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DIFFERENTIAL HARNACK AND
LOGARITHMIC SOBOLEV INEQUALITIES

ALONG RICCI-HARMONIC MAP FLOW

ABIMBOLA ABOLARINWA

This paper introduces a new family of entropy functionals which is proved
to be monotonically nondecreasing along the Ricci-harmonic map heat flow.
Some of the consequences of the monotonicity are combined to derive gradi-
ent estimates and Harnack inequalities for all positive solutions to the asso-
ciated conjugate heat equation. We relate the entropy monotonicity and the
ultracontractivity property of the heat semigroup, and as a result we obtain
the equivalence of logarithmic Sobolev inequalities, conjugate heat kernel
upper bounds and uniform Sobolev inequalities under Ricci-harmonic map
heat flow.

1. Introduction

Let (M, g) and (N , ξ) be compact Riemannian manifolds (without boundary) of di-
mensions m and n respectively. Let a smooth map u :M→N be a critical point of the
Dirichlet energy integral E(u)=

∫
M |∇u|2 dµg, where N is isometrically embedded

in Rd , d ≥ n, by the Nash embedding theorem. The configuration (g(x, t), u(x, t)),
t ∈ [0, T ), of a one-parameter family of Riemannian metrics g(x, t) and a family
of smooth maps u(x, t) is defined to be a Ricci-harmonic map flow if it satisfies
the coupled system of nonlinear parabolic equations denoted by (RH)α

(1-1)


∂

∂t
g(x, t)=−2 Rc(x, t)+ 2α∇u(x, t)⊗∇u(x, t),

∂

∂t
u(x, t)= τgu(x, t),

where Rc(x, t) is the Ricci curvature tensor for the metric g, α(t) ≡ α > 0 is a
time-dependent coupling constant and τgu is the intrinsic Laplacian of u which
denotes the tension field of the map u. The system (1-1) was first studied by B. List
[2008] in a special case, N ⊆ R and α = 2, where the flow was modified by the
Lie derivative of g with respect to a gradient vector field to give a gradient flow

MSC2010: 35J05, 53C44, 58J35, 58J60.
Keywords: Ricci-harmonic map heat flow, monotonicity formula, Harnack inequalities,

ultracontractivity, heat semigroup, logarithmic Sobolev inequalities.
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of an energy functional whose stationary points are solutions to the static Einstein
vacuum equations arising in general relativity. This has since been generalised by
R. Müller [2012] to the general case N ↪→ Rd , for sufficiently large d. Precisely,
the system couples together the Ricci flow of Hamilton [1982] and the heat flow
for harmonic maps of Eells and Sampson [1964]. The system (RH)α is closer to
the former in behaviours, such as in existence and singularities, though may be less
singular than both. Hence, the analysis of the flow is usually done along the line
of Ricci flow and for this, Perelman’s works [2002; 2003b; 2003a] on Ricci flow
are very applicable to the theory and applications of the Ricci-harmonic map flow.

In this paper we study the behaviour of all positive solutions to the associated
conjugate heat equation along the Ricci-harmonic map flow. Let h, H :M×[0, T )→
(0,∞) satisfy(

∂

∂t
−1g

)
h = 0 and

(
−
∂

∂t
−1g + R−α|∇u|2g

)
H = 0,

with∫ T

0

∫
M

(
∂

∂t
−1g

)
h H dµg dt =

∫ T

0

∫
M

h
(
−
∂

∂t
−1g + R−α|∇u|2g

)
H dµg dt,

where 1g is the usual Laplace–Beltrami operator and �∗ := −∂/∂t −1g + R−
α|∇u|2g is the standard conjugate to the heat operator � := ∂/∂t −1g. We say h
and H are respectively solutions to the heat equation and conjugate heat equation.
The main idea here is to solve the Ricci-harmonic map flow forward in time and
solve the conjugate heat equation backward in time. Fixing the coordinate (y, s),
H = H(x, t; y, s) will be called the conjugate heat kernel (the positive minimal
solution) if it tends to a δ-function as t→ T .

Our main results in the first part of this paper are Perelman’s differential Harnack
estimates for f ∈ C∞(M ×[0, T )) satisfying H(x, τ ; y, s)= (4πτ)−m/2e− f (x,τ ),
τ = T − t ,

(1-2) −
d
dt

f (γ (τ ), τ )≤ 1
2

(
|γ ′(τ )|2+ Sg(γ (τ ), τ )−

m
2τ

)
,

and Li–Yau Harnack estimates for all positive solutions to the conjugate heat
equation

(1-3)
H(x2, t2)
H(x1, t1)

≤

(
τ1

τ2

)m/4

exp
(

1
2

∫ t2

t1
(|γ ′(t)|2+ Sg(γ (t), t) dt

)
,

where Sg= Rg−α|∇u|2g. (The proofs of (1-2) and (1-3) are delayed until Section 4).
Both results stated above are consequences of a monotonicity formula for a new
entropy functional Wα,ε introduced in Section 3, where we obtain the Harnack
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inequality for 0< ε2
≤ 4π ,

(1-4) ε2τ

4π
(21 f − |∇ f |2+ Sg)+ f − mε2

4π
≤ 0

for all time t and prove that

(1-5) lim
τ→0

∫
M

ε2τ

4π
(21 f − |∇ f |2+ Sg)+ f − mε2

4π
h H dµg −→ 0,

with the condition that ε2
→ 4π as t→ T . Monotonicity formulas are generally

useful in controlling solutions of evolution equations. This entropy is also intimately
related to the logarithmic Sobolev inequality of Gross [1975]. Perelman used this
property to obtain upper bounds for the fundamental solution to the adjoint heat
equation via his reduced length. This leads to the proof of the noncollapsing theorem
on Riemannian manifolds and, consequently, to the completion of R. Hamilton’s
program on the Poincaré conjecture. See [Perelman 2002; 2003b; 2003a; Cao et al.
2003]. Among several examples, Perelman’s entropy and the gradient estimates of
Li and Yau [1986] are important ones that show close relations between entropy
monotonicity and the gradient estimate for the heat equation (forward or backward
in time). Lei Ni [2004] has also considered a case for the linear heat equation
on a static manifold with nonnegative Ricci curvature. We notice that coupling
a heat-type equation with geometric flow began with [Hamilton 1993] and it has
since become a very active research area and has led to numerous physical and
geometric applications; for examples, see [Bǎiles,teanu et al. 2010; Bǎiles,teanu and
Tran 2013; Cao and Zhang 2011; Kuang and Zhang 2008; List 2008; Müller 2012;
Ni 2006; Zhang 2007] and the references therein.

Another important application of Perelman’s W-entropy monotonicity is in the
derivation of uniform Sobolev inequalities by Q. Zhang [2007]; see also [Hsu 2008;
Ye 2007]. In the second part of this paper, we relate the entropy monotonicity and
the ultracontractivity property of the heat semigroup, and as a result we establish the
equivalence of logarithmic Sobolev inequalities, conjugate heat kernel upper bounds
and uniform Sobolev inequalities under Ricci-harmonic map heat flow. Precisely,
let A0 and B0 be finite positive constants depending only on m, g0, the lower bound
for the Ricci curvature and the injectivity radius of M . For any v ∈ W 1,2(M, g0)

such that

(1-6) ‖v‖2m/(m−2) ≤ A0‖∇v‖2+ B0‖v‖2,

where m ≥ 3 and ‖ · ‖q =
(∫

M | · |
q dµg

)1/q , 1 ≤ p <∞, we have the following
result.

Theorem. Let M be a compact Riemannian manifold of dimension m ≥ 3. Let
the solution to the (RH)α-flow exist for all times t ∈ [0, T ). Assume the Sobolev
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embedding (1-6) holds; then for finite positive constants A and B depending on m,
A0, B0, the lower bound for Rg0 and T ,

(1-7)
(∫

M
v2m/(m−2) dµg

)(m−2)/2

≤ A
∫

M

(
|∇v|2+ 1

4 Sgv
2) dµg + B

∫
A
v2 dµg

and

(1-8)
∫

M
v2 ln v2 dµg(t)

≤ σ 2
∫

M
(4|∇v|2+ Sgv

2) dµg(t)−
m
2

ln σ 2
+ (t + σ 2)β1+

m
2

ln m A
2e
,

hold for each t ∈ [0, T ) and v ∈W 1,2(M) if λα= inf‖v‖2=1
∫

M(4|∇v|
2
+Sgv

2) dµg0 ;
that is, λα0 is the first eigenvalue of the operator −1+ 1

4 Sg.
Finally, for some constant C depending on m, t, T, A0, B0 and sup Sg( · , 0), the

estimate

(1-9) H(x, T ; y)≤ CT−m/2

for the positive solution to the conjugate heat equation associated to (RH)α holds.

The three results in the above theorem are essentially equivalent, and their proofs
occupy Sections 5 – 7. The approach to the proof here is Sobolev inequality (1-7)
=⇒ log-Sobolev inequality (1-8) =⇒ heat kernel upper bound (1-9) =⇒ Sobolev
inequality (1-7). Indeed, any of them can be derived from the other. The results of
the above form [Hsu 2008; Ye 2007; Zhang 2007] yield a long time κ-noncollapsing
estimate which generalises Perelman’s short time result [2002] along the Ricci flow.

We recall that the nonnegativity of the scalar curvature Rg is preserved along
Ricci flow [Chow and Knopf 2004], so the nonnegativity of Sg is also preserved
as long as (RH)α exists. Indeed, Sg evolves by a reaction-diffusion equation which
helps to visualise its behaviour up to singular time (we discuss this in the next
section). The condition Sg = Rg −α|∇u|2g ≥ 0 at the starting time t = 0 must now
be considered. The assumption is not necessary for the derivation of (1-7) since
additional geometric data are not usually required to derive a Sobolev inequality from
either a log-Sobolev inequality or the heat kernel bound. The assumption is required
for the condition that a certain eigenvalue λα for the initial metric is positive, which
is required to pass to (1-8). The class of manifold (M, g0) with λα0> 0 is a very
large one and significant from a geometric point of view. Moreover, if λα0> 0 for
Sg(0)>0 (i.e., Rg(0)>α(0)|∇u(0)|2) then A, B are independent of time and B=0.
Corollary 7.5 below presents corresponding versions of (1-7) and (1-8) in this case.

In the next section we discuss necessary background on Perelman–Müller entropy
monotonicity formulas for (RH)α.
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2. Background on entropy formulas for (RH)α-flow

Let (M, g) be a compact Riemannian manifold. For the metric g, any smooth
functions u ∈ C∞(M, N ), u(M) ⊆ N ↪→ Rn , f ∈ C∞(M) and constant α > 0,
Perelman and Müller’s energy functional [Müller 2012] is defined on the triple
(g, u, f ) by

(2-1) Fα(g, u, f ) :=
∫

M
(Rg + |∇ f |2g −α|∇u|2g)e

− f dµg,

which can also be written in two other ways,

Fα(g, u, f )=
∫

M
(Sg +1g f )e− f dµg

=

∫
M
(21g f − |∇ f |2g + Sg)e− f dµg,

since
∫

M 1(e
− f ) = 0 =

∫
M(−1 f + |∇ f |2g)e

− f dµg. For any diffeomorphism
φ : M→ M , we have Fα(φ∗g, φ∗u, φ∗ f )= Fα(g, u, f ). If (g, u) is a solution to
the system (1-1), Müller [2012] proved that the Fα-functional is nondecreasing
under the flow and showed that the system is equivalent (after pulling back with
a diffeomorphism generated by a vector field) to the gradient flow system for the
energy functional Fα, locally written as,

(2-2)



∂

∂t
gi j =−2Ri j + 2α∇i u⊗∇j u+ 2∇i∇j f,

∂

∂t
u = τgu−〈∇u,∇ f 〉,

∂

∂t
f =−R+α|∇u|2−1 f.

More precisely,

(2-3) d
dt

Fα(g, u, f )

= 2
∫

M

(
|Rc−α∇u⊗∇u+∇∇ f |2+α|τgu−〈∇u,∇ f 〉|2

)
e− f dµg ≥ 0.

An application of this is that Fα is constant if and only if (g, u) is a steady gradient
soliton.

Define

λα(g)= inf
{
Fα(g, u, f ) : f ∈ C∞(M),

∫
M

e− f dµg = 1
}
.

Then λα(g) is the first eigenvalue of the operator−41+Sg, where the nondecreasing
property of Fα implies λα(g) is nondecreasing and we have, by setting v = e− f/2,
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the corresponding normalised eigenvector,

−41v+ Sgv = λα(g)v.

Hence

λα(g, u)= inf
{∫

M
(4|∇v|2+ Sgv

2) dµg :

∫
M
v2 dµg = 1

}
.

Similar to the case of Hamilton’s Ricci flow, all geometric quantities associated
with the source manifold evolve along (RH)α. For instance, we consider those
quantities that are directly relevant at the present; the metric inverse, volume element,
Laplace–Beltrami operator and Sg evolve as follows:

∂

∂t
gi j
= 2Si j ,

∂

∂t
1g = 2Si j

∇i∇j − 2ατgu〈∇u,∇ · 〉,

∂

∂t
dµg =−Sg dµg,

∂

∂t
Sg =1Sg + 2|Si j |

2
+ 2α|τgu|2g,

where Si j = Rc−α∇u⊗∇u and gi j Si j = Sg. The nonnegativity of the curvature
operator and Sg are preserved during the flow; for example, the evolution of Sg =

Rg −α|∇u|2 is governed by the differential inequality

∂

∂t
Sg ≥1Sg +

2
m

S2
g,

since α ≥ 0 and |Si j |
2
≥ (1/m)S2

g . Suppose Sg0 ≥ ρ. We can use the maximum
principle by comparing the solution of the above inequality with that of the ODE

(2-4)


dψ(t)

dt
=

2
m
(ψ(t))2,

ψ(0)= ρ,

solving to

ψ(t)=
1

1
ρ
−

2
m t
.

Therefore,

(2-5) Sg(t) ≥ ψ(t)=
1

1
ρ
−

2
m t

for all t ≥ 0 as long as the flow exists. We remark that (2-5) implies

Sg(t)min ≥
Sg(0)min

1− (2t/m)Sg(0)min
.

Clearly, Sg(0)min > 0 implies Sg(t)min→∞ in finite time Tε ≤ m/(2Sg(0)min) <∞.

This also implies that Rg(t)min→∞ as t→ Tε , and thus g(t) becomes singular in
finite time Tsingular ≤ Tε <∞.
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Recall the Perelman–Müller Wα-entropy functional also introduced in [Müller
2012] as

(2-6) Wα(g, u, f, τ ) :=
∫

M

(
τ(Sg + |∇ f |2g)+ f −m

) e− f

(4πτ)m/2
dµg,

where τ ∈ R is a real number, f ∈ C∞(M × [0, T )), α > 0 is a constant and
u ∈C∞(M, N ) is a harmonic map between the m-dimensional manifold M and the
n-dimensional manifold N , which by the Nash embedding theorem is isometrically
embedded in Rd for sufficiently large d . The above entropy functional is analogous
to Perelman’s W-entropy for shrinkers [2002] under the Ricci flow. Wα is equally
used for shrinkers under Ricci-harmonic map flow as can be traced back to List
[2008]. As pointed out in [Perelman 2002], such an entropy is invariant and
monotone. In fact, given a constant λ > 0 and a diffeomorphism φ of M , under
simultaneous scaling of g and τ , we have

Wα(λg, u, f, λτ)=Wα(g, u, f, τ ),

and under the pullback of g, u and f , we have

Wα(φ
∗g, φ∗u, φ∗ f, τ )=Wα(g, u, f, τ ).

More importantly, we have the following monotonicity formula.

Proposition 2.1 [List 2008; Müller 2012]. Let
(
g(t), u(t), f (t), τ (t)

)
, t ∈ [0, T )

be a solution of the system

(2-7)



∂

∂t
g =−2 Rc+2α∇u⊗∇u,

∂

∂t
u = τgu,(
−
∂

∂t
−1g + R−α|∇u|2g

) e− f

(4πτ)m/2
= 0,

∂

∂t
τ =−1.

Then the Wα-entropy is nondecreasing with

(2-8) d
dt

Wα(g, u, f, τ )=2τ
∫

M

∣∣∣Rc−α∇u⊗∇u+∇∇ f − 1
2τ

g
∣∣∣2 e− f

(4πτ)m/2
dµg

+ 2τ
∫

M
α|τgu−〈∇u,∇ f 〉|2 e− f

(4πτ)m/2
dµg.

Notice that the third equation in the above system is equivalent to the following
backward heat equation

(2-9)
∂ f
∂t
=−1g f + |∇ f |2g − R+α|∇u|2g +

m
2τ
,
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A monotonicity formula of the above type is used to rule out any periodic solution
to the (RH)α-flow other than those that are striking and Einstein [List 2008; Müller
2012; Perelman 2002].

Similar to λα(g, u) above, define the minimizing problem

µα(g, u, τ ) := inf
{
Wα(g, u, f, τ ) : f ∈ C∞(M),

∫
M
(4πτ)−m/2e− f dµg = 1

}
,

replacing f by v = e− f/2. We have an equivalent minimizing integral

Wα(g, u, v, τ )=
∫

M

(
τ(4|∇v|2+ Sgv

2)− v2 ln v2
−mv2)(4πτ)−m/2 dµg

for functions v ∈ H 1(M) with
∫

M v
2(4πτ)−m/2 dµg = 1. Then v satisfies the Euler–

Lagrange equation, and it follows that µα(g, u, τ ) is achieved by a minimizer fτ
satisfying

τ(21 fτ − |∇ fτ |2+ Sg)+ fτ − n = µ(g, τ ).

By the result of Perelman, it is well understood that for any metric g on a compact
manifold M and τ > 0, we have µ(g, u, τ ) >−∞ and it approaches zero as τ→ 0.

3. A new entropy monotonicity formula

In this section we introduce a new family of dual entropy formulas, which are dual
in the sense that they generalise Ni’s entropy formula [2004] for the forward heat
equation on the one hand and generalise Perelman and Müller’s Wα-entropy on
the other hand. A similar family of entropy functionals was constructed by Kuang
and Zhang [2008]. The monotonicity property discussed here is very crucial to the
derivation of our results in the rest of this paper.

Definition 3.1. Let f : M × [0, T ] → R be smoothly defined with normalisation
condition ∫

M

e− f

(4πτ)m/2
dµg = 1.

We define a generalised family of entropy by
(3-1)

Wα,ε(g, u, f, τ )=
∫

M

(
ε2τ

4π
(Sg+|∇ f |2g)+ f −

mε2

4π
+

m
2

ln
4π
ε2

)
e− f

(4πτ)m/2
dµg,

where τ(t)= T − t > 0, 0< ε2
≤ 4π and Sg = Sg(x, t)= (Rg −α|∇u|2g)(x, t).

Let H = H(x, t) be a positive solution to the conjugate heat equation on a
complete compact manifold with metric g = g(x, t), evolving by the (RH)α. Let
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H = (4πτ)−m/2e− f and
∫

M H dµg = 1. Then

(3-2)
(
−
∂

∂t
−1g + Sg

)
H = 0.

Theorem 3.2. Suppose that (g(t), u(t)), t ∈ [0, T ), solves (RH)α with α(t)≡α> 0
and τ is a backward time with ∂τ/∂t =−1. Suppose that H : M×[0, T )→ (0,∞)
solves the conjugate heat equation (−∂/∂t−1g+Sg)H =0. The entropy functional
Wα,ε is nondecreasing by the formula

(3-3) d
dt

Wα,ε(g,u, f,τ )

≥
ε2τ

2π

∫
M

(∣∣∣Rc−α∇u⊗∇u+∇∇ f− 1
2τ

g
∣∣∣2+α|τgu−〈∇u,∇ f 〉|2

)
H dµg

for 0< ε2
≤ 4π .

Remark 3.3. We remark that if ε2
= 4π , we recover Perelman and Müller’s

Wα-entropy.

Scaling and diffeomorphism invariance of Wα,ε . Before we prove the monotonic-
ity formula (3-3), we shall first establish the invariance of our new entropy with
respect to dilation and diffeomorphism.

Lemma 3.4 [Chow and Knopf 2004, Lemma 6.57]. If g and h are two Riemannian
metrics on an n-dimensional Riemannian manifold and they are related by the
time-scale factor λ (i.e., g = λh), then the various geometric quantities scale as
follows:

gi j
=

1
λ

hi j , 0k
i j (g)
= 0k

i j (h)
,

Rl
i jk(g)= Rl

i jk(h), Ri jkl(g)= φRi jkl(h),

Ri j (g)= Ri j (h), R(g) =
1
λ

R(h), dµ(g) = λn/2 dµ(h).

Lemma 3.5. Let λ> 0 be any constant and φ : M→ M be a one-parameter family
of diffeomorphisms. Then

Wα,ε(λg, u, f, λτ)=Wα,ε(g, u, f, τ ),

Wα,ε(φ
∗g, φ∗u, φ∗ f, τ )=Wα,ε(g, u, f, τ ).

Proof. By a straightforward computation, we have

Wα,ε(λg,u, f,λτ)=
∫

M

(
ε2λτ

4π
(R(λg)−α(λg)i j

∇i u⊗∇j u+(λg)i j
∇i f∇j f )

+ f−mε2

4π
+

m
2

ln 4π
ε2

)
e− f

(4πλτ)m/2
√

det(λg)dx
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=

∫
M

(
ε2λτ

4π
(λ−1 R(g)−αλ−1gi j

∇i u⊗∇j u+λ−1gi j
∇i f∇j f )

+ f−mε2

4π
+

m
2

ln 4π
ε2

)
e− f

λm/2(4πτ)m/2
√
λm det(g)dx

=

∫
M

(
ε2τ

4π
(Rg−α|∇u|2g+|∇ f |2g)

+ f−mε2

4π
+

m
2

ln 4π
ε2

)
e− f

(4πτ)m/2
dµg

=Wα,ε(g,u, f,τ ).

The invariance under diffeomorphisms is trivial since (RH)α-flow is equivalent
to the flow modified by the time-dependent diffeomorphism φ generated by the
gradient of f , where φ∗g is the pulled-back metric and φ∗ f = f ◦ φ. For the
harmonic map u, the invariance holds if we combine the following facts: φ is a
C∞-diffeomorphism and u ∈C∞(M, N ) is a harmonic map with respect to (M, g);
then φ∗u = u ◦φ ∈ C∞(M, N ) is a harmonic map with respect to (M, φ∗g) with
the identity ∫

M
|∇u|2g dµg =

∫
M
|∇(u ◦φ)|2φ∗g dµφ∗g.

Then, all the geometric quantities are invariant under (RH)α-flow and the diffeo-
morphism invariance of Wα,ε follows. �

Proof of Theorem 3.2 (the monotonicity formula for Wα,ε).

Proof. The entropy functional can be rewritten as

Wα,ε(g, u, f, τ )

=
ε2

4π

∫
M
(τ (Sg + |∇ f |2)+ f −m)H dµg +

(
1− ε2

4π

)∫
M

f H dµH +
m
2

ln 4π
ε2
.

By direct computation we obtain the evolution equation

(3-4) d
dt

Wα,ε(g, u, f, τ )= ε2

4π
∂

∂t

(∫
M

V dµg

)
+

(
1− ε2

4π

)
∂

∂t

(∫
M

f H dµg

)
,

where

(3-5) V := (τ (21g f + Sg − |∇ f |2)+ f −m)H

since
∫

M(1g f −|∇ f |2g)e
− f dµg = 0 on a closed manifold M . We make two claims

here, which we shall prove in the next two propositions, namely,

(3-6) ∂

∂t

(∫
M

V dµg

)
=

∫
M
−�∗V dµg =

d
dt

Wα(g, u, f, τ )
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and

(3-7) ∂

∂t

(∫
M

f H dµg

)
=−Fα(g, u, f )+ m

2τ
≥ 0.

With the above two claims, we arrive at

(3-8) d
dt

Wα,ε(g, u, f, τ )= ε2

4π
d
dt

Wα(g, u, f, τ )+ m
2τ
−Fα(g, u, f ),

which proves the monotonicity formula (3-3) for 0< ε2
≤ 4π . �

Proposition 3.6. With the assumptions of Theorem 3.2, the quantity

V :=
(
τ(21g f + Sg − |∇ f |2)+ f −m

)
H

satisfies

(3-9) �∗V =−2τ
(∣∣∣Rc−α∇u⊗∇u+∇∇ f − 1

2τ
g
∣∣∣2+α|τgu−〈∇u,∇ f 〉|2

)
H

and

(3-10) d
dt

Wα(g, u, f, τ )=−
∫

M
�∗V dµg.

Moreover if H tends to a δ-function as t→ T , then V ≤ 0 for all t < T with H(x, τ )
replaced with H(x, τ ; y, σ ), the fundamental solution.

Proof. Let P = τ(21 f −|∇ f |2+ Sg)+ f −n, and ∂tτ =−1 since τ = T − t . Thus,

�∗V = (−∂t −1+ Sg)(P H)

=−(∂t +1)P H − 2〈∇P,∇H〉
and

H−1�∗V =−(∂t +1)P + 2〈∇P,∇ f 〉

since f =− ln H − (m/2) ln(4πτ) implies that ∇ f =−H−1
∇H . Let us compute

(∂t +1)P as follows:

(3-11) ∂P
∂t
=−(21 f − |∇ f |2+ Sg)+ τ

∂

∂t
(21 f − |∇ f |2)+ τ ∂

∂t
Sg +

∂

∂t
f.

Note that

∂t f =−1g f − Sg + |∇ f |2g +
m
2τ
,

∂t Sg =1Sg + 2|Si j |
2
g + 2α|τgu|2g.

Then a straightforward computations yields

2 ∂
∂t
(1 f )= 4Si j∇i∇j f − 4ατgu〈∇u,∇ f 〉+ 21(−1 f + |∇ f |2− Sg),(3-12)

∂

∂t
|∇ f |2 = ∂

∂t
(gi j
∇i f∇j f )= 2Si j∇i f∇j f + 2

〈
∇ f,∇ ∂

∂t
f
〉
.(3-13)
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Combining (3-11)–(3-13) with the identity1P=τ
(
21(1 f )−1|∇ f |2+1Sg

)
+1 f ,

we have(
∂

∂t
+1

)
P =−21 f−2|∇ f |2−2Sg+

m
2τ

+τ
(
4Si j∇i∇j f−4ατgu〈∇u,∇ f 〉+1|∇ f |2+2〈∇ f,∇1 f 〉

−2Si j∇i f∇j f+2|Si j |
2
+2α|τgu|2−2〈∇ f,∇|∇ f |2〉+2〈∇ f,∇Sg〉

)
.

Similarly,

2〈∇P,∇ f 〉 = 2〈∇(τ (21 f − |∇ f |2+ S− g)+ f ),∇ f 〉

= 2τ
(
2〈∇1 f,∇ f 〉− 〈∇|∇ f |2,∇ f 〉+ 〈∇Sg,∇ f 〉

)
+ 2|∇ f |2.

Therefore,

−

(
∂

∂t
+1

)
P+2〈∇P,∇ f 〉

=

(
21 f+2Sg−

m
2τ

)
−τ
(
4Si j∇i∇j f−4ατgu〈∇u,∇ f 〉+1|∇ f |2

−2〈∇ f,∇1 f 〉−2Si j∇i f∇j f+2|Si j |
2
+2α|τgu|2

)
=

(
21 f+2Sg−

m
2τ

)
−τ
(
4Si j∇i∇j f+2|∇∇ f |2+2|Si j |

2)
−2τα(|τgu+〈∇u,∇ f 〉2−2τgu〈∇u,∇ f 〉)

=−2τ
(

2Si j∇i∇j f+|∇∇ f |2+|Si j |
2
−

1
τ

(
1 f+R− m

4τ

))
−2τα(|τgu−〈∇u,∇ f 〉|2)

=−2τ
(
(Si j+∇i∇j f )2−1

τ

(
1 f+R− m

4τ

))
−2τα(|τgu−〈∇u,∇ f 〉|2)

=−2τ
∣∣∣Si j+∇i∇j f− 1

2τ
gi j

∣∣∣2−2τα(|τgu−〈∇u,∇ f 〉|2),

where we have used the following calculation by Bochner’s identity:

1|∇ f |2− 2〈∇ f,∇1 f 〉− 2Si j∇i f∇j f = 2|∇∇ f |2+ 2(Ri j − Si j )∇i f∇j f

= 2|∇∇ f |2+ 2α〈∇u,∇ f 〉2.
Hence,

H−1�∗V =−2τ
∣∣∣Si j +∇i∇j f − 1

2τ
gi j

∣∣∣2− 2τα(|τgu−〈∇u,∇ f 〉|2)

and

�∗V =−2τ
∣∣∣Si j +∇i∇j f −

1
2τ

gi j

∣∣∣2 H − 2τα(|τgu−〈∇u,∇ f 〉|2)H.

The consequence of which is a localised version of Perelman’s W-entropy mono-
tonicity formula. Thus,
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dW
dt
=
∂

∂t

∫
M

V dµg =

∫
M
(∂t V − RV +α|∇u|2gV ) dµ

=

∫
M
(−�∗V −1gV ) dµg =

∫
M
−�∗V dµg

= 2(T − t)
∫

M

(∣∣∣Si j +∇i∇j f − 1
2(T−t)

gi j

∣∣∣2
+α(|τgu−〈∇u,∇ f 〉|2)

) e− f

(4πτ)−m/2
dµg. �

Proposition 3.7. With the assumptions of Theorem 3.2, we have

(3-14) ∂

∂t

(∫
M

f H dµg

)
≥ 0.

Proof. By direct computation,

∂

∂t

(∫
M

f H dµ
)
=

∫
M

(
∂

∂t
f H + f ∂

∂t
H − Sg f H

)
dµg

=

∫
M

(
−1g f + |∇ f |2g − Sg +

m
2τ

)
H dµg

+

∫
M

f (−1g H + Sg H) dµ−
∫

M
Sg f H dµg

=

∫
M
(−21g f + |∇ f |2g)H dµ+

∫
M

( m
2τ
− Sg

)
H dµg,

where we used integration by parts on −
∫

M 1g f H =−
∫

M f1g H . Rearranging
the above, we have

∂

∂t

( ∫
M

f H dµg

)
=

∫
M
(−Sg − 21g f + |∇ f |2g)Hdµg +

m
2τ

∫
M

H dµg

=−

∫
M
(Sg + |∇ f |2g)H dµg +

m
2τ

=−Fα +
m
2τ
,

where Fα =
∫

M(Sg + |∇ f |2g)H dµg is the Perelman energy functional introduced
in [Müller 2012], which we discussed in Section 2. Next is to show that

(3-15) ∂

∂t

(∫
M

f u dµ
)
=−Fα +

m
2τ
≥ 0.

Recall the evolution of Fα:
(3-16)

d
dt

Fα(g, f )= 2
∫

M

(
|Rc−α∇u⊗∇u+∇∇ f |2+α|τgu−〈∇u,∇ f 〉|2

)
H dµg.
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Straightforward analysis, using an elementary inequality and the Cauchy–Schwarz
inequality, gives

(3-17) |Rc−α∇u⊗∇u+∇∇ f |2 ≥ 1
m
(Rg −α|∇u|2g +1g f )2

so that∫
(Sg +1g f )H dµg ≤

(∫
(Sg +1g f )2 H dµg

)1/2(∫
H dµg

)1/2

,

which implies (∫
M
(Sg +1g f )H dµ

)2

≤

∫
M
(Sg +1g f )2 H dµg.

Hence by (3-16) and (3-17), we obtain

(3-18) d
dt

Fα ≥
2
m

∫
M
(Sg +1g f )2 H dµg +

∫
M

2α|τgu−〈∇u,∇ f 〉|2 H dµg.

We can then solve
d
dt

Fα ≥
2
m
F 2
α , Fα ≥ 0.

This implies

dFα
F2
α

≥
2
m

dt =⇒− 1
Fα

∣∣∣T
t
≥

2
m
(T − t)=⇒ 1

Fα(t)
−

1
Fα(T )

≥
2
m
τ

=⇒
1

Fα(t)
≥

2
m
τ +

1
Fα(T )

.

From here we can conclude as follows:

(i) Suppose Fα(T ) > 0. Then

1
F(t) ≥

2τ
m
; i.e, Fα(t)≤

m
2τ
.

(ii) Suppose Fα(T ) ≤ 0. Then Fα(t) ≤ 0 ≤ m/(2τ) for all t ∈ [0, T ), since we
know that dFα/dt ≥ 0.

Hence
Fα(t)≤

m
2τ

for t ∈ [0, T ),

which proves the claim (3-15). �

4. Differential Harnack estimates

In this section we obtain Perelman’s differential Harnack-type estimate which holds
for the fundamental solution and, of course, all positive solutions to the conjugate
heat equation coupled to the Ricci-harmonic map flow. There is an improvement
over some known results as there is no explicit restriction on the curvature and no
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recourse to Perelman’s reduced distance. In what follows, we want to show that the
local entropy satisfies a pointwise differential inequality for the positive minimal
solution. Define a differential Harnack quantity

Pε :=
ε2τ

4π
(21 f − |∇ f |2+ Sg)+ f + m

2
ln 4π
ε2
−

mε2

4π
.

Theorem 4.1. Let M be a closed manifold with bounded Ricci curvature and
H(x, y, t)= H = (4π t)−n/2e− f satisfy �∗H = 0, where H tends to a δ-function
as t→ T and satisfies

∫
M H dµg = 1. Then for all t < T and ε2

→ 4π as t→ T ,
we have

(4-1) ε2τ

4π
(21 f − |∇ f |2+ Sg)+ f − mε2

4π
≤ 0.

Proof. Let h be any compactly supported smooth function for all t0 > 0. Suppose
h( · , t) is a positive solution to the ordinary heat equation (∂t −1)h = 0 (this is
Perelman’s argument in [2002, Corollary 9.3]). Then, it is clear that

∂

∂t

∫
M

Hh dV = 0

and we have by direct calculation that

∂

∂t

∫
M

h PεH dµg =

∫
M

(
∂t h(PεH)+ h∂t(PεH)− Sg PεH

)
dµg

=

∫
M

(
(∂t −1)h(PεH)+ h(∂t +1− Sg)PεH)

)
dµg

=−

∫
M

h�∗(PεH) dµg

=−
ε2

4π

∫
M

h�∗Vε dµg ≥ 0.

The inequality is due to Proposition 3.6. We are left to show that for the everywhere
positive function h( · , t), the limit of

∫
M hVε dµg is nonpositive as t → T . We

assume the claim a priori, i.e, limt→T
∫

M hVε dµg = 0, with

Vε =
(
τ(21 f − |∇ f |2+ Sg)+

4π
ε2

f −m
)

H,

and conclude the result. �

For completeness, we devote the next effort to justifying the claim
(4-2)

lim
t→T

∫
M

hVε dµg ≤ 0 ⇐⇒ lim
t→T

∫
M

h PεH dµg ≤
m
2

lim
t→T

(
ln 4π
ε2

∫
M

h H dµg

)
.

Our argument follows from [Ni 2006; Perelman 2002] and can be compared with
the recent preprint [Bǎiles,teanu and Tran 2013, Proposition 4.2] (see also [Chow
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et al. 2008, Section 16.4]), where we know that limt→T
∫

M V h dµg ≤ 0 (where V
is as defined in Proposition 3.6). To see this clearly, we write

PεH = ε2

4π
Vε +

m
2

ln 4π
ε2

H,

which implies

(4-3) lim
t→T

∫
M

h PεH dµg =
ε2

4π
lim
t→T

∫
M

Vεh dµg +
m
2

ln 4π
ε2

lim
t→T

∫
M

h H dµg.

If H tends to a Dirac δ-function, say at a point p ∈ M , for τ → T , then f satisfies
f (x, τ )→ d2(p, x)/4τ . This is in relation to the l-length of Perelman. This yields

(4-4) lim
τ→0

∫
M

f h H dµg ≤ lim sup
τ→0

∫
M

d2(p, x)
4τ

h H dµg =
m
2

h(p, T ).

Meanwhile, by the strong maximum principle, we have h(x, T ) > 0 and

lim
τ→0

∫
M

h H dµg = h(x, T ).

Hence by a scaling argument, we assume that h(x, T )= 1. Rewriting Pε and using
integration by parts, we have∫

M
Pεh H dµg=

∫
M

ε2τ

4π

(
|∇ f |2+Sg dµg−

m
2τ

)
h H dµg−

ε2τ

2π

∫
M
〈∇ f,∇h〉H dV

+

∫
M

f Hh dµg +
m
2

(
ln 4π
ε2
−
ε2

4π

) ∫
M

Hh dµg.

We should also note that since h( · , t0) is compactly supported and by the strong
maximum principle, we have that h( · , t0), |∇h( · , t0)| and |1h( · , t0)| are bounded
on M . This implies that there exists a bounded solution h( · , t0). Now we claim
that the first three terms on the right-hand side of the last equation vanish as τ → 0.
We can see this, for instance, in the following argument: By integration by parts
and the fact that ∇H =−H∇ f , we have

(4-5) −τ

∫
M
〈∇ f,∇h〉Hµg = τ

∫
M
〈∇H,∇h〉µg =−τ

∫
M

H1hµg

is bounded since |1h| is bounded as stated earlier. Thus, the second term in right-
hand side of the preceding equation is bounded and goes to zero as τ → 0, so the
same is true for first terms (which follows from gradient estimates [Chow et al.
2008, Lemma 16.47]). Thus the analysis is reduced to showing that

(4-6) lim
τ→0

∫
Vεh dµg < C(m)≤ 0.



SOBOLEV INEQUALITIES ALONG RICCI-HARMONIC MAP FLOW 273

By the monotonicity formula for Wα,ε , we have

∂

∂t

∫
M

Pεh H dµg =
ε2τ

4π
∂

∂t

∫
M

Vεh dµg ≥ 0.

By the mean value theorem, there exists a sequence τk→ 0 such that

lim
τk→0

τk

∫
M

(∣∣∣Rc−α∇u⊗∇u+∇∇ f − n
2τk

g
∣∣∣2+α|τgu−〈∇u,∇ f 〉|2

)
Hh dµg=0.

Applying the Cauchy–Schwarz and Hölder inequalities, we have∣∣∣Rc−α∇u⊗∇u+∇∇ f − 1
2τk

g
∣∣∣2 ≥ 1

m

(
Rg −α|∇u|2g +1g f − n

2τk
g
)2

and∫
M
τk

(
Sg+1 f− n

2τk

)
Hh dµg

≤

(
τ 2

k

∫
M

(
Sg+1 f− n

2τk

)2
Hh dµg

)1/2(∫
M

Hh dµg

)1/2

≤
√

m
(
τ 2

k

∫
M

∣∣∣Rc−α∇u⊗∇u+∇∇ f− 1
2τk

∣∣∣2 Hh dµg(τk)

)1/2(∫
M

Hh dµg

)1/2

→ 0

as τk→ 0, since α|τgu−〈∇u,∇ f 〉|2 ≥ 0 and limτk→0
∫

M Hh dµg(τk) is finite.
Then we have

lim
t→T

∫
Vεh dµg

= lim
t→T

∫
M

(
ε2

4π
τk(21 f − |∇ f |2+ Sg)+

4π
ε2τ

f −m
)

Hh dµg

= lim
t→T

∫
M

(
ε2τk

4π

(
1 f + Sg −

n
2τk

))
Hh dµg(τk)

+ lim
t→T

∫
M

(
ε2τk

4π
(1 f − |∇ f |2)

)
Hh dµg + lim

t→T

∫
M

(
f −

mε2

8π

)
Hh dµg

= lim
t→T

∫
M

(
f −

mε2

8π

)
Hh dµg,

where we have used the identity∫
M
(1 f − |∇ f |2)H dµ=−

∫
M
1H dµ= 0

for any positive solution H and the fact that each quantity in (4-5) is bounded to
obtain limt→T τk

∫
M(1 f − |∇ f |2)Hh dµg = 0.
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By (4-4) and the asymptotic behaviour of the heat kernel, i.e, f ≈ d2/(4τ) as
τ → 0, we have (see [Ni 2006, Theorem 2.1])

H(x, y, τ )∼ (4πτ)−m/2 exp
(

d2(x, y)
4τ

) ∞∑
j=0

u j (x, y, τ )τ j
:= wk(x, y, τ )

as τ → 0, where d2(x, y) is the distance function and wk(x, y, t) satisfies

wk(x, y, τ )= O
(
τ k+1−m/2 exp

(
δd2(x, y)

4τ

))
uniformly for all x, y ∈ M and δ is just a number depending only on the geometry
of (M, g). The function can be chosen such that u0(x, y, 0) = 1. Though, the
above asymptotic result does not require any curvature assumption, a result due to
Cheeger and Yau [1981] states that on a manifold with bounded Ricci curvature
(which is our case), the heat kernel satisfies

H(x, y, τ )≥ (4πτ)−m/2 exp
(

d2(x, y)
4τ

)
,

which implies

f (x, τ )≤
d2(x, y)

4τ
.

Therefore,

lim
τ→0

∫
M

(
f−

mε2

8π

)
h H dµg ≤ limsup

τ→0

∫
M

(
d2(x, y)

4τ
−

mε2

8π

)
h(y, t)H(x, y,τ )dµg

= limsup
τ→0

∫
M

(
d2(x, y)

4τ
−

mε2

8π

)
e−d2(x,y)/4τ

(4πτ)m/2
h(y, t)dµg.

It is easy to see that for any δ > 0, the integration of the above integrand in the
domain d(x, y)≥ δ converges to zero. Therefore,

(4-7) lim
t→0

∫
M

(
f −

mε2

8π

)
h H dµg

≤ lim
t→0

∫
d(x,y)≤δ

(
d2(x, y)

4t
−

mε2

8π

)
e−d2(x,y)/(4t)

(4π t)m/2
h(y, t) dµg.

Whenever δ is chosen sufficiently small, d(x, y) is asymptotically sufficiently
close to the Euclidean distance. Then by a standard approximation using local
coordinates, we have

(4-8) lim
t→0

∫
M

(
d2(x, y)

4t
−

mε2

8π

)
h H dµg

= lim
t→0

∫
Rm

(
|x − y|2

4τ
−

mε2

8π

)
e−|x−y|2/(4τ)

(4πτ)m/2
h p(y) dy,
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where h p is the pullback of h( · , 0) from the region d(x, y)≤ δ to the Euclidean
space.

Splitting the last integrand as in [Kuang and Zhang 2008], we are left with

lim
t→0

∫
M

(
f −

mε2

8π

)
h H dµg ≤ h p(x) lim

t→0

∫
Rm

(
|x − y|2

4τ
−

mε2

8π

)
e−|x−y|2/(4t)

(4πτ)m/2
dy

= h p( · ) lim
τ→0

∫
Rm

(
|y|2

4τ
e−|y|

2/(4τ)

(4πτ)m/2

)
dy−

mε2

8π
h p( · ).

Lastly, we have that the right-hand side evaluates to a constant C(m)≤ 0 by using
the standard Gauss integral∫

Rm

(
|y|2

4τ
e−|y|

2/(4τ)

(4πτ)n/2

)
dy =

m
2

and the condition ε→ 2
√
π as τ → 0. The claim then follows.

Finally in this section we prove Perelman’s differential Harnack estimates for f
as an application of Theorem 4.1 and the monotonicity of Wε,α . A corollary to this
gives estimates of Li–Yau type for all positive solutions H(x, τ ).

Proposition 4.2. Let the assumptions of Theorem 4.1 hold. Then for any smooth
curve γ (τ) in M , we have the estimate

(4-9) −
d
dt

f (γ (τ ), τ )≤ 1
2

(
|γ ′(τ )|2+ Sg(γ (τ ), τ )−

m
2τ

)
.

After the usual integration of (4-9) along the path γ (τ) and exponentiation, we
have the following result.

Corollary 4.3. With the notation and assumptions of Theorem 4.1, the following
Li–Yau Harnack estimate holds:

(4-10)
H(x2, t2)
H(x1, t1)

≤

(
T − t1
T − t2

)m/4

exp
(

1
2

∫ t2

t1
(|γ ′(t)|2+ Sg(γ (t), t) dt

)
.

Proof of Proposition 4.2. Precisely from (4-1), we have

f ≤ mε2

4π
−
ε2τ

4π
(21 f − |∇ f |2+ Sg)≤

mε2

8π
since 1 f + Sg −m/(2τ)≥ 0 by the monotonicity formula (3-3). Now multiplying
(4-1) through by 2π/(ε2τ), we have

1 f − 1
2 |∇ f |2+ 1

2 Sg +
2π
ε2t

f − m
2τ
≤ 0.

Using 1 f =−∂t f + |∇ f |2− Sg +m/(2τ) from (2-9), we obtain

(4-11) −∂t f + 1
2 |∇ f |2 ≤ 1

2 Sg −
2π
ε2t

f.
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By Young’s inequality, we have

−
d
dt

f (γ (τ ), τ )=−∂t f (γ (τ ), τ )−〈∇ f (γ (τ ), τ ), γ ′(τ )〉

≤ −∂t f + 1
2 |∇ f |2+ 1

2 |γ
′(τ )|2

=
1
2 |γ
′(τ )|2+ 1

2 Sg(γ (τ ), τ )−
2π
ε2τ

f (γ (τ )τ )

on the path γ (τ). The result follows by using the fact that f ≤ mε2/(8π). �

5. Log-Sobolev inequalities along (RH)α-flow

By the results of Aubin [1976] and Hebey [1996] for complete manifolds whose
Ricci curvature is bounded from below and injectivity radius is positive and bounded
from above, we can assume the Sobolev embedding on the initial metric, since
(M, g(0)) is a compact Riemannian manifold. Let A0, B0<∞ be positive constants
such that for all v ∈W 1,2(M, g0),

(5-1) ‖v‖2m/(m−2) ≤ A0‖∇v‖2+ B0‖v‖2,

where A0 and B0 depend only on m, g0, the lower bound for the Ricci curvature
and the injectivity radius. We can then write (5-1) as
(5-2)(∫

M
v2m/(m−2) dµg0

)(m−2)/m

≤ A
∫

M
(4|∇v|2+ Sgv

2) dµg0 + B
∫

M
v2 dµg0,

where
A = 1

4 A0 and B = 1
4 A0 sup S−g ( · , 0)+ B0

since Sg(x, 0)+ sup S−g ( · , 0) = S+g (x, 0)− S−g (x, 0). We will assume that (5-2)
holds uniformly for g(t), t > 0, and different A and B in order to prove the
logarithmic Sobolev inequalities.

The usual way of deriving logarithmic Sobolev inequalities follows from a careful
application of Hölder’s and Jensen’s inequalities since log v is a concave function,
in which case ∫

v2 ln vq−2 dµ≤ ln
∫
vq dµ

with the assumption that
∫
v2 dµ= 1. Then∫

v2 ln v dµ≤
q

q − 2
ln
(∫

vq dµ
)1/q

.

Taking q = 2m/(m− 2), we have∫
v2 ln v dµ≤ m

2
ln
(∫

v2m/(m−2) dµ
)(m−2)/2m

,
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and by multiplying both sides by 2 we obtain the following result.

Lemma 5.1. For any v ∈W 1,2(M, g0) with ‖v‖2 = 1,

(5-3)
∫

M
v2 ln v2 dµg0 ≤

m
2

ln
(

A
∫

M
(4|∇v|2+ Sgv

2) dµg0 + B
)
.

See [Hsu 2008; Ye 2007; Zhang 2007] for similar proofs. Inequalities of the
form (5-3) are usually estimated further by the application of an elementary in-
equality of the form ln y ≤ θy− ln θ − 1, where θ, y ≥ 0. Precisely, taking

y = A
∫

M
(4|∇v|2+ Sgv

2) dµg0 + B

in (5-3) gives us

(5-4)
∫

M
v2 ln v2 dµg0 ≤

mθ
2

(
A
∫

M
(4|∇v|2+Sgv

2) dµg0+B
)
−

m
2
(1+lnα)

=
mθ A

2

∫
M
(4|∇v|2+Sgv

2) dµg0+
mθB

2
−

m
2
−

m
2

lnα.

We will now modify the arguments in both [Ye 2007] and [Zhang 2007] to prove
the following result which says the monotonicity of the Wα,ε-entropy implies a
logarithmic Sobolev inequality (not with the best constant). Here we assume the
flow exists for all time.

Theorem 5.2. Let (M, g) be a compact Riemannian manifold of dimension m ≥ 3
and the metric g(t) evolved by the (RH)α-flow. Assume that an L2-Sobolev embed-
ding (5-2) holds true with respect to the initial metric g(0) = g0. Then, we have

(5-5)∫
M
v2 lnv2 dµg(t)≤

∫
M
σ 2(4|∇v|2+Sgv

2)dµg(t)−
m
2

lnσ 2
+(t+σ 2)β1+

m
2

ln m A
2e
,

where σ > 0, β1 = 4A−1
0 B0+ sup S−g ( · , 0) and

λα0 = inf
‖v‖2=1

∫
M
(4|∇v|2+ Sgv

2) dµg0;

that is, λα0 is the first eigenvalue of the operator −41+ Sg.
Moreover, if λα0 is strictly positive for Sg( · ,0)>0 (i.e., R( · ,0)>α(0)|∇u(0)|2),

then
(5-6)∫

M
v2 ln v2 dµg(t)≤

∫
M
σ 2(4|∇v|2+Sgv

2) dµg(t)−
m
2

ln σ 2
+(t+σ 2)β2+

m
2

ln m A
2e

holds with B0 = 0, i.e., β2 = sup S−g ( · , 0).
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We first discuss some vital issues that will help put the proof of the above theorem
in perspective. Now take an L2-solution H = H(x, t) of the conjugate heat equation

(5-7) ∂t H =−1H + Sg H

to be H = (4πτ)m/2e− f . Relating the entropy Wα,ε with the idea of logarithmic
Sobolev inequalities, we consider a function

(5-8) v =
√

H =
e− f/2

(4πτ)m/4

such that
∫

M v
2 dµ=1. We also notice that (5-8) implies f =− ln v2

−(m/2) ln τ−
(m/2) ln(4π); hence the entropy (3-1) is rewritten as

(5-9) Wε(g, v, τ )=
ε2

4π

∫
M
(τ (4|∇v|2+ Sgv

2)− v2 ln v2) dµ− ε2

4π
m
2

ln τ

−
ε2

4π
m
2

ln(4π)+
(

1− ε2

4π

) ∫
M

f v2 dµ− mε2

4π
+

m
2

ln 4π
ε2
.

Define

(5-10) W∗ε (g, v, τ )=
ε2

4π

∫
M
(τ (4|∇v|2+ Sgv

2)− v2 ln v2) dµ

and

(5-11) µ∗ε(g, v, τ )= inf
{
W∗ε (g, v, τ ) :

∫
M
v2 dµ= 1

}
.

Set T ∗ = t∗+ σ 2 and τ(t)= T ∗− t for 0≤ t ≤ t∗, σ > 0. Then

d
dt

Wε(g, v, τ )

=
d
dt

W∗ε (g, v, τ )−
mε2

8π
d
dt

ln τ +
(

1− ε2

4π

)
∂

∂t

∫
M

f v2 dµ+ m
2

ln 4π
ε2
≥ 0,

where the last inequality is due to the monotonicity of Wε(g, f, τ ), the proof of
which also reveals that

∂

∂t

∫
M

f v2 dµ=−Fα +
m
2τ
,

where Fα =
∫

M(Sg + |∇ f |2)v2 dµ is Perelman and Müller’s energy functional.
Let λα0 be the first eigenvalue of the operator −41+ Sg. Then, we know that
λα0 = inf‖u‖2=1 Fα. Therefore we arrive at

d
dt

W∗ε ≥
nε2

8π
d
dt

ln τ +
(

1− ε2

4π

)
λα0.



SOBOLEV INEQUALITIES ALONG RICCI-HARMONIC MAP FLOW 279

To continue this argument, we should note that either (5-7) or (5-8) implies that the
function f = f (t) satisfies the following backward heat equation

(5-12)
∂ f
∂t
=−1 f + |∇ f |2− Sg +

m
2τ
,

with v = v(x, t) satisfying

(5-13)
∂v

∂t
=−1v+

|∇v|2

v
+

Sg

2
v

on [0, t∗] with a given terminal value at t + t∗ with g = g(t∗).
Let v0 be a minimizer of the entropy Wε(g, f, τ0) for all v with

∫
M v

2
0 dµg(t0)= 1.

We can then solve heat equation (5-12) backward in time with initial data f (t0)= f0

and v0 chosen at t = t0. Let u j be the value of the conjugate heat equation (5-13)
at t = t j . We can define functions f j , j = 1, 2, by

u j =
e− f j/2

(4πτ j )n/4
, j = 1, 2.

Then by the monotonicity of Wαε(g, f, τ )-entropy, using Perelman’s approach we
have

µε(g(t1),τ (t1))= inf
‖v0‖g(t1)=1

Wε(g(t1), f0,τ1)≤Wε(g(t1), f1,τ1)

≤Wε(g(t2), f2,τ2)= inf
‖v0‖g(t2)=1

Wε(g(t2), f,τ2)=µε(g(t2),τ (t2)).

It follows from the above that

µ∗ε(g(t1), τ (t1))≤ µ
∗

ε(g(t2), τ (t2))+
nε2

8π
ln
τ1

τ2

for any t1 < t2, where τ j = τ(t j ), j = 1, 2. Choosing t1 = 0 and t2 = t∗, we then
obtain

(5-14) µ∗ε(g(0), t∗+ σ 2)≤ µ∗ε(g(t
∗), σ 2)+

nε2

8π
ln t∗+σ 2

σ
.

Since 0< t∗ < T is arbitrary, we can write (5-14) as

(5-15) µ∗ε(g(t), σ
2)≥ µ∗ε(g(0), t + σ 2)+

nε2

8π
ln σ 2

t+σ 2

for all t ∈ [0, T ). 1 We now state the proof.

Proof. We now apply (5-4) with g = g0 to estimate µ∗ε(g(0), t + σ 2). For any
function v ∈W 1,2(M, g) with ‖v‖2 = 1 and using

mθ A
2
= t + σ 2

=⇒ θ =
8(t + σ 2)

n A0
,

1 The case t = 0 is optimal, as equality is attained.
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the inequality in (5-4) becomes∫
M
v2 ln v2 dµg0 ≤ (t + σ

2)

∫
M
(4|∇v|2+ Sgv

2) dµg0 +
m
2

8(t + σ 2)

m A0
B

−
m
2

ln
8(t + σ 2)

n A0
−

m
2

= (t + σ 2)

∫
M
(4|∇v|2+ Sgv

2) dµg0 + 4(t + σ 2)B A−1
0

−
m
2

ln(t + σ 2)+
m
2
(ln A0+ ln m− 3 ln 2− 1).

Choosing ε2
≤ 4π as before, it then follows that

(5-16) µ∗ε(g(0), t + σ 2)

≥
mε2

4π

(
1
2 ln(t + σ 2)−

4
m
(t + σ)B A−1

0 −
1
2(ln A0+ ln m− 3 ln 2− 1)

)
.

Combining (5-15) and (5-16), we obtain
(5-17)

µ∗ε(g(t), σ
2)≥

mε2

8π
ln σ 2
−

mε2

π
(t +σ 2)B A−1

0 −
mε2

8π
(ln A0+ ln m− 3 ln 2− 1),

which implies

ε2

4π

∫
M

(
σ 2(4|∇v|2+ Sgv

2)− v2 ln v2) dµ

≥
mε2

8π
ln σ 2
−

mε2

π
(t + σ 2)B A−1

0 −
mε2

8π
ln m A0

8e
.

Therefore,
(5-18)∫

M
v2 ln v2 dµ≤

∫
M
σ 2(4|∇v|2+Sgv

2) dµ−m
2

ln σ 2
+4(t+σ 2)B A−1

0 −
m
2

ln n A0
8e

.

Choosing β1 = 4B A−1
0 = 4A−1

0 (B0 + A sup S−g (x, 0)) and A = A0/4, we obtain
the result. We can also derive (5-6) in a similar manner. �

6. Heat kernel bound via log-Sobolev inequalities

We apply the logarithmic Sobolev inequality obtained in the last section to derive
an upper bound for the conjugate heat kernel along the Ricci flow, demonstrating
that there is a lot of geometric information embedded in such inequalities. The
basic ideas, due to Davies and Simon [1984], relate Nelson’s hypercontractivity (see
[Gross 1975]) to ultracontractivity (see also [Davies 1989]). These ideas always
yield estimates with sharp constants. We modify the argument in [Zhang 2007]
(see also [Lieb and Loss 1997; Zhang 2011]) to prove our result.
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Theorem 6.1. Suppose there exists a solution to the (RH)α-flow with m ≥ 2 and let
H(x, t; y) be the fundamental solution to the conjugate heat equation

(6-1)
(
−∂t −1+ Sg(x, τ )

)
w(x, τ )= 0.

Then, for some nonnegative finite constant C depending on n, t, T, A0, B0 and
sup S−g ( · , 0), the estimate

(6-2) H(x, T ; y)≤ CT−m/2

holds, where ∂tτ =−1 and A0, B0 are as defined in the last section.

Without loss of generality, we may assume w = w(x, t) to be a nonnegative
solution of the conjugate heat equation (6-1) on the interval [0, T ], where ∂tτ =−1.
Let T > 0 and r(τ ) : [0, T ] → [1,∞] be a continuously differentiable increasing
function such that r(0)=∞ and r(T )= 1. The function r(τ )= T/τ gives a perfect
example as we shall see below.

The idea here follows from the fact that if

w(x, t)=
∫

H(x, t; y)w0(y) dµ(y)

solves the heat equation, where H(x, t; y) is the heat kernel, then

sup
w 6=0

‖w( · , t)‖∞
‖w( · , 0)‖1

= sup
x,y

H(x, t; y).

We may obtain an estimation of the time derivative for the logarithms of the quantity

‖w‖r(t) =

(∫
M
|w|r(t) dµg(t)

)1/r(t)

as follows: ∫ T

0

∂

∂t
ln ‖w‖r(t) dt = ln

‖w( · , t)‖∞
‖w( · , 0)‖1

.

Proof. By routine computation,

∂t‖w‖r(t) = ∂t

(∫
M
|w|r(t) dµg(τ )

)1/r(τ )

=−
ṙ(τ )
r2(τ )

‖w‖r(τ ) ln ‖w‖r(τ )r(τ )+
‖w‖

1−r(τ )
r(τ )

r(τ )

(
ṙ(τ )

∫
M
wr(τ ) lnw dµg(τ )

+ r(τ )
∫

M

(
wr(τ )−1(−1w+ Sgw)+w

r(τ )(−Sg)
)

dµg(τ )

)
.
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Multiplying both sides by r2(τ )‖w‖
r(τ )
r(τ ), we have

r2(τ )‖w‖
r(τ )
r(τ ) ∂t‖w‖r(t)

=−ṙ(τ )‖w‖r(τ )+1
r(τ ) ln ‖w‖r(τ )r(τ )+ r(τ )ṙ(τ )‖w‖r(τ )

∫
M
wr(τ ) ln u dµg(τ )

+ r2(τ )‖w‖r(τ )

∫
M
wr(τ )−1(−1w) dµg(τ )+ r2(τ )‖w‖r(τ )

×

∫
M
wr(τ )−1(Sgw) dµg(τ )− r(τ )‖w‖r(τ )

∫
M
wr(τ )Sg dµg(τ ).

By the application of integration by parts, we have

r2(τ )‖w‖r(τ )

∫
M
wr(τ )−1(−1w) dµg(τ )

= r2(τ )‖u‖r(τ )

∫
M
∇(ur(τ )−1)∇w dµg(τ )

= r2(τ )(r(τ )− 1)‖w‖r(τ )

∫
M
wr(τ )−2

|∇w|2 dµg(τ ).

Hence,

r2(τ )‖w‖
r(τ )
r(τ ) ∂t‖w‖r(t)

=−ṙ(τ )‖w‖r(τ )+1
r(τ ) ln ‖w‖r(τ )r(τ )+ r(τ )ṙ(τ )‖w‖r(τ )

∫
M
wr(τ ) lnw dµg(τ )

+ r2(τ )(r(τ )− 1)‖w‖r(τ )

∫
M
wr(τ )−2

|∇w|2 dµg(τ )

+ r(τ )(r(τ )− 1)‖w‖r(τ )

∫
M

Sg w
r(τ ) dµg(τ ).

Further dividing both sides by ‖w‖r(τ ), we obtain

(6-3) r2(τ )‖w‖
r(τ )
r(τ ) ∂t(ln ‖w‖r(t))

=−ṙ(τ )‖u‖r(τ )r(τ ) ln ‖w‖r(τ )r(τ )+ r(τ ) ṙ(τ )
∫

M
wr(τ ) lnw dµg(τ )

+ r2(τ )(r(τ )− 1)
∫

M
wr(τ )−2

|∇w|2 dµg(τ )

+ r(τ )(r(τ )− 1)
∫

M
Sg w

r(τ ) dµg(τ ).

Using

v =
wr(τ )/2

‖wr(τ )/2‖2
=⇒ v2

=
wr(τ )

‖w‖
r(τ )
r(τ )

,
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we have

|∇v|2 =
r2(τ )

4‖w‖r(τ )r(τ

wr(τ )−2
|∇w|2

and

ln v2
= lnwr(τ )

− ln ‖w‖r(τ )r(τ ).

Therefore,

ṙ(τ )
∫

M
v2 ln v2 dµg(τ ) = ṙ(τ )

∫
M

wr(τ )

‖u‖r(τ )r(τ )

(lnwr(τ )
− ln ‖w‖r(τ )r(τ )g) dµg(τ )

=
ṙ(τ )r(τ )

‖w‖
r(τ )
r(τ )

∫
M
wr(τ ) lnwr(τ ) dµg(τ )− ṙ ln ‖w‖r(τ )r(τ ).

Plugging these into (6-3), we arrive at

r2(τ )∂t(ln‖w‖r(t))= ṙ(τ )
∫

M
v2 lnv2 dµg(τ )+4(r(τ )−1)

∫
M
|∇v|2 dµg(τ )

+r(τ )(r(τ )−1)
∫

M
Rv2 dµg(τ )

= ṙ(τ )
∫

M
v2 lnv2 dµg(τ )+(r(τ )−1)

∫
M
(4|∇v|2+Sgv

2)dµg(τ )

+(r(τ )−1)2
∫

M
Sgv

2 dµg(τ ).

Using the choice r(τ )= T/τ , we have ṙ(τ )=−T/τ 2 and r(τ )− 1= (T − τ)/τ
so that we write the last equality as

r2(τ )∂t(ln‖w‖r(t))=−
T
τ 2

∫
M
v2 lnv2 dµg(τ )+

T−τ
τ

∫
M
(4|∇v|2+Sgv

2)dµg(τ )

+

(T−τ
τ

)2
∫

M
Sgv

2 dµg(τ )

=
T
τ 2

(
τ(T−τ)

T

∫
M
(4|∇v|2+Sgv

2)dµg(τ )−

∫
M
v2 lnv2 dµg(τ )

)
+

(T−τ
τ

)2
∫

M
Sgv

2 dµg(τ ).

From the log-Sobolev inequality (5-5) point of view, we may choose

σ 2
=

4τ(T−τ)
T

≤
T
4
,
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and we get

(6-4) r2(τ )∂t(ln ‖w‖r(t))

≥
T
τ 2

(m
2

ln σ 2
−

m
2

ln m A
2e
− (t0+ σ 2)β1

)
+

(T−τ
τ

)2
∫

M
Sgv

2 dµg(τ )

and

(6-5) ∂t(ln ‖w‖r(t))

≥
1
T

(m
2

ln 4πτ(T−τ)
T

−
m
2

ln mπ A
2e
− (t0+ σ 2)β1− T sup S−g ( · , 0)

)
.

Notice that (since σ 2
≤ T/4)

(t+σ 2)β1+T sup R−( · ,0)= 4(t0+σ 2)
(

A−1
0 B0+

1
4 sup S−g ( · ,0)

)
+T sup S−g ( · ,0)

≤ (4t0+T )A−1
0 B0+

1
4(4t0+5T )sup S−g ( · ,0).

Denoting D by

D ≡ m
2

ln mπ A
2e
+ (4t0+ T )A−1

0 B0,

substituting into (6-5) and integrating the result from 0 to T , we have

ln
‖w( · , T )‖r(T )
‖w( · , T )‖r(0)

≥
m
2T

∫ T

0
ln

4πτ(T−τ)
T

dt−D− 1
4(4t0+5T ) sup R−( · , 0)

=
m
2

ln(4π)−
n
2

ln T−n+n ln T−D− 1
4(4t0+5T ) sup S−g ( · , 0)

=
m
2

ln(4πT )−m−D−(4t0+5T ) sup S−g ( · , 0).

This then yields

ln
‖w( · , T )‖1
‖w( · , T )‖∞

≥
m
2

ln(4πT )−m− D− 1
4(4t0+ 5T ) sup S−g ( · , 0),

which implies

‖w( · , T )‖∞ ≤ ‖w( · , T )‖1
exp

(1
4(4t0+ 5T ) sup S−g ( · , 0)+ D+m

)
(4πT )m/2

.

Because

w(x, T )=
∫

M
H(x, T ; y)w(y, 0) dµ(y)g(τ ),

where H(x, T ; y) is the conjugate heat kernel,

H(x, T ; y)≤
exp(m D)
(4πT )m/2

˙exp
( 1

4(4t0+ 5T ) sup S−g ( · , 0)
)
.

This ends the proof of the estimate (6-2). �
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7. The Sobolev inequality along (RH)α-flow

In this section we show that global bounds on the heat kernel to the conjugate
heat equation imply a uniform Sobolev inequality under Ricci-harmonic map flow.
This type of proof is standard as contained in [Davies 1989, Chapter 2]. The same
procedures have been adapted in [Zhang 2007] for Kähler–Ricci flow; see also [Ye
2007; Hsu 2008]. For completeness we give the summary of the approach.

For any t ∈ [0, T ), we define the operator

(7-1) L := −1g +
Sg + supM S−g

4
.

Since Rg( · , τ ) ≥ −supM Rg( · , τ ), we know that 8 = 1
4(Sg + supM S−g ) ≥ 0,

8 ∈ L∞(M). Then L ≥ 0 and is essentially a self-adjoint operator on L2(M)
with the associated quadratic form

(7-2) Q(v)=
∫

M
(|∇v|2+8v2) dµg ∀v ∈W 1,2(M).

By the heat kernel convolution property, we have

(7-3) e−t Lw0 =

∫
M

H(x, t; y)w0(y) dµg(y),

where e−t L is a self-adjoint positivity preserving semigroup for all t ≥ 0. It is also
a contraction on L∞(M) and L1(M) for all t ≥ 0. Then

(7-4) ‖e−t Lw0‖∞ ≤ C0t−m/2
‖w0‖1.

The next step is to apply a theorem in [Davies 1989], which we state below as a
lemma.

Lemma 7.1. If m ≥ 2, then a bound of the form

(7-5) ‖e−t Lw0‖∞ ≤ C1t−m/4
‖w0‖2

for all t > 0 and all w0 ∈ L2(M) is equivalent to a bound of the form

(7-6) ‖w0‖
2
2m/(m−2) ≤ C2 Q(w0) ∀w0 ∈W 1,2(M).

By Lemma 7.1 we can prove that

(7-7)
(∫

M
v2m/(m−2) dµg

)(m−2)/2

≤ A0

∫
M

(
|∇v|2+ 1

4(Sg + sup
M

S−g )v
2) dµg

using an estimate of the form (1-9). The only thing remaining for us to show is that
estimates (7-4) and (7-5) are equivalent. We do this via the following lemma and
the Hölder inequality.
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Lemma 7.2. Suppose m ≥ 2 and T <∞. Let C1 > 0 be the same as C1 in (7-5).
Then we have

(7-8) ‖e−t Lw0‖2 ≤ C1t−m/4
‖w0‖1 ∀w0 ∈ L1(M).

Now write e−t Lw0 = e−1/2t Le−1/2 t Lw0 and by assuming (7-5), we have

‖e−t Lw0‖∞ ≤ C1t−m/4
‖e−1/2 t Lw0‖2 ≤ C2

1 t−m/2
‖w0‖1.

Similarly, combining the fact that e−t L is a contraction on L∞(M) with bound (7-4)
gives us (7-5). Indeed,

‖e−t Lw0‖∞ =

∣∣∣∣∫
M

H(x, t; y)w0(y) dµg(y)
∣∣∣∣

≤

(∫
M

Hq ′(x, t; y)µg(y)
)1/q ′(∫

M
w

q
0µg(y)

)1/q

≤ Ct−m/2q
‖w0‖q ,

for allw0 ∈ Lq(M) with 1/q= 1−1/q ′ and
∫

M H(x, t : y) dµg ≤ 1. Here we take q
to satisfy 1≤ q <m for obvious reason. (Though, by the Riez–Thorin interpolation
theorem, the above holds for any 1≤ q <∞ since e−t L is a contraction on L1(M)
and L∞(M).)

The main result of this section is as follows.

Theorem 7.3. With the conditions of the theorem in the introduction, we claim that
estimate (1-8) implies the uniform Sobolev inequality (1-7).

Proof. Based on the previous argument and a modification of the calculation in
[Zhang 2007], we define the operator L̃ = L + 1, which also has all the properties
of L , (L̃ ≥ 0 and generates a symmetric Markov semigroup). Then for any positive
constant c depending on m, T , a lower bound for Rg0 and an upper bound for A0

such that for all t ∈ [0, T ) and v ∈ Dom(L̃)⊆W 1,q(M),

(7-9) ‖L̃−1/2w‖mq/(m−q) ≤ c‖w‖q ∀w ∈W 1,2
0 (M)

holds for m ≥ 3. Since L̃−1/2 is of weak type (p, q), p = mq/(m − q) for any
1< q < m. A simple analysis and the Marcinkiewicz interpolation theorem tell us
that L̃−1/2 is a bounded operator from Lq to L p and that (7-9) holds.

Define v(x, t) = L̃−1/2w(x, t), which implies w(x, t) = L̃1/2v(x, t). Taking
q = 2, we have

‖w‖22 =

∫
M

L̃1/2v L̃1/2v dµg =

∫
M
(L̃v)v dµg =

∫
M
((L + 1)v)v dµg.

Combining with (7-9) and (7-6), we obtain the Sobolev inequality

(7-10) ‖v‖22m/(m−2) ≤ cC2

(
Q(v)+

∫
M
v2µg

)
,

whereby (1-7) follows with A = cC2 and B = 1
4 cC2(supM Sg + 1). �
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Remark 7.4. Fixing t0 during (RH)α-flow, it is clear that H̃ = e−1 H is the heat
kernel of L̃ and that∫

M
H̃(x, t; y) dµg(y)≤

∫
M

H(x, t; y) dµg(y)≤ 1.

By the upper bound for H , we are sure that H̃ obeys the global upper bound

H̃(x, t; y) dµg(y)≤ C̃t−m/2, t > 0,

where C̃ depends on m, A0, B0, t0 and T . Similarly,

‖e−t L̃w‖∞ = ‖e−t e−t L̃
‖∞ ≤ e−tCt−m/2

‖w‖1 = C̃t−m/2
‖w‖1.

As a corollary, suppose

λα0 = inf
‖v‖2=1

∫
M
(4|∇v|2+ Sgv

2) dµg0 > 0.

It can be proved by following [Zhang 2007] that Sobolev inequality (5-2) holds
with B = B(t = 0)= 0 on a compact manifold (M, g0); i.e.,

(7-11)
(∫

M
v2m/(m−2) dµg0

)(m−2)/m

≤ Ã0

∫
M
(4|∇v|2+ Sgv

2) dµg0,

where Ã depends only on m, g0 and λα0. Therefore, we have the following result.

Corollary 7.5. Let (M, g) be a compact Riemannian manifold of dimension m ≥ 3
and the metric g(t) evolved by the (RH)α-flow. Assume that L2-Sobolev embedding
(7-11) holds true with respect to the initial metric g(0)= g0. Then, there exists a
positive constant Ã depending on Ã0 such that for all v ∈W 1,2(M, g(t)), t ∈ [0, T ),

(7-12)
(∫

M
v2m/(m−2) dµg(t)

)(m−2)/m

≤ Ã
∫

M
(4|∇v|2+ Sgv

2) dµg(t),

and

(7-13)
∫

M
v2 ln v2 dµg(t) ≤ σ

2
∫

M
(4|∇v|2+ Sgv

2) dµg(t)−
m
2

ln σ 2
+

m
2

ln m A
2e
,

where σ > 0.

Remark 7.6. The smallest eigenvalue is an important quantity that gives a better
understanding of the geometric nature of the underlying manifold. For instance, con-
sider the operator semigroup e−t L generated by L :=−1+8, with8 ∈ L∞(M, g).
By spectral decomposition, we write a positive solution on M as

U = e−t Lu =
∞∑
j=1

e−λ j tψ j 〈u, ψ j 〉L2(M)
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for u ∈ L2(M) satisfying the Cauchy problem

∂

∂t
(e−t Lu)=−Le−t Lu,

U |t=0 = u,

and the eigenvalue problem Lψ = λψ , where {ψ j }
∞

j=1 forms a complete set of
L2-orthonormal eigenfunctions of L and the corresponding eigenvalues can be
arranged in a nondecreasing order λ1 ≤ λ2 ≤ · · · , with λ j →∞. An interested
reader will find the books [Davies 1989] and [Schoen and Yau 1994] useful in
this respect.
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University of Rochester, NY, for the useful discussions he had with him when he
visited the University of Rochester in February 2014. His research is supported by
the Tertiary Education Trust Fund, Federal Republic of Nigeria.

References

[Aubin 1976] T. Aubin, “Problèmes isopérimétriques et espaces de Sobolev”, J. Differential Geometry
11:4 (1976), 573–598. MR 56 #6711 Zbl 0371.46011
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ON J-HOLOMORPHIC CURVES
IN ALMOST COMPLEX MANIFOLDS WITH
ASYMPTOTICALLY CYLINDRICAL ENDS

ERKAO BAO

Symplectic field theory is the study of J-holomorphic curves in almost com-
plex manifolds with cylindrical ends. One natural generalization is to re-
place “cylindrical” by “asymptotically cylindrical”. We generalize a num-
ber of asymptotic results about the behavior of J-holomorphic curves near
infinity to the asymptotically cylindrical setting. We also sketch how these
asymptotic results allow compactness theorems in symplectic field theory to
be extended to the asymptotically cylindrical case.
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1. Introduction

Introduced by Gromov [1985], J-holomorphic curves have been studied inten-
sively in closed symplectic manifolds. Hofer [1993] studied the behaviors of
J-holomorphic curves in symplectizations of contact manifolds, which are noncom-
pact. Shortly after that, Eliashberg, Givental and Hofer [2000] invented symplectic
field theory, which greatly helps us understand symplectic manifolds and contact
manifolds. In most of the previous literature, the almost complex structure J is
cylindrical near the ends of the noncompact symplectic manifolds. Here cylindrical
means that J is independent of the radial direction. In [Bourgeois et al. 2003] the
notion was introduced of an asymptotically cylindrical almost complex structure,
which is a natural generalization of a cylindrical almost complex structure. How-
ever, no results corresponding to the notion of asymptotically cylindrical almost
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Keywords: asymptotically cylindrical almost complex structure, symplectic field theory, compactness,

Hofer energy, J-holomorphic curve, Morse–Bott, stable Hamiltonian structure.
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complex structures in that paper have been proven. Intuitively, we expect similar
results as in the cylindrical case. However, the original proofs rely heavily on
the cylindrical nature of the almost complex structure, which prevents us from a
direct generalization to the asymptotically cylindrical case. In this paper, we give a
modified definition of asymptotically cylindrical almost complex structure, which
includes an exponential decay condition that is satisfied in all interesting examples,
and prove some parallel analytical results as in the cylindrical case. Based on these
results we can compactify the moduli space of J-holomorphic curves in almost
complex manifolds with asymptotically cylindrical ends by adding the holomorphic
buildings introduced by [Bourgeois et al. 2003].

This generalization is needed for application purposes, since in many cases the
natural almost complex structure is only asymptotically cylindrical (see Examples
2.5 and 4.1). For instance, we can use the generalized results to prove Gromov’s
monotonicity theorem with multiplicity (see [Bao 2014]). We also take this chance
to fill in some gaps in the literature.

In the asymptotically cylindrical case, the proofs of some theorems are signif-
icantly different and more sophisticated than the proofs in the cylindrical case
(see the proofs of Proposition 3.4, Theorem 2.8 and Theorem 3.7, for exam-
ple). The extra difficulties mainly come from the following two facts: (1) the
translations in the cylindrical almost complex manifold are not J-holomorphic
anymore; (2) the unmodified Hofer energy is not positive when restricted to J-
complex planes, and the modified Hofer energy is not closed. Crucial uses of
Gromov’s monotonicity theorem are the main ingredients to overcoming these
extra difficulties.

In Section 2, we give the definition of asymptotically cylindrical almost complex
manifolds and the definition of Hofer energy of J-holomorphic curves in this context.

In Section 3, we give the proofs of the main results listed in Section 2. The
proofs follow the schemes of [Hofer 1993; Hofer et al. 2001; Hofer et al. 2002;
Bourgeois 2002; Bourgeois et al. 2003].

In Section 4, we give the definition of almost complex manifolds with asymptot-
ically cylindrical ends and the definition of Hofer energy in this context. Finally
we state and outline the proof of the compactness result in this context.

2. Asymptotically cylindrical almost complex structures

2A. Definitions. Let V be a smooth closed oriented manifold of dimension 2n+1,
and let J be a smooth almost complex structure in W := R+× V . Assume that
the orientation of W determined by J is the same as the orientation coming from
the standard orientation of R+ and the orientation of V . Let R := J (∂/∂r) be
a smooth vector field on W , and let ξ be a subbundle of the tangent bundle TW
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defined by ξ(r,v) = (0× TvV )∩ J (0× TvV )⊂ T(r,v)W , for (r, v) ∈W . The tangent
bundle TW splits as TW = R(∂/∂r)⊕R(R)⊕ ξ .

Define a 1-form λ on W by λ(ξ)= 0, λ(∂/∂r)= 0, λ(R)= 1, and a 1-form σ

on W by σ(ξ)= 0, σ(∂/∂r)= 1, σ(R)= 0.
We call a tensor on W translationally invariant if it is independent of the

r -coordinate. Let fs :W →W be the translation along the R+-direction defined by
fs(r, v) := (r + s, v).

Definition 2.1. Under the above notation, J is called asymptotically cylindrical at
positive infinity if, for all l ∈ Z≥0, the following five conditions are satisfied:

(AC1) There exists a smooth translationally invariant almost complex structure J∞
on W and constants K+l , δl > 0 such that

(1)
∥∥∇l(J − J∞)|[r,+∞)×V

∥∥
C0 ≤ K+l e−δlr

for all r ≥ 0, where ‖ · ‖C0 is computed using a translationally invariant
metric gW on W (for example, gW = dr2

+ gV ), and ∇ is the corresponding
Levi-Civita connection. We further require that K+l is sufficiently small
such that the ω defined in Equation (2) satisfies requirements (a) and (b) in
Section 2B. (Remark 2.2 explains that K+l being small is not restrictive.)

(AC2) i(R∞) dλ∞= 0, where R∞ := lims→∞ f ∗s R, λ∞ := lims→∞ f ∗s λ, and both
limits exist by (AC1).

(AC3) R∞(r, v)= J∞(∂/∂r) ∈ 0× TvV .

(AC4) There exists a closed 2-form ω∞ on V such that i(R∞)ω∞ = 0.

(AC5) ω∞( · , J∞ · ) is a metric on ξ∞, where ξ∞ = lims→∞ f ∗s ξ .

Remark 2.2. The definition we use is slightly different from the one in [Bourgeois
et al. 2003]. We require that J converges to J∞ exponentially fast in condition (AC1).
This is the accurate condition to guarantee that the J-holomorphic curve converges
to the periodic orbits of R∞ exponentially fast by the footnote of formula (35). If
we are only interested in the behavior of a J-holomorphic curve near infinity, then
the requirement that K+l is small can be achieved by restricting W to r ≥ r0 for
some large r0.

We can restate the above conditions using the notion of hamiltonian structure
as in [Eliashberg 2007]. That the 2-form ω∞ has rank 2n says that (V, ω∞) is a
hamiltonian structure. The conditions (AC3), i(R∞)ω∞ = 0 = i(R∞) dλ∞ and
λ∞(R∞) = 1 say that (V, ω∞) is a stable hamiltonian structure. The condition
ξ∞ = ker λ∞, that J∞ is an almost complex structure on ξ∞, and that J∞ is
compatible with ω∞ (by (AC5)) imply that (λ∞, J∞) is a framing of (V, ω∞). If
in addition ω∞ = dλ∞, then we say (V, ω∞) is of contact type.
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We call (λ, J ) defined as above an asymptotically cylindrical framing of the
stable hamiltonian structure (V, ω∞).

Similarly, we can define the notion of J being asymptotically cylindrical on
R−× V at −∞. When we say J is asymptotically cylindrical, we choose ω±∞
without mention.

The following definition is the case considered in [Hofer 1993; Hofer et al. 2001;
Hofer et al. 2002; Bourgeois 2002; Bourgeois et al. 2003].

Definition 2.3. An almost complex structure J on R±×V is said to be a cylindrical
almost complex structure at±∞ if J is an asymptotically cylindrical almost complex
structure at ±∞ and J is translationally invariant near ±∞.

An almost complex structure J on R × V is said to be a cylindrical almost
complex structure if J is asymptotically cylindrical at both∞ and −∞ and J is
translationally invariant.

Example 2.4 (Symplectization). Assume (V, ξ) is a contact manifold with contact
1-form λ and Reeb vector field R, i.e., ξ = ker λ, λ∧ (dλ)n 6= 0, iR dλ = 0, and
λ(R)= 1. Let ω∞ = dλ and let Jξ be an almost complex structure in ξ such that it
is compatible with ω∞|ξ , i.e., dλ( · , Jξ · ) is a metric on ξ . We extend Jξ to R× V
by setting J (∂/∂r)= R. Then J is a cylindrical almost complex structure and, in
particular, an asymptotically cylindrical almost complex structure at ±∞.

Refer to [Bourgeois et al. 2003] for other interesting examples of cylindrical
almost complex structures.

Example 2.5. Assume J is a smooth almost complex structure on R2n+2 with
J (0) = J0(0), where J0 is the standard complex structure on R2n+2. Consider
R2n+2

\{0} and pick a polar coordinate chart

ϕ : R−× S2n+1
→ R2n+2

\{0}, (r,2) 7→ er2,

where we view S2n+1 as the unit sphere inside R2n+2. Let λ−∞ be the standard
contact form on S2n+1. Define the 2-form ω−∞ on R−× S2n+1 by ω−∞ = dλ−∞.
Now it is clear that J |R−×S2n+1 is an asymptotically cylindrical almost complex
structure near −∞.

By (AC1) and (AC3) we can see that R∞ is a translationally invariant vector
field on W and that it is tangent to each level set {r}× V , so we can view R∞ as
a vector field on V . Let φt be the flow of R∞ on V , i.e., let φt

: V → V satisfy
(d/dt)φt

= R∞ ◦φt . Then we have

d
dt
[(φt)∗λ∞] = (φ

t)∗(i(R∞) dλ∞+ di(R∞)λ∞)= 0.

Hence φt preserves λ∞ and thus also ξ∞. Similarly, φt preserves ω∞.
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Let’s denote by P the set of periodic trajectories, counting their multiples, of
the vector field R∞ restricting to V . Notice that any smooth family of periodic
trajectories from P has the same period by Stokes’ theorem.

Definition 2.6. A T-periodic orbit γ of R∞ is called nondegenerate if dφT
|ξ∞(γ (0))

does not have 1 as an eigenvalue, where φt is the flow of R∞. We say that J is
nondegenerate if all the periodic solutions of R∞ are nondegenerate.

A weaker requirement for J than nondegenerate is Morse–Bott.

Definition 2.7. We say that J is of the Morse–Bott type if, for every T > 0, the
subset NT ⊂ V formed by the closed trajectories from P of period T is a smooth
closed submanifold of V such that the rank of ω∞|NT is locally constant and
Tp NT = ker(dφT

− Id)p.

We always assume J is of Morse–Bott type in this paper.

2B. Energy of J-holomorphic curves. Let J be an asymptotically cylindrical al-
most complex structure on W := R+× V . Let’s denote the projections from
TW = R(∂/∂r)⊕R(R)⊕ ξ to each subbundle by πr , πR and πξ . It is convenient
to introduce a 2-form ω on W by

(2) ω(x, y)= 1
2 [ω∞(πξ x, πξ y)+ω∞(Jπξ x, Jπξ y)].

It is easy to check that i(∂/∂r)ω = 0 = i(R)ω. We assume that K+l in (AC1) is
sufficiently small for all l ∈ Z≥0 such that ω satisfies the following two conditions:

(a) ω|ξ ( · , J · ) is a metric on ξ .

(b) There exist constants εl, δl > 0 such that, for all r ≥ 0,∥∥(ω−ω∞)|[r,+∞)×V
∥∥

C l ≤ εle−δlr .

Let (6, j) be a punctured Riemann surface (with or without boundary) and let
ũ = (a, u) : (6, j)→ (W, J ) be a J-holomorphic curve, i.e., T ũ ◦ j = J (ũ) ◦ T ũ.
The following definition is a modification of Hofer energy in the cylindrical almost
complex structure case. The ω-energy and λ-energy are defined, respectively, as

Eω(ũ)=
∫
6

ũ∗ω, Eλ(ũ)= sup
φ∈C

∫
6

ũ∗(φ(r) σ ∧ λ),

where C = {φ ∈ C∞c (R, [0, 1]) :
∫
+∞

−∞
φ(x) dx = 1}1, and λ, σ are defined as in the

beginning of Section 2A. Let’s define the energy of ũ by

E(ũ)= Eω(ũ)+ Eλ(ũ).

1In [Bourgeois et al. 2003], the set C is given by C = {φ ∈ C∞c (R,R+) :
∫
+∞

−∞
φ(x) dx = 1}. It is

easier to get uniform energy bounds using the modified definition in the case when the almost complex
structure is only asymptotically cylindrical.
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Equip R+× S1 with the standard complex structure and coordinate (s, t), and
consider a J-holomorphic map ũ = (a, u) :R+× S1

→W . Here we view S1 as R/Z.
Notice that

ũ∗ω = ω(πξ ũs, J (ũ)πξ ũs) ds ∧ dt,(3)

ũ∗(φ(r) σ ∧ λ)= φ(a)[σ(ũs)
2
+ λ(ũs)

2
] ds ∧ dt.(4)

Thus, we have Eω(ũ)≥ 0 and Eλ(ũ)≥ 0.

2C. Main results. The next two theorems tell us the behaviors of J-holomorphic
curves near infinity.

Theorem 2.8. Suppose that J is an asymptotically cylindrical almost complex
structure on R±× V at ±∞, and suppose that J is of the Morse–Bott type. Let
ũ = (a, u) : R±×R/Z→ R±× V be a finite energy J-holomorphic curve. Suppose
that the image of ũ is unbounded in R±× V . Then there exists a periodic orbit γ
of R∞ of period |T | with T 6= 0 such that, in C∞(S1),

lim
s→±∞

u(s, t)= γ (Tt) and lim
s→±∞

a(s, t)
s
= T .

The above theorem tells us that when |s| is large enough u(s, t) lies inside a small
neighborhood of γ . We will construct a coordinate chart for such a neighborhood
U ⊂ S1

×R2n
→ V , and then we can view the map ũ as

ũ(s, t)= (a(s, t), ϑ(s, t), z(s, t)) ∈ R±×R×R2n,

where ϑ is the coordinate of the universal cover of S1
= R/Z.

Theorem 2.9. Under the same assumption as in Theorem 2.8, there exist constants
Mβ, dβ, a0, ϑ0, s0 > 0 such that

|Dβ
{a(s, t)− Ts− a0}| ≤ Mβe∓dβs,

|Dβ
{ϑ(s, t)− Tt −ϑ0}| ≤ Mβe∓dβs,

|Dβz(s, t)| ≤ Mβe∓dβs,

for all s > s0 and β = (β1, β2) ∈ Z≥0×Z≥0.

3. Proof of main results

The proofs for R+×V and R−×V are almost the same, so we will focus on the R+×V
case. The proof is done in three steps. The first step is to show that the gradient of
a finite Hofer energy J-holomorphic curve ũ = (a, u) is bounded. The second step
is to show “subsequence convergence”: briefly, given a sequence of numbers Rk

converging to infinity, we want to show that there exists a subsequence Rkn such
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that u(Rkn , t) converges to a periodic solution of the vector field R∞. The third
step is to get an exponential decay estimate and then prove Theorems 2.8 and 2.9.

3A. Gradient bounds. We cite the following two lemmata for later use.

Lemma 3.1 [Hofer 1993]. Let (X, d) be a metric space. The following statements
are equivalent:

(a) (X, d) is complete.

(b) For every continuous map φ : X→ [0,+∞) and a given x ∈ X , ε > 0 there
exist x ′ ∈ X , ε′ > 0 such that
• ε′ ≤ ε, φ(x ′)ε′ ≥ φ(x)ε,
• d(x, x ′)≤ 2ε,
• 2φ(x ′)≥ φ(y) for all y ∈ X with d(y, x ′)≤ ε′.

Let J be an asymptotically cylindrical almost complex structure on W =R+×V
at ∞, and let ũ = (a, u) be a J-holomorphic map from B(0, R) to W , where
B(z0, R) := z = {s+

√
−1t ∈ C : |z− z0|< R}. Define

(5) ‖∇ũ‖ := sup
(s,t)∈B(0,R)

|∇ũ(s, t)|

and

‖ũ‖Ck(B(0,R),W ) := sup
x∈B(0,R)

k∑
|l|=0

|∇
l ũ(x)|,

where the norm |·| is taken with respect to the standard metric ds2
+dt2 on B(z0, R)

and to a translationally invariant metric gW on W (for example, gW = gV + dr2),
and ∇ is the Levi-Civita connection with respect to gW on W . The following lemma
says that the gradient bound implies a C∞ bound.

Lemma 3.2 (Gromov–Schwarz). Fix 0< ε < 1 and k ∈ N. If ‖∇ũ‖< C ′ <+∞,
then there exists a C(k,C ′) > 0 such that

‖ũ‖Ck(B(0,R−ε),W ) ≤ C(k,C ′),

where C(k,C ′) does not depend on ũ.

Proof. This is a standard result. Using the gradient bound of ũ, we can find uniform
coordinate charts both in domain and in target, then we can apply Proposition 2.36
in [Audin and Lafontaine 1994]. �

The following proposition, whose proof reveals the relation between the ω-energy
and trajectory of R∞, is one of the key steps in [Hofer 1993].

Proposition 3.3 [Hofer 1993]. Suppose J is a cylindrical almost complex structure
on R× V and let ũ = (a, u) : C→ R× V be a finite Hofer energy J-holomorphic
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plane (i.e., E(ũ)= Eλ(ũ)+ Eω(ũ) <+∞). If Eω(ũ)= 0 and ‖∇ũ‖ ≤ C for some
C > 0, then ũ is constant.

Proof. Suppose ũ is not constant. By (3), πξ ũs = 0= πξ ũt . Hence πξ ◦ T ũ is the
zero section of ũ∗ξ→C. Therefore we have u(s, t)= x ◦ f (s, t), where x :R→ V
satisfies ẋ = R(x) and f : C→ R is a smooth function. Consequently, fs = −at

and ft = as . Hence 8 := f + ia is a holomorphic function on C. Since ‖∇ũ‖ is
bounded, ‖∇8‖ is bounded; thus 8 is a linear function. By (4),

Eλ(ũ)= sup
φ∈C

∫
C

φ(a)(a2
s + a2

t ) ds ∧ dt =+∞,

via a linear change of variables. �

The proposition below generalizes Proposition 27 in [Hofer 1993] to the asymp-
totically cylindrical case.

Proposition 3.4. If J is an asymptotically cylindrical almost complex structure
on W = R+× V at ∞, and ũ is a J-holomorphic map from C to W satisfying
E(ũ) <+∞, then ‖∇ũ‖<+∞.

Proof. Suppose to the contrary that there exists a sequence of points zk ∈C satisfying
|zk | →∞, Rk := ‖∇ũ(zk)‖→∞, as k→∞. By Lemma 3.1, we can modify zk

such that there exists a sequence of εk > 0 satisfying εk→ 0, εk Rk→+∞, and
|∇ũ(z)| ≤ 2Rk for z ∈ B(zk, εk). Now there are two cases.

Case 1: {a(zk)}k∈Z is unbounded.
Then there exists a subsequence of zk , still denoted by zk , such that a(zk)→+∞

or a(zk)→−∞. Without loss of generality, let’s assume a(zk)→+∞. Pick a
further subsequence of zk such that a(zk)≥ 2k+2. Let ε′k :=min{εk, 2k/Rk}. Then
we have ε′k→ 0, ε′k Rk→+∞, and |a(z)− a(zk)| ≤ 2ε′k Rk ≤ 2(2k/Rk)Rk = 2k+1,
for |z− zk | ≤ ε

′

k . Thus, a(z)≥ a(zk)−2k+1
≥ 2k+2

−2k+1
= 2k+1, for |z− zk | ≤ ε

′

k .
Since ũ is J-holomorphic, we have

(6) J (ũ) ◦ T ũ = T ũ ◦ i.
Thus

(7) J∞(ũ) ◦ T ũ = T ũ ◦ i + (J∞− J )(ũ) ◦ T ũ.

By (AC1), we have, as k→+∞,2

sup
z∈B(zk ,ε

′

k)

‖(J∞− J )(ũ(z))‖→ 0.

2Actually, to prove Proposition 3.4, Proposition 3.5 and Theorem 3.7 we only need f ∗s J → J∞
in C1

loc as s→∞. We need the stronger condition (AC1) to prove exponential decay in Section 3C
and thus the main theorems.
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Define maps ũk(z) = (a(zk + z/Rk)− a(zk), u(zk + z/Rk)) from C to R× V .
For any R′ > 0, when k is large, ‖∇ũk(z)‖ ≤ 2 for z ∈ B(0, R′). By Lemma 3.2,
for any n ∈ Z≥0, there exists a C(n, R′) satisfying

(8) ‖ũk‖Cn(B(0,R′−1),W ) ≤ C(n, R′).

We also have

|∇ũk(0)| = 1,(9)

|∇ũk(z)| ≤ 2 for all |z| ≤ ε′k Rk .(10)

We apply the Ascoli–Arzela theorem to get a subsequence, still called ũk , satisfying
ũk → ũ∞ in C∞loc as k →∞. Here ũ∞ : C→ R× V is a J∞-holomorphic map
satisfying

|∇ũ∞(0)| = 1 and ‖∇ũ∞‖ ≤ 2.

Indeed, ũk satisfies

(11) J∞(ũk)T ũk = T ũki + ok,

where ‖ok‖C0(B(0,ε′k Rk))→ 0 as k→∞. Therefore, ũ∞ is J∞-holomorphic.
Now let’s look at its energy:

(12)
∫

B(0,R′)

ũ∗kω∞ =
∫

B(zk ,R′/Rk)

ũ∗ω+
∫

B(zk ,R′/Rk)

ũ∗(ω−ω∞).

From E(ũ) <+∞ we see that
∫

B(zk ,R′/Rk)
ũ∗ω→ 0 as k→+∞. We also have∣∣∣∣ ∫

B(zk ,R′/Rk)

ũ∗(ω∞−ω)
∣∣∣∣≤ ∫

B(zk ,R′/Rk)

(2Rk)
2
∣∣∣∣(ω∞−ω)( ũs

2Rk
,

ũt

2Rk

)∣∣∣∣ ds ∧ dt

≤ π

(
R′

Rk

)
(2Rk)

2ck→ 0,

where

ck := sup
z∈B(zk ,ε

′

k)

∣∣∣∣(ω∞−ω)( ũs

2Rk
,

ũt

2Rk

)∣∣∣∣,
and by (AC4) ck→ 0 as k→∞. Therefore,

Eω∞(ũ∞)=
∫
C

ũ∗
∞
ω∞ = 0.
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Moreover, we have Eλ∞(ũ∞)<+∞. Given φ ∈ C, define φk(r) :=φ(r−a(zk))∈ C.
Then we have

(13)
∣∣∣∣ ∫
B(0,R′)

ũ∗k(φ(r) dr ∧ λ∞)
∣∣∣∣

≤

∣∣∣∣ ∫
B(zk ,R′/Rk)

φk(a)ũ∗(σ ∧ λ)
∣∣∣∣+ ∣∣∣∣ ∫

B(zk ,R′/Rk)

φk(a)ũ∗(dr ∧ λ∞− σ ∧ λ)
∣∣∣∣.

We also have

(14)
∣∣∣∣ ∫
B(zk ,R′/Rk)

φk(a)ũ∗(σ ∧ λ)
∣∣∣∣≤ ∣∣∣∣∫

C

φk(a)ũ∗(σ ∧ λ)
∣∣∣∣≤ Eλ(ũ)

and

(15)
∣∣∣∣ ∫
B(zk ,R′/Rk)

φk(a)ũ∗(dr ∧ λ∞− σ ∧ λ)
∣∣∣∣

≤

∫
B(zk ,R′/Rk)

φk(a)(2Rk)
2
∣∣∣∣(dr ∧ λ∞− σ ∧ λ)

(
ũs

2Rk
,

ũt

2Rk

)∣∣∣∣ ds ∧ dt

≤
(
sup
x∈R

φ(x)
)
(2Rk)

2rkπ

(
R′

Rk

)2

→ 0,

where

rk := sup
z∈B(zk ,R′/Rk)

∣∣∣∣(dr ∧ λ∞− σ ∧ λ)
(

ũs

2Rk
,

ũt

2Rk

)∣∣∣∣→ 0

as k →∞. Combining (13), (14) and (15), we get the following result: given
R′ > 0 and φ ∈ C, there exists a constant K such that, for all k > K ,∣∣∣∣ ∫

B(0,R′)

ũ∗k(φ(r) dr ∧ λ∞)
∣∣∣∣≤ Eλ(ũ)+ 1.

Therefore, Eλ∞(ũ∞) ≤ Eλ(ũ) + 1. Altogether, we get a J∞-holomorphic map
ũ∞ : C→W satisfying

‖∇ũ∞‖ ≤ 2, |∇ũ∞(0)| = 1, Eω∞(ũ∞)= 0, E(ũ∞) <+∞.

By Proposition 3.3, we get a contradiction, which finishes the proof for Case 1.

Case 2: {a(zk)}k∈Z is bounded.
Now let us define ũk , differently from Case 1, by

ũk(z) := ũ ◦ lk = (a(zk + z/Rk), u(zk + z/Rk)).
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Then ũk satisfies

|∇ũk(z)| ≤ 2 for z ∈ B(0, εk Rk),

{ũk(0)}k∈Z+ is bounded,

|∇ũ(0)| = 1.

Similar to Case 1, by applying the Ascoli–Arzela theorem we get a subsequence,
still called ũk , converging to ũ∞ = (a∞,u∞) : C→W in the C∞loc sense. Here ũ∞
is J-holomorphic, satisfying

|∇ũ∞(0)| = 1,(16)

‖∇ũ∞‖ ≤ 2,(17) ∫
B(0,εk Rk)

ũ∗kω =
∫

B(zk ,εk)

ũ∗ω→ 0 as k→+∞.(18)

Thus, Eω(ũ∞)=
∫

C
ũ∗
∞
ω = 0. Moreover, given R′ > 0 and φ ∈ C, we have∫

B(0,R′)

ũ∗k [φ(r) σ ∧ λ] =
∫

B(zk ,R′/Rk)

ũ∗[φ(r) σ ∧ λ] → 0

as k→+∞. This means
∫

B(0,R′) ũ∗
∞
[φ(r) σ ∧λ] = 0, and so Eλ(ũ∞)= 0. Hence,

ũ∞ is constant, contradicting (16). �

Proposition 3.5. Suppose J is a cylindrical almost complex structure on R× V .
Let ṽ : R+× S1

→W be a J-holomorphic map with respect to the standard complex
structure on R+× S1, and assume E(ṽ) <+∞. Then we have

‖∇ṽ‖<+∞, where ‖∇ṽ‖ := sup
(s,t)∈R+×S1

|∇ṽ(s, t)|,

and the norm |·| is taken with respect to the standard metric ds2
+dt2 on R+×S1 and

to a translationally invariant metric gW on W , and ∇ is the Levi-Civita connection
with respect to gW .

Proof. The proof is almost the same as the proof of Proposition 3.4. �

Remark 3.6. Actually, we can see that we can get a gradient bound with respect
to a metric gD on the domain and a translationally invariant metric gW on W , as
long as the injectivity radius of gD is bounded away from 0.

3B. Subsequence convergence.

Theorem 3.7. Let J be an asymptotically cylindrical almost complex structure
on R±× V , and let ṽ = (a, v) : R±× S1

→ R±× V be a J-holomorphic curve
with E(ṽ) <+∞. Suppose that ṽ(R±× S1) is unbounded. Then for any sequence
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kn→+∞, there exists a subsequence kni such that v(kni , · ) converges in C∞(S1)

to a map S1
→ V given by t 7→ x(tT ), where x : R→ V is a |T |-periodic solution

of ẋ = R∞(x).

Proof. We prove this theorem for the case R+× V . The proof for the R−× V case
can be carried out similarly, and hence is omitted. By Proposition 3.5 we have
‖∇ṽ‖≤C for some C > 0. Since ṽ(R+×S1) is not bounded, there exists a sequence
of points (sk, tk) ∈ R+× S1 such that |a(sk, tk)| → +∞. Now there are two cases.

Case 1: a(sk, tk)→+∞.
Suppose that there exists a sequence of points (s ′k, t ′k) ∈ R+× S1 such that

a(s ′k, t ′k)<Q for some constant Q. Pick a subsequence of (sk, tk), still called (sk, tk),
and a subsequence of (s ′k, t ′k), still called (s ′k, t ′k), so that they satisfy s ′k<sk<s ′k+1 for
all k. This is possible because sk→+∞. Since ‖∇ṽ‖≤C , we have a(s ′k, t)<Q+C
for t ∈ S1. Consider the compact manifold N := [Q, Q+2C]×M ⊂W =R+×V .
Pick a φ ∈ C such that φ|[Q,Q+2C] > 0. By Gromov’s monotonicity theorem (see
for example Theorem 1.3 in [Hummel 1997]), there exists an ι > 0 such that∫

ṽ([s′k ,sk ]×S1)

ω+φ(r) σ ∧ λ≥ ι > 0

for all k. This contradicts the fact that E(ṽ) <+∞. Thus a(s, t)→+∞ uniformly
in t as s→+∞.

Define
ṽn(s, t)= (a(s+ kn, t)− a(kn, 0), v(s+ kn, t)).

Then the sequence ṽn(0, 0)= (0, v(kn, 0)) is bounded. Since ṽ is J-holomorphic, by
Lemma 3.2 and the Ascoli–Arzela theorem, there exists a subsequence, still called ṽn ,
converging to ṽ∞= (b, v∞) :R×S1

→W in C∞loc. We know ṽ∞ is J∞-holomorphic.
Define the translation map τn : R× S1

→ R× S1 by τn(s, t) = (s + kn, t). Now
observe that

(19)
∫

[−R,R]×S1

ṽ∗nω∞ =

∫
[−R+kn,R+kn]×S1

ṽ∗ω+

∫
[−R+kn,R+kn]×S1

ṽ∗(ω∞−ω).

For the first term on the right-hand side we have

(20)
∫

[−R+kn,R+kn]×S1

ṽ∗ω→ 0

as n→∞, since Eω(ṽ) is finite. By (AC4), the second term satisfies, as n→+∞,

(21)
∫

[−R+kn,R+kn]×S1

ṽ∗(ω∞−ω)≤

∫
[−R+kn,R+kn]×S1

|(ω∞−ω)(ṽs, ṽt)| ds ∧ dt→ 0.
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Combining (19), (20) and (21), we can see that
∫
[−R,R]×S1 ṽ

∗
∞
ω∞ = 0 and hence

Eω∞(ṽ∞)= 0, so there exists a smooth map f : R2
→ R such that ṽ∞ = (b, x ◦ f ),

where x : R → V is the solution of ẋ = R∞(x). Let 8 be the holomorphic
function defined by 8 = b + i f . Since ‖∇8‖ ≤ C , we know that 8 is linear.
Thus, 8(s, t) = α(s + i t)+ β, where α = T + il, β = m + in ∈ C are constants.
But b(s, t)− b(s, t + 1)= 0 implies l = 0, and b(0, 0)= 0 implies m = 0. Thus,

f = Tt + n,(22)

b = Ts.(23)

Therefore, as(kn, t)→ T uniformly in t as n→+∞ (recall the notation ṽ= (a, v),
ṽ∞ = (b, v∞)). Moreover, we have

(24)
∫

{0}×S1

ṽ∗
∞
λ∞ =

∫
{0}×S1

λ∞[(ṽ∞)t ] dt =
∫

{0}×S1

bs dt = T .

Claim: T 6= 0.
It follows from the claim and (22) that ṽ∞ is not constant. Indeed, by (22),

f (s, t+1)= T (t+1)+n, so x(T (t+1)+n)= x(Tt+n). Hence, x is T-periodic.

Proof. Suppose T = 0. Since a(s, t)→ +∞ uniformly in t as s → +∞, we
can choose a subsequence knm of kn and a sequence tm ∈ S1 so that we have
a(knm+1, tm+1)−a(knm , tm)≥ 4C . Denote a(knm , tm) by am . Then from ‖∇ũ‖ ≤ C
we get

a(knm , t) ∈ [am −C, am +C],(25)

a(knm+1, t)≥ am + 3C.(26)

Let ψm : R→ [0, 1] be a smooth map, satisfying ψm(r) = 1
7C (r − am +

3
2C) for

r ∈ [am − C, am + 5C] and φm = ψ
′
m ∈ C. If we further require C > 1, then

φm(r)≤ 1
7C < 1. Observe that∫

[knm ,knm+1 ]×S1

ṽ∗ d(ψm(r)λ)=
∫

{knm+1 }×S1

ṽ∗(ψm(r)λ)−
∫

{knm }×S1

ṽ∗(ψm(r)λ).

We also have, as m→+∞,∣∣∣∣ ∫
{knm+1 }×S1

ṽ∗(ψm(r)λ)
∣∣∣∣= ∣∣∣∣ ∫

{knm+1 }×S1

ψm(ṽ)λ(ṽt) dt
∣∣∣∣≤ ∫
{knm+1 }×S1

|λ(ṽt)| dt→ T = 0.
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Similarly,
∫
{knm }×S1 ṽ

∗(ψm(r)λ)→ 0. Thus, by Stokes’ theorem,

(27)
∫

[knm ,knm+1 ]×S1

ṽ∗ d(ψm(r)λ)→ 0.

Observe that

(28)
∫

[knm ,knm+1 ]×S1

ṽ∗(φm(r) σ ∧ λ)

=

∫
[knm ,knm+1 ]×S1

ṽ∗(φm(r) dr ∧ λ)+
∫

[knm ,knm+1 ]×S1

ṽ∗[φm(r) (σ − dr)∧ λ].

For the first term on the right-hand side, we have, for some c > 0, cm > 0,

(29)
∣∣∣∣ ∫
[knm ,knm+1 ]×S1

ṽ∗(φm(r) dr ∧ λ)
∣∣∣∣

≤

∣∣∣∣ ∫
[knm ,knm+1 ]×S1

ṽ∗ d(ψm(r)λ)
∣∣∣∣+ ∫
[knm ,knm+1 ]×S1

|ṽ∗(ψm(r) dλ)|

≤

∣∣∣∣ ∫
[knm ,knm+1 ]×S1

ṽ∗ d(ψm(r)λ)
∣∣∣∣+ ∫
[knm ,knm+1 ]×S1

ṽ∗(cω+ cm σ ∧ λ).

The second inequality is due to the fact that cω+cm σ∧λ is positive on all J-complex
planes; also since dλ→ dλ∞ and i(∂/∂r) dλ∞ = 0= i(R∞) dλ∞, we can require
that c is independent of m and cm goes to 0 as m→+∞. Similarly, we have

(30)
∣∣∣∣ ∫
[knm ,knm+1 ]×S1

ṽ∗[φm(r) (σ − dr)∧ λ]
∣∣∣∣≤ ∫
[knm ,knm+1 ]×S1

ṽ∗[cω+ cm σ ∧ λ].

When k is large, from (28), (29) and (30) we get
(31) ∫
[knm ,knm+1 ]×S1

ṽ∗(φm(r) σ ∧ λ)≤ D
{∣∣∣∣ ∫
[knm ,knm+1 ]×S1

ṽ∗ d(ψm(r)λ)
∣∣∣∣+ ∫
[knm ,knm+1 ]×S1

ṽ∗ω

}
,

for some constant D > 0 which does not depend on m and ṽ. The term∫
[knm ,knm+1 ]×S1

ṽ∗(cm σ ∧ λ)
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does not show up on the right-hand side of (31) because it is absorbed by the
left-hand side, since φm |[knm ,knm+1 ]×S1 = 1/7. Since Eω(ṽ) is finite,∫

[knm ,knm+1 ]×S1

ṽ∗ω→ 0.

Together with (27), we get ∫
[knm ,knm+1 ]×S1

ṽ∗(φm(r) dr ∧ λ)→ 0.

Summing up, we have, as m→+∞,

(32)
∫

[knm ,knm+1 ]×S1

ṽ∗(ω+φm(r) dr ∧ λ)→ 0.

Now consider Nm = [am + C, am + 3C] × V ⊆ W with an almost complex
structure Jm := J |Nm and a nondegenerate 2-form �m := ω + φm(r) σ ∧ λ|Nm .
Because of the asymptotic condition, we can find uniform constants C0, r0 > 0
such that by Gromov’s monotonicity theorem, for any Jm-holomorphic curve
hm : (S, j) → (Nm, Jm), where (S, j) is a Riemann surface with boundary, if
the boundary hm(∂S) is contained in the complement of the ball B(hm(s0), r),
where s0 ∈ Int Sm and r < r0, then we have∫

hm(S)∩B(hm(s0),r))

�m ≥ C0r2.

By (25) and (26) we can see ũ(knm , S1)∩Int Nm =∅ and ũ(knm+1, S1)∩Int Nm =∅.
This contradicts (32). Thus, T 6= 0. �

Case 2: a(sk, tk)→−∞.
We deal with this case similarly. �

Corollary 3.8. Under the assumptions of Theorem 3.7, there exists a number T > 0
such that, as s→±∞,

(33) ∂β[a(s, t)− Ts] → 0

uniformly in t, provided β = (β1, β2) ∈ Z≥0×Z≥0 and |β| = β1+β2 ≥ 1.

Proof. By Theorem 3.7, there exist a number T > 0 and a sequence of numbers s ′k
such that s ′k → +∞ and v(s ′k, · )→ x(T · ), for some T-periodic orbit x of R∞.
Suppose (33) is not true for this T . Then there exists a sequence of points (sk, tk)
such that sk→+∞ and ∂β[a(s, t)− Ts]|(sk ,tk)→ c as k→+∞ for some |β| ≥ 1,
where c is a nonzero constant (or±∞). Define āk(s, t) :=a(s+sk, t+tk)−a(sk, tk)
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and then āk(0, 0)= 0. From the proof of Theorem 3.7 we get a subsequence of k,
still called k, and a T ′-periodic orbit x ′ of R∞ such that āk→T ′s in C∞loc(R

+
×S1,R).

By a straightforward modification of the proof of Proposition 2.1 in [Hofer et al.
2001] to the Morse–Bott case, we can show that x ′ and x lie in the same component
of NT (see Definition 2.7) and in particular T ′ = T . Thus,

∂β[a(s, t)− Ts]|(sk ,tk) = ∂
β
[a(s+ sk, t + tk)− a(sk, tk)− Ts]|(0,0)

= ∂β(āk(s, t)− Ts)|(0,0)

→ 0,

which contradicts the assumption. �

To prove Theorems 2.8 and 2.9, we need to obtain exponential decay estimates.

3C. Exponential decay estimates. In this subsection, we will follow the schemes
in [Bourgeois 2002] to prove Theorems 2.8 and 2.9. The strategy is as follows: firstly,
we pick a neighborhood U of the orbit γ , restrict the J-holomorphic curve ũ to a
sequence of cylinders inside the domain so that the images lie in the neighborhood
and satisfy certain inequalities, and estimate the behaviors of each finite cylinder
by the behaviors of boundaries of the cylinder. Secondly, since we have a sequence
of circles in the domain whose images lie in U , we get that the cylinders bounded
by the circles also lie in U , based on the estimates. We also show that near the end
of the domain ũ satisfies the inequalities. Once these are achieved, Theorems 2.8
and 2.9 follow easily.

In order to study the J-holomorphic curve equation around γ , we need to intro-
duce a good coordinate chart around a neighborhood of γ .

Lemma 3.9 [Bourgeois et al. 2003]. Suppose that J∞ is a cylindrical almost
complex structure of the Morse–Bott type on R+× V at∞. Let N be a component
of the set NT ⊂ V (see Definition 2.7), and let γ be one of the orbits from N.

(a) If T is the minimal period of γ then there exists a neighborhood U ⊃ γ in V
such that U ∩ N is invariant under the flow of R∞, and one finds coordinates
(ϑ, x1, . . . , xn, y1, . . . , yn) of U such that

N = {x1, . . . , x p = 0, y1, . . . , yq = 0},

for 0≤ p, q ≤ n, and

R∞|N =
∂

∂ϑ
, ω∞|N = ω0|N ,

where ω0 =
∑n

i=1 dxi ∧ dyi .

(b) If γ is an m-multiple of a trajectory γ̄ of a minimal period T/m then there
exists a tubular neighborhood U of γ̄ such that its m-multiple cover U together
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with all the structures induced by the covering map from U → U from the
corresponding objects on U satisfy the properties of part (a).

Proof. Refer to Lemma A.1 in [Bourgeois et al. 2003]. �

Using this coordinate chart, we can work locally in U ⊂ (R/T Z)×R2n and make
T the minimal period of γ . Denote by zin the coordinate (x1, . . . , x p, y1, . . . , yq)

and by zout the coordinate (xn−p+1, . . . , xn, yn−p+1, . . . , yn). We easily obtain the
following lemma about the behavior of a J-holomorphic curve in the zout direction.

Lemma 3.10. Let J be an asymptotically cylindrical almost complex structure on
W = R+× V , and let ũ be a finite Hofer energy J-holomorphic curve from R+× S1

to W . Suppose [mk, nk] is a sequence of intervals in R+ with mk → +∞ and
ũ([mk, nk]× S1)⊂U. Then we have, as k→+∞,

sup
(s,t)∈[mk ,nk ]×S1

|∂βzout(s, t)| → 0

for all β ∈ Z≥0×Z≥0.

Proof. The proof is very similar to the proof of Corollary 3.8, so we omit it here. �

Let’s study the J-holomorphic curve equation in R+×U ⊂ R+× (R/T Z)×R2n .
Define θ := [s0, s1] × S1 for some s0 < s1 and let ũ = (a, ϑ, z) : θ → R×U be a
J-holomorphic curve. Then we have

(34) (as, ϑs, zs)+ J (ũ)(at , ϑt , zt)= 0.

Rewriting this equation according to its z-, ϑ-, and a-components we get3

zs +Mzt + Szout+ L = 0,(35)

as −ϑt + Bzout+ B ′zt + N = 0,(36)

at +ϑs +Czout+C ′zs + O = 0,(37)

where M , S, B, B ′, C , C ′ depend on a(s, t), ϑ(s, t), z(s, t) and are bounded by
a constant C0, and L , N , O depend on a(s, t), ϑ(s, t), z(s, t) and are bounded
by C0e−δa .

Define an operator A(s) :W 1,2(S1,R2n)→ L2(S1,R2n) by

(A(s)w)(t)=−M(ũ(s, t))wt(t)− S(ũ(s, t))wout(t).

Then by (35) we get

(38) A(s)z(s, · )= zs + L .

3From (35) we can see that if we require z, zs and zt to decay exponentially, L must decay expo-
nentially. The condition f ∗s J → J∞ in C∞loc is not enough to guarantee that L decays exponentially.
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Notice that A(s) depends on the map ũ = (a, ϑ, zin, zout). If we do not use the
original J-holomorphic curve ũ and instead we substitute ϑ(s, t)= ϑ(s0, 0)+ Tt ,
a(s, t)= Ts, zout(s, t)= 0, and zin(s, t)= zin(s0, t), then we get another operator
denoted by Ã(s). We can easily see that lims→+∞ Ã(s) exists and denote the
limiting operator by A0. Similarly, we get two matrices M0(t) and S0(t), and then
we have

M0(t)2 =−id,

and

(39) (A0w)(t)=−M0(t)wt(t)− S0(t)wout.

Consider an inner product on L2(S1,R2n) defined by

(40) 〈u, v〉0 =
∫ 1

0
〈u,−J0 M0v〉 dt,

where the inner product is given by 〈 · , · 〉 = ω0( · , J0 · ), and J0 is the standard
complex structure on R2n . With respect to the inner product 〈 · , · 〉0, one can check
directly that M0 is antisymmetric and that A0 is self-adjoint.

Remark 3.11. A0 is injective if and only if γ is nondegenerate.

It is not hard to see that ker A0 consists of the constant vector fields in N along γ0.
Denote by P0 the projection onto ker A0 with respect to 〈 · , · 〉0, and let Q0 := I−P0.
It is easy to check the following lemma.

Lemma 3.12. Q0 satisfies

(Q0w)t = wt , (Q0w)s = Q0ws, (Q0w)out = wout, Q0 A0 = A0 Q0.

The following lemma will be needed in proving Lemma 3.14.

Lemma 3.13. There exists a constant C > 0 such that

‖A0 Q0w‖0 ≥ C(‖Q0w‖0+‖(Q0w)t‖0)

for w ∈W 1,2(S1,R2n), where ‖ · ‖0 is defined using the inner product 〈 · , · 〉0.

Proof. To prove the lemma we only need to prove that ‖A0 Q0w‖0 ≥ C ′‖Q0w‖0

for some C ′ > 0, because by definition we have

(41) A0 Q0w =−M0(Q0w)t − S0 Q0w.

Suppose to the contrary that there exist an εn→0 andwn ∈W 1,2(S1,R2n) satisfying
‖Q0wn‖0 = 1 and ‖A0 Q0wn‖0 ≤ εn . Then we have

‖(Q0wn)t‖0 ≤ ‖M0 A0 Q0wn‖0+‖M0S0 Q0wn‖0 ≤ εn +C ′′.
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Therefore, Q0wn is bounded in W 1,2(S1,R2n). Since W 1,2(S1,R2n) embeds com-
pactly in L2(S1,R2n) we get a subsequence of wn , still denoted by wn , such that
Q0wn is a Cauchy sequence in L2(S1,R2n). But it is easy to see that (Q0wn)t is
also a Cauchy sequence in L2(S1,R2n). Therefore, Q0wn converges to some η
in W 1,2(S1,R2n), so η is an element of ker A0. Because η also lies in the orthog-
onal complement of ker A0, we must have η = 0, which contradicts the fact that
‖η‖0 = limn→0 ‖Q0wn‖0 = 1. �

Define κ0(s) := (ϑ(s0, 0)−ϑ(s, 0), zin(s0, 0)− zin(s, 0)), g0(s) := 1
2‖Q0z(s)‖20.

Lemma 3.14. There exist δ = δ(β) > 0, [= [(β) > 0 and κ̄ = κ̄(β) > 0 such that
if , for any multi-indices β,

a(s0, 0)≥ [, |κ0(s0)| ≤ κ̄, sup
(s,t)∈θ

|∂βzout(s, t)| ≤ δ,

and, for any multi-indices β with |β|> 0,

sup
(s,t)∈θ

|∂β(a(s, t)−Ts)|≤ δ, sup
(s,t)∈θ

|∂β(ϑ(s, t)−Tt)|≤ δ, sup
(s,t)∈θ

|∂βzin(s, t)|≤ δ,

then we have, for s ∈ [s0, s],

g′′0 (s)≥ c2g0(s)− c2e−c1(s−s0),

where
s := sup{s ∈ [s0, s1] : |κ0(s ′)| ≤ κ̄ for all s ′ ∈ [s0, s]},

and c, c1, c2 > 0 are constants independent of s0 and s1.

Proof. All constants in the proof may depend on β. Notice that from the assumption
we have

sup
(s,t)∈θ

|∂β(ϑ(s, t)−ϑ(s, 0)− Tt)| ≤ δ, sup
(s,t)∈θ

|∂β(zin(s, t)− zin(s, 0))| ≤ δ,

for all multi-indices β.
Define an operator Ā(s)w =−M(ũ(s, t))wt(t)− S(ũ(s, t))wout(t) in the same

way as A(s) but using J∞ instead of J .
From (38) we get

(42) zs = A0z+ (10+ 1̃0κ0)zt + (1̂0+ 1̄0κ0)zout+ [A(s)− Ā(s)]z− L .

Applying Q0 to (42) gives us

(43) (Q0z)s = A0 Q0z+ Q0(10+ 1̃0κ0)(Q0z)t
+Q0(1̂0+ 1̄0κ0)(Q0z)out+ Q0[A(s)− Ā(s)]z− Q0L ,
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where 10 = M0−M and 1̂0 = S0− S, satisfying for any multi-indices β

sup
(s,t)∈θ

|∂β10(s, t)| ≤ Cδ, sup
(s,t)∈θ

|∂β1̂0(s, t)| ≤ Cδ,

and 1̃0κ0 = M0−M0 and 1̄0κ0 = S0− S0, satisfying for any multi-indices β

sup
(s,t)∈θ

|∂β1̃0(s, t)| ≤ C, sup
(s,t)∈θ

|∂β1̄0(s, t)| ≤ C.

We can require 0< δ < T/2, and then we get

a(s, t)≥ a(s0, 0)+
T
2
(s− s0)− δ ≥ ([− δ)+

T
2
(s− s0).

Because J is an asymptotically cylindrical almost complex structure, we get

‖Q0L‖0 ≤ c0e−c′0([−δ)e−c′0
T
2 (s−s0)

for some constants c0, c′0 > 0. Define c1 := c′0T/2 and c2 := c0e−c′0([−δ). Then
we have

‖Q0L‖0 ≤ c2e−c1(s−s0).

We also have

(44) ‖{∂β[A(s)− Ā(s)]}z‖0 ≤ c2e−c1(s−s0)‖Q0z‖0,W 1,2

for multi-indices β, by picking c0 larger if necessary.
Now we are ready to estimate g′′0 (s). Obviously we have

g′′0 (s)≥ 〈Q0zss, Q0z〉0.

Now let’s compute the right-hand side of the above inequality. Differentiating (43)
with respect to s, we obtain

(Q0z)ss = A0 Q0zs + Q0(10+ 1̃0κ0)(Q0z)st + Q0(10+ 1̃0κ0)s(Q0z)t

+ Q0(1̂0+ 1̄0κ0)(Q0zs)out+ Q0(1̂0+ 1̄0κ0)s(Q0z)out

+ Q0[A(s)− Ā(s)]sz+ Q0[A(s)− Ā(s)]zs − Q0Ls .

Thus we see that 〈Q0zss, Q0z〉0 contains 8 terms. When we are estimating these
terms, each time we see Q0zs , we replace it using (43). A straightforward calculation
using Lemma 3.13 and the fact that

−c2e−c1(s−s0)‖Q0z‖0,W 1,2 ≥−c2e−c1(s−s0)− c2e−c1(s−s0)‖Q0z‖20,W 1,2

gives us

g′′0 (s)≥ (1− 10Cδ− 10C |κ0| − 10Cc2e−c1(s−s0))g0(s)− c2e−c1(s−s0).
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From the definition of c2 we can see that if [ is large enough, c2 can be very close
to 0. Therefore,

g′′0 (s)≥ c2g0(s)− c2e−c1(s−s0).

We can require further that c1 > c > 0. �

From Lemma 3.14 we easily obtain the following lemma.

Lemma 3.15. Under the same assumption as in Lemma 3.14, we have for s0≤ s≤ s,

g0(s)≤max{g0(s0), g0(s)}
cosh

[
c
(
s− s0+s

2

)]
cosh

(
c s−s0

2

) +
c2

c2
1− c2

sinh(c(s− s))
sinh(c(s− s0))

.

Proof. Let

h(s) :=max{g0(s0), g0(s)}
cosh

[
c
(
s− s0+s

2

)]
cosh

(
c s−s0

2

) +
c2

c2
1− c2

1
sinh(c(s− s0))

×{sinh(c(s− s))+ e−c1(s−s0) sinh(c(s− s0))− e−c1(s−s0) sinh(c(s− s0))}.

Then h(s) satisfies

(45)


h′′(s)− c2h(s)=−c2e−c1(s−s0),

h(s0)=max{g0(s0), g0(s)},

h(s)=max{g0(s0), g0(s)}.

Let l(s) := g0(s)− h(s). Then l(s) satisfies

(46)


l ′′(s)− c2l(s)≥ 0,
l(s0)≤ 0,
l(s)≤ 0.

Then by the maximal principle we get l(s) ≤ 0 for s0 ≤ s ≤ s. Now the lemma
follows from the fact that

e−c1(s−s0) sinh(c(s− s0))− e−c1(s−s0) sinh(c(s− s0))≤ 0. �

Now let’s study the component zin.

Lemma 3.16. Let e be a unit vector in R2n with eout = 0. Under the assumption of
Lemma 3.14 and for s ∈ [s0, s], we have

|〈z(s), e〉0−〈z(s0), e〉0| ≤
8C
c

max(‖Q0z(s0)‖0, ‖Q0z(s)‖0)+ o(c2),

where o(c2) satisfies limc2→0 o(c2)= 0, and C is a constant independent of s0, s1.

Proof. The inner product of the Cauchy–Riemann equation (35) with e gives

d
ds
〈z, e〉0+〈Mzt , e〉0+〈Szout, e〉0+〈L , e〉0 = 0.
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From

〈Mzt , e〉0 =
∫ 1

0
ω0(M(Q0z)t ,M0e) dt

=−

∫ 1

0
ω0(Mt Q0z,M0e) dt −

∫ 1

0
ω0(M Q0z, (M0)t e) dt

we can see that

|〈Mzt , e〉0| ≤ C‖Q0z‖0.

Together with the facts |〈Szout, e〉0| ≤C‖Q0z‖0 and |〈L , e〉0| ≤ c2e−c1(s−s0) we get

〈z(s), e〉0−〈z(s0), e〉0 ≤
∫ s

s0

[2C‖Q0z(x)‖0+ c2e−c1(x−s0)] dx

≤ 2C
∫ s

s0

√
2g0(x) dx+

c2

c1
.

The proof is finished with a straightforward calculation using Lemma 3.15 and
the fact that

√
cosh u <

√
2 cosh(u/2). �

Remark 3.17. By requiring [ to be sufficiently large, we can make c2 sufficiently
small.

Now let’s estimate the derivatives of z.

Lemma 3.18. There exist δ = δ(β) > 0, [= [(β) > 0 and κ̄ = κ̄(β) > 0 such that
if , for any multi-indices β,

sup
(s,t)∈θ

|∂βzout(s, t)| ≤ δ, a(s0, 0)≥ [,

and, for any multi-indices β with |β|> 0,

sup
(s,t)∈θ

|∂β(a(s, t)−Ts)|≤ δ, sup
(s,t)∈θ

|∂β(ϑ(s, t)−t)|≤ δ, sup
(s,t)∈θ

|∂βzin(s, t)|≤ δ,

then we have, for s ∈ [s0, s],

‖∂βz(s)‖0 ≤ Cβ max
|β ′|≤|β|

{‖Q0∂
β ′z(s0)‖0, ‖Q0∂

β ′z(s)‖0}

√
cosh

(
c1
(
s− s0+s

2

))
cosh

(
c1
( s0−s

2

))
+ Dβ(c2)

√
sinh(c(s− s))
sinh(c(s− s0))

+ c2e−c1(s−s0),

where

s := sup{s ∈ [s0, s1] : |κ0(s ′)| ≤ κ̄ for all s ′ ∈ [s0, s]},
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and Cβ, c1 > 0 are constants independent of s0 and s1, and Dβ(c2) is a function
of c2 independent of s0 and s1, satisfying limc2→0 Cβ(c2)= 0, and l is the integer
in Definition 2.1.

Proof. Let’s prove the estimate for |β| = 1. The proof of the estimates of the higher
derivatives is almost the same. Refer to Lemma A.6 in [Bourgeois et al. 2003] for
the estimates for all derivatives in the cylindrical case.

Equation (42) can be rewritten as

(47) zs = A0z+ 1̇zt + 1̈zout+
...
1z− L ,

with 1̇ = 10 + 1̃0κ0, 1̈ = 1̂0 + 1̄0κ0, and
...
1 = [A(s)− Ā(s)]. If we define

W := (Q0z, ∂/∂s(Q0z), A0 Q0z, ∂/∂s(A0 Q0z)), then W satisfies

Ws =A0W +Q01̇Wt +Q01̈Wout+
...
1W −L,

where A0 = diag(A0, A0, A0, A0), Q0 = diag(Q0, Q0, Q0, Q0), and 1̇, 1̈,
...
1, L

satisfy similar estimates as 1̇, 1̈,
...
1, L respectively. Indeed, for |β| = 1 we can

derive this equation by direct computation. For general β, we can derive it by
induction on |β|. This equation is of the same type as (47). Copying the proofs of
Lemmata 3.14, 3.15 and 3.16, we can get the desired estimate for W . In particular,
we get the estimates for (Q0z)s and A0 Q0z.

From the equation zt = M0 A0 Q0z + M0 Q0S0zout we get the estimate for zt .
Applying P0 to (47), we get

(P0z)s = P01̇zt + P01̈zout+ P0
...
1z− P0L .

This equation together with the estimate of
...
1z (see (44)) gives us the desired

estimate for P0zs . Then the estimate for zs follows from zs = P0zs + Q0zs . �

Lemma 3.19. Define

ϑ0 =

∫ 1

0

[
ϑ
( s0+s

2 , t
)
− Tt

]
dt, a0 =

∫ 1

0

[
a
( s0+s

2 , t
)
− Ts0

]
dt,

and define ã = a(s, t)−Ts−a0 and ϑ̃ = ϑ(s, t)−Tt−ϑ0. Under the assumptions
of Lemma 3.18, we have, for s ∈ [s0, s] and every multi-index β,

‖∂β(ã(s, t)‖2, ‖∂β(ϑ̃(s, t))‖2

≤ C1 max
|β ′|≤|β|+3

{‖Q0∂
β ′z(s0)‖

2
0, ‖Q0∂

β ′z(s)‖20}

+C1 max{‖ã(s0, · )‖
2
+‖ϑ̃(s0, · )‖

2, ‖ã(s, · )‖2+‖ϑ̃(s, · )‖2}+ o(c2),

where ‖ · ‖ is the L2-norm, o(c2) satisfies limc2→0 o(c2)= 0, and C1 is a constant
independent of ũ.
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Proof. We can modify the proofs of Lemmata 3.8–3.13 in [Hofer et al. 2002] in
the obvious way, similar to what we did in the proof of Lemma 3.14, and then use
Lemma 3.18 to prove this lemma. We omit the proof here, since it is essentially
not new.4 �

Remark 3.20. When s is infinity, we can get a better exponential decay estimate
using the same proof, and in that case the term o(c2) can be replaced by c2e−(s−s0).

Proof of Theorem 2.8. Let’s follow the proof in [Bourgeois 2002]. By Theorem 3.7,
we can find a sequence s0m→∞ such that

lim
m→∞

u(s0m, t)= γ (Tt), lim
m→∞

a(s0m, t)=±∞

for some T-periodic orbit γ of R∞. From the proof of Theorem 3.7, we can further
require for any multi-indices α with |α| > 0 we have supt∈S1 ‖∂αz(s0m, t)‖ → 0
as m→+∞.

Given σ > 0, let ζm > 0 be the largest number such that u(s, t) ∈ S1
×[−σ, σ ]2n

for all s ∈ [s0m, s0m + ζm]. Let θm := [s0m, s0m + ζm] × S1 and let κ0m(s) :=
(ϑ(s0m, 0)−ϑ(s, 0), zin(s0m, 0)− zin(s, 0)). Now we can define the operator A0m ,
similar to how it was defined before, in the obvious way.

By Corollary 3.8, given δ > 0 we have

sup
(s,t)∈θm

|∂β(a(s, t)− Ts)| ≤ δ

for those multi-indices β with |β| > 0, when m is large. This implies that
a(s0m, 0)→+∞ as m→+∞. Notice that the other requirements in Lemmata 3.14
and 3.18 are also satisfied; i.e., given δ > 0, there exists an mδ such that for m >mδ

we have
sup

(s,t)∈θm

|∂βzout(s, t)| ≤ δ

for multi-indices β, and

sup
(s,t)∈θm

|∂β(ϑ(s, t)− Tt)| ≤ δ,(48)

sup
(s,t)∈θm

|∂βzin(s, t)| ≤ δ

for those multi-indices β with |β|> 0. Indeed, if {(smk , tmk )} violates one of these
properties, we can define

ũmk (s, t) := (a(s− smk , t − tmk )− a(smk , tmk ), u(s− smk , t − tmk )).

4The proof of Proposition 3.4 in [Bourgeois 2002] is inaccurate, and this lemma fills in the gap.
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By Ascoli–Arzela, we can extract a subsequence, still called ũmk (s, t), such that
ũmk (s, t) converges in C∞loc to a J∞-holomorphic cylinder ũ∞ over a periodic
orbit γ ′ ∈ N . Since ũ∞ must satisfy those three properties, we get a contradiction.

By construction, |〈z(s0m), e〉0m | → 0 and ‖Q0m∂
αz(s0m)‖ → 0, for all multi-

indices α with |α| ≥ 0. Let κ̄m be the “κ̄” in Lemmata 3.14 and 3.18 applied
to ũ|θm and let sm := sup{s ∈ [s0m, s0m + ζm] : |κ0m(s ′)| ≤ κ̄m for all s ′ ∈ [s0, s]},
and notice that κ̄m can actually be chosen independent of m. We can extract a
subsequence so that u(sm, t) converges to a closed Reeb orbit γ ′′ ∈ N . Therefore,
‖Q0m∂

αz(sm)‖ → 0, for all multi-indices α with |α| ≥ 0. Since 〈z(sm), e〉0→ 0
and supt∈S1 |(∂/∂t)zin(sm, t)| → 0, we obtain supt∈S1 |zin(sm, t)| → 0. By Lem-
mata 3.14 and 3.18, we have

(49) sup
s∈[s0m ,sm ]

‖∂βz(s)‖0m→ 0

for |β| ≤ k. Therefore,

sup
(s,t)∈[s0m ,sm ]×S1

|zin(s, t)| ≤ sup
s∈[s0m ,sm ]

‖zin(s, · )‖C0(S1)

≤ C sup
s∈[s0m ,sm ]

‖zin(s, · )‖W 1,2(S1)

≤ C1

{
sup

s∈[s0m ,sm ]

‖(∂/∂t)zin(s, · )‖0l + sup
s∈[s0m ,sm ]

‖zin(s, · )‖0m

}
→ 0.

Lemma 3.19 and formula (48) imply that |ϑ(sm, 0)−ϑ(s0m, 0)| → 0 as m→∞.
Thus, we have sm = s0m + ζm for m large enough, and

sup
(s,t)∈[s0m ,s0m+ζm ]×S1

|z(s, t)| → 0

as m→∞. Therefore, ζm =+∞ for m large. �

Furthermore, we can show that the convergence of a J-holomorphic curve is
exponentially fast.

Proof of Theorem 2.9. Now with the help of the previous lemmata, the proof of the
third inequality is almost evident. Indeed, since s=+∞, Lemma 3.15 becomes

g0(s)≤
(

g0(s0)+
c2

c2
1−c2

)
e−c(s−s0).

Consequently, in the proof Lemma 3.16, we can get

|〈z(s), e〉0| ≤
∫
+∞

s
[2C‖Q0z(x)‖0+ c2e−c1(x−s0)] dx≤ C ′e−c(s−s0),
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where C ′ is independent of s. Similarly, we can get the corresponding statement of
Lemma 3.18 for s=+∞.

The proof for the rest is a straightforward modification of the original proof in
[Hofer et al. 2001]. �

So far we have studied the behaviors of a finite energy J-holomorphic curve
whose domain is an infinite cylinder. In order to compactify the moduli space of
holomorphic curves, we also need to understand the behavior of a finite energy
J-holomorphic curve whose domain is a long but finite interval and whose ω-energy
is small. To do that, we need the following lemma.

Lemma 3.21 (bubbling lemma [Bourgeois et al. 2003; Hofer and Viterbo 1992]).
Let J 0 be a cylindrical almost complex structure on W = R+× V . There exists
a constant h̄ > 0 depending only on (W, J 0, ω0) where J 0

= J 0
∞

and ω0
= ω0

∞

(see Definitions 2.1 and 2.3 and Section 2B), such that the following holds true.
Let (J n, ωn

∞
) be a sequence of pairs satisfying (AC1)–(AC5) on W and converging

to (J 0, ω0) in the C∞loc sense. Consider a sequence of J n-holomorphic maps ũn =

(an, un) from the unit disc B(0, 1) to W satisfying En(ũn)= Eωn (ũn)+Eλn (ũn)≤C
(see Section 2B) for some constant C , such that the sequence an(0) is bounded,
and such that ‖∇ũn(0)‖ → +∞ as n → +∞. Then there exists a sequence of
points zn ∈ B(0, 1) converging to 0, and sequences of positive numbers εn and Rn

satisfying

εn→ 0, Rn→+∞, εn Rn→+∞, |zn| + εn < 1,

such that the rescaled maps

ũ0
n : B(0, εn Rn)→W, z 7→ ũn(zn + R−1

n z)

converge in C1
loc to a J0-holomorphic map ũ0

: C→W which satisfies E(ũ0)≤ C
and Eω0(ũ0) > h̄.

Moreover, this map is either a J0-holomorphic plane asymptotic as |z| →∞ to
a periodic orbit of the vector field R0 defined by R0

= J0(∂/∂r), or extendable to a
J0-holomorphic sphere P1

→W by Gromov’s removal of singularity theorem.
A similar statement is also true for R−× V .

Proof. See [Hofer and Viterbo 1992]. �

The following theorem studies the behavior of a long cylinder having small
ω-area. It is needed in order to prove the compactness results for the moduli space
of J-holomorphic curves in symplectic field theory. Refer to [Hofer et al. 2002;
Bourgeois et al. 2003] for the cylindrical case.

Theorem 3.22. Suppose that J is an asymptotically cylindrical almost complex
structure on W = R±× V at ±∞, and suppose that J is of the Morse–Bott type.
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Given E0 > 0 and ε > 0, there exist constants σ, c > 0 such that for every R > c
and every J-holomorphic cylinder ũ = (a, u) : [−R, R] × S1

→ W satisfying
the inequalities Eω(ũ) < σ and E(ũ) < E0, we have u(s, t) ∈ Bε(u(0, t)) for all
s ∈ [−R+ c, R− c] and all t ∈ S1.

Proof. The proof follows the scheme in [Bourgeois et al. 2003] with some modifi-
cation.

By contradiction, assume that there exist sequences cn →+∞, Rn > cn and
ũn = (an, un) : [−Rn, Rn]×S1

→W . The sequence ũn is J-holomorphic, satisfying
E(ũn)≤ E0, Eω(ũn)→ 0, and un(sn, tn) /∈ B(un(0, tn), ε) for some sn ∈ [−kn, kn],
kn = Rn−cn and tn ∈ S1. By the proof of Proposition 3.4 together with the bubbling
lemma (Lemma 3.21), ‖∇ũn‖ is uniformly bounded on each compact subset. We
can extract a subsequence of n, still denoted by n, such that an(sn, tn)→±∞. This
is because, otherwise, we can get a contradiction as in the proof of Proposition 3.4.
Now define ũ0

n(s, t) := (a0
n, u0

n)= (an(s, t)−an(sn, tn), un(s, t)). By Ascoli–Arzela,
we can extract a subsequence, still called ũ0

n , converging to a J∞-holomorphic
cylinder ũ :R× S1

→R×V . Since ũ satisfies Eω(ũ)= 0 and E(ũ)≤ E0, we have
that ũ is a trivial cylinder over some periodic orbit γ . Let’s choose a neighborhood
around γ , and pick the coordinate as in Lemma 3.9, and show that

(50) sup
(s,t)∈[−kn,kn]×S1

|∂βzout,n(s, t)| → 0

for multi-indices β and

sup
(s,t)∈[−kn,kn]×S1

|∂β(an(s, t)− Ts)| → 0,(51)

sup
(s,t)∈[−kn,kn]×S1

|∂βzin,n(s, t)| → 0,(52)

sup
(s,t)∈[−kn,kn]×S1

|∂β(ϑn(s, t)− Tt)| → 0(53)

for multi-indices β with |β|> 0, when n→+∞.
If this were not true, suppose there exists a subsequence of {n}, still denoted

by {n}, such that (s ′n, t ′n) violates one of these properties. Then we can make the
same argument using (s ′n, t ′n) instead of (sn, tn) as above and get a trivial cylinder
contradicting the fact that (s ′n, t ′n) violates one of these properties.

Define A0n and Q0n in the obvious way using γ and s0n = 0. Then apply Lem-
mata 3.14–3.16 and 3.18 to each ũn|[−kn,kn] to get sups∈[−kn,kn]

‖Q0nzn(s)‖0,n→ 0.
Then the Sobolev embedding theorem tells us that κ0n → 0 as n → +∞. This
contradicts the assumption that un(sn, tn) /∈ B(un(0, t), ε). �

We need the following theorem later to prove the surjectivity of the gluing map
in the subsequent paper. After proving all the previous lemmata and theorems, the
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proof of the following theorem is standard. For the case when J is cylindrical and
nondegenerate and V is a contact manifold, the proof is given in [Hofer et al. 2002].

Theorem 3.23. Suppose that J is an asymptotically cylindrical almost complex
structure on W =R+×V at∞, and suppose that J is of the Morse–Bott type. Given
E0 > 0 and sufficiently small ε > 0, there exist constants σ, c, [, ν > 0 such that,
for every R > c and every J-holomorphic cylinder ũ = (a, u) : [−R, R] × S1

→

([,∞)×V satisfying the inequalities Eω(ũ) < σ and E(ũ) < E0, there exists either
a point w ∈ W such that ũ(s, t) ∈ Bε(w) for s ∈ [−R + c, R − c] and t ∈ S1, or
a T-periodic orbit γ of R∞ such that u(s, t) ∈ Bε(γ (Tt)) for s ∈ [−R+ c, R− c]
and t ∈ S1. In the second case, we have a coordinate around γ as in Lemma 3.9
such that

|Dβ
{a(s, t)− Ts− a0}|

2
≤ ε2 Mβ

cosh(2νs)
cosh(2ν(R− c))

+Cβe−cβ (s+R−c),

|Dβ
{ϑ(s, t)− Tt −ϑ0}|

2
≤ ε2 Mβ

cosh(2νs)
cosh(2ν(R− c))

+Cβe−cβ (s+R−c),

|Dβz(s, t)|2 ≤ ε2 Mβ

cosh(2νs)
cosh(2ν(R− c))

+Cβe−cβ (s+R−c),

for s ∈ [−R + c, R − c], t ∈ S1, and β ∈ N×N such that |β| ≤ l − 3, where Mβ ,
Cβ , cβ are constants independent of ũ and ε, and Cβ converges to 0 as [ converges
to +∞, and Mβ and cβ are independent of [.

A similar statement is also true for R−× V .

4. Almost complex manifolds with asymptotically cylindrical ends

In this section, we introduce the notion of almost complex manifolds with asymp-
totically cylindrical ends.

4A. Definitions. Let (W0, ω
′) be a closed symplectic manifold with boundary

∂W0=V+tV−, where V± is an oriented closed manifold. Let W be the noncompact
smooth manifold obtained by attaching E± :=R±×V± to W0 along {0}×V± and V±.
Suppose that there exists an almost complex structure J on W such that J |W0 is
compatible with ω′ and (E±, J |E±) is asymptotically cylindrical at±∞. We assume
that the orientation of E± determined by J |E± coincides with the orientation coming
from the standard orientation of R± and the orientation of V±. This assumption
distinguishes V+ from V−. Furthermore, we assume ω′|V± = ω±∞, where ω±∞ is
the 2-form on V± from Definition 2.1. In this case, we say (W, J ) is an almost
complex manifold with asymptotically cylindrical ends.

Example 4.1 [Bourgeois et al. 2003]. Let (X, ω′, J ) be an almost Kähler manifold,
and let Y ⊂ X be an embedded closed almost Kähler submanifold. We claim
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that (X\Y, J |X\Y ) has an asymptotically cylindrical negative end. Let N be the
normal bundle of Y in X with the metric ω′( · , J · )|Y , let V be the associated
unit sphere bundle of N defined by V = {u ∈ N : |u| = 1}, and let Uε be the disc
bundle of N defined by Uε = {u ∈ N : |u| ≤ ε}. For small enough ε > 0, we have
that Uε is diffeomorphic to a tubular neighborhood of Y in X via the exponential
map with respect to the metric ω′( · , J · ). Since Uε\Y is also diffeomorphic
to (−∞, log ε] × V via the map u 7→ (log |u|, u/|u|), one can check that this
makes (X\Y, J |X\Y ) an almost complex manifold with an asymptotically cylindrical
negative end.

In particular, if we pick Y to be a point in X , we get Example 2.5 as a special
case.

4B. Energy of J-holomorphic curves. Let w be a J-holomorphic map from a
punctured Riemann surface (6, j) to (W, J ), and define

Esymp(w)=

∫
w−1(W0)

w∗ω′,

Eω(w)=
∫

w−1(E+)

w∗ω+

∫
w−1(E−)

w∗ω,

Eλ(w)= sup
φ∈C+

∫
w−1(E+)

w∗(φ σ ∧ λ)+ sup
φ∈C−

∫
w−1(E−)

w∗(φ σ ∧ λ),

where

C+ =
{
φ ∈ C∞c (R

+, [0, 1]) :
∫
φ = 1

}
, C− =

{
φ ∈ C∞c (R

−, [0, 1]) :
∫
φ = 1

}
,

and
E(w)= Esymp(w)+ Eω(w)+ Eλ(w).

Theorem 4.2. Suppose (W, J ) is an almost complex manifold with asymptoti-
cally cylindrical ends, and suppose that J is of the Morse–Bott type. Let w be a
J-holomorphic curve from a punctured Riemann surface 6 to W with E(w) <∞.
Then around each puncture, either w can be extended holomorphically over the
puncture, or one can choose a holomorphic coordinate chart R+× S1 or R−× S1

in S around the puncture such that w converges to a Reeb orbit in E+ or E− in the
sense of Theorems 2.8 and 2.9.

Proof. If w is bounded around a puncture, then Gromov’s removal of singularity
theorem implies that w can be extended holomorphically over the puncture.

Suppose that w is not bounded around a puncture. We pick a holomorphic
cylindrical coordinate R+× S1 around the puncture of 6. By Proposition 3.5,
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|∇w| < C with respect to the standard metric on R+× S1. If w keeps coming
back to a compact region of W and also escaping to the positive (or negative)
end of W , we can find an r0 such that w touches {r0} × V± and {r0 ± 3C} × V±
infinitely many times. Then we can apply Gromov’s monotonicity theorem to w
in the region [r0±C, r0± 2C]× V± as in the argument of Case 1 in the proof of
Theorem 3.7, and get E(w) =∞, which contradicts the assumption. Therefore,
near the puncture, w converges to ∞ or −∞ in E+ or E−. Then Theorem 4.2
follows from Theorems 2.8 and 2.9. �

Proposition 4.3. Suppose (W, J ) is an almost complex manifold with asymptoti-
cally cylindrical ends, and suppose that J is of the Morse–Bott type. Then there
exists a constant ε0 > 0 such that if K±0 < ε0, where K±0 is the constant in (AC1),
the following holds.

Let w be a J-holomorphic curve from a punctured Riemann surface 6 to W
such that, around punctures of 6, we have that w converges to the periodic orbits
γ+1 , . . . , γ

+
p inside V+ and γ−1 , . . . , γ

−
q inside V−. Then

E(w)≤C1

p∑
i=1

∫
γ+i

λ∞−C2

q∑
j=1

∫
γ−j

λ−∞+C3

{ ∫
w−1(E+)

w∗ω∞+

∫
w−1(W0)

w∗ω′+

∫
w−1(E−)

w∗ω−∞

}
,

where C1, C2, C3 are positive constants that are independent of w. In particular,
E(w) only depends on the homology class ofw in H2

(
W,

(⋃p
i=1 γ

+

i

)
∪
(⋃q

j=1 γ
−

j

))
.

Proposition 4.3 is the asymptotically cylindrical version of Proposition 6.13 in
[Bourgeois et al. 2003]. The extra work to prove it for the asymptotically cylindrical
case is essentially carried out in the Appendix of [Bao 2014] where we assume
ω±∞ = dλ∞. For the sake of completeness, we reproduce the proof here.

Proof. First, we restrict ourselves to E+ and denote w± := w|w−1(E±). Note that,
when restricted to J-complex planes, we have

|ω−ω∞| ≤ εe−δs(ω+ σ ∧ λ),(54)

|dλ∞| ≤ Cω+ εe−δsσ ∧ λ,(55)

|σ ∧ λ− dr ∧ λ∞| ≤ εe−δs(σ ∧ λ+ω),(56)

where C is a positive constant and the constant ε > 0 can be chosen to be small
if K+0 is small. Since

∫
∞

0 δe−δs ds = 1, we get∫
w−1(E+)

w∗ω ≤

∫
w−1(E+)

w∗ω∞+ ε

∫
w−1(E+)

w∗ω+
ε

δ
Eλ(w+),
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where

Eλ(w±) := sup
φ∈C±

∫
w−1(E±)

w∗(φ σ ∧ λ).

Absorbing the second term on the right-hand side to the left-hand side, we get

(57) Eω(w+)≤ C1

∫
w−1(E+)

w∗ω∞+C2εEλ(w+),

for some constants C1, C2, where Eω(w±) :=
∫
w−1(E±)

w∗ω.
For any φ ∈ C+, let 8(s)=

∫ s
0 φ(l) dl. Then using (55) and (56) we have∫

w−1(E+)

w∗φ σ ∧ λ

=

∫
w−1(E+)

w∗φ dr ∧ λ∞+
∫

w−1(E+)

w∗φ(σ ∧ λ− dr ∧ dλ∞)

≤

∫
w−1(E+)

w∗ d(8λ∞)−
∫

w−1(E+)

w∗8 dλ∞+
∫

w−1(E+)

w∗εe−δsφ(σ ∧ λ+ω)

≤

p∑
i=1

∫
γ+i

λ∞+

∫
w−1(E+)

w∗(Cω+ εe−δsσ ∧ λ)+
∫

w−1(E+)

w∗εe−δsφ(σ ∧ λ+ω)

≤

p∑
i=1

∫
γ+i

λ∞+C Eω(w+)+ εEλ(w+),

where in the last inequality we get the constants C and ε by slightly abusing the
notations, but we can still have ε small. Taking the sup over φ, we get

(58) Eλ(w+)≤
p∑

i=1

∫
γ+i

λ∞+C Eω(w+)+ εEλ(w+).

Therefore, by (57) and (58) we have

(59) Eω(w+)+ Eλ(w+)≤ C1

∫
γ+

λ∞+C2

∫
w−1(E+)

w∗ω∞,

where constants C1 and C2 are not necessarily the same as before.
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For E−, by the proof of Theorem 10 in [Bao 2014], if K−0 is small we have

(60) Eω(w−)+ Eλ(w−)≤ C ′1 Esymp(w)+C ′2

∫
w−1(E−)

w∗ω∞−C ′3

q∑
j=1

∫
γ−j

λ−∞,

where C ′1, C ′2, C ′3 are positive constants independent of w. Here we recall that

(61) Esymp(w)=

∫
w−1(W0)

w∗ω′.

Now by (59) and (60) we have

E(w)= Eω(w+)+ Eλ(w+)+ Eω(w−)+ Eλ(w+)+ Esymp(w)

≤ a1(Eω(w+)+ Eλ(w+))+ a2(Eω(w−)+ Eλ(w+))+ a3 Esymp(w0)

≤ C1

∫
γ+

λ∞−C2

∫
γ−

λ−∞+C3

{ ∫
w−1(E+)

w∗ω∞+

∫
w−1(W0)

w∗ω′+

∫
w−1(E−)

w∗ω∞

}
,

where a1, a2, a3 ≥ 1 are positive constants chosen in a way such that the last
inequality holds for some positive constants C1, C2 and C3. �

Let MA
g,p+q(γ

+

1 , . . . , γ
+
p , γ

−

1 , . . . , γ
−
q ; J ) be the moduli space of J-holomorphic

curves of genus g in W that converge to periodic orbits γ+1 , . . . , γ
+
p inside V+ and

γ−1 , . . . , γ
−
q inside V− and represent the homology class A, which is an element

of H2
(
W,

(⋃p
i=1 γ

+

i

)
∪
(⋃q

j=1 γ
−

j

))
. Let MA

g,p+q(γ
+

1 , . . . , γ
+
p , γ

−

1 , . . . , γ
−
q ; J )

be the compactification of the space MA
g,p+q(γ

+

1 , . . . , γ
+
p , γ

−

1 , . . . , γ
−
q ; J ) by al-

lowing stable holomorphic buildings. See Theorems 8.1 and 8.2 in [Bourgeois
et al. 2003] for the definition of stable holomorphic buildings in manifolds with
cylindrical ends and the topology of the moduli space of holomorphic buildings.
Finally, let us state the compactness results.

Theorem 4.4. Suppose (W, J ) is an almost complex manifold with asymptot-
ically cylindrical ends, and suppose that J is of the Morse–Bott type. Then
MA

g,p+q(γ
+

1 , . . . , γ
+
p , γ

−

1 , . . . , γ
−
q ; J ) is compact.

Proof. The extra difficulty of proof that comes from J being asymptotically cylin-
drical is taken care of by Theorem 4.2; the rest of the proof is a straightforward
modification of [Bourgeois et al. 2003]. For the sake of completeness, we outline
the proof as follows.

Suppose that (6n, wn) is a sequence of J-holomorphic maps from a punctured
Riemann surface 6n , with E(wn) < C .

First, we add additional marked points to 6n to stabilize 6n , and we use the
unique hyperbolic metric on 6n to decompose 6n into ε-thick part 6ε-thick

n and
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ε-thin part 6ε-thin
n according to the injectivity radius, for ε > 0. Take a subse-

quence of 6n , still called 6n , such that 6n converges to a nodal surface 6∞ in the
Deligne–Mumford sense. By continuing to add marked points to 6n , if necessary,
one can keep track of all the sphere bubbles of wn as n→∞. Eventually, for fixed
ε> 0, we achieve thatwn|6ε-thick

n
has a uniformly gradient bound. By Ascoli–Arzela

and elliptic estimates, we can extract a convergent subsequence ofwn , still calledwn .
Now letting ε tend to 0 and picking a diagonal subsequence, we get a convergent
subsequence of wn , still called wn , with the limit (6∞, w∞|6∞). By Theorem 4.2,
we know that, around a puncture, the limitw∞|6∞ either has a removable singularity
or converges to a Reeb orbit. But at the current stage, w∞ may not be defined
around the nodal points.

Secondly, for ε sufficiently small, the ε-thin part is a disjoint union of finite
cylinders or half-finite cylinders. If Eω(wn|6ε-thin

n
)→0 as n→∞, then the behavior

of wn|6ε-thin
n

is controlled by Theorem 3.22. In this case, the convergence of wn in
the thick part can be continuously extended over 6n . Otherwise, wn|6ε-thin

n
can have

the additional broken trajectory degeneration. By adding more marked points to keep
track of all of the broken trajectory, one has that Eω(wn|6ε-thin

n
)→ 0 as n→∞. �
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INTEGRATION OF COUPLING DIRAC STRUCTURES

OLIVIER BRAHIC AND RUI LOJA FERNANDES

Coupling Dirac structures are Dirac structures defined on the total space of
a fibration, generalizing hamiltonian fibrations from symplectic geometry,
where one replaces the symplectic structure on the fibers by a Poisson struc-
ture. We study the associated Poisson gauge theory, in order to describe the
presymplectic groupoid integrating coupling Dirac structures. We find the
obstructions to integrability, and we give explicit geometric descriptions of
the integration.

1. Introduction 325
2. Coupling Dirac structures 328
3. Integration of coupling Dirac structures I 336
4. Integration of the Yang–Mills–Higgs phase space 341
5. Integration of coupling Dirac structures II 351
Appendix 360
References 366

1. Introduction

A Dirac structure on a manifold M is a (possibly singular) foliation of M by
presymplectic leaves. It is well known that Dirac structures can be expressed in
terms of a Lagrangian subbundle L of the generalized tangent bundle TM ⊕ T ∗M.
The bundle L inherits a Lie algebroid structure from the Courant bracket [1990], so
Dirac structures are infinitesimal objects. Bursztyn et al. [2004] showed that the
global object underlying a given Dirac structure L is a presymplectic groupoid, i.e.,
a Lie groupoid G ⇒ M with a multiplicative closed 2-form �G satisfying a certain
nondegeneracy condition. Not all Lie algebroids can be integrated to Lie groupoids,
and Dirac structures are no exception: not all Dirac structures can be integrated to
presymplectic groupoids. The obstructions to integrability follow from the general
obstruction theory discovered by Crainic and Fernandes [2003; 2004].
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The general methods presented in [Crainic and Fernandes 2003; 2004] allow one
to decide if a given Lie algebroid is integrable or not, and to produce a canonical
integration in terms of an abstract path space construction. While the obstructions to
integrability can be computed explicitly in many examples, describing the canonical
integration G(L)⇒ M of a given integrable Dirac structure (M, L) is, in general, a
very difficult task. However, for a few classes of Dirac structures one does have
explicit integrations and often in such cases the construction of the groupoid has a
nice geometric flavor.

In this paper we discuss the integration of coupling Dirac structures. The simplest
examples of such couplings arise in the context of a symplectic fibration p : E→ B:
a coupling form is a closed 2-form ω ∈ �2(E) on the total space of the fibration
whose pullback to each fiber Fb is the symplectic form ωFb on the fiber. The
obstructions to the existence of such a coupling form are well known and we will
recall them below. We are interested in the more general situation of a Poisson
fibration: now one looks for a coupling Dirac structure on the total space of the
fibration which glues the Poisson structures on the fibers. This idea of a coupling is
only a rough approximation: Dirac structures are very flexible and extra care must
be taken in defining precisely the notion of a coupling [Dufour and Wade 2008;
Brahic and Fernandes 2008; Vaisman 2006; Wade 2008].

Coupling Dirac structures appear very naturally in Poisson and Dirac geometry.
One reason is that tubular neighborhoods of symplectic and presymplectic leaves
in arbitrary Poisson and Dirac manifolds are always coupling Dirac structures. Our
first main result concerning the integration of couplings can be stated as follows:

Theorem 1.1. Let L be a coupling Dirac structure on p : E→ B. If L is integrable
and (G, �)⇒ B is a source connected, presymplectic groupoid integrating L , then
� is a coupling form for a fibration p : G → 5(B) obtained by integrating the
algebroid morphism p∗ ◦ ] : L→ T B.

In other words, coupling Dirac structures integrate to coupling forms. Moreover,
one can express the geometric data of the integration in terms of the geometric data
associated with the coupling Dirac structure L . As a consequence of this result,
any presymplectic groupoid integrating a coupling Dirac structure on p : E→ B is
Morita equivalent to a symplectic groupoid integrating the induced vertical Poisson
structure on a fiber Eb.

The previous result describes the symplectic geometry of the integration. One is
also interested in the groupoid structure of the integration and the obstructions to
integrability. Our inspiration to deal with this integration problem comes from a
beautiful gauge construction, known as the Yang–Mills setup, which yields coupling
Dirac structures [Brahic and Fernandes 2014; Guillemin et al. 1996; McDuff and
Salamon 1998; Weinstein 1980; Wade 2008].
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Start with a principal G-bundle P→ B, with a connection 0, and a hamiltonian
action G× F→ F on a Poisson manifold (F, πF ), and construct a coupling Dirac
structure L on the associated bundle E = P ×G F extending the Poisson structures
on the fibers. This construction can be further twisted by a closed 2-form on the
base B, and it leads to many examples of coupling Dirac structures.

We show that one can integrate a Yang–Mills phase space as follows:

(i) First integrate the fiber (F, πF ) to a symplectic groupoid F ⇒ F, and the
principal G-bundle P→ B to the gauge groupoid G(P)⇒ B.

(ii) Then integrate the vertical Poisson structure Ver∗ to a fibered symplectic
groupoid GV = P ×G F ⇒ E .

(iii) The gauge groupoid G(P)⇒ B acts on the fibered groupoid GV ⇒ E→ B,
yielding a semidirect product groupoid G(P)nGV ⇒ E .

(iv) Finally, the integration of the Yang–Mills phase space is a quotient

G(L)= G(P)nGV / C,

where C is a certain curvature groupoid.

Along the way we obtain the obstructions to integrability of a Yang–Mills phase
space. Our integration procedure does not uses the principal bundle connection;
hence, all the different couplings obtained by varying the connection have the same
integrating Lie groupoid G ⇒ E . On the other hand, we also provide a construction
for the presymplectic form �G , which obviously depends on the choice of principal
connection.

We show that, provided one is willing to accept infinite dimensional principal
bundles, every coupling on a locally trivial fibration arises as a Yang–Mills phase
space. This observation turns out to be the clue to integrate arbitrary coupling Dirac
structures:

Theorem 1.2. Let L be a coupling Dirac structure on E → B. The source
1-connected groupoid G(L) integrating L naturally identifies with equivalence
classes in P(TB)nB G(Ver∗) under the equivalence relation:

• (γ0, g0) ∼ (γ1, g1) if and only if there exists a homotopy γB : I × I → B,
(t, ε) 7→ γ εB (t) between γ0 and γ1, such that g1 = ∂(γB, t(g0)) . g0.

where ∂ : P(TB)×B E → G(Ver∗) is a certain “groupoid” homomorphism that
can be computed explicitly.

The quotes in “groupoid” are used here because the path space P(TB) is not
really a groupoid, since associativity only holds up to isomorphism.

Again, Theorem 1.2 should be viewed as an infinite dimensional version of
the groupoid integrating the Yang–Mills phase space. It also gives rise to the
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integrability obstructions of coupling Dirac structure. Namely, one checks that
the restriction of the map ∂ : P(TB)×B E → G(Ver∗) to a sphere in B based at
some b ∈ B (seen as a map γB : I

2
→ B such that γB(∂ I 2)= {b}) is independent

of its homotopy class. Then, if we let M := ∂(π2(B)×B E), which we call the
monodromy groupoid of the fibration, then we have the theorem:

Theorem 1.3. Let L be a coupling Dirac structure on E→ B and assume that the
associated connection 0 is complete. Then, L is an integrable Lie algebroid if and
only if the following conditions hold:

(i) the typical Poisson fiber (Ex , πV |Ex ) is integrable;

(ii) the injection M ↪→ G(Ver∗) is an embedding.

The transgression map ∂ : π2(B) ×B E → G(Ver∗) is computable in many
examples, and so are the integrability obstructions of Theorem 1.3. We refer to the
last section of the paper, where we will discuss for example the trivial fibration
p : S2

× so∗(3)→ S2, with the usual Lie–Poisson structure on the fibers. Using
Theorem 1.3 one can see that there is only a 2-parameter family of integrable Dirac
couplings of rank 4, while there is an infinite dimensional family of nonintegrable
Dirac couplings of rank 4.

2. Coupling Dirac structures

The notion of a coupling was first introduced in the context of Dirac geometry
[Vaisman 2006] (see also [Brahic and Fernandes 2008; Dufour and Wade 2008;
Wade 2008]) but their origins lie in the theory of symplectic and hamiltonian
fibrations; see, e.g., [Guillemin et al. 1996; McDuff and Salamon 1998]. In this
section we recall the definition of a coupling Dirac structure and study its first
properties.

2A. Fiber nondegenerate Dirac structures. We shall use some standard notions
from Dirac geometry; see, e.g., [Courant 1990]. So given a smooth manifold M, we
denote by TM := TM⊕ T ∗M its generalized tangent bundle. The space of sections
0(TM) has two natural pairings:

(1) 〈(X, α), (Y, β)〉± := 1
2(iYα± iXβ),

and a skew-symmetric bracket, called the Courant bracket, given by

(2) [[(X, α), (Y, β)]] :=
(
[X, Y ], LX β −LY α+ d〈(X, α), (Y, β)〉−

)
.

An almost Dirac structure L on M is a subbundle L ⊂ TM := TM⊕T ∗M of the
generalized tangent bundle, which is maximally isotropic with respect to 〈 · , · 〉+.
An almost Dirac structure is said to be a Dirac structure if it is furthermore closed
under the bracket [[ · , · ]].
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In general, the Courant bracket does not satisfy the Jacobi identity. For a Dirac
structure L , however, its restriction to 0(L) yields a Lie bracket, and if we let
] : L→ TM be the restriction of the projection to TM, then (L , [[ · , · ]], ]) defines
a Lie algebroid. Each leaf of the corresponding characteristic foliation, obtained
by integrating the singular distribution Im ], carries a presymplectic form ω: if
X, Y ∈ Im ], we can choose α, β ∈ T ∗M such that (X, α), (Y, β) ∈ L and set

(3) ω(X, Y ) := 〈(X, α), (Y, β)〉− = iYα =−iXβ.

One can check that this definition is independent of choices and that ω is indeed
closed. Thus we may think of a Dirac manifold as a manifold foliated by (possibly
singular) presymplectic leaves.

In what follows, unless otherwise stated, by a fibration p : E→ B we mean a
surjective submersion.

Definition 2.1. Let p : E→ B be a fibration. An almost Dirac structure L on E is
called fiber nondegenerate if

(4) (Ver⊕Ver0)∩ L = {0}.

Here, Ver := ker p∗ ⊂ TE denotes the vertical distribution, and Ver0
⊂ T ∗E its

annihilator. When L is both Dirac and fiber nondegenerate, we shall refer to L as a
coupling Dirac structure.

In the terminology of [Mărcuţ and Frejlich 2013], when L is a Poisson structure,
this condition means that the fibers of p : E→ B are Poisson transversals.

In order to understand the geometric meaning of this definition, one needs to
decompose a fiber nondegenerate almost structure L into its various components:

• First, L gives rise to an Ehresmann connection by setting:

(5) Hor := {X ∈ TE : ∃α ∈ (Ver)0 such that (X, α) ∈ L}.

The fact that Hor⊕Ver= TE is an easy consequence of (4).

• Next, it follows from (5) that the horizontal distribution Hor is contained
in the characteristic distribution of L . Hence, we obtain a horizontal 2-form
ωH ∈�

2(Hor) by restricting the natural 2-form on the characteristic distribution
to Hor. More precisely, (4) and (5) together show that for each X ∈Hor, there
exists a unique α ∈ Ver0 such that (X, α) ∈ L . The skew-symmetric bilinear
form ωH : Hor×Hor→ R is defined by

(6) ωH (X1, X2) := 〈(X1, α1), (X2, α2)〉−,

where α1, α2 ∈ Ver0 are the unique elements with (X1, α1), (X2, α2) ∈ L .
Since L is maximal isotropic, this 2-form can also be written ωH (X1, X2)=

α1(X2)=−α2(X1).
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• Finally, we can associate to L a vertical bivector field πV ∈ X
2(Ver). To see

this, first observe that the annihilator of the horizontal distribution is:

Hor0
= {α ∈ T ∗E : ∃X ∈ Ver such that (X, α) ∈ L}.

This, together with (4), shows that for each α ∈ Hor0, there exists a unique
X ∈ Ver such that (X, α) ∈ L . Then one can define a skew-symmetric bilinear
form πV : Hor0

×Hor0
→ R by letting:

(7) πV (α1, α2) := 〈(X1, α1), (X2, α2)〉−,

where X1, X2 ∈Ver are the unique elements with (X1, α1), (X2, α2)∈ L . Since
L is maximal isotropic, the form πV :Hor0

×Hor0
→R can also be written as

πV (α1, α2) = α1(X2) = −α2(X1). Notice that the splitting TE = Hor⊕Ver
allows us to identify Hor0

= Ver∗; thus, πV becomes a bivector field on the
fibers of p : E→ B.

A more geometric interpretation of πV is that it is formed by the pullback to
each fiber of the Dirac structure L; an easy computation shows that for each fiber
Fb = p−1(b), the pullback Dirac structure i∗b L under the inclusion ib : Fb ↪→ E
coincides with πV :

i∗b L := {(X, α|Ver) ∈ Ver⊕Ver∗ : (X, α) ∈ L} = Graph(πV ).

The preceding discussion justifies the following definition:

Definition 2.2. A geometric data on a fibration p : E→ B is a triple (πV , 0, ωH ),
where

• πV ∈ X
2(Ver) is a vertical bivector field.

• 0 is an Ehresmann connection, whose horizontal distribution is denoted Hor,

• ωH ∈�
2(Hor) is a horizontal 2-form,

Proposition 2.3. Given a fibration E→ B, there is a one-to-one correspondence
between fiber nondegenerate almost Dirac structures and geometric data on the
fibration.

Proof. We have seen above how to associate to a fiber nondegenerate almost Dirac
structure L , a geometric data (πV , 0, ωH ). Conversely, given a geometric data
(0L , ωH , πV ) on a fibration p : E→ B, define an almost Dirac structure L by

(8) L := {(X +π ]V (α), iXωH +α) : X ∈ Hor and α ∈ Hor0
}.

Notice that by using the identifications Hor0
= Ver∗ and Ver0

= Hor∗, we obtain
simply L = GraphωH ⊕GraphπV , which will prove to be a meaningful way of
presenting L later on. �



INTEGRATION OF COUPLING DIRAC STRUCTURES 331

Given a fiber nondegenerate almost Dirac structure L with associated geometric
data (0, ωH , πV ), we now express the conditions on this data which will guarantee
that L is a Dirac structure, i.e., that it is closed under the Courant bracket.

Let us first introduce some notations associated with the connection 0. For a
vector field v ∈ X(B), we denote by h(v) ∈ X(E) its horizontal lift. The exterior
covariant differential d0 :�k(B)⊗C∞(E)→�k+1(B)⊗C∞(E) is given by

d0ω(v0, . . . , vk) :=

k∑
i=0

(−1)i Lh(vi ) ω(v0, . . . , v̂i , . . . , vk)

+

∑
i< j

(−1)i+ jω([vi , v j ], v0, . . . , v̂i , . . . , v̂ j , . . . , vk)

The curvature of 0 will be denoted by Curv0 ∈�2(B,Ver) and is defined by

Curv0(v,w) := [h(v), h(w)] − h([v,w]) for v,w ∈ X(B).

The curvature measures the failure of Hor in being involutive or, equivalently, the
failure of d0 being a differential since

d2
0 f (u, v)= LCurv(u,v) f,

for any f ∈ C∞(E) and u, v ∈ X(B).

Proposition 2.4. Let (πV , 0, ωH ) be the geometric data determined by a fiber
nondegenerate almost Dirac structure L on a fiber bundle p : E→ B. Then, L is a
Dirac structure if and only if the following conditions hold:

(i) πV is a vertical Poisson structure:

[πV , πV ] = 0;

(ii) parallel transport along 0 preserves the vertical Poisson structure:

Lh(v) πV = 0, for any v ∈ X(B);

(iii) the horizontal 2-form ωH is 0-closed:

d0ωH = 0;

(iv) the curvature is hamiltonian:

(9) Curv(u, v)= π ]V (dih(u)ih(v)ωH ), for any u, v ∈ X(B).

A proof of Proposition 2.4 can be found in [Brahic and Fernandes 2008]. We
shall refer to (9) as the curvature identity.
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2B. Examples. The notion of coupling Dirac structure contains as special cases
the notion of coupling form for symplectic fibrations (see, e.g., [Guillemin et al.
1996]) and the coupling Poisson tensor considered by Vorobjev [2001]. We now
recall these examples as well as other ones.

2B1. Coupling forms. Let ω be a closed 2-form on the total space of a fibration
p : E→ B. The associated Dirac structure L := Graph(ω) is fiber nondegenerate
if and only if the pullback of ω to each fiber is a nondegenerate 2-form. In this
case, the fibration with the restriction of ω to the fibers becomes a symplectic
fibration. The geometric data (πV , 0, ωH ) associated to L has a nondegenerate
vertical Poisson structure πV which coincides with the inverse of the restriction
of ω to the fibers.

The converse is also true: a fiber nondegenerate Dirac structure L for which the
geometric data (πV , 0, ωH ) has a nondegenerate vertical Poisson structure πV is
determined by a presymplectic form ω. In fact, it follows from (8) that L is the
graph of the closed 2-form

ω = ωH ⊕ (πV )
−1.

Hence, fiber nondegenerate presymplectic forms are the same as coupling forms
for symplectic fibrations [Guillemin et al. 1996].

2B2. Coupling Poisson structures. Let π be a Poisson structure on the total space
of a fibration p : E→ B. The Dirac structure L =Graph(π) is fiber nondegenerate
if and only if π is horizontal nondegenerate in the sense of [Vorobjev 2001], i.e.,
if the bilinear form π |Ver0 : Ver0

×Ver0
→ R is nondegenerate. In terms of the

associated geometric data (πV , 0L , ωH ) the Poisson structure on the fibers is πV

and ωH is nondegenerate; in fact, π induces an isomorphism Ver0
→ Hor under

which ωH coincides with the restriction π |Ver0 .
The converse is also true: a fiber nondegenerate Dirac structure L for which the

horizontal 2-form ωH is nondegenerate is given by a Poisson structure π . In fact, it
follows from (8) that

π = (ωH )
−1
⊕πV .

Hence, fiber nondegenerate Poisson structures are the same thing as the horizontal
nondegenerate Poisson structures of Vorobjev.

2B3. Neighborhood of a presymplectic leaf. Let L be any Dirac structure on a
manifold M and fix a presymplectic leaf (S, ω) of L . Then, the restriction of L to
any sufficiently small tubular neighborhood p : ν(S)→ S of the leaf is a coupling
Dirac structure. To see this, one observes that along S:

L x ∩
(
ν(S)x ⊕ νx(S)0

)
= {0}, for all x ∈ S.
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It follows that L is fiber nondegenerate on a sufficiently small neighborhood of the
zero section.

This shows that in a neighborhood of a presymplectic leaf the Dirac structure
takes a special form and we can associate to it the geometric data (πV , 0, ωH ). The
Poisson structure πV is the transverse Poisson structure along S, while S (viewed as
the zero section) is an integral leaf of Hor and the 2-form ωH restricted to this leaf
coincides with ω. Note that, in general, the distribution Hor fails to be integrable at
other points.

2B4. Reduction of canonical bundles. Let P→ M be a principal G-bundle. The
action of G naturally lifts to a hamiltonian action of G on (T ∗P, ωcan). Clearly,
T ∗P is itself a principal G-bundle, sometimes called a canonical bundle, and it
follows that the base manifold T ∗P/G has an induced Poisson structure π .

Each choice of a principal bundle connection θ : T P→ g induces a projection
map pθ : T ∗P/G→ T ∗M. It is easy to check that, for any choice of connection, the
Dirac structure L = Graph(π) on E = T ∗P/G is a coupling Dirac structure over
B = T ∗M.

2B5. Yang–Mills–Higgs phase spaces. There is a construction using principal
bundles and hamiltonian actions which leads to an important class of coupling Dirac
structures.

Definition 2.5. A classical Yang–Mills–Higgs setting is a triple (P,G, F) where
P→ B is a principal G-bundle and (F, πF ) is a G-hamiltonian Poisson manifold
with equivariant moment map µF : F→ g∗.

Proposition 2.6. Let (P,G, F) be a classical Yang–Mills–Higgs setting. Each
choice of a principal bundle connection θ : T P→ g determines a coupling Dirac
structure on the associated fiber bundle E := P ×G F→ B.

The construction is well known (see [Brahic and Fernandes 2014; Weinstein
1980; Wade 2008]), so it will only be sketched. First, the connection θ : T P→ g

gives a G-equivariant embedding iθ : (ker dp)∗ ↪→ T ∗P, where p : P→ B is the
principal bundle projection. This allows us to pullback the hamiltonian G-space
(T ∗P, ωcan, µcan), where µcan : T ∗P → g∗ is the dual of the infinitesimal ac-
tion g→ T P, to obtain a hamiltonian G-space ((ker dp)∗, Lθ , µθ ), where Lθ :=
Graph(i∗θωcan) and µθ : (ker dp)∗→ g∗ is the composition µcan ◦ iθ .

Next, combine the hamiltonian G-spaces ((ker dp)∗, Lθ , µθ ) and (F, LπF , µF ),
where LπF = Graph(πF ), to obtain a hamiltonian G-space

((ker dp)∗× F, Lθ × LπF , µθ +µF ),

where G acts diagonally on (ker dp)∗× F.
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Finally, observe that the hamiltonian quotient

((ker dp)∗× F)//G := {(v, f ) ∈ (ker dp)∗× F : µθ (u)+µF ( f )= 0}/G

is isomorphic to E := P ×G F : the map [(v, f )] 7→ [(u, f )], where v ∈ ker du p,
gives the desired isomorphism. It follows that E has a quotient Dirac structure L ,
and this is indeed a coupling Dirac structure for the fibration E→ B.

The associated coupling Dirac structure can be described as follows. Since G acts
on F by Poisson automorphisms, the associated bundle E := P×G F has an induced
vertical Poisson structure πV with typical fiber (F, πF ). The induced connection
0 on E is a Poisson connection. Denoting by ωθ ∈�2(B, g) the curvature of the
principal connection θ : T P→ g, one obtains a well defined horizontal 2-form ωH

on E by setting
ωH (h(v1), h(v2)) := 〈µF, ωθ (v1, v2)〉.

The triple (πV , 0, ωH ) is the geometric data associated with L . One can also easily
check that this triple satisfies the conditions in proposition 2.4.

Dirac structures obtained in this way are sometimes called classical Yang–Mills–
Higgs phase spaces. We will be interested in the problem of integrability of such
structures. In particular, the integrability of (F, πF ) is not enough to ensure the
integrability of the associated bundle, as shown in the following example.

Example 2.7. Consider the Hopf fibration P = S3
→ S2, seen as an S1-principal

bundle. One can choose a principal connection θ whose curvature is given by
ωθ = p∗ω, where ω is the standard symplectic form on S2. Consider, furthermore,
F = R endowed with the trivial Poisson structure πF = 0, and let S1 act trivially
on F. Any smooth function f : F→ R serves as a momentum map.

The associated bundle is trivial: E = P ×S1 F = S2
× R. Moreover, it is

easily checked that the induced coupling Dirac structure has presymplectic leaves
(S2
×{x}, f (x)ω). Here, the associated geometric data is given by (πV ,Hor, ωH )

where πV =0, Hor is the flat connection given by the trivialization, and ωH := f p∗ω.
Although πV is integrable, the coupling Dirac structure L is not integrable whenever
f has some critical point; see [Crainic and Fernandes 2004].

Remark 2.8. General coupling Dirac structures can be seen as infinite dimensional
Yang–Mills–Higgs phase spaces, provided one allows for infinite dimensional
structure groups, as shown in [Brahic and Fernandes 2008]. A precise formulation
requires the theory of Fréchet manifolds and Fréchet Lie groups. However, one
can use this Poisson gauge theory heuristically, offering guidance on how to extend
constructions which work for a Yang–Mills–Higgs phase space to a general coupling
Dirac structure. We will use this principle later in our construction of the integration
of general coupling Dirac structures.
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2C. Coupling Dirac structures as extensions. In the Yang–Mills–Higgs approach
to general coupling Dirac structures, one must allow for infinite dimensional struc-
ture groups. An alternative approach (see [Brahic 2010]) is to observe that coupling
Dirac structures give rise to Lie algebroid extensions.

Proposition 2.9. Let L be a coupling Dirac structure on p : E→ B. The morphism
p∗ ◦ ] : L→ TB induces a Lie algebroid extension

(10) Graph(πV ) ↪→ L � TB

Moreover, the decomposition (8) induces an Ehresmann connection with horizontal
space Graph(ωH ), namely

(11) L = Graph(πV )⊕Graph(ωH ).

Proof. The map p∗ ◦ ] : L → TB is clearly a Lie algebroid morphism, being
the composition of algebroid morphisms. It is a surjective morphism because
Hor⊂ Im ] and, since it covers the surjective submersion p : E→ B, it defines a
Lie algebroid extension. The fiber nondegeneracy condition also implies that the
kernel of the extension is given by

ker(p∗ ◦ ])= ]−1(Ver)= Graph(πV ).

Hence, the kernel is exactly Graph(πV )⊂Ver∗⊕Ver. The decomposition (11) gives
a complementary vector subbundle to this kernel, i.e., an Ehresmann connection in
the sense of Brahic. �

For a Lie algebroid extension which is split, as in (11), there is a natural decom-
position of its Lie bracket [Brahic 2010, Lemma 1.8].

First, we may identify Graph(πV ) with Ver∗, so sections of Graph(πV ) are iden-
tified with vertical forms. Vertical forms α, β ∈ 0(Ver∗) come naturally equipped
with a bracket and an anchor inherited from πV :

]V (α) := π
]
V (α),(12)

[α, β]V := L]V (α) β −L]V (β) α− dVπV (α, β),(13)

where dV : C∞(E)→ 0(Ver∗) denotes the vertical de Rham differential. Since πV

is Poisson, this makes Ver∗ into a Lie algebroid.
Second, for each v ∈ X(B) there is a unique section h∗(v) of Graph(ωH ) such

that dp ◦ ](h∗(v))= v. In fact, we have an isomorphism ] : Graph(ωV )→ Hor, so
we can first lift v to h(v) ∈ 0(Hor) and then apply ]−1, which gives

h∗(v)= (h(v), ih(v)ωH ) ∈ 0(Graph(ωH )).

We refer to h∗ : X(B)→ 0(Graph(ωH )) as the cohorizontal lifting map.



336 OLIVIER BRAHIC AND RUI LOJA FERNANDES

Sections of L are generated by sections α ∈ 0(Ver∗) and h∗(v), for v ∈ X(B),
so the Lie bracket on L is entirely determined by its value on these two types of
sections.

Proposition 2.10 (Splitting Brackets). Let L be a coupling Dirac structure on
E→ B. Under the decomposition (11) the Lie bracket of L satisfies:

[α, β]L = [α, β]V , [h
∗(v), α]L = Lh(v)α,

[h∗(v), h∗(w)]L = h∗([v,w])+ dVωH (h(v), h(w)),

while the anchor takes the form:

(14) ](h∗(v)+α)= h(v)+ ]V (α)

for any elements v,w ∈ X(B) and α, β ∈ 0(Ver∗).

Proof. The proposition follows from straightforward computation using (2) and the
identifications Hor∗ ' Ver0 and Ver∗ ' Hor0. �

In particular, we see that the curvature of Graph(ωH ), as an Ehresmann connec-
tion on the Lie algebroid extension L , is given by

(π
]
V dVωH , dVωH ) ∈�

2(B, 0(Graph(πV ))
)
.

Notice that this is just another way of expressing the curvature identity (9).

3. Integration of coupling Dirac structures I

As stated in the introduction, our main aim is to understand the integration of cou-
pling Dirac structures. We now take care of the symplectic geometry, showing that
an s-connected groupoid integrating a coupling Dirac structure has a presymplectic
2-form which is itself a coupling form.

3A. Presymplectic groupoids. In the sequel, we will denote by G ⇒ M a Lie
groupoid, with source and target maps s, t : G→ M, identity section ι : M → G,
m 7→ 1m , and inversion i : G → G, x 7→ x−1. The composition of two arrows,
denoted by x · y, is only defined provided s(x)= t(y).

We will denote by pA : A→ M a Lie algebroid with Lie bracket [ · , · ]A and
anchor ] : A→ TM. Given a Lie groupoid G, the corresponding Lie algebroid has
underlying vector bundle A(G) := ker dι(M)s and anchor ] := dι(M) t . The sections of
A(G) can be identified with the right invariant vector fields on G, and this determines
the Lie bracket on sections of A(G). A groupoid that arises in this way is called
integrable.

Not every Lie algebroid pA : A → M is integrable. However, there always
exists a topological groupoid G(A) with source 1-connected fibers, that formally
“integrates” A, called the Weinstein groupoid of A. Moreover, A is integrable if and



INTEGRATION OF COUPLING DIRAC STRUCTURES 337

only if G(A) is smooth, in which case A(G(A)) is canonically isomorphic to A; see
[Crainic and Fernandes 2003; 2011].

Let us recall briefly the construction of G(A). More details can be found in
[loc. cit.]. An A-path is a path a : I → A such that:

]a(t)= d
dt

pA(a(t)).

We denote by P(A) the space of A-paths (up to reparametrization), and we set
s(a) := pA◦ a(0) and t(a) := pA◦ a(1). On the space P(A), there is an equivalence
relation ∼, called A-homotopy, that preserves the multiplication. The Weinstein
groupoid is the quotient of P(A) by A-homotopies:

G(A) := P(A)/∼ .

Given an A-path a, we denote its A-homotopy class by [a]A, or simply [a] when
no confusion seems possible.

When a Lie algebroid arises from a geometric structure, the corresponding Lie
groupoid usually inherits some extra geometric structure. In the case of Dirac
structures L , the Weinstein groupoid G(L) comes equipped with a multiplicative
presymplectic form; see [Bursztyn et al. 2004].

Definition 3.1. A 2-form � ∈�2(G) is multiplicative if

m∗�= pr∗1 �+ pr∗2 �,

where m : G(2)→ G is the multiplication of composable arrows and pri : G(2)→ G is
the projections onto factor i . A presymplectic groupoid is a Lie groupoid endowed
with a multiplicative 2-form � such that

(15) ker�x ∩ ker(ds)x ∩ ker(dt)x = {0}, for all x ∈ M.

Roughly speaking, Dirac structures integrate to presymplectic groupoids.

Theorem 3.2 [Bursztyn et al. 2004]. Let L be a Dirac structure on a manifold M.
If L is integrable, then G(L) has a naturally induced multiplicative presymplectic
form such that the map (t, s) : (G(L),�)→ (M ×M, L × Lop) is f -Dirac.

The aforementioned multiplicative presymplectic form � on G(L) is related
to sections of L in the following way: for any X ∈ TG and any pair of sections
η = (v, α), ξ = (w, β) in 0(L),

�( Eη, X)=−α(s∗X), �(Eξ, X)= β(t∗X),

where we denoted by Eη the left invariant vector field on G(L) associated to η and
by Eξ the right invariant vector field associated to ξ . Also, source and target fibers
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turn out to be presymplectically orthogonal:

�( Eη, Eξ)= 0.

Finally, if (S, ωS) is the presymplectic leaf of (M, L) through x ∈ M, then the map
t : s−1(x)→ S defines a principal Gx -bundle, and

i∗s−1(x)�= t|∗s−1(x)ωS,

where is−1(x) : s−1(x) ↪→ G(L) denotes the inclusion.
Note that, given an integrable Dirac structure (M, L), there can be other pre-

symplectic groupoids (G, �G) integrating (M, L) besides (G(L),�). However,
if (G, �G) has source connected fibers, then there is a covering Lie groupoid
homomorphism 8 : (G(L),�)→ (G, �G) with 8∗�G =�.

3B. Couplings integrate to couplings. Assume that L is an integrable coupling
Dirac structure on a fibration p : E→ B. The anchor ] : L→ TE is a Lie algebroid
morphism that integrates to the groupoid morphism G(L)→5(E) which associates
to the homotopy class of an L-path the homotopy class of its base path. On the other
hand, p∗ : TE→ TB is a Lie algebroid morphism whose integration5(E)→5(B)
is the morphism [γ ] 7→ [p◦γ ]. We will denote the composition of this two groupoid
morphisms by p̃ : G(L)→5(B).

Now the morphism p̃ : G(L)→ 5(B) integrates the Lie algebroid morphism
p∗ ◦ ] : L→ TB. Since p∗ ◦ ] is surjective on the fibers, by the coupling condition,
we see that p̃ : G(L)→5(B) is a submersion, which is not necessarily surjective.

Proposition 3.3. Suppose that L is an integrable coupling Dirac structure on a
fibration p : E → B and the induced Ehresmann connection is complete. Then,
p̃ : G(L)→5(B) is surjective, so it is a fibration.

Proof. Given [γ ] ∈5(B), where γ : I → B is a smooth path, completeness allows
us to lift γ to a horizontal path γ̃ : I → E . Since γ̃ ′(t) ∈ Im ], we can find an
L-path a : I → L with base path γ̃ . Then, p̃([a])= [γ ]. �

Remark 3.4. One can show that if a locally trivial fibration p : E→ M admits a
complete Ehresmann connection, then p∗ :5(E)→5(B) is also locally trivial and
carries an induced Ehresmann connection. It follows then that if L is an integrable
coupling Dirac structure on a fibration p : E → B and the induced Ehresmann
connection is complete, then p̃ : G(L)→5(B) is also a locally trivial fibration.

From now on, we will make the implicit assumption that our coupling Dirac
structures have complete induced connections. This is the case, for example, if the
fibers are compact.
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Theorem 3.5. Let L be a coupling Dirac structure on p : E→ B. If L is integrable,
then the multiplicative presymplectic form � on G(L) is fiber nondegenerate for the
fibration

(16) p̃ : G(L)→5(B),

obtained by integrating the Lie algebroid morphism p∗ ◦ ] : L→ TB.

Proof. Let us denote by VerGL := ker p̃. We only need to check that the non-
degeneracy condition (4) holds:

(VerG(L)⊕Ver0
G(L))∩Graph�= {0}.

First notice that since p̃ is obtained by composing the groupoid maps

G(L)→5(E)→5(B),

it follows that (X, α) ∈ TG(L)⊕ T ∗G(L) lies in VerG(L)⊕Ver0
G(L) if and only if it

satisfies

(s∗× t∗)(X) ∈ Ver×Ver and α ∈ (s∗× t∗)(Ver0
×Ver0).

Let g ∈ G(L) be the base point of (X, α), and set x := s(g) ∈ E and y := t(g) ∈ E .
The second condition shows that α ∈ s∗(Ver0

x)+ t∗(Ver0
x), so there exists a0 ∈Ver0

x
and a1 ∈ Ver0

y such that α = s∗a0− t∗a1. It follows from the first condition that

(s∗X, a0) ∈ Verx ⊕Ver0
x and (t∗X, a1) ∈ Very ⊕Ver0

y .

Thus, for any (X, α)∈ (VerG(L)⊕Ver0
G(L))∩Graph�, we must have (s∗X, a0) ∈ L x

and (t∗X, a1) ∈ L y , since s× t is a forward Dirac map. By the fiber nondegeneracy
condition of L , we conclude that (s∗X, a0)= 0 and (t∗X, a1)= 0.

It follows that α = s∗a0− t∗a1 = 0 and that X ∈ ker s∗ ∩ ker t∗. Since (X, α) ∈
Graph�, we conclude that X ∈ ker s∗∩ker t∗∩ker�. The nondegeneracy condition
of � (see Definition 3.1) shows that we must also have X = 0. �

Remark 3.6. For each b ∈ B, the fiber p̃−1(1b) is a Lie subgroupoid of G(L) over
the fiber Eb := p−1(b), and the restriction of � to the fiber is symplectic: it is a
symplectic groupoid integrating the vertical Poisson structure (Eb, πb); the fact
that ker p∗ ◦ ]= ]−1(Ver) is identified with GraphπV = Ver∗ as a Lie algebroid is
a consequence of Proposition 2.10. The kernel of p̃ is also a Lie subgroupoid of
G(L) over E of a special kind, called a fibered symplectic groupoid, which we will
study in Section 4A.

If (G, �G) is another presymplectic groupoid integrating (E, L) with source
connected fibers, then we claim that there is also a fibration p : G→ GB , where
GB is a certain Lie groupoid integrating TB; in fact, since G has source connected
fibers, there is a covering homomorphism 8 : G(L)→ G, whose kernel N ⊂ G(L)
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is an embedded bundle of normal subgroups. Its image p̃(N )⊂ π1(B) is also an
embedded bundle of normal subgroups and so the quotient GB := π1(B)/ p̃(N ) is
another Lie groupoid integrating TB. Moreover, we obtain a groupoid morphism
p : G→ GB from p̃ : G(L)→ π(B) by passing to the quotient. We then obtain as a
corollary of Theorem 3.5:

Corollary 3.7. Let L be a coupling Dirac structure on E→ B. If (G, �G) is any
source connected presymplectic groupoid integrating L , then �G is a coupling
form relative to the fibration p : G→ GB , the unique Lie groupoid homomorphism
integrating the Lie algebroid morphism ] ◦ p∗.

3C. Integration of the geometric data. Let L be an integrable coupling Dirac
structure on p : E→ B, with associated geometric data (πV , 0, ωH ), and (G, �) a
source connected presymplectic groupoid integrating L . According to the results of
the previous section, � is a coupling form relative to a fibration p : G→ GB , which
is a Lie groupoid homomorphism integrating the Lie algebroid morphism p∗ ◦ ].
We denote by (�V , 0̃, �H ) the corresponding geometric data.

One can obtain the geometric data of the coupling multiplicative 2-form � in
terms of the geometric data of the coupling Dirac structure L as follows:

Proposition 3.8 (integration of the geometric data). The geometric data (�V , 0̃, �H )

for � is related to the geometric data (πV , 0, ωH ) for L in the following way:

(i) (GEb , �Eb) := ( p̃
−1(1b), i∗b�V ) is a symplectic Lie groupoid over Eb, which

integrates πV |Eb , where ib : p̃−1(1b) ↪→ G is the inclusion.

(ii) The connection 0̃ has horizontal lift given by

(17) H(v,w)= Eh
∗
(v)− Eh

∗
(w),

where h∗ denotes the cohorizontal lift.

(iii) Under the natural identification TgGB = Tt(g)B× Ts(g)B, the horizontal form
�H is given by

(18) �H (H(v1, w1), H(v2, w2))=ωH (h(v1), h(v2))◦ t−ωH (h(w1), h(w2))◦ s.

Proof. Item (i) was already discussed in Section 3B (see Remark 3.6).
To prove item (ii), consider an element (v,w) ∈ TgGB = Tt(g)B× Ts(g)B. Using

the expression h∗(v) := (h(v), ih(v)ωH ) for the cohorizontal lifts, one checks that
the right hand term in (17) projects onto (v,w) and lies in Ver⊥�L

G . By uniqueness,
it must coincide with H(v,w).
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Finally, expression (18) for the horizontal 2-form follows by straightforward
computation, using the general properties of multiplicative 2-forms:

�H
(
H(v1, w1),H(v2, w2)

)
=�

(
Eh∗(v1), Eh∗(v2)

)
+�

(
Eh∗(w1), Eh∗(w1)

)
=
〈
(h(v1), ηv1), (h(v2), ηv2)

〉
−
◦ s −

〈
(h(w1), ηw1), (h(w2), ηw2)

〉
−
◦ t

= ωH (h(v1), h(v2)) ◦ t − ωH (w1, w2) ◦ s.

�

Remark 3.9. the groupoid geometric data (�V , 0̃, �H ) has a multiplicative nature:

• The fiberwise symplectic forms are multiplicative 2-form on the vertical
groupoids ker p̃.

• The Ehresmann connection H ⇒ Hor is a multiplicative distribution, since it
is a subgroupoid of TG ⇒ TE over Hor⊂ TE .

• Similarly, Equation (18) indicates that �H is a multiplicative 2-form. There
are several ways of expressing this multiplicativity. For example, one may say
that for any pair of composable arrows (v1, w1), (v2, w2) ∈ Hor(2), based at
the same composable arrow (g1, g2) ∈ G(2),

�H (mHor(v1, w1),mHor(v2, w2))=�H (v1, v2)+�H (w1, w2).

One may also say that the composition Hor→ Hor∗→ T ∗G is a groupoid
morphism, where the first map is contraction by �H and the second one is the
inclusion coming from the splitting TG = Ver⊕Hor.

Observing that � is fiber nondegenerate for both p ◦ s and p ◦ t , we obtain:

Corollary 3.10. For each b ∈ B, the presymplectic groupoid (G, �) and the sym-
plectic groupoid (GEb , �Eb) are Morita equivalent presymplectic groupoids:

(P, �P)t|P
zz

s|P
&&

(G, �) (GEb , �Eb)

where P := s−1(Eb) and �P := i∗P�, with iP : P ↪→ G denoting the inclusion.

4. Integration of the Yang–Mills–Higgs phase space

In [Brahic and Fernandes 2014], we have proposed an integration procedure for
a Yang–Mills–Higgs phase space. This procedure consists in forming a certain
hamiltonian quotient which is hard to make sense out of for arbitrary coupling Dirac
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structures, since it will involve an infinite dimensional reduction. In this section,
we give a different approach to integrating a Yang–Mills–Higgs phase space.

This new construction of the integration of a Yang–Mills–Higgs phase space
E= P×G F associated with a triple (P,G, F) and a choice of connection θ :T P→g

involves the following steps:

(i) Integrate the Poisson structure on the fiber (F, πF ) to a symplectic groupoid
F ⇒ F.

(ii) Integrate the vertical Poisson structure Ver∗ to a fibered symplectic groupoid
GV = P ×G F ⇒ E .

(iii) Integrate the principal G-bundle P→ B to the gauge groupoid G(P)⇒ B.

(iv) Let the gauge groupoid G(P)⇒ B act on the fibered groupoid GV ⇒ E→ B,
yielding a semidirect product groupoid G(P)nGV ⇒ E .

(v) Finally, integrate the Yang–Mills phase space, forming a quotient

G(L)= G(P)nGV / C,

where C is a certain curvature groupoid.

The next paragraphs describe these constructions.

4A. Fibered symplectic groupoids. We discuss the first two integration steps above.
For this, we recall briefly from [Brahic and Fernandes 2008] a few notions about
fibered symplectic groupoids.

4A1. Fibered groupoids. Let us fix a base B. We have the category Fib of fibrations
over B, where the objects are the fibrations p : E→ B and the morphisms are the
fiber preserving maps over the identity.

A fibered groupoid is an internal groupoid in Fib, i.e., an internal category where
every morphism is an isomorphism. This means that both the total space GV and
the base E of a fibered groupoid are fibrations over B and all structure maps are
fibered maps. For instance, the source and the target maps are fiber preserving maps
over the identity:

GV

  

//
// E

p
��

B

It follows that any orbit of GV lies in a fiber of p : E → B. In fact, GV |Eb :=

(p ◦ s)−1(b)= (p ◦ t)−1(b) is a Lie groupoid over Eb.
The infinitesimal version of a fibered Lie groupoid GV ⇒ E→ B is a fibered Lie

algebroid AV → E→ B. This means π : AV → E is a Lie algebroid, the vector
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bundle projection is map of fibrations:

AV

!!

// E
p
��

B

and the image of the anchor ]V takes value in the vertical bundle Ver⊂ TE . There
is an obvious Lie functor from fibered groupoids to fibered algebroids.

A elementary way to obtain a fibered groupoid/algebroid is by using a principal
bundle whose structure group acts on a Lie groupoid/algebroid by automorphisms.
Then we have the following:

Proposition 4.1. Given a principal G-bundle P and an action A : G→ Aut(F)
of G on a Lie groupoid F ⇒ F by Lie groupoid automorphisms, the associated
bundle GV := P ×G F carries a natural structure of a fibered Lie groupoid over
E := P ×G F. The corresponding fibered Lie algebroid is P ×G A(F)→ E.

Proof. The associated bundle P ×G F is given by equivalence classes [u : a] of
couples (u, a) ∈ P ×F under the relation [u : a] = [ug−1, Ag(a)] for all g ∈ G.
The source and targets map s, t : P ×G F→ P ×G F, given by

s[u : a] := [u : s(a)] and t[u : a] := [u : t(a)],

are easily checked to be well defined. Then, we define a composition by setting
[u′ : a′] · [u : a] = [u, Ag(a′) · a], where g is the unique element of G such that
u′ = ug. Once we check that it is independent of g, we can write

[u : a′] · [u : a] = [u : a · a′],

which makes it straightforward to obtain a groupoid structure P ×G F ⇒ P ×G F,
with inverse [u : a]−1

= [u : a−1
] and units 1[u:x] = [u : 1x ]. �

Remark 4.2. As a basic observation, note that each fiber of P×GF comes naturally
equipped with the structure of a Lie groupoid over the corresponding fiber of P×G F,
clearly isomorphic to the model F ⇒ F.

4A2. Poisson fibrations. We now apply these constructions to integrate Poisson
fibrations into fibered symplectic groupoids.

Definition 4.3. A Poisson fibration p : E → B is a locally trivial fiber bundle,
with fiber type a Poisson manifold (F, πF ) and with structure group a subgroup
G ⊂ Diffπ (F). When π is symplectic the fibration is called a symplectic fibration.

The fibers Eb := p−1(b) of a Poisson fibration come with an induced Poisson
structure πEb that glue to a Poisson structure πV on the total space of the fibration,
so that πEb = πV |Eb .
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The bivector field πV is vertical; that is, it takes values in
∧2 Ver ⊂

∧2TE .
Hence, the fibers (Eb, πEb) become Poisson submanifolds of (E, πV ).

It is important to distinguish πV as a vertical Poisson structure from its underlying
Poisson structure on E . In particular, the Lie algebroid structure associated to πV

as a vertical Poisson structure is defined on the covertical bundle Ver∗, rather than
on T ∗E . The corresponding bracket and anchor are given by (13) and (12). Clearly,
this is a fibered version of the usual construction, which we formalize as follows:

Definition 4.4. A fibered symplectic groupoid is a fibered Lie groupoid GV whose
fiber type is a symplectic groupoid (F, ω).

Therefore, if GV is a fibered symplectic groupoid over B, then p ◦ s = p ◦ t :
GV → B is a symplectic fibration, and each symplectic fiber GV |Eb is a symplectic
groupoid over the corresponding fiber Eb.

Proposition 4.5. The base E→ B of a fibered symplectic groupoid GV ⇒ E→ B
has a natural structure of a Poisson fibration.

Conversely, a Poisson fibration whose fiber type is an integrable Poisson manifold,
integrates to a fibered symplectic groupoid. In fact, standard facts about integration
of Lie algebroids yield the following (see [Brahic and Fernandes 2008] for details):

Theorem 4.6. Let p : E → B be a Poisson fibration with fiber type (F, πF ) an
integrable Poisson manifold. There exists a unique (up to isomorphism) source
1-connected fibered symplectic groupoid integrating Ver∗.

Remark 4.7. The integration of πV as a Poisson fibration and as a Poisson structure
differ since G(Ver∗) has only dimension 2 dim(F)+ dim(B).

4B. Action groupoids. Next we will discuss steps (iii) and (iv) in the integration of
Yang–Mills phase spaces. We describe an action of the gauge groupoid of a principal
bundle on an associated fibered groupoid, and the resulting action groupoid.

4B1. Action of a Lie groupoid on a fibered Lie groupoid. Given a fibered groupoid
GV ⇒ E

p
→ B, the gauge groupoid is the transitive (infinite dimensional) groupoid

Gau(GV ) := {GV |Eb

g
−→ GV |Eb′

: g is a Lie groupoid isomorphism},

with source s(g)= b, target t(g)= b′, and with the obvious composition.

Definition 4.8. An action of a groupoid G⇒ B on a fibered groupoid GV ⇒ E→ B
is a Lie groupoid homomorphism 8 : G→ Gau(GV ).

There is an associated semidirect action groupoid GnGV ⇒ E associated to such
an action, whose space of arrows is defined as

GnGV := G s×p◦ t GV = {(g, a) ∈ G×GV : a ∈ GV |Es(g)}.
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The source and target are given by s(g, a) := s(a) and t(g, a) := t(8g(a)), the units
by 1x = (1p(x), 1x), the inverses by (g, a)−1

= (g−1,8g(a)−1), and the composition
by

(19) (g2, a2) · (g1, a1)= (g2 · g1,8
−1
g1
(a2) · a1).

When both G and GV are Lie groupoid, we say that the action is smooth whenever
GnGV is a Lie groupoid for the obvious manifold structure.

In order to define the infinitesimal counterpart of this action groupoid, for a
fibered Lie algebroid AV → E , define

DerB(AV ) := {D ∈ Der(AV ) : the symbol of D is p∗-projectable}

There is a well defined map ρ : DerB(AV ) → X(B), D 7→ p∗X D, where X D

denotes the symbol of D. Note that DerB(AV ) is a C∞(B)-module by the formula
( f . D)(α) := f D(α). In fact, DerB(AV ) is a Lie algebra over C∞(B) and ρ a
C∞(B)-linear morphism of Lie algebras. In this work, we will always assume that
AV is locally trivial, so that ρ is surjective.

Definition 4.9. An action of a Lie algebroid A→ B on a fibered Lie algebroid
AV → E → B is a C∞(B)-linear Lie algebra morphism D : 0(A)→ DerB(AV )

covering the anchor map, that is, such that ]A = ρ ◦D.

Given such an action, An AV := p∗A⊕ AV comes naturally with the structure
of a Lie algebroid over E . The bracket and anchor are given by

](v, α) := XDv
+ ]V (α),

[v,w] := [v,w]A, [α, β] := [α, β]AV , [v, α] := Dv(α).

for any sections α, β ∈ 0(AV ) and v,w ∈ 0(A) seen as sections of An AV . The
above brackets and anchor naturally extend to arbitrary sections of An AV since
γ (A) generates 0(p∗A) as a C∞(E)-module.

Definition 4.10. Given an action D : 0(A)→ DerB(AV ) of A on AV , we call the
Lie algebroid An AV described above the action Lie algebroid.

Remark 4.11. If AV is the Lie algebroid of a fibered Lie groupoid GV , then
DerB(AV ) can be thought of as the Lie algebroid of Gau(GV ). Indeed, any smooth
action 8 : G→Gau(GV ) differentiates to an action D : A→DerB(AV ). Moreover,
An AV → E is the Lie algebroid of GnGV ⇒ E .

In order to integrate an infinitesimal action D :0(A)→DerB(AV ), note however
that we need to assume that A acts by complete lifts, meaning that the symbol of
Dα is a complete vector field on E for any α ∈ 0(A).
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4B2. Actions of principal bundles on fibered Lie groupoids. Given a principal
G-bundle P, recall that its gauge groupoid G(P)⇒ B has spaces of arrows the
associated bundle P ×G P.

Denoting by [u2 : u1] the equivalence class of a couple (u2, u1) ∈ P × P, the
source and target of G(P) are defined by s([u2 : u1]) := q(u1), t([u2 : u1]) := q(u2),
and the composition is well defined by setting:

[w : v] · [v : u] = [w : u].

The inverses are given by [v : u]−1
= [v : u] and identities by 1x = [u : u].

The groupoid G(P)⇒ B is transitive, and its isotropy groups fit into a Lie group
bundle IsoP→ B that canonically identifies with the associated bundle P×G G by
the injection [u : h] 7→ [uh : u]. Note that the same goes for neutral components,
namely Iso◦P = P ×G G◦.

We will be interested in the s-simply connected groupoid G̃(P) corresponding
to G(P) rather than G(P) itself. The principal bundle corresponding to G̃(P) has
total space the universal cover P̃ of P. When G is connected, the structure group
G of P̃ fits into an exact sequence:

1→ Im ∂2→ G̃→ G→ 1,

where ∂2 : π2(B)→ π1(G) is the boundary operator in the homotopy sequence of
the projection P → B. This means one can always assume that π1(G) = Im ∂2,
provided one chooses to work with G̃(P) instead of G(P).

Finally, the Lie algebroid associated to G(P) is usually denoted by T P/G. It is
a vector bundle over B whose sections are the G-invariant vector fields on P, and
who fits in the Atiyah sequence:

ker ] ↪→ T P/G � TB.

Proposition 4.12. Let P be a principal G-bundle and A : G→ Aut(F) an action
of G on a Lie groupoid F ⇒ F by Lie groupoid automorphisms. Then, there is a
natural action of the gauge groupoid G(P) on the associated fibered Lie groupoid
GV := P ×G F ⇒ E := P ×G F.

Proof. Define 8 : G(P)→ Gau(GV ) by 8[u2:u1]([u : a]) := [u2g : a], where g is
the unique element of G such that u1g = u. After checking that 8 is well defined,
notice that a more convenient formula for 8 is simply:

8[v:u]([u : a])= [v : a] for u,v ∈ P, a ∈ F .

This makes it straightforward to check that 8 indeed takes values in Gau(GV ), and
that it is a groupoid morphism. �
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Proposition 4.13. With the same assumptions as in Proposition 4.12, the action
groupoid GnGV ⇒ E identifies with the quotient (P× P×F)/G, where G acts on
P × P × F diagonally: [v : u : a] = [vg : ug : A−1

g (a)], for any g ∈ G. Moreover,
under this identification, the structure maps are given as follows:

• the source and target map are

s[v : u : a] = [u : s(a)] and t[v : u : a] = [v : t(a)],

• the unit at a point [u : x], where x ∈ F, u ∈ P, is

1[u:x] = [u : u : 1x ],

• the inverses are
[v : u : a]−1

= [u : v : a−1
],

• and the composition is

[w : v : a′] · [v : u : a] = [w : u : a′ · a].

Proof. By the construction of the Section 4B1, an arrow in G(P)nGV is a couple
([u2 : u1], [u : a]), where q(u)= q(u1). Since there exists a unique g ∈G such that
u1g = u, we can always assume that u1 = u and the identification easily follows.
The formulas for the structure maps then come from Proposition 4.12 and the
construction of the semidirect product. �

4B3. Action groupoid of a Poisson fibration. Let E = P ×G F→ B be a Poisson
fibration associated with a principal G-bundle p : P→ B and an action of G on
an integrable Poisson manifold (F, πF ) by Poisson diffeomorphisms. The results
above show that one obtains an action groupoid as follows.

First, we consider the source connected symplectic groupoid F ⇒ F integrating
(F, πF ). The G-action on F by Poisson diffeomorphisms lifts to Lie groupoid
action A : G→ Aut(F) by groupoid automorphisms; see, e.g., [Fernandes et al.
2009]. Therefore, according to Propositions 4.12 and 4.13, there is a natural
action of the gauge groupoid G(P)⇒ B on the associated fibered Lie groupoid
GV := P ×G F ⇒ E→ B, giving rise to an action Lie groupoid G(P)nGV ⇒ E .

According to the preceding discussion (see Remark 4.11), the Lie algebroid of
the action Lie groupoid G(P)nGV ⇒ E has underlying vector bundle

p∗An AV = p∗(T P/G)nVer∗.

To determine the bracket and the anchor, we need to find the Lie algebra homo-
morphism D : 0(T P/G)→ DerB(Ver∗). Since Ver∗ identifies naturally with the
associated bundle Ver∗ = P ×G T ∗F and since the action of G on T ∗F is naturally
lifted from the G-action on F, it follows that D associates to each G-invariant vector
field X in P the Lie derivative of the vector field XE ∈X(E), induced by the natural
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action on T ∗P/G on E . In other words, Dv coincides with the Lie derivative of its
own symbol:

DX (α)= LXE α for X ∈ 0(T P/G), α ∈ 0(Ver∗),

where XE is the projection on E = P ×G F of the vector field (X, 0) ∈ X(P × F).
It follows that if X, Y denote G-invariant vector fields in P and α, β ∈ 0(Ver∗),
then the anchor of p∗(T P/G)nVer∗ is given by

(20) ](X, α) := XE +π
]
V (α),

while the bracket takes the form

(21) [X, Y ]AnAV := [X, Y ], [α, β]AnAV := [α, β], [X, α]AnAV := LXE (α).

4C. Integrability of Yang–Mills–Higgs phase spaces. We consider now the last
steps in the construction of the integration of Yang–Mills–Higgs phase space. So
now we assume that we have

• p : P→ B a principal G-bundle;

• (F, πF ) a Poisson manifold;

• G× F→ F a hamiltonian G-action on (F, πF ) with equivariant moment map
JF : F→ g∗.

Each choice of a principal connection θ : T P→ g yields a coupling Dirac structure
on E = P ×G F.

The fact that the action is hamiltonian implies that the G action on the algebroid
T ∗F is prehamiltonian, with premoment map (see ):

ψ : gn F −→ T ∗F

(ξ,m) 7−→ dm〈J, ξ〉.

Therefore, by Theorem A.19, ψ integrates to a groupoid morphism

9 : G◦n F→ F,

where
F :=6(F) / 9̃(π1(G)n F).

We will assume that 9̃(π1(G)× F) is embedded in 6(F), so that F is smooth.
Clearly, GV := P ×G F is a symplectic groupoid integrating Ver∗ = P ×G T ∗F.

The G-action on F lifts to a Lie groupoid action A : G→ Aut(F), so we can
apply the construction of the previous subsection: we obtain an action groupoid
G(P)nGV ⇒ E .
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Definition 4.14. The curvature subgroupoid, denoted by C⇒ E , is the subgroupoid
C ⊂ G(P)nGV given by:

C := Graph(9P ◦ i)⊂ G(P)nGV ,

where 9P : Iso◦P ×B E → GV is obtained by fibrating 9 : G◦ n F → F along P
and i : Iso◦→ Iso◦ denotes the inversion.

More explicitly, with the notations of Proposition 4.13, the curvature groupoid C
is given by

(22) C := {[uh−1
: u :9(h, x)] ∈ G(P)nGV : u ∈ P, h ∈ G◦, x ∈ F}.

Proposition 4.15. The curvature groupoid C ⇒ E is a wide, normal, completely
intransitive subgroupoid of G(P)nGV .

Proof. The result follows using the expression (22) for C, the compositions rules
in Proposition 4.13 and Equation (32) in Theorem A.19. The fact that C is a
subgroupoid is rather straightforward. In order to see that it is normal, we pick any
[uh−1

: u : 9(h, x)] ∈ C and [v : u : a] ∈ G(P)n GV which are composable, i.e.,
such that x = s(a), and we find that

[v : u : a] · [uh−1
: u :9(h, x)] · [v : u : a]−1

= [vh−1
: v :9(h, x)],

is an element in C. �

Finally, putting all together, we conclude the following:

Theorem 4.16. Suppose that (P,G, F) is a classical Yang–Mills–Higgs setting
and θ : T P → g is a principal connection. Let L be the corresponding coupling
Dirac structure on E = P ×G F and assume that

(i) the Poisson manifold (F, πF ) is integrable, and

(ii) the groupoid 9̃(π1(G)× F) is embedded in 6(F).

Then, the quotient groupoid G(P)nGV /C integrates (E, L).

Proof. As we saw above, the Lie algebroid of G(P)n GV is given by A n AV ,
where A= T P/G and AV =Ver∗. Furthermore, the principal connection induces a
splitting of the Atiyah sequence, and we have an identification T P/G'TB⊕ker ]A.
With this identification, the Lie algebroid AC of C lies in

T P/G nVer∗ ' (TB⊕ ker ]A)nVer∗

as
AC =

{
(0, ξ,−ψ(ξ)) ∈ (TB⊕ ker ]A)nVer∗ : ξ ∈ ker ]A

}
,

and the quotient (TB⊕ker ]A)nVer∗/AC identifies with TB×B Ver∗, with canonical
projection given by π(X, ξ, α)= (X, α+ψ(ξ)). It now follows from expressions
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(20) and (21) for the anchor and the brackets that the Lie algebroid structure on
AnVer∗ descends to a Lie algebroid structure on TB×B AV whose brackets and
anchor are the same as those given in Proposition 2.10. Hence AnVer∗/AC and L
are isomorphic as Lie algebroids.

For the smoothness of the quotient, we observe that G(P)nGV / C can also be
thought of as an “associated bundle” G(P)nIso◦P GV . Indeed, there is an action of
the bundle of Lie groups Iso◦P on G(P)n GV which can be described as follows.
On the one hand, the Lie groupoid morphism 9 induces an action λ of G◦ on F
by left multiplication: λh(a) :=9(h, x) · a, where h ∈ G◦ and x := s(a). Fibering
along P, we obtain an action of the bundle of Lie groups Iso◦P on GV :

λP
[u:h]([u : a]) := [u :9(h, x) · a].

Here we use the identification Iso◦P ' P ×G G◦ to write an element of Iso◦P as a
pair [u : h]. Note that this action is well defined by (33). On the other hand, Iso◦P
acts on G(P) by right multiplication, which is a proper and free action. The two
actions together give a proper and free action of Iso◦P on G(P)nGV :

g · (b, a) :=
(
bg−1

: λP
g (a)

)
.

and the quotient is the “associated bundle” G(P)nIso◦P GV .
We claim that G(P)nIso◦P GV can be identified with G(P)nGV/C. This follows

by observing that any g ∈ Iso◦P can be written as g = [u : uh] ∈ G(P) so that (see
Theorem A.19):

g · (b, a)=
(
bg−1, λP

g (a)
)
= (b, a) · c

where c := ([uh−1
: u :9(h)]) ∈ C. Since the assignment c↔ g is one-to-one, the

two quotients coincide. �

Remark 4.17. Consider the Hopf fibration P = S3
→ S2, seen as an S1-principal

bundle, and F =R acted upon trivially with momentum map f : F→R any smooth
function, as in Example 2.7. Then, the second condition in Theorem 4.16 fails if f
has a critical point as explained in Example A.20.

Theorem 4.16 shows that the groupoid structure of G(L) does not depend on the
choice of the principal G-bundle connection. In other words, two coupling Dirac
structures associated with Yang–Mills data with the same principal G-bundle and
hamiltonian G-action, but different principle bundle connections, give rise to the
same Lie groupoid. Note, however, that the presymplectic forms will be distinct, as
it is clear from their geometric data given in Proposition 3.8.

We can also give an explicit description of the presymplectic form � on G(L),
as follows. First, we use Proposition 4.13 to identify G(P)nGV ' (P× P×F)/G.
We then construct a presymplectic form �̃ on G(P)nGV : we have a closed 2-form



INTEGRATION OF COUPLING DIRAC STRUCTURES 351

on P × P ×F given by

�̃ := p∗F�F + d〈θ, µ〉1− d〈θ, µ〉2,

where pF : P×P×F→F is the projection, and d〈θ, µ〉i denotes the closed 2-form
in �2(P × P × F) obtained by differentiating the 1-form αi ∈ �

1(P × P × F)
given by

αi |(u1,u2,g)(v1, v2, w) := 〈θ |ui (vi ), µ(g)〉.

Here, µ : F → g∗ denotes the moment map for the lifted G-action on F, so that
µ = µ ◦ t − µ ◦ s. One checks easily that the closed 2-form �̃ is basic for the
G-action on P × P ×F, so it descends to a multiplicative 2-form in the quotient
(P × P ×F)/G ' G(P)nGV .

Finally, one checks that resulting multiplicative 2-form on G(P)n GV further
descends to the quotient G(P)nGV /C, giving a closed, multiplicative 2-form �G
satisfying the nondegeneracy condition (15). A more-or-less tedious computa-
tion shows that the target map t : (G(L),�G)→ (E, L) is a forward Dirac map.
Summarizing this discussion, we have:

Corollary 4.18. Under the conditions of Theorem 4.16, the presymplectic form on
the groupoid G(L)= G(P)nGV / C is the quotient of the closed 2-form

�̃ := p∗F�F + d〈θ, µ〉1− d〈θ, µ〉2.

The integrability conditions in Theorem 4.16 can be made more explicit. On
the one hand, the integrability of the fiber type (F, πF ) follows from general
theory developed in [Crainic and Fernandes 2004] and can be expressed in terms
of monodromy maps ∂ : π2(S, x)→ G(gx), where S is the symplectic leaf of F
through x and gx = kerπ ]F |x is the isotropy Lie algebra at x . On the other hand,
condition (ii) can be treated by the same methods as in [Brahic and Fernandes
2014, Section 4.3], and one gets another monodromy type map π1(G) → Fm

controlling (ii). This will be treated elsewhere.

5. Integration of coupling Dirac structures II

A general coupling Dirac structure may not come from a principal bundle with
structure group a finite dimensional Lie group. For instance, this is the case if
the holonomy group induced by the connection (i.e., the group spanned by the
holonomy along loops in the base) is not a finite dimensional subgroup of the
Poisson automorphisms of the fiber. In such cases, one needs a formulation of the
construction of Section 4C which avoids infinite dimensional reductions. In this
section, we will take advantage of the fact that L fits into a Lie algebroid extension,
to reformulate the construction given in Section 4C, without any mentioning to
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these infinite dimensional group quotients. We follow the ideas of [Brahic 2010] in
order to describe L-paths and L-homotopies.

Recalling that Ver∗ = Graph(πV ), we know that L is a Lie algebroid extension

Ver∗ ↪→ L � TB,

which splits. The notion of holonomy makes sense for any Lie algebroid extension
with a splitting (see [op. cit., Section 2.1]), and in our situation, given a TB-path
γ̇B ∈ P(TB), the holonomy is a Lie algebroid morphism

8γB
: Ver∗

∣∣
EγB(0)
→ Ver∗

∣∣
EγB(1)

.

It will be useful to restrict γB to a path [0, t] → TB, where t ∈ [0, 1]. The corre-
sponding holonomy will then be

8
γB
t,0 : Ver∗

∣∣
EγB(0)
→ Ver∗

∣∣
EγB(t)

.

In the case of a coupling Dirac structure, there is another notion of holonomy to
be taken into account, namely, the one induced by the usual Ehresmann connection
Hor. Given a path γB : [0, 1] → B it gives rise to a holonomy map

φγB : EγB(0)→ EγB(1).

Again, restricting γB to a path [0, t] → B the corresponding holonomy will be
denoted

φ
γB
t,0 : EγB(0)→ EγB(t).

The two holonomies are related in a simple way:

Proposition 5.1. The holonomy 8γB
t,0 induced by the connection Graph (ωH ) on L

is related to the holonomy φγB
t,0 induced by Hor on TE by

8
γB
t,0 = (φ

γB
0,t)
∗.

Proof. The result follows directly from the identification Ver∗ = Graph(πV ) and
from the particular form of the bracket given in Proposition 2.10. �

Recall that a Lie algebroid extension is called a fibration whenever the Ehresmann
connection is complete [Brahic and Zhu 2011]. It follows from Proposition 5.1
that (10) is a fibration whenever the Ehresmann connection Hor is complete. In the
sequel, we will always assume that this is the case.

5A. Splitting L-paths and L-homotopies. We see from Proposition 2.9 that any
L-path a over γ := pL ◦ a decomposes uniquely as a sum:

(23) a(t)= h∗(γ̇B(t))γ (t)+ aV (t)
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where γB := p ◦γ . In this decomposition, neither t 7→ h∗(γ̇B(t))γ (t), nor t 7→ aV (t)
is an L-path in general. However, it is possible to “split” the paths in P(L) into
horizontal and vertical parts, as follows:

Proposition 5.2 (splitting L-paths). Let L be a coupling Dirac structure on a
fibration p : E→ B. If the associated connection 0 is complete, then there is an
isomorphism of Banach manifolds:

P(L) −→ P(TB) s×t◦p P(Ver∗),
a 7−→ (γ̇B, ã),

where the couple (γ̇B, ã) is defined by

(24) γ̇B := dp ◦ ]a, ãt := aV (t) ◦ dφγB
t,0 ,

where φγB
t,0 : EγB(0)→ EγB(t) denotes the holonomy along γB .

Proof. This follows from [Brahic 2010, Proposition 4.1] and Proposition 5.1. �

One should think of the couple (γ̇B, ã) as a concatenation of L-paths of the form
h∗(γ̇B) · ã. Here, h∗(γ̇B) denotes the L-path defined by

(25) h∗(γ̇B)(t) := h∗(γ̇B(t))φγB
t,1 (y)

,

where y = s(a). Notice that the L-path (25) is different from the horizontal
component appearing in (23) since the base paths are different. In particular, h∗(γ̇B)

as defined in (25) is always an L-path by construction.
Then Proposition 5.2 can be illustrated in a simple way as follows:

φ−1
γB
(y)

h∗(γ̇B)

,, y

L

��

x

ã

LL

a

55

γB(0)

γ̇B
--
γB(1) TB

In fact, it can be proved that a is L-homotopic to the concatenation h∗(γ̇B) · ã.
However, for the sake of simplicity, in this work we shall simply think of the map
a 7→ (ã, γ̇B) as an mere identification.

Recall that for any A-path a, its inverse path is the A-path a−1 defined by
a−1(t) := −a(1− t). Using Proposition 5.2, one can express the concatenation and
inverses of L-paths as follows:
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Proposition 5.3. Under the isomorphism of Proposition 5.2, given two composable
L-paths a ' (γ̇B, ã) and b ' (δ̇B, b̃), their concatenation is

(δ̇B, b̃) · (γ̇B, ã) :=
(
δ̇B · γ̇B, 8

−1
γB
(b̃) · ã

)
.

Moreover, the inverse path a−1 of a is

(γ̇B, ã)−1
:=
(
γ̇−1

B , 8γB
(ã)−1).

Proof. The result follows directly from (24) and from the fact that the holonomy
commutes with taking concatenation and inverse of A-paths. �

Notice the analogy between the formula for concatenation in the previous propo-
sition and formula (19) for the product in the action groupoid. In fact, if one thinks
of P(TB) as a groupoid over B, then the holonomy gives an action of P(TB) on
P(Ver∗) similar to the action of G(P) on GV discussed in Section 4B1. For this
reason, one may think of the fibered product P(TB) s×t◦p P(Ver∗) as a semidirect
product P(TB)n P(Ver∗).

In general, the presence of curvature prevents the fundamental groupoid 5(B)
from acting on P(Ver∗). However, holonomy along a path γB ∈ P(B) is a Lie
algebroid morphism 8γB

: Ver∗ |EγB(0)
→ Ver∗ |EγB(1)

. Hence, it integrates to a
groupoid morphism 8γB

: G(Ver∗)|EγB(0)
→ G(Ver∗)|EγB(1)

that we still denote by
8γB

. Here, G(Ver∗) denotes the Weinstein groupoid of Ver∗. Finally, notice that
the formulas in Proposition 5.3 still make sense when replacing Ver∗-paths by
their homotopy classes; therefore, we will denote by P(TB)nG(Ver∗) the fibered
product P(TB) s×t◦p G(Ver∗).

Theorem 5.4. Suppose that L is a coupling Dirac structure on E→ B. The source
1-connected groupoid G(L) integrating L naturally identifies with equivalence
classes in P(TB)nB G(Ver∗) under the following relation:

• (γ0, g0) ∼ (γ1, g1) if and only if there exists a homotopy γB : I × I → B,
(t, ε) 7→ γ εB(t) between γ0 and γ1, such that g1 = ∂(γB, t(g0)) . g0.

Here, ∂(γB, x0) is the element in G(Ver∗) represented by the Ver∗-path

(26) ε 7−→ (dV )γ̃ ε

(∫ 1

0
(φ
γ εB
s,0)
∗ωH (γB)s,ε ds

)
∈ Ver∗γ̃ (ε),

where γ̃ (ε) :=8−1
γ εB
◦8γ 0

B
(x0) and

ωH (γB)s,ε := ωH

(
h
(dγB

dt
(s, ε)

)
, h
(dγB

dε
(s, ε)

))
∈ C∞(EγB(s,ε))
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One may illustrate the homotopy condition appearing in Theorem 5.4 in the
following way:

x

x0
LL

g0

y--h∗(γ1) 11
h∗(γ0)

x1
UU

g1

bb ∂(γB, x0)

b0

γ0

55

γ1 ))
b1γB

HP

Example 5.5. Let us consider the case where πV is the trivial Poisson structure.
This occurs, for instance, if L is the restriction of a regular Dirac structure to a
tubular neighborhood E → B of one of its leaves B. Then G(Ver∗) is a bundle
of Lie groups that identifies with Ver∗ with its additive structure. Furthermore, it
follows from the curvature identity (9) that the connection is flat, so we have a
genuine action of the fundamental groupoid 5(B) on Ver∗. Up to a cover of B, we
may assume that E is trivial as a representation of 5(B). This means that E can
be identified with B × F in such a way that the holonomy along any path is the
identity:

φ
γ

s,0 = idF : {γ (0)}× F −→ {γ (1)}× F.

It follows that the horizontal and vertical distributions are respectively given by
Hor= TB× F and Ver= B× TF in the decomposition TE = TB⊕ TF . Hence,
ωH can be seen as a family of 2-forms on B parametrized by F, and the leaves of
L are of the form B×{x} with presymplectic form ωH |B×{x}, where x ∈ F.

The homotopy condition appearing in Theorem 5.4 can then be expressed as
follows: two elements (γ0, g0) and (γ1, g1) in P(TB)× T ∗x0

F are homotopic if and
only if there exists a TB-homotopy γB : I

2
7→ B between γ0 and γ1 such that

g1− g0 = (dV )x0

∫
γB

ωH ,

where we integrate ωH along γB as a 2-form with values in C∞(F). In order to
obtain the above formula, we simply replace φγ

ε
B

0,s by idF in (26) and then we use the
fact that, T ∗F being a bundle of abelian groups, any path in T ∗x0

F can be represented
by a constant paths. This amounts in (26) to average with respect to the ε variable.
In particular, when F = R, we recover the leafwise prequantization Lie algebroids
and the homotopy condition appearing in [Crainic 2004].
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Notice also that, applying the resulting 1-form to a vector Xx0 ∈ TF, one gets a
geometrical interpretation of g1− g0 as the variation of the presymplectic area of
γB in the vertical directions:〈

dV

∫
γB

ωH , Xx0

〉
=

d
dt

∣∣∣∣
t=0

∫
γB×{φ

X
t (x0)}

ωH ,

where φX
t is the flow of any vector field X ∈ X(F) extending Xx0 .

Remark 5.6. The construction given in Theorem 5.4 can be interpreted as an
infinite dimensional analogue of the construction given in Section 4 of the groupoid
integrating a Yang–Mills phase space.

For this interpretation, one considers the Poisson frame bundle (see [Brahic and
Fernandes 2008]), so that we can view our coupling as an infinite dimensional
Yang–Mills phase space. One needs first to reduce the structure group from the
group of Poisson diffeomorphisms between a fixed fiber Eb0 and any other fiber
to the subgroup generated by the holonomy transformations 8γB along any path
γB ∈ P(B), with γB(0) = b0. If P → B denotes the resulting principal bundle,
then one can “identify” the corresponding gauge groupoid Gau(P)= P ×B P with
the “groupoid” P(TB). Moreover, the equivalence relation ∼ of Theorem 5.4 can
be viewed as the equivalence relation associated with the corresponding curvature
groupoid.

5B. The monodromy groupoid. We now use the constructions of [Brahic 2010;
Crainic and Fernandes 2004] in order to obtain the obstructions to integrability of a
coupling Dirac structure L .

Consider the short exact sequence of Lie algebroids

(27) Ver∗ ↪→ L � TB.

We obtain by integration the sequence of groupoid morphisms

(28) G(Ver∗) j
−→G(L) q

−→5(B),

where5(B) denotes the fundamental groupoid of B. Recall that j and q are defined
at the level of paths:

j ([ã]V ) := [i ◦ a]L and q([a]L) := [p∗ ◦ ](a)]TB .

for any Ver∗-path ã : I → Ver∗ and any L-path a : I → L . Although the sequence
(27) is exact, the sequence (28) might not be exact anymore, pointing out a lack
of exactness of the integration functor. However, one can always ensure the right
exactness:
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Proposition 5.7. Let L be a coupling Dirac structure whose induced Ehresmann
connection is complete. Then, the sequence (28) is surjective at 5(B) and exact at
G(L).

Proof. One may see that q is surjective, provided the connection is complete, by
observing that, given [γ̇B]TB ∈5(B), the element [h∗(γ̇B)] ∈ G(L), defined by (25)
maps to [γ̇B].

For the exactness at G(L) one observes that, by the definition, the elements of
ker q are represented by L-paths whose projection on TB is a contractile loop.
Therefore, the inclusion Im j ⊂ ker q is obvious. Conversely, given an element
[a]L ∈ ker q, represented by some L-path a, we see that a ∼ (ã, γ̇B), under the
identifications of Proposition 5.2, where γB is a contractible loop based at some
b ∈ B. Consider a contraction γ εB : I 2

→ B between γB and the trivial path 0b.
Then, by Theorem 5.4, we see that (ã, γ̇B) is L-homotopic to (∂(γB) · ã, 0b). Since
(∂(γB) · ã, 0b) represents a Ver∗-path, we conclude that [a]L ∈ Im j , as claimed. �

It follows that (28) can only fail to be exact because of the lack of injectivity
of j . In order to measure this failure, we introduce the following:

Definition 5.8. The monodromy groupoid associated with the fibration is the kernel
of j : G(Ver∗)→ G(L), denoted by M.

Obviously, by construction, we have an exact sequence of groupoids

M ↪→ G(Ver∗)� ker q,

and we can replace (28) by the exact sequence of groupoids:

G(Ver∗)/M ↪→ G(Ver∗)�5(B).

The kernel of this sequence ker q = G(Ver∗)/M is a bundle of groupoids with
typical fiber the neutral component of the restricted groupoid G(L)|Eb0

to a fiber
Eb0 . In particular, we see that if G(L) is integrable, then the monodromy groupoid
M must be embedded in G(Ver∗).

It remains to relate M to the global data associated with L on E .

Theorem 5.9. Consider a coupling Dirac structure L on a fibration E→ B, and
assume that the induced Eheresmann connection is complete. Then there exists a
homomorphism

∂ : π2(B)×B E→ G(Ver∗),

that makes the following sequence exact:

· · · → π2(B)×B E→ G(Ver∗)→ G(L)→5(B).
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In other words, Theorem 5.9 states that the monodromy groupoids of the fibration
coincide with the image of the transgression map M= Im ∂|π2(B).

Proof. The map ∂ in Theorem 5.4, when restricted to a sphere in B based at some
b ∈ B (seen as a map γB : I

2
→ B such that γB(∂ I 2)= {b}) is independent of its

homotopy class; see [Brahic 2010]. Then, it follows from that reference and [Brahic
and Zhu 2011] that the restriction of the map ∂ to π2(B) corresponds precisely to
the transgression map. �

Note the analogy between the monodromy groupoid described above and the
monodromy groups that measure the integrability of an algebroid [Crainic and
Fernandes 2003]. In fact, when E is a tubular neighborhood of a leaf B ⊂ E in
a Dirac structure, the restriction M|B coincides, by construction, with the usual
monodromy groups along B.

Finally, we can relate the monodromy groupoid of a coupling Dirac structure
with the problem of integrability.

Theorem 5.10. Let L be a coupling Dirac structure on E → B and assume that
the associated connection 0 is complete. Then, L is an integrable Lie algebroid if
and only if the following conditions hold:

(i) the typical Poisson fiber (Ex , πV |Ex ) is integrable;

(ii) the injection M ↪→ G(Ver∗) is an embedding.

Proof. First, it is easily seen that since the associated Poisson fibration is locally
trivial, Ver∗ is integrable if and only if the typical Poisson fiber (Ex , πV |Ex ) is
integrable.

Assume now that L is integrable. Then, the projection q : G(E)→ 5(B) is
a smooth surjective submersion. Therefore, ker q is a Lie groupoid integrating
Ver∗; in particular, the typical Poisson fiber is integrable. Furthermore, since
ker q = G(Ver∗)/M is smooth, M is necessarily embedded in G(Ver∗).

Conversely, suppose that M is embedded in G(Ver∗) and consider a sequence
(ξn)⊂N (L) of monodromy elements of L converging to a trivial path 0x . Since
ker ]⊂Ver∗, one can consider the sequence [ξn]V ∈ G(Ver∗), where ξn is considered
as a constant path. By the definition [Crainic and Fernandes 2004] of the monodromy
groups N (L) controlling the integrability of L , [ξn]L ∈ G(L) is a sequence of units
[ξn]L = 1xn , therefore [ξn]V ∈M. In other words, there exists a neighborhood U of
the identity section in G(L) such that N (L)∩U ⊂M∩U. Since M is embedded
in G(Ver∗), it follows that there exists a neighborhood V ⊂U of the identity section
in G(L) such that N (L)∩ V coincides with the identity section. This shows that
the obstructions to integrability of L vanish. �

Example 5.11 (hamiltonian symplectic fibrations). Assume L that is the graph of
a presymplectic form. Then L identifies with TE as a Lie algebroid (using the
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anchor map). In particular L is integrable and G(L) identifies with the fundamental
groupoid of E . Let us see how one can recover this using the previous construction.

In that case, πV is the inverse of a symplectic (vertical) form. Thus, Ver∗

identifies with Ver as a Lie algebroid, and G(Ver∗) ' G(Ver), which is just a
fibered version of the fundamental groupoid. Therefore, the transgression map
becomes ∂ : π2(B)n E→ G(Ver) and, as easily checked, corresponds to the usual
transgression map in the homotopy long exact sequence associated to the fibration
E → B. It follows that Mx lies in the fundamental group π1(E p(x)) of the fiber
through x ∈ E , and M is locally trivial over E . Now, Theorem 5.10 shows that L
is integrable.

In fact, if the fibers are compact, one can even show that the transgression
map vanishes. Indeed, given a sphere in B, it follows from (26) that the loops
representing the image of the transgression map are the so-called hamiltonian loops;
see [McDuff and Salamon 1998]. For compact symplectic manifolds, it is a well
known fact that such hamiltonian loops are always contractile.

Example 5.12 (split Poisson structures). When a coupling Dirac structure L is the
graph of a Poisson structure π , the decomposition (8) corresponds to a splitting
π = πV +πH , where πH is a bivector field; see [Vorobjev 2001].

One may check that the corresponding connection has vanishing curvature if
and only if πH is Poisson. The characteristic foliation of πH is then given by the
integrable distribution Hor. Moreover, it follows from the curvature identity (9) that
the connection is flat if and only if ωH takes values in the space of Casimirs of πV .

Let us assume that πH is indeed Poisson and, for the sake of simplicity, assume
that E = B× F is a trivial fibration. Then, one can still interpret the elements of
M in terms of variations of the symplectic area of spheres. First, notice that γ̃ ε is
necessarily a trivial path since the connection is trivial. Furthermore, the integral in
(26) involves

ωH

(dγB
dt
,

dγB
dε

)
,

which are Casimirs of the vertical Poisson structure on F. The resulting element in
Ver∗x0

lies in the center of the isotropy algebra at x0. Thus, taking the corresponding
Ver∗-homotopy class amounts to integrating along the ε variable.

Example 5.13. As a particular case of Example 5.12, consider the trivial Poisson
fibration E = S2

× so∗3→ S2, where p is the projection onto the first factor. Let
πV be the linear Poisson structure on the fibers so∗3 of the projection, and let
Hor(b,x) = Tb S2

×{x} be the trivial connection. Then, ωH must necessarily be of
the form ωH = f ·ω, where ω denotes the standard symplectic form on S2 and f
is a Casimir of so∗3, i.e., a smooth function of the radius r ∈ C∞(so∗3).
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One knows (see, e.g., [Crainic and Fernandes 2003]) that the (usual) monodromy
groups of the vertical Poisson structure at some (b, x) ∈ B× so∗3 are

N (Ver∗)(b,x) =
{

4πZ . dr if x 6= 0,
{0} if x = 0,

Applying the integrability criteria of Theorem 5.10, we see that L is integrable if
and only if 4π f ′(r) is a rational multiple of 4π , for any r . This means that f ′ must
be constant, so f (r)= αr +β, with α ∈Q and β ∈ R.

One can also recover this result using the prequantization Lie algebroids of
[Crainic 2004] associated with a product of presymplectic spheres. On each leaf,
the restricted Lie algebroid L|S2×S2×{v} is the prequantization of a product of
presymplectic spheres (S2

× S2, f ′(v)ω×ω). It is well known that leaf wise, f ′(v)
must be a rational multiple of

∫
S2 ω = 4π .

This example shows how rigid the integrability conditions can be: in this example,
the value and the derivative of f at a point entirely determines the structure.

Appendix

A1. Actions on Lie groupoids and Lie algebroids. We will have to look at various
actions of Lie groups and algebras on Lie groupoids and Lie algebroids. The
following diagram summarizes the various possibilities:

Lie group action
on a groupoid:

A : G→ Aut(G)
+3

��

Lie group action
on an algebroid
a : G→ Aut(A)

��
Lie algebra action

on a groupoid
A : g→ Xmult(G)

+3
Lie algebra action
on an algebroid
a∗ : g→ Der(A)

where the four corners have the following precise meaning:

• Action of a Lie group G on a Lie groupoid G: This means a smooth action
A : G × G→ G such that for each g ∈ G the map Ag : G→ G, x 7→ gx , is a
Lie groupoid automorphism.

• Action of a Lie group G on a Lie algebroid A: This means a smooth action
a : G × A→ A such that for each g ∈ G the map ag : A→ A, a 7→ ax , is a
Lie algebroid automorphism.

• Action of a Lie algebra g on a Lie groupoid G: This means a Lie algebra homo-
morphism A : g→Xmult(G), where Xmult(G)⊂X(G) denotes the multiplicative
vector fields in G.
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• Action of a Lie algebra g on a Lie algebroid A: This means a Lie algebra
homomorphism a∗ : g→ Der(A), where Der(A) is the space of derivations of
the Lie algebroid A.

Clearly, Lie group actions on Lie groupoids and algebroids cover ordinary Lie
group actions on the base manifold. Similarly, Lie algebra actions on Lie groupoids
and algebroids cover ordinary Lie algebra actions on the base manifold.

The arrows in the diagram above represent natural differentiation operations,
either along the group action or along the groupoid. The explicit description is left
to the reader, and then the commutativity of the diagram becomes obvious.

Under appropriate assumptions one can also invert the arrows in the diagram
above, namely:
• One can invert the horizontal arrows (integrate actions on Lie algebroids to

actions on Lie groupoids) if G = G(A), the source 1-connected Lie groupoid
integrating A.

• One can invert the vertical arrows (integrate Lie algebra actions to Lie group
actions) if G = G(g), the source 1-connected Lie group integrating g, and if
the infinitesimal actions are complete (the flows are defined for all t ∈ R).

The reader should be able to fill in the details.

A2. Inner actions. Recall that a bisection b : M→ G is a smooth section of the
source map such that t ◦b is a diffeomorphism of M. The space Bis(G) of bisections
has natural structure of a group, induced from the groupoid structure, and the map
Bis(G)→ Diff(M), b 7→ t ◦ b is a morphism of groups.

The notion of inner action for Lie groupoids follows immediately from the
following definitions:

• An inner Lie groupoid automorphism is a Lie groupoid automorphism 8 : G→ G
of the form

8(x)= b(t(x)) · x · b(s(x))−1.

for some bisection b : M→ G. They clearly form a subgroup InnAut(G)⊂ Aut(G).
• A inner Lie algebroid automorphism is a Lie algebroid automorphism φ : A→ A
of the form

φ = ϕ
Dα

1,0,

for some time dependent section αt ∈ 0(A). Here, t 7→ ϕ
Dα

t,0 denotes the flow of the
time dependent derivation Dαt := [αt , · ]). They generate a subgroup InnAut(A)⊂
Aut(A).

• A multiplicative exact vector field is a multiplicative vector field X ∈ Xmult(G)
of the form

X = Eα− Eα,
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where α is a section of A= A(G), and Eα and Eα are the right and left invariant vector
fields in G determined by α. They form a Lie subalgebra Xexact(G)⊂ Xmult(G).
• An inner derivation is a Lie algebroid derivation D ∈ Der(A) of the form

D = [α, · ]A,

for some section α∈0(A). They clearly form a Lie subalgebra InnDer(A)⊂Der(A).

Now, one can define inner actions in a more-or-less obvious fashion. We obtain
a diagram as above:

inner Lie group
action on a groupoid
A : G→ InnAut(G)

+3

��

inner Lie group
action on an algebroid

a : G→ InnAut(A)

��
inner Lie algebra

action on a groupoid
A : g→ Xexact(G)

+3
inner Lie algebra

action on an algebroid
a∗ : g→ InnDer(A)

In this work, we will mainly consider inner actions associated with a Lie groupoid
morphism 9 : G×M→ G given by

(29) Ag(x)=9(g, t(x)) · x ·9(g, s(x))−1, for g ∈ G, x ∈ G.

Notice that the map 9 covers the ordinary action G × M → M on the base.
Furthermore, one may check that 9 : G × M → G is a Lie groupoid morphism
if and only if the map G→ Bis(G), g 7→ bg(x) := 9(g, x) is a group morphism
covering the usual Lie group action of G on M.

Similarly, the inner Lie algebra actions on a Lie algebroid a∗ : g→ InnDer(A)
will come associated with a Lie algebroid morphism ψ : g×M→ A (covering the
identity on M) such that

(30) (aξ )∗ = [ψ∗(ξ), · ]A, for ξ ∈ g,

where ψ∗(ξ) ∈ 0(A) is defined by ψ∗(ξ)m = ψ(ξ,m), for any m ∈ M. The
map ψ∗ : g→ 0(A) covers the ordinary Lie algebra action g→ X(M) on the
base. Moreover, ψ∗ is a Lie algebra morphism covering the infinitesimal action
g→ X(M) if and only if ψ is a Lie algebroid.

Proposition A.14. Let G × M → M be an action of a Lie group on a manifold.
Then, any homomorphism 9 : G n M→ G from the action Lie groupoid to a Lie
groupoid G determines by formula (29) an inner action of G on G that covers the
action on M.
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Similarly, let g→ X(M) be an action of a Lie algebra on a manifold. Then any
homomorphism ψ∗ : gn M→ A from the action Lie algebroid to a Lie algebroid A
determines by formula (30) an inner action of g on A that covers the infinitesimal
action on M.

Remark A.15. Note that 9 and ψ as above do not need to be morphisms in order
for (29) and (30) to induce inner actions. In this paper though, we will always
assume that it is the case.

The relevant notion for this work is the following:

Definition A.16. A prehamiltonian action of a Lie group G on a Lie algebroid A
with prehamiltonian moment map ψ∗ : g→0(A) is an action a :G→Aut(A) such
that:

•
d
dt (aexp(−tξ))∗(β)

∣∣
t=0 = [ψ∗(ξ), β]A, for ξ ∈ g, β ∈ 0(A),

• ψ∗ is a G-equivariant morphism of Lie algebras.

Note that the G-equivariance is always satisfied when G is connected.

A3. Integration of inner actions. Let us now see in which circumstances one is
able to invert arrows in the last diagram.

Proposition A.17. Suppose that g→ X(M) is a complete Lie algebra action and
ψ : gn M→ A is a Lie algebroid morphism from the action Lie algebroid to a Lie
algebroid A. For any Lie groupoid G integrating A, the associated inner action
a∗ : g→ InnDer(A) integrates to an inner action A : G(g)→ InnAut(G), where
G(g) is the 1-connected Lie group integrating g.

Proof. By the assumptions, we have a Lie group action G(g)×M→ M , and the
corresponding action groupoid G(g)nM ⇒ M is source 1-connected. Furthermore,
the Lie algebroid morphism ψ : gn M→ A integrates to a Lie groupoid morphism
9̃ : G(g) n M → G(A). Denote by 9 the composition of 9̃ with the natural
projection G(A)→ G. Then, one obtains an inner action A : G(g)→ InnAut(G)
by (29). As is easily checked, it integrates the inner action a∗ : g→ InnDer(A). �

The above result is slightly better than the integration of non-inner actions we
referred to in the end of the preceding subsection. In general, in order to integrate a
Lie algebra action of g on a Lie algebroid A to a Lie group action of G on a Lie
groupoid G, we need both G to be 1-connected and G to be source 1-connected
(and the action to be complete).

This is important for our purposes, as G is the structure group of a principal
bundle, thus its topology is imposed. So, we need to refine Proposition A.17 to
groups that are neither simply connected nor connected.

Hence, assume that we want to integrate an inner action a : g→ InnDer(A)
associated with ψ : gn M → A to an action of a connected (but not necessarily
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1-connected) Lie group G with Lie algebra g. Recall that for a connected Lie group
G, its fundamental group fits into the exact sequence

(31) 1−→ π1(G)−→ G(g)−→ G −→ 1.

Proposition A.18. Suppose that G is a connected Lie group acting on a manifold
M, G is a Lie groupoid over M, and 9 :G(g)nM→ G is a Lie groupoid morphism.
Then, 9 descends to a Lie groupoid morphism 9 : G n M → G if and only if it
takes values in units when restricted to π1(G)n M ⊂ G(g)n M, namely

9(π1(G)n M)= 1M .

The proof is left to the reader. Note that although ψ : gn M → A may not
integrate to 9 : G n M→ G, it may still integrate to a morphism 9 ′ : G n M→ G′

for a smaller Lie groupoid G′ integrating A. This can be decided as follows. First
we integrate ψ : gn M→ A to a Lie groupoid morphism 9̃ : G(g)n M→ G(A)
with values in the source 1-connected Lie groupoid integrating A. Then, given any
connected Lie group G integrating g, we introduce a bundle of groups 1 over M,
defined in the following way:

1 := 9̃(π1(G)n M)⊂ G(A)

Recall that if 1 is a totally disconnected wide normal subgroupoid of G(A), then
the quotient G(A)/1 is a Lie groupoid; see, e.g., the discussion in [Gualtieri and
Li 2014, Theorem 1.14]. Furthermore, it is easy to see that G(A)/1 integrates A.
Therefore, we obtain a Lie groupoid morphism:

9 : G n M→ G(A)/1.

Of course, ψ integrates to a morphism G n M → G whenever G is covered by
G0 := G(A)/1.

Theorem A.19. Let a : G→ Aut(A) be a prehamiltonian action of a Lie group G
on a Lie algebroid A with premoment map ψ∗ : g→ 0(A) and:

• ψ : gn M→ A the Lie algebroid associated with ψ∗,

• 9̃ : G(g)n M→ G(A) the groupoid morphism integrating ψ ,

• 1⊂ G(A), the subset defined by 1 := 9̃(π1(G)n M)⊂ G(A).

Then, the following assertions hold:

(i) 1 is a wide, normal, totally disconnected subgroupoid of G(A),

(ii) a integrates to a groupoid action A : G→ Aut(G(A)/1).
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Moreover, G(A)/1 is a Lie groupoid if and only if 1⊂ G(A) is an embedding. In
this case, 9̃ descends to a Lie groupoid morphism 9 : G×M→ G(A)/1 and

Ah(x)=9n(h) · x ·9m(h)−1(32)

9gm(ghg−1)= Ag(9m(h))(33)

for any h ∈ G◦, x ∈ G(A)/1, g ∈ G, where m := s(x) and n := t(x).

Proof. Since G acts on A by Lie algebroid automorphisms, one can lift a into an
action Ã of G on G(A) by groupoid automorphisms via

Ãg([q]A) := [ag◦ q]A, for q ∈ P(A), g ∈ G.

Consider now an A-path q and an element h lying in the neutral component G◦ of
G. We extend q into a time dependent section of A (which we still denote by q) and
consider any g-path ξ : ε 7→ ξε ∈ g that induces a path hε in G◦ between the identity
and h. By the construction, (ahε )∗(qt) is a solution of the evolution equation

[(ahε )∗(qt), ψ∗(ξε)]A =
d
dε
(ahε )∗(qt), for ε, t ∈ I.

Then, by [Brahic 2010, Proposition A.1], we obtain

(34) Ãh([q]A)= 9̃y([ξ ]g) · [q]A · 9̃x([ξ ]g)
−1.

In particular, if h=1, that is, ξε induces a loop in G◦, then1 is a normal subgroupoid
of G(A).

Next, we have to make sure that Ã induces an action on G(A)/1, so we need to
check that Ãh(1)=1. For this, we apply Equation (34) with q = 9̃[η]g, where
η is a g-path inducing a loop in G, and we use successively the fact that 9̃ is a
Lie groupoid homomorphism, then that π1(G) lies in G(g) as a normal subgroup.
The first relation follows. The second one is obtained by using the equivariance
condition in Definition A.16. �

Example A.20. Here is a basic example where the resulting groupoid G(A)/1
is not smooth. Consider the 1-dimensional (abelian) Lie algebra z = R, its dual
z∗ endowed with the trivial linear Poisson structure, and A := T ∗z∗ ' zn z∗ the
corresponding Lie algebroid. Then, A integrates to a bundle of Lie groups Z n z∗,
where Z is the Lie group R.

Consider furthermore the trivial action of G := S1
' R/2πZ on z∗. Then, any

application J : z∗→ Lie(S1) can be chosen to be a moment map. From the Lie
algebroid point of view (see Definition A.16) we only have a prehamiltonian moment
map ψ∗ : Lie(S1)→ 0(zn z∗), X 7→ dJ (X). The corresponding Lie algebroid
morphism ψ : Lie(S1)n z∗→ zn z∗ is given by (X, z) 7→ (dJz(X), z). It integrates
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to a Lie groupoid morphism Rn z∗→ Z n z∗ given by (θ, z) 7→ (dJz(θ), z). The
exact sequence (31) reads

1−→ 2−→ R−→ S1
−→ 1,

Hence, we obtain 1z = {(dJz(2kπ), z) : k ∈ Z}. Clearly, 1 defines a normal
subgroupoid of Z n z∗; however, Z n z∗/1 is not smooth if dJ vanishes at some
point z0.
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ASYMPTOTIC BEHAVIOR OF PALAIS–SMALE SEQUENCES
ASSOCIATED WITH

FRACTIONAL YAMABE-TYPE EQUATIONS

YI FANG AND MARÍA DEL MAR GONZÁLEZ

In this paper, we analyze the asymptotic behavior of Palais–Smale sequences
associated to fractional Yamabe-type equations on an asymptotically hyper-
bolic Riemannian manifold. We prove that Palais–Smale sequences can
be decomposed into the solution of the limit equation plus a finite num-
ber of bubbles, which are the rescaling of the fundamental solution for the
fractional Yamabe equation on Euclidean space. We also verify the non-
interfering fact for multibubbles.

1. Introduction and statement of results

Let � be a smooth bounded domain in Rn, n� 3. Fix a constant �, and consider
the Dirichlet boundary value problem of the elliptic PDE

(1-1)
�
��u��uD ujuj

4
n�2 in �;

uD 0 on @�:

The associated variational functional of (1-1) in the Sobolev space W 1;2
0 .�/ is

E.u/D
1

2

Z
�

.jruj2��u2/ dx�
n� 2

2n

Z
�

juj
2n
n�2 dx:

Suppose that the sequence fu˛g˛2N�W
1;2
0 .�/ satisfies the Palais–Smale condition,

fE.u˛/g˛2N is uniformly bounded and DE.u˛/! 0; strongly in .W 1;2
0 .�//0;

as ˛!C1, where .W 1;2
0 .�//0 is the dual space of W 1;2

0 .�/. In an elegant paper,
M. Struwe [1984] considered the asymptotic behavior of fu˛g˛2N. In fact, in
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the W 1;2
0 .�/ norm, u˛ can be approximated by the solution to (1-1) plus a finite

number of bubbles, which are the rescaling of the nontrivial entire solution of

��uD ujuj
4
n�2 in Rn and u.x/! 0 as jxj !C1:

One may pose the analogous problem on a manifold. Let .M n; g/ be a smooth
compact Riemannian manifold without boundary. Consider a sequence of elliptic
PDEs like

(E˛) ��guC h˛uD u
nC2
n�2 ;

where ˛2N and�g denotes the Laplace–Beltrami operator of the metric g. Assume
that h˛ satisfies the condition that there exists C > 0 with jh˛.x/j � C for any ˛
and any x 2 M ; also h˛ ! h1 in L2.M/ as ˛ ! C1. The limit equation is
denoted by

(E1) ��guC h1uD u
nC2
n�2 :

The related variational functional for (E˛) is

E˛g .u/D
1

2

Z
M

jruj2g dvg C
1

2

Z
M

h˛u
2 dvg �

n� 2

2n

Z
M

juj
2n
n�2 dvg :

Suppose that fu˛ � 0g˛2N �W
1;2.M/ also satisfies the Palais–Smale condition.

O. Druet, E. Hebey, and F. Robert [Druet et al. 2004] proved that, in the W 1;2.M/

sense, u˛ can be decomposed into the solution of .E1/ plus a finite number of
bubbles, which are the rescaling of the nontrivial solution of

��uD u
nC2
n�2 in Rn:

Let .M n; g/ be a compact Riemannian manifold with boundary @M. Recently,
S. Almaraz [2014] considered the following sequence of equations with nonlinear
boundary value condition:

(1-2)

(
��guD 0 in M;
�

@
@�g

uC h˛uD u
n
n�2 on @M;

where ˛ 2N and �g is the inward unit normal vector to @M. The associated energy
functional for (1-2) is

E˛g .u/D
1

2

Z
M

jruj2g dvg C
1

2

Z
@M

h˛u
2 d�g �

n� 2

2.n� 1/

Z
@M

juj
2.n�1/
n�2 d�g ;

for u 2H 1.M/ WD fu j ru 2 L2.M/; u 2 L2.@M/g. Here dvg and d�g are the
volume forms of M and @M, respectively. He also showed that a nonnegative
Palais–Smale sequence fu˛g˛2N of fE˛g g˛2N converges, in the H 1.M/ sense, to
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a solution of the limit equation (the equation replacing h˛ by h1 in (1-2)) plus a
finite number of bubbles.

Motivated by these facts and the original study of the fractional Yamabe problem
by M.d.M. González and J. Qing [2013] (see also [González 2015]), in this paper
we shall be interested in the asymptotic behavior of nonnegative Palais–Smale
sequences associated with the fractional Yamabe equation on an asymptotically
hyperbolic Riemannian manifold.

Let (XnC1; gC), n� 3, be a smooth Riemannian manifold with smooth boundary
@XnC1 DM n. A function �� is called a defining function of the boundary M n in
XnC1 if it satisfies

�� > 0 in XnC1; �� D 0 on M n; d�� ¤ 0 on M n:

We say that a metric gC is conformally compact if there exists a defining function
�� such that .XnC1; g�/ is compact for g� D �2�g

C. This induces a conformal
class of metrics OhD g�jMn when defining functions vary. The conformal manifold
.M n; Œ Oh�/ is called the conformal infinity of .XnC1; gC/. A metric gC is said to be
asymptotically hyperbolic if it is conformally compact and the sectional curvature
approaches �1 at infinity. It is easy to check then that jd��j2g� D 1 on M n.

Using the meromorphic family of scattering operators S.s/ introduced by C.R.
Graham and M. Zworski [2003], we will define the so-called fractional order scalar
curvature. Given an asymptotically hyperbolic Riemannian manifold .XnC1; gC/
and a representative Oh of the conformal infinity .M n; Œ Oh�/, there is a unique geodesic
defining function �� such that, in M n � .0; ı/ in XnC1 for small ı, gC has the
normal form

gC D ��2� .d�
2
�C h��/;

where h�� is a one parameter family of metric on M n such that

h�� D
OhC h.1/��CO.�

2
�/:

It is well-known [Graham and Zworski 2003] that, given f 2 C1.M n/ and s 2 C,
Re.s/ > n=2 and s.n� s/ is not an L2 eigenvalue for ��gC , then the generalized
eigenvalue problem

(1-3) ��gC Qu� s.n� s/ QuD 0 in XnC1

has a solution of the form

QuD F.��/
n�s
CG.��/

s; F;G 2 C1.XnC1/; F j��D0 D f:

The scattering operator on M n is then defined as

S.s/f DGjMn :
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Now we consider the normalized scattering operators

P
 Œg
C; Oh�D d
S

�
n
2
C 


�
; d
 D 2

2
 �.
/

�.�
/
:

Note that P
 ŒgC; Oh� is a pseudodifferential operator whose principal symbol is
equal to the one of .�� Oh/
. Moreover, P
 ŒgC; Oh� is conformally covariant, i.e., for
any ';w 2 C1.XnC1/ and w > 0,

(1-4) P
 Œg
C; w

4
n�2
 Oh�.'/D w�

nC2

n�2
 P
 Œg

C; Oh�.w'/:

Thus we shall call P
 ŒgC; Oh� the conformal fractional Laplacian for any 
 2 .0; n=2/
such that n2=4� 
2 is not an L2 eigenvalue for ��gC .

The fractional scalar curvature associated to the operator P
 ŒgC; Oh� is defined as

Q
Oh

 D P
 Œg

C; Oh�.1/:

The scattering operator has a pole at the integer values 
 . However, in such cases
the residue may be calculated and, in particular, when gC is Poincaré-Einstein
metric, for 
 D 1,

P1Œg
C; Oh�D�� OhC

n� 2

4.n� 1/
R Oh;

which is exactly the so-called conformal Laplacian, and

Q
Oh
1 D

n� 2

4.n� 1/
R Oh:

Here, R Oh is the scalar curvature of the metric Oh.
For 
 D 2, P2ŒgC; Oh� is precisely the Paneitz operator and its associated curvature

is known as Q-curvature [2008]. In general, PkŒgC; Oh� for k 2N are precisely the
conformal powers of the Laplacian studied in [Graham et al. 1992].

We consider the conformal change Ohw D w4=.n�2
/ Oh for some w > 0; then by
(1-4),

P
 Œg
C; Oh�.w/DQ

Ohw

 w

nC2

n�2
 in .M n; Oh/:

If for this conformal change Q
Ohw

 is a constant C
 on M n, this problem reduces to

(1-5) P
 Œg
C; Oh�.w/D C
w

nC2

n�2
 in .M n; Oh/;

which is the so-called fractional Yamabe equation or the 
 -Yamabe equation, studied
in [González and Qing 2013].

Throughout the paper, we always suppose that 
 2 .0; 1/, and such that the first
eigenvalue for ��gC satisfies �1 > n2=4� 
2, as was pointed out in [Case and
Chang 2015; Case 2015].
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It is well known that the above fractional Yamabe equation may be rewritten as
a degenerate elliptic Dirichlet-to-Neumann boundary problem. For that, we first
recall some results obtained by Chang and González in [2011] (see also the paper
by J. Case and S.A. Chang [2015]). Suppose that u� solves

(1-6)
�
��gCu

�� s.n� s/u� D 0 in XnC1;
lim��!0 �

s�n
� u� D 1 on M n:

Proposition 1.1 [Chang and González 2011; González and Qing 2013]. Suppose
that f 2 C1.M/. Assume that Qu; u� are solutions to (1-3) and (1-6), respectively.
Then �D .u�/1=.n�s/ is a geodesic defining function. Moreover, uD Qu=u�D�s�n Qu
solves

(1-7)
�
� div.�1�2
ru/D 0 in XnC1;
uD f on M n;

with respect to the metric g D �2gC, and u is the unique minimizer of the energy
functional

I.v/D

Z
XnC1

�1�2
 jrvj2g dvg

among all the extensions v 2 W 1;2.XnC1; �1�2
 / (see Definition 2.1) satisfying
vjMn D f . Moreover,

�D ��

�
1C

Q
Oh



.n� s/d

�
2

� CO.�

2
�/

�
near the conformal infinity and

P
 Œg
C; Oh�.f /D�d�
 lim

�!0
�1�2
@�uCQ

Oh

f; d�
 D�

d


2

> 0;

provided that Tr Oh h.1/ D 0 when 
 2 .1
2
; 1/. Here gjMn D Oh, and has asymptotic

expansion
g D d�2Œ1CO.�2
 /�C OhŒ1CO.�2
 /�:

We fix 
 2 .0; 1/. By Proposition 1.1, one can rewrite the fractional Yamabe
equation (1-5) into the following problem:

(1-8)

8̂<̂
:
� div.�1�2
ru/D 0 in .XnC1; g/;
uD w on .M n; Oh/;

�d�
 lim�!0 �1�2
@�uCQ
Oh

w D C
w

nC2

n�2
 on .M n; Oh/:

In this paper we consider the positive curvature case C
 > 0. Without loss of
generality, we assume that C
 D d�
 .
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In the particular case 
 D 1
2

, one may check that (1-8) reduces to (1-2), which
was considered in [Almaraz 2014]. The main difficulty we encounter here is the
presence of the weight that makes the extension equation only degenerate elliptic.

Next, we introduce the so-called 
 -Yamabe constant [González and Qing 2013].
For the defining function � mentioned above, we set

I
 Œu; g�D
d�

R
X �

1�2
 jruj2g dvg C
R
MQ

Oh

u
2 d� Oh�R

M juj
2�d� Oh

� 2
2�

;

then the 
 -Yamabe constant is defined as

(1-9) ƒ
 .M; Œ Oh�/D inffI
 Œu; g� j u 2W 1;2.X; �1�2
 /g:

It was shown in [loc. cit.] that in the positive curvature case C
 > 0 we must have
ƒ
 .M; Œ Oh�/ > 0.

Now we take a perturbation of the linear term Q
Oh

w to a general �d�
Q



˛w,

where Q
˛ 2 C1.M n/, ˛ 2 N. Suppose that for any ˛ 2 N and any x 2M n, there
exists a constant C > 0 such that jQ
˛.x/j � C . Also assume that Q
˛ !Q



1 in

L2.M n; Oh/ as ˛!C1. We will consider a family of equations

(1-10)

8<:
� div.�1�2
ru/D 0 in .XnC1; g/;
uD w on .M n; Oh/;

� lim
�!0

�1�2
 @�uCQ


˛w D w

nC2

n�2
 on .M n; Oh/:

The associated variational functional to (1-10) is

(1-11) I 
;˛g .u/D
1

2

Z
XnC1

�1�2
 jruj2g dvg

C
1

2

Z
Mn

Q
˛u
2 d� Oh�

n� 2


2n

Z
Mn

juj
2n
n�2
 d� Oh:

Hyperbolic space .HnC1; gH/ is the first example of a conformally compact
Einstein manifold. As .HnC1; gH/ can be characterized as the upper half-space
RnC1
C

endowed with metric gC D y�2.jdxj2Cdy2/, where x 2 Rn, y 2 RC, then
the Dirichlet-to-Neumann problem (1-8) reduces to

(1-12)

8<:
� div.y1�2
ru/D 0 in .RnC1

C
; jdxj2C dy2/;

uD w on .Rn; jdxj2/;
� lim
y!0

y1�2
 @yuD w
nC2

n�2
 on .Rn; jdxj2/:

And the variational functional to (1-12) is defined as

zE.u/D
1

2

Z
R
nC1
C

y1�2
 jru.x; y/j2 dx dy �
n� 2


2n

Z
Rn
ju.x; 0/j

2n
n�2
 dx:
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Up to multiplicative constants, the only solution to problem (1-12) is given by the
standard

w.x/D w�a .x/D

�
�

jx� aj2C�2

�n�2

2

for some a 2 Rn and � > 0 [González and Qing 2013; Jin et al. 2014]. By the
Poisson formula of L. Caffarelli and L. Silvestre [2007], the corresponding extension
can be expressed as

U �a .x; y/D

Z
Rn

y2


.jx� �j2Cy2/.nC2
/=2
w�a .�/ d�:(1-13)

Here U �a is called a “bubble”. Note that all of them have constant energy.

Remark 1.2. For any a 2 Rn and � > 0, we have

zE.U �a /D
zE.U 10 /D




n

Z
Rn
jU 10 .x; 0/j

2n
n�
 dx:

Now we give some notations which will be used in the following. In the half
space RnC1

C
D f.x; y/D .x1; : : : ; xn; y/ 2 RnC1 j y > 0g we define, for r > 0,

BCr .z0/D fz 2 RnC1
C
j jz� z0j< r; z0 2 RnC1

C
g;

Dr.x0/D fx 2 Rn j jx� x0j< r; x0 2 Rng;

@0BCr .z0/D B
C
r .z0/\Rn;

@CBCr .z0/D @B
C
r .z0/\RnC1

C
:

Fix 
 2 .0; 1/. Suppose that .X; gC/ is an asymptotically hyperbolic manifold
with boundary M satisfying, in addition, Tr Oh h.1/ D 0 when 
 2 .1=2; 1/. Let �
be the special defining function given in Proposition 1.1 and set g D �2gC and
OhD gjM . Also, define

BCr .z0/D fz 2X j dg.z; z0/ < r; z0 2Xg;

Dr.x0/D fx 2M j d Oh.x; x0/ < r; x0 2M g;

Now, modulo the definitions of the weighted Sobolev space W 1;2.X; �1�2
 / and
of a Palais–Smale sequence (see Section 2), the main result of this paper is the
following fractional type blow up analysis theorem:

Theorem 1.3. Let fu˛ � 0g˛2N � W
1;2.X; �1�2
 / be a Palais–Smale sequence

for fI 
;˛g g˛2N. Then there exists an integer m � 1, sequences f�j˛ > 0g˛2N and
fx
j
˛g˛2N �M for j D 1; : : : ; m, a nonnegative solution u0 2W 1;2.X; �1�2
 / to

(2-4) and nontrivial nonnegative functions U �jaj 2 W
1;2.RnC1

C
; y1�2
 / for some

�j > 0 and aj 2 Rn as given in (1-13), satisfying, up to a subsequence,
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(1) �j˛! 0 as ˛!C1, for j D 1; : : : ; m;

(2) fxj˛g˛2N converges on M as ˛!C1, for j D 1; : : : ; m;

(3) As ˛!C1, 


u˛ �u0� mX
jD1

�j˛u
j
˛





W 1;2.X;�1�2
 /

! 0;

where

uj˛.z/D .�
j
˛/
�
n�2

2 U

�j
aj ..�

j
˛/
�1'�1

x
j
˛

.z//;

for z 2 '
x
j
˛
.BCr0.0//, and '

x
j
˛

are Fermi coordinates centered at xj˛ 2M with
r0 > 0 small, and �j˛ are cutoff functions such that

�j˛ � 1 in '
x
j
˛
.BCr0.0// and �j˛ � 0 in M n'

x
j
˛
.BC2r0.0//I

(4) The energies

I 
;˛g .u˛/� I
1
g .u

0/�m zE.U
�j
aj /! 0; as ˛!C1I

(5) For any 1� i , j �m, i ¤ j ,

�i˛

�
j
˛

C
�
j
˛

�i˛
C
d Oh.x

i
˛; x

j
˛/
2

�i˛�
j
˛

!C1; as ˛!C1:

Remark 1.4. (i) We call �j˛u
j
˛ a bubble for j D 1; : : : ; m.

(ii) If u˛! u0 strongly in W 1;2.X; �1�2
 / as ˛!C1, then mD 0.

Although the local case 
 D 1 is well known [Druet et al. 2004; Struwe 1984],
the most interesting point in the fractional case is the fact that one still has an energy
decomposition into bubbles, and that these bubbles are noninterfering, which is
surprising since our operator is nonlocal.

We finally recall that in the flat case, compactness problems for the fractional
Laplacian were considered in the nice papers by Palatucci and Pisante [2014; 2015],
and also the paper by Yan, Yang, and Yu [Yan et al. 2015].

This paper is organized as follows: In Section 2, we will first recall the definition
of weighted Sobolev spaces and Palais–Smale sequences. Then we will derive a
criterion for the strong convergence of a given Palais–Smale sequence. At last,
"-regularity estimates will be established. In Section 3, we will extract the first
bubble from the Palais–Smale sequence which is not strongly convergent. In
Section 4, we will give the proof of Theorem 1.3. Finally, some regularity estimates
of the degenerate elliptic PDE are given in the Appendix.
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2. Preliminary results

Most of the arguments in this section are analogous to the results in [Druet et al.
2004, Chapter 3]. For the convenience to the reader, we also prove these lemmas
with the necessary modifications.

From now on we use 2� D 2n=.n� 2
/, 
 2 .0; 1/ for simplicity, and always
assume that Palais–Smale sequences are all nonnegative. Moreover, the notation
o.1/ will be taken with respect to the limit ˛!C1.

Definition 2.1. The weighted Sobolev space W 1;2.X; �1�2
 / is defined as the
closure of C1.X/ with norm

kukW 1;2.X;�1�2
 / D

�Z
X

�1�2
 jruj2g dvg C

Z
M

u2 d� Oh

�1
2

(2-1)

where dvg is the volume form of the asymptotically hyperbolic Riemannian manifold
.X; g/ and d� Oh is the volume form of the conformal infinity .M; Œ Oh�/.

Proposition 2.2. The norm defined above is equivalent to the following traditional
norm

kuk�
W 1;2.X; �1�2
 /

D

�Z
X

�1�2
 .jruj2g Cu
2/ dvg

�1
2

:(2-2)

On one hand, k � k can be controlled by k � k�. This is a easy consequence of
the following two propositions. The first one is a trace Sobolev embedding on
Euclidean space.

Proposition 2.3 [Jin and Xiong 2013]. For any u 2 C10 .R
nC1
C

/,�Z
Rn
ju.x; 0/j2

�

dx

� 2
2�

� S.n; 
/

Z
R
nC1
C

y1�2
 jru.x; y/j2dxdy

where

S.n; 
/D
1

2�

�.
/

�.1� 
/

�.n�2

2
/

�.nC2

2
/

�
�.n/

�.n
2
/

�2

n

:

Using a standard partition of unity argument, one obtains a weighted trace
Sobolev inequality on an asymptotically hyperbolic manifold:

Proposition 2.4 [Jin and Xiong 2013]. For any "> 0, there exists a constant C">0
such that�Z

M

juj2
�

d� Oh

� 2
2�

� .S.n; 
/C "/

Z
X

�1�2
 jruj2g dvg CC"

Z
X

�1�2
u2 dvg :



378 YI FANG AND MARÍA DEL MAR GONZÁLEZ

On the other hand, k � k� can be controlled by k � k, which is implied by the
following proposition.

Proposition 2.5. For any u 2W 1;2.X; �1�2
 /, there exists a constant C > 0 such
that Z

X

�1�2
u2 dvg � C

�Z
X

�1�2
 jruj2g dvg C

Z
M

u2 d� Oh

�
:

Proof. We use a contradiction argument. Thus, assume that for any ˛ � 1 there
exists u˛ satisfyingZ

X

�1�2
u2˛ dvg � ˛

�Z
X

�1�2
 jru˛j
2
g dvg C

Z
M

u2˛ d� Oh

�
:

Without loss of generality, we can assume that
R
X �

1�2
u2˛ dvg D 1. Then we haveZ
X

�1�2
 .jru˛j
2
g Cu

2
˛/ dvg � 1C

1

˛
:

Then there exists a weakly convergent subsequence, also denoted by fu˛g, such
that u˛*u0 in W 1;2.X; �1�2
 ; k � k�/.

Since

lim
˛!1

Z
X

�1�2
 jru˛j
2
g dvg D 0 and lim

˛!1

Z
M

u2˛ d� Oh D 0;

we get that u0 � 0. On the other hand, via the following Proposition 2.6, the
embedding W 1;2.X; �1�2
 ; k � k�/ ,! L2.X; �1�2
 / is compact. So we haveZ

X

�1�2
u20 dvg D 1;

which contradicts the fact that u0 � 0. Then the proof is completed. �

Proposition 2.6 [Jin and Xiong 2013; Kufner 1985; Di Nezza et al. 2012]. Let
1� p � q <1 with 1

nC1
> 1
p
�
1
q

.

(i) Suppose 2� 2
 � p. Then W 1;p.X; �1�2
 ; k � k�/ is compactly embedded in
Lq.X; �1�2
 / if

2� 2


p.nC 2� 2
/
>
1

p
�
1

q
:

(ii) Suppose 2� 2
 > p. Then W 1;p.X; �1�2
 ; k � k�/ is compactly embedded in
Lq.X; �1�2
 / if and only if

1

.nC 2� 2
/
>
1

p
�
1

q
:

We will always use the norm inW 1;2.X; �1�2
 / in the following unless otherwise
stated.
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Definition 2.7. The weighted Sobolev space W 1;2.X; �1�2
 / is the closure of
C10 .X/ in W 1;2.X; �1�2
 / with the norm

kukW 1;2.X; �1�2
 / D

�Z
X

�1�2
 jruj2g dvg

�1
2

:

Now we define Palais–Smale sequences for the functional (1-11) precisely.

Definition 2.8. The sequence fu˛g˛2N�W
1;2.X; �1�2
 / is called a Palais–Smale

sequence for fI 
;˛g g˛2N if:

(i) fI 
;˛g .u˛/g˛2N is uniformly bounded; and

(ii) as ˛!C1,

DI 
;˛g .u˛/! 0; strongly in W 1;2.X; �1�2
 /0;

where we have definedW 1;2.X; �1�2
 /0 as the dual space ofW 1;2.X; �2
�1/,
i.e., for any � 2W 1;2.X; �1�2
 /,

(2-3) DI 
;˛g .u˛/ � �

D

Z
X

�1�2
 hru˛;r�ig dvg C

Z
M

Q
˛u˛� d� Oh�

Z
M

u2
��1
˛ � d� Oh

D o.k�kW 1;2.X; �1�2
 //; as ˛!C1:

The main properties of Palais–Smale sequences are contained in the next several
lemmas:

Lemma 2.9. Let fu˛g˛2N �W
1;2.X; �1�2
 / be a Palais–Smale sequence for the

functionals fI 
;˛g g˛2N, then fu˛g˛2N is uniformly bounded in W 1;2.X; �1�2
 /.

Proof. We can take � D u˛ 2 W
1;2.X; �1�2
 / as a test function in (ii) of

Definition 2.8. Then, we getZ
X

�1�2
 jru˛j
2
g dvg C

Z
M

Q
˛u
2
˛ d� Oh D

Z
M

u2
�

˛ d� OhC o.ku˛kW 1;2.X; �1�2
 //;

which yields that

I 
;˛g .u˛/D
1

2

Z
X

�1�2
 jru˛j
2
g dvg C

1

2

Z
M

Q
˛u
2
˛ d� Oh�

1

2�

Z
M

u2
�

˛ d� Oh

D



n

Z
M

u2
�

˛ d� OhC o.ku˛kW 1;2.X; �1�2
 //:

Since fI 
;˛g .u˛/g˛2N is uniformly bounded by (i) of Definition 2.8, there exists a
constant C > 0 such thatZ

M

u2
�

˛ d� Oh � C C o.ku˛kW 1;2.X; �1�2
 //;
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which by Hölder’s inequality yieldsZ
M

u2˛ d� Oh � C

�Z
M

u2
�

˛ d� Oh

� 2
2�

� C C o
�
ku˛k

2=2�

W 1;2.X; �1�2
 /

�
:

Note that since jQ
˛ j � C for some constant C > 0, we can choose sufficiently
large C1 > 0 such that C1CQ



˛ � 1 on M. It follows that

ku˛k
2
W 1;2.X; �1�2
 /

D

Z
X

�1�2
 jru˛j
2
g dvg C

Z
M

u2˛ d� Oh

�

Z
X

�1�2
 jru˛j
2
g dvg C

Z
M

Q
˛u
2
˛ d� OhCC1

Z
M

u2˛ d� Oh

�

Z
M

u2
�

˛ d� OhC o.ku˛kW 1;2.X; �1�2
 //CC C o
�
ku˛k

2=2�

W 1;2.X; �1�2
 /

�
� C C o.ku˛kW 1;2.X; �1�2
 //C o

�
ku˛k

2=2�

W 1;2.X; �1�2
 /

�
;

from which we conclude that fu˛g˛2N is uniformly bounded in W 1;2.X; �1�2
 /

since 2=2� < 1. �

Remark 2.10. From Lemma 2.9, it is easy to see that there exists a function u0 in
W 1;2.X; �1�2
 / such that u˛*u0 weakly in W 1;2.X; �1�2
 / as ˛!C1.

Proposition 2.11. The function u0 is nonnegative in X.

Proof. Using Proposition 2.4, we can easily get that u˛ ! u0 in L2.M; Oh/ as
˛!C1, so we have u˛! u0 almost everywhere on M. Noting that u˛ � 0 on
M, we obtain that u0 � 0 on M. On the other hand, by Proposition 2.6 and by
the equivalence of the norms k � k and k � k�, we have u˛! u0 in L2.X; �1�2
 /
as ˛!C1. For any z 2 X, take dz < dist.z;M/; then we also have u˛ ! u0

in L2.BC
dz
.z/; �1�2
 /. Since �1�2
 is bounded below by a positive constant

in BC
dz
.z/, we get u˛ ! u0 almost everywhere in BC

dz
.z/, up to passing to a

subsequence. Noting that u˛ � 0 in X, we obtain u0 � 0 in BC
dz
.z/. Since z is

arbitrary in X, we have u0 � 0 in X. Combining the above arguments, we conclude
that u� 0 in X. �

Next we define the two limit functionals

I 
g .u/D
1

2

Z
X

�1�2
 jruj2g dvg �
1

2�

Z
M

juj2
�

d� Oh

and

I 
;1g .u/D
1

2

Z
X

�1�2
 jruj2g dvg C
1

2

Z
M

Q
1u
2 d� Oh�

1

2�

Z
M

juj2
�

d� Oh:
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Lemma 2.12. Let fu˛g˛2N � W
1;2.X; �1�2
 / be a Palais–Smale sequence for

fI

;˛
g g˛2N, and u˛ * u0 weakly in W 1;2.X; �1�2
 / as ˛ ! C1. We also set
Ou˛ D u˛ �u

0 2W 1;2.X; �1�2
 /. Then,

(i) u0 is a nonnegative weak solution to the limit equation

(2-4)

(
� div.�1�2
ru/D 0 in X;
� lim
�!0

�1�2
@�uCQ


1uD u

2��1 on M I

(ii) I 
;˛g .u˛/D I


g . Ou˛/C I


;1
g .u0/C o.1/ as ˛!C1;

(iii) f Ou˛g˛2N is a Palais–Smale sequence for I 
g .

Proof. (i) As C1.X/ is dense in W 1;2.X; �1�2
 /, we only consider the proof
in C1.X/. Let � 2 C1.X/. Since Q
˛ ! Q



1 in L2.M; Oh/ as ˛ ! C1 and

u˛*u0 weakly in W 1;2.X; �1�2
 / as ˛!C1,Z
M

Q
˛u˛� d� Oh D

Z
M

Q
1u
0� d� OhC o.1/:

Passing to the limit in (2-3), we get easily thatZ
X

�1�2
 hru0;r�ig dvg C

Z
M

Q
1u
0� d� Oh D

Z
M

.u0/2
��1� d� Oh;

i.e., u0 is a weak solution to the limit equation (2-4).
For the proof of (ii), recall thatZ

M

Q
˛u
2
˛ d� Oh D

Z
M

Q
1 .u
0/2 d� OhC o.1/;

and

I 
;˛g .u˛/D
1

2

Z
X

�1�2
 jru˛j
2
g dvg C

1

2

Z
M

Q
˛u
2
˛ d� Oh�

1

2�

Z
M

u2
�

˛ d� Oh;

I 
;1g .u0/D
1

2

Z
X

�1�2
 jru0j2g dvg C
1

2

Z
M

Q
1.u
0/2d� Oh�

1

2�

Z
M

.u0/2
�

d� Oh;

I 
g . Ou˛/D
1

2

Z
X

�1�2
 jr Ou˛j
2
g dvg �

1

2�

Z
M

j Ou˛j
2�d� Oh;

where Ou˛ D u˛ �u0. Then,

I 
;˛g .u˛/� I

;1
g .u0/� I 
g . Ou˛/

D

Z
X

�1�2
 hru0;r Ou˛ig dvg �
1

2�

Z
M

ˆ˛ d� OhC o.1/;

where
ˆ˛ D j Ou˛Cu

0
j
2�
� j Ou˛j

2�
� ju0j2

�

:
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Note that Ou˛*0 weakly in W 1;2.X; �1�2
 / as ˛!C1, thusZ
X

�1�2
 hru0;r Ou˛ig dvg ! 0; as ˛!1:

On the other hand, it is easy to check that there exists a constant C >0, independent
of ˛, such thatˇ̌

j Ou˛Cu
0
j
2�
� j Ou˛j

2�
� ju0j2

� ˇ̌
� C

�
j Ou˛j

2��1
ju0jC ju0j2

��1
j Ou˛j

�
:

As a consequence, since Ou˛*0 weakly in L2
�

.M; Oh/ by Proposition 2.4, we haveZ
M

jˆ˛j d� Oh! 0; as ˛!C1:

The proof of (ii) is completed.
(iii) For any � 2 C1.X/, by (i) we have

DI 
;1g .u0/ � � D 0:

Since, in addition,Z
M

Q
˛u˛� d� Oh D

Z
M

Q
1u
0� d� OhC o.k�kW 1;2.X; �1�2
 //;

then

(2-5) DI 
;˛g .u˛/ � � DDI


g . Ou˛/ � � �

Z
M

‰˛� d� OhC o.k�kW 1;2.X; �1�2
 //;

where ‰˛ D j Ou˛Cu0j2
��2. Ou˛Cu

0/�j Ou˛j
2��2 Ou˛�ju

0j2
��2u0, and it is easy to

check that there exists a constant C > 0 independent of ˛ such that

j‰˛j � C
�
j Ou˛j

2��2
ju0jC j Ou˛j ju

0
j
2��2

�
:

By Hölder’s inequality and the fact Ou˛*0 weakly inW 1;2.X; �1�2
 / as ˛!C1,Z
M

‰˛� d� Oh

�

�

j Ou˛j2��2 ju0j

L2�=.2��1/.M/
C


j Ou˛j ju0j2��2

L2�=.2��1/.M/

�
k�kL2�.M/

D o.1/k�kL2�.M/:

Thus from (2-5),

DI 
;˛g .u˛/ � � DDI


g . Ou˛/ � � C o.1/k�kL2�.M/;

which implies that DI 
g . Ou˛/! 0 in W 1;2.X; �1�2
 /0 as ˛!C1, since fu˛g˛2N

is a Palais–Smale sequence for fI 
;˛g g˛2N.
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Finally, from (ii), we know that f Ou˛g˛2N is a Palais–Smale sequence for I 
g .
This completes the proof of the lemma. �

Now we give a criterion for strong convergence of Palais–Smale sequences.

Lemma 2.13. Let f Ou˛g˛2N be a Palais–Smale sequence for I 
g such that Ou˛*0

weakly in W 1;2.X; �1�2
 / as ˛!C1. If I 
g . Ou˛/! ˇ and

(2-6) ˇ < ˇ0 D



n
.d�
 /

� n
2
ƒ
 .M; Œ Oh�/

n
2
 ;

then Ou˛! 0 in W 1;2.X; �1�2
 / as ˛!C1.

Proof. By Lemma 2.9 (here Q
˛ � 0), there exists a constant C > 0 such that
k Ou˛kW 1;2.X; �1�2
 / � C for all ˛ 2 N, so

DI 
g . Ou˛/ � Ou˛ D

Z
X

�1�2
 jr Ou˛j
2
g dvg �

Z
M

j Ou˛j
2�d� Oh

D o.k Ou˛kW 1;2.X; �1�2
 //D o.1/:

Then note that I 
g . Ou˛/! ˇ as ˛!C1, so

(2-7) ˇC o.1/D I 
g . Ou˛/

D
1

2

Z
X

�1�2
 jr Ou˛j
2
g dvg �

1

2�

Z
M

j Ou˛j
2�d� Oh

D



n

Z
X

�1�2
 jr Ou˛j
2
g dvg C o.1/

D



n

Z
M

j Ou˛j
2�d� OhC o.1/:

On the other hand, in the positive curvature case, it was shown in [González and
Qing 2013] that the 
-Yamabe constant (1-9) must be positive: ƒ
 .M; Œ Oh�/ > 0.
Moreover, by definition,

(2-8) ƒ
 .M; Œ Oh�/

�Z
M

j Ou˛j
2�d� Oh

� 2
2�

� d�


Z
X

�1�2
 jr Ou˛j
2
g dvg C

Z
M

Q
Oh

 Ou

2
˛ d� Oh:

where d�
 > 0. We also know that jQ Oh
 j � C on M n. Note that, by Proposition 2.4,
Ou˛*0 in L2

�

.M; Oh/ as ˛!C1, soZ
M

Ou2˛ d� Oh! 0; as ˛!C1;
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since the embedding L2
�

.M; Oh/�L2.M; Oh/ is compact. So we get from (2-7) and
(2-8) that �

n



ˇC o.1/

� 2
2�

� d�
ƒ
 .M; Œ
Oh�/�1

n



ˇC o.1/:

Taking ˛!C1, we must have ˇ D 0 because of our initial condition (2-6). �

Note that the Palais–Smale condition (ii) is the weak form of a Dirichlet-to-
Neumann problem for a degenerate elliptic PDE. In fact, as DI 
g . Ou˛/ ! 0 in
W 1;2.X; �1�2
 /0, it follows that, for any  2W 1;2.X; �1�2
 /,

(2-9)
Z
X

�1�2
 hr Ou˛;r ig dvg �

Z
M

j Ou˛j
2��2

Ou˛ d� Oh

D o.1/k kW 1;2.X; �1�2
 /:

In particular, for any  2W 1;2.X; �1�2
 /,Z
X

�1�2
 hr Ou˛;r ig dvg D o.1/k kW 1;2.X; �1�2
 /;

which is precisely the weak formulation of the asymptotic equation

(2-10) � div.�1�2
r Ou˛/D o.1/ in X:

Multiplying both sides of (2-10) by  2W 1;2.X; �1�2
 / and integrating by parts,
we obtainZ
M

lim
�!0

�1�2
@� Ou˛ d� OhC

Z
X

�1�2
 hr Ou˛;r ig dvgDo.1/k kW 1;2.X; �1�2
 /;

which, combined with (2-9), yields thatZ
M

lim
�!0

�1�2
@� Ou˛ d� OhC

Z
M

j Ou˛j
2��2

Ou˛ d� Oh D o.1/k kW 1;2.X; �1�2
 /;

and this is precisely the boundary equation in the weak sense

(2-11) � lim
�!0

�1�2
@� Ou˛ D j Ou˛j
2��2

Ou˛C o.1/ on M:

For (2-10) and (2-11) with f Ou˛g˛2N, we have the following energy estimate, which
will play an important role in the proof of the strong convergence in Section 3. We
use the notation BCr instead of BCr .0/ for convenience.

Lemma 2.14. ("-regularity estimates) Suppose that fv˛g˛2N satisfies the following
asymptotic boundary value problem

(2-12)

(
� div.�1�2
rv˛/D o.1/ in X;
� lim
�!0

�1�2
@�v˛ D jv˛j
2��2v˛C o.1/ on M:
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If there exists small " > 0 depending on n and 
 such that
Z
@0BC2r

jv˛j
2�d� Oh � "

uniformly in ˛ for some small r > 0, thenZ
BCr

�1�2
 jrv˛j
2
g dvg

�
C

r2

Z
BC2r

�1�2
v2˛ dvg CC

Z
@0BC2r

v2˛ d� OhC o.1/

Z
BC2r

jv˛j dvg ;

where C D C.n; "; 
/ independent of ˛.

Proof. Let � be a smooth cutoff function in X such that 0� �� 1, �� 1 in BCr .0/

and �� 0 in X nBC2r.0/. Multiplying both sides of the first equation in (2-12) by
�2v˛, integrating by parts and substituting the second equation in (2-12), we getZ
BC2r

�1�2
 hrv˛;r.�
2v˛/ig dvg

D�

Z
@0BC2r

lim
�!0

�1�2
 .@�v˛/�
2v˛ d� OhC o.1/

Z
BC2r

�2v˛ dvg

D

Z
@0BC2r

�2jv˛j
2�d� OhC o.1/

Z
BC2r

�2v˛ dvg ;

so we haveZ
BC2r

�1�2
�2jrv˛j
2
g dvg

D�

Z
BC2r

�1�2
2�v˛hrv˛;r�ig dvg

C

Z
@0BC2r

�2jv˛j
2�d� OhC o.1/

Z
BC2r

�2jv˛j dvg

�
1

2

Z
BC2r

�2�1�2
 jrv˛j
2
g dvg C 2

Z
BC2r

�1�2
 jr�j2g v
2
˛ dvg

C

Z
@0BC2r

�2jv˛j
2�d� OhC o.1/

Z
BC2r

�2jv˛j dvg ;

which implies thatZ
BC2r

�1�2
�2jrv˛j
2
g dvg

� 4

Z
BC2r

�1�2
 jr�j2gv
2
˛ dvg C 2

Z
@0BC2r

�2jv˛j
2�d� OhC o.1/

Z
BC2r

�2jv˛j dvg

�
C

r2

Z
BC2r

�1�2
v2˛ dvg C 2

Z
@0BC2r

.�v˛/
2
jv˛j

2��2d� OhC o.1/

Z
BC2r

�2jv˛j dvg :
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By Hölder’s inequality and our initial hypothesis,Z
@0BC2r

.�v˛/
2
jv˛j

2��2 d� Oh �

�Z
@0BC2r

j�v˛j
2�d� Oh

� 2
2�
�Z

@0BC2r

jv˛j
2�d� Oh

�2��2
2�

� "
2��2
2�

�Z
@0BC2r

j�v˛j
2�d� Oh

� 2
2�

:

Then it follows from above thatZ
BC2r

�1�2
 jr.�v˛/j
2
g dvg

� 2

Z
BC2r

�1�2
 .jr�j2gv
2
˛C �

2
jrv˛j

2
g/ dvg

�
C

r2

Z
BC2r

�1�2
v2˛ dvg CC"
2��2
2�

�Z
@0BC2r

j�v˛j
2�d� Oh

� 2
2�

C o.1/

Z
BC2r

�2v˛ dvg:

The trace Sobolev inequality on our manifold setting (Proposition 2.4) gives that�Z
@0BC2r

j�v˛j
2� d� Oh

� 2
2�

� C

Z
BC2r

�1�2
 jr.�v˛/j
2
g dvg CC

Z
@0BC2r

.�v˛/
2 d� Oh:

Therefore,Z
BC2r

�1�2
 jr.�v˛/j
2
g dvg

�
C

r2

Z
BC2r

�1�2
v2˛ dvg CC"
2��2
2�

Z
BC2r

�1�2
 jr.�v˛/j
2
g dvg

CC"
2��2
2�

Z
@0BC2r

.�v˛/
2 d� OhC o.1/

Z
BC2r

�2jv˛j dvg :

Now, fix r > 0 small such that " is small enough to satisfy C"
2��2
2� �

1
2

. Then,Z
BCr

�1�2
 jrv˛j
2
g dvg

�
C

r2

Z
BC2r

�1�2
v2˛ dvg CC

Z
@0BC2r

v2˛ d� OhC o.1/

Z
BC2r

jv˛j dvg : �

3. The first bubble argument

In this section, we focus on the blow up analysis of a Palais–Smale sequence
which are not strongly convergent. In particular, using the "-regularity estimates
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(Lemma 2.14), we can figure out the first bubble. We will also show that the Palais–
Smale sequence obtained by subtracting a bubble is also Palais–Smale sequence
and that the energy is splitting.

Lemma 3.1. Let f Ou˛g˛2N be a Palais–Smale sequence for I 
g such that Ou˛ * 0

weakly in W 1;2.X; �1�2
 /, but not strongly as ˛ ! C1. Then, there exists a
sequence of real numbers f�˛ > 0g˛2N, �˛ ! 0 as ˛ ! C1, a converging
sequence of points fx˛g˛2N �M , and a nontrivial solution u to the equation

(3-1)

(
� div.y1�2
ru/D 0 in RnC1

C
;

� lim
y!0

y1�2
@yuD juj
2��2u on Rn;

such that, up to a subsequence, if we take

Ov˛.z/D Ou˛.z/� �˛.z/�
�
n�2

2

˛ u.��1˛ '�1x˛ .z//; z 2 'x˛ .B
C
2r0
.0//;

where r0, �˛.z/, and 'x˛ .z/ are the same as in Theorem 1.3, then we have the
following three conclusions:

(1) Ov˛*0 weakly in W 1;2.X; �1�2
 / as ˛!C1;

(2) f Ov˛g˛2N is also a Palais–Smale sequence for I 
g ;

(3) I 
g . Ov˛/D I


g . Ou˛/� zE.u/C o.1/ as ˛!C1.

Proof. Without loss of generality, we assume that Ou˛ 2 C1.X/. By the proof of
Lemma 2.13,

I 
g . Ou˛/D



n

Z
X

�1�2
 jr Ou˛j
2
g dvg C o.1/D




n

Z
M

j Ou˛j
2�d� OhC o.1/:

Note that f Ou˛g˛2N is uniformly bounded in W 1;2.X; �1�2
 / by Lemma 2.9, so
there exist a subsequence, also denoted by f Ou˛g˛2N and a nonnegative constant ˇ,
such that

I 
g . Ou˛/D ˇC o.1/; as ˛!C1:

Since Ou˛*0 weakly in W 1;2.X; �1�2
 / but not strongly as ˛!C1, again by
Lemma 2.13,

lim
˛!C1

Z
M

j Ou˛j
2�d� Oh D

n



ˇ �

n



ˇ0:

We will decompose the rest of the proof into several steps:

Step 1. Pick up the likely blow up points.

Claim 1. For any t0 > 0 small, there exist x0 2M and "0 > 0 such that, up to a
subsequence, Z

Dt0.x0/
j Ou˛j

2�d� Oh � "0:
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Proof. If the claim is not true, then there exists t > 0 small, such that for any x 2M ,Z
Dt.x/
j Ou˛j

2�d� Oh! 0; ˛!C1:

On the other hand, since .M; Oh/ is compact and M �
S
x2M Dt .x/, there exists

an integer N � 1 such that M �
SN
iD1Dt .xi /. Thus,Z

M

j Ou˛j
2�d� Oh �

NX
iD1

Z
Dt.xi /
j Ou˛j

2�d� Oh! 0; ˛!C1;

which is a contradiction. �

For t > 0, we set

!˛.t/D max
x2M

Z
Dt.x/
j Ou˛j

2�d� Oh:

Then, by Claim 1, there exists x˛ 2M such that

!˛.t0/D

Z
Dt0.x˛/

j Ou˛j
2�d� Oh � "0:

Note that Z
Dt.x˛/

j Ou˛j
2�d� Oh! 0; as t ! 0:

Hence, for any " 2 .0; "0/, there exists t˛ 2 .0; t0/ such that

(3-2) "D

Z
Dt˛.x˛/

j Ou˛j
2�d� Oh:

Step 2. At each likely blow up point, we will establish weak convergence of a
Palais–Smale sequence after properly rescaling.

For r0 > 0 small, consider the Fermi coordinates at the likely blow up point
x˛ 2M, 'x˛ W B

C
2r0
.0/!X. Here we restrict r0 to r0 � ig.X/=2, where ig.X/ is

the injectivity radius of X. Then, for any 0 < �˛ � 1, we define

Qu˛.z/D �
.n�2
/=2
˛ Ou˛.'x˛ .�˛z//;

Qg˛.z/D .'
�
x˛
g/.�˛z/;

Qh˛.x/D .'
�
x˛
Oh/.�˛x/;

if z 2 BC��1˛ r0
.0/ and x 2 @0BC��1˛ r0

.0/.
Given z0 2 RnC1

C
and r > 0 such that jz0jC r < ��1˛ r0, we haveZ

B
C
r .z0/

Q�1�2
˛ jr Qu˛j
2
Qg˛
dv
Qg˛
D

Z
'x˛ .�˛B

C
r .z0//

�1�2
 jr Ou˛j
2
g dvg ;
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where

Q�˛.z/D �
�1
˛ �.'x˛ .�˛z//

and jd Q�˛j Qg˛ D 1 on @0BCr .z0/ since jd�jg D 1 on M.
On the other hand, if z0 2 Rn, and jz0jC r < ��1˛ r0, thenZ
Dr .z0/

j Qu˛j
2�d� Qh˛

D

Z
'x˛ .�˛Dr .z0//

j Ou˛j
2�d� Oh �

Z
D2�˛r .'x˛ .�˛z0//

j Ou˛j
2�d� Oh:

Here we have used that 'x˛ .�˛Dr.z0//D 'x˛ .D�˛r.�˛z0//, and for x; y 2 Rn,
with jxj< r0, jyj< r0, we have 1

2
jx�yj � dg.'x˛ .x/; 'x˛ .y//� 2jx�yj.

Next, take r 2 .0; r0/ and choose t0 in Claim 1 such that 0 < t0 � 2r . For any
" 2 .0; "0/, with " to be determined later, and t˛ 2 .0; t0/, let

0 < �˛ D
1
2
r�1t˛ �

1
2
r�1t0 � 1:

Then, by the definition of " from (3-2), if jz0jC r < ��1˛ r0,Z
@0B
C
r .z0/

j Qu˛j
2�d� Qh˛

� ":(3-3)

Note that 'x˛ .@
0BC2r�˛ .0//DDt˛ .x˛/, we have

"D

Z
Dt˛.x˛/

j Ou˛j
2�d� Oh D

Z
'x˛.@

0B
C

2r�˛
.0//

j Ou˛j
2�d� Oh

D

Z
'x˛.�˛@

0B
C

2r .0//

j Ou˛j
2�d� Oh D

Z
@0B
C

2r .0/

j Qu˛j
2�d� Qh˛

:

This r0 > 0 can be chosen smaller again, such that for any 0 < � � 1 and any
x0 2M, we can assume that

(3-4)
1

2

Z
R
nC1
C

y1�2
 jruj2 dx dy �

Z
R
nC1
C

Q�1�2
x0;�
jruj2

Qgx0;�
dv Qgx0;�

� 2

Z
R
nC1
C

y1�2
 jruj2 dx dy;

where u2W 1;2.RnC1
C

; Q�
1�2

x0;� /, supp.u/�BC2��1r0.0/, Q�x0;�.z/D�

�1�.'x0.�z//,
and Qgx0;�.z/D .'

�
x0
g/.�z/. And for u2L1.Rn/ such that supp.u/�@0BC2��1r0.0/,

we can also assume that

1

2

Z
Rn
juj dx �

Z
Rn
juj d� Qhx0;�

� 2

Z
Rn
juj dx;

where Qhx0;�.x/D .'
�
x0
Oh/.�x/.
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Let Q� 2 C10 .R
nC1
C

/ be a cutoff function satisfying 0� Q�� 1,

Q��

�
1; in BC

1=4
.0/;

0; in RnC1
C
nBC

3=4
.0/;

and set Q�˛.z/D Q�.r�10 �˛z/.

Claim 2. f Q�˛ Qu˛g˛2N is uniformly bounded in W 1;2.RnC1
C

; y1�2
 /.

Proof. Note thatZ
R
nC1
C

Q�1�2
˛ jr. Q�˛ Qu˛/j
2
Qg˛
dv Qg˛ C

Z
R
nC1
C

Q�1�2
˛ . Q�˛ Qu˛/
2 dv Qg˛

�

Z
R
nC1
C

Q�1�2
˛ .2jr Q�˛j
2
Qg˛
C Q�2˛/ Qu

2
˛ dv Qg˛ C 2

Z
R
nC1
C

Q�1�2
˛ Q�2˛jr Qu˛j
2
Qg˛
dv Qg˛

� C

Z
X

�1�2
 Ou2˛ dvg CC

Z
X

�1�2
 jr Ou˛j
2
g dvg � C;

since f Ou˛g˛2N is uniformly bounded in W 1;2.X; �1�2
 /. Combining this with
(3-4), we get that f Q�˛ Qu˛g˛2N is uniformly bounded in W 1;2.RnC1

C
; y1�2
 /. �

Due to the weak compactness of W 1;2.RnC1
C

; y1�2
 /, there exists some u in
W 1;2.RnC1

C
; y1�2
 / such that Q�˛ Qu˛*u in W 1;2.RnC1

C
; y1�2
 / as ˛!C1.

Step 3. The weak convergence is in fact strong via "-regularity estimates.

Claim 3. Let r1D r0
8

. Then, there exists "1D "1.
; n/ such that for any 0 < r < r1,
0 < " <minf"0; "1g, we have Q�˛ Qu˛! u in W 1;2.BC2r.0/; y

1�2
 / as ˛!C1.

Proof. Given r sufficiently small, to be determined later, for any z0 2 RnC1
C

, let
 2 C10 .B

C
r .z0//\W

1;2.RnC1
C

; y1�2
 /. Let

O ˛.z/D �
�
n�2

2

˛  .��1˛ '�1x˛ .z// for z 2 'x˛ .B
C
r .z0//:

Since f Ou˛g satisfies the asymptotic equation (2-10),

o.1/k k
W 1;2.R

nC1
C

;y1�2
 /
D o.1/k O ˛kW 1;2.X; �1�2
 /

D

Z
'x˛ .�˛B

C
r .z0//

�1�2
 hr Ou˛;r O ˛ig dvg

D

Z
B
C
r .z0/

.��1˛ �/1�2
 hr. Q�˛ Qu˛/;r i Qg˛ dv Qg˛ ;

since Q� is supported in BC
3=4
.0/ and Q�� 1 in BC

1=4
.0/. Also, note that since Q�˛.z/D

Q�.�˛r
�1
0 z/, we have Q�˛ � 1 in BC

1=4��1˛ r0
; thus, we need jz0jC r < 1

4
��1˛ r0.
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It is easy to check that ��1˛ �! y as ˛!C1 since jd.��1˛ �/j Qg˛ D 1 on Rn

and Qg˛! .jdxj2C dy2/. Then we have the asymptotic equation

(3-5) � div.y1�2
r. Q�˛ Qu˛//D o.1/ in BCr .z0/:

Since Q�˛ Qu˛*u weakly in W 1;2.RnC1
C

; y1�2
 /, we simultaneously get that

(3-6) � div.y1�2
ru/D 0 in BCr .z0/:

Now, let  2W 1;2.BCr .z0/; y
1�2
 /. Then, multiplying both sides of (3-5) by

 and integrating by parts, we get

(3-7) o.1/k k
W 1;2.B

C
r .z0/;y1�2
 /

D

Z
@0B
C
r .z0/

lim
y!0

y1�2
@y. Q�˛ Qu˛/ d� Qh˛

C

Z
B
C
r .z0/

y1�2
 hr. Q�˛ Qu˛/;r i Qg˛ dv Qg˛ :

On the other hand, using (2-10), (2-11), and the definition of O ˛,

(3-8)
Z
B
C
r .z0/

y1�2
 hr. Q�˛ Qu˛/;r i Qg˛ dv Qg˛

D

Z
'x˛ .�˛B

C
r .z0//

�1�2
 hr Ou˛;r O ˛ig dvg

D�

Z
M

lim
�!0

�1�2
 .@� Ou˛/ ˛ d� OhC o.1/k
O ˛kW 1;2.X; �1�2
 /

D

Z
M

j Ou˛j
2��2

Ou˛ O ˛ d� OhC o.1/k
O ˛kW 1;2.X; �1�2
 /

D

Z
@0B
C
r .z0/

j Q�˛ Qu˛j
2��2. Q�˛ Qu˛/ d� Qh˛

C o.1/k O ˛kW 1;2.X; �1�2
 /:

Since k k
W 1;2.B

C
r .z0/;y1�2
 /

D k O ˛kW 1;2.X; �1�2
 /, combining expressions (3-7)
and (3-8) yields

o.1/k k
W 1;2.B

C
r .z0/;y1�2
 /

D

Z
@0B
C
r .z0/

lim
y!0

y1�2
@y. Q�˛ Qu˛/ d� Qh˛

C

Z
@0B
C
r .z0/

j Q�˛ Qu˛j
2��2. Q�˛ Qu˛/ d� Qh˛

;

i.e.,

� lim
y!0

y1�2
@y. Q�˛ Qu˛/D jQ�˛ Qu˛j
2��2. Q�˛ Qu˛/C o.1/ on @0BCr .z0/:
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Meanwhile, since Q�˛ Qu˛*u weakly in W 1;2.RnC1
C

; y1�2
 /, the same argument
as above gives that

� lim
y!0

y1�2
@yuD juj
2��2u on @0BCr .z0/:

If we denote by

�˛ WD j Q�˛ Qu˛j
2��2. Q�˛ Qu˛/� juj

2��2u� j Q�˛ Qu˛ �uj
2��2. Q�˛ Qu˛ �u/;

then

(3-9)

8̂<̂
:
� div.y1�2
r. Q�˛ Qu˛ �u//D o.1/ in BCr .z0/;

� lim
y!0

y1�2
@y. Q�˛ Qu˛ �u/

D jQ�˛ Qu˛ �uj
2��2. Q�˛ Qu˛ �u/C�˛C o.1/ on @0BCr .z0/:

We have proved in (3-3) that for any r > 0 and "1 > 0, there exists a sequence
f�˛g˛2N such that, if jz0jC r � r0 � ��1˛ r0, thenZ

@0B
C
r .z0/

j Qu˛j
2�dx � "1:

Therefore, we can also choose r small enough such that, if jz0jC 3r < r0, thenZ
@0B
C
r .z0/

j Q�˛ Qu˛ �uj
2�dx � "1:

We claim that �˛ D o.1/ in the sense that for any � 2W 1;2.RnC1
C

; y1�2
 /0,Z
@0B
C
r .z0/

j�˛� jd� Oh D o.1/k�kL2� .@0BCr .z0//
; as ˛!C1:

We can use the same arguments as in the proof of Lemma 2.12 to show this claim.
Then by the "-regularity estimates and the compact embedding of the weighted

Sobolev space, we can prove that Q�˛ Qu˛! u in W 1;2.BCr .z0/; y
1�2
 /. Then, by

the finite covering we can prove that Q�˛ Qu˛! u in W 1;2.BC2r.0/; y
1�2
 /. �

Applying Claim 3, noting that Q�˛ Qu˛ ! u in W 1;2.BC2r.0/; y
1�2
 / and that

Q�˛ � 1 in @0BC
1=4��1˛ r0

since 0 < �˛ � 1 and 2r < r0
4

,

"D

Z
@0B
C

2r.0/

j Qu˛j
2�d� Qh˛

D

Z
@0B
C

2r.0/

j Q�˛ Qu˛j
2�d� Qh˛

� 2

Z
@0B
C

2r.0/

juj2
�

dxC o.1/;

where we used Q�˛ Qu˛! u in L2
�

.@0BC2r.0/; jdxj
2/ as ˛!C1 by Proposition 2.4.

So, u¤ 0.

Claim 4. lim
˛!C1

�˛ D 0.

In fact, if �˛! �0 > 0, then Q�˛ Qu˛*0 in W 1;2.BC2r.0/; y
1�2
 / since Ou˛*0 in

W 1;2.X; �1�2
 /. But, u¤ 0, which is a contradiction.
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Claim 5. For any 0 < �0 � 1, Qu˛ ! u strongly in W 1;2.BC��10
.0/; y1�2
 / as

˛!C1, and u is a weak solution of (3-1).

Proof. Let 0 < �0 � 1. By Claim 4, we know that 0 < �˛ � �0 for ˛ large. Then,
(3-3) holds for jz0jC r < ��10 r0. By the same arguments, it is easy to check that

Q�˛ Qu˛! u in W 1;2.BC2r��10
.0/; y1�2
 /:

For ˛ large, Q�˛ � 1 in BC2r��10 .0/, so we have

Qu˛! u in W 1;2.BC2r��10
.0/; y1�2
 /

strongly as ˛!C1.
Finally, we claim that u solves the boundary problem

(3-10)

(
� div.y1�2
ru/D 0 in RnC1

C
;

� lim
y!0

y1�2
@yuD juj
2��2u on Rn:

Since 0 < �0 � 1 is arbitrary, Qu˛ ! u strongly in W 1;2.BCR .0/; y
1�2
 / for any

large R > 0. Without loss of generality, let  2 C10 .R
nC1
C

/ and supp � BCR0.0/
for some R0 > 0. Set

 ˛.z/D �
�
n�2

2

˛  .��1˛ '�1x˛ .z//:

For ˛ large enough,Z
X

�1�2
 hr Ou˛;r ˛ig dvg D

Z
R
nC1
C

Q�1�2
˛ hr. Q�˛ Qu˛/;r i Qg˛ dv Qg˛ ;

and Z
M

j Ou˛j
2��2

Ou˛ ˛ dvg D

Z
Rn
j Q�˛ Qu˛j

2��2. Q�˛ Qu˛/ dv Qg˛ :

Note that Qg˛! jdxj2C dy2 in C1.BCR .0// as ˛!C1, f Ou˛g is a Palais–Smale
sequence for I 
g and Q�˛ Qu˛! u in W 1;2.BCR .0// for any R > 0. Then, we haveZ

R
nC1
C

y1�2
 hru;r i dx dy �

Z
Rn
juj2

��2u dx dy D 0;

which yields our desired result. �

Step 4. The Palais–Smale sequence minus a bubble is still a Palais–Smale sequence.
Define

(3-11)
�
Ow˛.z/D O�˛.z/�

�
n�2

2

˛ u.��1˛ '�1x˛ .z//; z 2 'x˛ .B
C
2r0
.0//;

Ow˛.z/D 0; otherwise;

where O�˛ is a cut-off function satisfying O�˛ D 1 in 'x˛ .B
C
r0
.0// and O�˛ D 0 in

M n 'x˛ .B
C
2r0
.0//. Here we have BC2r0.x˛/D 'x˛ .B

C
2r0
.0//. Let Ov˛ D Ou˛ � Ow˛.

We claim:
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(i) Ov˛*0 in W 1;2.X; �1�2
 / as ˛!C1;

(ii) DI 
g . Ov˛/! 0 in W 1;2.X; �1�2
 /0 as ˛!C1;

(iii) I 
g . Ov˛/D I


g . Ou˛/� zE.u/C o.1/ as ˛!C1;

(iv) f Ov˛g˛2N is also a Palais–Smale sequence for I 
g .

The remainder of the proof of Lemma 3.1 consists of proving these claims.

(i) Since Ou˛ * 0 in W 1;2.X; �1�2
 / as ˛ ! C1, it suffices to prove Ow˛ * 0

in W 1;2.X; �1�2
 / as ˛ ! C1. First, we prove that
R
M Ow˛ d� Oh D o.1/ as

˛!C1 for any  2 C1.X/. Given R > 0,

(3-12)
Z
M

Ow˛ d� Oh D

Z
D�˛R.x˛/

Ow˛ d� OhC

Z
MnD�˛R.x˛/

Ow˛ d� Oh:

Note that Qh˛.x/D .'�x˛
Oh/.�˛x/. Using (3-11),Z

D�˛R.x˛/
Ow˛ d� Oh D

Z
D�˛R.x˛/

O�˛.x/�
�
n�2

2

˛ u.��1˛ '�1x˛ .x// .x/ d� Oh

D �
nC2

2

˛

Z
DR.0/

O�˛.'x˛ .�˛x//u.x/ .'x˛ .�˛x// d� Qh˛

� Ck kL1.M/�
nC2

2

˛

Z
DR.0/

ju.x/j dx:

Similarly, we can deal with the second term in the right hand side of (3-12):Z
MnD�˛R.x˛/

Ow˛ d� Oh D

Z
D2r0 .x˛/nD�˛R.x˛/

Ow˛ d� Oh

� Ck kL1.M/�
nC2

2

˛

Z
D2r0�

�1
˛
.0/nDR.0/

ju.x/j dx

� Ck kL1.M/�
nC2

2

˛

�Z
D2r0�

�1
˛
.0/nDR.0/

ju.x/j2
�

dx

�1
2�

�

�Z
D2r0�

�1
˛
.0/nDR.0/

dx

�nC2

2n

� Ck kL1.M/

�Z
D2r0�

�1
˛
.0/nDR.0/

ju.x/j2
�

dx

�1
2�

:

Since u 2L2
�

.Rn; jdxj2/ and �˛! 0 as ˛!C1, taking R large enough we getZ
M

Ow˛ d� Oh D o.1/ as ˛!C1:
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Next, we will show thatZ
X

�1�2
 hr Ow˛;r ig dvg D o.1/ as ˛!C1

for any  2 C1.X/. Let Q�˛.z/ D O�˛.'x˛ .�˛z//, Q�˛.z/ D ��1˛ �.'x˛ .�˛z//.
Noting that Ow˛ � 0 in X nBC2r0.x˛/, then for any R > 0 and ˛ large,

(3-13)
Z
X

�1�2
 hr Ow˛;r ig dvg D

Z
BC2r0

.x˛/

�1�2
 hr Ow˛;r ig dvg

D

Z
BC2r0

.x˛/nB
C

R�˛
.x˛/

�1�2
 hr Ow˛;r ig dvg

C

Z
BCR�˛.x˛/

�1�2
 hr Ow˛;r ig dvg

DW I1C I2:

By Hölder’s inequality and the fact that u 2W 1;2.RnC1
C

; y1�2
 /,

I1 �

�Z
BC2r0

.x˛/nB
C

R�˛
.x˛/

�1�2
 jr Ow˛j
2
g dvg

�1
2

�

�Z
BC2r0

.x˛/nB
C

R�˛
.x˛/

�1�2
 jr j2g dvg

�1
2

D

�Z
B
C

2r0�
�1
˛

.0/nB
C

R.0/

Q�1�2
˛ jr. Q�˛u/j
2
Qg˛
dv Qg˛

�1
2

�

�Z
BC2r0

.x˛/nB
C

R�˛
.x˛/

�1�2
 jr j2g dvg

�1
2

DW ˇ.R/;

where

(3-14) lim
R!C1

lim
˛!C1

supˇ.R/D 0:

The previous limit is estimated because u 2W 1;2.RnC1
C

; y1�2
 /, so for any ˛, R,�Z
B
C

2r0�
�1
˛
.0/nB

C

R .0/

Q�1�2
˛ jr. Q�˛u/j
2
Qg˛
dv Qg˛

�1
2

� Ckuk
W 1;2.R

nC1
C

;y1�2
 /
;

and for any " > 0 and any ˛ large, there exists R0 > 0 such that for R >R0,�Z
BC2r0

.x˛/nB
C

R�˛
.x˛/

�1�2
 jr j2g dvg

�1
2

� ":
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Meanwhile,

I2 �

�Z
BCR�˛.x˛/

�1�2
 jr Ow˛j
2
g dvg

�1
2
�Z

BCR�˛.x˛/
�1�2
 jr j2g dvg

�1
2

D

�Z
B
C

R.0/

Q�1�2
˛ jr. Q�˛u/j
2
Qg˛
dv Qg˛

�1
2
�Z

BCR�˛.x˛/
�1�2
 jr j2g dvg

�1
2

D o.1/;

uniformly in R as ˛!C1. To see this, for any R > 0,�Z
B
C

R.0/

Q�1�2
˛ jr. Q�˛u/j
2
Qg˛
dv Qg˛

�1
2

� Ckuk
W 1;2.R

nC1
C

;y1�2
 /
;

also in Claim 4 we have proved that

lim
˛!C1

�˛ D 0

and note that  2W 1;2.X; �1�2
 /. Since R > 0 is arbitrary, (3-13) implies thatZ
X

�1�2
 hr Ow˛;r ig dvg D o.1/

as ˛!C1.

(ii) For any  2 W 1;2.X; �1�2
 /, the proof of (i) and Propositions 2.4 and 2.6
imply that

d� Oh! 0; as ˛!C1:

On the other hand, we have

DI 
g . Ov˛/ � D

Z
X

�1�2
 hr Ov˛;r ig dvg �

Z
M

j Ov˛j
2��2
Ov˛ d� Oh

DDI 
g . Ou˛/ � �DI


g . Ow˛/ � �

Z
M

ˆ˛ d� Oh;

where

ˆ˛ D j Ou˛ � Ow˛j
2��2. Ou˛ � Ow˛/Cj Ow˛j

2��2
Ow˛ � j Ou˛j

2��2
Ou˛:

Following the same argument of [Druet et al. 2004, pp. 39–40], we can prove thatZ
M

ˆ˛ d� Oh! 0; as ˛!C1:

Then, we get that DI 
g . Ov˛/! 0 in W 1;2.X; �1�2
 /0 as ˛!C1, since f Ou˛g˛2N

is a Palais–Smale sequence for I 
g .
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(iii) Note that Ov˛ D Ou˛ � Ow˛ and Ow˛ � 0 in X nBC2r0.x˛/. Given R > 0, for ˛
large,

(3-15)
Z
X

�1�2
 jr Ov˛j
2
g dvg

D

Z
BC2r0

.x˛/

�1�2
 jr Ov˛j
2
g dvg C

Z
XnBC2r0

.x˛/

�1�2
 jr Ou˛j
2
g dvg

D

Z
BC�˛R.x˛/

�1�2
 jr Ov˛j
2
g dvg C

Z
BC2r0

.x˛/nB
C

�˛R
.x˛/

�1�2
 jr Ov˛j
2
g dvg

C

Z
XnBC2r0

.x˛/

�1�2
 jr Ou˛j
2
g dvg

DW I1C I2C

Z
XnBC2r0

.x˛/

�1�2
 jr Ou˛j
2
g dvg :

Since Q�˛ Qu˛! u in W 1;2.RnC1
C

; y1�2
 / as ˛!C1 because of Claim 5,

I1 D

Z
BC�˛R.x˛/

�1�2
 jr. Ou˛ � Ow˛/j
2
g dvg

D

Z
B
C

R .0/

Q�1�2
˛ jr. Qu˛ �u/j
2
Qg˛
dv Qg˛

� 2

Z
B
C

R .0/

y1�2
 jr. Qu˛ �u/j
2 dx dy D o.1/; as ˛!C1;

where we have used that Q�˛ � 1 in BCR .0/ for ˛ large.
On the other hand, direct computations give thatZ
BC2r0

.x˛/nB
C

�˛R
.x˛/

�1�2
 jr Ow˛j
2
g dvg D

Z
B
C

2r0�
�1
˛
.0/nB

C

R .0/

Q�1�2
˛ jruj2
Qg˛
dv Qg˛

� 2

Z
B
C

2r0�
�1
˛
.0/nB

C

R .0/

y1�2
 jruj2 dx dy

D ˇ.R/;

since u 2W 1;2.RnC1
C

; y1�2
 / and �˛! 0 as ˛!C1, where ˇ.R/ is defined as
in (3-14). Hence, we get

I2 D

Z
BC2r0

.x˛/nB
C

�˛R
.x˛/

�1�2

�
jr Ou˛j

2
g Cjr Ow˛j

2
g � 2hr Ou˛;r Ow˛ig

�
dvg

D

Z
BC2r0

.x˛/nB
C

�˛R
.x˛/

�1�2
 jr Ou˛j
2
g dvg Cˇ.R/:
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Here we have used Hölder’s inequality and the fact that f Ou˛g is uniformly bounded
in W 1;2.X; �1�2
 / to getZ

BC2r0
.x˛/nB

C

�˛R
.x˛/

�1�2
 hr Ou˛;r Ow˛ig dvg D ˇ.R/:

Therefore, noting that Qu˛! u in W 1;2.RnC1
C

; y1�2
 / as ˛!C1, by (3-15),Z
X

�1�2
 jr Ov˛j
2
g dvg

D

Z
X

�1�2
 jr Ou˛j
2
g dvg �

Z
BC�˛R.x˛/

�1�2
 jr Ou˛j
2
g dvg Cˇ.R/C o.1/

D

Z
X

�1�2
 jr Ou˛j
2
g dvg �

Z
B
C

R .0/

Q�1�2
˛ jr Qu˛j
2
Qg˛
dv Qg˛ Cˇ.R/C o.1/

D

Z
X

�1�2
 jr Ou˛j
2
g dvg �

Z
B
C

R .0/

y1�2
 jruj2 dx dyCˇ.R/C o.1/

D

Z
X

�1�2
 jr Ou˛j
2
g dvg �

Z
R
nC1
C

y1�2
 jruj2 dx dyCˇ.R/C o.1/:

In a similar way,Z
M

j Ov˛j
2�d� Oh D

Z
M

j Ou˛j
2�d� Oh�

Z
Rn
juj2

�

dxCˇ.R/C o.1/:

These imply that

I 
g . Ov˛/D I


g . Ou˛/�

zE.u/Cˇ.R/C o.1/:

Since R > 0 is arbitrary, we get conclusion (iii).

(iv) It is a direct consequence of (ii) and (iii). �

4. Proof of the main results

Proof of Theorem 1.3. From Remark 2.10, we have u˛*u0 in W 1;2.X; �1�2
 /

as ˛!C1. And u˛ ! u0 a.e. on M as ˛!C1. Then, u0 � 0 on M since
u˛ � 0. Also, Ou˛ D u˛ �u0 satisfies the Palais–Smale condition and

I 
g . Ou˛/D I

;˛
g .u˛/� I


;1
g .u0/C o.1/:

If Ou˛! 0 in W 1;2.X; �1�2
 / as ˛!C1, then the theorem is proved. If Ou˛*0

but not strongly in W 1;2.X; �1�2
 / as ˛!C1, then, using Lemma 3.1, we can
obtain a new Palais–Smale sequence f Ou1˛g˛2N satisfying

I 
g . Ou
1
˛/D I



g . Ou˛/�

zE.u/C o.1/:
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Now, either Ou1˛! 0 in W 1;2.X; �1�2
 / as ˛!C1, in which case the theorem
holds, or Ou1˛*0 but not strongly in W 1;2.X; �1�2
 / as ˛!C1, in which case
we again use Lemma 3.1.

Since fI 
;˛g .u˛/g˛2N is uniformly bounded, after a finite number of induction
steps, we get the last Palais–Smale sequence (for m> 1)

f Oum˛ g˛2N with I 
g . Ou
m
˛ /! ˇ < ˇ0:

Then, by Lemma 2.13, we can get that

Oum˛ ! 0 in W 1;2.X; �2
�1/ as ˛!C1:

Applying Lemma 3.1 in the process, we can get that fuj gmjD1 are solutions to (3-1).
We will prove the positivity of uj, j D 1; : : : ; m, in Lemma 4.2, and the relation (5)
of Theorem 1.3 in Lemma 4.1.

For the regularity of uj, we can use Lemmas A.1 and A.2. �

Lemma 4.1. For any integer k in Œ1;m�, and any integer l in Œ0; k� 1�, there exist
an integer s and sequences fyj˛g˛2N �M and f�j˛ > 0g˛2N, j D 1; : : : ; s, such
that d Oh.xk˛ ; y

j
˛ /=�

k
˛ is bounded, �j˛=�k˛! 0 as ˛!C1, and for any R;R0 > 0,

(4-1)
Z
D
R�k˛

.xk˛/n
Ss
jD1DR0�j˛

.y
j
˛ /

ˇ̌̌̌
Ou˛ �

lX
iD1

ui˛ �u
k
˛

ˇ̌̌̌2�
d� Oh D o.1/C ".R

0/;

where

lim
R0!C1

lim
˛!C1

sup ".R0/D 0;

and fui˛g is derived from the rescaling of ui we obtained in the above proof of
Theorem 1.3, and fxi˛g is the i -th likely blow up points sequence.

Proof. We prove this lemma by iteration on l . For any integer k (1 � k � m), if
l D k � 1, then combining the above proof of Theorem 1.3 with Lemma 3.1 and
Proposition 2.4,

Z
D
R�k˛

.xk˛/

ˇ̌̌̌
Ou˛ �

k�1X
iD1

ui˛ �u
k
˛

ˇ̌̌̌2�
d� Oh D o.1/;

so (4-1) holds for s D 0.
Suppose that (4-1) holds for some l , 1� l � k� 1, we need to show that (4-1)

holds for l � 1.
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Case 1: d Oh.xl˛; x
k
˛ /¹ 0 as ˛!C1. Then, for any R > 0, up to a subsequence,

DR�l˛ .x
l
˛/\DR�k˛ .x

k
˛ /D∅, so we haveZ

D
R�k˛

.xk˛/n
Ss
jD1DR0�j˛

.y
j
˛ /

jul˛j
2�d� Oh �

Z
M nD

R�l˛
.xl˛/

jul˛j
2�d� Oh

� C

Z
RnnDR.0/

jul j2
�

d� Qh˛

� C

Z
RnnDR.0/

jul j2
�

dx:

Since R > 0 is arbitrary and ul 2 L2
�

.Rn/,

(4-2)
Z
D
R�k˛

.xk˛/n
Ss
jD1DR0�j˛

.y
j
˛ /

jul˛j
2�d� Oh D o.1/; as ˛!C1:

So by the induction hypothesis for l and (4-2), we obtainZ
D
R�k˛

.xk˛/n
Ss
jD1DR0�j˛

.y
j
˛ /

ˇ̌̌̌
Ou˛ �

l�1X
iD1

ui˛ �u
k
˛

ˇ̌̌̌2�
d� Oh

� 22
��1

Z
D
R�k˛

.xk˛/n
Ss
jD1DR0�j˛

.y
j
˛ /

ˇ̌̌̌
Ou˛ �

lX
iD1

ui˛ �u
k
˛

ˇ̌̌̌2�
d� Oh

C 22
��1

Z
D
R�k˛

.xk˛/n
Ss
jD1DR0�j˛

.y
j
˛ /

jul˛j
2�d� Oh

D o.1/C ".R0/:

Thus we have proven that (4-1) holds for l � 1.

Case 2: d Oh.xl˛; x
k
˛ /! 0 as ˛!C1. Let r0 be sufficiently small such that for any

P 2M, x; y 2 Rn, and jxj; jyj � r0,

1
2
jx�yj � d Oh.'P .x/; 'P .y//� 2jx�yj:

Let Qxl˛ D .�
k
˛/
�1'�1

xk˛
.xl˛/ and Qyj˛ D .�k˛/

�1'�1
xk˛
.y
j
˛ /. Then,

(4-3)

(
DR
2
�l˛=�

k
˛
. Qxl˛/� .�

k
˛/
�1'�1

xk˛
.DR�l˛ .x

l
˛//�D2R�l˛=�k˛

. Qxl˛/;

DR
2
�
j
˛=�

k
˛
. Qy
j
˛ /� .�

k
˛/
�1'�1

xk˛
.D
R�

j
˛
.y
j
˛ //�D2R�j˛=�k˛

. Qy
j
˛ /:

Given QR > 0, from Lemma 3.1, Proposition 2.4, and the proof of Theorem 1.3,

(4-4)
Z
D
QR�l˛

.xl˛/

ˇ̌̌̌
Ou˛ �

lX
iD1

ui˛

ˇ̌̌̌2�
d� Oh D o.1/:
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By the assumption for 1� l � k� 1, i.e.,Z
D
R�k˛

.xk˛/n
Ss
jD1DR0�j˛

.y
j
˛ /

ˇ̌̌̌
Ou˛ �

lX
iD1

ui˛ �u
k
˛

ˇ̌̌̌2�
d� Oh D o.1/C ".R

0/;

combined with (4-4),Z
ŒD
R�k˛

.xk˛/n
Ss
jD1DR0�j˛

.y
j
˛ /�\D

QR�l˛
.xl˛/

juk˛j
2�d� Oh D o.1/C ".R

0/;

so using (4-3) we arrive at

(4-5)
Z
ŒDR.0/n

Ss
jD1D2R0�j˛=�

k
˛
. Qy
j
˛ /�\D1=2 QR�l˛=�

k
˛
. Qxl˛/

jukj2
�

d� Qh˛
D o.1/C".R0/:

Next, we consider two scenarios: first, assume that d Oh.xl˛; x
k
˛ /=�

k
˛!C1 as

˛!C1. We claim that d Oh.xl˛; x
k
˛ /=�

l
˛!C1 as ˛!C1. If not, then (4-5)

with QR large enough yields that �l˛=�
k
˛! 0 as ˛!C1. Moreover,

d Oh.x
l
˛; x

k
˛ /

�l˛
D
d Oh.x

l
˛; x

k
˛ /

�k˛

�k˛

�l˛
;

so we can choose QR > 0 such that D QR�k˛ .x
k
˛ /\D QR�l˛ .x

l
˛/D∅, which reduces to

the previous Case 1; as a consequence, (4-1) holds for l � 1.
Second, if d Oh.xl˛; x

k
˛ /=�

k
˛ ¹ C1 as ˛ ! C1, then, up to a subsequence,

d Oh.x
l
˛; x

k
˛ /=�

k
˛ converges. So, (4-5) implies that �l˛=�

k
˛!C1. Set ysC1˛ D xl˛

and �sC1˛ D �l˛. Then,Z
D
R�k˛

.xk˛/n
SsC1
jD1

D
R0�

j
˛
.y
j
˛ /

ˇ̌̌̌
Ou˛ �

lX
iD1

ui˛ �u
k
˛

ˇ̌̌̌2�
d� Oh D o.1/C ".R

0/

and Z
D
R�k˛

.xk˛/n
SsC1
jD1

D
R0�

j
˛
.y
j
˛ /

jul˛j
2�d� Oh �

Z
M nD

R0�l˛
.xl˛/

jul˛j
2�d� Oh

� C

Z
RnnDR0 .0/

jul j2
�

dx � ".R0/;

which yield thatZ
D
R�k˛

.xk˛/n
SsC1
jD1

D
R0�

j
˛
.y
j
˛ /

ˇ̌̌̌
Ou˛ �

l�1X
iD1

ui˛ �u
k
˛

ˇ̌̌̌2�
d� Oh D o.1/C ".R

0/:

In particular, (4-1) holds for l�1, as desired. The iteration process is thus completed.
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Moreover, we have also shown that for any i ¤ j

�i˛

�
j
˛

C
�
j
˛

�i˛
C
d Oh.x

i
˛; x

j
˛/
2

�i˛�
j
˛

!C1 as ˛!C1I

compare [Almaraz 2014; Druet et al. 2004; Struwe 1984]. Note that this convergence
contains two kinds of bubbles: one case is that �i˛ DO.�

j
˛/ when ˛!C1; then

the two blow up points are far away from each other. The other case is that
�i˛ D o.�

j
˛/ or �j˛ D o.�i˛/ when ˛!C1; then the distance of the two blow up

point cannot be determined. Also we get that �j˛=�k˛! 0 as ˛!C1. �

Lemma 4.2. The ui (for i D 0; 1; : : : ; m) that we get in the Theorem 1.3 are all
nonnegative. In particular, for i � 1, ui is of the form U

�i
ai for some �i > 0 and

ai 2 Rn, where U �iai is as in (1-13).

Proof. First of all, note that u0 � 0 in X by Proposition 2.11. So, we just need to
prove the positivity of ui for i � 1. For any k 2 Œ1;m�, taking l D 0 in Lemma 4.1,

(4-6)
Z
D
R�k˛

.xk˛/n
Ss
jD1DR0�j˛

.y
j
˛ /

j Ou˛ �U
k
˛ j
2�d� Oh D o.1/C ".R

0/

where

U k˛ .x/D .�
k
˛/
�
n�2

2 uk..�k˛/

�1'�1
xk˛
.x// for x 2DR�k˛ .x

k
˛ /

is called a bubble. Since u˛ D Ou˛Cu0, for x 2Dr0=�k˛ .0/� Rn, where r0 is the
same as the one mentioned in Theorem 1.3,

uk˛.x/D Qu
k
˛.x/C Qu

0;k
˛ .x/;

where
uk˛.x/D .�

k
˛/
n�2

2 u˛.'xk˛

.�k˛x//;

Quk˛.x/D .�
k
˛/
n�2

2 Ou˛.'xk˛

.�k˛x//;

Qu0;k˛ .x/D .�k˛/
n�2

2 u0.'xk˛

.�k˛x//:

Then, (4-6) implies that

(4-7)
Z
DR.0/n

Ss
jD1D2R0�j˛=�

k
˛
. Qy
j
˛ /

j Quk˛ �u
k
j
2�dx D o.1/C ".R0/;

where Qyj˛ D .�k˛/
�1'�1

xk˛
.y
j
˛ /. Since fd Oh.xk˛ ; y

j
˛ /=�

k
˛g˛2N is uniformly bounded

by Lemma 4.1, f Qyj˛g˛2N is bounded and there exists a subsequence, also denoted
by f Qyj˛g, such that Qyj˛ ! Qyj as ˛!C1 for j D 1; : : : ; s. Combining (4-7) with
�
j
˛=�

k
˛! 0 as ˛!C1, we get

Quk˛! uk in L2
�

loc.DR.0/ nY /;
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as ˛!C1 for Y D f Qyj gsjD1, so

Quk˛! uk a.e. in Rn;

since R > 0 is arbitrary.
Also note that Z

D
R�k˛

.xk˛/

ju0j2
�

d� Oh D

Z
DR.0/

j Qu0;k˛ j
2�d� Qhk˛

;

where Qhk˛.x/ D .'
�

xk˛

Oh/.�k˛x/. Then, �k˛ ! 0 as ˛ !C1 and u0 2 L2
�

.M; Oh/

yield that

Qu0;k˛ ! 0; in L2
�

.DR.0/; jdxj
2/

as ˛!C1, so

Qu0;k˛ ! 0 a.e. in Rn

since R > 0 is arbitrary.
In particular, we have shown that uk˛!uk almost everywhere on Rn as ˛!C1.

Note that u˛ is nonnegative by definition, so uk˛ � 0 on Rn. We conclude that
uk � 0 on Rn. Then by the maximum principle, it follows that uk � 0 in RnC1

C
.

Due to the previous arguments, uk is of the form U
�k
ak for some �k >0 and ak 2Rn,

where U �kak is as in (1-13). �

Appendix

We will prove the C1 estimates from the L1 estimates by the Harnack inequality.
The two important lemmas are given here.

Lemma A.1 [González and Qing 2013]. Let R > 0 and u be a weak solution of

(A-8)
�
� div.y1�2
ru/D 0 in BC2R.0/;
� limy!0 y1�2
 @yuD f .x/uCg.x/juj2

��2u on D2R.0/:

Here, f and g are smooth functions on D2R.0/. Assume that

�D

Z
D2R.0/

juj2
�

dx <1:

Then, for any p > 1, there exists a constant Cp D C.p; �/ such that

sup
B
C

R .0/

juj C sup
DR.0/

juj � Cp
�
R�

nC2�2

p kuk

Lp.B
C

2R.0//
CR�

n
p kukLp.D2R.0//

�
:
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Lemma A.2 [Jin et al. 2014]. Let a.x/; b.x/2C˛.D2.0// for some 0 < ˛ …N and
let u 2W 1;2.BC2 .0/; y

1�2
 / be a weak solution of

(A-9)
�
� div.y1�2
ru/D 0 in BC2 .0/;
� limy!0 y1�2
 @yuD a.x/uC b.x/ on D2.0/:

If 2
 C˛ … N, then u. � ; 0/ is of C2
C˛.D1.0//, and

ku. � ; 0/kC2
C˛.D1.0// � C.kukL1.BC2 .0//
CkbkC˛.D2.0///

where C > 0 depends only on n, 
 , ˛, and kakC˛.D2.0//.
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K-THEORY AND HOMOTOPIES OF 2-COCYCLES
ON HIGHER-RANK GRAPHS

ELIZABETH GILLASPY

This paper continues our investigation into the question of when a homo-
topy of 2-cocycles on a locally compact Hausdorff groupoid gives rise to an
isomorphism of the K-theory groups of the twisted groupoid C∗-algebras.
Our main result, which builds on work by Kumjian, Pask, and Sims, shows
that a homotopy of 2-cocycles on a row-finite higher-rank graph 3 gives
rise to twisted groupoid C∗-algebras with isomorphic K-theory groups. (The
groupoid in question is the path groupoid of 3.) We also establish a tech-
nical result: any homotopy of 2-cocycles on a locally compact Hausdorff
groupoid G gives rise to an upper semicontinuous bundle of C∗-algebras.

1. Introduction

Higher-rank graphs, or k-graphs, provide a k-dimensional analogue of directed
graphs. They were introduced by Kumjian and Pask [2000] to provide a combi-
natorial model for the higher-rank Cuntz–Krieger algebras studied by Robertson
and Steger [1999]. Much of the interest in the C∗-algebras C∗(3) associated to
k-graphs 3 stems from the multiple ways one can model C∗(3)— the k-graph
3 reflects many of the properties of C∗(3), but we can also describe C∗(3) as a
universal C∗-algebra for certain generators and relations, or as a groupoid C∗-algebra
C∗(3)∼= C∗(G3).

The class of groupoids includes groups, group actions, equivalence relations,
and group bundles. Renault [1980] initiated the study of groupoid C∗-algebras, and
the theory and applications of groupoid C∗-algebras have since been developed
by many researchers. Given a 2-cocycle ω ∈ Z2(G,T) on a groupoid G, Renault
also explained how to construct the twisted groupoid C∗-algebra C∗(G, ω). These
objects have received relatively little attention until quite recently, but it has now
become clear that twisted groupoid C∗-algebras can help answer many questions
about the structure of untwisted groupoid C∗-algebras (see [Muhly and Williams
1992; Muhly et al. 1996; Clark and an Huef 2012; an Huef et al. 2011; Brown

MSC2010: 46L05, 46L80.
Keywords: higher-rank graph, twisted groupoid C∗-algebra, K-theory, twisted k-graph C∗-algebra,

upper semicontinuous C∗-bundle, C0(X)-algebra, groupoid, 2-cocycle.
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and an Huef 2014]), as well as classifying those C∗-algebras which admit diagonal
subalgebras (also known as Cartan subalgebras) — see [Kumjian 1986]. In another
direction, [Tu et al. 2004] establishes a connection between the K-theory of twisted
groupoid C∗-algebras and the classification of D-brane charges in string theory.

Two recent papers have explored the effect of a homotopy {ωt }t∈[0,1] of 2-cocycles
on the K-theory of the twisted groupoid C∗-algebras. Echterhoff, Lück, Phillips, and
Walters showed in [Echterhoff et al. 2010, Theorem 1.9] that if G is a group that
satisfies the Baum–Connes conjecture with respect to the coefficient algebras K and
C([0, 1],K), and if {ωt }t∈[0,1] is a homotopy of 2-cocycles on G, then the K-theory
groups of the reduced twisted group C∗-algebras are unperturbed by the homotopy

(1) K∗(C∗r (G, ω0))∼= K∗(C∗r (G, ω1)).

In particular, taking G = Z2, we obtain another proof of the fact, established by
Pimsner and Voiculescu [1980], that all of the rotation algebras {Aθ }θ∈[0,1] have
isomorphic K-theory groups.

Kumjian, Pask, and Sims also studied the effect of a homotopy of 2-cocycles
on K-theory in [Kumjian et al. 2013]. Theorem 5.4 of [Kumjian et al. 2013]
establishes that if 3 is a row-finite, source-free k-graph and c is a 2-cocycle
on 3 such that c(λ, µ)= e2π iσ(λ,µ) for some R-valued 2-cocycle σ , then we have
K∗(C∗(3))∼=K∗(C∗(3, c)). Defining ct(λ, µ)= e2π i tσ(λ,µ) for t ∈[0, 1] gives us a
homotopy of 2-cocycles linking c and the trivial 2-cocycle. Moreover, Corollary 7.8
of [Kumjian et al. 2015] tells us that C∗(3, c) is isomorphic to a twisted groupoid
C∗-algebra C∗(G3, ωc). Thus, we can view [Kumjian et al. 2013, Theorem 5.4] as
a result about homotopic 2-cocycles on groupoids.

Inspired by the above-mentioned results, we have begun exploring the question
of when a homotopy of 2-cocycles on a locally compact Hausdorff groupoid G
induces an isomorphism of the K-theory groups of the (full or reduced) twisted
groupoid C∗-algebras. In a previous article [Gillaspy 2015], we extended the above-
mentioned Theorem 1.9 of [Echterhoff et al. 2010] to the case when G = G n X is
a transformation group, where X is locally compact Hausdorff and G satisfies the
Baum–Connes conjecture with coefficients.

We prove the following generalization of [Kumjian et al. 2013, Theorem 5.4].

Theorem 4.1. Let 3 be a row-finite k-graph with no sources and let {ct }t∈[0,1] be
a homotopy of 2-cocycles in Z2(3,T). Then {ct }t∈[0,1] gives rise to a homotopy
{σct }t∈[0,1] of 2-cocycles on G3 such that

K∗(C∗(G3, σc0))
∼= K∗(C∗(G3, σc1)).

As of this writing, we are unaware of any examples of groupoids G and homo-
topies ω = {ωt }t∈[0,1] of 2-cocycles on G where the homotopy does not induce an
isomorphism of the K-theory groups of the twisted groupoid C∗-algebras.



K-THEORY AND HOMOTOPIES OF 2-COCYCLES ON HIGHER-RANK GRAPHS 409

Outline. This paper begins by recalling the definitions of a higher-rank graph and of
a groupoid in Section 2, as well as the definition of a 2-cocycle in each category, and
sketching the procedure by which we can construct a C∗-algebra from these objects.
In Section 3 we define a homotopy of 2-cocycles on a k-graph and on a groupoid,
and show that the definitions are compatible. We also prove a technical result
(Theorem 3.3), namely, that a homotopy {ωt }t∈[0,1] of 2-cocycles on a groupoid G
gives rise to a C([0, 1])-algebra with fiber algebra C∗(G, ωt) at t ∈ [0, 1]. We expect
that this result will prove useful in future work, as we search for more classes of
groupoids where a homotopy of 2-cocycles induces an isomorphism of the K-theory
groups of the twisted groupoid C∗-algebras.

In Section 4 we begin the proof of Theorem 4.1. Our proof technique consists
of proving a stronger version of Theorem 4.1 in a simple case, and then showing
how to use this simple case to obtain our desired result for general k-graphs. To
be precise, Proposition 4.2 shows that when the degree map d on 3 satisfies
d(λ) = b(s(λ)) − b(r(λ)) for all λ ∈ 3, the C([0, 1])-algebra associated to a
homotopy of 2-cocycles on 3 is actually a trivial continuous field. We then show
how to exploit the triviality of the continuous field in this special case to see that
a homotopy of 2-cocycles on any row-finite, source-free k-graph 3 induces an
isomorphism K∗(C∗(3, c0)) ∼= K∗(C∗(3, c1)). The argument closely parallels
Section 5 of [Kumjian et al. 2013].

2. Groupoids and k-graphs

Definition 2.1 [Kumjian and Pask 2000, Definition 1.1]. A higher-rank graph of
degree k, or a k-graph, is a nonempty countable small category 3 equipped with a
functor d :3→Nk (the degree map) satisfying the following factorization property:
Given a morphism λ ∈3 with d(λ)=m+ n, there exist unique µ, ν ∈3 such that
λ= µν, d(µ)= m, and d(ν)= n.

The simplest example of a k-graph is Nk , equipped with the identity morphism
id : Nk

→ Nk .
In this article we use the arrows-only picture of category theory, so that we think

of the objects of a category 3 as identity morphisms. Hence, λ ∈3 means that λ is
a morphism in 3. Given an element λ in a category 3, write s(λ) for the domain,
or source, of the morphism λ, and write r(λ) for its target, or range. We say a
k-graph 3 is row-finite if, for any v ∈ Obj(3) and any n ∈ Nk , the set

v3n
:= {λ ∈3 : r(λ)= v, d(λ)= n}

is finite. We say 3 has no sources if v3n
6= ∅ for every v ∈ Obj(3) and every

n ∈ Nk . We only consider k-graphs which are row-finite and have no sources,
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since these are the k-graphs which we can study via the groupoid method that was
introduced in [Kumjian and Pask 2000] and which we will explain in Section 2.

Definition 2.2 [Renault 1980, Definition I.1.12; Kumjian et al. 2015, Section 3]. For
a category 3, let 3∗2 = {(λ1, λ2) ∈3×3 : s(λ1)= r(λ2)}. A function c :3∗2→ T

is called a 2-cocycle on 3 if

(2) c(λ, µν)c(µ, ν)= c(λµ, ν)c(λ, µ)

whenever (λ, µ), (µ, ν) ∈ 3∗2 and c(λ, s(λ)) = c(r(λ), λ) = 1 for all λ ∈ 3. We
write Z2(3,T) for the set of 2-cocycles on 3.

If c, c̃ are two 2-cocycles on 3, we say that c, c̃ are cohomologous if there exists
a function b :3→ T such that

c̃(µ, ν) := b(µ)b(ν)b(µν)−1c(µ, ν)= δb(µ, ν)c(µ, ν) for all (µ, ν) ∈3∗2.

We note that cohomologous 2-cocycles give rise to isomorphic twisted C∗-algebras
(see [Kumjian et al. 2015, Proposition 5.6; Renault 1980, Proposition II.1.2]).

The only cocycles we consider in this paper are 2-cocycles, so we will occasion-
ally drop the “2” and refer to them simply as cocycles.

Definition 2.3 [Kumjian et al. 2015, Definition 5.2]. The twisted higher-rank-graph
algebra C∗(3, c) associated to a k-graph 3 and a 2-cocycle c on 3 is the universal
C∗-algebra generated by a collection {sλ}λ∈3 of partial isometries satisfying the
following twisted Cuntz–Krieger relations:

(CK1) {sv}v∈Obj(3) is a collection of mutually orthogonal projections;

(CK2) sµsν = c(µ, ν)sµν whenever s(µ)= r(ν);

(CK3) s∗µsµ = ss(µ) for all µ ∈3;

(CK4) sv =
∑

µ∈v3n sµs∗µ for all v ∈ Obj(3) and all n ∈ Nk .

Note that every k-graph 3 admits at least one 2-cocycle: the trivial cocycle,
obtained by setting c(λ, µ) = 1 for all (λ, µ) ∈ 3∗2. In this case, the definition
above of C∗(3, c) agrees with that of C∗(3) given in [Kumjian and Pask 2000,
Definition 1.5]. For example, if 3 is Nk and c is the trivial cocycle, then we
have C∗(3, c) ∼= C(Tk). More generally, if 3 is N2, let cθ : 3∗2 → T be given
by cθ ((m, n), ( j, k)) = e2π iθnj . Then cθ is a 2-cocycle on 3 and C∗(3, cθ ) is
isomorphic to the rotation algebra Aθ .

Groupoids. In this section, we review the construction of a twisted groupoid
C∗-algebra set forth in [Renault 1980], as well as the procedure given in the
seminal article [Kumjian and Pask 2000] for associating a groupoid to a k-graph.
Theorem 3.3 applies to arbitrary locally compact Hausdorff groupoids, so we
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present in full generality all the definitions necessary for the construction of a
twisted groupoid C∗-algebra.

A groupoid G is a small category with inverses. We use the notation of [Renault
1980] to denote groupoid elements and operations; for example, G(2) ⊆ G × G
denotes the set of composable pairs and G(0) denotes the unit space. If u ∈ G(0),
we write

Gu = {x ∈ G : s(x)= u}, Gu
= {x ∈ G : r(x)= u}.

In this article, we restrict our attention to groupoids which admit a locally compact
Hausdorff topology in which the operations of composition (or multiplication) and
inversion are continuous.

In addition to the groupoids associated to k-graphs, examples of groupoids include
groups, vector bundles, and transformation groups. For details and examples, see
[Goehle 2009].

Given a row-finite, source-free k-graph 3, Section 2 of [Kumjian and Pask 2000]
describes how to form the associated path groupoid G3:

Definition 2.4 [Kumjian and Pask 2000, Example 1.7(ii)]. Define the k-graph�k to
be the category with Obj(�k)=Nk and morphisms�k ={(m, n)∈Nk

×Nk
:n≥m}.

We have r(m, n)=m, s(m, n)= n, d(m, n)= n−m. Composition in �k is given
by (m, n)(n, `)= (m, `).

For a k-graph3, let3∞ denote the set of degree-preserving functors x :�k→3.
When k = 1, the elements x ∈3∞ are the infinite paths in 3.

Given p ∈Nk , define σ p
:3∞→3∞ by σ p(x)(m, n)= x(m+ p, n+ p). When

3 is row-finite and source-free, Proposition 2.3 in [Kumjian and Pask 2000] shows
that if λ ∈ 3, x ∈ 3∞ satisfy s(λ) = x(0), there is a unique y ∈ 3∞ such that
σ d(λ)(y)= x ; we often write y = λx .

Definition 2.5 [Kumjian and Pask 2000, Definition 2.1]. Given a row-finite, source-
free k-graph 3, the associated path groupoid G3 is the groupoid associated to the
equivalence relation on 3∞ of “shift equivalence with lag”. In other words,

G3 := {(x, n−m, y) ∈3∞×Zk
×3∞ : n,m ∈ Nk, σ n(x)= σm(y)}

and G(0)3 =3
∞, with r(x, `, y)= x , s(x, `, y)= y and multiplication and inversion

in G3 given by (x, `, y)(y,m, z)= (x, `+m, z), (x, `, y)−1
= (y,−`, x).

When 3 is a row-finite, source-free k-graph, Proposition 2.8 in [Kumjian and
Pask 2000] tells us that the sets

Z(µ, ν) := {(µx, d(µ)− d(ν), νx) : x(0)= s(µ)= s(ν)}

form a basis of compact open sets for a locally compact Hausdorff topology on G3
(in fact, with this topology G3 is an ample étale groupoid).
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To build a C∗-algebra out of a groupoid G we start by putting a ∗-algebra structure
on Cc(G), and to do this we need to integrate over the groupoid G. A Haar system
{λu
}u∈G(0) (the groupoid analogue of Haar measure for groups; see [Renault 1980,

Definition I.2.2]) will allow us to do this. Unlike in the group case, one cannot
make existence or uniqueness statements about Haar systems for groupoids, so one
usually starts by hypothesizing the existence of a fixed Haar system. For example,
we obtain a Haar system {λx

}x∈3∞ on G3 by setting

λx(E)= #{e ∈ E : e = (x, n, y) for some n ∈ Zk, y ∈3∞}.

We will always use this Haar system on G3 in this paper.

Definition 2.6. Let G be a locally compact Hausdorff groupoid equipped with
a Haar system {λu

}u∈G(0) and a continuous 2-cocycle ω. We define a ∗-algebra
structure on Cc(G) as follows: for f, g ∈ Cc(G) let

f ∗ω g(a)=
∫
Gs(a)

f (ab)g(b−1)ω(ab, b−1) dλs(a)(b),

f ∗(a)= f (a−1)ω(a, a−1).

From [Renault 1980, Proposition II.1.1] we know that the multiplication is well-
defined (that is, that f ∗ω g ∈Cc(G) as claimed) and associative, and that ( f ∗)∗= f
so that the involution is involutive. The proof of associativity relies on the cocycle
condition (2).

Given the fundamental role that the cocycle ω plays in the multiplication and invo-
lution on Cc(G), we will often write Cc(G, ω) to denote the set Cc(G) equipped with
the ∗-algebra structure of Definition 2.6. We define C∗(G, ω) to be the completion
of Cc(G, ω) in the maximal C∗-norm, as described in Chapter II of [Renault 1980].

Definition 2.7. When G = G3 is the groupoid associated to a row-finite k-graph 3
with no sources, Lemma 6.3 of [Kumjian et al. 2015] explains how, given a cocycle
c ∈ Z2(3,T), we can construct a cocycle σc ∈ Z2(G3,T). Then Corollary 7.8 of
[Kumjian et al. 2015] shows that C∗(3, c)∼= C∗(G3, σc). The construction of σc is
rather technical, but since we will need the details later, we present it here.

Lemma 6.6 of [Kumjian et al. 2015] establishes the existence of a subset

P ⊆ {Z(µ, ν) : s(µ)= s(ν)}

that partitions G3. In other words, every a ∈G3 has exactly one representation of the
form a = (µax, d(µa)−d(νa), νax) with Z(µa, νa) ∈P . Note that if (a, b) ∈ G(2)3 ,
we need not have µa =µab or νb= νab. However, given (a, b)∈ G(2)3 , Lemma 6.3(i)
of [Kumjian et al. 2015] shows that we can always find y ∈3∞ and α, β, γ ∈3
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such that
a = (µaαy, d(µa)− d(νa), νaαy),

b = (µbβy, d(µb)− d(νb), νbβy),

ab = (µabγ y, d(µab)− d(νab), νabγ y).

Then, given a 2-cocycle c on 3, we define a 2-cocycle σc on G3 by

σc(a, b)= c(µa, α)c(µb, β)c(νab, γ )c(νa, α)c(νb, β)c(µab, γ ).

Since c satisfies the cocycle condition (2), it’s straightforward to check that σc

does also. Lemma 6.3 of [Kumjian et al. 2015] checks that σc is well-defined and
continuous, so we can construct the groupoid C∗-algebra C∗(G3, σc) as outlined
above. Corollary 7.8 of [Kumjian et al. 2015] tells us that C∗(G3, σc)∼= C∗(3, c).

Theorem 6.5 of [Kumjian et al. 2015] establishes that different choices of par-
titions P give rise to cohomologous groupoid cocycles, and hence to isomorphic
twisted groupoid C∗-algebras.

3. Homotopies of cocycles

In order to define a homotopy of groupoid 2-cocycles, we begin by observing that,
given any locally compact Hausdorff groupoid G, we can make G × [0, 1] into a
locally compact Hausdorff groupoid by equipping it with the product topology and
setting (G×[0, 1])(2) :=G(2)×[0, 1]. In other words, (G×[0, 1])(0)=G(0)×[0, 1] and

r(γ, t)= (r(γ ), t), s(γ, t)= (s(γ ), t).

Moreover, if G has a Haar system {λu
}u∈G(0) , then setting λu,t

:=λu for every t ∈[0, 1]
gives rise to a Haar system on G×[0, 1]. We will always use this Haar system on
G×[0, 1] in this paper.

Definition 3.1 [Gillaspy 2015, Definition 2.12]. A homotopy of (2-)cocycles on a
locally compact Hausdorff groupoid G is a 2-cocycle ω ∈ Z2(G × [0, 1],T). We
say that two cocycles ω0, ω1 ∈ Z2(G,T) are homotopic if there exists a homotopy
ω ∈ Z2(G×[0, 1],T) such that ωi = ω|G×{i} for i = 0, 1.

If ω is a homotopy of cocycles on G linking ω0, ω1, Theorem 3.3 below tells us
that C∗(G, ω0) and C∗(G, ω1) are quotients of C∗(G×[0, 1], ω). This is fundamental
to the proof of our main result, Theorem 4.1.

Definition 3.2 [Williams 2007, Definition C.1]. Let X be a locally compact Haus-
dorff space. A C∗-algebra A is a C0(X)-algebra if we have a ∗-homomorphism
8 : C0(X)→ ZM(A) such that

A = span{8( f )a : f ∈ C0(X), a ∈ A}.

We usually write f · a for 8( f )a.
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If A is a C0(X)-algebra, then, for any x ∈ X , spanC0(X\x) · A is an ideal Ix .
We call Ax := A/Ix the fiber of A at x ∈ X .

Theorem 3.3. Let ω be a homotopy of cocycles on a locally compact Hausdorff
groupoid G with Haar system {λu

}u∈G(0) . Then C∗(G × [0, 1], ω) is a C([0, 1])-
algebra, with fiber C∗(G, ωt) at t ∈ [0, 1].

Proof. We begin by checking that C∗(G × [0, 1], ω) is a C([0, 1])-algebra. For
f ∈ C([0, 1]), φ ∈ Cc(G×[0, 1], ω), define

f ·φ(a, t)= f (t)φ(a, t).

It’s not difficult to check that this action extends to a ∗-homomorphism

8 : C([0, 1])→ ZM(C∗(G×[0, 1], ω))

such that ‖8( f )φ‖ ≤ ‖ f ‖∞‖φ‖, or to check that

8(C([0, 1])) ·Cc(G×[0, 1], ω)= Cc(G×[0, 1], ω)

is dense in C∗(G × [0, 1], ω). In other words, 8 makes C∗(G × [0, 1], ω) into a
C([0, 1])-algebra as claimed.

Fix t ∈ [0, 1] and denote by qt : Cc(G× [0, 1], ω)→ Cc(G, ωt) the evaluation
map. Then qt is bounded by the I -norm (see [Renault 1980, Section II.1]), and
hence extends to a surjective ∗-homomorphism qt : C∗(G×[0, 1], ω)→ C∗(G, ωt).
In other words, C∗(G, ωt) is a quotient of C∗(G×[0, 1], ω). To see that C∗(G, ωt)∼=

C∗(G×[0, 1], ω)t , we need to check that ker qt = It . A standard approximation ar-
gument will show that ker qt ⊇ It ; thus, we will only detail the proof that ker qt ⊆ It .

Note that the fiber algebra C∗(G × [0, 1], ω)t ∼= C∗(G × [0, 1], ω)/It can be
calculated as a completion Cc(G×[0, 1], ω) with respect to the norm given by

‖ f ‖t := sup{‖L( f )‖ : L(It)= 0, L is an I -norm-bounded representation}.

Thus, to show that ker qt ⊆ It , we will show that each such representation L factors
through qt .

Given such a representation L :Cc(G×[0, 1], ω)→ B(H), define L ′ :Cc(G, ωt)→

B(H) by L ′(qt( f )) := L( f ). We claim that L ′ is an I -norm-bounded representation
of Cc(G, ωt). To see this, it suffices to check that L ′ is well-defined and bounded.

Lemma 3.4. If f, g ∈ Cc(G × [0, 1], ω) satisfy qt( f ) = qt(g), then the function
h = f − g ∈ Cc(G × [0, 1], ω) lies in It . Consequently, L( f ) = L(g) and L ′ is
well-defined on Cc(G, ωt).

Proof. Let { fi }i∈I be an approximate unit for C0([0, 1]\t) such that fi (s) ↗ 1
for every s 6= t ; moreover, suppose that for each i there exists a δi > 0 such that
fi (s) = 1 if |s − t | ≥ δi . We will show that the I -norm ‖h − fi h‖I tends to 0.
Consequently, h = limi fi h in C∗(G×[0, 1], ω), so h ∈ It .
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For any k ∈ Cc(G × [0, 1], ω), the axioms of a Haar system tell us that the
function (u, t) 7→

∫
|k(a, t)|dλu,t(a) is in C0(G(0) × [0, 1]). In particular, if we

take k to be a function that equals 1 where h is nonzero and vanishes rapidly off
supp h, this shows us that φ(u, t) := λu,t(supp h) is a pointwise limit of functions
in C0(G(0)×[0, 1]), and hence is bounded. Let K =maxφ.

Let ε > 0 be given. Since h is compactly supported and since h(a, t) = 0 for
all a ∈ G, we can choose a δ > 0 such that |h(a, s)|< ε/K for all a ∈ G whenever
|s− t |< δ, and we can choose a j such that i ≥ j means δi < δ. Then, if |s− t |< δ,∫

Gu
|h(a, s)− fi (s)h(a, s)| dλu(a)= (1− fi (s))

∫
Gu
|h(a, s)| dλu(a) < 1 · ε.

On the other hand, if |s− t | ≥ δ > δi , then fi (s)= 1 and∫
Gu
|h(a, s)− fi (s)h(a, s)| dλu(a)= 0

for any u ∈ G(0). In either case, given any ε > 0 we can always choose j such that
i ≥ j implies

‖h− fi h‖I =max
{

sup
s∈[0,1]

sup
u∈G(0)

∫
Gu
|h(a, s)− fi (s)h(a, s)| dλu(a),

sup
s∈[0,1]

sup
u∈G(0)

∫
Gu
|h(a−1, s)− fi (s)h(a−1, s)| dλu(a)

}
< ε.

Since ‖h− fi h‖ ≤ ‖h− fi h‖I and It is closed, it follows that h ∈ It as desired, and
so L(h)= 0. �

Having seen that L ′ is well-defined, we now proceed to show that it is bounded.

Lemma 3.5. For any fixed f ∈ Cc(G×[0, 1], ω), the map s 7→ ‖qs( f )‖I is contin-
uous.

Proof. Fix f ∈ Cc(G×[0, 1], ω) and fix t ∈ [0, 1]. As in the proof of Lemma 3.4,
let K denote the supremum of the function (u, s) 7→ λu,s(supp f ). Since f has
compact support, given ε > 0 we can choose a δ such that

|s− t |< δ⇒ | f (a, t)− f (a, s)|< ε

2K
for all a ∈ G.

Now, by definition of the I -norm, there exists a u ∈ G(0) such that either

‖qs( f )‖I <

∫
Gu
| f (a, s)| dλu(a)+ ε

2
or

‖qs( f )‖I <

∫
Gu
| f (a−1, s)| dλu(a)+ ε

2
.
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It follows that either

‖qs( f )‖I <

∫
Gu
| f (a, t)| + ε

2K
dλu(a)+ ε

2
≤

∫
Gu
| f (a, t)| dλu(a)+ ε

or

‖qs( f )‖I <

∫
Gu
| f (a−1, t)| + ε

2K
dλu(a)+ ε

2
≤

∫
Gu
| f (a−1, t)| dλu(a)+ ε.

Thus,

‖qs( f )‖I <max
{∫

Gu
| f (a, t)| dλu(a),

∫
Gu
| f (a−1, t)| dλu(a)

}
+ ε

≤max
{

sup
u∈G(0)

∫
Gu
| f (a, t)| dλu(a), sup

u∈G(0)

∫
Gu
| f (a−1, t)| dλu(a)

}
+ ε

= ‖qt( f )‖I + ε

if |s− t |< δ. Reversing the roles of s and t in the above argument tells us that

|s− t |< δ⇒
∣∣‖qs( f )‖I −‖qt( f )‖I

∣∣< ε. �

Now we can finish the proof of Theorem 3.3. Set St = {ψ ∈C([0, 1]) :ψ(t)= 1}.
For any ψ ∈ St and any f ∈ Cc(G×[0, 1], ω), we have

‖L(ψ · f )‖ = ‖L ′(qt(ψ · f ))‖ = ‖L ′(qt( f ))‖.

Consequently,

‖L ′(qt( f ))‖ = inf
ψ∈S
‖L(ψ · f )‖ ≤ inf

ψ
‖ψ · f ‖I

= inf
ψ

max
{

sup
s∈[0,1]

sup
u∈G(0)

∫
|ψ(s) f (a, s)| dλu(a),

sup
s∈[0,1]

sup
u∈G(0)

∫
|ψ(s) f (a−1, s)| dλu(a)

}
= inf

ψ
sup

s∈[0,1]
‖qs(ψ · f )‖I .

Let ε > 0 be given. Choose a δ such that |s−t |<δ⇒
∣∣‖qs( f )‖I−‖qt( f )‖I

∣∣<ε;
choose ψε ∈C([0, 1]) such that ψε(t)= 1 and |s− t | ≥ δ⇒ψε(s)= 0. Then, since
ψε ∈ St , we have

(3) ‖qs(ψε · f )‖I = ψε(s)‖qs( f )‖I <ψε(s)(‖qt( f )‖I + ε)≤ ‖qt( f )‖I + ε

if |s− t |< δ; otherwise we have ‖qs(ψε · f )‖I = 0, and (3) still holds.
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Since we can find such a ψε for any ε > 0, it follows that

‖L ′(qt( f ))‖ ≤ inf
ψ∈St

sup
s∈[0,1]

‖qs(ψ · f )‖I ≤ inf
ε

sup
s
‖qs(ψε · f )‖I

≤ inf
ε
‖qt( f )‖I + ε = ‖qt( f )‖I .

The fact that qt is onto now tells us that L ′ is a bounded representation of Cc(G, ωt)

as claimed. In other words, every representation L of Cc(G×[0, 1], ω) that kills It

also factors through qt , so ker qt ⊆ It . This completes the proof that the fiber
algebra C∗(G × [0, 1], ω)/It of the C([0, 1])-algebra C∗(G × [0, 1], ω) is simply
C∗(G, ωt). �

In order to apply Theorem 3.3 to a homotopy of cocycles on a k-graph, we first
need to define such a homotopy. Unlike for groupoids, there is no obvious way
to make 3× [0, 1] into a higher-rank graph, so our definition of a homotopy of
k-graph cocycles will look rather different than Definition 3.1 above. However,
Proposition 3.8 below shows that the two definitions are compatible.

Definition 3.6. Let 3 be a k-graph. A family {ct }t∈[0,1] of 2-cocycles in Z2(3,T)

is a homotopy of (2-)cocycles on 3 if for each pair (λ, µ) ∈ 3∗2 the function
t 7→ ct(λ, µ) ∈ T is continuous.

Definition 3.7. Let {ct }t∈[0,1] be a homotopy of cocycles on a k-graph 3. Define
ω ∈ Z2(G3×[0, 1],T) by

ω((a, t), (b, t))= σct (a, b),

where σct is the cocycle on G3 associated to ct as in Definition 2.7.

A moment’s thought will reveal that ω satisfies the cocycle condition (2), since
each σct is a cocycle. Thus, in order to see that ω is a homotopy of cocycles on G3,
we merely need to check that ω : (G3×[0, 1])(2)→ T is continuous.

Proposition 3.8. The cocycle ω described in Definition 3.7 is continuous, and
hence is a homotopy of groupoid cocycles on G3.

Proof. We will show that if {(ai , bi , ti )}i∈I ⊆ G(2)3 ×[0, 1] is a net which converges
to (a, b, t), then

(4) ω((ai , ti ), (bi , ti )) := σcti
(ai , bi )= σcti

(a, b)

for large enough i . Recall from Definition 2.7 that σcti
(a, b) is a finite product

of terms of the form cti (µ, ν) and their inverses, where the elements µ, ν depend
only on the elements a, b and on the choice of partition P of G3 — but not on the
2-cocycle cti . Thus, (4) and the continuity of the maps t 7→ ct(µ, ν) will imply that
ω((ai , ti ), (bi , ti ))→ σct (a, b)= ω((a, t), (b, t)).
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In what follows, we use the notation of Definition 2.7. If (ai , bi , ti )→ (a, b, t),
then, for large enough i , we have ai ∈ Z(µa, νa), bi ∈ Z(µb, νb), and in addition
ai bi ∈ Z(µab, νab). In other words, we can write

a = (µaαy, d(µa)− d(νa), νaαy), ai = (µaαi yi , d(µa)− d(νa), νaαi yi ),

b = (µbβy, d(µb)− d(νb), νbβy), bi = (µbβi yi , d(µb)− d(νb), νbβi yi ),

ab = (µabγ y, d(µab)− d(νab), νabγ y),
ai bi = (µabγi yi , d(µab)− d(νab), νabγi yi )

for some α, β, γ, αi , βi , γi ∈3 and y, yi ∈3
∞.

Since ai → a we must also have αi yi → αy in 3∞. Thus, for large enough i ,
αi yi ∈ Z(α) := {αy : y ∈3∞, y(0)= s(α)} (see Proposition 2.8 of [Kumjian and
Pask 2000]). It follows that

ai = (µaαy′i , d(µa)− d(νa), νaαy′i ), bi = (µbβz′i , d(µb)− d(νb), νbβz′i )

ai bi = (µabγw
′

i , d(µab)− d(νab), νabγw
′

i ),

where (since each pair (ai , bi ) is in G(2)3 by hypothesis)

νaαy′i = µbβz′i , µaαy′i = µabγw
′

i , νbβz′i = νabγw
′

i .

Now, νaα = µbβ by [Kumjian et al. 2015, Lemma 6.3], and thus y′i = z′i . A
similar argument gives z′i = w

′

i as well, so y′i = z′i = w
′

i . In other words, for large
enough i ,

σcti
(ai , bi )= cti (µa, α)cti (µb, β)cti (νab, γ )cti (νa, α)cti (νb, β)cti (µab, γ )

= σcti
(a, b),

as claimed. As observed in the first paragraph of the proof, it now follows that ω is
a homotopy of cocycles on G3 as desired. �

Corollary 3.9. Let {ct } be a homotopy of cocycles on a k-graph 3, and define
a cocycle ω on G3 × [0, 1] as in Definition 3.7. Then C∗(G3 × [0, 1], ω) is a
C([0, 1])-algebra with fiber algebra C∗(G3, σct )

∼= C∗(3, ct) at t ∈ [0, 1].

Proof. Proposition 3.8 tells us that ω is a homotopy of cocycles on G3. Theorem 3.3
tells us that the fiber over t ∈ [0, 1] of the C([0, 1])-algebra C∗(G3 × [0, 1], ω)
is C∗(G3, σct ). The final isomorphism is provided by Corollary 7.8 of [Kumjian
et al. 2015]. �

4. The main theorem

Theorem 4.1. Let 3 be a row-finite k-graph with no sources and let {ct }t∈[0,1] be a
homotopy of cocycles on 3. Then

K∗(C∗(3, c0))∼= K∗(C∗(3, c1)).
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Moreover, this isomorphism preserves the K-theory class of the vertex projection sv
for each v ∈ Obj(3).

We begin by proving a stronger version of Theorem 4.1 in the simpler case when
the degree functor d satisfies d(λ)= δb(λ) := b(s(λ))− b(r(λ)) for some function
b : Obj(3)→ Zk ; this is Proposition 4.2 below. We then combine Proposition 4.2
with techniques from [Kumjian et al. 2013] to prove Theorem 4.1 in full generality.

The AF case. If (3, d) is a k-graph such that d = δb, then Lemma 8.4 of [Kumjian
et al. 2015] tells us that C∗(3, c) and C∗(3) are both AF-algebras, with the same
approximating subalgebras and multiplicities of partial inclusions. Consequently,
C∗(3, c) ∼= C∗(3). In order to fix notation for what follows, we describe this
isomorphism in some detail.

Lemma 3.1 of [Kumjian and Pask 2000] shows that if 3 is a row-finite, source-
free k-graph, then {sλs∗µ : s(λ) = s(µ)} spans a dense ∗-subalgebra of C∗(3).
Moreover, when d = δb, Lemma 5.4 of [Kumjian and Pask 2000] tells us that
{sλs∗µ : b(s(λ))= b(s(µ))= n} forms a collection of matrix units for the subalgebra

An = span{sλs∗µ : b(s(λ))= b(s(µ))= n} ∼=
⊕

b(v)=n

K
(
`2(s−1(v))

)
.

Observe that we can think of An as a subalgebra of C∗(3) or of C∗(3, c). In fact,
these subalgebras allow us to exhibit C∗(3, c) and C∗(3) as AF-algebras:

C∗(3, c)= lim
−−→
(An, φ

c
m,n) and C∗(3)= lim

−−→
(An, φm,n),

where the connecting maps φm,n, φ
c
m,n : An→ Am are given by

φc
m,n(sλs∗µ)=

∑
r(α)=s(λ)
b(s(α))=m

c(λ, α)c(µ, α)sλαs∗µα,

φm,n(sλs∗µ)=
∑

r(α)=s(λ)
b(s(α))=m

sλαs∗µα.

We can now describe explicitly the isomorphism C∗(3, c) ∼= C∗(3). As in
Theorem 4.2 of [Kumjian et al. 2013], write 1 for (1, . . . , 1) ∈ Nk , and define
κ :3→ T by

κ(λ)=

{
1 d(λ) 6≥ 1,

κ(µ)c(µ, α) d(α)= 1 and λ= µα.

For n ∈ Zk , let Un =
∑

b(s(λ))=n κ(λ)sλs∗λ ∈U (M(An)). A quick computation will
show that, for any λ, µ with sλs∗µ ∈ An ,

(5) Ad Un(sλs∗µ)= κ(λ)κ(µ)sλs∗µ.
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Moreover, the factorization property tells us that, for any h ∈ Z,

φc
(h+1)1,h1 ◦Ad Uh1 = Ad U(h+1)1 ◦φ(h+1)1,h1.

In other words, Ad U∗ intertwines the connecting maps φc
m,n , φm,n , and hence

implements the isomorphism C∗(3)→ C∗(3, c).
We can now use this isomorphism to prove that a homotopy of cocycles on 3

gives rise to a trivial continuous field when d = δb.

Proposition 4.2. Let (3, d) be a row-finite, source-free k-graph such that d = δb
for some function b : Obj(3)→ Zk , let {ct }t∈[0,1] be a homotopy of cocycles on 3,
and let ω be the cocycle on G3×[0, 1] associated to {ct }t∈[0,1] as in Definition 3.7.
We have an isomorphism of C([0, 1])-algebras

C∗(G3×[0, 1], ω)∼= C∗(G3×[0, 1])∼= C([0, 1])⊗C∗(3).

Proof. Recall that

C∗(G3×[0, 1])t ∼= C∗(G3, σct )
∼= C∗(3, ct)∼= C∗(3)

if d = δb. Thus, the C([0, 1])-algebras C∗(G3×[0, 1], ω) and C([0, 1])⊗C∗(3)
have isomorphic fibers over each point t ∈ [0, 1].

In order to prove the proposition, we need to show that these isomorphisms
C∗(G3, σct )

∼= C∗(3) vary continuously in t , so that they patch together to give us
an isomorphism of C([0, 1])-algebras C∗(G3×[0, 1], ω)∼= C([0, 1])⊗C∗(3).

For each t ∈ [0, 1], let π t
: C∗(3, ct)→ C∗(G3, σct ) denote the isomorphism

described in Theorem 6.7 of [Kumjian et al. 2015]. Let π : C∗(3)→ C∗(G3)
denote the equivalent isomorphism for the case of a trivial cocycle c. For each
n ∈ Zk , write U t

n for the unitary U t
n : An→ An associated to the cocycle ct as above.

Setting

9t := π
t
◦Ad U t

∗
◦π−1

consequently gives an isomorphism of C∗-algebras 9t : C∗(G3)→ C∗(G3, σct ).
We claim that 9 := {9t }t∈[0,1] defines an isomorphism of C([0, 1])-algebras

9 : C∗(G3×[0, 1])→ C∗(G3×[0, 1], ω).

In order to prove this assertion, we begin by writing down an explicit formula for9t

on the characteristic functions 1Z(µ,ν) ∈ Cc(G3) where Z(µ, ν) ∈ P and where P
is the partition of G3 described in Lemma 6.6 of [Kumjian et al. 2015].

Recall that the value of σct (a, b) depends only on the sets Z(µ, ν) ∈ P con-
taining the points a, b, and ab in G3. Moreover, the proof of [Kumjian et al.
2015, Theorem 6.7] establishes that, if 1Z(µ,ν) denotes the characteristic function
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on Z(µ, ν) ⊆ G3, and if we write a ∈ Z(µ, ν) as a = bd where b ∈ Z(µ, s(µ)),
d ∈ Z(s(ν), ν), then

π t(sµs∗ν )(a)= 1Z(µ,ν)(a)σct (b, d)σct (d−1, d)= 1Z(µ,ν)(a)σct (bd, d−1).

In addition, we have Z(µ, s(µ)) ∈ P for all µ ∈ 3 by Lemma 6.6 of [Kumjian
et al. 2015]. If we also have Z(µ, ν) ∈ P , then the elements α, β, γ in the
formula for σct (bd, d−1) given in Definition 2.7 are all units, so, for any t , we
have σct (bd, d−1) = 1 by our hypothesis that any cocycle c satisfies the equality
c(λ, s(λ))= c(r(λ), λ)= 1. Thus,

Z(µ, ν) ∈ P⇒ π t(sµs∗ν )= 1Z(µ,ν)⇒9t(1Z(µ,ν))= κt(µ)κt(ν)1Z(µ,ν).

Now observe that each f ∈ Cc(G3 × [0, 1]) can be written as a finite sum
f (a, t)=

∑
i∈N fi (a, t), where, for all i , we have fi ∈ C(Z(µi , νi )× [0, 1]) and

Z(µi , νi ) ∈ P . Consequently, on Cc(G3×[0, 1]), our map 9 becomes

(6) 9

(∑
i∈N

fi

)
(a, t)=

∑
i∈N

9t( fi ( · , t))(a)=
∑
i∈N

κt(µi )κt(νi ) fi (a, t);

the fact that all the sums are finite implies that 9 takes Cc(G3 × [0, 1]) onto
Cc(G3×[0, 1]).

Since 9 is evidently C([0, 1])-linear and is a ∗-isomorphism in each fiber,
Proposition C.10 of [Williams 2007] tells us that 9 is norm-preserving. Moreover,
9 is a ∗-homomorphism since the operations in Cc(G3×[0, 1]) preserve the fiber
over t ∈ [0, 1], and each 9t is a ∗-homomorphism.

In other words, 9 extends to an isomorphism of C([0, 1])-algebras

9 : C∗(G3×[0, 1])∼= C∗(G3×[0, 1], ω).

A straightforward check will establish that the identity map on Cc(G3 × [0, 1])
induces an isomorphism id : C∗(G3 × [0, 1])→ C([0, 1],C∗(G3)) of C([0, 1])-
algebras; the isomorphism C∗(G3)∼= C∗(3) of [Kumjian and Pask 2000, Corollary
3.5(i)] now finishes the proof. �

Remark 4.3. Note that 9 induces an isomorphism 8 : C([0, 1]) ⊗ C∗(3) →
C∗(G3×[0, 1], ω) as follows. If Z(µ, ν) ∈ P and f ∈ C([0, 1]), then

(7) 8( f ⊗ sµs∗ν )(x, t)= f (t)1Z(µ,ν)(x)κt(µ)κt(ν).

Remark 4.4. Since evaluation at t ∈[0, 1] induces a homotopy equivalence between
C([0, 1],C∗(3)) and C∗(3), the isomorphism established in the previous propo-
sition implies that evaluation at t also induces a homotopy equivalence between
C∗(G3×[0, 1], ω) and its fiber algebra C∗(G3, σct ) when d = δb.
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To leverage Proposition 4.2 into the proof of Theorem 4.1, we will use the
skew-product k-graphs 3×d Zk .

Definition 4.5 [Kumjian and Pask 2000, Definition 5.1]. Given a k-graph (3, d),
the skew-product k-graph 3×d Zk is the set 3×Zk , with the structure maps

r(λ, n)= (r(λ), n), s(λ, n)= (s(λ), n+ d(λ)), d(λ, n)= d(λ),

and with multiplication given by (λ, n)(µ, n+ d(λ))= (λµ, n) for (λ, µ) ∈3∗2.

Observe that the function b : (3×d Zk)(0)=3(0)×Zk
→Zk given by b(v, n)= n

satisfies δb = d on 3×d Zk . Moreover, if 3 is row-finite and source-free, then so
is 3×d Zk .

We can now complete the proof of Theorem 4.1.

Proof of Theorem 4.1. Let φ :3×d Zk
→3 be the projection onto the first coordinate:

φ(λ, n)= λ. A cocycle c on 3 induces a cocycle c◦φ on the skew-product k-graph
3×d Zk :

c ◦φ
(
(λ, n), (µ, n+ d(λ))

)
:= c(λ, µ)

whenever (λ, µ) ∈3∗2. Note that if {ct }t∈[0,1] is a homotopy of cocycles on 3 then
{ct ◦φ}t is also a homotopy of cocycles on 3×d Zk .

If ω is the homotopy of cocycles on G3×d Zk associated to the homotopy {ct }t∈[0,1]

of cocycles on 3, then Proposition 4.2 tells us that

C∗(G3×d Zk ×[0, 1], ω)∼= C([0, 1])⊗C∗(3×d Zk).

Now we define an action of Zk on C([0, 1])⊗C∗(3×d Zk) by setting

(8) f ⊗ sλ,n ·m := f ⊗ sλ,n+m .

To see that this formula gives a well-defined action of Zk on C([0, 1])⊗C∗(3×d Zk),
one checks first that, for each m ∈Zk , the set {sλ,m+n : λ∈3, n ∈Zk

} is a collection
of partial isometries satisfying the defining axioms (CK1)–(CK4) for C∗(3×d Zk).
Consequently, the universal property of C∗(3×d Zk) implies that, for each fixed
m ∈ Zk , the map sλ,n 7→ sλ,n+m determines a ∗-homomorphism

αm : C∗(3×d Zk)→ C∗(3×d Zk).

Each αm is invertible with inverse α−m ; it follows that m 7→ αm defines a group
action of Zk on C∗(3×d Zk). Thus, (8) describes a well-defined action id⊗α of Zk

on C([0, 1])⊗C∗(3×d Zk), given by m 7→ id⊗αm . The fact that the degree map
on 3×d Zk is a coboundary now allows us to combine the action id⊗α with the
isomorphism 8 :C([0, 1])⊗C∗(3×d Zk)→C∗(G3×d Zk×[0, 1], ω) of Remark 4.3
to obtain an action β of Zk on C∗(G3×d Zk ×[0, 1], ω):

βn(8( f ⊗ sµ,ms∗ν,m+d(µ)−d(ν))) :=8(id⊗αn( f ⊗ sµ,ms∗ν,m+d(µ)−d(ν))).



K-THEORY AND HOMOTOPIES OF 2-COCYCLES ON HIGHER-RANK GRAPHS 423

Moreover, since both id⊗α and 8 (and hence β) fix C([0, 1]) by construction,
Lemma 5.3 of [Kumjian et al. 2013] tells us that the crossed product

C∗(G3×d Zk ×[0, 1], ω)oβ Zk ∼= (C([0, 1])⊗C∗(3×d Zk))oid⊗α Zk

is a C([0, 1])-algebra with fiber C∗(G3×d Zk , σct◦φ)oβt Zk , where

(βt)n(8t(sµ,ms∗ν,m+d(µ)−d(ν)))=8t(αn(s(µ,m)s∗(ν,m+d(µ)−d(ν))))

= κt(µ)κt(ν)1Z((µ,m+n),(ν,m+n+d(µ)−d(ν)))

whenever Z
(
(µ,m+ n), (ν,m+ n+ d(µ)− d(ν))

)
is in the partition P of G3×d Zk

that we used in the proof of Proposition 4.2.
Recall that we have a homotopy equivalence qt : C∗(G3×d Zk × [0, 1], ω) →

C∗(G3×d Zk , σct ). A computation will show that qt is equivariant with respect to the
actions β, βt of Zk ; thus, Theorem 5.1 of [Kumjian et al. 2013] tells us that

(9) K∗(C∗(G3×d Zk ×[0, 1], ω)oβ Zk)∼= K∗(C∗(G3×d Zk , σct◦φ)oβt Zk).

Thanks to Lemma 5.2 of [Kumjian et al. 2013], we know that

C∗(3×d Zk, ct ◦φ)olt Zk
∼ME C∗(3, ct),

where ltm(sλ,n) = sλ,n+m . To make use of this result, we need to show that βt

induces the action lt on C∗(3×d Zk, ct ◦φ).
Recall from the proof of Proposition 4.2 that π t(sλ,m) = 1Z((λ,m),(s(λ),m+s(λ))),

since Z
(
(λ,m), (s(λ),m+ s(λ))

)
∈ P always. Observe that

(10) C∗(G3×d Zk , σct◦φ)oβt Zk ∼= C∗(3×d Zk, ct ◦φ)oγt Zk,

where

(γt)n(sλ,m) := (π t)−1((βt)n(π
t(sλ,m))

)
= (π t)−1(βt)n(1Z((λ,m),(s(λ),m)))

= (π t)−1(βt)n
(
8t(κt(λ)s(λ,m))

)
= (π t)−1(8t(αn(κt(λ)sλ,m))

)
= (π t)−1(8t(κt(λ)sλ,m+n)

)
= (π t)−1(1Z((λ,m+n),(s(λ),m+n)))

= sλ,m+n.

It follows that the action (γt) induced by βt agrees with lt , as desired. Now, the
Morita equivalence of Lemma 5.2 of [Kumjian et al. 2013] and (10) tell us that

(11) C∗(G3×d Zk , σct◦φ)oβt Zk
∼ME C∗(3, ct).

Combining (9) and (11) now yields

K∗(C∗(3, ct))∼= K∗(C∗(G3×d Zk ×[0, 1], ω)oβ Zk)
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for any t ∈ [0, 1]. It follows that, if {ct }t∈[0,1] is a homotopy of cocycles on a
row-finite k-graph 3 with no sources, then, for any s, t ∈ [0, 1],

K∗(C∗(3, ct))∼= K∗(C∗(3, cs)).

It remains to show that this isomorphism preserves the K-theory class of each
vertex projection sv . Essentially, this follows because the cocycles ct , and thus the
functions κt , are all trivial on any v ∈ Obj(3).

To be precise, let v ∈ Obj(3) and define fv ∈ Cc(Z
k,Cc(G3×d Zk × [0, 1])) ⊆

C∗(G3×d Zk ×[0, 1], ω)oβ Zk by

fv(n)(a, t)=
{

1 a ∈ Z(v,0),(v,0) and n = 0,
0 else.

Then the projection qt o id( fv) of fv onto the fiber algebra C∗(G3×d Zk , ωt)oβt Zk

is independent of the choice of t ∈ [0, 1]:

qt o id( fv)(n)(a)=
{

1 a ∈ Z(v,0),(v,0) and n = 0,
0 else,

for any t ∈ [0, 1]. Moreover, the isomorphism 8t : C∗(3 ×d Zk, ct ◦ φ) →

C∗(G3×d Zk , σct◦φ) of Remark 4.3 satisfies

(12) 8t o id( j (s(v,0)))= qt o id( fv),

where j : C∗(3 ×d Zk, ct ◦ φ) → C∗(3 ×d Zk, ct ◦ φ) olt Zk is the canonical
embedding of C∗(3×d Zk, ct ◦φ) into the crossed product.

The fact that the Morita equivalence C∗(3, ct)∼ME C∗(3×d Zk, ct ◦φ)olt Zk

takes sv ∈ C∗(3, ct) to j (s(v,0)) (see Lemma 5.2 in [Kumjian et al. 2013]) thus
implies that our K-theoretic isomorphism K∗(C∗(G3×d Zk × [0, 1], ω)oβ Zk)→

K∗(C∗(3, ct)), which is given by the composition of the Morita equivalence (11)
with the ∗-homomorphism

qt o id : C∗(G3×d Zk ×[0, 1], ω)oβ Zk
→ C∗(G3×d Zk , ωt)oβt Zk

∼= C∗(3×d Zk, ct ◦φ)oγt Zk,

takes [ fv] to [sv] for any v ∈ Obj(3) and any t ∈ [0, 1]. Consequently, the isomor-
phism K∗(C∗(3, ct))∼= K∗(C∗(3, cs)) preserves the class of sv, as claimed. �

Remark 4.6. It’s tempting to think that, since C∗(3×d Zk, c ◦φ)∼= C∗(3×d Zk)

and C∗(3, c) ∼ME C∗(3×d Zk, c ◦ φ)olt Zk for any cocycle c on 3, any two
twisted k-graph C∗-algebras should be Morita equivalent. This statement is false,
however (the rotation algebras provide a counterexample). The flaw lies in the fact
that the isomorphism Ad U∗ :C∗(3×d Zk, c◦φ)→C∗(3×d Zk) is not equivariant
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with respect to the left-translation action of Zk , so the isomorphism

C∗(3×d Zk, c ◦φ)∼= C∗(3×d Zk)

does not pass to an isomorphism C∗(3×d Zk, c ◦φ)olt Zk
→ C∗(3×d Zk)olt Zk .

In other words, a K-theoretic equivalence of twisted k-graph C∗-algebras is the best
result we can hope for in general.

5. Future work

The standing hypotheses of this paper, that our k-graphs be row-finite and source-
free, are slightly more restrictive than the current standard for k-graphs. Thus, we
would like to extend Theorem 4.1 to apply to all finitely aligned k-graphs. Finitely
aligned k-graphs were introduced in [Raeburn and Sims 2005; Raeburn et al. 2004],
and it seems that they constitute the largest class of k-graphs to which one can
profitably associate a C∗-algebra. However, the Kumjian–Pask construction of a
groupoid G3 associated to a k-graph 3, which we described in Section 2 and which
we use throughout the proof of Theorem 4.1, only works when 3 is row-finite and
source-free. Farthing, Muhly, and Yeend [Farthing et al. 2005] provide an alternate
construction of a groupoid G which can be associated to an arbitrary finitely aligned
k-graph, and we hope that this approach will allow us to apply groupoid results
such as Theorem 3.3 to study the effect on K-theory of homotopies of cocycles for
finitely aligned k-graphs.
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FUSION PRODUCTS AND TOROIDAL ALGEBRAS

DENIZ KUS AND PETER LITTELMANN

We study the category of finite-dimensional bigraded representations of
toroidal current algebras associated to finite-dimensional complex simple
Lie algebras. Using the theory of graded representations for current al-
gebras, we construct in different ways objects in that category and prove
them to be isomorphic. As a consequence we obtain generators and relations
for certain types of fusion products, including the N-fold fusion product of
V (λ). This result shows that the fusion product of these types is independent
of the chosen parameters, proving a special case of a conjecture by Feigin
and Loktev. Moreover, we prove a conjecture by Chari, Fourier and Sagaki
on truncated Weyl modules for certain classes of dominant integral weights
and show that they are realizable as fusion products. In the last section we
consider the case g= sl2 and compute a PBW type basis for truncated Weyl
modules of the associated current algebra.

1. Introduction

Let g be a finite-dimensional complex simple Lie algebra with highest root θ . The
current algebra g[t] associated to g is the algebra of polynomial maps C→ g;
equivalently, it is the complex vector space g⊗ C[t] with Lie bracket the C[t]-
bilinear extension of the Lie bracket on g. The toroidal current algebra g[t, u]
associated to g is the algebra of polynomial maps C2

→ g and can be identified with
the complex vector space g⊗C[t, u] with similar Lie bracket. The Lie algebra g[t]
is graded by the nonnegative integers, where the r-th graded component is g⊗ tr

and g[t, u] is bigraded by pairs of nonnegative integers, where the (r, s)-th graded
component is g⊗tr us . We are interested in the category of finite-dimensional graded
representations of g[t] and finite-dimensional bigraded representations of g[t, u].
The former category contains a large number of interesting objects, for example
local Weyl modules (see for instance [Chari et al. 2014b; Chari and Pressley 2001;
Fourier and Littelmann 2007; Fourier et al. 2012]), g-stable Demazure modules
(see [Chari et al. 2014c; Fourier and Littelmann 2006; 2007]) and fusion products.
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The latter class of representations was introduced in a paper by Feigin and
Loktev [1999]: given finite-dimensional cyclic g[t]-modules V1, . . . ,VN with
cyclic vectors v1, . . . , vN and a tuple of pairwise distinct complex numbers z =
(z1, . . . , zN ) one can define a filtration on the tensor product Vz1

1 ⊗ · · ·⊗VzN
N and

build the associated graded space with respect to this filtration. This space is called
the fusion product and is denoted by Vz1

1 ∗ · · · ∗ VzN
N , where Vz is a nongraded

g[t]-module (see Section 3 for more details). The Feigin–Loktev conjecture states
that under suitable conditions on Vs and vs the fusion product is independent of the
chosen fusion parameters z. This conjecture has been proved for several classes of
representations. For example it has been proved in [Chari and Loktev 2006; Chari
and Pressley 2001; Fourier and Littelmann 2007; Naoi 2012] that the fusion product
of local Weyl modules is again a local Weyl module and hence independent of the
chosen parameters. Other examples are fusion products of Kirillov–Reshetikhin
modules (see [Ardonne and Kedem 2007; Kedem 2011]) and fusion products of
g-stable Demazure modules (see [Chari et al. 2014c; Fourier and Littelmann 2007;
Kus and Venkatesh 2014]).

Another interesting class of g[t]-modules comprises those which are obtained
as fusion products of finite-dimensional simple g-modules, where a g-module V
is made into a g[t]-module by requiring (g⊗ tC[t])V = 0. Hence for any tuple
(λ1, . . . , λN ) of dominant integral weights the fusion product Vz1(λ1)∗· · ·∗VzN (λN )

can be defined and studied. For these types of representations the Feigin–Loktev
conjecture has been proved in the case of sl2 and in some other special cases (see
for instance [Chari and Venkatesh 2015; Feigin and Feigin 2002; Feigin et al. 2004;
Ravinder 2014]). Moreover, in the case of sl2 a presentation for the fusion product
V(k1) ∗ · · · ∗V(kN ) has been established in terms of generators and relations of the
enveloping algebra (see [Chari and Venkatesh 2015; Feigin and Feigin 2002]) and a
PBW type basis has been computed [Chari and Venkatesh 2015]. An easy calculation
shows that the aforementioned presentation can be greatly simplified if the highest
weights are equal. In particular, V(k) ∗ · · · ∗ V(k) is a cyclic U(sl2[t])-module
generated by a vector v subject to the same relations as the highest weight vector of
the local Weyl module Wloc(k N ) with the only additional relation (sl2⊗ t N )v= 0.

This paper is motivated by the idea of generalizing the above observation for
arbitrary g: Is the fusion product Vz1(λ) ∗ · · · ∗VzN (λ) independent of the fusion
parameters for arbitrary g? Is there a simple presentation considered as a U(g[t])-
module? Is the truncated Weyl module W(Nλ, N ) realizable as a fusion product?
For the definition of truncated Weyl modules see Section 4A. In this paper we
give a positive answer to these questions. Our approach is based on the theory
of finite-dimensional bigraded modules for the toroidal current algebra g[t, u]. In
particular we construct an associated graded version of a g-stable Demazure module
grt N T(`, N ) and a bigraded version of a fusion product Du(`, `λ)∗· · ·∗Du(`, `λ)∗
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Du(`, `λ+ λ0) (for the precise definitions see Sections 3C and 3D) such that the
zeroth graded space (with respect to the u-grading) of the second construction is
isomorphic to the fusion product of finite-dimensional simple g-modules. Our first
result is the following; for the precise definition of the ingredients see Section 3.
We remark that if λ0

6= 0, then the Lie algebra g is assumed to be classical or G2;
for λ0

= 0 there is no restriction on g.

Theorem. Let ` ∈ N, λ be a dominant integral coweight and λ0 be a dominant
integral weight such that λ0(θ∨) ≤ `. We have an isomorphism of U(g[t, u])-
modules

grt N T(`, N )∼= Du(`, `λ) ∗ · · · ∗Du(`, `λ) ∗Du(`, `λ+ λ0).

Our second result gives a connection to truncated Weyl modules, where the first
part is a direct consequence of the previous theorem and the second part proves a
special case of a conjecture by Chari, Fourier and Sagaki. Again for the precise
definition of the ingredients see Section 4A.

Theorem. Let ` ∈ N, λ be a dominant integral coweight and λ0 be a dominant
integral weight such that λ0(θ∨)≤ `.

(1) The fusion product V(`λ)∗(N−1)
∗ V(`λ + λ0) is independent of the fusion

parameters.

(2) If λ0(θ∨)≤ 1 and |Nλ+ λ0
| ≥ N , then

W(Nλ+ λ0, N )∼= V(λ)∗(N−1)
∗V(λ+ λ0).

As a special case of the previous theorem we can choose ` = 1 and λ0
= 0.

This yields that the N -fold fusion product of V (λ) is independent of the fusion
parameters for any dominant integral coweight λ. The second part of the theorem
shows that the N -fold fusion product of V (λ) has a remarkably simple presentation.

In Sections 4C and 4D we deal with the case of sl2 and prove that the truncated
Weyl module is realizable as a fusion product. Moreover, we compute a PBW
type basis for truncated Weyl modules which differs from the basis described
in [Chari and Venkatesh 2015, Section 6]. For the precise definition of the set
S(k N− j , (k+ 1) j ) see Section 4B.

Theorem. Let m ∈ Z+ and write m = k N + j , 0≤ j < N.

(1) We have an isomorphism of U(sl2⊗C[t]/t N )-modules

W(m, N )∼= V (k)∗(N− j)
∗ V (k+ 1)∗ j .

(2) A PBW type basis of W(m, N ) is given by

{(x−α ⊗ 1)i0 · · · (x−α ⊗ t N−1)iN−1wm,N | (i0, . . . , iN−1) ∈ S(k N− j , (k+ 1) j )}.
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:::::::::::::::::: :::::::::::::::::: ::::::::::::::::::

Our paper is organized as follows. Section 2 establishes the basic notation needed
in the rest of the paper. In Section 3, we construct in different ways two bigraded
modules and prove them to be isomorphic. As a consequence we obtain that the
fusion product is independent of the chosen parameters. In Section 4, we give some
applications regarding the conjecture on truncated Weyl modules and compute a
PBW type basis.

2. Preliminaries

2A. Throughout the paper C denotes the field of complex numbers, Z the ring
of integers, Z+ the set of nonnegative integers and N the set of positive integers.
Given any complex Lie algebra a we let U(a) be the universal enveloping algebra
of a. Further, let a[t] be the Lie algebra of polynomial maps from C to a with the
obvious pointwise Lie bracket:

[x ⊗ f, y⊗ g] = [x, y]⊗ f g, x, y ∈ a, f, g ∈ C[t].

The Lie algebra a[t] and its universal enveloping algebra inherit a grading from
the degree grading of C[t]; thus an element a1⊗ tr1 · · · as⊗ trs , a j ∈ a, r j ∈ Z+ for
1≤ j ≤ s, will have grade r1+· · ·+rs . We shall be interested in Z-graded modules
V =

⊕
s∈Z V [s] for a[t].

2B. We refer to [Kac 1990] for the general theory of affine Lie algebras. Let g
be a finite-dimensional complex simple Lie algebra and ĝ be the corresponding
untwisted affine algebra. We fix h⊂ ĥ Cartan subalgebras of g and ĝ, respectively,
and denote by R the set of roots of g with respect to h and by R̂ the set of roots
of ĝ with respect to ĥ. The corresponding sets of positive and negative roots are
denoted as usual by R± and R̂±, respectively. We fix a basis 1= {α1, . . . , αn} for
R such that 1̂=1∪ {α0} is a basis for R̂. For α ∈ R̂, let α∨ be the corresponding
coroot. We fix d ∈ ĥ such that α0(d)= 1 and αi (d)= 0 for i 6= 0; d is called the
scaling element and it is unique modulo the center of ĝ. For 1 ≤ i ≤ n, define
ωi ∈ h

∗ by ωi (α
∨

j ) = δi, j for 1 ≤ j ≤ n, where δi, j is Kronecker’s delta symbol.
The element ωi is the fundamental weight of g corresponding to α∨i . Let ( · , · ) be
the nondegenerate symmetric bilinear form on h∗ normalized so that the square
length of a long root is two. For α ∈ R+ we set

dα =
2

(α, α)
, di := dαi for 1≤ i ≤ n.

The weight lattices P and P+ are the Z-span and Z+-span, respectively, of the
fundamental weights. The coweight lattice L is the sublattice of P spanned by the
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elements diωi , 1 ≤ i ≤ n, and the subset L+ is defined in the obvious way. For
λ ∈ P+ we define

|λ| =

n∑
i=1

λ(α∨i ) ∈ Z+.

2C. Given α ∈ R̂+ let ĝα ⊂ ĝ be the corresponding root space; note that ĝα ⊂ g if
α ∈ R. For a real root α we denote by xα a generator of ĝα . The element d defines
a Z+-graded Lie algebra structure on g[t]: for α ∈ R̂ we say that gα has grade k if

[d, xα] = kxα

or, equivalently, if α(d)= k. With respect to this grading, the zero homogeneous
component of the current algebra is g[t][0] ∼= g and the subspace spanned by the
positive homogeneous components is an ideal denoted by g[t]+. We have a short
exact sequence of Lie algebras

0→ g[t]+→ g[t]
ev0
−→ g→ 0.

Clearly the pull-back of any g-module V by ev0 defines the structure of a graded
g[t]-module on V, and we denote this module by ev∗0 V.

2D. For λ ∈ P+, denote by V(λ) the simple finite-dimensional g-module generated
by an element vλ with defining relations

n+vλ = 0, α∨i vλ = λ(α
∨

i )vλ, (x−αi )
λ(α∨i )+1vλ = 0, 1≤ i ≤ n.

It is well known that V(λ)∼=V(µ) if and only if λ=µ and that any finite-dimensional
g-module is isomorphic to a direct sum of modules V(λ), λ ∈ P+. If V is an h-
semisimple g-module (in particular if dim V<∞), we have

V=
⊕
µ∈h∗

Vµ, Vµ = {v ∈ V | hv = µ(h)v, h ∈ h},

and we set wt V= {µ ∈ h∗ | Vµ 6= 0}. By our previous comments, for any λ ∈ P+

we obtain a graded g[t]-module ev∗0 V(λ).
We also define the local Weyl module Wloc(λ), which is a finite-dimensional

g[t]-module generated by an element wλ with defining relations

n+[t]wλ = 0, (α∨i ⊗ t s)wλ = δs,0λ(α
∨

i )wλ, (x−αi ⊗ 1)λ(α
∨

i )+1wλ = 0

∀s ≥ 0, 1≤ i ≤ n.

For more details regarding the theory of local Weyl modules see [Chari et al. 2014b;
Chari and Loktev 2006; Chari and Pressley 2001; Fourier et al. 2012; Fourier and
Kus 2013; Fourier and Littelmann 2007; Naoi 2012].
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2E. We recall a general construction from [Feigin and Loktev 1999]. Let U(g[t])[k]
be the homogeneous component of degree k (with respect to the grading induced
by d) and recall that it is a g-module for all k ∈ Z+. Suppose now that we are
given a g[t]-module V which is generated by v. Define an increasing filtration
0⊂ V0

⊂ V1
⊂ · · · of g-submodules of V by

Vk
=

k⊕
s=0

U(g[t])[s]v.

The associated graded vector space gr V admits an action of g[t] given by

x(v+Vk)= xv+Vk+s, x ∈ g[t][s], v ∈ Vk+1.

Furthermore, gr V is a cyclic g[t]-module with cyclic generator v̄, the image of v
in gr V. Given a g[t]-module V and z ∈ C, let Vz be the g[t]-module with action

(x ⊗ tr )w = (x ⊗ (t + z)r )w, x ∈ g, w ∈ V, r ∈ Z+.

Starting with finite-dimensional cyclic g[t]-modules V1, . . . ,VN with cyclic vectors
v1, . . . , vN and a tuple of pairwise distinct complex numbers z = (z1, . . . , zN ), the
fusion product is defined to be Vz1 ∗ · · ·∗VzN := gr(Vz1 ⊗ · · ·⊗VzN ). It was proved
in [Feigin and Loktev 1999] that the tensor product Vz1 ⊗ · · ·⊗VzN is cyclic and
generated by v1⊗· · ·⊗vN . Clearly the definition of the fusion product depends on
the parameters zs , 1≤ s ≤ N . However, it was conjectured in that paper (and proved
in special cases; see [Chari and Loktev 2006; Feigin and Feigin 2002; Feigin and
Loktev 1999; Fourier and Littelmann 2007; Kus and Venkatesh 2014], for example)
that under suitable conditions on Vs and vs , the fusion product is independent
of the choice of the complex numbers. In this paper we cover another class of
representations, where the construction of the fusion product is independent of the
parameters. To keep the notation as simple as possible we almost always omit
the parameters in the notation for the fusion product and write V1 ∗ · · · ∗VN for
Vz1

1 ∗ · · · ∗VzN
N .

3. Filtrations and bigraded modules

The aim of this section is to construct two finite-dimensional bigraded modules in
different ways and prove them to be isomorphic. The advantage of this construction
is that a comparison of the zeroth graded components leads to a realization of the
fusion product associated to rectangular partitions.

3A. Let us start with our first construction. Let λ ∈ P+ and ` ∈ N. The g-stable
Demazure module D(`, λ) is a finite-dimensional submodule of a level ` highest
weight representation for the affine algebra ĝ. For these representations, generators
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and relations are known if we consider them as U(g[t])-modules; see [Fourier and
Kus 2013; Fourier and Littelmann 2007; Mathieu 1988] for more details. We remark
that these relations are greatly simplified for Demazure modules for untwisted affine
algebras in [Chari and Venkatesh 2015] and for twisted affine algebras in [Kus and
Venkatesh 2014]. For instance, one can use these simplified relations to see directly
that level one Demazure modules are isomorphic to local Weyl modules for simply
laced affine algebras and twisted affine algebras, initially proved in [Fourier and
Littelmann 2007] and [Chari et al. 2014b; Fourier and Kus 2013], respectively. We
recall the simplified presentation of g-stable Demazure modules. Write

(3-1) λ(β∨)= (pβ − 1)dβ`+mβ, 0< mβ ≤ dβ`, for β ∈ R+.

Proposition 3.1. The Demazure module D(`, λ) is isomorphic to the cyclic U(g[t])-
module generated by a vector v 6= 0 subject to the following relations:

n+[t]v = 0, (h⊗ t s)v = δs,0λ(h)v ∀h ∈ h, s ≥ 0,(3-2)

(x−β ⊗ 1)λ(β
∨)+1v = 0, (x−β ⊗ t pβ )v = 0 ∀β ∈ R+,(3-3)

(x−β ⊗ t pβ−1)mβ+1v = 0 ∀β ∈ R+ such that mβ < dβ`.(3-4)

We can decompose D(`, λ) into simple finite-dimensional g-modules. We remark
that the vector v in Proposition 3.1 corresponds to the highest weight vector of
ev∗0 V(λ) in the g-module decomposition of D(`, λ). We call it a highest weight
vector of the module.

3B. We are concerned with Demazure modules of the form D(`, `Nλ1
+λ0), where

λ1
∈ L+ and λ0

∈ P+ such that λ0(θ∨) ≤ `. For the rest of this paper we assume
that either λ0

= 0 and g is arbitrary or λ0
6= 0 and g is of classical type or G2. By

the results of [Chari et al. 2014c; Fourier and Littelmann 2007], the Demazure
module D(`, `Nλ1

+ λ0) is isomorphic to the fusion product of N − 1 copies of
the Demazure module D(`, `λ1) with D(`, `λ1

+ λ0):

(3-5) D(`, `Nλ1
+ λ0)∼= D(`, `λ1) ∗ · · · ∗D(`, `λ1) ∗D(`, `λ1

+ λ0).

This decomposition holds for all fusion parameters z= (z1, . . . , zN ) with zi 6= z j for
all i 6= j . We emphasize that the restriction on g is only made because (3-5) is not
proved for the remaining exceptional Lie algebras if λ0 is nonzero. In other words,
our results are applicable whenever we have such a fusion product decomposition.
We will need the following lemma.

Lemma 3.2. Let β be a positive root and λ ∈ P+. We write θ − β =
∑

j γ j as a
sum of positive roots. Then we have

λ(β∨)(β, β)≤ λ(θ∨)(θ, θ) with equality if and only if λ(γ ∨j )= 0 ∀ j.
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Proof. Since λ is a dominant integral weight we have λ(β∨)≥ 0 for a positive root
β. We obtain

θ∨ =

(
β +

∑
j

γ j

)∨
=
(β, β)

2
β∨+

∑
j

(γ j , γ j )

2
γ ∨j ,

which gives

λ(θ∨)(θ, θ)= (β, β)λ(β∨)+
∑

j

(γ j , γ j )λ(γ
∨

j )≥ (β, β)λ(β
∨).

Note that equality is only possible if λ(γ ∨j )= 0 for all j , since (γ j , γ j ) > 0. �

By Lemma 3.2 and Equation (3-3) of Proposition 3.1 we get the following result.

Corollary 3.3. (x−β ⊗ t (λ
1(θ∨)+1)N )v = 0 for all roots β ∈ R+.

Proof. Write (`Nλ1
+ λ0)(β∨) as in (3-1). Since λ1

∈ L+ we have mβ = dβ` if
λ0(β∨)= 0 and mβ = λ

0(β∨) else. Then (x−β ⊗ t pβ )v = 0 and

pβ = N
λ1(β∨)

dβ
+
λ0(β∨)−mβ

dβ`
+ 1≤ N (λ1(θ∨)+ 1). �

Hence D(`, `Nλ1
+ λ0) is a U(g⊗C[t]/t (λ

1(θ∨)+1)N )-module.

3C. We define a decreasing filtration on U(g⊗C[t]/t (λ
1(θ∨)+1)N )

T0(N )⊇ T1(N )⊇ T2(N )⊇ · · · ,

with
T0(N )= U(g⊗C[t]/t (λ

1(θ∨)+1)N ),

T j (N )= (g⊗ t N C[t])T j−1(N ) for j ≥ 1,

and study the induced decreasing filtration on our Demazure module given by

D(`, `Nλ1
+λ0)=T0(N )v=:T0(`, N )⊇T1(N )v :=T1(`, N )⊇T2(`, N )⊇ · · · .

To be consistent with the notation in [Feigin 2008], we refer to it as the t N -filtration.
Let grt N T(N ) and grt N T(`, N ), respectively, be the associated graded spaces

grt N T (N )= T0(N )/T1(N )⊕T1(N )/T2(N )⊕ · · ·

and
grt N T(`, N )= T0(`, N )/T1(`, N )⊕T1(`, N )/T2(`, N )⊕ · · · .

Since D(`, `Nλ1
+ λ0) is a module for U(g⊗ C[t]/t (λ

1(θ∨)+1)N ) we obtain that
grt N T(`, N ) is a module for grt N T(N ). By the following lemma grt N T(`, N ) is
also a module for the toroidal current algebra U(g⊗C[t, u]/〈t N , uλ

1(θ∨)+1
〉).



FUSION PRODUCTS AND TOROIDAL ALGEBRAS 435

Lemma 3.4. We have an isomorphism of algebras

9 : grt N T(N )−→∼ U(g⊗C[t, u]/〈t N , uλ
1(θ∨)+1

〉),

where 9(x ⊗ t j N+s)= x ⊗ u j t s for x ∈ g and 0≤ s < N.

Proof. The map 9 is clearly an isomorphism of vector spaces. In order to show
that this map is an algebra homomorphism, we have to check that the naive way of
defining 9 on a product of elements is well defined. Hence we will verify that

(x ⊗ u j t s)(y⊗ ui tq)− (y⊗ ui tq)(x ⊗ u j t s)= [x, y]⊗ ui+ j t s+q

holds on the right-hand side whenever we have

(x ⊗ t j N+s)(y⊗ t i N+q)− (y⊗ t i N+q)(x ⊗ t j N+s)= [x, y]⊗ t (i+ j)N+(s+q)

on the left-hand side. This is obvious for s + q < N . Otherwise the variables
x⊗u j t s and y⊗ui tq commute in U(g⊗C[t, u]/〈t N , uλ

1(θ∨)+1
〉). By the definition

of the associated graded space we also obtain that the variables x ⊗ t j N+s and
y⊗ t i N+q commute in grt N T(N ) since on the one hand

(x ⊗ t j N+s)(y⊗ t i N+q)− (y⊗ t i N+q)(x ⊗ t j N+s) ∈ Ti+ j (N )

and on the other hand

[x, y]⊗ t (i+ j)N+(s+q)
∈ Ti+ j+1(N ). �

3D. Now we present a quite different construction of the module grt N T(`, N ).
In fact, it is one of the main results of this paper that the two constructions give
isomorphic modules. We start with the (N − 1)-fold tensor product of Demazure
modules D(`, `λ1) with D(`, `λ1

+ λ0). The gambit: we switch the variables and
consider now the current algebra g[u] which operates on the Demazure modules
Du(`, `λ1). We add the index u to emphasize that here the algebra g[u] is acting.
We extend the action trivially to g[t, u] and denote the corresponding module by
Du(`, `λ1); i.e., g⊗ tC[t, u] acts trivially. Recall that we get a highly nontrivial
action of g[t, u] when we consider fusion products of these modules with respect
to the variable t . The bigraded fusion product

(3-6) Du(`, `λ1) ∗ · · · ∗Du(`, `λ1) ∗Du(`, `λ1+ λ0)

is a cyclic module for the Lie algebra U(g⊗ C[t, u]/〈t N , uλ
1(θ∨)+1

〉). Note the
similarity but also the difference between (3-5) and (3-6). In (3-5) we consider the
fusion product (with respect to the variable t) of g[t]-modules. The g[t, u]-module
structure comes into the picture only by the filtration defined in Section 3C. We
would like to remind the reader that if λ0

6= 0, then g is of classical type or G2.
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Theorem 3.5. Let λ1
∈ L+ and λ0

∈ P+ such that λ0(θ∨) ≤ `. We have an
isomorphism of U(g⊗C[t, u]/〈t N , uλ

1(θ∨)+1
〉)-modules

grt N T(`, N )∼= Du(`, `λ1) ∗ · · · ∗Du(`, `λ1) ∗Du(`, `λ1+ λ0).

Proof. Let v∗(N−1)
` ∗ v0 be the highest weight vector of the right-hand side. The iso-

morphism between grt N T(N ) and U(g⊗C[t, u]/〈t N , uλ
1(θ∨)+1

〉) (see Lemma 3.4)
induces a natural surjective map

grt N T(N )� U(g⊗C[t, u]/〈t N , uλ
1(θ∨)+1

〉) ◦ (v
∗(N−1)
` ∗ v0).

It remains to prove that this map induces an isomorphism between the cyclic module
grt N T(`, N ) and the fusion product. Since the dimensions of the modules coincide
it is enough to show that all relations which hold in grt N T(`, N ) also hold on the
right-hand side.

Recall that a presentation of grt N T(`, N ) is given by two types of relations,
the ones coming from the presentation of the Demazure module and the ones
coming from going to the associated graded space with respect to the t N -filtration.
We start by proving that the defining relations of D(`, `Nλ1

+ λ0) given for v in
Proposition 3.1 are satisfied by v` ∗ · · · ∗ v` ∗ v0. Since the relations (3-2) and the
first part of (3-3) are obviously satisfied it remains to verify the second part of (3-3)
and (3-4). Write (`Nλ1

+ λ0)(β∨) as in (3-1). We start by proving that

(3-7) (x−β ⊗ u jβ trβ )(v
∗(N−1)
` ∗ v0)= 0, where pβ = jβN + rβ , 0≤ rβ < N .

Since λ0(β∨)≤ dβ`, we have

pβ =
{

Nλ1(β∨)d−1
β if λ0(β∨)= 0,

Nλ1(β∨)d−1
β + 1 else.

In either case jβ ≥ λ1(β∨)d−1
β and thus (x−β ⊗ u jβ trβ )v` = 0 follows immediately

from the defining relations of D(`, `λ1). If rβ 6= 0 we can replace trβ by (t − zN )
rβ

in the associated graded space and obtain that the element in (3-7) acts trivially on
v0. If rβ = 0, then pβ is divisible by N , which forces λ0(β∨) = 0. Therefore, in
this case we obtain jβ = λ1(β∨)d−1

β , and (x−β ⊗ u jβ )v0 = 0 follows immediately
from the defining relations of D(`, `λ1

+ λ0). It remains to consider the relations
(3-4). So suppose we have

pβ − 1= N
λ1(β∨)

dβ
+
λ0(β∨)−mβ

dβ`
= jβN + rβ, 0≤ rβ < N .

Since mβ < dβ`, we must have mβ = λ
0(β∨) 6= 0 and hence pβ−1= Nλ1(β∨)d−1

β .
It follows that jβ = λ1(β∨)d−1

β and therefore (x−β ⊗ u jβ )v` = 0. So we have

(x−β ⊗ u jβ )mβ+1(v
∗(N−1)
` ∗ v0)= v

∗(N−1)
` ∗ (x−β ⊗ u jβ )mβ+1v0 = 0.



FUSION PRODUCTS AND TOROIDAL ALGEBRAS 437

We now consider the relations coming from the t N -filtration. Suppose

M =
∑

m

∑
i1,...,im
j1,..., jm

k(m)i1,...,im
j1..., jm

(xi1 ⊗ t i1 N+ j1) · · · (xim ⊗ t im N+ jm )

∈ U(g⊗C[t]/t (λ(θ
∨)+1)N )

is a linear combination of monomials with fixed t N -degree such that w = Mv 6= 0
in D(`, `Nλ1

+ λ0) but the image w̄ = 0 in grt N T(`, N ). This is only possible if
there exists a linear combination of monomials of greater t N -degree

M ′ =
∑
m′

∑
p1,...,pm′
q1...,qm′

k(m′)p1,...,pm′
q1,...,qm′

(x p1 ⊗ t p1 N+q1) · · · (x pm′
⊗ t pm′N+qm′ )

∈ U(g⊗C[t]/t (λ(θ
∨)+1)N )

such that w = Mv = M ′v in D(`, `Nλ1
+λ0). We assume in what follows that M ′

is of maximal t N -degree. We have (M −M ′)v = 0, so the difference M −M ′ is an
element in the left ideal generated by the elements in (3-2)–(3-4). Since M ′ is of
higher t N -degree we get M −M ′=M in grt N T(N ), and since all defining relations
of D(`, `Nλ1

+λ0) are satisfied by v∗(N−1)
` ∗v0 we get 9(M) ◦ (v∗(N−1)

` ∗ v0)= 0,
which shows that the natural surjective map

grt N T(N )� U(g⊗C[t, u]/〈t N , uλ
1(θ∨)+1

〉) ◦ (v
∗(N−1)
` ∗ v0)

induces an isomorphism of cyclic modules grt N T(`, N ) ∼= Du(`, `λ1) ∗ · · · ∗

Du(`, `λ1) ∗Du(`, `λ1+ λ0). �

For the rest of this section we discuss a crucial consequence of our result.

Corollary 3.6. Let ` ∈ N, λ1
∈ L+ and λ0

∈ P+ such that λ0(θ∨)≤ `.

(1) The fusion product Du(`, `λ1) ∗ · · · ∗Du(`, `λ1) ∗Du(`, `λ1+ λ0) is indepen-
dent of the fusion parameters.

(2) The fusion product V(`λ1)∗(N−1)
∗V(`λ1

+ λ0) is independent of the fusion
parameters.

(3) We have an isomorphism of U(g⊗C[t]/t N )-modules

V(`λ1)∗(N−1)
∗V(`λ1

+ λ0)∼= D(`, `Nλ1
+ λ0)/(g⊗ t N C[t])D(`, `Nλ1

+ λ0).

(4) If λ0(θ∨)≤ 1, the truncated level one Demazure module is isomorphic to the
truncated level ` Demazure module

D(1, `Nλ1
+ λ0)/(g⊗ t N C[t])D(1, `Nλ1

+ λ0)

∼= D(`, `Nλ1
+ λ0)/(g⊗ t N C[t])D(`, `Nλ1

+ λ0).

Proof. Since the fusion product V(`λ1)∗(N−1)
∗ V (`λ1

+ λ0) is isomorphic to the
zeroth graded component of Du(`, `λ1) ∗ · · · ∗Du(`, `λ1) ∗Du(`, `λ1+ λ0) (with
respect to the u-grading) the statement follows from Theorem 3.5. �
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Remark. Theorem 3.5 generalizes a result of [Feigin 2008], where the theorem
was proved for ` = 1, λ0

= 0 and λ1
= θ . Unfortunately, the proof in that paper

has a gap (personal communication by the author), which is now fixed by the proof
above. Ravinder [2014] used the result of [Feigin 2008] to prove a presentation for
the fusion product V(θ)∗N

∗D(1, θ)∗M .

4. Truncated Weyl modules and PBW type basis

In this section we give some evidence for the conjecture made by Chari, Fourier and
Sagaki on truncated Weyl modules (see [Chari et al. 2014a; Fourier 2015]). For the
reader’s convenience we state the precise conjecture in this paper (Conjecture 4.1).
Finally, we consider the case g= sl2 and compute a PBW type basis.

4A. Let P+(λ, N ) be the set of N -tuples of dominant integral weights λ =
(λ1, . . . , λN ) such that

∑
i λi = λ. Let λ = (λ1, . . . , λN ),µ = (µ1, . . . , µN ) ∈

P+(λ, N ). For a positive root β define

rβ,k(λ)=min{(λi1 + · · ·+ λik )(β
∨) | 1≤ i1 < · · ·< ik ≤ N }.

We say λ� µ if

rβ,k(λ)≤ rβ,k(µ) for all β ∈ R+ and 1≤ k ≤ N .

The above partial order was considered by Chari et al. [2014a], who observed that for
a tuple λ the dimension of the tensor product of the corresponding finite-dimensional
simple g-modules increases along �. Moreover, they proved in certain cases (for
instance when λ is a multiple of a fundamental minuscule weight) that there exists
an inclusion of tensor products along with the partial order and conjectured that
this remains true for N = 2 and arbitrary λ (see [Chari et al. 2014a, Conjecture
2.3]). Using the unique maximal element in the partially ordered set P+(λ, N ) one
can formulate a conjecture on truncated Weyl modules, which we will explain now.

Definition. Let λ ∈ P+. The truncated Weyl module W(λ, N ) is a cyclic module
for U(g⊗C[t]/t N ) generated by wλ,N with relations

(n+⊗C[t]/t N )wλ,N = 0, (h⊗ t s)wλ,N = δs,0λ(h)wλ,N ∀h ∈ h, s ≥ 0,(4-1)

(x−β ⊗ 1)λ(β
∨)+1wλ,N = 0 ∀β ∈ R+.(4-2)

The following conjecture gives a connection between truncated Weyl modules
and fusion products of irreducible finite-dimensional g-modules.

Conjecture 4.1. Let λ ∈ P+ such that |λ| ≥ N , and let λ = (λ1, . . . , λN ) be
the unique maximal element in P+(λ, N ). Then we have an isomorphism of
U(g⊗C[t]/t N )-modules

W(λ, N )∼= V (λ1) ∗ · · · ∗ V (λN ).
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The following result proves the above conjecture for certain classes of dominant
integral weights.

Theorem 4.2. Let λ ∈ L+ and λ0
∈ P+ such that λ0(θ∨)≤ 1 and |Nλ+ λ0

| ≥ N.
Then we have an isomorphism of U(g⊗C[t]/t N )-modules

W(Nλ+ λ0, N )∼= V (λ) ∗ · · · ∗ V (λ) ∗ V (λ+ λ0).

Proof. If λ= 0, there is nothing to prove. By Corollary 3.6 we obtain that

V (λ) ∗ · · · ∗ V (λ) ∗ V (λ+ λ0)∼= D(1, Nλ+ λ0)/(g⊗ t N C[t])D(1, Nλ+ λ0).

We show that the defining relations of D(1, Nλ+ λ0)/(g⊗ t N C[t])D(1, Nλ+ λ0)

hold in the truncated Weyl module. We shall prove only the nonobvious relations.
Let β ∈ R+ and write (Nλ+ λ0)(β∨) as in (3-1). Then, as before,

pβ − 1=
{

Nλ(β∨)d−1
β if λ0(β∨) 6= 0,

Nλ(β∨)d−1
β − 1 else.

We consider four cases. If λ(β∨) 6= 0 and λ0(β∨) 6= 0, then pβ ≥ pβ − 1≥ N and
hence

(x−β ⊗ t pβ )wNλ+λ0,N = (x−β ⊗ t pβ−1)wNλ+λ0,N = 0.

If λ(β∨) 6= 0 and λ0(β∨) = 0, then pβ ≥ N and mβ = dβ (recall that (3-4) was
only considered when mβ < dβ). If λ(β∨) = 0 and λ0(β∨) = 0, there is nothing
to show; so consider the last case, λ(β∨)= 0 and λ0(β∨) 6= 0. In this case pβ = 1
and mβ = λ

0(β∨). Thus we have to prove

(x−β ⊗ t)wNλ+λ0,N = (x−β ⊗ 1)mβ+1wNλ+λ0,N = 0,

where the last equality is clear. Note that it is enough to prove that (x−β⊗ t) acts by
zero on the highest weight vector of the local Weyl module Wloc(Nλ+ λ0). Since
Wloc(Nλ+ λ0)∼=Wz1

loc(Nλ) ∗Wz2
loc(λ

0) we get

(x−β ⊗ t)(wNλ ∗wλ0)= (x−β ⊗ (t − z2))(wNλ ∗wλ0)= wNλ ∗ (x−β ⊗ t)wλ0 .

If g is not of type G2, then Wloc(λ
0) is irreducible and the statement follows. If

g is G2 it is easy to see that the only positive root β with (x−β ⊗ t)wλ0 6= 0 is the
longest short root β = α1+ 2α2. But then λ(β∨) 6= 0. �

We shall show that (λ, . . . , λ, λ+ λ0) is in fact the unique maximal element in
P+(Nλ+λ0, N ). Since λ0(θ∨)≤ 1, there exists at most one simple root α such that
λ0(α∨)>0. Without loss of generality we suppose λ0(α∨j )=0 for all j >1. Assume
that (µ1, . . . , µN )∈ P+(Nλ+λ0, N ) such that (λ, . . . , λ, λ+λ0)� (µ1, . . . , µN ).
We fix a simple root α j and a permutation σ j such that

µσ j (1)(α
∨

j )≤ · · · ≤ µσ j (N )(α
∨

j ).
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We write µσ j (i)(α
∨

j ) = λ(α
∨

j ) + εi ( j) + δi,Nλ
0(α∨j ) for integers εi ( j). By our

assumptions we obtain

0≤ ε1( j)≤ · · · ≤ εN−1( j)≤ εN ( j)+ λ0(α∨j ) and
N∑

p=1

εp( j)= 0.

Hence, up to a permutation we have µi = λ for 1≤ i ≤ N − 1 and µN = λ+ λ
0.

4B. For the rest of this section we prove the conjecture for sl2 and compute a PBW
type basis. For 0≤ j < N , let S(k N− j , (k+1) j ) be the set of tuples (i0, . . . , iN−1)

satisfying

(4-3)
N−1∑
p=0

N !
N − p

i p ≤ N ! k−
N−4∑
`=0

N !
(N − `)!

(N − `− 2)! b`+ j (N − 1)!

for integers b` defined as follows: 0≤ b` < N − ` and

i0− j = b0 mod N ,

i`+ (b`−1 mod N − `)= b` mod N − ` for `= 1, . . . , N − 4.

The theorem we shall prove is the following.

Theorem 4.3. Let m ∈ Z+ and write m = k N + j for 0≤ j < N.

(1) We have an isomorphism of U(sl2⊗C[t]/t N )-modules

W(m, N )∼= V (k)∗(N− j)
∗ V (k+ 1)∗ j .

(2) A PBW type basis of W(m, N ) is given by

{(x−α ⊗ 1)i0 · · · (x−α ⊗ t N−1)iN−1wm,N | (i0, . . . , iN−1) ∈ S(k N− j , (k+ 1) j )}.

A simple calculation similar to the one above shows that (k, . . . , k, k+1, . . . , k+1)
∈ P+(m, N ) is in fact the unique maximal element.

The rest of this section is dedicated to the proof of Theorem 4.3.

4C. We start by proving the first part of the theorem. A presentation of the fusion
product as a U(sl2⊗C[t]) was given in [Chari and Venkatesh 2015]. So by their
results it is enough to show that the highest weight vector of W(m, N ) satisfies the
defining relations of V (k)∗(N− j)

∗ V (k+ 1)∗ j given in [Chari and Venkatesh 2015,
Proposition 2.7], which are

x−α(r, s)=
∑

(bp)p≥0∈S(r,s)

(x−α ⊗ 1)b0(x−α ⊗ t)b1 · · · (x−α ⊗ t s)bs ,

s, r, ` ∈ N, r + s ≥ 1+ r`+ q + p,
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where q = max{0, (N − `)k}, p = max{0, j − `} and S(r, s) is the set of tuples
(bp)p≥0 satisfying b0+ · · ·+ bs = r and b1+ 2b2+ · · ·+ sbs = s. We assume that
r+s ≤m, because otherwise the claim follows from the following result of Garland
[1978]:

(xα ⊗ t)(s)(x−α ⊗ 1)(s+r)
− (−1)s x−α(r, s) ∈ U(g[t])n+[t].

Our aim is to prove that for any tuple (bp)p≥0 ∈ S(r, s) there exists p ≥ N such
that bp 6= 0. Assume this is not the case. If `≥ N we obtain

r N ≥ r + s ≥ 1+ r`≥ 1+ r N ,

which is obviously a contradiction. So assume l ≤ N − 1. It follows that

m ≥ r + s ≥ 1+ r`+ (N − `)k+ p = 1+ `(r − k)+m− j + p

and thus r ≤ k. Therefore we obtain the contradiction

1+ `(r − k)+m− j + p ≤ r + s ≤ r N ⇒ 1≤ (N − `)(r − k)− p.

Hence
W(m, N )∼= V (k)∗(N− j)

∗ V (k+ 1)∗ j .

4D. Now we will prove the second part of the theorem. For simplicity we write fi

for x−α⊗ t i , 1≤ i ≤ N −1, and consider the map sh :U(n−[t])→U(n−[t]) given
by sh( fi )= fi+1. We will need the following result from [Feigin and Feigin 2002].

Proposition 4.4. Let k1 ≤ k2 ≤ · · · ≤ kN . We have a short exact sequence of
U(n−[t])-modules

0→V (k1)∗· · ·∗V (kN−1)
sh
−→V (k1)∗· · ·∗V (kN )

f −1
0
−→V (k1)∗· · ·∗V (kN−1)→0.

Using this proposition one can construct inductively a PBW type basis of the
fusion product. To be more precise, we have

(4-4) B(k1, . . . , kN )= B(k1, . . . , kN−1)sh ∪ f0 B(k1, . . . , kN − 1),

where B( · ) denotes a basis of the appropriate fusion product.

Example. We have B(1, 2)= B(1)sh ∪ f0 B(1, 1) and hence

B(1, 2)= {1, f0}sh ∪ f0{1, f0, f 2
0 , f1} = {1, f1, f0 f1, f0, f 2

0 , f 3
0 }.

Lemma 4.5. We have the recursion formula

B(k N )=

k⋃
r=0

f Nr
0 B((k−r)N−1)sh∪

N−1⋃
j=1

k⋃
r=1

f Nr− j
0 B((k−r)N− j, (k−r+1) j−1)sh .
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Proof. The proof follows by repeated applications of (4-4); for the convenience of
the reader we present the first step:

B(k N )= B(k N−1)sh ∪ f0 B((k− 1)1, k N−1)

= B(k N−1)sh ∪ f0 B((k− 1)1, kn−2)sh ∪ f 2
0 B((k− 1)2, k N−2)

= · · · =

N−1⋃
r=0

f r
0 B((k− 1)r , k N−1−r )sh ∪ f N

0 B((k− 1)N ).

The formula now follows by proceeding in the same way with B((k− 1)N ). �

Theorem 4.6. A PBW type basis of the truncated Weyl module W(k N , N ) is given
by

B(k N )= { f i0
0 f i1

1 · · · f iN−1
N−1 | (i0, . . . , iN−1) ∈ S(k N )}.

Example. (1) For N = 1 we get that S(k) is the set of 1-tuples (i0) satisfying

i0 =

0∑
j=0

1!
1− j

i j ≤ 1! k−
−3∑
`=0

1!
(1− `)!

(1− `− 2)! b` = k,

so S(k)= {0, 1, . . . , k} and B(k)= { f j
0 | j = 0, . . . , k}.

(2) For N = 4 and k = 2 we get that S(24) is the set of quadruples (i0, i1, i2, i3)

satisfying
6i0+ 8i1+ 12i2+ 24i3 ≤ 48− 2b0,

where i0 = b0 mod 4 and

B(24)= { f i0
0 f i1

1 f i2
2 f i3

3 | (i0, i1, i2, i3) ∈ S(24)}.

Proof. The proof of Theorem 4.6 proceeds by upward induction on N . The initial
step is obvious (see also the previous example) and the induction begins. So suppose
that the theorem holds for all integers less than N .

Claim. For all M < N we have

B(k M− j , (k+ 1) j )= { f i0
0 f i1

1 · · · f iM−1
M−1 | (i0, . . . , iM−1) ∈ S(k M− j , (k+ 1) j )}.

Proof of the claim. We use induction. There is nothing to prove if j = 0. Assuming
j > 0, we obtain

B(k M− j , (k+ 1) j )

= B(k M− j , (k+ 1) j−1)sh ∪ f0 B(k M− j+1, (k+ 1) j−1)

= { f i0
0 f i1

1 · · · f iM−2
M−2 | (i0, . . . , iM−2) ∈ S(k M− j , (k+ 1) j−1)}sh

∪ f0{ f i0
0 f i1

1 · · · f iM−1
M−1 | (i0, . . . , iM−1) ∈ S(k M− j+1, (k+ 1) j−1)}.
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The shift by the map sh leads to the following description:

{ f i0
0 f i1

1 · · · f iM−2
M−2 | (i0, . . . , iM−2) ∈ S(k M− j , (k+1) j−1)}sh

=

{
f i1
1 f i2

2 · · · f iM−1
M−1

∣∣
M−1∑
p=1

M !
M− p

i p ≤ M ! k−
M−4∑̀
=1

M !
(M−`)!

(M−`−2)! b`+M( j−1)(M−2)!
}

with

i1− j + 1= b1 mod M − 1,

i`+ (b`−1 mod M − `)= b` mod M − ` for `= 2, . . . ,M − 4,
and

f0{ f i0
0 f i1

1 · · · f iM−1
M−1 | (i0, . . . , iM−1) ∈ S(k M− j+1, (k+1) j−1)}

=

{
f i0+1
0 f i1

1 · · · f iM−1
M−1

∣∣
M−1∑
p=0

M !
M− p

i p ≤ M ! k−
M−4∑̀
=0

M !
(M−`)!

(M−`−2)! b`+( j−1)(M−1)!
}

=

{
f i0
0 f i1

1 · · · f iM−1
M−1

∣∣
M−1∑
p=0

M !
M− p

i p ≤ M ! k−
M−4∑̀
=0

M !
(M−`)!

(M−`−2)! b`+ j (M−1)! , i0 ≥ 1
}

with

i0− j = b0 mod M,

i`+ (b`−1 mod M − `)= b` mod M − ` for `= 1, . . . ,M − 4.

Therefore, the claim follows with

{ f i0
0 f i1

1 · · · f iM−2
M−2 | (i0, . . . , iM−2) ∈ S(k M− j , (k+1) j−1)}sh

=

{
f 0
0 f i1

1 · · · f iM−1
M−1

∣∣
M−1∑
p=0

M !
M− p

i p ≤ M ! k−
M−4∑̀
=0

M !
(M−`)!

(M−`−2)! b`+ j (M−1)!
}
.

Now it is easy to verify with Lemma 4.5 that the theorem holds. �

The proof of Theorem 4.6 gives the following.

Corollary 4.7. A PBW type basis of the truncated Weyl module W(k N + j, N ) is
given by

{ f i0
0 f i1

1 · · · f iN−1
N−1 | (i0, . . . , iN−1) ∈ S(k N− j , (k+ 1) j )}.
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Remark. The fusion product V (1)∗N is isomorphic to the truncated Weyl module
Wloc(N , N ) and also to the local Weyl module Wloc(N ). The inductively obtained
basis B(1N ) coincides with the basis of the Weyl module Wloc(N ) constructed in
[Chari and Pressley 2001]. However, we would like to emphasize that the PBW
type basis of the truncated Weyl module W(m, N ) described in Theorem 4.3 is
different from the basis described in [Chari and Venkatesh 2015, Section 6]. For
example, we have f 3

1 ∈ B(14) but f 3
1 is not contained in their basis.
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DIFFERENTIAL HARNACK ESTIMATES
FOR POSITIVE SOLUTIONS TO HEAT EQUATION

UNDER FINSLER–RICCI FLOW

SAJJAD LAKZIAN

We prove first order differential Harnack estimates for positive solutions of
the heat equation (in the sense of distributions) under closed Finsler–Ricci
flows. We assume suitable Ricci curvature bounds throughout the flow and
also assume that the S-curvature vanishes along the flow. One of the key
tools we use is the Bochner identity for Finsler structures proved by Ohta
and Sturm (Adv. Math. 252 (2014), 429–448).

1. Introduction

In the past few decades, geometric flows and, more notably among them, the Ricci
flow have proved very useful in attacking long standing geometry and topology
questions. One important application is finding the so-called round (of constant
curvature, Einstein, soliton, etc.) metrics on manifolds by homogenizing a given
initial metric.

There is also a hope that similar methods can be applied in the Finsler setting.
One might hope to find an answer for, for instance, Professor Chern’s question
about the existence of Finsler–Einstein metrics on every smooth manifold by using
a suitable geometric flow resembling the Ricci flow.

In the Finsler setting, there are notions of Ricci and sectional curvatures, and
Bao [2007] has proposed an evolution of Finsler structures that in essence shares
a great resemblance with the Ricci flow of Riemannian metrics. The flow Bao
suggests is ∂F2/∂t =−2F2 R where R = (1/F2)Ric. In terms of the symmetric
metric tensor associated with F and Akbarzadeh’s Ricci tensor, this flow takes the
form of ∂gij/∂t =−2 Ricij which is the familiar Ricci flow.

The notion of Finsler–Ricci flow is very recent and very little has been done
about it. Some partial results regarding the existence and uniqueness of such flows
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are obtained in [Azami and Razavi 2013]. Also, the solitons of this flow have
been studied in [Bidabad and Yarahmadi 2014]. Our focus in these notes will be
to consider a positive solution of the heat equation (in the sense of distributions)
under Finsler–Ricci flow and prove first order differential Harnack estimates that
are similar to those in the Riemannian case (see [Liu 2009; Sun 2011]). The key
tools we use are the Bochner identity for Finsler metrics (pointwise and in the sense
of distributions) proven by Ohta and Sturm [2014] and, as is customary in such
estimates, the maximum principle.

We should mention that, in this paper, we are not dealing with the existence
and Sobolev regularity of such solutions (which is very important and extremely
delicate — for example, in the static case, solutions will be C2 if and only if the
structure is Riemannian). For existence and regularity in the static case see [Ohta
and Sturm 2009]. Our main theorem is the following.

Theorem 1.1. Let (Mn, F(t)), t ∈ [0, T ] be a closed Finsler–Ricci flow. Suppose
there is a real number K ∈ R and positive real numbers K1 and K2 such that, for
all t ∈ [0, T ],

(i) −K1 ≤ (Ricij (v))
n
i, j=1 ≤ K2 as quadratic forms on Tx M for all v ∈ Tx M \ {0},

in any coordinate system, {∂/∂xi }, that is orthonormal with respect to gv , and

(ii) S-curvature vanishes (see Section 2.2.7).

Let u(x, t) ∈ L2([0, T ], H 1(M)) ∩ H 1([0, T ], H−1(M)) be a positive global
solution (in the sense of distributions) of the heat equation under Finsler–Ricci flow;
i.e., for any test function φ ∈ C∞(M) and for all t ∈ [0, T ],

(1)
∫

M
φ∂t u(t, · ) dm =−

∫
M

Dφ(∇u(t, · )) dm dt.

Then, u satisfies

(2) F2(∇(log u)(t, x))− θ∂t(log u)(t, x)≤
nθ2

t
+

nθ3C1

θ − 1
+ n3/2θ2

√
C2,

for any θ > 1 and where

(3) C1 = K1 and C2 =max{K 2
1 , K 2

2 }.

Remark 1.2. Our results can be applied to any Finsler–Ricci flow of Berwald
metrics on closed manifolds, since the S-curvature vanishes for Berwald metrics
(for example, see [Ohta 2011]).

We will note that it might be possible to obtain stronger results with fewer
curvature bound conditions by using different methods such as Nash–Moser iteration
(as is done by Xia [2014] for harmonic functions in the static case).
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Integrating the differential Harnack inequalities, in a standard manner, leads to
Harnack-type inequalities.

Corollary 1.3. Let (M, F(t)), t ∈ [0, T ] be as in Theorem 1.1. Then for any two
points (x, t1), (y, t2) ∈ M × (0, T ] with t1 < t2, we get
(4)

u(x, t1)≤ u(y, t2)
(

t2
t1

)2nε

exp
{∫ 1

0

εF2(γ ′(s))|τ
2(t2− t1)

ds+C(n, ε)(t2−t1)(C1+
√

C2)

}
,

whenever ε>1/2, and for C depending on n and ε only, and where the dependencies
of C1 and C2 on our parameters are as in Theorem 1.1. Here γ is a curve joining
x and y, with γ (1) = x and γ (0) = y, and F(γ ′(s))|τ is the speed of γ at time
τ = (1− s)t2+ st1.

The organization of this paper is as follows: in Section 2, we first briefly review
some facts and results about differential Harnack estimates in the Riemannian setting
and about Finsler geometry; in Section 3, we present lemmas and computations
that we need in order to obtain a useful parabolic partial differential inequality; and
in Section 4, we will complete the proof of our main theorem.

2. Background

2.1. Differential Harnack estimates for heat equations in Riemannian Ricci flow.
The Ricci flow equation, ∂g/∂t =−2 Ric, was first proposed by Richard Hamilton
in his seminal paper [1982]. Ricci flow is a heat-type quasilinear partial differential
equation but, as is well-known, it enjoys a short-time existence and uniqueness
theorem (see [Hamilton 1982]) and has been the key tool in proving the Poincaré
and geometrization conjectures.

The gradient estimates for solutions of parabolic equations under Ricci flow are
a very important part of Ricci flow theory. Perelman in his groundbreaking work
[2002] proves such estimates for the conjugate heat equation; he then benefited from
these estimates in the analysis of his W-entropy functional. Since then there have
been many important results in this direction (for both heat equation and conjugate
heat equation) in, for example, [Kuang and Zhang 2008; Bailesteanu et al. 2010;
Cao et al. 2013; Cao and Hamilton 2009; Cao 2008], to name a few.

Since our proof, in spirit, is closer to ones in Liu [2009] and Sun [2011], we
will only mention their result without commenting on the other literature in this
direction. Their estimates for positive solutions of the heat equation under a closed
Ricci flow can be stated as follows.

Theorem [Liu 2009; Sun 2011]. Let (M, g(t)); t ∈ [0, T ] be a closed Ricci flow
solution with −K1 ≤ Ric ≤ K2 (K1, K2 > 0) along the flow. For u(x, t), a posi-
tive solution of the heat equation (1g(t) − ∂t)u(x, t) = 0, one has the first order
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gradient estimate

(5)
|∇u(x, t)|2

u2(x, t)
− θ

∂t u(x, t)
u(x, t)

≤
nθ2

t
+

nθ3K1

θ − 1
+ n

3
2 θ2(K1+ K2),

where θ > 1.

Their method of proof is to take f = log u and

(6) α := t
(
|∇u(x, t)|2

u2(x, t)
− θ

∂t u(x, t)
u(x, t)

)
= t (|∇ f |2− θ∂t f )

and apply the maximum principle to the parabolic partial differential inequality

(1g(t)−∂t)α+2D f (∇α)≥−
α

t
+

t
n
(|∇ f |2−∂t f )2−2θK1t |∇ f |2−tθ2n2(K1+K2)

2.

This is the method that we will adopt throughout the paper.

2.2. Finsler structures.

2.2.1. Finsler metric. Let M be a C∞-connected manifold. A Finsler structure
on M consists of a C∞ Finsler norm F :TM→R satisfying the following conditions:

(F1) F is C∞ on TM \ 0.

(F2) F restricted to the fibers is positively 1-homogeneous.

(F3) For any nonzero tangent vector y ∈ TM , the approximated symmetric metric
tensor defined by

(7) gy(u, v) :=
1
2
∂2

∂s∂t
F2( y+ su+ tv)|s=t=0

is positive definite.

2.2.2. Cartan tensor. One way to measure the nonlinearity of a Finsler structure is
to introduce the so-called Cartan tensor defined by

(8) C y : ⊗
3TM→ R, C y(u, v,w) :=

1
2

d
dt
[gy+tw(u, v)].

2.2.3. Legendre transform. In order to define the gradient of a function, we need
the Legendre transform, L∗ : T ∗M→ TM . For ω ∈ T ∗M , let L∗(ω) be the unique
vector y ∈ TM such that

(9) ω( y)= F∗(ω)2 and F( y)= F∗(ω),

where F∗ is the dual norm to F .
For a smooth function u : M→ R, the gradient of u is ∇u(x) := L∗(Du(x)).
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2.2.4. Geodesic spray, Chern connection and curvature tensor. It is easy to see
that the geodesic spray in the Finsler setting is of the form G = yi∂/∂xi −

2Gi (x, y)∂/∂yi , where

(10) Gi (x, y)=
1
4

gik
y

{
2
∂(gy)jk

∂xl
−
∂(gy) jl

∂xk

}
y j yl .

The nonlinear connection that we will be using in this work is the Chern connec-
tion, the connection coefficients of which are given by

(11) 0i
jk = 0

i
k j :=

1
2

gil
{
∂gl j

∂xk
−
∂gjk

∂xl
+
∂gkl

∂xj
−
∂gl j

∂yr Gr
k +

∂gjk

∂yr Gr
l −

∂gkl

∂yr Gr
j

}
,

where Gi
j := ∂Gi/∂y j and g is in fact gy.

For Berwald metrics, the geodesic coefficients Gi are quadratic in terms of y
(by definition) which immensely simplifies the formula for connection coefficients.
In fact for Berwald metrics we have 0i

jk = ∂
2Gi/∂y j∂yk .

Similar to the Riemannian setting, one uses the Chern connection (and the
associated covariant differentiation) to define the curvature tensor

(12) RV (X, Y )Z := [∇V
X ,∇

V
Y ]Z −∇

V
[X,Y ]Z ,

which, of course, depends on a nonzero vector field V .

2.2.5. Flag and Ricci curvatures. Flag curvature is defined similar to the sectional
curvature in the Riemannian setting. For a fixed flag pole v ∈ Tx M and for w ∈ Tx M ,
the flag curvature is defined by

(13) Kv(v,w) :=
gv(Rv(v,w)w, v)

gv(v, v)gv(w,w)− gv(v,w)2
.

The Ricci curvature is then the trace of the flag curvature, i.e.,

(14) Ric(v) := F2(v)

n−1∑
i=1

Kv(v, ei ),

where {e1, . . . , en−1,
v

F(v)} constitutes a gv-orthonormal basis of Tx M .

2.2.6. Akbarzadeh’s Ricci tensor. Akbarzadeh’s Ricci tensor is defined by

(15) Ricij :=
∂2

∂yi∂y j

(
Ric
2

)
.

It can be shown that the scalar Ricci curvature, Ric, and Akbarzadeh’s Ricci
tensor, Ricij , have the same geometrical implications. For further details regarding
this tensor, see [Bao and Robles 2004].
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2.2.7. S-curvature. Associated with any Finsler structure, there is one canonical
measure, called the Busemann–Hausdorff measure, which is given by

(16) dVF := σF (x) dx1 ∧ · · · ∧ dxn,

where σF (x) is the volume ratio

(17) σF (x) :=
vol(BRn (1))

vol( y ∈ Tx M : F( y) < 1)
.

The set whose volume appears in the denominator of (17) is called the indicatrix,
and there is often no known way to express its volume in terms of F .

The S-curvature, which is another measure of nonlinearity, is then defined by

(18) S( y) :=
∂Gi

∂yi (x, y)− yi ∂

∂xi
(ln σF (x)).

For more details, see [Shen 2004], for example.

2.2.8. Hessian, divergence and Laplacian. The Hessian in a Finsler structure is
defined by

(19) Hess(u)(X, Y ) := XY (u)−∇∇u
X Y (u)= g∇u(∇

∇u
X ∇u, Y ).

As usual, for a twice differentiable function u,

(20) Hess(u)
(
∂

∂xi
,
∂

∂xj

)
=

∂2u
∂xi∂xj

−0k
ij
∂u
∂xk

For a smooth measureµ=e−9dx1∧· · ·∧dxn and a vector field V , the divergence
is defined by

(21) divµV :=
n∑

i=1

(
∂Vi

∂xi
− Vi

∂9

∂xi

)
.

Now, using this divergence, one can define the distributional Laplacian of a
function u ∈ H 1(M) by 1u := divµ(∇u), i.e.,

(22)
∫

M
φ1u dµ := −

∫
M

Dφ(∇u) dµ,

for φ ∈ C∞(M).
The Finsler distributional Laplacian is nonlinear but fortunately there is a way to

relate it to the trace of the Hessian by adding an S-curvature term. Indeed, one has

(23) 1u = tr∇u Hess(u)− S(∇u).

For a proof of (23), see for instance [Wu and Xin 2007].
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2.3. Weighted Ricci curvature and Bochner–Weitzenböck formula. The notion
of the weighted Ricci curvature, RicN , of a Finsler structure equipped with a
measure µ was introduced by Ohta [2009]. Take a unit vector v ∈ Tx M and let
γ : [−ε,+ε] → M be a short geodesic whose velocity at time t = 0 is γ̇ (0) = v.
Decompose the measure µ along γ with respect to the Riemannian volume form;
i.e., let µ= e−9dvolγ̇ . Then

Ricn(v) :=

{
Ric(v)+ (9 ◦ γ )′′(0) if (9 ◦ γ )′(0)= 0,
−∞ otherwise,

(24)

RicN (v) := Ric(v)+ (9 ◦ γ )′′(0)−
(9 ◦ γ )′(0)2

N − n
when n < N <∞,(25)

Ric(v) := Ric(v)+ (9 ◦ γ )′′(0).(26)

Also RicN (λv) := λ
2 RicN (v) for λ≥ 0.

It is proven in [Ohta 2009] that the curvature bound RicN ≥ KF2 is equivalent
to the Lott–Villani–Sturm CD(K , N ) condition.

Using the weighted Ricci curvature bounds, Ohta and Sturm [2014] proved the
Bochner–Weitzenböck formulae (both pointwise and integrated versions) for Finsler
structures. For u ∈ C∞(M), the pointwise version of the identity and inequality are

1∇u
(

F2(∇u)
2

)
− D(1u)(∇u)= Ric∞(∇u)+‖∇2u‖2HS(∇u) (identity),(27)

1∇u
(

F2(∇u)
2

)
− D(1u)(∇u)≥ RicN (∇u)+

(1u)2

N
(inequality).(28)

3. Estimates

In this section we will gather all the required lemmas and estimates that will be
needed to apply the maximum principle.

Evolution of the Legendre transform. Since in the Finsler setting the gradient
is nonlinear and depends on the Legendre transform, we will need to know the
evolution of the Legendre transform under Finsler–Ricci flow.

Let (M, F) be a Finsler structure evolving under Finsler–Ricci flow. Then the
inverse of the Legendre transform is defined by

(29) (L∗)−1
: TM→ T ∗M, (L∗)−1(x, y)= (x, p), where pi = gij (x, y)y j .

To explicitly formulate the Legendre transform, we have, for any given ω ∈ Tx
∗M ,

that L∗(ω)= y ∈ Tx M , where y is the unique solution to the nonlinear system

(30) g(x, y)k1 · y1
+ · · ·+ g(x, y)kn · yn

= ωk, for k = 1, . . . , n,
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or, in the matrix form,

(31) g( y) y = ω.

Lemma 3.1. Let (M, F(t)) be a Finsler structure evolving by Finsler–Ricci flow.
Then the Legendre transform L∗ : T ∗M→ TM satisfies

(32) ∂tL∗ = 2 Rici
j L
∗
;

i.e., for any fixed 1-form ω with L∗(ω)= y = yi∂/∂xi ∈ TM , we have

(33) ∂t yi
= 2 Rici

r yr ,

where Rici
r := gij Ricjr .

Proof. Fix ω and differentiate both sides of (31) with respect to t to get

(34) [∂t g( y)] y+ g( y) ∂t y = 0.
Therefore,

(35) ∂t y =−g( y)−1 ∂t g( y) y.

Expanding the right-hand side of (35), we have, for every i ,

(36) ∂t yi
=−g( y)ij (∂t g( y))jr yr

= 2g( y)ij Ricjr ( y)yr
− g( y)ij

(
∂gjr

∂yk ∂t yk
)

yr

= 2 Rici
r ( y)yr .

Notice that the second term in the second line of (36) vanishes by Euler’s theorem.
�

Evolution of F2(∇ f ). One crucial step in the proof of the gradient estimates is to
be able to estimate the evolution of the term F2(∇ f ).

Lemma 3.2. Let (M, F(t)) be a time-dependent Finsler structure. Then

(37) ∂t [F2(∇ f )] = 2gij (D f )[∂t f ]i fj + [∂t gij
](D f ) fi fj .

Proof. Simple differentiation gives

(38) ∂t [F2(∇ f )] = ∂t [F∗(D f )2]

= ∂t [gij (D f ) fi fj ]

= 2gij (D f )[∂t f ]i fj + ∂t [gij (D f )] fi fj .

Expanding the second term of the last line in (38), we have

(39) ∂t [gij (D f )] fi fj = [∂t gij
](D f ) fi fj +

∂gij

∂yk ∂t yk(D f ) fi fj .
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Using Euler’s theorem, the second term of the right-hand side of (39) vanishes. �

Lemma 3.3. Suppose F is evolving by the Finsler–Ricci flow equation. Then

(40) ∂t [F2(∇ f )] = 2D(∂t f )(∇ f )+ 2 Ricij(D f ) fi fj .

Proof. It is standard to see that under Finsler–Ricci flow, we have

(41) ∂t gij
= 2 Ricij ,

where, as before, Ricij
:= gir g js Ricrs . �

4. Proof of main theorem

In this section we will complete the proof of our main theorem. Throughout the
rest of these notes, we consider a solution u of the heat equation. The Laplacian,
gradient and Legendre transform are all with respect to V := ∇u and are valid on
Mu := {x ∈ M : ∇u(x) 6= 0}.

Let σ(t, x)= t∂t f (t, x) where f = log u. Then we have g∇ f = gV . Let

(42) α(t, x) := t{F2(∇ f (t, x))− θ ∂t f (t, x)} = t F2(∇ f (t, x))− θσ.

Lemma 4.1. In the sense of distributions, σ(t, x) satisfies the parabolic differential
equality

(43) 1σ − ∂tσ +
σ

t
+ 2Dσ(∇ f )= t{−2 Ricij(∇ f ) fi fj − 2(Ric)kl(∇ f ) fkl}.

Proof. We first note that, for any nonnegative test function φ ∈ H 1([0, T ] × M)
whose support is included in the domain of the local coordinate,

(44)
∂t(D(tφ)(∇ f ))= D(∂t(tφ))(∇ f )+ D(tφ)(∇(∂t f ))+ 2(Ric)ij(∇ f )

∂(tφ)
∂xi

∂ f
∂xj

.

Indeed,

(45) ∂t(D(tφ)(∇ f ))

= D(∂t(tφ))(∇ f )+ D(tφ)(∂t(L∗(D f ))

= D(∂t(tφ))(∇ f )+ D(tφ)(∂t(L∗)(D f )+L∗(D∂t f ))

= D(∂t(tφ))(∇ f )+ D(tφ)(∂t(L∗)(D f ))+ D(tφ)(L∗(D∂t f ))

= D(∂t(tφ))(∇ f )+ D(tφ)(∇(∂t f ))+ 2gs j (Ric)is(∇ f )
∂(tφ)
∂xi

∂ f
∂xj

= D(∂t(tφ))(∇ f )+ D(tφ)(∇(∂t f ))+ 2(Ric)ij(∇ f )
∂(tφ)
∂xi

∂ f
∂xj

.



456 SAJJAD LAKZIAN

That is,

(46)
−D(tφ)(∇(∂t f ))=−∂t(D(tφ)(∇ f ))+D(∂t(tφ))(∇ f )+2(Ric)ij(∇ f )

∂(tφ)
∂xi

∂ f
∂xj

.

Multiplying the left-hand side of (43) by φ, integrating and then substituting
(46), we get

(47) A=
∫ T

0

∫
M

{
−Dφ(∇σ)+ ∂tφ · σ +

φσ

t
+ 2φDσ(∇ f )

}
dm dt

=

∫ T

0

∫
M

{
−D(tφ)(∇(∂t f ))+ ∂t(tφ)∂t f + 2tφD(∂t f )(∇ f )

}
dm dt

=

∫ T

0

∫
M

{
D(∂t(tφ))(∇ f )+ ∂t(tφ)(1 f + F2(∇ f ))

+ 2(Ric)ij(∇ f )
∂(tφ)
∂xi

∂ f
∂xj
+ 2tφD(∂t f )(∇ f )

}
dm dt.

Using the estimates we have obtained for ∂t [F(∇ f )2] in Lemmas 3.2 and 3.3,
we arrive at

(48) A=
∫ T

0

∫
M

{
D(∂t(tφ))(∇ f )+ ∂t(tφ)(1 f )+ ∂t(tφ)(F2(∇ f ))

+2(Ric)ij(∇ f )
∂(tφ)
∂xi

∂ f
∂xj
+ 2tφD(∂t f )(∇ f )

}
dm dt

=

∫ T

0

∫
M

{
∂t(tφ)(F2(∇ f ))+ 2(Ric)ij(∇ f )

∂(tφ)
∂xi

∂ f
∂xj
+ tφ∂t [F(∇ f )2]

−2tφ Ricij(∇ f ) fi fj

}
dm dt

=

∫ T

0

∫
M

tφ
{
−2 Ricij(∇ f ) fi fj − 2 Ricij(∇ f ) fij

}
dm dt.

Notice that Euler’s theorem has been used in the last line of (48). �

Now we can compute a parabolic partial differential inequality for α(t, x) with
a similar left-hand side.

Lemma 4.2. In the sense of distributions, α(t, x) satisfies

(49) 1Vα+ 2Dα(∇ f )− ∂tα+
α

t
= B,

where

B = θ(2t Ricij(∇ f ) fi fj + 2t Rickl(∇ f ) fkl)

+ 2t Ric(∇ f )+ 2t‖∇2 f ‖2HS(∇ f )− 2t Ricij(∇ f ) fi fj .
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Proof. For a nonnegative test function φ, one computes

(50)
∫ T

0

∫
M

{
−Dφ(∇α)+ ∂tφα+

φα

t
+ 2φDα(∇ f )

}
dm dt

=−θ A+
∫ T

0

∫
M

{
−t Dφ

(
∇(F2(∇ f ))

)
+ ∂tφ(t F2(∇ f ))

+φ(F2(∇ f ))+ 2tφD(F2(∇ f ))(∇ f )
}

dm dt

=−θ A+
∫ T

0

∫
M

{
−t Dφ

(
∇(F2(∇ f ))

)
−φ · ∂t

(
t (F2(∇ f ))

)
+φ(F2(∇ f ))+ 2tφD(F2(∇ f ))(∇ f )

}
dm dt

=−θ A+
∫ T

0

∫
M

{
−t Dφ

(
∇(F2(∇ f ))

)
−φ ·

(
F2(∇ f )+ t∂t(F2(∇ f ))

)
+φ(F2(∇ f ))+ 2tφD(F2(∇ f ))(∇ f )

}
dm dt

=−θ A+
∫ T

0

∫
M

{
−t Dφ

(
∇(F2(∇ f ))

)
−φ · t∂t(F2(∇ f ))

+ 2tφD(F2(∇ f ))(∇ f )
}

dm dt,

where A is as in (48).
Again using the estimates for ∂t [F(∇ f )2] (as in Lemmas 3.2 and 3.3), we arrive at

(51)
∫ T

0

∫
M

{
−Dφ(∇α)+ ∂tφ ·α+

φα

t
+ 2φDα(∇ f )

}
dm dt

=−θ A+
∫ T

0

∫
M

{
−t Dφ

(
∇(F2(∇ f ))

)
−φ · t∂t(F2(∇ f ))

+ 2tφD(F2(∇ f ))(∇ f )
}

dm dt

=−θ A+
∫ T

0

∫
M

{
−t Dφ

(
∇(F2(∇ f ))

)
− 2tφD(∂t f )(∇ f )

− 2tφ Ricij(∇ f ) fi fj + 2tφD(F2(∇ f ))(∇ f )
}

dm dt

=−θ A+
∫ T

0

∫
M

{
−t Dφ

(
∇(F2(∇ f ))

)
− 2tφD(1 f )(∇ f )

− 2tφD(F2(∇ f ))(∇ f )− 2tφ Ricij fi fj

+ 2tφD(F2(∇ f ))(∇ f )
}

dm dt

=−θ A+
∫ T

0

∫
M

{
−t Dφ

(
∇(F2(∇ f ))

)
− 2tφD(1 f )(∇ f )− 2tφ Ricij(∇ f ) fi fj

}
dm dt.
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By applying the Bochner–Weitzenböck formula (proven in [Ohta and Sturm
2014]; see also Section 2.3) and noticing that S= 0 implies Ric∞(v)= Ric(v), we
can continue as follows:

−θ A+
∫ T

0

∫
M

{
−t Dφ

(
∇(F2(∇ f ))

)
− 2tφD(1 f )(∇ f )− 2tφ Ricij fi fj

}
dm dt

=−θ A+
∫ T

0

∫
M
φ
{
2t Ric(∇ f )+ 2t‖∇2 f ‖2HS(∇ f )− 2t Ricij(∇ f ) fi fj

}
dm dt.

Now, substituting A from (47), we have

B = θ(2t Ricij(∇ f ) fi fj + 2t Rickl(∇ f ) fkl)+ 2t Ric(∇ f )

+ 2t‖∇2 f ‖2HS(∇ f )− 2t Ricij(∇ f ) fi fj . �

Proof of Theorem 1.1. Assume the curvature bounds given in the statement of
Theorem 1.1, and assume that the S-curvature vanishes. The constants obtained
below all depend on our curvature bounds and the ellipticity of the flow.

Let’s start with B(t, x):

B(t, x)= θ(2t Ricij(∇ f ) fi fj + 2t Rickl(∇ f ) fkl)+ 2t Ric(∇ f )

+ 2t‖∇2 f ‖2HS(∇ f )− 2t Ricij(∇ f ) fi fj .

Young’s inequality tells us that

(52) |Rickl fkl | ≤
θ

2
(Rickl)2+

1
2θ

f 2
kl,

and therefore

(53) 2θ t |Rickl fkl | ≤ tθ2(Rickl)2+ t f 2
kl .

Pick a normal coordinate system with respect to g∇ f , with ∇ f (x) = ∂/∂x1 as
well as 01

ij (∇ f (x))= 0 for all i , j . Then

(54) Ricij(∇ f )= Ricij (∇ f ), ‖∇2 f ‖2HS(∇ f ) =
∑

f 2
ij ,

n∑
i=1

fii =1 f (x),

and consequently

(55) B(t, x)≥ 2tθ Ricij (∇ f ) fi fj − t
∑

θ2(Rickl)
2
− t

∑
f 2
kl

+ 2t Ric(∇ f )+ 2t‖∇2 f ‖2HS(∇ f )− 2t Ricij (∇ f ) fi fj

≥−2tθK1 F2(∇ f )− 2t K1 F2(∇ f )+ t
∑

f 2
ij

− tθ2n2C2+ 2t K1 F2(∇ f ).
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On the other hand, one computes

(56)
∑

f 2
ij ≥

∑
f 2
ii ≥

1
n

(∑
fii

)2
=

1
n
(1 f )2.

Hence,

(57) t
∑

f 2
ij ≥

t
n
(1 f )2.

Putting all the above estimates together and noting that θ > 1, we get

B(t, x)≥
t
n
(1 f )2− 2tθK1 F2(∇ f )− 2t K1 F2(∇ f )− tθ2n2C2+ 2t K1 F2(∇ f )

≥
t
n
(1 f )2− 2tθK1 F2(∇ f )− tθ2n2C2.

Replacing the term 1 f with (F(∇ f )2− ∂t f ), we get the inequality

(58) B(t, x)≥
t
n
(F(∇ f )2− ∂t f )2− 2tθC1 F2(∇ f )− tθ2n2C2,

where

C1 = K1,(59)

C2 =max{K 2
1 , K 2

2 }.(60)

This means that

(61) 1Vα+ 2Dα(∇ f )− ∂tα

≥−
α

t
+

t
n
(F(∇ f )2− ∂t f )2− 2tθC1 F2(∇ f )− tθ2n2C2.

This inequality is exactly of the form that appears in [Liu 2009], and a computa-
tion similar to the one at the end of the proof of [Liu 2009, Theorem 2] (using the
quadratic formula and maximum principle) gives the desired result. For the sake of
clarity, we will repeat the computation here.

Let

(62) ᾱ := α− t
nθ3C1

(θ − 1)
− tn3/2θ2

√
C2.

Suppose the maximum of ᾱ is attained at (x0, t0) and suppose ᾱ(x0, t0) > nθ2

(which implicitly implies t0 > 0). Therefore, at (x0, t0), we have

(63) 0≥ (1− ∂t)ᾱ ≥ (1− ∂t)α.

Let w := F2(∇ f ) and z := ∂t f . Then in terms of w and z we have

(64) 0≥−
α

t0
+

t0
n
(w− z)2− 2t0θC1w− t0θ2n2C2.
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By the quadratic formula, we get

(65)
t0
n
(w− z)2− 2t0θC1w

=
t0
n

(
1
θ2 (w− θ z)2+

(
θ − 1
θ

)2

w2
− 2θnC1w+ 2

(
θ − 1
θ2 w

)
(w− θ z)

)
≥

t0
n

(
1
θ2 (w− θ z)2−

θ4n2C2
1

(θ − 1)2
+ 2

(
θ − 1
θ2 w

)
(w− θ z)

)
.

Therefore,

(66) 0≥
t0

nθ2

(
α

t0

)2

−
α

t0
−

nθ4C2
1

(θ − 1)2
t0− t0θ2n2C2+

2t0
n
θ − 1
θ2 F2(∇ f )

(
α

t0

)
≥

t0
nθ2

(
α

t0

)2

−
α

t0
−

nθ4C2
1

(θ − 1)2
t0− t0θ2n2C2.

Using the quadratic formula one more time, (66) implies that

(67)
α

t0
≤

nθ2

t0
+

nθ3C1

θ − 1
+ n

3
2 θ2
√

C2,

which in turn implies

(68) ᾱ(x0, t0)≤ nθ2,

and this is a contradiction. Therefore,

(69) F2(∇(log u)(t, x))− θ∂t(log u)(t, x)≤
nθ2

t
+

nθ3C1

(θ − 1)
+ n3/2θ2

√
C2,

with C1 and C2 as in (59) and (60). �

Proof of Corollary 1.3. From Theorem 1.1, we know that

(70) F2(∇(log u)(t, x))− θ∂t(log u)(t, x)≤
nθ2

t
+C(n, θ)(C1+

√
C2).

Let l(s) := ln u(γ (s), τ (s))= f (γ (s), τ (s)). Then

(71)
∂l(s)
∂s
= (t2− t1)

(
D f (γ̇ (s))

t2− t1
− ∂t f

)
≤ (t2− t1)

(
F(∇ f )F(γ̇ )

t2− t1
− ∂t f

)
≤ (t2− t1)

(
εF2(γ̇ )|τ

2(t2− t1)2
+

1
2ε

F2(∇ f )− ∂t f
)

≤
εF2(γ̇ )|τ

2(t2− t1)
+ (t2− t1)

(
2nε
τ
+C(n, ε)(C1+

√
C2)

)
.
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Integrating this inequality gives

ln
u(x, t1)
u(y, t2)

=

∫ 1

0

∂l(s)
∂s

ds

≤

∫ 1

0

εF2(γ̇ )|τ

2(t2− t1)
ds+C(n, ε)(t2− t1)(C1+

√
C2)+ 2εn ln

t2
t1
. �
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ON THE ONE-ENDEDNESS OF GRAPHS OF GROUPS

NICHOLAS TOUIKAN

We give a technical result that implies a straightforward necessary and suffi-
cient condition for a graph of groups with virtually cyclic edge groups to be
one-ended. For arbitrary graphs of groups, we show that if their fundamen-
tal group is not one-ended, then we can blow up vertex groups to graphs of
groups with simpler vertex and edge groups. As an application, we general-
ize a theorem of Swarup to decompositions of virtually free groups.

1. Introduction

A finitely generated group G = 〈S〉 is said to be one-ended if the corresponding
Cayley graph Cay(G, S) cannot be separated into two or more infinite components
by removing a finite subset. Otherwise G is said to be many-ended. It is a classical
result due to Stallings [1971] that a many-ended group decomposes as either an
amalgamated free product or an HNN extension over a finite group.

Given the Bass–Serre correspondence between group actions on simplicial trees
and their decompositions, or splittings, as (fundamental groups of) graphs of groups
(see [Serre 1980]), a finitely generated group G is many-ended if and only if it acts
minimally, without inversions, and cocompactly on a simplicial tree T in which for
some edge e the stabilizer Ge is finite.

It is often the case that a graph of groups with many-ended vertex groups is
itself one-ended. For example, the fundamental group of a closed surface is one-
ended but it is an amalgamated free product of free groups, which are many-ended.
Theorem 3.1, stated and proved in Section 3, essentially characterizes one-ended
graphs of groups. This result is rather technical, but has many “nontechnical”
corollaries which we now present.

We say that G is one-ended relative to a collection H of subgroups if for any
minimal nontrivial G-tree T with finite edge stabilizers, there exists a subgroup
H ∈H that acts without a global fixed point. Otherwise G is said to be many-ended
relative to H. In this case, G admits a nontrivial splitting as a graph of groups relative
to H (i.e., groups in H are conjugate into vertex groups) with finite edge groups.

MSC2010: primary 20E06, 20E08; secondary 57M07, 57M60, 57M20.
Keywords: group theory, groups acting on trees, Bass–Serre theory, ends of groups, square

complexes.
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Corollary 1.1. If G1 is one-ended relative to a collection H1 ∪ {C1}, and G2 is
one-ended relative to H2 ∪ {C2} with C1 ≈ C2 virtually cyclic groups, then any free
product with amalgamation of the form

G1 ∗C1=C2 G2

is one-ended relative to H1 ∪H2.

In the case of graphs of free groups with cyclic edge groups, this corollary
(actually its natural generalization, see Corollary 1.5) is proved in [Wilton 2012,
Theorem 18] and implied by results in [Diao and Feighn 2005]. Corollary 1.1
is false if we do not require the amalgamating subgroups to be virtually cyclic
or, synonymously, two-ended. Nonetheless, we can still understand the failure of
one-endedness of general graphs of groups.

Definition 1.2. A G-equivariant map S → T of simplicial G-trees is called a
collapse if T is obtained by identifying some edge orbits of S to points. In this
case we also say that S is obtained from T by a blow up. We call the preimage
qTv ⊂ S of a vertex v ∈ T its blowup.

Definition 1.3. We write H 4 G to signify that G splits essentially as a graph of
groups with finite edge groups and H is a vertex group. A group G is accessible if
it admits no infinite proper chains

G � G1 � G2 � . . . .

For example, if F is a free group and H 4 F , then H is a free factor of F . This
next theorem, a formal consequence of Theorem 3.1, states that if a graph of groups
with finitely generated infinite edge group is not one-ended, then we can blow up
some of its vertex groups.

Theorem 1.4. Suppose that T is a G-tree (in which a collection of subgroups H

act elliptically) with infinite edge groups, and that G is not one-ended relative to
H. Then there is a vertex v ∈ Vertices(T ) and an edge e ∈ Edges(T ) with v ∈ e
such that the orbit of v can be blown up with Gv acting minimally on the nontrivial
blowups qTv satisfying the following properties:

• Ge ≤ Gv is the stabilizer of a vertex in qTv.

• The edge groups of qTv are conjugate in Gv to the vertex groups of an essential
amalgamated free product or HNN decomposition of Ge with a finite edge
group.

In particular, in the tree S obtained by blowing up the orbit of v in T to qTv, each
vertex or edge stabilizer of S is 4 a vertex or edge stabilizer of T , and at least one
of these inclusions is strict. Furthermore the groups in H act elliptically on S.
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We note that blowing up a G-tree is equivalent to refining a graph of groups.
If G acts on a tree with accessible vertex and edge stabilizers then the order ≺
actually tells us that the vertex groups of the blowup given by Theorem 1.4 have
lower complexity, in the sense that the process of successively blowing up vertex
groups in this manner must terminate in finitely many steps.

Accessible groups, in turn, are abundant. Linnell [1983] showed that if there is a
global bound on the order of finite order elements in a finitely generated group, then
the group is accessible. Dunwoody [1985] showed that finitely presented groups
are accessible. We now use Theorem 1.4 to give a proof of Corollary 1.1.

Proof of Corollary 1.1. We show the contrapositive. Let T be the Bass–Serre tree
dual to the splitting G = G1 ∗C G2, and suppose that G is not one-ended relative to
H=H1 ∪H2. Note that any decomposition of a virtually cyclic group as an HNN
extension or an essential amalgamated free product must have finite edge groups. It
follows that in all cases, by Theorem 1.4, some orbit of vertices Gv can be blown
up to minimal gGvg−1-trees with finite edge groups. This implies that one of the
vertex groups Gi fixing some vertex v ∈ Vertices(T ) acts minimally on qTv with
finite edge stabilizers, with

Hi = {H ∈H | H ∩Gi 6= {1}}

and Ci = Ge for some v ∈ e ∈ Edges(T ) acting elliptically. It follows that Gi is
not one-ended relative to Hi ∪ {C}. �

This proof is easily adapted to give:

Corollary 1.5. The fundamental group G of a graph of groups with two-ended
edge groups is one-ended (relative to a collection H of subgroups) if and only if
every vertex group Gv is one-ended relative to the incident edge groups (and the
collection {H g

∩Gv | g ∈ G, H ∈H}).

Using the full strength of Theorem 3.1, we also generalize a result of Swarup
[1986] on the decomposition of free groups to virtually free groups. This result was
already partially generalized by Cashen [2012] to decompositions of virtually free
groups with virtually cyclic edge groups.

Theorem 1.6. Let G be finitely generated and virtually free.

(1) If G splits as an amalgamated free product G= A∗C B with C finitely generated
and infinite, then there is some C1 4 C such that C1 4 A or C1 4 B.

(2) If G splits as an HNN extension G = A∗C,t with C finitely generated and
infinite, then there is an infinite subgroup C1 4 C and a splitting 1 of A as
a graph of groups with finite edge groups relative to {C1, t−1C1t} such that
either C1 or t−1C1t is a vertex group of 1.
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Unlike in Swarup’s proof, we do not use homological methods. Our proof is more
along the lines of the geometric arguments found in [Wilton 2012; Louder 2008;
Bestvina and Feighn 1994; Diao and Feighn 2005] using graphs of spaces X with
π1(X)= G. The presence of torsion, however, can make the attaching maps in the
graphs of spaces difficult to describe. By using the more abstract G-cocompact core
of the product of two G-trees [Guirardel 2005], we sidestep these difficulties. The
core has been used before to study pairs of group splittings. In particular, Fujiwara
and Papasoglu [2006] use it to show the existence of QH subgroups for one-ended
groups that have hyperbolic-hyperbolic pairs of slender splittings; this is the main
technicality in constructing group theoretical JSJ decompositions. Although it could
be noted that the action of our group on the core gives rise to a G-orbihedron à
la [Haefliger 1991], we will not need this machinery; in fact, modulo classical
Bass–Serre theory and Guirardel’s Core Theorem for simplicial trees (Theorem 2.3,
of which we sketch a proof), our argument is self-contained.

2. Preliminaries

Group actions. All group actions will be from the left. Let X be a G-set. If S ⊂ X
is a subset, we denote by GS the (setwise) stabilizer {g ∈ G | gS = S}. If S = {x} is
a singleton, then we write Gx instead of G{x}. We call a subset S ⊂ X G-regular if
for any x, y ∈ S in the same G-orbit, there is some g ∈ GS such that gx = y. The
following lemma is immediate.

Lemma 2.1. Let X be a G-set. If S ⊂ X is G-regular, then we have an embedding

GS\S ↪→ G\X.

In this paper, all trees will be simplicial. In particular we consider them to be topo-
logical spaces, equipped with a CW-structure, which also makes them into graphs.
We further metrize these graphs by viewing edges as real intervals of length 1.

All G-trees T will be without inversions, meaning that for any edge e∈Edges(T ),
if ge= e then g fixes e pointwise. Equivalently, if u, v ∈Vertices(T ) are the vertices
at the ends of the edge e, then we have inclusions

Gu ≥ Ge ≤ Gv.

We call vertex stabilizers vertex groups, and edge stabilizers edge groups. We
assume the reader is familiar with Bass–Serre theory and we switch freely between
G-trees and splittings as graphs of groups, viewing the two as being equivalent.

A G-tree T is essential if every edge of T divides it into two infinite components.
T is minimal if there are no proper subtrees S ⊂ T with GS = G. T is cocompact
if G\T is compact. An element g or a subgroup H of G are said to act elliptically
on T if the groups 〈g〉 or H fix some v ∈ Vertices(T ).
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Products of trees, cores, and leaf spaces. If T1 and T2 are G-trees, then we have
a natural induced action G y T1 × T2. Since the trees T1, T2 are 1-dimensional
CW complexes, we may consider their product T1× T2 as a square complex, i.e.,
a 2-dimensional CW complex whose cells consist of vertices, edges, and squares.
There are natural projections pi : T1×T2� Ti . The following lemma is immediate.

Lemma 2.2. If the actions G y T1 and G y T2 are without inversions, then so
is the action G y T1 × T2, i.e., if σ ⊃ ε is an inclusion of cells (e.g., a square
containing an edge), then Gσ ≤ Gε .

If H is a collection of subgroups acting elliptically on T1 and T2, then each
subgroup in H fixes a vertex of T1× T2.

The action G y T1× T2 is not cocompact in general. It turns out, however, that
we can extract a useful subset, namely Guirardel’s cocompact core. We state the
special case of his result applied to simplicial trees.

Theorem 2.3 (the Core Theorem, see [Guirardel 2005, Théorème principal and
Corollaire 8.2]). Let G y T1, G y T2 be two minimal actions of a finitely generated
group G on simplicial trees T1, T2 with finitely generated edge stabilizers. Suppose
furthermore that T1, T2 do not equivariantly collapse to a common nontrivial tree.

Then there is a G-invariant subset C ⊂ T1 × T2, called the core of the action
G y T1× T2, which is defined as the smallest connected G-invariant subset such
that the restrictions of the projections pi |C : C� Ti have connected fibers. The
quotient S= G\C is compact.

Suppose for the remainder of this section that T1, T2 satisfy the hypotheses of
Theorem 2.3. The restrictions of the projections pi |σ : σ → Ti are well defined
for each cell (i.e., a vertex, edge, square) σ ⊂ T1 × T2. If σ is a square then the
projection is onto an edge pi (σ ) ∈ Edges(T )i . If λ1, λ2 ⊂ σ are two fibers of such
a projection (see Figure 1), we can define a distance dσi (λ1, λ2) to be the distance

pi

Figure 1. The projection of a square on an edge and some of its fibers.

in pi (σ ) between the points pi (λ1) pi (λ2), thus putting a metric dσi on the set of
pi -fibers in a cell σ . We now define the i -leaf space Li of a subset Z ⊂ T1× T2 to
be the set of connected unions of pi -fibers of cells in Z , called leaves, so that we
see Z as being foliated by the leaves in Li . Li is a 1-complex with metrized edges;
therefore we can endow Li with the path metric di . As a consequence of the direct
product structure we have the following.

Lemma 2.4. If Z ⊂ T1× T2, then the leaf spaces Li are forests (see Figure 2).
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Figure 2. The i-leaves in a square complex and the resulting leaf
space, which is a tree.

If C⊂ T1× T2 is a core then the leaf spaces Li are homeomorphic to the trees
Ti . Later, however, we will be performing operations that will alter the leaf spaces.

Induced splittings. Let v ∈Vertices(Ti ), e ∈ Edges(Ti ) and let me be the midpoint
of e. Let τv = p−1

i ({v})∩C and τe= p−1
i ({me})∩C. By Theorem 2.3 the preimages

τv, τe are connected and are therefore leaves in Li .
Since we have an action G y C, since τv, τe are defined as Ti -point preimages

via a G-equivariant map, and since Gv,Ge are exactly the stabilizers of these points
v,me, the subsets τv, τe ≤C are G-regular. So, by Lemma 2.1 we have embeddings

Gv\τv ↪→ G\C←↩ Ge\τe.

By Theorem 2.3, G\C is compact so the quotients Gv\τv,Gv\τv must be as well.
Moreover, because τv, τe are contained in pi -fibers, for j 6= i the restrictions

p j |τv : τv→ T j , p j |τe : τe→ T j

are injective. Finally, the projection p j |C :C� T j is G-equivariant. We have shown
the following.

Lemma 2.5. If v ∈ Vertices(Ti ), e ∈ Edges(Ti ), j 6= i , then the fibers τv, τe are
mapped injectively via p j to subtrees that are Gv,Ge-invariant, respectively.
Viewed as subsets of the core C ⊂ T1 × T2, τv and τe coincide with their j-leaf
spaces.

The actions Ge y τe,Gv y τv are cocompact. Moreover τv, τe are infinite if
and only if the actions of the subgroups Gv y T j ,Ge y T j are without global fixed
points.

The Gv,Ge-trees τv, τe give splittings induced by the action on T j . The blowups
of Theorem 3.1 will be obtained by modifying the trees τv. For aficionados of
CAT(0) cube complexes, it is worth remarking that the core C is a CAT(0) square
complex, in fact a VH-complex, and that the set of fibers τe, e ∈ Edges(Ti ) is the
set of hyperplanes.

Spurs, free faces, and cleavings. In the previous subsection we obtained cocom-
pact Gv,Ge-trees τv, τe. We say a tree has a spur if it has a vertex of degree 1. An
edge adjacent to a spur is called a hair. We now give a shaving process.
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Lemma 2.6. Let T be a cocompact G-tree. T is minimal if T doesn’t have any
spurs. If T is not minimal, then we can obtain the minimal subtree T (G) as the
final term of a finite sequence

T = T0, . . . , Tk = T (G),

where Ti+1 is obtained from Ti by G-equivariantly contracting one G-orbit of hairs
to points.

Proof. Let v ∈ Vertices(T ) be a spur adjacent to an edge e ∈ Edges(T ) and let
u ∈ Vertices(T ) be the other endpoint of e. The map T → T obtained by G-
equivariantly collapsing ge onto gu for g ∈ G is a deformation retraction onto a
proper G-invariant subtree, so T is not minimal.

Suppose now that T is not minimal. Then there is some proper G-invariant
subtree S ⊂ T . Let K be the closure of some connected component of T \ S. Then
K ∩ S = {v} for some v ∈ Vertices(S). Since S is G-invariant and connected, we
must have G K ≤ Gv. It follows that for any w ∈ Vertices(K ) and any g ∈ G K the
distance dT (w, v)= dT (gw, v), i.e., the action of G K on K is the action on a rooted
tree with root v. Since K is G-regular, we have an embedding G K \K ↪→ G\T
which is compact; thus K must have finite radius since G K preserves distances
from the root.

Since K is a rooted tree with finite diameter it must have a nonroot vertex of
valence 1. By the argument at the beginning of the proof, we can G K -equivariantly
collapse hairs, and since G K y K is cocompact, after finitely many collapses we
will have collapsed K to v. Again since G y T is cocompact, there are only finitely
many orbits of connected components of T \ S, so the result follows. �

If σ is a square in some Z ⊂ T1× T2, then we say an edge ε ⊂ σ is a free face
if it is only contained in one square. The following terminology is due to Wise
[2004].

Definition 2.7. Let e ∈ Edges(Ti ) and let τe ⊂ C be the fiber of e as in Lemma 2.5.
The hypercarrier HC(τe) is the union of squares of C intersecting τe nontrivially.

We note that for e ∈ Ti , a hypercarrier is mapped to an edge of Ti and that HC(τe)

is homeomorphic to τe×[−1, 1].

Definition 2.8. We say an edge ε in some Z ⊂ T1×T2 is i-transverse if it coincides
with its i-leaf space, or equivalently if it is mapped monomorphically via pi |ε , or
equivalently if it is contained in a j-leaf.

An immediate consequence of Lemma 2.6 and Figure 3 is the following.

Lemma 2.9. Let e ∈ Edges(Ti ). If Ge y τe is not minimal then HC(τe) has a
square σ containing an i-transverse free face ε.
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ε

. . . . . .e
pi

Figure 3. A spur of τe and the corresponding free face ε in the
hypercarrier HC(τe).

We now borrow some terminology from [Diao and Feighn 2005].

Definition 2.10. A simplicial map S→ T between two trees that is obtained by
identifying edges sharing a common vertex is called a folding. If T is obtained
from S by a folding, then we say S is obtained from T by a cleaving.

The next lemma is now immediate (see Figure 4).

Lemma 2.11. Let ε ⊂ Z ⊂ T1× T2 be an i-transverse free face in a square σ . If
we collapse σ onto the face opposite to ε, then the leaf space Li is unchanged and
the leaf space L j gets cleaved.

In fact this lemma can be used backwards to give a proof of Theorem 2.3. We will
sketch it, leaving the details to an interested reader familiar with folding sequences
[Bestvina and Feighn 1991; Stallings 1991; Dunwoody 1998; Kapovich et al. 2005].

Sketch of the proof of Theorem 2.3. Pick some vertex v ∈ T1× T2 and consider its
G-orbit. We can add finitely many connected G-orbits of edges to get a connected
G-complex Gv⊂C1⊂ T1×T2. C1 has leaf spaces L1,L2 which project onto T1, T2.
The disconnectedness of the fibers of the projections pi |C1 :C1� Ti coincides with

ε Li

L j

Li

L j

Figure 4. The effects of collapsing an i-transverse free face ε: the
leaf space L j gets cleaved, Li remains unchanged. On the right
the j-leaves are drawn.
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the failure of injectivity of the projections Li � Ti . By Lemma 2.11 (backwards)
adding a square can give a folding of one of the leaf spaces. Since the edge groups
of T1, T2 are finitely generated, and because adding all the squares of T1× T2 folds
Li to Ti , it follows that the leaf spaces Li can be made to coincide with Ti after
adding finitely many G-orbits of squares. �

3. The statement and proof of the main theorem

For this section we fix a collection H of subgroups of G. We let T∞ and TF be
cocompact, minimal G-trees in which the subgroups in H act elliptically. We further
require that edge groups of T∞ are infinite and finitely generated and that edge
groups of TF are finite. Note that any nontrivial tree obtained by a collapse of
T∞ has infinite edge groups whereas any collapse of TF has finite edge groups.
It follows that T∞ and TF, having no nontrivial common collapses, satisfy the
hypotheses of Theorem 2.3.

Theorem 3.1 (Main Theorem). Let H be a collection of subgroups of G and let T∞
and TF be cocompact, minimal G-trees in which the subgroups in H act elliptically.
Suppose furthermore that the edge groups of TF are finite and that the edge groups
of T∞ are infinite. Then there exists a vertex v ∈ Vertices(T∞) and a nontrivial,
cocompact, minimal Gv-tree qTv such that

(i) for every f ∈ Edges(T∞) incident to v the subgroups G f ≤ Gv act elliptically
on qTv, and

(ii) for every H ∈H and g ∈G the subgroup H g
∩Gv ≤Gv acts elliptically on qTv .

Moreover, either

(1) every edge group of qTv is finite, or

(2) there is some edge e ∈ Edges(T∞), incident to v, that not only satisfies (i), but
also satisfies the following:
(a) Ge splits essentially as an amalgamated free product or an HNN extension

with finite edge group.
(b) Ge = Gve for some vertex ve ∈ Vertices

(
qTv
)
.

(c) The edge stabilizers of qTv are conjugate in Gv to the vertex group(s) of the
splitting of Ge found in (a); in particular, the edge groups of qTv are ≺ Ge.

(d) The vertex groups of qTv that are not conjugate in Gv to Ge are also vertex
groups of a one-edge splitting of Gv with a finite edge group; in particular
these vertex groups of qTv are ≺ Gv.

An example of what happens in situation (2) is shown in Figure 7.

Proof. Let C be the core of T∞× TF. The∞-leaf space L∞ is the tree T∞, and we
can see C as a tree of spaces (see [Scott and Wall 1979] for details) which is a union
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of vertex spaces τv for v ∈ Vertices(T∞) and edge spaces HC(τe) = τe × [−1, 1]
for e ∈ Edges(T∞) attached to the τv along the subspaces τe×{±1}.

It may be that for some e∈Edges(T∞), the Ge-trees τe are not minimal. By Lem-
mas 2.9, 2.6, and 2.11, we can repeatedly G-equivariantly collapse∞-transverse
free faces, so that after finitely many steps we obtain a shaved core C′s such that the
τe ∩C′s are minimal Ge-trees. Although the F-leaf space was cleaved repeatedly in
the shaving process given by Lemma 2.6, the∞-leaf space is unchanged. We still
write L∞ = T∞.

We now construct a complex Cs ⊂C′s ⊂C, called the∞-minimal core. Its princi-
pal feature is that for every v∈Vertices(T∞) and e∈Edges(T∞), the trees τv∩Cs and
τe∩Cs are minimal Gv- and Ge-trees, respectively. Define HC′S

(τe)=HC(τe)∩C′s .
We call HC′S

(τe) the C′s-hypercarrier attached to a vertex space τv in C′s . Note that
τe∩C′s naturally projects injectively into τv as a minimal Ge-invariant subtree where
Ge ≤ Gv. If T is a G-tree and H ≤ G, denoting by T (S) the minimal S-invariant
subtree, we have T (H)⊂ T (G). It therefore follows that all the C′s-hypercarriers
attached to τv are actually attached to the minimal Gv-invariant subtree of τv. By
Lemma 2.6, after finitely many equivariant spur collapses we can make the vertex
spaces τv into minimal Gv-trees. None of these collapses will affect the attached C′s-
hypercarriers HC′s (τe), and the leaf space L∞= T∞ is preserved. We have therefore
constructed Cs , the∞-minimal core. Denote HCs (τe) = HC′s (τe)∩Cs . By what
was written above, HCs (τe)=HC′s (τe), and we now call HCs (τe) a Cs-hypercarrier.

For every k ∈ Edges(TF), Gk is finite, therefore a minimal Gk-tree is a point;
thus, by cocompactness and regularity, the trees τk ∈ C have finite diameter and the
same must be true of every connected component of τk ∩Cs . So, every connected
component of τk ∩ Cs has a spur. It therefore follows that Cs must have an F-
transverse free face ε containing a spur of some connected component of τk∩Cs for
some k ∈ Edges(TF). Furthermore, the stabilizer Gε ≤ G pF(ε) is an edge stabilizer
of TF, and therefore finite. This F-transverse free face ε must be contained in
some τv ∩Cs for v ∈ Vertices(T∞). Suppose first that ε was not contained in any
Cs-hypercarrier attached to τv ∩Cs . Then for every e 3 v in Edges(T∞), Ge fixes
some Cs-hypercarrier HCs (τe) such that HCs (τe) ∩ τv = τ

+
e is contained in the

complement (τv ∩Cs) \Gvε.

Definition 3.2. Let T be a minimal G-tree and e∈Edges(T ). We denote by C(T, e)
the non-e-collapse of T , the tree whose edges are the orbit Ge ⊂ T and whose
vertices are the closures of the connected components of T \Ge, with a vertex v
adjacent to an edge e′ in C(T, e) if and only if, viewed as subsets of T , e′ ∩ v 6=∅.

It therefore follows that qTv = C(τv ∩ Cs, ε) is a tree with finite edge groups,
in which each Ge ≤ Gv (e ∈ Edges(T∞)) acts elliptically, and also conjugates of
groups in H intersecting Gv act elliptically. Thus (i), (ii) and (1) are satisfied.
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Otherwise, the free face ε ⊂ τv ∩Cs is, by definition of a free face, contained in
exactly one Cs-hypercarrier HCs (τe). We now construct the Gv-tree qTv satisfying
(2). This construction is illustrated in Figure 5. We first take the subset

Z =
(
τv ∪

⋃
e3v

HCs (τe)
)
∩Cs,

i.e., τv∩Cs to which we attach all adjacent Cs-hypercarriers. Now the Gv-translates
of ε are contained in the Cs-hypercarriers HCs (τge) for g ∈ Gv. For each such
Cs-hypercarrier we denote by τ−ge the connected component of τe×{±1}⊂HCs (τge)

not contained in τv ∩Cs (see the top of Figure 5).

ε

ε
τv ∩Cs

τ−e

. . . . . .

C0 C1C−1

K−1 K0 K1ε

. . . . . .

v−1 v0 v1

ve

. . . . . .

Figure 5. Constructing qTv. The top shows a portion of Z , the
middle shows the result of equivariantly collapsing the free face ε,
and the bottom shows the corresponding∞-leaf space.

We now Gv-equivariantly collapse the square σ ⊃ ε onto the opposite side ε,
obtaining a connected Gv-subset Zc ⊂ Z (see the middle of Figure 5). The resulting
intersection τv ∩ Zc consists of a collection of connected components {Ci | i ∈ I }.
Similarly, the Ge-translates of ε give connected components {Ki | i ∈ I } of τe \Geε.
Because Ge acts on C(τ−e , ε), and by minimality of τe ∩ Cs , this action is also
minimal with one edge orbit. This gives us (a).

For every edge f ∈ Edges(T∞) incident to v that is not in the Gv-orbit of e,
the orbit Gvε does not intersect HCs (τ f )∩ τv. It follows that each such G f ≤ Gv

stabilizes some component Ci . We now detach from Zc all Cs-hypercarriers not
stabilized by a Gv-conjugate of Ge, producing a Gv-complex Z ′c ⊂ Zc, specifically

Z ′c = Zc ∩

(
τv ∪

⋃
g∈Gv

HCs (τge)
)
.
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Next, to get the Gv-tree Tv, we collapse each Gv-translate of τ−e to a vertex ve,
collapse each component Ci to a vertex vi , and collapse each connected component
of Gv-translates of HCS (τe)∩ Z ′c onto an edge connecting ve and the corresponding
vertex vi . This is illustrated at the bottom of Figure 5.

Equivalently, if we consider the∞-leaf space corresponding to the union of the
Cs-hypercarriers gHCs (τe) attached to τv ∩Cs for g ∈ Gv, then we have a tree of
radius 1, which is Gv-isomorphic to {v} ∪

(⋃
g∈Gv

ge
)
⊂ T∞. After equivariantly

collapsing the free face ε, Lemma 2.11 gives us a cleaving of this radius 1 subtree
to the infinite tree qTv constructed above. See Figure 6. We note that if we took the
∞-leaf space of Zc, i.e., had we not detached the other hypercarriers, the resulting
leaf space would be a tree with many spurs. The tree qTv we obtain is a minimal
Gv-tree that satisfies (b) and (i).

Moreover, we note that by construction, every subgroup H g
∩Gv , for g ∈ G and

H ∈H, acts elliptically on qTv. So (ii) is satisfied as well.
Since τ−e is Gv-regular, the vertex stabilizers of C(τ−e , ε) coincide with the

component stabilizers (Ge)Ki = (Gv)Ki . We also have (Gv)Ci ∩ (Gv)τ−e = (Gv)Ki

(again referring to the middle of Figure 5). It now follows that the edge stabilizers
of qTv satisfy (c).

Finally note that the vertex groups of qTv that are not stabilized by Gv-conjugates
of Ge are also the vertex groups of C(τv, ε) (see the top of Figure 5). Finally, since
Gε is finite, (d) follows. �

e

ge
v

ve

· · ·

vge

· · · · · ·

· · · · · ·
cleave

fold

Figure 6. Equivariant collapsing free faces cleaves the leaf space
of Z ′C to a tree qTv with infinite diameter.

4. Splittings of virtually free groups

Another way to use Theorem 3.1 is to obtain cleavings of G-trees whose edge and
vertex groups are “smaller”. This will be used as the inductive step in our proof of
Theorem 1.6.

Corollary 4.1. Let T be a G-tree in which the subgroups H act elliptically with
infinite edge groups, and let G be many-ended relative to H. Either some vertex
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A C B A C
C

C1 B1

C2 B2

A
C1

B1

A

C2
B2

A C1 B1

Theorem 3.1
Blow up B

Corollary 4.1

Collapse C

C
leave

C

Second construction
Delete C2

Figure 7. An example of the effects of Theorem 3.1, Corollary 4.1,
and the second construction of the proof of Theorem 1.6 on a graph
of groups. The vertices and edges are labeled by the corresponding
vertex and edge groups. In all cases Bi ≺ B and Ci ≺ C .

v ∈ Vertices(T ) can be blown up to a tree with finite edge groups; or, there is an
edge e ∈ Edges(T ) such that we can blow up T , relative to H, to some tree qT , and
then collapse the edges in the orbit of e to points. The resulting tree T ′ can also
be obtained from T by equivariantly cleaving some edge e. If e′ ∈ Edges(T ′) is a
new edge obtained by a cleaving of e, then Ge′ ≺ Ge. Also, for each new vertex
v′ ∈Vertices(T ′), there is some v ∈Vertices(T ) that got cleaved such that Gv′ ≺Gv .

Furthermore, in passing from T to T ′ the number of edge orbits and the number
of vertex orbits does not decrease and increases by at most 1.

Proof. Suppose we are in case (2) of Theorem 3.1. Then some vertex v gets blown
up to qTv and some vertex stabilizer of qTv coincides with Ge. Specifically qT can
be obtained by deleting each blown up vertex v from T and then equivariantly
reattaching every edge incident to v to the corresponding vertex in qTv.

In particular, if e ∈ Edges(T ) is an edge incident to v that satisfies (2) of
Theorem 3.1, then it is attached to the vertex ve ∈ Vertices

(
qTv
)
. We obtain T ′

by collapsing the G-orbits of e to points. This amounts to identifying the vertex ve

with the vertex ue ∈ Vertices
(

qT
)

that is the other endpoint of e. From Figure 6 it is
clear that T ′ is obtained by cleaving T .

We finally note that in passing from T to qT and then from qT to T ′, the vertex
and edge groups are nonincreasing. Otherwise, the required properties of T ′ are
immediately satisfied by Theorem 3.1 (see Figure 7). �

Finally, we can give our description of the decompositions of virtually free
groups as amalgamated free products or HNN extensions.

Proof of Theorem 1.6. We prove this result by successively applying Corollary 4.1
until some desirable terminating condition is met. Virtually free groups have no
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one-ended subgroups, so we will always be able to apply our corollary; further-
more, virtually free groups are finitely presented. It now follows by Dunwoody
accessibility [Dunwoody 1985] that there are no infinite chains C1 � C2 � · · · of
virtually free groups (recall Definition 1.3), and that all such chains must terminate
with finite groups.

First construction (pass to relatively one-ended vertex subgroups): Let T be a
G-tree with one edge orbit Ge with Ge infinite. By accessibility, we may pass to
a tree T (2) obtained by blowing up some vertices v of T to trees qTv such that the
vertex groups of qTv are either finite or one-ended relative to the stabilizers G f of the
incident edges f 3 v. If possible, we take T (1)

⊂ T (2) to be an infinite connected
subtree obtained by deleting edges with finite stabilizers, and we set G(1)

= GT (1) ,
the setwise stabilizer. Note that the vertex groups of T (1) are 4 the vertex groups
of T , and vertex groups are one-ended relative to the incident edge groups.

Second construction (pass to smaller edge groups): The second construction
utilizes Corollary 4.1. If Ti is a Gi -tree with one edge orbit whose vertex groups
are one-ended relative to the incident edge groups, we first apply Theorem 3.1 to
blow up a vertex v ∈ Vertices(Ti ), and find ourselves in case (2) of the theorem. If
qTv has a finite edge group then Gv is not one-ended relative to the incident edge
groups, contradicting our assumption. By Corollary 4.1 we can collapse an edge of
the blowup of Ti to get a cleaving T ′i that has at most two edge orbits, with edge
groups ≺ the edge groups of Ti . The new vertex groups are also 4 the old vertex
groups. If there are two edge orbits, then we obtain Ti+1 ⊂ T ′i as a maximal subtree
containing only one edge orbit and set Gi+1 = (Gi )Ti+1 , the setwise stabilizer. (See
Figure 7.) If T ′ already has only one edge orbit then Ti+1 = Ti and Gi+1 = Gi .

In both constructions, we pass to subgroups that split as graphs of groups such
that the edge groups and vertex groups are 4 the edge and vertex groups of the
original splitting of the overgroup.

We start with the amalgamated free product case. Let T = T0 be the Bass–Serre
tree corresponding to the splitting given in (1) of the statement of Theorem 1.6.
Take the blowup T (2)

0 obtained from the first construction. If one of the vertex
groups of this blowup coincides with an incident edge group then we are done.
Otherwise, we may pass to the G(1)-tree T (1)

0 , which still has one edge orbit and
two vertex orbits, and whose vertex groups are one-ended relative to the incident
edge groups. Furthermore, because the new vertex groups are 4 the vertex groups
of T , if the statement of the theorem holds for G(1) and the splitting corresponding
to its action on T (1)

0 (which is also an amalgamated free product), then the statement
also holds for G and the splitting corresponding to its action on T .

We can now apply our second construction to the G(1)
0 -tree T (1)

0 to obtain a G1-
tree T1, which again must have one edge orbit and two vertex orbits. Furthermore,
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for the (conjugacy class of the) edge group, we have a proper containment C1 ≺ C .
Again, because the vertex groups of T1 are 4 the vertex groups of T (1)

0 , if the
Theorem holds for this subgroup, it holds for G.

We repeatedly apply our construction, thus obtaining a sequence of groups that
split as amalgamated free products. With each iteration of the second construction,
we pass to a smaller edge group. Hence, by accessibility, eventually there is a
subgroup Gi acting on T (2)

i (see the first construction) such that the vertex groups
split as graphs of groups with finite edge groups and one of the incident edge
groups coincides with the vertex group. Since 4 is transitive, (1) of Theorem 1.6 is
satisfied.

We now tackle the HNN extension case. The proof proceeds in the same way.
We repeatedly blow up, cleave, and pass to subtrees, the main difference being that
the G-tree T has only one vertex orbit. If at some point one of the trees Ti or T (1)

i
has two vertex orbits, then these vertex groups are vertex groups of a splitting of
the vertex group of Ti−1 with finite edge groups. It follows that if Ti satisfies (1) of
Theorem 1.6, then Ti−1 satisfies (2) of Theorem 1.6, and thus by transitivity of 4,
so must our original splitting T . Otherwise, the proof goes through identically. �
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ON THE STRUCTURE OF VERTEX CUTS
SEPARATING THE ENDS OF A GRAPH

GARETH R. WILKES

Dinic, Karzanov and Lomonosov showed that the minimal edge cuts of a
finite graph have the structure of a cactus, a tree-like graph constructed
from cycles. Evangelidou and Papasoglu extended this to minimal cuts sep-
arating the ends of an infinite graph. In this paper we show that minimal
vertex cuts separating the ends of a graph can be encoded by a succulent, a
mild generalisation of a cactus that is still tree-like. We go on to show that
the earlier cactus results follow from our work.

1. Introduction and definitions

Lying on the boundaries of several topic areas, vertex and edge cuts of graphs have
been considered by graph theorists, network theorists, topologists and geometric
group theorists, and the study of their structure has led to applications ranging from
algorithms to classical group theoretic propositions.

Vertex cut pairs of finite graphs were studied by Tutte [1984], who showed that
a graph possessing such cuts can be modelled with a tree. This was extended to
infinite, locally finite graphs in [Droms et al. 1995]. Dunwoody and Krön [2015]
then extended this work to cuts of other cardinalities, using vertex cuts to associate
structure trees to graphs in a more general context.

This process of finding trees associated to graphs gives a way into geometric
group theory. If, for instance, we find a structure tree for the Cayley graph of a group,
then in light of the work of Bass and Serre [Serre 1980], we can obtain information
about the group from its action on the tree. An example is Stallings’ theorem [1968]
on the classification of groups with many ends. The work of Dunwoody and Krön
[2015] and of Evangelidou and Papasoglu [2014] yields more proofs of Stallings’
theorem along these lines.

Dinic, Karzanov and Lomonosov [Dinic et al. 1976] showed that minimal edge
cuts of a finite graph have, in addition to a tree-like nature, the finer structure
of a cactus graph. For a recent elementary proof, see [Fleiner and Frank 2009].
Evangelidou and Papasoglu [2014] extended this, encoding all minimal edge cuts
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separating the ends of an infinite graph by a cactus. The important stages in these
proofs involve showing that certain collections of “crossing” cuts have a circular
structure. In this paper we switch our attention to vertex cuts, showing that we
can encode all minimal vertex end cuts of a graph by a tree-like structure called
a succulent, which is a mild generalisation of a cactus. A traditional cactus is
composed of cycles joined together at vertices in a tree-like fashion. For our
succulents, we also allow cycles to attach along a single edge, again in a tree-like
way. Once again the key step is to show that crossing cuts have a cyclic nature.

We will also show how the earlier cactus theorems can be regarded as special
cases of our work, and discuss an application to certain finite graphs.

Let 0 = (V, E) be a connected graph. If K ⊆ V is a set of vertices of the graph,
we denote by 0 − K the graph obtained from 0 by removing K and all edges
incident to K . K is called a vertex cut if K is finite and 0− K is not connected. If
A, B ⊆ 0 then we say K separates A and B if any path joining a vertex of A to a
vertex of B intersects K .

A ray of 0 is an infinite sequence of distinct consecutive vertices of 0. We say
that two rays r1, r2 are equivalent if for any vertex cut K , all vertices of r1 ∪ r2

except finitely many are contained in the same component of 0−K . The ends of 0
are equivalence classes of rays. If K is a vertex cut of 0, we say K is an end cut
if there are at least two components of 0− K which contain rays. We say that an
end cut is a mincut if its cardinality is minimal amongst end cuts of 0. A mincut
is said to separate ends e1, e2 of a graph if there are rays r1, r2 representing e1, e2

respectively such that r1, r2 are contained in different components of 0 − K . A
mincut gives a partition of the set E of ends of the graph. Two mincuts are called
equivalent if they give the same partition of E . We denote the equivalence class of
a mincut K by [K ], and write K ∼ L if K , L are equivalent.

A succulent is a graph constructed from cycles by joining cycles together at
vertices or at single edges, in a “tree-like” fashion. We give a more formal definition
of this as Definition 8.1 below. An end vertex of a succulent is one incident to at
most two edges. We now state the main theorem of the paper.

Theorem 8.2. Let 0 be a connected graph such that there are vertex end cuts of 0
with finite cardinality. There is a succulent S with the following properties:

(1) There is a subset A of vertices of S called the anchors of S. If two anchors
are adjacent, one of them is an end vertex of the graph. Every vertex of S not
in A is adjacent to an anchor. We define an anchor cut of S to be a vertex cut
containing no anchors which separates some anchors of S. We say anchor
cuts are equivalent if they partition A in the same way.

(2) There is an onto map f from the ends of 0 to the union of the ends of S with
the end vertices of S which are anchors.
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(3) There is a bijective map g from equivalence classes of minimal end cuts of 0
to equivalence classes of minimal anchor cuts of S such that ends e1, e2 of 0
are separated by [K ] if and only if f (e1), f (e2) are separated by g([K ]).

(4) Any automorphism of 0 induces an automorphism of S.

2. Preliminaries

Definition 2.1. Given a mincut K , we call a component of 0 − K proper if it
contains an end, and a slice if not. Given a set of vertices C , its boundary ∂C is the
set of those vertices not in C but adjacent to a vertex of C ; and C∗=V (0)−(C∪∂C).

It will be convenient to assume our graph contains no slices. In the following
lemmas we show that we can do this by replacing 0 with another graph 0̂ which
has the same ends and cuts, but no slices. The results in this section are adapted for
our needs from more general results proved by Dunwoody and Krön [2015].

Lemma 2.2. Let K , L be mincuts and C, D proper components of 0− K , 0− L.
Suppose that both C ∩D and C∗∩D∗ contain an end. Then ∂(C ∩D), ∂(C∗∩D∗)
are mincuts,

∂(C ∩ D)= (C ∩ L)∪ (K ∩ L)∪ (K ∩ D),

∂(C∗ ∩ D∗)= (C∗ ∩ L)∪ (K ∩ L)∪ (K ∩ D∗),

and
|C ∩ L| = |K ∩ D∗|,

|D ∩ K | = |L ∩C∗|.

Proof. The boundaries ∂(C ∩ D), ∂(C∗ ∩ D∗) are certainly end cuts, with

∂(C ∩ D)⊆ (C ∩ L)∪ (K ∩ L)∪ (K ∩ D),

∂(C∗ ∩ D∗)⊆ (C∗ ∩ L)∪ (K ∩ L)∪ (K ∩ D∗).

Consider the following diagram (see Figure 1), where a, b, c, d, u denote the
cardinalities of the indicated sets. Let n be the cardinality of a mincut.

Then
a+ c+ u = n,

b+ d + u = n.

Since (C ∩ L)∪ (K ∩ L)∪ (K ∩ D) is an end cut, we have

d + a+ u ≥ n,

and similarly
b+ c+ u ≥ n.

Summing these and comparing with the equalities above, we find them to be
equalities; it follows that a = b, c = d . �
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D∗

L

D

b

a u c

d

C K C∗

Figure 1. Diagram for Lemma 2.2.

An analogous result holds when C∗ ∩ D, D∗ ∩C both contain ends.

Lemma 2.3. If C, D are proper components of cuts K , L then there is a proper
component of 0− K containing C∗ ∩ L.

Proof. Since K , L are end cuts, one of the pairs {C∩D,C∗∩D∗}, {C∗∩D,C∩D∗}
both contain ends. Let A be the appropriate one of C∗ ∩ D∗, C∗ ∩ D. Then using
Lemma 2.2, ∂A is a mincut. Let E be a component of A containing an end; then
∂E = ∂A is a mincut. Let C∗0 be the component of C∗ containing E . By Lemma 2.2
every vertex x ∈ C∗ ∩ L is adjacent to E , so x ∈ C∗0 and C∗ ∩ L ⊆ C∗0 . �

Lemma 2.4. A slice component of a mincut has empty intersection with each
mincut. Distinct slices are disjoint. If Q is a slice, then no pair of elements of ∂Q
are separated by any mincut.

Proof. Let Q1 be a slice component of 0−K for a mincut K and let L be a mincut,
with a proper component D of 0− L . By Lemma 2.3, there is a proper component
of 0− K containing C∗ ∩ L , and C , a proper component, contains C ∩ L . Q is
disjoint from both of these, so Q1 ∩ L =∅.

Suppose Q2 is a slice component of 0− L . We have ∂Q2 ⊆ L , ∂Q1 ⊆ K , and
hence Q1∩∂Q2, Q2∩∂Q1 are both empty. The components Q1, Q2 are connected,
so this implies that they are disjoint or equal.

Finally suppose x, y ∈ ∂Q for a slice component Q of 0 − K and x, y are
separated by a mincut L . The slice Q is connected so there is a path in Q from x
to y, which must intersect L , but we have seen this is impossible. �

We will now show how to replace0 with another graph 0̂ which has the same ends
and cuts, but no slices. The vertex set V̂ of 0̂ consists of those vertices of 0 which
are contained in no slice. Two vertices u, v∈ V̂ are joined by an edge in 0̂ if and only
if they are joined by an edge in 0 or if u, v lie in the boundary of some slice of 0.

Lemma 2.5. The graph 0̂ is connected and the mincuts of 0̂ are the same as the
mincuts of 0. There are no slices in 0̂. The ends of 0̂ are in bijection with the
ends of 0.

Proof. First we show that if K is a mincut and C is a proper component thereof,
then ∂Ĉ , the boundary of Ĉ = C ∩ 0̂ as a subset of 0̂, is equal to K .
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Suppose there is x ∈ ∂Ĉ − K . If x ∈ C then x ∈ Ĉ , so x ∈ C∗. Also x ∈ ∂Ĉ so
there is y ∈ Ĉ adjacent to x in 0̂. Then there is an edge from x to y in 0̂, but not
in 0; so x, y lie in the boundary of some slice Q of 0. By Lemma 2.4, K ∩Q =∅.
The slice Q is connected, and Q intersects C (at y), so Q ⊆ C . We then have a
path from x to y in 0 which is contained in Q except for its endpoint x , which is a
path from C∗ to C not intersecting K , a contradiction.

Suppose there exists x ∈ K − ∂Ĉ ; x has a neighbour y in C − Ĉ . Then y is
contained in a slice component Q of 0− L for a mincut L . If K = L then C, Q
are disjoint; but y ∈ C ∩ Q. So K 6= L and since Q ⊆ C (Q does not intersect K
but does intersect C), there is z ∈ C ∩ ∂Q ⊆ C ∩ L . Now z is not in any slice, so
z ∈ Ĉ . Then x, z are adjacent in 0̂; but z ∈ Ĉ , x /∈ Ĉ ∪ ∂Ĉ , a contradiction.

Let us discuss the ends of 0̂. By definition, slices contain no rays. Thus if r is
any ray in 0, we can form a new ray in 0̂ by deleting any vertices in a slice; the
extra edges added in the construction of 0̂ will ensure that this is a bona fide ray.
If two rays are separated by a (not necessarily minimal) end cut K in 0, then the
union of K ∩V (0̂) with the boundaries of any slices intersecting K gives an end cut
separating the images of the rays in 0̂. Similarly, if two rays in 0̂ are separated by an
end cut K in 0̂, then taking the union of K with any slice boundaries intersecting K
gives an end cut separating the same rays in 0. It follows that the ends of 0̂ are in
a natural bijection with those of 0.

The end cuts of 0̂ inherited from mincuts of 0 are indeed the minimal end cuts
of 0̂. Suppose K is an end cut of 0̂ which is not also an end cut of 0. Then two
proper components of 0̂− K are connected in 0. A path between them can only
not intersect K if it passes through a slice Q; but points on the boundary of Q
are connected in 0̂ so we get a path between the two components in 0̂ as well,
a contradiction. So all mincuts of 0̂ are mincuts of 0 as well, and the notion of
minimality carries over to 0̂ too.

Finally, there are no slices in 0̂. Let C be a component of 0̂−K for a mincut K
of 0̂ (equivalently of 0). Let C ′ be the component of 0−K containing C . Now C ′

cannot be a slice as it intersects V (0̂). So C ′ contains an end of 0, whence from
above so does C . So C is not a slice. �

For the rest of the paper we replace 0 with 0̂. As we have seen, the ends and
cuts of the two graphs are the same, and this is all the structure with which we are
concerned, so we lose nothing by doing this. All components of a cut are now proper.

We now start to prove some basic properties of mincuts, putting restrictions on
cuts which “interact” with each other in some sense, and showing that a mincut
does not interact with any but finitely many other mincuts. We first define what it
means for cuts to not interact with each other. We are still following Dunwoody
and Krön [2015] here, with some minor modifications.
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Definition 2.6. Two cuts K , L are called nested if there are components E, F of
0− K , 0− L respectively with E ⊆ F or F ⊆ E .

Note that if K , L are nested and not equal with say E ⊆ F then all components
of 0− L except F are contained in the same component of 0− K . This follows
since there is an element of L in E∗, and by minimality all components of 0− L
except F are connected to this vertex by paths which do not intersect F ∪ L , and
hence do not intersect E ∪ K . Note also that these components are still connected
in 0− K by similar reasoning. Conversely, all components of 0− K except one
are contained in F .

Definition 2.7. A mincut is called an A-cut if it is nested with all other mincuts. It
is called a B-cut if it separates 0 into exactly two components.

Lemma 2.8. A mincut is either an A-cut or a B-cut.

Proof. Let K be a mincut which is not an A-cut. Then there is a mincut L with
which K is not nested. Let C be a (proper) component of 0− K and D a (proper)
component of 0− L . By Lemma 2.3, there is a component C∗0 of C∗ containing
C∗ ∩ L . We wish to show this is the only component of C∗. If there is another
one C∗1 then C∗1 ∩ L is empty; C∗1 is connected so C∗1 ⊆ D or C∗1 ⊆ D∗. In the first
case, K , L are nested; so the second one happens no matter which component C∗1
we choose. So D ∩C∗ ⊆ C∗0 . Also, K = ∂C∗1 by minimality, so C∗1 ⊆ D∗ implies
K ∩ D =∅. Then D ⊆ C or D ⊆ C∗ (whence D ⊆ C∗0 ); in either case, K and L
are nested. This is a contradiction, so K is a B-cut. �

We call a set S of vertices a tight x-y-separator if 0 − S has two distinct
components A, B which are adjacent to all elements of S, with x ∈ A, y ∈ B.

Lemma 2.9. For each integer k and every pair x, y of vertices of a graph, there
are only finitely many tight x-y-separators of order k.

Proof. We proceed by induction. If we take a path from x to y, any tight
x-y-separator of order 1 would have to be a vertex on this path, so there are
only finitely many of these.

Suppose the lemma holds for all tight x-y-separators of order k in all connected
graphs. Take a path π from x to y in a graph 0 and suppose there are infinitely
many tight x-y-separators of order k+ 1≥ 2. Then there is a vertex z ∈ π −{x, y}
which is contained in infinitely many of these separators. If S1, S2 are distinct such
tight x-y-separators of order k + 1 in 0 then S1 − {z}, S2 − {z} are distinct tight
x-y-separators of order k in 0−{z}, so there are infinitely many of these, giving
the required contradiction. �

Lemma 2.10. A mincut is nested with all but finitely many mincuts.
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Proof. Suppose K is a mincut and L is a mincut not nested with K . By Lemma 2.8
both K , L are B-cuts, with components C1,C2 of 0− K and D1, D2 of 0− L . If
L ∩ C1 was empty then by connectedness C1 ⊆ D1 or C1 ⊆ D2, both of which
would imply that K , L were nested. Similarly none of C2∩ L , D1∩ K , D2∩ K are
empty. Then L is a tight x-y-separator for some x ∈ K ∩ D1, y ∈ K ∩ D2. There
are only finitely many such separators for each pair x, y and only finitely many
elements of K , so only finitely many such L are possible. �

3. Crossing cuts

The complexity in the structure of mincuts comes from so-called “crossing” cuts,
which we now define.

Definition 3.1. Let K , L be mincuts. Let E be the set of ends of 0, and let E =
K (1)
tK (2)

t· · ·tK (r), E= L(1)tL(2)t· · ·tL(s) be the partitions of E given by K , L
respectively. We say [K ], [L] cross if, possibly after relabelling, K (i)

∩ L( j)
6=∅

for i, j = 1, 2. We write K + L .

The following is a direct consequence of Lemma 2.8, having removed slices
from our graph.

Lemma 3.2. If [K ], [L] cross then 0− K , 0− L have exactly two components.

Later we will show that crossing mincuts possess a cyclic structure. Initially,
however, we shall just consider two or three crossing cuts.

Lemma 3.3. Let [K ], [L] be crossing classes of mincuts. Let 0 − K = C1 tC2,
0− L = D1 t D2. Then |C1 ∩ L| = |C2 ∩ L| = |D1 ∩ K | = |D2 ∩ K |; i.e., K ∪ L
splits into four equal pieces, plus the “centre” U = K ∩ L.

Proof. This follows from two applications of Lemma 2.2. �

In the case of edge cuts, one can also show that the centre K ∩ L is empty, but in
the case of vertex cuts this fails to be true. As we will show in Lemma 3.5 below,
the centre is in some sense distinguished, but this result must wait until we have
placed some restrictions on the division of a graph produced by three cuts.

Let K , L ,M be mincuts with K crossing L and L crossing M , and let C1 tC2,
D1tD2, E1tE2 be the components of 0−K , 0−L , 0−M respectively. A priori,
these three cuts could divide 0 into eight components each containing an end. The
natural diagram with which to illustrate this would be a suitably divided cube. To
produce this in 2D we divide the cube into three slices as shown in Figure 2.

We now rule out certain arrangements of ends of the graph.

Lemma 3.4. It is not possible for each of C1∩D1∩E1, C2∩D1∩E2, C2 ∩ D2 ∩ E1,
C1 ∩ D2 ∩ E2 to contain an end (or any arrangement obtained from this by rela-
bellings).
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C1

K

C2

E1 M E2

D1

(1)

L

(2)

D2

Figure 2. The notation shows that, for example, (1) is C1∩D1∩E2

and (2) is C2 ∩ D2 ∩M .

Proof. Denote by a, . . . , u the cardinalities of the various subgraphs as shown in
Figure 3; the εi indicate the presence of ends.

Let n be the cardinality of a mincut. Then |K | = |L| = |M | = n, so

n = a+ c+ l + j +m+ p+ r + t + u,

n = e+ f + g+ h+ q + r + s+ t + u,

n = b+ d + i + k+m+ p+ q + s+ u.

We also have an end cut separating each εi from the others; these yield, in order,

n ≤ a+ b+ e+m+ q + t + u,

n ≤ c+ d + g+m+ r + s+ u,

n ≤ k+ l + h+ p+ s+ t + u,

n ≤ i + j + f + p+ q + r + u.

Summing these four, we have

4n ≤ (a+ c+ l + j +m+ p+ r + t + u)+ (e+ f + g+ h+ q + r + s+ t + u)
+ (b+ d + i + k+m+ p+ q + s+ u)+ u

= 3n+ u,

whence u = n, everything else vanishes, and K = L =M , each separating the graph
into at least four components, contradicting Lemma 3.4. �
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D1

ε1

ε2

q

t u r
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gh
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l p j

k

D2

ε4
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Figure 3. Diagram for Lemma 3.4.
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Figure 4. Diagram for Lemma 3.5.

Note that this result implies that the three cuts split the graph into at most
six components containing ends. Since K crosses L , there are at least four such
components. A quick exercise in filling in corners with ends subject to the crossings
and Lemma 3.4 shows that, following relabellings, C1 ∩ D1 ∩ E1, C2 ∩ D1 ∩ E2,
C1 ∩ D2 ∩ E1, C2 ∩ D2 ∩ E2 all contain ends (with possibly other corners also).

Lemma 3.5. Let K , L ,M be mincuts with K crossing L and L crossing M (in
particular, if K is equivalent to M). Then K ∩ L = L ∩M , and L ∩C1 = L ∩ E1,
L ∩C2 = L ∩ E2.

Proof. Retain the notations of the previous lemma and see Figure 4. Again since
K , L ,M are mincuts,

n = a+ c+ l + j +m+ p+ r + t + u,

n = e+ f + g+ h+ q + r + s+ t + u,

n = b+ d + i + k+m+ p+ q + s+ u,

and again, considering end cuts separating a corner containing an end εi from the
others, we have

n ≤ a+ b+ e+m+ q + t + u,

n ≤ c+ d + g+m+ r + s+ u,

n ≤ i + l + e+ p+ q + t + u,

n ≤ j + k+ g+ p+ r + s+ u.

Summing these,

4n ≤ (a+ c+ l + j +m+ p+ r + t + u)+ (b+ d + i + k+m+ p+ q + s+ u)
+ 2e+ 2g+ q + r + s+ t + 2u

= 2(e+ f + g+ h+ q + r + s+ t + u)+ 2n− 2 f − 2h− q − r − s− t

= 4n− (2 f + 2h+ q + r + s+ t),

whence f = h = q = r = s = t = 0, so that K ∩ L = L ∩M . �
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Lemma 3.6. A cut is crossed by at most finitely many cuts.

Proof. If two cuts cross they are not nested, so this lemma follows directly from
Lemma 2.10. �

4. Half-cuts

It follows from the last section’s results that each mincut in a crossing system can be
decomposed into three pieces; two “half-cuts” and a “centre”. We now prove some
facts about these half-cuts, which enable us to arrange the half-cuts on a circle.

Definition 4.1. If K ,M are mincuts (more properly, classes of mincuts under ∼,
but we will often pass over this technicality), we write K # L if there are mincuts
K = L0, L1, . . . , Ln = M such that L0+ L1+· · ·+ Ln; that is, L0 crosses L1, L1

crosses L2 and so on. L0 may or may not cross L2. Note that # is an equivalence
relation on∼-classes of mincuts, decomposing these into equivalence classes, which
we call #-classes.

By Lemma 3.5, elements K of a #-class have a unique decomposition K =
K1∪U∪K2, where if K+L then K∩L=U and K1, K2 are in different components
of 0− L . From the same lemma, this U is the same for all cuts in the #-class; we
call it the centre of the #-class. Also, |K1| = |K2| and this cardinality is again the
same across the class. The Ki are called the half-cuts of the #-class. We now prove
a series of lemmas clarifying the structure of a #-class and its half-cuts.

Lemma 4.2. If K ,M are mincuts in the same #-class then either K +M or there
is an L in this #-class such that K + L +M ; that is, K + L and L +M.

Proof. By definition we have a sequence of cuts K = L0, L1, . . . , Ln = M such
that L0+ L1+· · ·+ Ln . Take a shortest such sequence, and suppose n ≥ 3. We will
show we can find a shorter sequence. Without loss of generality we can assume
n = 3. Let E = L(1)i ∪ L(2)i be the partition induced by L i . The fact that K does not
cross L2, and similar facts, give us, after relabelling,

K (1)
⊆ L(1)2 , L(2)2 ⊆ K (2),

M (2)
⊆ L(2)1 , L(1)1 ⊆ M (1),

whence the crossings give us that each of M (2)
∩ K (2),M (1)

∩ K (2),M (1)
∩ K (1) is

nonempty. Hence K +M unless M (2)
∩ K (1) is empty, and hence K (1)

⊆ M (1). It
is this that allows us to place the ends ε3, ε6 in Figure 5, and hence to conclude that
K + (L11∪U ∪ L22)+M , where for instance L11 is the half-cut of L1 lying in the
K (1)-component of 0− K . �

Corollary 4.3. There are only finitely many cuts in a #-class and hence only finitely
many half-cuts.
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Figure 5. Diagram for Lemma 4.2. The cut L11∪U∪L22 is shown
shaded in both diagrams.

Lemma 4.4. Let K1,M1 be half-cuts in the same #-class. Then K1 ∪U ∪ M1 is
a mincut if and only if there are mincuts K ′,M ′ containing K1,M1 as half-cuts
respectively such that K ′+M ′.

Proof. One direction is clear. For the other, pick K2,M2 such that K = K1∪U∪K2,
M = M1 ∪U ∪M2 are cuts in this #-class. Then either K +M , in which case we
are done, or there is L such that K + L+M . Now K1∪U ∪M1 is a cut; hence we
have ε5 in Figure 6. Then K1 ∪U ∪M2, K2 ∪U ∪M1 cross. �

Definition 4.5. Two half-cuts K1, L1 in the same #-class are equivalent if whenever
K2 is a half-cut such that K1∪U ∪K2 is a mincut, then L1∪U ∪K2 is an equivalent
cut and vice versa.

ε1

ε5 ε2

C1

K

C2

E1 M E2

D1

∅ ∅

∅ ∅

∅ ∅

L

ε3

ε4

D2

Figure 6. Diagram for Lemma 4.4. The cut K1 ∪U ∪M2 is shown shaded.
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Figure 7. Diagram for Lemma 4.6.

Two half-cuts K1, L1 in the same #-class are quasiequivalent if there is a half-
cut K2 such that K1 ∪U ∪ K2 is a mincut and L1 ∪U ∪ K2 is an equivalent cut.

Lemma 4.6. If two half-cuts K1,M1 form a cut then they are not quasiequivalent.

Proof. Let K = K1 ∪U ∪ M1 be the cut formed by hypothesis. Let L1 be some
other half-cut; we will show that K1 ∪U ∪ L1 is not equivalent to L1 ∪U ∪M1 as
cuts, and hence that K1,M1 are not quasiequivalent. Let L2 be a half-cut such that
L = L1∪U ∪ L2 is in the #-class. If L+K then the result is clear. If not, there is a
mincut N such that K + N + L; without loss of generality take K1, L1 to be in the
same component of 0− N . Then L1 ∪U ∪M1 is a cut, and from Figure 7 we see
that either K1 ∪U ∪ L1 is not an end cut or it is not equivalent to L1 ∪U ∪M1. �

Lemma 4.7. Let K = K1 ∪U ∪ K2 be a cut in the #-class and let M1 be a half-cut
in the same class not quasiequivalent to either K1, K2. Then there is M2 such that
M1 ∪U ∪M2 is a cut crossing K . Hence K1 ∪U ∪M1 and K2 ∪U ∪M2 are cuts.

Proof. Let M2 be a half-cut such that M = M1 ∪U ∪M2 is a cut of the class; see
Figure 8. If K+M , we are done. Otherwise, there is a cut L with K+L+M . After
possibly relabelling the Ki , we can assume that K1,M1 are in the same component
of 0− L . If there is an end in C1 ∩ D1 ∩ E2 then M1 ∪U ∪ L2 is a cut crossing K .
If there is an end in C2 ∩ D1 ∩ E1 then M1 ∪U ∪ L1 is a cut crossing K . If neither
of these happens, then K2 ∪U ∪M1 is equivalent to K2 ∪U ∪ K1, a contradiction
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ε1

ε2
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∅ ∅
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N

ε3

ε4

M2
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K2

Figure 8. Diagram for Lemma 4.7.
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Figure 9. Diagram for Lemma 4.8.

(we note that these cuts are genuinely equivalent, since the presence of “links” such
as L1 guarantees that ends which appear to be connected up really are). �

Lemma 4.8. Quasiequivalence is an equivalence relation. If K1, L1 are quasi-
equivalent and L2 is a half-cut such that L1 ∪ U ∪ L2 is in the #-class then
K1 ∪U ∪ L2 ∼ L1 ∪U ∪ L2.

Proof. Let K2 be such that K = K1 ∪U ∪ K2 is in the #-class; see Figure 9. The
cut K does not cross L = L1 ∪U ∪ L2 since in this case K1 ∪U ∪ L1 would be a
cut, so K1, L1 are not quasiequivalent by Lemma 4.6, giving a contradiction. Then
there is an N such that K +N + L . Again, K1∪U ∪ L1 is not a cut, so there are no
ends in certain corners as indicated. Then K1 ∪U ∪ L2 ∼ L1 ∪U ∪ L2 as required,
noting again that ends which appear connected actually are so that the cuts are
genuinely equivalent.

As for quasiequivalence being an equivalence relation, it is clearly symmetric
and reflexive. If M1 is another half-cut quasiequivalent to L1, then by the above

K1 ∪U ∪ L2 ∼ L1 ∪U ∪ L2 ∼ M1 ∪U ∪ L2,

so K1,M1 are quasiequivalent. �

Lemma 4.9. Let K = K1∪U∪K2 be a cut in the #-class and let L1,M1 be half-cuts
in the same class not quasiequivalent to K1, K2. Then either L1 ∪U ∪M1 is a cut
crossing K or L1,M1 are contained in the same component of 0− K .

Proof. By Lemma 4.7, we can complete L1 to a cut crossing K , so that L1 separates
some ends of a component of 0 − K , and it works similarly for M1. If the two
half-cuts are in different components, then L1∪U∪M1 is a cut crossing K provided
it separates 0− K into two components, as indeed it must. �

5. Separation systems

We now turn our attention to demonstrating that the half-cuts of a system have a
cyclic structure. We will do this by showing that they satisfy a certain axiomatic
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system, which implies that they can be arranged cyclically in a fashion compatible
with their cut structure. This axiomatic structure is taken from [Huntington 1935].

Definition 5.1. A separation relation on a set Z is a relation R ⊆ Z4 satisfying the
following axioms. We write abcd if (a, b, c, d) ∈ R.

(1) If abcd then a, b, c, d are distinct.

(2) There are a, b, c, d such that abcd, i.e., R 6=∅.

(3) If abcd then bcda.

(4) If abcd then ¬(abdc).

(5) There are a, b, c, d such that abcd and dcba.

(6) If abcd and x ∈ Z is another element then either axcd or abcx .

Lemma 5.2. Let Z be a set equipped with a separation relation. Then

(1) if a, b, c, d ∈ Z are distinct, then at least one of the twenty-four tetrads
abcd, abdc, . . . , dcba is true,

(2) if abcd then dcba,

(3) if abxc and abcy then abxy,

(4) if abcx and abcy then abxy or abyx ,

(5) if abcx and abcy then acxy or acyx ,

where in the last three statements distinct letters are assumed to represent different
elements of Z.

Proofs can be found in [Huntington and Rosinger 1932] along with further similar
propositions.

Lemma 5.3. Let Z be a finite set with a separation relation. For each z, there are
unique a, b such that for all c ∈ Z − {z, a, b}, we have azbc. We call these the
elements adjacent to z.

Proof. We approach existence by induction. For |Z |=4, the result is trivial. Assume
it is true for all separation relations with |Z | = n, and suppose |Z | = n+1. Remove
an element d of Z not equal to z to leave a smaller separation relation, and let a, b
be the elements adjacent to z in this new relation, so that for all c ∈ Z −{z, a, b, d},
we have azbc.

By Lemma 5.2, one of azbd , adzb, azdb holds. If azbd holds then a, b are adja-
cent to z in Z . If not, without loss of generality, azdb. We claim a, d are adjacent to z
in Z . By Lemma 5.2 above, if c ∈ Z −{z, a, d, b} then azdb and azbc imply azdc.

For the uniqueness part, suppose there are two such pairs a1, b1, a2, b2. If any
of these coincide we have an immediate contradiction to part (4) of the definition of
the relation. So suppose they are all distinct. Then a1zb1a2, a1zb1b2 imply a1za2b2

or a1zb2a2, both of which contradict a2zb2a1. �
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Lemma 5.4. Let Z be a finite set equipped with a separation relation. Then there is
a map F : Z→ S1 such that for a, b, c, d ∈ Z , abcd if and only if F(b) and F(d)
lie in different components of S1

− {F(a), F(c)}; i.e., Z is isomorphic to a finite
subset of the circle under its natural separation relation.

Proof. We will proceed by induction. Pick an element z ∈ Z and take a separation-
preserving map F : Z −{z} → S1. By the previous lemma, there are elements a, b
of Z adjacent to z. We will map z to the circle by placing it between F(a), F(b),
but first we must show these are adjacent on the circle. If not, there are c, d so
that F(a)F(c)F(b)F(d), whence acbd . But azbc, azbd imply abcd or abdc, both
contradicting acbd. So F(a), F(b) are adjacent on the circle, and we can define
F : Z→ S1 by setting F = F on Z −{z} and F(z) to lie between F(a), F(b) on
the circle.

A full proof that this F works would be lengthy and uninformative, so we just
indicate the main steps; the remainder is just use of axioms and Lemma 5.2. We
inherit from F that any relations not involving z are preserved. Let z ABC be another
relation and suppose A, B,C are distinct from a, b; the other cases are easier. Then
we have azbA, azbB, azbC, z ABC from which we deduce a ABC, bABC . These
relations carry over to the circle under F , as do azbA, azbB, azbC by construction.
From these relations on the circle, we then find F(z)F(A)F(B)F(C). �

Definition 5.5. Let Z be the set of quasiequivalence classes of half-cuts of a #-class.
We define a separation relation R on Z by setting (a, b, c, d) ∈ R if and only if
ac+ bd, where ac denotes the cut K1 ∪U ∪ L1 and K1, L1 are representatives
of a, c and so on.

Lemma 5.6. This is well-defined; i.e., it does not matter which representatives of
quasiequivalence classes we choose. Furthermore, it is a bona fide separation
relation.

Proof. Well-definedness follows immediately from Lemma 4.8. Parts (1)–(5) of
the definition of a separation relation are trivial. For part (6), by Lemma 4.9 either
abcx or b, x are in the same component of 0− ac; and either axcd or x, d are in
the same component of 0− ac. But b, d are in different components of 0− ac so
one of abcx, axcd holds. �

Hence we have:

Proposition 5.7. To each #-class we can associate a cycle where each vertex
represents a quasiequivalence class and each cut of the #-class is associated to a
vertex cut of the cycle, with the notions of crossing preserved.
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6. The structure of a #-class

We are now in a position to characterize the structure of a #-class. Let [K1]q denote
the quasiequivalence class of a half-cut K1. From Proposition 5.7, there are two
quasiequivalence classes adjacent to [K1]q in this #-class. If L1 is a half-cut in the
#-class not in [K1]q or either quasiequivalence class adjacent to it, then Lemma 4.8
implies that

K1 ∪U ∪ L1 ∼ K ′1 ∪U ∪ L1

for all K ′1 ∈ [K1]q . So only the two quasiequivalence classes adjacent to [K1]q can
contain L1 such that K = K1 ∪U ∪ L1 and K ′ = K ′1 ∪U ∪ L1 are not equivalent
for K ′1 ∈ [K1]q .

How can these cuts be nonequivalent? We recall that by minimality every
component left by a mincut is connected to every element of that cut. Thus in the
“larger component” left by the cut, i.e, the one containing half-cuts in the same
class, every vertex is connected to the half-cuts in this “component”, which is thus
genuinely connected. Thus one part of the partitions induced by K , K ′ is the same.
The others can only differ if at least one of the cuts splits 0 into more than two
parts, and hence splits the “smaller” component into more than one part. Suppose K
intersects one of the smaller components of 0−K ′. Then each end not in the larger
component of 0− K ′ is connected to each vertex of the part of K in the smaller
component; hence K ′ splits 0 into exactly two components. If K does not intersect
one of the smaller components of 0− K ′, then since K 6= K ′ and K , K ′ have the
same cardinality, K ′ intersects one of the smaller components of 0−K , whence K
splits 0 into exactly two components.

Hence, having chosen L1, there are at most two equivalence classes of cuts
formed from L1 and [K1]q . By symmetry, there are at most two equivalence classes
of cuts formed from K1 and [L1]q . From these discussions, it follows that for
each quasiequivalence class adjacent to [K1]q , there are at most two equivalence
classes of cuts formed by these two classes; one producing a split of 0 into two
components, the other more. Hence there are at most four equivalence classes of
half-cuts within [K1]q .

We now define the structure by which we model the #-class. For edge cuts
this would be a simple cycle, but here we need extra complexity to deal with the
possibility of splitting the graph into more than two components.

Definition 6.1. A ring is constructed as follows. Take a finite cycle of vertices and
attach to each edge some number of triangles by identifying an edge of the triangle
with the edge of the cycle. The vertex of the triangle not included in the original
cycle is called an anchor; see Figure 11.
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Figure 10. A 3-vertex connected to two 1-vertices, and the
schematic representation of this.

Definition 6.2. An n-vertex will be a copy of the complete graph on n vertices;
we will say it is connected to a vertex if there is an edge from the vertex to each
constituent vertex of the n-vertex. We will depict a 3-vertex as a triangle and only
draw one edge from it to each vertex to which it is connected; see Figure 10.

We now associate to each #-class an appropriate ring encoding the cuts formed
by half-cuts in the class. First use Proposition 5.7 to form a cycle with one vertex
for each quasiequivalence class. For each pair of adjacent quasiequivalence classes,
find half-cuts in those classes separating 0 into as many components as possible,
and attach one fewer anchors than this between the two classes in the cycle (one
fewer to account for the “large” component). If a quasiequivalence class contains
more than one equivalence class, insert an extra vertex into the cycle here. If we

Figure 11. A ring, with the anchors replaced by 3-vertices.

Figure 12. A #-class and its associated ring. Hexagons represent
6-vertices and arrows ends.
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“thicken” up the anchors to 3-vertices to remove cut-points, there is now a bijective
correspondence between equivalence classes of cuts formed from half-cuts of the
#-class and equivalence classes of cuts of the ring, where we treat the anchors as
ends for the purpose of equivalence etc.; see Figure 12.

7. Pretrees

We now proceed towards the central theorem of the paper. First we seek to impose
a tree structure on the #-classes and the other cuts; then we will reintroduce the
extra complexity. We will do this using pretrees, which we now define.

Definition 7.1. Let P be a set and let R ⊆ P3 be a ternary relation on P . If
(x, y, z) ∈ R then we write xyz and say y is between x, z. A set P equipped with
this relation is a pretree if the following hold:

(1) If xyz then y 6= x, z, and there are no x, y such that xyx .

(2) If xyz then zyx .

(3) For all x, y, z, if xyz then ¬(xzy).

(4) If xzy and w 6= x, y, z then xzw or yzw.

If there is no z such that xzy we say x, y are adjacent.
A pretree is called discrete if for any x, y ∈ P there are at most finitely many z

such that xzy.

It should perhaps be noted that despite us using the word “between” this is not a
betweenness relation in the usual sense of the word as, for example, in [Huntington
1935]. Let P be a discrete pretree. We will describe briefly how to pass from P to
a tree; a fuller description may be found in [Bowditch 1999].

We call a subset H of P a star if all a, b ∈ H are adjacent. We now define a
tree T as follows:

V (T )= P ∪ {maximal stars of P},
E(T )= {(v, H) : v ∈ P, v ∈ H, H a maximal star}.

We show that T is indeed a tree. If x, y ∈ P then by discreteness there are only
finitely many z between x, y. From among these z we can then find z1, . . . , zn such
that x is adjacent to z1, zi is adjacent to zi+1 and zn is adjacent to y, giving a path
in T from x to y. Hence T is connected.

If T contains a circuit then there are x1, . . . , xn in P such that xi is adjacent to
xi+1 but not to xi+2 for each i ∈ Zn . Then there is y such that xi yxi+2. If y 6= xn+1

then either xi yxi+1 or xi+1 yxi+2, both of which are forbidden. So xi xi+1xi+2. We
claim x1xi xi+1 holds for all i ≤ n by induction. Since x1xi−1xi and xi−1 6= xi+1,
either x1xi−1xi+1 holds or we have a contradiction. Since xi−1xi xi+1 and x1 6= xi ,
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Figure 13. Diagram for Lemma 7.3.

either x1xi xi+1 or xi−1xi x1; so to avoid contradiction, x1xi xi+1. But then we have
x1xn−1xn; but x1, xn were supposed to be adjacent. The contradiction means T is
a tree.

We now prove some lemmas which will allow us to define a pretree of cut classes.

Definition 7.2. We call a mincut isolated if it does not cross any mincut, and hence
is not contained in any #-class.

A cut is a corner cut of a #-class if it is (equivalent to) a cut formed from two
half-cuts of the class but is not itself in the class. We call a mincut totally isolated
if it does not cross any mincut and is not a corner cut of any #-class.

Lemma 7.3. Corner cuts are isolated.

Proof. Let Q be a #-class and let K = K1 ∪U ∪ K2 be a corner cut of Q. Suppose
there is a cut L with K + L . Then L separates some ends of each component of
0− K . Let M1,M2 be half-cuts in Q adjacent to K , with K1 adjacent to M2 and
K2 adjacent to M1, with no quasiequivalences present; see Figure 13. Either L
crosses K1 ∪U ∪M1 or all ends of the component of 0− K1 ∪U ∪M1 containing
M2 are in the same component of 0− L , whence L crosses K2 ∪U ∪M2. So L ,
hence K , are in the #-class Q, a contradiction. �

Each #-class Q induces two partitions

E = Q(1)
t · · · t Q(m),

E = Q(1)
t · · · t Q(m′)

of the ends of 0. In one partition, which we call the fine partition and denote
without bars, each member of the partition corresonds to one of the anchors in the
ring representing Q; and for each Q(i), there is a corner cut of Q separating Q(i)

from all the other Q( j). For the other partition, the coarse partition, we identify
those Q(i) together which lie between the same two adjacent half-cuts. Then in the
coarse partition we can distinguish between members Q(i) using only cuts properly
in the #-class Q; for the fine partition, we may need corner cuts also. We recall
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also that a cut K also gives a partition of the ends of 0:

E = K (1)
t · · · t K (n).

Lemma 7.4. Given a cut K and a #-class Q, with K neither in Q nor a corner cut
of it, there are i, j such that all Q(k) except Q(i) are contained in K ( j); i.e.,∐

k 6=i

Q(k)
⊆ K ( j)

or ∐
k 6= j

K (k)
⊆ Q(i).

We say K divides Q(i).

Proof. Suppose K is an A-cut. Then it is nested with every cut and corner cut of Q,
hence the result.

Otherwise K is a B-cut, separating 0 into two components. If the result is not
true, then both K (i) intersect at least two Q(i).

Suppose a Q(i) intersects both K (i). Let M be the corner cut of Q splitting
off Q(i). If M is a B-cut, then K + M , giving a contradiction. Otherwise, M is
nested with K , whence a K (i) is contained in a Q(i), again giving a contradiction.

If both K (i) contain two Q(i) not between two adjacent half-cuts (in the ring
representing Q), we can find a cut of Q crossing K . So for say K (1), all the Q(i)

contained in K (1) lie between two adjacent half-cuts of Q. Let M be the corner cut
corresponding to these half-cuts.

M is necessarily an A-cut, and hence is nested with K . As in the discussion of
quasiequivalent cuts earlier, K can only intersect the “large” component of 0−M ,
that containing the other half-cuts of Q; conversely M does not intersect the large
component C1 of 0− K . Pick another half-cut L1 in Q, with L = M1 ∪U ∪ L1 a
cut of Q. The cut L also only intersects the large component E1 of 0−M . With
suitable labelling of the L(i), we have

L(1) ⊆ M (1), L(1) ⊆ K (1), K (2)
⊆ L(2), K (1)

= M (1).

Hence we have the arrangement shown in Figure 14.
Then, using the notations from Figure 14, we have

a+m+ p+ l + t + u = n,

d +m+ p+ k+ s+ u = n,

e+ t + u+ h+ s = n,

a+m+ e+ t + u ≥ n,

p+ l + e+ t + u ≥ n,

p+ k+ u+ s ≥ n,
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C1

K

C2

∅ ∅

a m ∅

ε d ε

E1 M E2

D1

ε1
∅

t u ∅

s

L

e ∅

∅h

∅

l p ∅

k

∅

ε

D2

ε3

ε4

Figure 14. Diagram for Lemma 7.4.

where n is the cardinality of a mincut. Immediately d =m = 0. Furthermore, since
L2,M1,M2 are half-cuts in the same class, s = e+ t + h. Then

2n ≤ (a+ e+ t + u)+ (p+ l + e+ t + u)

= (a+ p+ l + t + u)+ (e+ e+ t + u)

≤ n+ e+ t + h+ s+ u

= 2n.

Then all the inequalities are equalities; hence t = h = 0, and K decomposes into U
together with two equal half-cuts; and choosing L1 appropriately we find that these
half-cuts are quasiequivalent to the half-cuts of M , so K was a corner cut of Q. �

Lemma 7.5. Given two #-classes Q, R, all cuts in R divide the same Q(i).

Proof. Note first that the cuts in R do divide a Q(i) because they are not isolated,
hence not corner cuts, and are not in Q. Suppose K ∈ R divides Q(i) and L ∈ R
divides Q( j), with i 6= j ; see Figure 15.

If there is one, take a cut M crossing K and L . We have K (2)
⊆Q(i) and

L(2)⊆Q( j), so M contradicts Lemma 7.4.
Then K+L . Take a cut M ∈Q separating Q(i) from Q( j), and let N =K2∪U∪L2.

The cut N separates some ends of Q(i) and Q( j); it is not nested with M , and hence
is a B-cut and crosses M , giving a contradiction. �

Q( j)
⊇ L(2)

L

L(1)

ε

ε ε

K (1) K K (2)
⊆ Q(i)

ε

Figure 15. Diagram for Lemma 7.5. The cut N is shown shaded.
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Lemma 7.6. Given two totally isolated cuts K , L , we have that K divides only
one L(i); i.e., there are i, j such that∐

k 6=i

L(k) ⊆ K ( j),
∐
k 6= j

K (k)
⊆ L(i).

Proof. If K , L are nested, the result is immediate. If not, they are both B-cuts, and
the result follows since they do not cross. �

We now define a pretree encoding the mincuts of 0. Let P be the set of all
#-classes of 0 and all equivalence classes of totally isolated cuts of 0. Given
x, y, z ∈ P , we say y is between x, z if the cuts in x , z divide different elements of
the coarse partition of E induced by y, and y is not equal to x, z.

Lemma 7.7. This relation defines a pretree.

Proof. Let
E = x (1) t · · · t x (nx ),

E = y(1) t · · · t y(ny),

E = z(1) t · · · t z(nz)

be the coarse partitions of the ends of 0 induced by x, y, z. First we check that the
definition makes sense; i.e., given x, y ∈ P , there are unique i, j with∐

k 6=i

x (k) ⊆ y( j).

If one of x, y is an equivalence class of totally isolated cuts, then Lemmas 7.4 and
7.6 yield this. Suppose both are #-classes Q, R. By Lemma 7.5, given K ∈ R there
is Q(i) such that

K (2)
⊆ Q(i).

Q(i) is contained in a Q(i), so

K (2)
⊆ Q(i),

and furthermore this Q(i) is independent of the cut K chosen. For each j, j ′, we
can find K ∈ R with R( j), R( j ′) in different K (k) since we are using the coarse
partition, whence one of R( j), R( j ′) is contained in Q(i). Hence all but one R( j) is
contained in Q(i); i.e., ∐

k 6=i

R(k) ⊆ Q(i).

For part (1) of the definition of a pretree, note that if∐
k 6=i1

x (k) ⊆ y( j1),
∐
k 6=i2

x (k) ⊆ y( j2),
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with j1 6= j2, then since y( j1), y( j2) are disjoint, nx = 2= ny and x, y are equivalent
cuts, and hence are equal as elements of P . So xyx does not hold.

Part (2) is trivial. For part (3), after relabelling we have∐
k 6=1

y(k) ⊆ x (1),
∐
k 6=1

x (k) ⊆ y(1),

∐
k 6=2

y(k) ⊆ z(1),
∐
k 6=1

z(k) ⊆ y(2).

Then y(1) ∩ y(2) =∅ implies x (i) ∩ z( j)
=∅ for i, j 6= 1. Hence∐

k 6=1

x (k) ⊆ z(1),

so x, y divide the same z(k), and thus xzy does not hold.
For part (4), suppose that xzy so that∐

k 6=1

z(k) ⊆ x (1),
∐
k 6=2

z(k) ⊆ y(1);

i.e., x divides z(1), y divides z(2). If w 6= z then w divides a unique z(i). If i = 1
then yzw. If not, then xzw. �

We recall the vertex version of Menger’s theorem (see, for instance, [Bondy and
Murty 2008, Theorem 9.1]):

Menger’s theorem. Let 0 be a graph and a, b be vertices of 0. Then the minimum
size of a vertex cut separating a, b is equal to the maximum number of vertex-
independent simple paths joining a, b.

Lemma 7.8. This pretree is discrete.

Proof. Let K , L ,M be mincuts with M between K , L . Elements of P are of course
not cuts; take a representative cut of any equivalence class or an appropriate corner
cut of a #-class. By Lemma 2.10, only finitely many cuts are not nested with both
K , L , so we need only consider the case when M is nested with both. Let Ci , Di , Ei

denote components of 0−K , 0− L , 0−M respectively. We have that K is nested
with M , so (after relabelling if necessary) C1 ⊆ E1, and similarly D1 ⊆ E2. We
have E1 6= E2 as M is between K , L . By the remarks following Definition 2.6, E1

is contained in a component Di , whence K , L are nested.
If we now form a new graph by collapsing both of K , L to a single vertex and

apply Menger’s theorem in this graph, we obtain n vertex-independent paths from
K to L , where n is the cardinality of a mincut. In the case when K , L are not
disjoint, some of these paths collapse into points. The cut M must intersect each of
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Figure 16. A succulent.

these paths as it separates K , L , and |M | = n, so M is contained in the union of
these paths. Then there are only finitely many choices for M .

If we took different choices for K , L the only additional choices for M would
be equivalent in P to some already considered. So the pretree is discrete. �

We now have a discrete pretree P , which as discussed above gives us a tree
encoding the mincuts of 0 and how they interact with the ends of 0.

8. Succulents

We have now obtained a tree encoding the cuts of the graph, with #-classes collapsed
down to points. We now seek to reintroduce the cyclic structure of these in order to
obtain the final “cactus” theorem. We will not be able to use cactus graphs as such;
these work well for encoding edge cuts, but cannot represent a vertex cut yielding
several components. We will therefore use a slightly more general structure which,
for the sake of a horticultural joke, we call succulents.

Definition 8.1. A succulent is a connected graph built up from cycles (including pos-
sibly 2-cycles, consisting of two vertices joined by a double edge) in the following
manner. Two cycles may be joined together either at a single vertex or along a single
edge. The construction is tree-like in the sense that if we have a “cycle of cycles”
C1, . . . ,Cn with Ci attached to Ci+1 (mod n) then all the Ci share a common
edge/vertex. See Figure 16 for an example. The analogous property in a tree is that
if we have a cycle of edges with each attached to the next one, they all meet at a
common vertex. An end vertex of a succulent is one contained in only one cycle;
a vertex of a succulent is an end vertex if it has at most two edges adjacent to it.
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Figure 17. Diagrams illustrating how we connect rings around a
star vertex if both corner cuts are B-cuts (left), if the corner cuts
are nested and not equal (middle), and if they are equal (right).

We now construct a succulent encoding the mincuts of 0. We already have the
tree T from the previous section whose vertices are (equivalence classes of) totally
isolated cuts and #-classes joined together via “star” vertices. There is at most one
star for each corner cut of a #-class. If there is no corresponding star, then the
components split off by this cut are not further subdivided by mincuts.

Before moving on further, we note that totally isolated cuts can be represented
by a degenerate sort of ring, constructed by attaching triangles to a segment rather
than to a cycle. So we can always talk about the anchors of a member of P .

To form our succulent, we replace each member of P by its associated ring. We
must now consider how we connect these; i.e., we need to consider the behaviour
around each star vertex. Recall that if Q is a #-class attached to some star vertex,
all members of P divide the same member of the (coarse) partition of the ends of 0
corresponding to Q, Q(1) say, and that there is a corner cut of Q separating Q(1)

from the rest of the ends.
Suppose Q, R are #-classes adjacent to the same star vertex, so that there is

no member of P between them. See Figure 17. Let K , L be the corresponding
corner cuts and Q(1), R(1) the members of the coarse partition. If both K , L are
B-cuts then each of Q(1), R(1) comprises only one Q(i), R(i) and there is only one
member of the fine partitions divided by the other #-class. We join these classes
by identifying the appropriate anchors. If there are no other elements of P joined
to this star vertex then K , L are equivalent so we could further simplify things by
removing the anchors and joining the cycles for Q, R together directly.

If one of K , L is not a B-cut then the two cuts are nested. Then either they are
equal or all components except one of 0− L are contained in the same component
of 0− K and vice versa. In the latter case, there is only one member of the fine
partitions divided by the other #-class, so again we can represent this by identifying
the appropriate anchors. If the corner cuts are equal, then we glue together the rings
via the corner cuts. Of the anchors attached to each, one represents the other #-class
and we simply delete this; the other anchors come in pairs, each representing the
same set of ends but originating from different rings; we identify these together
so we don’t get redundancy. Then to produce our succulent, we first glue together
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those rings sharing a corner cut, and then attach the other members of P adjacent to
this star by identifying the appropriate anchors (for totally isolated cuts we simply
note that the coarse and fine partitions coincide so there will be an obvious anchor
to use and we have none of the issues above).

We must now show that this is a true succulent, that is, that we still have a tree-like
structure. We inherit much of the tree-like nature from T ; we only need check that
no “cycles of cycles” form from the identifications made between rings all adjacent
to the same star vertex. We will proceed by contradiction, supposing we have a
shortest cycle of cycles C preventing our graph being a succulent. We can place
limitations on which constituent cycles of the graph can be present in C. First the
cycles on which our rings are based do not appear. This is because any two cycles
meeting one of these in the same Q(i) intersect along an edge. So C consists of the
triangles which contain anchors; these can be joined together either at an anchor
or along the opposite edge. Because our cycle is shortest, we alternate between
joins along edges and at anchors. Hence our cycle has at least four members. Let
T1, . . . , T4, . . . be the triangles in C with T1, T2 meeting at an anchor, T2, T3 at an
edge and so on. By construction the points at the bases of the Ti represent cuts Ki

of 0 partitioning the ends of 0, and after suitable labelling we have∐
i 6=1

K (1)
1 ⊆ K (1)

2 = K (1)
3 ,

∐
i 6=1

K (1)
4 ⊆ K (2)

2 = K (2)
3 ,

whence ∐
i 6=1

K (1)
1 ⊆ K (1)

4 ⊆ K (1)
6 . . . .

But C is a cycle, so we eventually come back to the start, whence all the inequalities
become equalities, K1 becomes a B-cut and

K (2)
1 = K (1)

2 = K (1)
4 = . . . .

We could have started at any other point, so the other Ki are also B-cuts and all
of them are equivalent. Then C becomes trivial and we have indeed constructed a
succulent.

We have now proved most of this:

Theorem 8.2. Let 0 be a connected graph such that there are vertex end cuts of 0
with finite cardinality. There is a succulent S with the following properties:

(1) There is a subset A of vertices of S called the anchors of S. If two anchors
are adjacent, one of them is an end vertex of the graph. Every vertex of S not
in A is adjacent to an anchor. We define an anchor cut of S to be a vertex cut



ON THE STRUCTURE OF VERTEX CUTS SEPARATING THE ENDS OF A GRAPH 505

containing no anchors which separates some anchors of S. We say anchor
cuts are equivalent if they partition A in the same way.

(2) There is an onto map f from the ends of 0 to the union of the ends of S with
the end vertices of S which are anchors.

(3) There is a bijective map g from equivalence classes of minimal end cuts of 0
to equivalence classes of minimal anchor cuts of S such that ends e1, e2 of 0
are separated by [K ] if and only if f (e1), f (e2) are separated by g([K ]).

(4) Any automorphism of 0 induces an automorphism of S.

Proof. We already have a succulent containing a representative of each mincut;
i.e., we already have the map g. We now discuss how we modify the succulent
to define the map f of the ends of 0. Some issues arise because there may be
ends of 0 which are distinguished from each other only by nonminimal cuts. If
such ends exist, we will treat them as a single end for the present section; i.e., we
will map them all to the same place using f . Let ε be an end of 0. If there is a
mincut K such that this end is the sole element of one of the sets K (i), then this
mincut appears somewhere in the succulent either as a corner cut of a #-class or as
a totally isolated cut and there is an end anchor of the succulent corresponding to
this K (i); define f (ε) to be this anchor.

If not, there may be a sequence of xi ∈ P with

x (1)1 ⊇ x (1)2 ⊇ · · · 3 ε.

This defines a ray in the tree T associated to P , hence an end of that tree. There is a
unique such end, since T is a tree so two ends can be separated using a single point,
which we may take to be some y ∈ P . But there is only one y(i) containing ε, so
only one end will do. So we have an end of T , hence of the succulent, associated
with ε; this is where we will map ε.

The remaining cases will correspond to ends which can only be split off by
nonminimal cuts, which are not associated to some end of the tree T . To fit these
into our succulent, we will essentially pretend that they can be split off by a mincut;
we will add an element to P for each such end, inducing a partition

E = {ε} ∪ (E −{ε}).

This member of P will not be between any two members of P; and it does not
disrupt the discreteness of P because an infinite set of betweenness in P would
induce a descending sequence of partitions as above, so we would already have dealt
with this end. So we have added an end vertex to the tree T . When constructing
the succulent, the extra member of P will be modelled as two anchors joined by a
double edge, one of which becomes attached to a relevant anchor in the succulent.
The other anchor is an end anchor, which we define to be f (ε).
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We now have the map f , which by construction interacts with g in the way
stated; note that the extra anchors added in the third step above are never split off
by an anchor cut of S.

To see that f is onto, we note that any end anchors of S arise either as f (ε) in
the third case above, or as part of a ring, where they correspond to some member
of a partition of E , whose members will be mapped there. Any ends of S arise from
ends of T , hence from sequences of members of P . From the vertices in the relevant
cuts, we can construct a ray in 0, giving an end that will be mapped to the end of S.

Part (4) arises since an automorphism of 0 induces corresponding automorphisms
of the cuts and ends of 0, preserving crossings, nestings, equivalences; in short,
all the information used to construct S. �

We make some remarks about the theorem. In part (3) we must say equivalence
classes of cuts of S because we may have equivalent distinct cuts of S; these arise if
there are quasiequivalent, nonequivalent half-cuts in a #-class , whence there will be
some equivalent cuts contained in the relevant ring; but this is not really a concern.

If we wish to obtain a graph in which we do not have to exclude anchors from
cuts, we can replace each anchor with a 3-vertex and treat these as ends, so that the
anchor cuts in the theorem become bona fide mincuts of the resulting graph S ′.

If we collapse the extra end anchors we added in the proof above onto the adjacent
anchors, then we obtain a variant theorem:

Theorem 8.3. Let 0 be a connected graph such that there are vertex end cuts of 0
with finite cardinality. There is a succulent S with the following properties:

(1) There is a subset A of vertices of S called the anchors of S. No two anchors
are adjacent, and every vertex of S not in A is adjacent to an anchor. We define
an anchor cut of S to be a vertex cut containing no anchors which separates
some anchors of S. We say anchor cuts are equivalent if they partition A in
the same way.

(2) There is a map f from the ends of 0 to the union of the ends of S with the
anchors of S.

(3) There is a bijective map g from equivalence classes of minimal end cuts of 0
to equivalence classes of minimal anchor cuts of S such that ends e1, e2 of 0
are separated by [K ] if and only if f (e1), f (e2) are separated by g([K ]).

(4) Any automorphism of 0 induces an automorphism of S.

Consider a finite graph 0. We call a set J of vertices of a graph 0 n-inseparable
if |J | ≥ n+1 and for any set K of vertices with |K | ≤ n, J is contained in a single
component of 0−K . Let κ be the smallest integer for which there are κ-inseparable
sets J1, J2 and a vertex cut K with |K | = κ and J1, J2 in different components of
0− K . We can consider the maximal κ-inseparable sets of 0 as ends of the graph;
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or attach a sequence of (κ+1)-vertices to each to turn them into a bona fide end.
The inseparability conditions ensure that this does not affect the cuts of 0 of size κ .
Then the size-κ vertex cuts separating two inseparable sets become minimal end
cuts of our graph, so we can obtain a succulent theorem for them:

Theorem 8.4. Let 0 be a finite connected graph such that there exists κ for which
there are κ-inseparable sets J1, J2 and a vertex cut K with |K | = κ and J1, J2 in
different components of 0−K , and take the minimal such κ . There is a succulent S
with the following properties:

(1) There is a subset A of vertices of S called the anchors of S. No two anchors
are adjacent, and every vertex of S not in A is adjacent to an anchor. We define
an anchor cut of S to be a vertex cut containing no anchors which separates
some anchors of S. We say anchor cuts are equivalent if they partition A in
the same way.

(2) There is a map f from the κ-inseparable sets of 0 to the anchors of S.

(3) There is a bijective map g from equivalence classes of minimal cuts of 0
separating κ-inseparable sets to equivalence classes of minimal anchor cuts of
S such that κ-inseparable sets J1, J2 of 0 are separated by [K ] if and only if
f (J1), f (J2) are separated by g([K ]).

(4) Any automorphism of 0 induces an automorphism of S.

Tutte [1984] produced structure trees for the cases κ=1, 2, which Dunwoody and
Krön [2015] then extended to higher κ . These trees were based on “optimally nested”
cuts in the language of [loc. cit.], which in this case means A-cuts. Roughly speaking,
the trees consist of the totally isolated cuts and corner cuts of our succulents, together
with “blocks” which are not decomposed by the cuts in question; these include the
maximal inseparable sets, and also sets broken up by cuts which are not optimally
nested; these sets correspond to the #-classes. The structure trees can then be
obtained from our succulents by replacing each ring with a star with one central
vertex and one vertex joined to it for each corner cut. So these earlier results also
follow from our work.

9. Applications

First we note that our work yields a proof of Stallings’ theorem, based on the
Bass–Serre theory of groups acting on trees (see [Serre 1980]).

Stallings’ theorem. Let G be a finitely generated group acting transitively on
a graph 0 with more than two ends. Then G can be expressed as an amalgam
G = A ∗F B or an HNN extension G = A∗F , where F has a finite index subgroup
which is the stabilizer of a vertex of 0.
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Proof. From the pretree P we obtain a tree T on which G acts. The tree T is
nontrivial; the action is transitive and 0 has more than two ends so there are infinitely
many ends and many inequivalent cuts. The action is without inversion since T
is bipartite, formed of star vertices and elements of P . Then G is isomorphic to
the fundamental group of a certain graph of groups; G is finitely generated so this
graph is finite. The action is nontrivial as G acts transitively on 0, so it follows
that G splits over the stabilizer of an edge of T . An element fixing an edge of T
fixes the adjacent element of P , and hence fixes either a #-class or an equivalence
class of totally isolated cuts. A #-class contains finitely many vertices; and the
transitivity of the action implies that there can only be finitely many cuts in each
equivalence class, since we can find two cuts between which every cut of the class
lies, and then apply the methods of Lemma 7.8. The result follows. �

Stallings’ original theorem covers the two-ended case as well, but our tree is trivial
here. The two-ended case can be covered by more elementary means, however.

We now discuss how earlier cactus theorems concerning edge cuts follow from
ours. We turn a question about edge end cuts into a question about vertex end cuts
as follows. First replace the graph 0 with its barycentric subdivision 0b. This is
defined as follows:

V (0b)= V (0)∪ E(0),

E(0b)= {(v, e) : v ∈ V (0), e ∈ E(0), v an endpoint of e}.

If the cardinality of a minimal edge end cut of 0 is n, we now “thicken up” each
vertex of 0b that was a vertex of 0 by replacing it with an (n+1)-vertex (see
Definition 6.1) to obtain a graph 0∗. In this way, an edge cut of 0 separating some
ends of 0 corresponds precisely with a vertex cut of 0∗ of the same cardinality.
In 0∗, because all the vertex cuts are essentially edge cuts, all of the minimal vertex
cuts of 0∗ split the graph into precisely two pieces, each containing an end. So
we do not need to remove slices from the graph, and all cuts are B-cuts. It follows
that quasiequivalent half-cuts are equivalent, and each ring becomes simple enough
to be replaced by a cycle, in which the anchors become the vertices and the other
vertices become the edges. Our succulent from Theorem 8.3 can then be replaced
with a cactus, so we have the cactus theorem for edge end cuts:

Theorem 9.1 [Evangelidou and Papasoglu 2014]. Let 0 be a connected graph such
that there are edge end cuts of 0 with finite cardinality. There is a cactus C with the
following properties:

(1) There is a map f from the ends of 0 to the union of the ends of C with the
vertices of C.

(2) There is a bijective map g from equivalence classes of minimal end cuts of 0
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to minimal edge cuts of C such that ends e1, e2 of 0 are separated by [K ] if
and only if f (e1), f (e2) are separated by g([K ]).

(3) Any automorphism of 0 induces an automorphism of C.

To deal with the classical cactus theorem for edge cuts of finite graphs, we
proceed as before to get the graph 0∗. Then to each (n+1)-vertex we attach an
infinite chain of (n+1)-vertices, so that a vertex in the original graph 0 becomes
a de facto end of our new graph. “Equivalent cuts” in this graph correspond to the
same cut of the original graph. Once again the succulent can be replaced with a
cactus, so we have the cactus theorem of Dinic, Karzanov, and Lomonosov:

Theorem 9.2 [Dinic et al. 1976]. Let 0 be a connected finite graph. There is a
cactus C with the following properties:

(1) There is a map f from the vertices of 0 to the vertices of C.

(2) There is a bijective map g from equivalence classes of minimal edge cuts of 0
to minimal edge cuts of C such that vertices v1, v2 of 0 are separated by [K ]
if and only if f (v1), f (v2) are separated by g([K ]).

(3) Any automorphism of 0 induces an automorphism of C.
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