for any e-approximate Lipschitz embedding 6
of M, into a IT;-factor N, there is a x-homomorphism 6’ : M,, — N so that the image
of the unit ball under 6 is e-contained in 2-norm in the image unit ball under 6’
of M,, this still does not seem sufficient, unless & could be taken independent of #.

4. Further remarks and open problems

Of course, Corollary 3.8 raises the question: which Z4-metric spaces arise as
unitary groups of II-factors? Even more importantly, what are the theories of
such Z4-metric spaces? Ignoring the extra structure for a moment, an important
example of a complete theory of (noncompact) metric spaces is the theory of the
Urysohn metric space. (See, for example, [Ealy and Goldbring 2012].) Recall
that the Urysohn metric space is the unique (up to isometry) complete, separable
metric space that is universal (that is, every separable metric space isometrically
embeds) and ultrahomogeneous (every isometry between finite — even compact —
subspaces extends to an isometry of the entire space). However, the Urysohn space
(or rather, its bounded counterpart, the Urysohn sphere) could never be isometric to
the unitary group of a II;-factor as the latter’s metric is always negative definite.

Note that for M with separable predual, U (M) isometrically embeds naturally
in S, the Hilbert sphere in £2. The space S is the “Hilbertian Urysohn sphere”
in the sense described in [Nguyen Van Thé 2010, Section 1.4.2].

It is well worth pointing out the following proposition, which is an immedi-
ate consequence of Ozawa’s fundamental result [2004] on the nonexistence of a
universal, separable II;-factor.

Proposition 4.1. For any separable I1|-factor M, U (M) is not universal among all
Z 4-metric spaces which embed (as Z4-metric spaces) in S*.
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Proof. Suppose, towards a contradiction, that there is a II;-factor M for which
U (M) is universal among all Z4-metric spaces which embed in $*°. In particular,
for any II,-factor N with separable predual, U (N) isometrically embeds in U (M)
in a way which commutes with the action of i. Since this embedding respects
the inner product, it is not hard to see it must extend to an isometric embedding
L*(N) — L*(M) which takes N into M contractively. Thus, as above, there is a
unital injective *-homomorphism N — pMp & ((1 — p)M (1 — p))°?, whence N
embeds in either M or M°P since N is a factor. However, this would contradict the
fact that there is no separable universal II;-factor [Ozawa 2004] (pick M ~ M°P). ]

Question 4.2. Can U (M) ever be universal among all metric spaces which embed
in %7

Proposition 4.1 is good evidence that the answer to the previous question is no.
We remark that a positive answer to the previous question would be equivalent
to demonstrating the existence of a separable II;-factor for which there is an
isometric embedding S «— U(M). We currently do not know whether S
embeds isometrically in the unitary group of any II;-factor. The existence of such
an embedding ought to have striking consequences as the following proposition,
which is similar in spirit, demonstrates.

Proposition 4.3. Suppose M is a separable II|-factor belonging to the class IC,.
Further suppose that, for each n, the n-dimensional complex spheres S" isometri-
cally embed in U (M) with respect to the natural Z4-actions. Then M is a locally
universal 111 -factor; that is, every separable 11, -factor embeds into an ultrapower
of M. In particular, if, for each n, the n-dimensional complex spheres S" iso-
metrically embed in U (R) with respect to the natural Z4-actions, then Connes’
embedding problem has a positive answer.

Proof. Suppose that M satisfies the assumption of the proposition and let N be
a II;-factor. Let F be any finite subset of U(N). Then choosing an orthogonal
projection P onto a suitably large finite-dimensional subspace so that | P (u)|| > 1—¢
for all u € F Ui F, we can correct to an (effective in) e-almost Z4-embedding of F
into some S”, and therefore also in U(M). But Z4-embeddings preserve inner
products, whence pairs of inner products in F' can be modeled arbitrarily well
in U(M). As above, Kirchberg’s argument shows that N embeds in M ¥. (]

We now remark how our main result recasts Kirchberg’s characterization of
R?-embeddability in a game-theoretical light. Let (A, tr) be an arbitrary tracial
C*-algebra which we view as a normed space with respect to the 2-norm. To
introduce a bit of terminology, we say that a subspace E C A is g-almost repre-
sentable in R if there exists a subspace F C R and a linear bijection 7 : E — F
so that |T|, |[T~'| <14¢&and T(EN(A);) C; FN(R);. Then by [Kirchberg
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1993, Proposition 4.6], A is R“-embeddable if and only if for every ¢ > 0, every
finite-dimensional subspace of A is e-representable in R.
Let us introduce the following “one-sided, one-round game” & (n, ¢) for which

the winning condition is that, for all uy, ..., u, € U(A) which are linearly inde-
pendent, there exist n unitaries vy, ..., v, € U(R) so that the map
T :span{uy, ..., u,} — spanf{vy, ..., v,}

defined by T (u;) = v; satisfies |T|, T < 1+e.

Proposition 4.4. There is a constant N = N (n, €) so that every n-dimensional
subspace E of any tracial C*-algebra (A, tr) is e-almost representable in R if
BRr(N, e/4) is winnable.

Proof. We first claim that there is a uniform constant K (n, €) so that for every
n-dimensional subspace E C A of any tracial C*-algebra (A, tr) there exists a set
of unitaries u = {uy, ..., u;} C U(A) with [ < K so that every element of £ N (A);
is e-approximated in 2-norm by a convex combination of elements of u.

Indeed, choose an (¢/2)-net xy, ..., x, € EN(A);. The cardinality of such a net
is bounded in particular by the (& /4)-covering number of the unit ball in £2. We may
perturb each x; so that ||x;|| <1 —&/4 and still have an ¢-net for E N (A);. By the
main result of [Popa 1981], there is a constant C depending only on ¢ so that each x;
is a convex combination of at most C unitaries in U (A), whence the claim follows.

We next claim that if A is infinite-dimensional and if £ C A is a finite-dimensional
subspace, then for every ¢ > 0 and u € U(A), there exists u’ € U(A) with
lu — u'|l, < & and so that u’ is linearly independent from E. To see this, let
Pr : L>(A) — E be the orthogonal projection onto E. By the Kaplansky density the-
orem, we have that U (A) is 2-norm dense in U (A”). Since M := A" C B(L*(A, tr))
is infinite-dimensional, it contains a diffuse abelian subalgebra. Therefore, there
is a projection p € M with trace tr(p) = 1 — &2/2 and a sequence of unitaries
v, € U(M) so that v, — p weakly. Since Pg is a finite-rank operator, we thus have
that Pg(uv,) - Pg(up) strongly, whence

I Peuvn)ll2 = IIPE@p)ll2 < lIplla = /1 —2/2.

It is now easy to see that choosing n sufficiently large and u’ € U (A) sufficiently
close to uv, works.
We now can proceed with the proof of the proposition. Let

E =span{uy,...,u,} C A.

(Every n-dimensional subspace of a C*-algebra is a subspace of a space spanned by
at most 4n unitaries, so we may assume this is the case without loss of generality.)
By the previous claims, we can extend uy, ..., u, tO Uy, ..., Uy, Uptl, -, Us
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(s <n+ K(n, ¢)) to a complete collection of linearly independent unitaries so that
all elements in £ N (A); are 2e-approximated in 2-norm by a convex combination
of unitaries in the collection. If &g (s, £/4) is winnable, then it is easy to check
that for S = T'|g, we have that S(E N (A);) C. S(E)N(R);, and we are done. [

Problem 4.5. Let C C €2 be a convex subset of the unit ball in n-dimensional
Hilbert space. For every ¢ > 0, does there exist a II;-factor M so that (E%, C) is
e-represented in M? Can one always choose a locally universal II;-factor (in the
sense of [Farah et al. 2014b]) or even R?
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