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BY TAKING 2-DIMENSIONAL BRAIDS

INASA NAKAMURA

For an oriented surface link S , we can take a satellite construction called
a 2-dimensional braid over S , which is a surface link in the form of a
covering over S . We demonstrate that 2-dimensional braids over surface
links are useful for showing the distinctness of surface links. We investigate
nontrivial examples of surface links with free abelian groups of rank two,
concluding that their link types are infinitely many.

1. Introduction

A surface link is the image of a smooth embedding of a closed surface into Euclidean
space R4. Two surface links are equivalent if there is an orientation-preserving self-
diffeomorphism of R4 carrying one to the other. In this paper, we assume that surface
links are oriented. In [Nakamura 2014a], we investigated a satellite construction
called a 2-dimensional braid over an oriented surface link, and introduced its
graphical presentation called an m-chart on a surface diagram. A 2-dimensional
braid over a surface link S is a surface link in the form of a covering over S , and
can be regarded as an analog to a double of a classical link. One of the expected
applications of the notion of a 2-dimensional braid is that it will provide us with a
method for showing the distinctness of surface links. The aim of this paper is to
demonstrate such use for 2-dimensional braids.

Our main theorem is as follows. For a positive integer k, let �1; �2; : : : ; �k

be the standard generators of the .k C 1/-braid group. Take X1 D �
2
1

and Xk D

�2
1
�2�3 � � � �k , and let � be a .k C 1/-braid with a positive half twist. Consider

Sk DSkC1.Xk ; �
2/, a torus-covering T 2-link determined from the .kC1/-braids

Xk and �2. We take the first component of Sk to be the one determined from the
first strand of Xk , and likewise the second component from the second strand; see
Section 2 for the construction. Here, a T 2-link is a surface link each of whose
components is of genus one.
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Theorem 1.1. Abelian T 2-links of rank two, Sk and Sl , are not equivalent for
distinct positive integers k and l . Thus, the link types of abelian T 2-links of rank
two are infinitely many.

An abelian surface link of rank n is a surface link whose link group is a free
abelian group of rank n [Ito and Nakamura 2014]; note that n is the number of
the components. We remark that our abelian T 2-links of rank two cannot be
distinguished by using link groups, and that by a homological argument we cannot
show that their link types are infinitely many, but only that there are two link types;
see Section 2B. Our abelian T 2-link Sk of rank two is a sublink of the surface link
given in [Ito and Nakamura 2014], where we gave examples of abelian T 2-links of
rank four, and we showed that their link types are infinitely many by calculations
of triple linking numbers (see also Remark 2.3).

Triple linking numbers are integer-valued invariants of surface links with at
least three components, so we cannot use them directly for our case. In order to
overcome this situation, we take a 2-dimensional braid over Sk such that each
component of Sk is split into two components. This has four components, so we
can calculate triple linking numbers. A 2-dimensional braid over a surface link
is obtained from the “standard” 2-dimensional braid by the addition of braiding
information. Unfortunately, for the standard 2-dimensional braid, the triple linking
number is trivial (Proposition 5.1). However, addition of braiding information
makes a 2-dimensional braid with nontrivial triple linking, and enables us to show
that Sk and Sl are not equivalent for distinct positive integers k and l . For a similar
result, we refer to Suciu’s paper [1985] where it is shown that there are infinitely
many ribbon 2-knots in S4 with knot group the trefoil knot group.

The paper is organized as follows. In Section 2, we review torus-covering links
and explain our example Sk , and we review triple linking numbers of torus-covering
links. In Section 3, we discuss the notion of a 2-dimensional braid over a surface
link. In Section 4, we observe that a 2-dimensional braid of degree m over a surface
link is presented by a finite graph called an m-chart on a surface diagram, and
that 2-dimensional braids of degree m are equivalent if their surface diagrams with
m-charts are related by local moves called Roseman moves. In Section 5, we prove
Proposition 5.1. In Section 6, we calculate triple linking numbers of a certain
2-dimensional braid over Sk and prove Theorem 1.1.

2. Abelian T 2-links of rank two

The example Sk given in Theorem 1.1 is a surface link called a torus-covering
link. In this section, we review torus-covering T 2-links; see [Nakamura 2011] for
details. We briefly observe that Sk is an abelian surface link of rank two, and that
we cannot show that the link types of our examples are infinitely many by using a
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homological argument. Further, we review a formula for the triple linking numbers
of torus-covering links [Ito and Nakamura 2014].

2A. Torus-covering links. Let T be a standard torus in R4, the boundary of an
unknotted (standardly embedded) solid torus in R3 � f0g � R4.

Definition 2.1. A torus-covering T 2-link S is a surface link in the form of a 2-
dimensional braid over the standard torus T , i.e., S is a T 2-link in R4 such that S

is contained in a tubular neighborhood N.T / and �jS W S ! T is an unbranched
covering map, where � WN.T /! T is the natural projection.

Let S be a torus-covering T 2-link. Fix a base point x0D .x
0
0
;x00

0
/ of T DS1�S1.

Take two simple closed curves on T , mD@B2�fx00
0
g and l Dfx0

0
g�S1. Recall that

T is embedded as T D@.B2�S1/�R3�f0g�R4. Let us consider the intersections
S \ ��1.m/ � B2 �m and S \ ��1.l/ � B2 � l . They are regarded as closed
m-braids in the 3-dimensional solid tori, where m is the degree of the covering map
�jS WS!T . Cutting open the solid tori along the 2-disk ��1.x0/DB2�fx0g, we
obtain two m-braids a and b. The assumption that �jS is an unbranched covering
implies that a and b commute. We call the commutative braids .a; b/ the basis
braids of S . Conversely, starting from a pair of commutative m-braids .a; b/, we
can uniquely construct a torus-covering T 2-link with basis braids .a; b/ [Nakamura
2011, Lemma 2.8]. For commutative m-braids a and b, we denote by Sm.a; b/ the
torus-covering T 2-link with basis braids .a; b/.

2B. Our abelian T 2-links of rank two. We can verify that SkDSkC1.Xk ; �
2/ is

an abelian surface link as follows. The link group of a torus-covering link Sm.a; b/

is a quotient group of the classical link group of the closure of a such that the
abelianization is a free abelian group [Nakamura 2011, Proposition 3.1]. Since the
link group of the closure of Xk , a Hopf link, is a free abelian group of rank two, so
is the link group of Sk .

We remark that a homological argument cannot show that our examples are
infinitely many, but only that there are two link types. Let us consider the one-point
compactification of R4, and regard Sk to be in the Euclidean 4-sphere S4. Recall
that we take the first and second components F1 and F2 of Sk to be determined from
the first and second strands of Xk , respectively. By Alexander’s duality, we see that
H2.S

4 �F1IZ/ŠH1.F1IZ/, whence ŒF2�D �C k� 2H2.S
4 �F1IZ/, where

.�; �/ is a preferred basis of H1.F1IZ/ŠH2.S
4�F1IZ/ represented by a meridian

and a preferred longitude of F1. Similarly, let us denote by F 0
1

and F 0
2

the first and
second components of Sl . Then we can see that ŒF 0

2
�D�0C l�0 2H2.S

4�F 0
1
IZ/,

where .�0; �0/ is a preferred basis of H1.F
0
1
IZ/ŠH2.S

4�F 0
1
IZ/ represented by

a meridian and a preferred longitude of F 0
1
. Now, the standardly embedded tori F1

and F 0
1

are related by an orientation-preserving self-diffeomorphism of S4 if and
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only if �
�0

�0

�
DA

�
�

�

�
for

AD

�
˛ ˇ

ı 

�
2GLC.2IZ/

such that ˛ C ˇ C  C ı � 0 .mod 2/ [Montesinos 1983], which implies that
ŒF2�D ŒF

0
2
� 2H2.S

4�F1IZ/ if and only if k � l .mod 2/ (see [Iwase 1988]).

Remark 2.2. The abelian surface link S1, i.e., S2.�
2
1
; �2

1
/, is the twisted Hopf

2-link we will mention in the proof of Proposition 5.1; see also [Carter et al. 2001].

Remark 2.3. It is known [Kawauchi 1996, Theorem 6.3.1–Exercise 6.3.3] that for
classical links, the rank of an abelian link is at most two, and for abelian links of
rank two, there are exactly two link types: a positive and a negative Hopf link.

Remark 2.4. Set Tm D SkC1.Xk ;X
m
k
/ for an integer m. It is known ([Boyle

1993], see also [Iwase 1988; Nakamura 2011]) that Tm and Tn are equivalent for
m� n .mod 2/. Fix the first component of Tm in the form of the standard torus. By
a homological argument as above, we see that Tm cannot be taken to Tn for n¤m by
an orientation-preserving self-diffeomorphism of R4 relative to the first component.

2C. Triple linking numbers of torus-covering links. The triple linking number of
a surface link S is defined as follows [Carter et al. 2003, Definition 9.1]. For the
i-th, j -th, and k-th components Fi ;Fj ;Fk of S with i ¤ j and j ¤ k, the triple
linking number tlki;j ;k.S/ of the i -th, j -th, and k-th components of S is the total
number of positive triple points minus the total number of negative triple points
of a surface diagram of S such that the top, middle, and bottom sheet are from
Fi , Fj , and Fk , respectively. The triple linking number is a link bordism invariant
[Carter et al. 2004; 2001; Sanderson 1987; 1993]; for other properties, see [Carter
et al. 2003; 2004]. Triple linking numbers are useful for showing the distinctness
of surface links with at least three components [Ito and Nakamura 2014; Nakamura
2012; 2014b].

From [Ito and Nakamura 2014], we have a formula for the triple linking numbers
of a torus-covering T 2-link Sm.a; b/. Let Ai be the components of the closure
of a which are from the i-th component of Sm.a; b/. Take one of the connected
components of Ai and denote it by A1

i . We define by the classical linking number

lka
i;j D lk.A1

i ;Aj /;

where we regard A1
i and Aj as oriented links in R3. The notation lkb

i;j for the other
basis braid is defined similarly. Note that lka

i;j does not depend on the choice of
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a connected component A1
i [Ito and Nakamura 2014, Remark 5.5], and note that

lka
i;j is not always symmetric, i.e., lka

i;j is not always equal to lka
j ;i .

Now, for a torus-covering T 2-link, the triple linking number of the i-th, j -th,
and k-th components is given by

(2-1) tlki;j ;k.Sm.a; b//D� lka
j ;i lkb

j ;k C lka
j ;k lkb

j ;i ;

where i ¤ k and j ¤ k [Ito and Nakamura 2014, Theorem 5.4 and Remark 5.7].

3. Two-dimensional braids over a surface link

A 2-dimensional braid, also called a simple braided surface, over a 2-disk is anal-
ogous to a classical braid [Kamada 1992; 2002; Rudolph 1983]. We can modify
this notion to a 2-dimensional braid over a closed surface [Nakamura 2011], and
further to a 2-dimensional braid over a surface link [Carter et al. 2004, Section
2.4.2; Nakamura 2014a]. In this section, we review this notion of a 2-dimensional
braid over a surface link.

3A. Two-dimensional braids over a surface link. We use 2-dimensional braids
without branch points over a closed surface, so our definition here is restricted to
such surfaces; see [Nakamura 2011; 2014a] for the general definition.

Let † be a closed surface, let B2 be a 2-disk, and let m be a positive integer.

Definition 3.1. A closed surface z† embedded in B2 �† is called a 2-dimensional
braid over † of degree m if the restriction �jz† W

z†!† is an unbranched covering
map of degree m, where � W B2 �†!† is the natural projection.

Take a base point x0 of †. Two 2-dimensional braids over † of degree m are
equivalent if there is a fiber-preserving ambient isotopy of B2 �† rel ��1.x0/

which carries one to the other.

A surface link is said to be of type † when it is the image of an embedding of †.
Let S be a surface link of type†, and let N.S/ be a tubular neighborhood of S in R4.

Definition 3.2. A 2-dimensional braid zS over S is the image of a 2-dimensional
braid over † in B2 �† by an embedding B2 �†! R4 which identifies N.S/

with B2�† as a B2-bundle over a surface. We define the degree of zS as that of S .
Two 2-dimensional braids zS and zS 0 over surface links S and S 0 are equivalent

if there is an ambient isotopy of R4 carrying zS to zS 0 and N.S/ D B2 � S to
N.S 0/D B2 �S 0 as a B2-bundle over a surface.

Equivalent 2-dimensional braids over surface links are also equivalent as surface
links. A 2-dimensional braid zS over S is a specific satellite with companion S ; see
[Carter et al. 2004, Section 2.4.2] as well as [Lickorish 1997, Chapter 1].
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a double point curve a triple point a branch point

Figure 1. The singularity of a surface diagram.

3B. Standard 2-dimensional braids. In this section, we define the standard 2-
dimensional braid over a surface link S . Using this notion, we will explain in the
next section that a 2-dimensional braid is presented by a finite graph called an
m-chart on a surface diagram D of S . The standard 2-dimensional braid over S is
the 2-dimensional braid presented by an empty m-chart on D [Nakamura 2014a].

We first review surface diagrams of a surface link S ; see [Carter et al. 2004]. For
a projection p W R4! R3, the closure of the self-intersection set of p.S/ is called
the singularity set. Let p be a generic projection, meaning that the singularity set of
the image p.S/ consists of double points, isolated triple points, and isolated branch
points; see Figure 1. The closure of the singularity set forms a union of immersed
arcs and loops, called double point curves. Triple points form the intersection
points of the double point curves, and branch points form the end points. A surface
diagram of S is the image p.S/ equipped with over/under information along each
double point curve with respect to the projection direction.

We define the 2m-braid z�1 obtained from a 2-braid �1 as follows. More generally,
we construct an mn-braid Qb from an n-braid b, needed for the proof of Theorem 1.1.
Let Qm be m interior points of B2. For a standard generator �i of an n-braid, let z�i

be the mn-braid obtained from �i in the form of a Qm-bundle over �i by splitting
each strand into a bundle of m parallel strands with a negative half twist at the
initial points of each bundle; see Figure 2. The map taking �i to z�i determines a
homomorphism from the n-braid group to the mn-braid group. For an n-braid b,
let Qb denote the image of b by this homomorphism.

Definition 3.3. Let S be a surface link. A surface diagram D of S consists of
the following local parts: around (1) a regular point, i.e., a nonsingular point,

Figure 2. The 2m-braid z�1.
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(2) a double point curve, (3) a triple point, and (4) a branch point. The diagram
around a regular point (1) consists of an embedded 2-disk B2 with no singularities,
and the diagram around a double-point curve (2) can be expressed as the product of
a 2-braid �1 and an interval I .

We define the standard 2-dimensional braid over S locally for such local parts of
D as follows: for (1), it is m parallel copies of B2, and for (2), it is the product of the
2m-braid z�1 and I . Then, for the other cases (3) and (4), the standard 2-dimensional
braid is naturally defined [Nakamura 2014a, Definition 5.1 and Proposition 5.2].

4. Chart presentation of 2-dimensional braids and Roseman moves

In this section, we recall that a 2-dimensional braid of degree m over a surface link
S is presented by a finite graph called an m-chart on a surface diagram D of S . For
two 2-dimensional braids of degree m, they are equivalent if their surface diagrams
with m-charts are related by a finite sequence of local moves called Roseman moves.
See [Nakamura 2014a].

4A. Chart presentation of 2-dimensional braids over a surface link. The graphi-
cal method called an m-chart on a 2-disk was introduced to present a simple surface
braid which is a 2-dimensional braid over a 2-disk with trivial boundary condition
[Kamada 1992; 2002]. By regarding an m-chart on a 2-disk as drawn on a 2-sphere
S2, it presents a 2-dimensional braid over S2 [Kamada 1992; 2002; Nakamura
2011]. This notion can be modified to an m-chart on a closed surface, and further
to an m-chart on a surface diagram D of a surface link S [Nakamura 2011; 2014a].
A 2-dimensional braid over S is presented by an m-chart on D [Nakamura 2014a].

In this paper, we treat 2-charts with vertices of degree 2. We now review the
graphical form of an m-chart of a 2-dimensional braid over a surface link. See
[Nakamura 2014a] for details.

Let zS be a 2-dimensional braid over a surface link S . Let D be a surface diagram
of S by a projection p WR4!R3 which is generic with respect to both S and zS . We
can assume that the singularity set of the surface diagram p. zS/ is the union of the
singularity set of the diagram of the standard 2-dimensional braid over S and some
finite graph � [Nakamura 2014a, Theorem 5.5]. Project � to D by the projection
p.N.S//D B2 �D!D. Thus we obtain a finite graph on the surface diagram
D. An m-chart on a surface diagram D is such a finite graph equipped with certain
additional information of orientations and labels assigned to the edges, where m is
the degree of the 2-dimensional braid. Owing to the additional information, we can
regain the original 2-dimensional braid from the m-chart on D [Nakamura 2014a]
(see also [Kamada 2002]).

We can define an m-chart on D in graphical terms, where the labels of edges are
from 1 to m� 1; see [Nakamura 2014a, Definitions 5.3 and 5.4]. Around a double
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i

m� i

Figure 3. An m-chart around a double point curve. Here i is one
of 1; : : : ;m�1. For simplicity, we omit the over/under information
of each sheet.

point curve, an m-chart is as in Figure 3, with a vertex of degree 2. A 2-dimensional
braid over S is presented by an m-chart on D [Nakamura 2014a, Theorem 5.5].

4B. Roseman moves. Roseman moves are local moves of surface diagrams, as
illustrated in Figure 4. It is known [Roseman 1998] that two surface links are
equivalent if and only if their surface diagrams are related by a finite sequence
of Roseman moves and ambient isotopies of the diagrams in R3. In [Nakamura
2014a], we introduced the notion of Roseman moves for surface diagrams with
m-charts.

An m-chart is said to be empty if it is an empty graph.

Definition 4.1. We define Roseman moves for surface diagrams with m-charts by
the local moves as shown in Figures 4 and 5, where we regard the diagrams in
Figure 4 as equipped with empty m-charts.

l l
l l

l l
$

Figure 4. Roseman moves. We omit the over/under information
of each sheet.
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xy xy xy xy xy xy

i

i

m�i

m�i

i

i

m�i

i

i m�i

i i

m�i
i

Figure 5. Roseman moves for surface diagrams with m-charts,
where i 2 f1; : : : ;m�1g. We omit the over/under information of
each sheet, and orientations and labels of edges of m-charts.

Roseman moves for surface diagrams with m-charts, as illustrated in Figures 4
and 5, are well-defined. That is, for each pair of Roseman moves, the m-charts on
the indicated diagrams present equivalent 2-dimensional braids [Nakamura 2014a,
Theorem 6.2].

5. Triple linking numbers of standard 2-dimensional braids

Recall the triple linking numbers from Section 2C. We will say that a surface link
S has trivial triple linking if every triple linking number of S is zero or S consists
of less than three components.

Proposition 5.1. For the standard 2-dimensional braid zS over a surface link S , if
S has trivial triple linking, then so does zS .

Proof. Assume that S has trivial triple linking. Recall from [Carter et al. 2001] that
the link bordism class of a surface link is determined from triple linking numbers
and double linking numbers (another kind of link bordism invariant), and that a
surface link with trivial triple linking is link bordant to a split union of a finite
number of trivial spheres and surface links called twisted Hopf 2-links, which has
a surface diagram with no triple points (see also Remark 2.2). Hence, S is link
bordant to a surface link S 0 whose surface diagram has no triple points. By the
well-definedness of Roseman moves, zS is link bordant to the standard 2-dimensional
braid zS 0 over S 0. Since the surface diagram of a standard 2-dimensional braid has
triple points only around triple points of the companion surface [Nakamura 2014a],
the surface diagram of zS 0 has no triple points. Thus zS is link bordant to a surface
link with no triple points, which implies that zS has trivial triple linking. �
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6. Proof of Theorem 1.1

In this section, we consider a 2-dimensional braid zS over a surface link S presented
by a 2-chart consisting of a finite number of loops on a surface diagram of S . Here,
a loop is a union of edges connected by vertices of degree 2 as in Figure 3. For our
2-charts, the edges are labeled by 1 and the orientations are coherent around a vertex
of degree 2, so we can ignore the label information, and we regard the 2-chart on a
surface diagram of S as oriented loops. Further, we consider that the loops are on S

itself. By the well-definedness of Roseman moves, a 2-dimensional braid presented
by a 2-chart � on S is equivalent to the 2-dimensional braid presented by a 2-chart
f .�/ on f .S/ for an orientation-preserving self-diffeomorphism f of R4.

For a component F of a torus-covering T 2-link, we take a preferred basis
of H1.F IZ/ represented by a pair of simple closed curves .�; �/ such that �
is a connected component of F \ ��1.m/, and � of F \ ��1.l/. Recall that
� W N.T /! T is the natural projection for a standard torus T , and m and l are
simple closed curves on T given in Section 2A. We will use the same notation
.�; �/ for the preferred basis, and we call simple closed curves in the homology
classes � and � meridians and preferred longitudes of F , respectively. For a 2-chart
� on F consisting of loops, we can assume that the intersections of the chart loops
of � with a meridian � and a preferred longitude � of F are transverse. We assign
each intersection point the signC1 or �1 according to whether it presents a positive
or negative crossing, and we denote by I.�; �/ and I.�; �/ the sum of the signs
of the intersection points of � with � and �. Note that we can assume that the
chart loops are parallel by using local moves of charts called CI-moves of type
(1) [Kamada 2002], and I.�; �/ and I.�; �/ are well-defined for the homology
classes � and �.

For the torus-covering T 2-link S , we take the first and second components of
S as those determined from the first and second strands of each basis braid of S ,
respectively. Similarly, for the 2-dimensional braid zS , we take the i -th component of
zS as the one determined from the i -th strand of each basis braid of zS for iD1; 2; 3; 4.

We first calculate the triple linking numbers of a 2-dimensional braid of degree
2 over Sk as in Theorem 1.1.

Lemma 6.1. For the torus-covering T 2-link Sk for a positive integer k, let us con-
sider a 2-dimensional braid zSk of degree 2 over Sk , which is presented by a 2-chart
� consisting of loops on Sk so that it consists of 4 components. Then tlki;j ;3. zSk/D

tlki;j ;4. zSk/ for .i; j /D .1; 2/ or .2; 1/, and tlki;j ;1. zSk/D tlki;j ;2. zSk/ for .i; j /D
.3; 4/ or .4; 3/.

Proof. The 2-dimensional braid zSk is also a torus-covering T 2-link. We denote
by .a; b/ the basis braids presenting zSk . Since lkc

j ;3 D lkc
j ;4 for j D 2; 1, and

lkc
j ;1 D lkc

j ;2 for j D 4; 3 (c D a; b), by (2-1) we have the result. �
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Lemma 6.2. For the torus-covering T 2-link Sk , denote by F1 and F2 the first
and second components of Sk . Let .�i ; �i/ be a preferred basis of H1.Fi IZ/

for i D 1; 2. Consider a 2-dimensional braid zSk , as in Lemma 6.1, such that
I.�i ; �/ D 2pi and I.�i ; �/ D 2qi for integers pi and qi for i D 1; 2. Then we
have tlk1;2;3. zSk/D�kp1C q1 and tlk2;3;4. zSk/D�p2C q2.

Note that zSk consists of 4 components if and only if I.�i ; �/ and I.�i ; �/

are even for i D 1; 2, since these conditions are equivalent to the condition that
zSk \�

�1
i .�/ and zSk \�

�1
i .�/ are closed pure braids, where �i WN.Fi/! Fi is

the natural projection.

Proof. The 2-dimensional braid zSk is also a torus-covering T 2-link. We denote
by .a; b/ the basis braids presenting zSk . We use the notation given in Section 3B,
taking mD 2 and nD kC 1. Then, lka

2;1 is determined from the linking number
coming from the linking consisting of I.�1; �/ crossings and zXk . That is,

lka
2;1 D p1C lk

zXk

2;1
;

and similarly,

lkb
2;1 D q1C lkz�

2

2;1 :

By definition, for a braid c, the braid Qc has a negative (respectively positive)
half twist at the place which is a fiber of a point of each arc forming a positive
(respectively negative) crossing of c. Hence,

lk
zXk

2;1
D� lkXk

1;2

lkz�
2

2;1 D� lk�2

1;2;

from which it follows that

lka
2;1 D p1� lkXk

1;2

lkb
2;1 D q1� lk�2

1;2 :

Further, lka
2;3D lkXk

1;2
and lkb

2;3D lk�2

1;2. Thus tlk1;2;3. zSk/D�p1lk�2

1;2Cq1lkXk

1;2

by (2-1). Since lkXk

1;2
is the linking number of the closure of Xk , lkXk

1;2
D 1. Since

F1 and F2 are constructed by one strand and k strands of �2, respectively, we have
lk�2

1;2 D k. Thus tlk1;2;3. zSk/D�kp1C q1.
By the same argument, we have tlk2;3;4. zSk/ D �p2 lk�2

2;1Cq2 lkXk

2;1
by (2-1),

and lkXk

2;1
D 1. Since �2 is a pure braid, we see that lk�2

2;1D 1. Thus tlk2;3;4. zSk/D

�p2C q2. �



246 INASA NAKAMURA

Proof of Theorem 1.1. Let k and l be positive integers. We denote by F1 and F2

the first and second components of Sk , and by F 0
1

and F 0
2

the first and second
components of Sl .

First we show that for k ¤ l , there does not exist an orientation-preserving
self-diffeomorphism of R4 carrying F1 to F 0

1
and F2 to F 0

2
. Assume that there is

such a diffeomorphism f . Let us consider a 2-dimensional braid over Sk , denoted
by zS1

k
, which is presented by a 2-chart � on Sk such that � \F1 consists of loops

with I.�1; �/ D 2p and I.�1; �/ D 2q, where .�1; �1/ is a preferred basis of
H1.F1IZ/, and � \F2 D∅. Note that zS1

k
consists of 4 components.

Since f is an orientation-preserving diffeomorphism which carries F1 to F 0
1
,

f jF1
is an orientation-preserving diffeomorphism from a torus F1 to a torus F 0

1
.

Let

AD

�
˛ ˇ

 ı

�
2 GLC.2;Z/

be a matrix determined by

(6-1)
�
�0

1

�0
1

�
DA

�
f�.�1/

f�.�1/

�
;

where .�0
1
; �0

1
/ is a preferred basis of H1.F

0
1
IZ/.

Put � 0Df .�/. By f , zS1
k

is taken to a 2-dimensional braid zS1
l

over Sl , presented
by a 2-chart � 0 on Sl such that � 0 \F 0

1
consists of loops and � 0 \F 0

2
D ∅. We

see that I.f�.�1/; �
0/D I.�1; �/D 2p, and I.f�.�1/; �

0/D I.�1; �/D 2q. Set
p0 D I.�0

1
; � 0/=2 and q0 D I.�0

1
; � 0/=2; note that p0 and q0 are integers, since zS1

l

consists of 4 components. It follows from (6-1) that

(6-2)
�

p0

q0

�
DA

�
p

q

�
:

Since the triple linking numbers tlk1;2;3 for zS1
k

and zS1
l

are the same, Lemma 6.2
implies that

(6-3) �kpC q D�lp0C q0:

Hence, it follows from (6-2) that kp � q D .˛l �  /p C .ˇl � ı/q: Since this
equation holds true for any integers p and q,

(6-4)
�

k

�1

�
DAT

�
l

�1

�
;

where AT is the transposed matrix of A.
Next we consider another 2-dimensional braid over Sk , denoted by zS2

k
, presented

by a 2-chart z� on Sk such that z�\F1D∅ and z�\F2 consists of loops on F2, and
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moreover that z� \F2 is the preimage by the projection N.T /! T of a 2-chart �
on the standard torus T consisting of loops with I.m; �/D 2p and I.l ; �/D 2q,
where .m; l/ is a preferred basis of T . Note that I.�2; z�/D2kp and I.�2; z�/D2q,
where .�2; �2/ is a preferred basis of H1.F2IZ/.

Let g be an orientation-preserving diffeomorphism of R4 which carries F2

sufficiently close to F1 and .gjFi
/�D id� WH1.Fi IZ/!g�.H1.Fi/IZ/ for iD1; 2.

Further, we assume that T is sufficiently close to F1. Then�
m0

l 0

�
DA

�
.f ıg/�.m/

.f ıg/�.l/

�
;

where .m0; l 0/ is a preferred basis of T 0 D .f ıg/.T /. Put � 0 D .f ıg/.�/. Then
we have

(6-5)
�

I.m0; � 0/

I.l 0; � 0/

�
DA

�
I.m; �/

I.l ; �/

�
:

Put S 0D .f ıg/.Sk/. The surface link S 0 is in the form of a 2-dimensional braid
over T 0 of degree kC1. For the natural projection � 0 WN.T 0/D .f ıg/.N.T //!
T 0, a meridian m0, and a preferred longitude l 0 of T 0, let us consider S 0\� 0�1.m0/

and S 0\� 0�1.l 0/, which are closed .kC 1/-braids in the 3-dimensional solid tori.
In the same way as obtaining basis braids, we obtain .kC1/-braids from the closed
braids by cutting open the solid tori along the 2-disk � 0�1.x0

0
/, where x0

0
is the

intersection point of m0 and l 0. We denote the braids by a and b. Note that here T 0

is a standard torus, and hence .a; b/ are basis braids, but we can apply the same
argument if T 0 is not a standard torus. Since S 0 consists of two components, a and
b satisfy one of the following three cases.

Case 1: The closure of a is a link consisting of two components, and b is a pure
braid.

Case 2: Each of the closures of a and b is a link consisting of two components.

Case 3: The braid a is a pure braid, and the closure of b is a link consisting of
two components.

Set z� 0D .f ıg/.z�/. By f ıg, zS2
k

is taken to a 2-dimensional braid zS 0 presented
by a 2-chart z� 0 on S 0. We denote by F 0 the component .f ıg/.F2/ of S 0, and we
denote by .�0; �0/ a preferred basis of H1.F

0IZ/. Since z� \F2 is in the form of
the preimage by N.T /! T of the 2-chart � on T , z� 0\F 0 is in the form of the
preimage by N.T 0/! T 0 of the 2-chart � 0 on T 0. Hence, I.�0; z� 0/D i �I.m0; � 0/
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and I.�0; z� 0/D j � I.l 0; � 0/ for .i; j /D .k; 1/ for Case 1, .k; k/ for Case 2, and
.1; k/ for Case 3. Thus

(6-6)
�

I.�0; z� 0/

I.�0; z� 0/

�
D B

�
I.m0; � 0/

I.l 0; � 0/

�
;

where B is a diagonal matrix diag.i; j / such that .i; j /D .k; 1/ for Case 1, .k; k/
for Case 2, and .1; k/ for Case 3.

Put hD f ı .f ıg/�1. Then h is an orientation-preserving self-diffeomorphism
of R4 which carries S 0 to Sl . In particular, h carries F 0 to the second component
F 0

2
of Sl . Let

C D

�
˛0 ˇ0

 0 ı0

�
2 GLC.2;Z/

be a matrix determined by �
�0

2

�0
2

�
D C

�
h�.�

0/

h�.�
0/

�
;

where .�0
2
; �0

2
/ is a preferred basis of H1.F

0
2
IZ/. Put � 00 D h.z� 0/. Then

(6-7)
�

I.�0
2
; � 00/

I.�0
2
; � 00/

�
D C

�
I.�0; z� 0/

I.�0; z� 0/

�
:

Set p00 D I.�0
2
; � 00/=2 and q00 D I.�0

2
; � 00/=2, which are both integers. Since

I.m; �/D 2p and I.l ; �/D 2q, together with (6-5)–(6-7), we have

(6-8)
�

p00

q00

�
D .CBA/

�
p

q

�
:

By the composite diffeomorphism hıf ıgD f , zS2
k

is taken to a 2-dimensional
braid over Sl , which will be denoted by zS2

l
. Since tlk2;3;4 is the same for zS2

k
and

zS2
l

, together with I.�2; z�/D 2kp and I.�2; z�/D 2q, Lemma 6.2 implies that

(6-9) �kpC q D�p00C q00:

Since this equation holds true for any integers p and q, it follows from (6-8) that�
k

�1

�
D .CBA/T

�
1

�1

�
:

Thus, together with (6-4),

BT C T

�
1

�1

�
D

 
l

�1

!
;
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whence i.˛0�  0/D l and j .ˇ0� ı0/D�1. Let us assume k > l > 0. For Cases
1 and 2, k.˛0 �  0/ D l from the first equation. This contradicts the assumption
that k > l > 0. For Case 3, the second equation implies that k.ı0�ˇ0/D 1, which
contradicts the assumption that k > 1. Thus, for k ¤ l , there does not exist an
orientation-preserving self-diffeomorphism of R4 which carries F1 to F 0

1
and F2

to F 0
2
.

Next we show that for k ¤ l , there does not exist an orientation-preserving
self-diffeomorphism of R4 which carries F1 to F 0

2
and F2 to F 0

1
. We discuss a

similar argument as in the former case of a diffeomorphism which carries F1 to F 0
1

and F2 to F 0
2
, using the same notation except where noted.

Assume that there is such a diffeomorphism f , and consider � as before. Then,
since tlk1;2;3 for zS1

k
and tlk3;4;1 D tlk4;3;2 (see Lemma 6.1) for zS1

l
are the same,

and since tlk4;3;2 D� tlk2;3;4 [Carter et al. 2003], Lemma 6.2 implies that instead
of (6-3) we have

(6-10) �kpC q D p0� q0;

where p0 D I.�0
2
; � 0/=2 and q0 D I.�0

2
; � 0/=2. Hence instead of (6-4) we have

(6-11)
�

k

�1

�
DAT

�
�1

1

�
:

Next we will consider another 2-dimensional braid zS2
k

over Sk , presented by the
2-chart z� as in the former case. Then, by the same argument, we have (6-8), where
p00 D I.�0

1
; � 00/=2 and q00 D I.�0

1
; � 00/=2.

By the composite diffeomorphism hıf ıg, zS2
k

is carried to a 2-dimensional braid
over Sl , which will be denoted by zS2

l
. Since tlk2;3;4 for zS2

k
and tlk3;1;2 D tlk3;2;1

(see Lemma 6.1) for zS2
l

are the same, and since tlk3;2;1 D� tlk1;2;3 [Carter et al.
2003], together with I.�2; z�/D 2kp and I.�2; z�/D 2q, Lemma 6.2 implies that

(6-12) �kpC q D lp00� q00:

Since this equation holds true for any integers p and q, it follows from (6-8) that�
k

�1

�
D .CBA/T

�
�l

1

�
:

Thus, together with (6-11),

BT C T

�
�l

1

�
D

�
�1

1

�
;

whence i.�l˛0C  0/D�1 and j .�lˇ0C ı0/D 1. Let us assume k > l > 0. Since
at least one of i and j is k for Cases 1, 2, and 3, these equations contradict the
assumption that k>1. Thus, for k¤ l , there does not exist an orientation-preserving
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self-diffeomorphism of R4 carrying F1 to F 0
2

and F2 to F 0
1
. Thus Sk and Sl are

not equivalent for positive integers k ¤ l . �
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