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THE W -ENTROPY FORMULA FOR THE WITTEN LAPLACIAN
ON MANIFOLDS WITH TIME DEPENDENT METRICS

AND POTENTIALS

SONGZI LI AND XIANG-DONG LI

We develop a new approach to prove the W-entropy formula for the Witten
Laplacian via warped product on Riemannian manifolds, giving a natural
geometric interpretation of the quantities appearing in the W-entropy for-
mula. We also prove the W-entropy formula for the Witten Laplacian on
compact Riemannian manifolds with time dependent metrics and poten-
tials, as well as for the backward heat equation associated with the Witten
Laplacian on compact Riemannian manifolds equipped with Lott’s modi-
fied Ricci flow. Our results extend to complete Riemannian manifolds with
negative m-dimensional Bakry–Émery Ricci curvature, and to compact Rie-
mannian manifolds with K-super m-dimensional Bakry–Émery Ricci flow.
As an application, we prove that the optimal logarithmic Sobolev constant
on compact manifolds equipped with the K-super m-dimensional Bakry–
Émery Ricci flow is decreasing in time.

1. Introduction

Let M be a complete Riemannian manifold with a fixed Riemannian metric g and a
fixed potential φ ∈ C2(M). Let dµ= e−φ dv, where dv is the Riemannian volume
measure on (M, g). The Witten Laplacian (also called the weighted Laplacian),

L =1−∇φ · ∇,

is a self-adjoint and nonnegative operator on L2(M, µ). By Itô’s calculus, one can
construct the symmetric diffusion process X t associated to the Witten Laplacian by
solving the SDE

dX t =
√

2 dWt −∇φ(X t) dt,
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where Wt is the Brownian motion on M . Moreover, it is well known that the
transition probability density function of the diffusion process X t is exactly the
fundamental solution to the heat equation of L , i.e., the heat kernel of the Witten
Laplacian L . In view of this, it is a fundamental problem to study the heat equation
and related properties for the Witten Laplacian on manifolds.

In recent years, important progress has been made in the study of the heat
equation associated with the Witten Laplacian by using new ideas and new methods
from geometric analysis, PDEs and probability theory. In particular, F. Otto [2001]
introduced an infinite dimensional Riemannian structure on the Wasserstein space
of probability measures on Rn and proved that the heat equation

(1) ∂t u = Lu

can be realized as the reverse gradient flow of the Boltzmann–Shannon entropy1

H(u)=−
∫

M
u log u dµ.

See also [Otto and Villani 2000; Sturm 2005; von Renesse and Sturm 2005; Villani
2003; 2009] for the extension of Otto’s work to Riemannian manifolds.

The Witten Laplacian is a natural extension of the standard Laplace–Beltrami
operator and has a close connection to differential geometry, probability theory,
quantum field theory and statistical mechanics. In view of this, it is natural to raise
the question whether one can extend the results which hold for the standard Laplace–
Beltrami operator to the Witten Laplacian on manifolds. The main tool which
makes such an extension possible is the so-called Bakry–Émery Ricci curvature
associated to L [Bakry and Émery 1985],

Ric(L)= Ric+∇2φ,

which plays the same role as the Ricci curvature for the standard Laplace–Beltrami
operator. We refer the reader to [Bakry and Qian 1999; Bakry and Ledoux 2006; Li
2005] for the Li–Yau Harnack estimates and the heat kernel estimates to the heat
equation (1), and to [Li 2005] for the extension of S.-T. Yau’s Strong Liouville
theorem for the positive L-harmonic functions and the L1-uniqueness of the heat
equation on complete Riemannian manifolds. See also [Andrews and Ni 2012;
Bakry and Qian 2000; Fang et al. 2009; Futaki et al. 2013; Otto and Villani 2000;
von Renesse and Sturm 2005; Villani 2003; 2009; Wei and Wylie 2009] for other
results on the Witten Laplacian and Bakry–Émery Ricci curvature on manifolds
with weighted measures.

1Equivalently, the heat equation (1) is the gradient flow of Ent(u)=−H(u) on the Wasserstein
space P2(R

n) equipped with Otto’s infinite dimensional Riemannian metric.
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The Bakry–Émery Ricci curvature has been essentially used in Perelman’s work
on the entropy formula for Ricci flow. Perelman [2002] first introduced the F-
functional on the space of Riemannian metrics and smooth functions, i.e., M =

{Riemannian metric g on M}×C∞(M), as follows:

F(g, f )=
∫

M
(R+ |∇ f |2)e− f dv,

where f ∈ C∞(M), R denotes the scalar curvature on (M, g), and dv denotes the
volume measure. Under the constraint condition which requires that

dm = e− f dv

is a fixed weighted measure on (M, g), Perelman proved that the gradient flow of
F with respect to the standard L2-metric on M is given by the modified Ricci flow

∂t g =−2(Ric+∇2 f ),

and f satisfies the so-called conjugate heat equation

∂t f =−1 f − R.

Moreover, Perelman [2002] introduced the W-entropy and proved its monotonicity
for the Ricci flow on compact manifolds. This result plays an important role in the
proof of the no local collapsing theorem and in the final resolution of the Poincaré
and geometrization conjectures (see also [Cao and Zhu 2006; Morgan and Tian
2007; Kleiner and Lott 2008]). Since then, many people have derived the W-entropy
formula for various geometric evolution equations and used it to study further
analysis and geometric properties of manifolds. See, e.g., [Chow et al. 2006; Chang
et al. 2011; Kleiner and Lott 2008; Ni 2004a; 2004b; Ecker 2007; Lu et al. 2009;
Kotschwar and Ni 2009].

In [Li 2012] (see also [Li 2007; 2011; 2014]), inspired by Perelman’s work on the
W-entropy formula for Ricci flow, the second author proved the W-entropy formula
for the fundamental solution of the Witten Laplacian on complete Riemannian
manifolds with the bounded geometry condition. This extends a previous result due
to Ni [2004b; 2004a], who proved an analogue of Perelman’s W-entropy formula
for the heat equation ∂t u = 1u on complete Riemannian manifolds with a fixed
metric. More precisely, we have:

Theorem 1.1 [Li 2007; 2012; 2011; 2014]. Let (M, g) be a compact Riemannian
manifold, or a complete Riemannian manifold with the bounded geometry con-
dition,2 and φ ∈ C4(M) with ∇φ ∈ C3

b(M). Let m ≥ n, and u = e− f/(4π t)m/2

be a positive solution of the heat equation ∂t u = Lu when M is compact, or the

2We say that (M, g) satisfies the bounded geometry condition if the Riemannian curvature tensor
Riem and its covariant derivatives ∇k Riem are uniformly bounded on M , k = 1, 2, 3.
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fundamental solution associated with the Witten Laplacian, i.e., the heat kernel to
the heat equation ∂t u = Lu, when M is complete. Let

Hm(u, t)=−
∫

M
u log u dµ− m

2
(1+ log(4π t)).

Define

Wm(u, t)= d
dt
(t Hm(u)).

Then

(2) Wm(u, t)=
∫

M

(
t |∇ f |2+ f −m

) e− f

(4π t)m/2
dµ

and

(3) d
dt

Wm(u, t)=−2
∫

M
t
(∣∣∣∇2 f − g

2t

∣∣∣2+Ricm,n(L)(∇ f,∇ f )
)

u dµ

−
2

m−n

∫
M

t
(
∇φ · ∇ f + m−n

2t

)2
u dµ,

where

Ricm,n(L)= Ric+∇2φ−
∇φ⊗∇φ

m−n

is the m-dimensional Bakry–Émery Ricci curvature associated with the Witten
Laplacian L.

In particular, if (M, g, φ) is compact or satisfies the bounded geometry condition
and Ricm,n(L)≥ 0, then the W-entropy is decreasing in time t , i.e.,

d
dt

Wm(u, t)≤ 0, for all t ≥ 0.

The purpose of this paper is to extend the W-entropy formula in Theorem 1.1 to the
heat equation (1) associated with the time dependent Witten Laplacian on compact
Riemannian manifolds equipped with time dependent metrics and potentials. In
view of Perelman’s work using the W-entropy formula for the Ricci flow to remove
“the major stumbling block in Hamilton’s approach to geometrization” [Perelman
2002], it might be possible that the W-entropy formula for the time dependent
Witten Laplacian can bring some new insights to the study of geometric analysis on
Riemannian manifolds with time dependent metrics and potentials. Our results can
be regarded as the m-dimensional analogue of Perelman’s results for the Ricci flow,
where the Ricci curvature for the Ricci flow is replaced by the m-dimensional Bakry–
Émery Ricci curvature, and the Laplacian is replaced by the Witten Laplacian.

We are now in a position to state the main results of this paper.
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Theorem 1.2. Let (M, g(t), t ∈ [0, T ]) be a family of compact Riemannian man-
ifolds with potential functions φ(t) ∈ C∞(M), t ∈ [0, T ]. Suppose that g(t) and
φ(t) satisfy the conjugate equation

∂φ

∂t
=

1
2

Tr
(
∂g
∂t

)
.

Let
L =1g(t)−∇g(t)φ(t) · ∇g(t)

be the time dependent Witten Laplacian on (M, g(t), φ(t)). Let u be a positive
solution of the heat equation

∂t u = Lu

with initial data u(0) satisfying
∫

M u(0) dµ(0)= 1. Let

Hm(u, t)=−
∫

M
u log u dµ− m

2
(1+ log(4π t)).

Define

Wm(u, t)= d
dt
(t Hm(u)).

Then

Wm(u, t)=
∫

M

(
t |∇ log u|2− log u− m

2
(2+ log(4π t))

)
u dµ,

and

(4) d
dt

Wm(u, t)=−2t
∫

M

∣∣∣∇2 log u+ g
2t

∣∣∣2u dµ

−
2t

m−n

∫
M

(
∇φ · ∇ log u− m−n

2t

)2
u dµ

− 2
∫

M
t
(1

2
∂g
∂t
+Ricm,n(L)

)
(∇ log u,∇ log u)u dµ.

In particular, if {g(t), φ(t), t ∈ (0, T ]} satisfies the m-dimensional Perelman super
Ricci flow and the conjugate equation

1
2
∂g
∂t
+Ricm,n(L)≥ 0,(5)

∂φ

∂t
=

1
2

Tr
(
∂g
∂t

)
,(6)

then Wm(u, t) is decreasing in t ∈ (0, T ], i.e.,

d
dt

Wm(u, t)≤ 0, for all t ∈ (0, T ].
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As an application of the W-entropy formula for the Witten Laplacian on manifolds
with time dependent metrics and potentials, in the following theorem we prove that
the optimal logarithmic Sobolev constant associated with the Witten Laplacian on
compact manifolds equipped with the m-dimensional Perelman super Ricci flow is
decreasing in time.

Theorem 1.3. Let (M, g(t), φ(t), t ∈ [0, T ]) be as in Theorem 1.2. Then, for any
fixed t ∈ [0, T ], there exists a positive and smooth function u = e−v/2 such that v
achieves the optimal logarithmic Sobolev constant µ(t) defined by

µ(t) := inf
{

Wm(u, t) :
∫

M

e−v

(4π t)m/2
dµ= 1

}
.

Indeed, u = e−v/2 is a solution to the nonlinear PDE

−4t Lu− 2u log u−mu = µ(t)u.

Moreover, if {g(t), φ(t), t ∈ [0, T ]} satisfies the m-dimensional Perelman super
Ricci flow (5) and the conjugate equation (6), then µ(t) is decreasing in t on [0, T ].

Remark 1.4. We believe that, via the approach used in [Li 2012; 2011; 2014], it
would be possible to further extend the W-entropy formula in Theorem 1.2 to the
fundamental solution of the heat equation associated with the Witten Laplacian
on complete Riemannian manifolds with time dependent metrics and potentials
satisfying the bounded geometry condition. Technically, this would require some
Hamilton-type gradient estimates for the logarithm of the heat kernel of the Witten
Laplacian on complete Riemannian manifolds with time dependent metrics and
potentials satisfying the uniformly bounded geometry condition.3 We will study
this problem in a forthcoming paper. If this can be verified, we can derive, for a
family {g(t), φ(t), t ∈ (0, T ]} of metrics and potentials satisfying (5) and (6) on a
complete Riemannian manifold M with the uniformly bounded geometry condition,
that

d
dt

Wm(u, t)= 0, for some t = τ ∈ (0, T ]

if and only if at time t = τ , we have

∇
2 log u =− g

2τ
,

1
2
∂g
∂t
+Ricm,n(L)= 0, and ∇φ · ∇ log u = m−n

2τ
.

By the same argument as used in [Li 2012; 2011; 2014], we can further prove
the following rigidity result. Let {g(t), φ(t), t ∈ (0, T ]} be a family of metrics and
potentials satisfying (5) and (6) on a complete Riemannian manifold M with the

3We say that (M, g(t), φ(t), t ∈ [0, T ]) satisfies the uniformly bounded geometry condition if
there exists some N ∈N such that for all ε∈ (0, T ), the k-th order covariant derivatives ∇k Riem(g(t))
of the Riemannian curvature tensor Riem(g(t)), as well as the k-th order covariant derivatives ∇kφ(t)
of φ(t), are uniformly bounded on [ε, T ]×M for k = 0, . . . , N .
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uniformly bounded geometry condition. Let u be the fundamental solution to the
heat equation ∂t u = Lu. Then

d
dt

Wm(u, t)= 0, for some t = τ ∈ (0, T ],

if and only if (M, g(τ )) is isometric to Rn , φ(τ) is identically equal to a constant,
m = n, ∂g/∂t = 0, ∂φ/∂t = 0 at t = τ , and

u(x, τ )= e−‖x‖
2/4τ

(4πτ)n/2
, for all x ∈ M = Rn.

The rest of this paper is organized as follows. In Section 2, we give a new proof
of Theorem 1.1.4 In Section 3, we prove the dissipation formula of the Boltzmann–
Shannon entropy for the heat equation of the Witten Laplacian on compact manifolds
with time dependent metrics and potentials. In Section 4, we prove Theorem 1.2
and Theorem 1.3. In Section 5, we use Perelman’s W-entropy formula for Ricci
flow to derive the W-entropy formula for the backward heat equation of the Witten
Laplacian on compact Riemannian manifolds equipped with a modified Ricci flow
introduced by Lott [2009]. In Section 6, we extend Theorem 1.1 and Theorem 1.2
to the case Ricm,n(L)≥−K and compact K-super m-dimensional Bakry–Émery
Ricci flow.

2. A new proof of Theorem 1.1

To prove Theorem 1.1, we first recall some elementary geometric formulas on
warped product metrics.

Let m ∈ N, m ≥ n. Let M̃ = M × N , where (N , gN ) is a compact Riemannian
manifold with dimension q = m − n. Let φ ∈ C2(M). We consider the warped
product metric

(7) g̃ = gM ⊕ e−2φ/q gN .

on M̃ . Let νN be the volume measure on N . Then the volume measure on (M̃, g̃)
is given by

d volM̃ = e−φ d volM ⊗ dνN

Define
dµ= e−φ d volM .

Then
d volM̃ = dµ⊗ dνN .

4 One of the advantages of our new proof is that it gives a natural geometric interpretation of the
third term appearing in the W-entropy formula (3). See Remark 2.2.
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Without loss of generality, we may assume that

νN (N )= 1.

Let 0̃ be the Christoffel symbol on (M̃, g̃). By direct calculation, we verify that

0̃k
i j = 0

k
i j , 0̃k

αβ = q−1gkl∂lφgαβ, 0̃
γ

αβ = 0
γ

αβ,

0̃αi j = 0, 0̃k
iα = 0, 0̃

β

iα = 0.

Let ∇̃ be the Levi-Civita connection on (M̃, g̃). For any f ∈ C2(M), using the
formulas

∇̃
2
i j f = ∂i∂ j f − 0̃k

i j∂k f, ∇̃2
iα f = ∂i∂α f − 0̃k

iα∂k f, ∇̃2
αβ f = ∂α∂β f − 0̃k

αβ∂k f,

we have

∇̃
2
i j f =∇2

i j f,(8)

∇̃
2
αβ f =−q−1gkl∂lφ∂k f gαβ,(9)

∇
2
iα f = 0.(10)

Hence

(11)
∣∣∣∇̃2 f − g̃

2t

∣∣∣2 = ∣∣∣∇2 f − g
2t

∣∣∣2+ ∣∣∣∇̃2
αβ f −

gαβ
2t

∣∣∣2
=

∣∣∣∇2 f − g
2t

∣∣∣2+ ∣∣∣gkl∂lφ∂k f gαβ
q

+
gαβ
2t

∣∣∣2
=

∣∣∣∇2 f − g
2t

∣∣∣2+ ∣∣∣(∇φ ·∇ f
m−n

+
1
2t

)
gαβ

∣∣∣2
=

∣∣∣∇2 f − g
2t

∣∣∣2+ 1
m−n

(
∇φ · ∇ f + m−n

2t

)2
.

The following result was obtained in a private discussion between Bing-Long
Chen and the second author in January 2006.

Theorem 2.1. The Laplace–Beltrami operator on (M̃, g̃) is given by

1M̃ = L + e−2φ/(m−n)1N .

Proof. The proof can be given by a direct calculation. �

Proof of Theorem 1.1. To avoid technical issues, we only consider the case of
compact manifolds. Let u = e− f/(4π t)m/2 : M→ [0,∞) be a positive solution to
the heat equation ∂t u = Lu. Then it satisfies the heat equation

∂t u =1M̃ u
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on (M̃, g̃). Since f depends only on the variable in the M-direction, we have
∇̃ f =∇ f . Therefore, the W-entropy functional Wm(u, t) defined by (2) coincides
with the W-entropy functional

(12) W̃m(u, t)=
∫

M̃

[
t |∇̃ f |2+ f −m

] e− f

(4π t)m/2
d volM̃

defined on (M̃, g̃). Applying to (M̃, g̃) the W-entropy formula for the heat equation
∂t u =1u on compact Riemannian manifolds with fixed metrics due to Ni [2004b;
2004a], we have

(13) d
dt

W̃m(u, t)=−2
∫

M̃
t
(∣∣∣∇̃2 f − g̃

2t

∣∣∣2+ R̃ic
(
∇̃ log u, ∇̃ log u

))
u dµdvN .

By (11), we have

(14)
∣∣∣∇̃2 f − g̃

2t

∣∣∣2 = ∣∣∣∇2 f − g
2t

∣∣∣2+ 2
m−n

(
∇φ · ∇ f + m−n

2t

)2
.

On the other hand, by [Besse 1987; Lott 2003; Li 2005], we have

(15) R̃ic
(
∇̃ log u, ∇̃ log u

)
= Ricm,n(L)(∇ log u,∇ log u).

From (13), (14) and (15), we obtain (3). This finishes the new proof of Theorem 1.1
in the case of compact manifolds. �

Remark 2.2. One of the advantages of the above proof is that when m ∈ N and
m > n, the quantity

1
m−n

(
∇φ · ∇ f + m−n

2t

)2

appearing in the W-entropy formula in Theorem 1.1 has a natural geometric inter-
pretation. It corresponds to the vertical component of the quantity

∣∣∇̃2 f − g̃/2t
∣∣2

on the warped product manifold M̃ = M × N equipped with the metric

g̃ = g⊕ e−2φ/(m−n)gN .

In the case where (M, g) is a complete Riemannian manifold with the bounded
geometry condition, similarly to [Lott 2003; Charalambous and Lu 2015], by
introducing a sequence of warped product metrics {g̃ε} on M̃ = M × N defined by

g̃ε = g⊕ ε2e−2φ/(m−n)gN ,

and using the fact that the heat kernel of the Laplace–Beltrami 1(M̃,g̃ε) on (M̃, g̃ε)
(with renormalized volume measure) converges in the C2,α

∩W 2,p-topology to the
heat kernel of the Witten Laplacian L =1M−∇φ ·∇ on (M, g, µ), we can use the
same approach as in the compact case to give a new proof of the W-entropy formula
for the heat kernel of the Witten Laplacian on complete Riemannian manifolds
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satisfying the bounded geometry condition in Theorem 1.1. We will study this
problem in detail in the future.

Remark 2.3. We would like to mention that, after the first version of this paper [Li
and Li 2014b] was posted online in March 2013, N. Charalambous and Z. Lu posted a
preprint [2015] in which they used the warped product approach to prove the Li–Yau
differential Harnack inequality on complete Riemannian manifolds with weighted
volume measure. Recently we also found a paper by H. Guo, R. Philipowski and
A. Thalmaier [2015], in which they studied the Boltzmann entropy dissipation
formula on manifolds with time dependent metrics. We would also like to point
out that G. Huang and H. Li [2014] extended the W-entropy formula for the heat
equation of the Witten Laplacian in Theorem 1.1 to the porous medium equation
for the Witten Laplacian on compact Riemannian manifolds with fixed metric and
potential. We can use the same method developed in Section 2 to give a new proof
of their result. See also related works of Y.-Z. Wang et al. [2013; 2014].

3. Dissipation formula of the Boltzmann–Shannon entropy

Let (M, g(t), φ(t)) be as in Theorem 1.2. Following [Bakry and Émery 1985; Lott
2003; Li 2005], we introduce the Bakry–Émery Ricci curvature associated with L
as

Ric(L)= Ric+∇2φ.

The purpose of this section is to prove the following dissipation formula for the
Boltzmann–Shannon entropy associated with the Witten Laplacian on manifolds
with time dependent metrics and potentials.

Theorem 3.1. Let u be a positive solution to the heat equation ∂t u = Lu. Let

H(u, t)=−
∫

M
u log u dµ

be the Boltzmann–Shannon entropy associated with the Witten Laplacian L. Then

(16) ∂2

∂t2 H(u, t)

=−2
∫

M

(
|∇

2 log u|2+
(1

2
∂g
∂t
+Ric(L)

)
(∇ log u,∇ log u)

)
u dµ.

Proof. By direct calculation, we have

∂

∂t
H(u, t)=−

∫
M
∂t u(log u+ 1) dµ=−

∫
M

Lu(log u+ 1) dµ.

Integrating by parts yields

∂

∂t
H(u, t)=

∫
M

∣∣∇ log u
∣∣2
g(t)u dµ,
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which further implies that, as ∂t(dµ)= 0, we have

(17) ∂2

∂t2 H(u, t)=
∫

M

∂

∂t
(∣∣∇ log u

∣∣2
g(t)u

)
dµ

=

∫
M

[
∂gi j

∂t
∇i log u∇j log u

]
u dµ+

∫
M

∂

∂t

[
|∇u|2

u

]
g(t) fixed

dµ

=

∫
M

[
−
∂gi j

∂t
∇i log u∇j log u

]
u dµ+

∫
M

∂

∂t

[
|∇u|2

u

]
g(t) fixed

dµ

=

∫
M

(
−
∂g
∂t
(∇ log u,∇u)+ ∂

∂t

[
|∇u|2

u

]
g(t) fixed

)
dµ,

where [·]g(t) fixed means that the quantity |∇u|2 in [·] is defined under a fixed
metric g(t). We have also used the facts |∇ log u|2 = gi j

∇i log u∇j log u and
∂t gi j
=−∂t gi j .

By the entropy dissipation formula in [Bakry and Émery 1985; Li 2014], we have

(18)
∫

M

∂

∂t

[
|∇u|2

u

]
g(t) fixed

dµ

=−2
∫

M

[
|∇

2 log u|2+Ric(L)(∇ log u,∇ log u)
]
u dµ.

Combining (17) and (18) completes the proof of Theorem 3.1. �

As an easy consequence of Theorem 1.2, we have the following corollary.

Corollary 3.2. Let (M, g(t)) be a closed manifold with a potential φ(t). Suppose
that (g(t), φ(t)) satisfies the Perelman super Ricci flow and the conjugate equation:

∂g
∂t
≥−2 Ric(L), ∂φ

∂t
=

1
2

Tr
(
∂g
∂t

)
.

Let u be a positive solution to the heat equation ∂t u = Lu. Then the Boltzmann–
Shannon entropy

H(u, t)=−
∫

M
u log u dµ

is concave in time t , i.e.,
d2

dt2 H(u, t)≤ 0.

4. Proofs of Theorem 1.2 and Theorem 1.3

Following [Li 2014], we introduce

W (u, t)= d
dt
(t H(u, t)).

By direct calculation, we can prove the following.
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Proposition 4.1. We have

W (u, t)=
∫

M

[
t |∇ log u|2− log u

]
u dµ,

and

(19) d
dt

W (u, t)

=−2
∫

M
t
(
|∇

2 log u|2+
(1

2
∂g
∂t
+Ric(L)

)
(∇ log u,∇ log u)

)
u dµ

+ 2
∫

M
|∇ log u|2u dµ.

Remark 4.2. From (19), we can derive that if

1
2
∂g
∂t
+Ric(L)− 1

t
≥ 0,

then
d
dt

W (u, t)≤ 0.

Let
Hm(u, t)=−

∫
M

u log u dµ− m
2
(
1+ log(4π t)

)
.

Following [Perelman 2002; Ni 2004a; 2004b; Li 2012; 2014], we define Wm(u, t)
by the Boltzmann entropy formula

(20) Wm(u, t)= d
dt
(t Hm(u)).

We can verify that Wm(u, t) coincides with the expression given in Theorem 1.2,
namely

Wm(u, t)=
∫

M

(
t |∇ log u|2− log u− m

2
(2+ log(4π t))

)
u dµ.

Proof of Theorem 1.2. By (20) and (16) in Theorem 3.1, we have

(21) d
dt

Wm(u, t)

=−2
∫

M
t
(
|∇

2 log u|2+
(1

2
∂g
∂t
+Ric(L)

)
(∇ log u,∇ log u)

)
u dµ

+ 2
∫

M
|∇ log u|2u dµ− m

2t
.

Note that

2t |∇2 log u|2+ m
2t
= 2t

∣∣∣∇2 log u+ g
2t

∣∣∣2+ m−n
2t
− 21 log u.

Hence
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d
dt

Wm(u, t)=−m−n
2t
− 2t

∫
M

∣∣∣∇2 log u+ g
2t

∣∣∣2u dµ

+ 2
∫

M
|∇ log u|2u dµ+ 2

∫
M
(1 log u)u dµ

− 2
∫

M
t
(1

2
∂g
∂t
+Ric(L)

)
(∇ log u,∇ log u)u dµ.

Integrating by parts yields∫
M
(1 log u)u dµ=

∫
M
(L log u+∇φ · ∇ log u)u dµ

=−

∫
M
|∇ log u|2u dµ+

∫
M
(∇φ · ∇ log u)u dµ,

whence

d
dt

Wm(u, t)=−m−n
2t
− 2t

∫
M

∣∣∣∇2 log u+ g
2t

∣∣∣2u dµ+ 2
∫

M
(∇φ · ∇ log u)u dµ

− 2
∫

M
t
(1

2
∂g
∂t
+Ric(L)

)
(∇ log u,∇ log u)u dµ.

Note that

m−n
2t
+ 2t Ric(L)(∇ log u,∇ log u)− 2∇φ · ∇ log u

= 2t Ricm,n(L)(∇ log u,∇ log u)+ 2t
m−n

(
∇φ · ∇ log u− m−n

2t

)2
.

We conclude that

d
dt

Wm(u, t)=−2t
∫

M

∣∣∣∇2 log u+ g
2t

∣∣∣2u dµ− 2t
m−n

∫
M

(
∇φ·∇ log u−m−n

2t

)2
u dµ

− 2
∫

M
t
(1

2
∂g
∂t
+Ricm,n(L)

)
(∇ log u,∇ log u)u dµ.

This proves the W-entropy formula in Theorem 1.2, and the monotonicity result
follows. �

Proof of Theorem 1.3. The proof is similar to the one used by Perelman [2002]. See
also [Li 2012]. By definition, we have

(22) µ(t)= inf
u

{∫
M

[
4t |∇u|2− u2 log u2

−mu2](4π t)−m/2 dµ
}
,

where the infimum is taken over all u such that∫
M
(4π t)−m/2u2 dµ= 1.
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Indeed, µ(t) is the optimal constant in the logarithmic Sobolev inequality stating
that for all u satisfying the above condition,∫

M
u2 log u2(4π t)−m/2 dµ≤ µ(t)+m+ 4

∫
M

t |∇u|2(4π t)−m/2 dµ.

By a similar argument as used in [Perelman 2002; Cao and Zhu 2006; Kleiner and
Lott 2008; Morgan and Tian 2007], we can prove that the minimization problem (22)
has a nonnegative minimizer u ∈ H 1(M, µ), which satisfies the Euler–Lagrange
equation

−4t Lu− 2u log u−mu = µ(t)u.

By the regularity theory of elliptic PDEs, we have u ∈ C1,α(M). By an argument
due to Rothaus [1981], we can further prove that u is strictly positive and smooth.
Hence v =−2 log u is also smooth. Moreover, as a consequence of Theorem 1.2,
we can derive that µ(t) is a decreasing function in t on [0, T ], provided that
{g(t), φ(t), t ∈ [0, T ]} satisfies the m-dimensional Perelman super Ricci flow (5)
and the conjugate equation (6). This completes the proof of Theorem 1.3. �

Remark 4.3. Let m ∈ N and m > n. Let (N , gN ) be a compact Riemannian
manifold of dimension q = m − n. Let M = M × N be the product manifold
equipped with the time dependent warped product metric

g̃(t)= g(t)⊕ e−2φ(t)/(m−n)gN .

Similarly to Remark 2.2, the quantity

1
m−n

(
∇φ(t) · ∇ log u− m−n

2t

)2

appearing in the W-entropy formula in Theorem 1.2 has a natural geometric interpre-
tation. It corresponds to the vertical component of the quantity

∣∣∇̃2 log u+ g̃(t)/2t
∣∣2

on (M, g̃(t)).

Remark 4.4. Perelman [2002] gave an interpretation of the W-entropy using the
Boltzmann entropy formula from statistical mechanics. In [Li 2012; 2011], the
second author gave a probabilistic interpretation of the W-entropy for the Ricci flow,
the heat equation of the Witten Laplacian and the Fokker–Planck heat equation.
Note that, as in [Li 2012; 2011; 2014], we have

Hm(u, t)= H(u, t)− H(γ, t)

where H(u, t) is the Boltzmann–Shannon entropy associated with the heat equation
to the Witten Laplacian on (M, g(t), φ(t)), and H(γ, t) is the Boltzmann–Shannon
entropy of the Gaussian heat kernel γ (x, t) on Rm for m ∈ N with m ≥ n,

γ (x, t)= 1
(4π t)m/2

e−‖x‖
2/4t , x ∈ Rm, t > 0.
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Thus, in view of its definition (20), the W-entropy Wm(u, t) can be regarded as the
byproduct of the Boltzmann–Shannon entropy. This gives a probabilistic interpreta-
tion of the W-entropy Wm(u, t).

On the other hand, similarly to [Perelman 2002], we can also give a heuristic
interpretation of the W-entropy using the Boltzmann entropy formula from statistical
mechanics. Suppose that there exists a canonical ensemble with a “density of state
measure” g(E) d E such that the partition function Zβ =

∫
R+

e−βE g(E) d E is given
by

(23) log Zβ = Hm(u, t),

where t = β−1. (Here, as in [Perelman 2002], we do not discuss the issue of
whether such a “density of state measure” exists or not.) Then, formally applying
the Boltzmann entropy formula from statistical mechanics, the thermodynamical
entropy of this canonical ensemble is given by

S = log Zβ −β
∂

∂β
log Zβ .

Using the fact ∂

∂β
=
∂

∂t
∂t
∂β
=−

1
β2

∂

∂t
=−t2 ∂

∂t
, we can prove

S =Wm(u, t).

Moreover, formally using the formula

d S
dβ
=−β

∂2

∂β2 log Zβ,

from statistical mechanics, we can reprove the W-entropy formula in Theorem 1.2.

5. The W-entropy for the Ricci flow on warped product manifolds

Let m ∈ N and m ≥ n. Let Tq be the q-dimensional torus with a fixed flat metric
given in local coordinates by

∑q
i=1 dx2

i , where q = m − n. Let M̃ = M ×Tq be
equipped with a time dependent warped product metric

g̃(t)=
n∑

i, j=1

gi j (t) dx i dx j
+ u(t)2/q

q∑
α=1

dx2
α.

Lott [2009] studied the Ricci flow g̃(t) on the warped product manifold M̃ =
M×Tq , which consists of a modified Ricci flow for the Riemannian metric g(t) and
a forward heat equation for a potential function ψ(t)=− log u(t) on the manifold
M . In this section, we use Perelman’s W-entropy formula for the Ricci flow g̃(t) on
the warped product manifold M̃ to derive the W-entropy formula for the backward
heat equation associated with the Witten Laplacian L =1g(t)−∇g(t)ψ(t) · ∇g(t)
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on the compact manifold M equipped with Lott’s modified Ricci flow g(t) and the
time dependent potential ψ(t).

We first recall Lott’s Ricci flow on M̃ = M ×Tq . Let u = e−ψ . Let R̃ic be the
Ricci curvature on (M̃, g̃), and Ric the Ricci curvature on (M, g). By calculation
on warped product manifolds [Besse 1987; Lott 2003; 2009], we have

(24) R̃ic= Ricq
ψ +

1
q
(1ψ − |∇ψ |2)u2/q

q∑
i=1

dx2
i ,

where Ricq
ψ is the m-dimensional Bakry–Émery Ricci curvature on (M, g) with

respect to the potential function ψ , i.e.,

Ricq
ψ = Ric+Hessψ − 1

q
∇ψ ⊗∇ψ.

See [Bakry and Émery 1985; Li 2012; 2011; 2014]. Below we will also use the
notation Ricq to denote R̃ic. By (24), the scalar curvature Rq on (M̃, g̃) is given by

Rq = R+ 21ψ −
(

1+ 1
q

)
|∇ψ |2.

The Ricci flow on M̃ is defined by

(25) ∂t g̃ =−2R̃ic.

According to [Lott 2009], the Ricci flow equation (25) is equivalent to the equations

∂t g =−2 Ricq
ψ ,(26)

∂tψ =1ψ − |∇ψ |
2.(27)

Note that the first equation (26) is indeed a modified Ricci flow equation for the
metric g(t) on M , and the second one (27) is a forward heat equation for the
potential function ψ(t) on (M, g(t)). The systems (26) and (27) are different from
Perelman’s (modified) Ricci flow and the conjugate heat equation introduced in
[Perelman 2002], i.e.,

∂g
∂t
=−2(Ric+∇2 f ),

∂ f
∂t
=−1 f − R,

and are also different from the m-dimensional Perelman Ricci flow and the conjugate
heat equation

∂g
∂t
=−2

(
Ric+∇2 f − ∇ f ⊗∇ f

m−n

)
,

∂ f
∂t
=−1 f + |∇ f |2

m−n
− R.
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Let φ be a positive solution to the conjugate heat equation on (M̃, g̃),

(28) ∂tφ =−1M̃φ+ Rqφ.

Let τ ∈ [0, T ] be such that
∂tτ =−1,

and η such that
φ = (4πτ)−(n+q)/2e−η.

We then have
∂tη =−1M̃η+ |∇η|

2
− Rq +

n+q
2τ

.

Following [Perelman 2002], the W-entropy for the Ricci flow g̃(t) on the warped
product manifold M̃ is defined by

W (g̃, η, τ )=
∫

M̃

[
τ
(∣∣∇̃η∣∣2M̃ + Rq

)
+ η− (n+ q)

]
φ d volM̃ ,

where d volM̃ is the volume form u d volM d volTq on (M̃, g̃).
Applying Perelman’s [2002] W-entropy formula for the Ricci flow to (M̃, g̃), we

have

(29) d
dτ

W (g̃, η, τ )=−2τ
∫

M̃

∣∣∣R̃ic+ H̃ess η− g̃
2τ

∣∣∣2
M̃
φ d volM̃ .

By Theorem 2.1, the Laplace–Beltrami on (M̃, g̃) is given by

1M̃ = L + u−2/q1Tq ,

where
L =1−∇ψ · ∇.

Here 1 and ∇ are the Laplace–Beltrami operator and the gradient operator on
(M, g), respectively. In the case that φ is a function depending only on the variable
of the horizontal direction, the conjugate heat equation (28) turns out to be the
backward heat equation associated with the Witten Laplacian on (M, g(t)),

(30) ∂tφ =−Lφ+ Rqφ.

In this case, η is a function depending only on the variable in M . Thus,

W (g̃, η, τ )=
∫

M×Tq

[
τ(|∇η|2+ Rq)+ η− (n+ q)

]
φu d volM d volTq

=

∫
M

[
τ
(
|∇η|2+ R+ 21ψ −

(
1+ 1

q

)
|∇ψ |2

)
+ η− (n+ q)

]
φ dµ.
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Here dµ= u d volM , and we assume vol(Tq)= 1. Note that for any vector field v
on M̃ , by (8), (9) and (10) we have

(31) H̃ess v = Hess v− 1
q

u2/q
〈∇ψ,∇v〉

q∑
α=1

dx2
α.

Substituting (24) and (31) into (29), we have

d
dτ

W (g̃, η, τ )=−2τ
∫

M

∣∣∣R̃ic+ H̃ess η− g̃
2τ

∣∣∣2
M̃
φ dµ

=−2τ
∫

M

∣∣∣Ricq
ψ +Hess η− g

2τ

+
1
q

(
1ψ − |∇ψ |2−〈∇ψ,∇η〉−

q
2τ

)
u2/q

q∑
α=1

dx2
α

∣∣∣2
M̃
φ dµ

=−2τ
∫

M

(∣∣∣Ricq
ψ +Hess η− g

2τ

∣∣∣2
+

1
q

(
1ψ − |∇ψ |2−〈∇ψ,∇η〉−

q
2τ

)2 )
φ dµ.

Thus we have proved the following W-entropy formula for the backward heat
equation associated with the Witten Laplacian on compact manifolds equipped with
Lott’s modified Ricci flow and time dependent potentials.

Theorem 5.1. Let (M, g(t), ψ(t)) be a compact manifold with a family of Rie-
mannian metrics g(t) and potentials ψ(t) which satisfy

∂t g =−2
(

Ric+Hessψ − 1
q
∇ψ ⊗∇ψ

)
,

∂tψ =1ψ − |∇ψ |
2.

Let dµ = e−ψd volM , and L = 1−∇ψ · ∇. Let φ be a positive solution to the
backward heat equation of the Witten Laplacian on M , i.e.,

∂tφ =−Lφ+ Rqφ,

where Rq = R+ 21ψ − (1+ 1/q)|∇ψ |2. Define the W-entropy Wq(g, ψ, η, τ ) by

Wq(g, ψ, η, τ )=
∫

M

[
τ
(
|∇η|2+ Rq

)
+ η− (n+ q)

]
φ dµ,

where φ = (4πτ)−(n+q)/2e−η, and (η, τ ) satisfies

∂tη =−Lη+ |∇η|2− Rq +
n+q
2τ

, ∂tτ =−1.
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Then
d

dτ
Wq(g, ψ, η, τ )

=−2τ
∫

M

(∣∣∣Ricq
ψ +Hess η− g

2τ

∣∣∣2+ 1
q

(
1ψ−|∇ψ |2−〈∇ψ,∇η〉−

q
2τ

)2 )
φ dµ.

In particular, Wq(g, ψ, η, τ ) is decreasing in the backward time τ , and the mono-
tonicity is strict unless

Ricq
ψ +Hess η = g

2τ
,

1ψ − |∇ψ |2 = 〈∇ψ,∇η〉−
q
2τ
.

As an application of the W-entropy formula in Theorem 1.3, we have:

Theorem 5.2. Let (M, g(t), ψ(t)) be a compact manifold with a family of Rie-
mannian metrics g(t) and potentials ψ(t) which satisfy

∂t g =−2
(

Ric+Hessψ − 1
q
∇ψ ⊗∇ψ

)
,

∂tψ =1ψ − |∇ψ |
2.

Then there exists a positive and smooth function u = e−η/2 such that η achieves the
optimal logarithmic Sobolev constant µ(τ) defined by

µ(τ) := inf
{

Wq(g, ψ, η, τ ) :
∫

M

e−η

(4πτ)(n+q)/2 dµ= 1
}
,

where

Wq(g, ψ, η, τ )=
∫

M

(
τ(|∇η|2+ Rq)+ η− (n+ q)

)
φ dµ,

Indeed, u = e−η/2 is a solution to the nonlinear PDE

−4τ Lu+ τ Rqu− 2u log u− (n+ q)u = µ(τ)u.

Moreover, µ(τ) is decreasing in τ on [0, T ].

Proof. The proof is similar to Perelman’s [2002] monotonicity theorem for the
µ-invariant for Ricci flow. See also [Cao and Zhu 2006; Chow et al. 2006; Kleiner
and Lott 2008; Morgan and Tian 2007] and the proof of Theorem 1.3. �

6. The W-entropy formula for the Witten Laplacian with negative
Bakry–Émery Ricci curvature

The W-entropy formula (3) only implies the monotonicity of the W-entropy for
the Witten Laplacian on complete Riemannian manifolds with nonnegative m-
dimensional Bakry–Émery Ricci curvature, and the W-entropy formula (4) only
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implies the monotonicity of the W-entropy for the Witten Laplacian on compact
Riemannian manifolds with time dependent metrics and potentials satisfying the
super m-dimensional Bakry–Émery Ricci flow and the conjugate heat equation. On
the other hand, J. Li and X. Xu [2011] introduced a W-entropy for the heat equation
∂t u =1u on complete Riemannian manifolds with Ricci curvature bounded from
below by a negative constant. In this section, we combine the ideas in [Li and Xu
2011; Li 2012; 2014] and Section 4 to extend Theorem 1.1 to the Witten Laplacian
on complete Riemannian manifolds with Ricm,n(L) bounded from below by a
negative constant, and extend Theorem 1.2 to the Witten Laplacian on compact
Riemannian manifolds with time dependent metrics and potentials satisfying the
K-super m-dimensional Bakry–Émery Ricci flow and the conjugate heat equation.

Recall the following entropy dissipation formulas on complete Riemannian
manifolds.

Theorem 6.1 [Li 2012; 2014]. Let (M, g) be a complete Riemannian manifold
with the bounded geometry condition, and φ ∈ C4(M) with ∇φ ∈ C3

b(M). Let u be
the fundamental solution to the heat equation ∂t u = Lu. Let

H(u, t)=−
∫

M
u log u dµ.

Then
d
dt

H(u, t)=
∫

M

|∇u|2

u
dµ,

and

d2

dt2 H(u, t)=−2
∫

M

(
|∇

2 log u|2+Ric(L)(∇ log u,∇ log u)
)
u dµ.

Proposition 6.2. Let m ≥ n and K ≥ 0 be constants. Under the same assumptions
as in Theorem 6.1, define

Hm,K (u, t)=−
∫

M
u log u dµ− m

2
(
1+ log(4π t)

)
−

m
2

K t
(

1+ K t
6

)
,

Then
d
dt

Hm,K (u, t)=
∫

M

(
|∇u|2

u2 −
m
2t
−

mK
2

(
1+ K t

3

))
u dµ.

In particular, if Ricm,n(L)≥−K , then

d
dt

Hm,K (u, t)≤ 0,

Proof. By Theorem 6.1, we have

d
dt

Hm,K (u, t)=
∫

M

(
|∇u|2

u2 −
m
2t
−

mK
2

(
1+ K t

3

))
u dµ.
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By the same argument as in [Li and Xu 2011], or using the warped product approach
as in [Charalambous and Lu 2015] and the Li–Yau-type differential Harnack in-
equality obtained by J. Li and X. Xu [2011], we can prove that, if Ricm,n(L)≥−K ,
then

|∇u|2

u2 −

(
1+ 2K t

3

)
∂t u
u
≤

m
2t
+

mK
2

(
1+ K t

3

)
.

From this we may use the fact
∫

M ∂t u dµ=
∫

M Lu dµ= 0 to conclude

d
dt

Hm,K (u, t)≤ 0. �

We now prove the main result of this section.

Theorem 6.3. Let m ≥ n and K ≥ 0 be constants. Under the same assumptions as
in Theorem 6.1, define the W-entropy by the Boltzmann formula

Wm,K (u, t)= d
dt
(t Hm,K (u)).

Set u = e− f

(4π t)m/2
. Then

(32) Wm,K (u, t)=
∫

M

(
t |∇ f |2+ f −m

(
1+ K t

2

)2 )
u dµ,

and

(33) d
dt

Wm,K (u, t)=

− 2t
∫

M

(∣∣∣∇2 f −
( 1

2t
+

K
2

)
g
∣∣∣2+ (Ricm,n(L)+ K g)(∇ f,∇ f )

)
u dµ

−
2t

m−n

∫
M

(
∇φ · ∇ f + (m− n)

( 1
2t
+

K
2

))2
u dµ.

In particular, if Ricm,n(L)≥−K , then

d
dt

Wm,K (u, t)≤ 0.

Proof. We can prove (32) by direct calculation. By Theorem 6.1, we have

d
dt

Wm,K (u, t)= d
dt

W (u, t)− m
2t
−mK

(
1+ K t

2

)
=−2

∫
M

t
(
|∇

2 log u|2+Ric(L)(∇ log u,∇ log u)
)

u dµ

+ 2
∫

M
|∇ log u|2u dµ− m

2t
−mK

(
1+ K t

2

)
.

Defining

κ(t)= K
(

1+ K t
2

)
, λ(u, t)=

∣∣∣∇2 log u+ g
2t
+

K g
2

∣∣∣2,
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note that

2t |∇2 log u|2+ m
2t
+mκ(t)= 2tλ(u, t)−2(1+K t)1 log u+ (m−n)

( 1
2t
+κ(t)

)
.

Integrating by parts yields

d
dt

Wm,K (u, t)=−2
∫

M
t
(
λ(u, t)+ (Ric(L)+ K g)(∇ log u,∇ log u)

)
u dµ

+ 2(1+ K t)
∫

M
(∇ log u · ∇φ)u dµ+ (m− n)

( 1
2t
+ κ(t)

)
=−2

∫
M

t
(
λ(u, t)+ (Ricm,n(L)+ K g)(∇ log u,∇ log u)

)
u dµ

−
2t

m−n

∫
M

(
∇ log u · ∇φ− (m− n)

( 1
2t
+

K
2

))2
u dµ.

In particular, if Ricm,n(L)≥−K g, Wm,K (u, t) is monotone decreasing. �

Remark 6.4. Suppose that Ricm,n(L)≥−K . By Theorem 6.3, d
dt

Wm,K (u, t)= 0
if and only if

Ricm,n(L)=−K g, ∇2 f =
( 1

2t
+

K
2

)
g, ∇φ · ∇ f =−(m− n)

( 1
2t
+

K
2

)
.

In particular, if m = n and φ =C is a constant, then (M, g) is an Einstein manifold
with Ric=−K , and the potential f satisfies the shrinking gradient Ricci soliton
equation (see [Li and Xu 2011])

1
2

Ric+∇2 f = g
2t
.

In general, (M, g) is a quasi-Einstein manifold with the metric g such that
Ricm,n(L)=−K g, and the potential f satisfies the shrinking gradient quasi-Ricci
soliton equation

1
2

Ricm,n(L)+∇2 f = g
2t
.

Remark 6.5. Similarly to Section 2, in the case that m ∈ N, m ≥ n and M is a
compact Riemannian manifold, we can give a new proof of Theorem 6.3 via the
warped product method. Let M̃ = M×N , where (N , gN ) is a compact Riemannian
manifold with dimension q =m−n. Consider the following warped product metric
on M̃ :

g̃ = gM ⊕ e−2φ/q gN .
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Applying the W-entropy formula due to J. Li and X. Xu [2011] for the heat equation
∂t u =1M̃ u on (M̃, g̃), we have

(34) d
dt

W̃m,K (u, t)

=−2
∫

M̃
t
(∣∣∣∇̃2 f − g̃

2t
−

K g̃
2

∣∣∣2+ (R̃ic+ K g̃
)(
∇̃ log u, ∇̃ log u

))
u dµdvN .

From (11), we get

(35)
∣∣∣∇̃2 f − g̃

2t
−

K g̃
2

∣∣∣2
=

∣∣∣∇2 f − g
2t
−

K g
2

∣∣∣2+ 2
m−n

(
∇φ · ∇ f + (m− n)

( 1
2t
+

K
2

))2
.

On the other hand, by [Besse 1987; Lott 2003; Li 2005], we have

(36)
(
R̃ic+ K g̃

)(
∇̃ log u, ∇̃ log u

)
=
(
Ricm,n(L)+ K g

)(
∇ log u,∇ log u

)
.

From (34), (35) and (36), we reprove (33). Note that (35) also gives a natural
geometric interpretation of the third term in the W-entropy formula (33).

We now extend Theorem 6.3 to the Witten Laplacian on compact manifolds with
time dependent metrics and potentials.

Theorem 6.6. Let m ≥ n and K ≥ 0 be constants. Under the same assumptions as
in Theorem 1.2, define

Hm,K (u, t)=−
∫

M
u log u dµ− m

2
(1+ log(4π t))− m

2
K t
(

1+ K t
6

)
and

Wm,K (u, t)= d
dt
(
t Hm,K (u)

)
.

Set u = e− f/(4π t)m/2. Then

Wm,K (u, t)=
∫

M

(
t |∇ f |2+ f −m

(
1+ K t

2

)2 ) e− f

(4π t)m/2
dµ,

and

d
dt

Wm,K (u, t)=−2t
∫

M

∣∣∣∇2 f − g
2t
−

K g
2

∣∣∣2 e− f

(4π t)m/2
dµ

− 2t
∫

M

(1
2
∂g
∂t
+Ricm,n(L)+ K g

)
(∇ f,∇ f ) e− f

(4π t)m/2
dµ

−
2t

m−n

∫
M

(
∇φ · ∇ f + (m− n)

( 1
2t
+

K
2

))2 e− f

(4π t)m/2
dµ.
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In particular, if {g(t), φ(t), t ∈ (0, T ]} is the K-super m-dimensional Bakry–Émery
Ricci flow and satisfies the conjugate equation

1
2
∂g
∂t
+Ricm,n(L)≥−K g,(37)

∂φ

∂t
=

1
2

Tr
(
∂g
∂t

)
,(38)

then Wm,K (u, t) is decreasing in t ∈ (0, T ], i.e.,
d
dt

Wm,K (u, t)≤ 0, for all t ∈ (0, T ].

Proof. By (19), and replacing Ric(L) by 1
2
∂g
∂t
+Ric(L), the proof is similar to the

proof of Theorem 6.3. �

Finally, as an application of Theorem 6.6, we have the following.

Theorem 6.7. Let (M, g(t), φ(t), t ∈ [0, T ]) be as in Theorem 6.6. Then there
exists a positive and smooth function u = e−v/2 such that v achieves the optimal
logarithmic Sobolev constant µK (t) defined by

µK (t) := inf
{

Wm,K (u, t) :
∫

M

e−v

(4π t)m/2
dµ= 1

}
.

Indeed, u = e−v/2 is a solution to the nonlinear PDE

−4t Lu− 2u log u−m
(

1+ K t
2

)2
u = µK (t)u.

Moreover, if {g(t), φ(t), t ∈ [0, T ]} satisfies the K-super m-dimensional Bakry–
Émery Ricci flow (37) and the conjugate equation (38), then µK (t) is decreasing in
t on [0, T ].

Proof. The proof is similar to the proof of Theorem 1.3. �

Note added in proof

In a recent preprint, the authors introduced the W-entropy and proved the W-entropy
formula for the heat equation of the Witten Laplacian on complete Riemannian
manifolds with the CD(K ,∞) condition (i.e., Ric(L) ≥ K ) and extended the
corresponding result to the heat equation of the time dependent Witten Laplacian
on compact Riemannian manifolds equipped with the K-super Perelman Ricci flow
with respect to the Bakry–Émery Ricci curvature (i.e., 1

2
∂g
∂t +Ric(L)≥ K g). See

[Li and Li 2014a].
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