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ABIMBOLA ABOLARINWA

This paper introduces a new family of entropy functionals which is proved
to be monotonically nondecreasing along the Ricci-harmonic map heat flow.
Some of the consequences of the monotonicity are combined to derive gradi-
ent estimates and Harnack inequalities for all positive solutions to the asso-
ciated conjugate heat equation. We relate the entropy monotonicity and the
ultracontractivity property of the heat semigroup, and as a result we obtain
the equivalence of logarithmic Sobolev inequalities, conjugate heat kernel
upper bounds and uniform Sobolev inequalities under Ricci-harmonic map
heat flow.

1. Introduction

Let (M, g) and (N , ξ) be compact Riemannian manifolds (without boundary) of di-
mensions m and n respectively. Let a smooth map u :M→N be a critical point of the
Dirichlet energy integral E(u)=

∫
M |∇u|2 dµg, where N is isometrically embedded

in Rd , d ≥ n, by the Nash embedding theorem. The configuration (g(x, t), u(x, t)),
t ∈ [0, T ), of a one-parameter family of Riemannian metrics g(x, t) and a family
of smooth maps u(x, t) is defined to be a Ricci-harmonic map flow if it satisfies
the coupled system of nonlinear parabolic equations denoted by (RH)α

(1-1)


∂

∂t
g(x, t)=−2 Rc(x, t)+ 2α∇u(x, t)⊗∇u(x, t),

∂

∂t
u(x, t)= τgu(x, t),

where Rc(x, t) is the Ricci curvature tensor for the metric g, α(t) ≡ α > 0 is a
time-dependent coupling constant and τgu is the intrinsic Laplacian of u which
denotes the tension field of the map u. The system (1-1) was first studied by B. List
[2008] in a special case, N ⊆ R and α = 2, where the flow was modified by the
Lie derivative of g with respect to a gradient vector field to give a gradient flow
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of an energy functional whose stationary points are solutions to the static Einstein
vacuum equations arising in general relativity. This has since been generalised by
R. Müller [2012] to the general case N ↪→ Rd , for sufficiently large d. Precisely,
the system couples together the Ricci flow of Hamilton [1982] and the heat flow
for harmonic maps of Eells and Sampson [1964]. The system (RH)α is closer to
the former in behaviours, such as in existence and singularities, though may be less
singular than both. Hence, the analysis of the flow is usually done along the line
of Ricci flow and for this, Perelman’s works [2002; 2003b; 2003a] on Ricci flow
are very applicable to the theory and applications of the Ricci-harmonic map flow.

In this paper we study the behaviour of all positive solutions to the associated
conjugate heat equation along the Ricci-harmonic map flow. Let h, H :M×[0, T )→
(0,∞) satisfy(

∂

∂t
−1g

)
h = 0 and

(
−
∂

∂t
−1g + R−α|∇u|2g

)
H = 0,

with∫ T

0

∫
M

(
∂

∂t
−1g

)
h H dµg dt =

∫ T

0

∫
M

h
(
−
∂

∂t
−1g + R−α|∇u|2g

)
H dµg dt,

where 1g is the usual Laplace–Beltrami operator and �∗ := −∂/∂t −1g + R−
α|∇u|2g is the standard conjugate to the heat operator � := ∂/∂t −1g. We say h
and H are respectively solutions to the heat equation and conjugate heat equation.
The main idea here is to solve the Ricci-harmonic map flow forward in time and
solve the conjugate heat equation backward in time. Fixing the coordinate (y, s),
H = H(x, t; y, s) will be called the conjugate heat kernel (the positive minimal
solution) if it tends to a δ-function as t→ T .

Our main results in the first part of this paper are Perelman’s differential Harnack
estimates for f ∈ C∞(M ×[0, T )) satisfying H(x, τ ; y, s)= (4πτ)−m/2e− f (x,τ ),
τ = T − t ,

(1-2) −
d
dt

f (γ (τ ), τ )≤ 1
2

(
|γ ′(τ )|2+ Sg(γ (τ ), τ )−

m
2τ

)
,

and Li–Yau Harnack estimates for all positive solutions to the conjugate heat
equation

(1-3)
H(x2, t2)
H(x1, t1)

≤

(
τ1

τ2

)m/4

exp
(

1
2

∫ t2

t1
(|γ ′(t)|2+ Sg(γ (t), t) dt

)
,

where Sg= Rg−α|∇u|2g . (The proofs of (1-2) and (1-3) are delayed until Section 4).
Both results stated above are consequences of a monotonicity formula for a new
entropy functional Wα,ε introduced in Section 3, where we obtain the Harnack
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inequality for 0< ε2
≤ 4π ,

(1-4) ε2τ

4π
(21 f − |∇ f |2+ Sg)+ f − mε2

4π
≤ 0

for all time t and prove that

(1-5) lim
τ→0

∫
M

ε2τ

4π
(21 f − |∇ f |2+ Sg)+ f − mε2

4π
h H dµg −→ 0,

with the condition that ε2
→ 4π as t→ T . Monotonicity formulas are generally

useful in controlling solutions of evolution equations. This entropy is also intimately
related to the logarithmic Sobolev inequality of Gross [1975]. Perelman used this
property to obtain upper bounds for the fundamental solution to the adjoint heat
equation via his reduced length. This leads to the proof of the noncollapsing theorem
on Riemannian manifolds and, consequently, to the completion of R. Hamilton’s
program on the Poincaré conjecture. See [Perelman 2002; 2003b; 2003a; Cao et al.
2003]. Among several examples, Perelman’s entropy and the gradient estimates of
Li and Yau [1986] are important ones that show close relations between entropy
monotonicity and the gradient estimate for the heat equation (forward or backward
in time). Lei Ni [2004] has also considered a case for the linear heat equation
on a static manifold with nonnegative Ricci curvature. We notice that coupling
a heat-type equation with geometric flow began with [Hamilton 1993] and it has
since become a very active research area and has led to numerous physical and
geometric applications; for examples, see [Bǎiles,teanu et al. 2010; Bǎiles,teanu and
Tran 2013; Cao and Zhang 2011; Kuang and Zhang 2008; List 2008; Müller 2012;
Ni 2006; Zhang 2007] and the references therein.

Another important application of Perelman’s W-entropy monotonicity is in the
derivation of uniform Sobolev inequalities by Q. Zhang [2007]; see also [Hsu 2008;
Ye 2007]. In the second part of this paper, we relate the entropy monotonicity and
the ultracontractivity property of the heat semigroup, and as a result we establish the
equivalence of logarithmic Sobolev inequalities, conjugate heat kernel upper bounds
and uniform Sobolev inequalities under Ricci-harmonic map heat flow. Precisely,
let A0 and B0 be finite positive constants depending only on m, g0, the lower bound
for the Ricci curvature and the injectivity radius of M . For any v ∈ W 1,2(M, g0)

such that

(1-6) ‖v‖2m/(m−2) ≤ A0‖∇v‖2+ B0‖v‖2,

where m ≥ 3 and ‖ · ‖q =
(∫

M | · |
q dµg

)1/q , 1 ≤ p <∞, we have the following
result.

Theorem. Let M be a compact Riemannian manifold of dimension m ≥ 3. Let
the solution to the (RH)α-flow exist for all times t ∈ [0, T ). Assume the Sobolev
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embedding (1-6) holds; then for finite positive constants A and B depending on m,
A0, B0, the lower bound for Rg0 and T ,

(1-7)
(∫

M
v2m/(m−2) dµg

)(m−2)/2

≤ A
∫

M

(
|∇v|2+ 1

4 Sgv
2) dµg + B

∫
A
v2 dµg

and

(1-8)
∫

M
v2 ln v2 dµg(t)

≤ σ 2
∫

M
(4|∇v|2+ Sgv

2) dµg(t)−
m
2

ln σ 2
+ (t + σ 2)β1+

m
2

ln m A
2e
,

hold for each t ∈ [0, T ) and v ∈W 1,2(M) if λα= inf‖v‖2=1
∫

M(4|∇v|
2
+Sgv

2) dµg0 ;
that is, λα0 is the first eigenvalue of the operator −1+ 1

4 Sg.
Finally, for some constant C depending on m, t, T, A0, B0 and sup Sg( · , 0), the

estimate

(1-9) H(x, T ; y)≤ CT−m/2

for the positive solution to the conjugate heat equation associated to (RH)α holds.

The three results in the above theorem are essentially equivalent, and their proofs
occupy Sections 5 – 7. The approach to the proof here is Sobolev inequality (1-7)
=⇒ log-Sobolev inequality (1-8) =⇒ heat kernel upper bound (1-9) =⇒ Sobolev
inequality (1-7). Indeed, any of them can be derived from the other. The results of
the above form [Hsu 2008; Ye 2007; Zhang 2007] yield a long time κ-noncollapsing
estimate which generalises Perelman’s short time result [2002] along the Ricci flow.

We recall that the nonnegativity of the scalar curvature Rg is preserved along
Ricci flow [Chow and Knopf 2004], so the nonnegativity of Sg is also preserved
as long as (RH)α exists. Indeed, Sg evolves by a reaction-diffusion equation which
helps to visualise its behaviour up to singular time (we discuss this in the next
section). The condition Sg = Rg −α|∇u|2g ≥ 0 at the starting time t = 0 must now
be considered. The assumption is not necessary for the derivation of (1-7) since
additional geometric data are not usually required to derive a Sobolev inequality from
either a log-Sobolev inequality or the heat kernel bound. The assumption is required
for the condition that a certain eigenvalue λα for the initial metric is positive, which
is required to pass to (1-8). The class of manifold (M, g0) with λα0> 0 is a very
large one and significant from a geometric point of view. Moreover, if λα0> 0 for
Sg(0)>0 (i.e., Rg(0)>α(0)|∇u(0)|2) then A, B are independent of time and B=0.
Corollary 7.5 below presents corresponding versions of (1-7) and (1-8) in this case.

In the next section we discuss necessary background on Perelman–Müller entropy
monotonicity formulas for (RH)α.
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2. Background on entropy formulas for (RH)α-flow

Let (M, g) be a compact Riemannian manifold. For the metric g, any smooth
functions u ∈ C∞(M, N ), u(M) ⊆ N ↪→ Rn , f ∈ C∞(M) and constant α > 0,
Perelman and Müller’s energy functional [Müller 2012] is defined on the triple
(g, u, f ) by

(2-1) Fα(g, u, f ) :=
∫

M
(Rg + |∇ f |2g −α|∇u|2g)e

− f dµg,

which can also be written in two other ways,

Fα(g, u, f )=
∫

M
(Sg +1g f )e− f dµg

=

∫
M
(21g f − |∇ f |2g + Sg)e− f dµg,

since
∫

M 1(e
− f ) = 0 =

∫
M(−1 f + |∇ f |2g)e

− f dµg. For any diffeomorphism
φ : M→ M , we have Fα(φ∗g, φ∗u, φ∗ f )= Fα(g, u, f ). If (g, u) is a solution to
the system (1-1), Müller [2012] proved that the Fα-functional is nondecreasing
under the flow and showed that the system is equivalent (after pulling back with
a diffeomorphism generated by a vector field) to the gradient flow system for the
energy functional Fα, locally written as,

(2-2)



∂

∂t
gi j =−2Ri j + 2α∇i u⊗∇j u+ 2∇i∇j f,

∂

∂t
u = τgu−〈∇u,∇ f 〉,

∂

∂t
f =−R+α|∇u|2−1 f.

More precisely,

(2-3) d
dt

Fα(g, u, f )

= 2
∫

M

(
|Rc−α∇u⊗∇u+∇∇ f |2+α|τgu−〈∇u,∇ f 〉|2

)
e− f dµg ≥ 0.

An application of this is that Fα is constant if and only if (g, u) is a steady gradient
soliton.

Define

λα(g)= inf
{
Fα(g, u, f ) : f ∈ C∞(M),

∫
M

e− f dµg = 1
}
.

Then λα(g) is the first eigenvalue of the operator−41+Sg, where the nondecreasing
property of Fα implies λα(g) is nondecreasing and we have, by setting v = e− f/2,
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the corresponding normalised eigenvector,

−41v+ Sgv = λα(g)v.

Hence

λα(g, u)= inf
{∫

M
(4|∇v|2+ Sgv

2) dµg :

∫
M
v2 dµg = 1

}
.

Similar to the case of Hamilton’s Ricci flow, all geometric quantities associated
with the source manifold evolve along (RH)α. For instance, we consider those
quantities that are directly relevant at the present; the metric inverse, volume element,
Laplace–Beltrami operator and Sg evolve as follows:

∂

∂t
gi j
= 2Si j ,

∂

∂t
1g = 2Si j

∇i∇j − 2ατgu〈∇u,∇ · 〉,

∂

∂t
dµg =−Sg dµg,

∂

∂t
Sg =1Sg + 2|Si j |

2
+ 2α|τgu|2g,

where Si j = Rc−α∇u⊗∇u and gi j Si j = Sg. The nonnegativity of the curvature
operator and Sg are preserved during the flow; for example, the evolution of Sg =

Rg −α|∇u|2 is governed by the differential inequality

∂

∂t
Sg ≥1Sg +

2
m

S2
g,

since α ≥ 0 and |Si j |
2
≥ (1/m)S2

g . Suppose Sg0 ≥ ρ. We can use the maximum
principle by comparing the solution of the above inequality with that of the ODE

(2-4)


dψ(t)

dt
=

2
m
(ψ(t))2,

ψ(0)= ρ,

solving to

ψ(t)=
1

1
ρ
−

2
m t
.

Therefore,

(2-5) Sg(t) ≥ ψ(t)=
1

1
ρ
−

2
m t

for all t ≥ 0 as long as the flow exists. We remark that (2-5) implies

Sg(t)min ≥
Sg(0)min

1− (2t/m)Sg(0)min
.

Clearly, Sg(0)min > 0 implies Sg(t)min→∞ in finite time Tε ≤ m/(2Sg(0)min) <∞.

This also implies that Rg(t)min→∞ as t→ Tε , and thus g(t) becomes singular in
finite time Tsingular ≤ Tε <∞.
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Recall the Perelman–Müller Wα-entropy functional also introduced in [Müller
2012] as

(2-6) Wα(g, u, f, τ ) :=
∫

M

(
τ(Sg + |∇ f |2g)+ f −m

) e− f

(4πτ)m/2
dµg,

where τ ∈ R is a real number, f ∈ C∞(M × [0, T )), α > 0 is a constant and
u ∈C∞(M, N ) is a harmonic map between the m-dimensional manifold M and the
n-dimensional manifold N , which by the Nash embedding theorem is isometrically
embedded in Rd for sufficiently large d . The above entropy functional is analogous
to Perelman’s W-entropy for shrinkers [2002] under the Ricci flow. Wα is equally
used for shrinkers under Ricci-harmonic map flow as can be traced back to List
[2008]. As pointed out in [Perelman 2002], such an entropy is invariant and
monotone. In fact, given a constant λ > 0 and a diffeomorphism φ of M , under
simultaneous scaling of g and τ , we have

Wα(λg, u, f, λτ)=Wα(g, u, f, τ ),

and under the pullback of g, u and f , we have

Wα(φ
∗g, φ∗u, φ∗ f, τ )=Wα(g, u, f, τ ).

More importantly, we have the following monotonicity formula.

Proposition 2.1 [List 2008; Müller 2012]. Let
(
g(t), u(t), f (t), τ (t)

)
, t ∈ [0, T )

be a solution of the system

(2-7)



∂

∂t
g =−2 Rc+2α∇u⊗∇u,

∂

∂t
u = τgu,(
−
∂

∂t
−1g + R−α|∇u|2g

) e− f

(4πτ)m/2
= 0,

∂

∂t
τ =−1.

Then the Wα-entropy is nondecreasing with

(2-8) d
dt

Wα(g, u, f, τ )=2τ
∫

M

∣∣∣Rc−α∇u⊗∇u+∇∇ f − 1
2τ

g
∣∣∣2 e− f

(4πτ)m/2
dµg

+ 2τ
∫

M
α|τgu−〈∇u,∇ f 〉|2 e− f

(4πτ)m/2
dµg.

Notice that the third equation in the above system is equivalent to the following
backward heat equation

(2-9)
∂ f
∂t
=−1g f + |∇ f |2g − R+α|∇u|2g +

m
2τ
,
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A monotonicity formula of the above type is used to rule out any periodic solution
to the (RH)α-flow other than those that are striking and Einstein [List 2008; Müller
2012; Perelman 2002].

Similar to λα(g, u) above, define the minimizing problem

µα(g, u, τ ) := inf
{
Wα(g, u, f, τ ) : f ∈ C∞(M),

∫
M
(4πτ)−m/2e− f dµg = 1

}
,

replacing f by v = e− f/2. We have an equivalent minimizing integral

Wα(g, u, v, τ )=
∫

M

(
τ(4|∇v|2+ Sgv

2)− v2 ln v2
−mv2)(4πτ)−m/2 dµg

for functions v ∈ H 1(M) with
∫

M v
2(4πτ)−m/2 dµg= 1. Then v satisfies the Euler–

Lagrange equation, and it follows that µα(g, u, τ ) is achieved by a minimizer fτ
satisfying

τ(21 fτ − |∇ fτ |2+ Sg)+ fτ − n = µ(g, τ ).

By the result of Perelman, it is well understood that for any metric g on a compact
manifold M and τ > 0, we have µ(g, u, τ ) >−∞ and it approaches zero as τ→ 0.

3. A new entropy monotonicity formula

In this section we introduce a new family of dual entropy formulas, which are dual
in the sense that they generalise Ni’s entropy formula [2004] for the forward heat
equation on the one hand and generalise Perelman and Müller’s Wα-entropy on
the other hand. A similar family of entropy functionals was constructed by Kuang
and Zhang [2008]. The monotonicity property discussed here is very crucial to the
derivation of our results in the rest of this paper.

Definition 3.1. Let f : M × [0, T ] → R be smoothly defined with normalisation
condition ∫

M

e− f

(4πτ)m/2
dµg = 1.

We define a generalised family of entropy by
(3-1)

Wα,ε(g, u, f, τ )=
∫

M

(
ε2τ

4π
(Sg+|∇ f |2g)+ f −

mε2

4π
+

m
2

ln
4π
ε2

)
e− f

(4πτ)m/2
dµg,

where τ(t)= T − t > 0, 0< ε2
≤ 4π and Sg = Sg(x, t)= (Rg −α|∇u|2g)(x, t).

Let H = H(x, t) be a positive solution to the conjugate heat equation on a
complete compact manifold with metric g = g(x, t), evolving by the (RH)α. Let
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H = (4πτ)−m/2e− f and
∫

M H dµg = 1. Then

(3-2)
(
−
∂

∂t
−1g + Sg

)
H = 0.

Theorem 3.2. Suppose that (g(t), u(t)), t ∈ [0, T ), solves (RH)α with α(t)≡α> 0
and τ is a backward time with ∂τ/∂t =−1. Suppose that H : M×[0, T )→ (0,∞)
solves the conjugate heat equation (−∂/∂t−1g+Sg)H =0. The entropy functional
Wα,ε is nondecreasing by the formula

(3-3) d
dt

Wα,ε(g,u, f,τ )

≥
ε2τ

2π

∫
M

(∣∣∣Rc−α∇u⊗∇u+∇∇ f− 1
2τ

g
∣∣∣2+α|τgu−〈∇u,∇ f 〉|2

)
H dµg

for 0< ε2
≤ 4π .

Remark 3.3. We remark that if ε2
= 4π , we recover Perelman and Müller’s

Wα-entropy.

Scaling and diffeomorphism invariance of Wα,ε . Before we prove the monotonic-
ity formula (3-3), we shall first establish the invariance of our new entropy with
respect to dilation and diffeomorphism.

Lemma 3.4 [Chow and Knopf 2004, Lemma 6.57]. If g and h are two Riemannian
metrics on an n-dimensional Riemannian manifold and they are related by the
time-scale factor λ (i.e., g = λh), then the various geometric quantities scale as
follows:

gi j
=

1
λ

hi j , 0k
i j (g)
= 0k

i j (h)
,

Rl
i jk(g)= Rl

i jk(h), Ri jkl(g)= φRi jkl(h),

Ri j (g)= Ri j (h), R(g) =
1
λ

R(h), dµ(g) = λn/2 dµ(h).

Lemma 3.5. Let λ> 0 be any constant and φ : M→ M be a one-parameter family
of diffeomorphisms. Then

Wα,ε(λg, u, f, λτ)=Wα,ε(g, u, f, τ ),

Wα,ε(φ
∗g, φ∗u, φ∗ f, τ )=Wα,ε(g, u, f, τ ).

Proof. By a straightforward computation, we have

Wα,ε(λg,u, f,λτ)=
∫

M

(
ε2λτ

4π
(R(λg)−α(λg)i j

∇i u⊗∇j u+(λg)i j
∇i f∇j f )

+ f−mε2

4π
+

m
2

ln 4π
ε2

)
e− f

(4πλτ)m/2
√

det(λg)dx
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=

∫
M

(
ε2λτ

4π
(λ−1 R(g)−αλ−1gi j

∇i u⊗∇j u+λ−1gi j
∇i f∇j f )

+ f−mε2

4π
+

m
2

ln 4π
ε2

)
e− f

λm/2(4πτ)m/2
√
λm det(g)dx

=

∫
M

(
ε2τ

4π
(Rg−α|∇u|2g+|∇ f |2g)

+ f−mε2

4π
+

m
2

ln 4π
ε2

)
e− f

(4πτ)m/2
dµg

=Wα,ε(g,u, f,τ ).

The invariance under diffeomorphisms is trivial since (RH)α-flow is equivalent
to the flow modified by the time-dependent diffeomorphism φ generated by the
gradient of f , where φ∗g is the pulled-back metric and φ∗ f = f ◦ φ. For the
harmonic map u, the invariance holds if we combine the following facts: φ is a
C∞-diffeomorphism and u ∈C∞(M, N ) is a harmonic map with respect to (M, g);
then φ∗u = u ◦φ ∈ C∞(M, N ) is a harmonic map with respect to (M, φ∗g) with
the identity ∫

M
|∇u|2g dµg =

∫
M
|∇(u ◦φ)|2φ∗g dµφ∗g.

Then, all the geometric quantities are invariant under (RH)α-flow and the diffeo-
morphism invariance of Wα,ε follows. �

Proof of Theorem 3.2 (the monotonicity formula for Wα,ε).

Proof. The entropy functional can be rewritten as

Wα,ε(g, u, f, τ )

=
ε2

4π

∫
M
(τ (Sg + |∇ f |2)+ f −m)H dµg +

(
1− ε2

4π

)∫
M

f H dµH +
m
2

ln 4π
ε2
.

By direct computation we obtain the evolution equation

(3-4) d
dt

Wα,ε(g, u, f, τ )= ε2

4π
∂

∂t

(∫
M

V dµg

)
+

(
1− ε2

4π

)
∂

∂t

(∫
M

f H dµg

)
,

where

(3-5) V := (τ (21g f + Sg − |∇ f |2)+ f −m)H

since
∫

M(1g f −|∇ f |2g)e
− f dµg = 0 on a closed manifold M . We make two claims

here, which we shall prove in the next two propositions, namely,

(3-6) ∂

∂t

(∫
M

V dµg

)
=

∫
M
−�∗V dµg =

d
dt

Wα(g, u, f, τ )
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and

(3-7) ∂

∂t

(∫
M

f H dµg

)
=−Fα(g, u, f )+ m

2τ
≥ 0.

With the above two claims, we arrive at

(3-8) d
dt

Wα,ε(g, u, f, τ )= ε2

4π
d
dt

Wα(g, u, f, τ )+ m
2τ
−Fα(g, u, f ),

which proves the monotonicity formula (3-3) for 0< ε2
≤ 4π . �

Proposition 3.6. With the assumptions of Theorem 3.2, the quantity

V :=
(
τ(21g f + Sg − |∇ f |2)+ f −m

)
H

satisfies

(3-9) �∗V =−2τ
(∣∣∣Rc−α∇u⊗∇u+∇∇ f − 1

2τ
g
∣∣∣2+α|τgu−〈∇u,∇ f 〉|2

)
H

and

(3-10) d
dt

Wα(g, u, f, τ )=−
∫

M
�∗V dµg.

Moreover if H tends to a δ-function as t→ T , then V ≤ 0 for all t < T with H(x, τ )
replaced with H(x, τ ; y, σ ), the fundamental solution.

Proof. Let P = τ(21 f −|∇ f |2+ Sg)+ f −n, and ∂tτ =−1 since τ = T − t . Thus,

�∗V = (−∂t −1+ Sg)(P H)

=−(∂t +1)P H − 2〈∇P,∇H〉
and

H−1�∗V =−(∂t +1)P + 2〈∇P,∇ f 〉

since f =− ln H − (m/2) ln(4πτ) implies that ∇ f =−H−1
∇H . Let us compute

(∂t +1)P as follows:

(3-11) ∂P
∂t
=−(21 f − |∇ f |2+ Sg)+ τ

∂

∂t
(21 f − |∇ f |2)+ τ ∂

∂t
Sg +

∂

∂t
f.

Note that

∂t f =−1g f − Sg + |∇ f |2g +
m
2τ
,

∂t Sg =1Sg + 2|Si j |
2
g + 2α|τgu|2g.

Then a straightforward computations yields

2 ∂
∂t
(1 f )= 4Si j∇i∇j f − 4ατgu〈∇u,∇ f 〉+ 21(−1 f + |∇ f |2− Sg),(3-12)

∂

∂t
|∇ f |2 = ∂

∂t
(gi j
∇i f∇j f )= 2Si j∇i f∇j f + 2

〈
∇ f,∇ ∂

∂t
f
〉
.(3-13)



268 ABIMBOLA ABOLARINWA

Combining (3-11)–(3-13) with the identity1P=τ
(
21(1 f )−1|∇ f |2+1Sg

)
+1 f ,

we have(
∂

∂t
+1

)
P =−21 f−2|∇ f |2−2Sg+

m
2τ

+τ
(
4Si j∇i∇j f−4ατgu〈∇u,∇ f 〉+1|∇ f |2+2〈∇ f,∇1 f 〉

−2Si j∇i f∇j f+2|Si j |
2
+2α|τgu|2−2〈∇ f,∇|∇ f |2〉+2〈∇ f,∇Sg〉

)
.

Similarly,

2〈∇P,∇ f 〉 = 2〈∇(τ (21 f − |∇ f |2+ S− g)+ f ),∇ f 〉

= 2τ
(
2〈∇1 f,∇ f 〉− 〈∇|∇ f |2,∇ f 〉+ 〈∇Sg,∇ f 〉

)
+ 2|∇ f |2.

Therefore,

−

(
∂

∂t
+1

)
P+2〈∇P,∇ f 〉

=

(
21 f+2Sg−

m
2τ

)
−τ
(
4Si j∇i∇j f−4ατgu〈∇u,∇ f 〉+1|∇ f |2

−2〈∇ f,∇1 f 〉−2Si j∇i f∇j f+2|Si j |
2
+2α|τgu|2

)
=

(
21 f+2Sg−

m
2τ

)
−τ
(
4Si j∇i∇j f+2|∇∇ f |2+2|Si j |

2)
−2τα(|τgu+〈∇u,∇ f 〉2−2τgu〈∇u,∇ f 〉)

=−2τ
(

2Si j∇i∇j f+|∇∇ f |2+|Si j |
2
−

1
τ

(
1 f+R− m

4τ

))
−2τα(|τgu−〈∇u,∇ f 〉|2)

=−2τ
(
(Si j+∇i∇j f )2−1

τ

(
1 f+R− m

4τ

))
−2τα(|τgu−〈∇u,∇ f 〉|2)

=−2τ
∣∣∣Si j+∇i∇j f− 1

2τ
gi j

∣∣∣2−2τα(|τgu−〈∇u,∇ f 〉|2),

where we have used the following calculation by Bochner’s identity:

1|∇ f |2− 2〈∇ f,∇1 f 〉− 2Si j∇i f∇j f = 2|∇∇ f |2+ 2(Ri j − Si j )∇i f∇j f

= 2|∇∇ f |2+ 2α〈∇u,∇ f 〉2.
Hence,

H−1�∗V =−2τ
∣∣∣Si j +∇i∇j f − 1

2τ
gi j

∣∣∣2− 2τα(|τgu−〈∇u,∇ f 〉|2)

and

�∗V =−2τ
∣∣∣Si j +∇i∇j f −

1
2τ

gi j

∣∣∣2 H − 2τα(|τgu−〈∇u,∇ f 〉|2)H.

The consequence of which is a localised version of Perelman’s W-entropy mono-
tonicity formula. Thus,
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dW
dt
=
∂

∂t

∫
M

V dµg =

∫
M
(∂t V − RV +α|∇u|2gV ) dµ

=

∫
M
(−�∗V −1gV ) dµg =

∫
M
−�∗V dµg

= 2(T − t)
∫

M

(∣∣∣Si j +∇i∇j f − 1
2(T−t)

gi j

∣∣∣2
+α(|τgu−〈∇u,∇ f 〉|2)

) e− f

(4πτ)−m/2
dµg. �

Proposition 3.7. With the assumptions of Theorem 3.2, we have

(3-14) ∂

∂t

(∫
M

f H dµg

)
≥ 0.

Proof. By direct computation,

∂

∂t

(∫
M

f H dµ
)
=

∫
M

(
∂

∂t
f H + f ∂

∂t
H − Sg f H

)
dµg

=

∫
M

(
−1g f + |∇ f |2g − Sg +

m
2τ

)
H dµg

+

∫
M

f (−1g H + Sg H) dµ−
∫

M
Sg f H dµg

=

∫
M
(−21g f + |∇ f |2g)H dµ+

∫
M

( m
2τ
− Sg

)
H dµg,

where we used integration by parts on −
∫

M 1g f H =−
∫

M f1g H . Rearranging
the above, we have

∂

∂t

( ∫
M

f H dµg

)
=

∫
M
(−Sg − 21g f + |∇ f |2g)Hdµg +

m
2τ

∫
M

H dµg

=−

∫
M
(Sg + |∇ f |2g)H dµg +

m
2τ

=−Fα +
m
2τ
,

where Fα =
∫

M(Sg + |∇ f |2g)H dµg is the Perelman energy functional introduced
in [Müller 2012], which we discussed in Section 2. Next is to show that

(3-15) ∂

∂t

(∫
M

f u dµ
)
=−Fα +

m
2τ
≥ 0.

Recall the evolution of Fα:
(3-16)

d
dt

Fα(g, f )= 2
∫

M

(
|Rc−α∇u⊗∇u+∇∇ f |2+α|τgu−〈∇u,∇ f 〉|2

)
H dµg.
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Straightforward analysis, using an elementary inequality and the Cauchy–Schwarz
inequality, gives

(3-17) |Rc−α∇u⊗∇u+∇∇ f |2 ≥ 1
m
(Rg −α|∇u|2g +1g f )2

so that∫
(Sg +1g f )H dµg ≤

(∫
(Sg +1g f )2 H dµg

)1/2(∫
H dµg

)1/2

,

which implies (∫
M
(Sg +1g f )H dµ

)2

≤

∫
M
(Sg +1g f )2 H dµg.

Hence by (3-16) and (3-17), we obtain

(3-18) d
dt

Fα ≥
2
m

∫
M
(Sg +1g f )2 H dµg +

∫
M

2α|τgu−〈∇u,∇ f 〉|2 H dµg.

We can then solve
d
dt

Fα ≥
2
m
F 2
α , Fα ≥ 0.

This implies

dFα
F2
α

≥
2
m

dt =⇒− 1
Fα

∣∣∣T
t
≥

2
m
(T − t)=⇒ 1

Fα(t)
−

1
Fα(T )

≥
2
m
τ

=⇒
1

Fα(t)
≥

2
m
τ +

1
Fα(T )

.

From here we can conclude as follows:

(i) Suppose Fα(T ) > 0. Then

1
F(t) ≥

2τ
m
; i.e, Fα(t)≤

m
2τ
.

(ii) Suppose Fα(T ) ≤ 0. Then Fα(t) ≤ 0 ≤ m/(2τ) for all t ∈ [0, T ), since we
know that dFα/dt ≥ 0.

Hence
Fα(t)≤

m
2τ

for t ∈ [0, T ),

which proves the claim (3-15). �

4. Differential Harnack estimates

In this section we obtain Perelman’s differential Harnack-type estimate which holds
for the fundamental solution and, of course, all positive solutions to the conjugate
heat equation coupled to the Ricci-harmonic map flow. There is an improvement
over some known results as there is no explicit restriction on the curvature and no
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recourse to Perelman’s reduced distance. In what follows, we want to show that the
local entropy satisfies a pointwise differential inequality for the positive minimal
solution. Define a differential Harnack quantity

Pε :=
ε2τ

4π
(21 f − |∇ f |2+ Sg)+ f + m

2
ln 4π
ε2
−

mε2

4π
.

Theorem 4.1. Let M be a closed manifold with bounded Ricci curvature and
H(x, y, t)= H = (4π t)−n/2e− f satisfy �∗H = 0, where H tends to a δ-function
as t→ T and satisfies

∫
M H dµg = 1. Then for all t < T and ε2

→ 4π as t→ T ,
we have

(4-1) ε2τ

4π
(21 f − |∇ f |2+ Sg)+ f − mε2

4π
≤ 0.

Proof. Let h be any compactly supported smooth function for all t0 > 0. Suppose
h( · , t) is a positive solution to the ordinary heat equation (∂t −1)h = 0 (this is
Perelman’s argument in [2002, Corollary 9.3]). Then, it is clear that

∂

∂t

∫
M

Hh dV = 0

and we have by direct calculation that

∂

∂t

∫
M

h PεH dµg =

∫
M

(
∂t h(PεH)+ h∂t(PεH)− Sg PεH

)
dµg

=

∫
M

(
(∂t −1)h(PεH)+ h(∂t +1− Sg)PεH)

)
dµg

=−

∫
M

h�∗(PεH) dµg

=−
ε2

4π

∫
M

h�∗Vε dµg ≥ 0.

The inequality is due to Proposition 3.6. We are left to show that for the everywhere
positive function h( · , t), the limit of

∫
M hVε dµg is nonpositive as t → T . We

assume the claim a priori, i.e, limt→T
∫

M hVε dµg = 0, with

Vε =
(
τ(21 f − |∇ f |2+ Sg)+

4π
ε2

f −m
)

H,

and conclude the result. �

For completeness, we devote the next effort to justifying the claim
(4-2)

lim
t→T

∫
M

hVε dµg ≤ 0 ⇐⇒ lim
t→T

∫
M

h PεH dµg ≤
m
2

lim
t→T

(
ln 4π
ε2

∫
M

h H dµg

)
.

Our argument follows from [Ni 2006; Perelman 2002] and can be compared with
the recent preprint [Bǎiles,teanu and Tran 2013, Proposition 4.2] (see also [Chow
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et al. 2008, Section 16.4]), where we know that limt→T
∫

M V h dµg ≤ 0 (where V
is as defined in Proposition 3.6). To see this clearly, we write

PεH = ε2

4π
Vε +

m
2

ln 4π
ε2

H,

which implies

(4-3) lim
t→T

∫
M

h PεH dµg =
ε2

4π
lim
t→T

∫
M

Vεh dµg +
m
2

ln 4π
ε2

lim
t→T

∫
M

h H dµg.

If H tends to a Dirac δ-function, say at a point p ∈ M , for τ → T , then f satisfies
f (x, τ )→ d2(p, x)/4τ . This is in relation to the l-length of Perelman. This yields

(4-4) lim
τ→0

∫
M

f h H dµg ≤ lim sup
τ→0

∫
M

d2(p, x)
4τ

h H dµg =
m
2

h(p, T ).

Meanwhile, by the strong maximum principle, we have h(x, T ) > 0 and

lim
τ→0

∫
M

h H dµg = h(x, T ).

Hence by a scaling argument, we assume that h(x, T )= 1. Rewriting Pε and using
integration by parts, we have∫

M
Pεh H dµg=

∫
M

ε2τ

4π

(
|∇ f |2+Sg dµg−

m
2τ

)
h H dµg−

ε2τ

2π

∫
M
〈∇ f,∇h〉H dV

+

∫
M

f Hh dµg +
m
2

(
ln 4π
ε2
−
ε2

4π

) ∫
M

Hh dµg.

We should also note that since h( · , t0) is compactly supported and by the strong
maximum principle, we have that h( · , t0), |∇h( · , t0)| and |1h( · , t0)| are bounded
on M . This implies that there exists a bounded solution h( · , t0). Now we claim
that the first three terms on the right-hand side of the last equation vanish as τ → 0.
We can see this, for instance, in the following argument: By integration by parts
and the fact that ∇H =−H∇ f , we have

(4-5) −τ

∫
M
〈∇ f,∇h〉Hµg = τ

∫
M
〈∇H,∇h〉µg =−τ

∫
M

H1hµg

is bounded since |1h| is bounded as stated earlier. Thus, the second term in right-
hand side of the preceding equation is bounded and goes to zero as τ → 0, so the
same is true for first terms (which follows from gradient estimates [Chow et al.
2008, Lemma 16.47]). Thus the analysis is reduced to showing that

(4-6) lim
τ→0

∫
Vεh dµg < C(m)≤ 0.
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By the monotonicity formula for Wα,ε , we have

∂

∂t

∫
M

Pεh H dµg =
ε2τ

4π
∂

∂t

∫
M

Vεh dµg ≥ 0.

By the mean value theorem, there exists a sequence τk→ 0 such that

lim
τk→0

τk

∫
M

(∣∣∣Rc−α∇u⊗∇u+∇∇ f − n
2τk

g
∣∣∣2+α|τgu−〈∇u,∇ f 〉|2

)
Hh dµg=0.

Applying the Cauchy–Schwarz and Hölder inequalities, we have∣∣∣Rc−α∇u⊗∇u+∇∇ f − 1
2τk

g
∣∣∣2 ≥ 1

m

(
Rg −α|∇u|2g +1g f − n

2τk
g
)2

and∫
M
τk

(
Sg+1 f− n

2τk

)
Hh dµg

≤

(
τ 2

k

∫
M

(
Sg+1 f− n

2τk

)2
Hh dµg

)1/2(∫
M

Hh dµg

)1/2

≤
√

m
(
τ 2

k

∫
M

∣∣∣Rc−α∇u⊗∇u+∇∇ f− 1
2τk

∣∣∣2 Hh dµg(τk)

)1/2(∫
M

Hh dµg

)1/2

→ 0

as τk→ 0, since α|τgu−〈∇u,∇ f 〉|2 ≥ 0 and limτk→0
∫

M Hh dµg(τk) is finite.
Then we have

lim
t→T

∫
Vεh dµg

= lim
t→T

∫
M

(
ε2

4π
τk(21 f − |∇ f |2+ Sg)+

4π
ε2τ

f −m
)

Hh dµg

= lim
t→T

∫
M

(
ε2τk

4π

(
1 f + Sg −

n
2τk

))
Hh dµg(τk)

+ lim
t→T

∫
M

(
ε2τk

4π
(1 f − |∇ f |2)

)
Hh dµg + lim

t→T

∫
M

(
f −

mε2

8π

)
Hh dµg

= lim
t→T

∫
M

(
f −

mε2

8π

)
Hh dµg,

where we have used the identity∫
M
(1 f − |∇ f |2)H dµ=−

∫
M
1H dµ= 0

for any positive solution H and the fact that each quantity in (4-5) is bounded to
obtain limt→T τk

∫
M(1 f − |∇ f |2)Hh dµg = 0.
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By (4-4) and the asymptotic behaviour of the heat kernel, i.e, f ≈ d2/(4τ) as
τ → 0, we have (see [Ni 2006, Theorem 2.1])

H(x, y, τ )∼ (4πτ)−m/2 exp
(

d2(x, y)
4τ

) ∞∑
j=0

u j (x, y, τ )τ j
:= wk(x, y, τ )

as τ → 0, where d2(x, y) is the distance function and wk(x, y, t) satisfies

wk(x, y, τ )= O
(
τ k+1−m/2 exp

(
δd2(x, y)

4τ

))
uniformly for all x, y ∈ M and δ is just a number depending only on the geometry
of (M, g). The function can be chosen such that u0(x, y, 0) = 1. Though, the
above asymptotic result does not require any curvature assumption, a result due to
Cheeger and Yau [1981] states that on a manifold with bounded Ricci curvature
(which is our case), the heat kernel satisfies

H(x, y, τ )≥ (4πτ)−m/2 exp
(

d2(x, y)
4τ

)
,

which implies

f (x, τ )≤
d2(x, y)

4τ
.

Therefore,

lim
τ→0

∫
M

(
f−

mε2

8π

)
h H dµg ≤ limsup

τ→0

∫
M

(
d2(x, y)

4τ
−

mε2

8π

)
h(y, t)H(x, y,τ )dµg

= limsup
τ→0

∫
M

(
d2(x, y)

4τ
−

mε2

8π

)
e−d2(x,y)/4τ

(4πτ)m/2
h(y, t)dµg.

It is easy to see that for any δ > 0, the integration of the above integrand in the
domain d(x, y)≥ δ converges to zero. Therefore,

(4-7) lim
t→0

∫
M

(
f −

mε2

8π

)
h H dµg

≤ lim
t→0

∫
d(x,y)≤δ

(
d2(x, y)

4t
−

mε2

8π

)
e−d2(x,y)/(4t)

(4π t)m/2
h(y, t) dµg.

Whenever δ is chosen sufficiently small, d(x, y) is asymptotically sufficiently
close to the Euclidean distance. Then by a standard approximation using local
coordinates, we have

(4-8) lim
t→0

∫
M

(
d2(x, y)

4t
−

mε2

8π

)
h H dµg

= lim
t→0

∫
Rm

(
|x − y|2

4τ
−

mε2

8π

)
e−|x−y|2/(4τ)

(4πτ)m/2
h p(y) dy,
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where h p is the pullback of h( · , 0) from the region d(x, y)≤ δ to the Euclidean
space.

Splitting the last integrand as in [Kuang and Zhang 2008], we are left with

lim
t→0

∫
M

(
f −

mε2

8π

)
h H dµg ≤ h p(x) lim

t→0

∫
Rm

(
|x − y|2

4τ
−

mε2

8π

)
e−|x−y|2/(4t)

(4πτ)m/2
dy

= h p( · ) lim
τ→0

∫
Rm

(
|y|2

4τ
e−|y|

2/(4τ)

(4πτ)m/2

)
dy−

mε2

8π
h p( · ).

Lastly, we have that the right-hand side evaluates to a constant C(m)≤ 0 by using
the standard Gauss integral∫

Rm

(
|y|2

4τ
e−|y|

2/(4τ)

(4πτ)n/2

)
dy =

m
2

and the condition ε→ 2
√
π as τ → 0. The claim then follows.

Finally in this section we prove Perelman’s differential Harnack estimates for f
as an application of Theorem 4.1 and the monotonicity of Wε,α . A corollary to this
gives estimates of Li–Yau type for all positive solutions H(x, τ ).

Proposition 4.2. Let the assumptions of Theorem 4.1 hold. Then for any smooth
curve γ (τ) in M , we have the estimate

(4-9) −
d
dt

f (γ (τ ), τ )≤ 1
2

(
|γ ′(τ )|2+ Sg(γ (τ ), τ )−

m
2τ

)
.

After the usual integration of (4-9) along the path γ (τ) and exponentiation, we
have the following result.

Corollary 4.3. With the notation and assumptions of Theorem 4.1, the following
Li–Yau Harnack estimate holds:

(4-10)
H(x2, t2)
H(x1, t1)

≤

(
T − t1
T − t2

)m/4

exp
(

1
2

∫ t2

t1
(|γ ′(t)|2+ Sg(γ (t), t) dt

)
.

Proof of Proposition 4.2. Precisely from (4-1), we have

f ≤ mε2

4π
−
ε2τ

4π
(21 f − |∇ f |2+ Sg)≤

mε2

8π
since 1 f + Sg −m/(2τ)≥ 0 by the monotonicity formula (3-3). Now multiplying
(4-1) through by 2π/(ε2τ), we have

1 f − 1
2 |∇ f |2+ 1

2 Sg +
2π
ε2t

f − m
2τ
≤ 0.

Using 1 f =−∂t f + |∇ f |2− Sg +m/(2τ) from (2-9), we obtain

(4-11) −∂t f + 1
2 |∇ f |2 ≤ 1

2 Sg −
2π
ε2t

f.
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By Young’s inequality, we have

−
d
dt

f (γ (τ ), τ )=−∂t f (γ (τ ), τ )−〈∇ f (γ (τ ), τ ), γ ′(τ )〉

≤ −∂t f + 1
2 |∇ f |2+ 1

2 |γ
′(τ )|2

=
1
2 |γ
′(τ )|2+ 1

2 Sg(γ (τ ), τ )−
2π
ε2τ

f (γ (τ )τ )

on the path γ (τ). The result follows by using the fact that f ≤ mε2/(8π). �

5. Log-Sobolev inequalities along (RH)α-flow

By the results of Aubin [1976] and Hebey [1996] for complete manifolds whose
Ricci curvature is bounded from below and injectivity radius is positive and bounded
from above, we can assume the Sobolev embedding on the initial metric, since
(M, g(0)) is a compact Riemannian manifold. Let A0, B0<∞ be positive constants
such that for all v ∈W 1,2(M, g0),

(5-1) ‖v‖2m/(m−2) ≤ A0‖∇v‖2+ B0‖v‖2,

where A0 and B0 depend only on m, g0, the lower bound for the Ricci curvature
and the injectivity radius. We can then write (5-1) as
(5-2)(∫

M
v2m/(m−2) dµg0

)(m−2)/m

≤ A
∫

M
(4|∇v|2+ Sgv

2) dµg0 + B
∫

M
v2 dµg0,

where
A = 1

4 A0 and B = 1
4 A0 sup S−g ( · , 0)+ B0

since Sg(x, 0)+ sup S−g ( · , 0) = S+g (x, 0)− S−g (x, 0). We will assume that (5-2)
holds uniformly for g(t), t > 0, and different A and B in order to prove the
logarithmic Sobolev inequalities.

The usual way of deriving logarithmic Sobolev inequalities follows from a careful
application of Hölder’s and Jensen’s inequalities since log v is a concave function,
in which case ∫

v2 ln vq−2 dµ≤ ln
∫
vq dµ

with the assumption that
∫
v2 dµ= 1. Then∫

v2 ln v dµ≤
q

q − 2
ln
(∫

vq dµ
)1/q

.

Taking q = 2m/(m− 2), we have∫
v2 ln v dµ≤ m

2
ln
(∫

v2m/(m−2) dµ
)(m−2)/2m

,
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and by multiplying both sides by 2 we obtain the following result.

Lemma 5.1. For any v ∈W 1,2(M, g0) with ‖v‖2 = 1,

(5-3)
∫

M
v2 ln v2 dµg0 ≤

m
2

ln
(

A
∫

M
(4|∇v|2+ Sgv

2) dµg0 + B
)
.

See [Hsu 2008; Ye 2007; Zhang 2007] for similar proofs. Inequalities of the
form (5-3) are usually estimated further by the application of an elementary in-
equality of the form ln y ≤ θy− ln θ − 1, where θ, y ≥ 0. Precisely, taking

y = A
∫

M
(4|∇v|2+ Sgv

2) dµg0 + B

in (5-3) gives us

(5-4)
∫

M
v2 ln v2 dµg0 ≤

mθ
2

(
A
∫

M
(4|∇v|2+Sgv

2) dµg0+B
)
−

m
2
(1+lnα)

=
mθ A

2

∫
M
(4|∇v|2+Sgv

2) dµg0+
mθB

2
−

m
2
−

m
2

lnα.

We will now modify the arguments in both [Ye 2007] and [Zhang 2007] to prove
the following result which says the monotonicity of the Wα,ε-entropy implies a
logarithmic Sobolev inequality (not with the best constant). Here we assume the
flow exists for all time.

Theorem 5.2. Let (M, g) be a compact Riemannian manifold of dimension m ≥ 3
and the metric g(t) evolved by the (RH)α-flow. Assume that an L2-Sobolev embed-
ding (5-2) holds true with respect to the initial metric g(0) = g0. Then, we have

(5-5)∫
M
v2 lnv2 dµg(t)≤

∫
M
σ 2(4|∇v|2+Sgv

2)dµg(t)−
m
2

lnσ 2
+(t+σ 2)β1+

m
2

ln m A
2e
,

where σ > 0, β1 = 4A−1
0 B0+ sup S−g ( · , 0) and

λα0 = inf
‖v‖2=1

∫
M
(4|∇v|2+ Sgv

2) dµg0;

that is, λα0 is the first eigenvalue of the operator −41+ Sg.
Moreover, if λα0 is strictly positive for Sg( · ,0)>0 (i.e., R( · ,0)>α(0)|∇u(0)|2),

then
(5-6)∫

M
v2 ln v2 dµg(t)≤

∫
M
σ 2(4|∇v|2+Sgv

2) dµg(t)−
m
2

ln σ 2
+(t+σ 2)β2+

m
2

ln m A
2e

holds with B0 = 0, i.e., β2 = sup S−g ( · , 0).



278 ABIMBOLA ABOLARINWA

We first discuss some vital issues that will help put the proof of the above theorem
in perspective. Now take an L2-solution H = H(x, t) of the conjugate heat equation

(5-7) ∂t H =−1H + Sg H

to be H = (4πτ)m/2e− f . Relating the entropy Wα,ε with the idea of logarithmic
Sobolev inequalities, we consider a function

(5-8) v =
√

H =
e− f/2

(4πτ)m/4

such that
∫

M v
2 dµ=1. We also notice that (5-8) implies f =− ln v2

−(m/2) ln τ−
(m/2) ln(4π); hence the entropy (3-1) is rewritten as

(5-9) Wε(g, v, τ )=
ε2

4π

∫
M
(τ (4|∇v|2+ Sgv

2)− v2 ln v2) dµ− ε2

4π
m
2

ln τ

−
ε2

4π
m
2

ln(4π)+
(

1− ε2

4π

) ∫
M

f v2 dµ− mε2

4π
+

m
2

ln 4π
ε2
.

Define

(5-10) W∗ε (g, v, τ )=
ε2

4π

∫
M
(τ (4|∇v|2+ Sgv

2)− v2 ln v2) dµ

and

(5-11) µ∗ε(g, v, τ )= inf
{
W∗ε (g, v, τ ) :

∫
M
v2 dµ= 1

}
.

Set T ∗ = t∗+ σ 2 and τ(t)= T ∗− t for 0≤ t ≤ t∗, σ > 0. Then

d
dt

Wε(g, v, τ )

=
d
dt

W∗ε (g, v, τ )−
mε2

8π
d
dt

ln τ +
(

1− ε2

4π

)
∂

∂t

∫
M

f v2 dµ+ m
2

ln 4π
ε2
≥ 0,

where the last inequality is due to the monotonicity of Wε(g, f, τ ), the proof of
which also reveals that

∂

∂t

∫
M

f v2 dµ=−Fα +
m
2τ
,

where Fα =
∫

M(Sg + |∇ f |2)v2 dµ is Perelman and Müller’s energy functional.
Let λα0 be the first eigenvalue of the operator −41+ Sg. Then, we know that
λα0 = inf‖u‖2=1 Fα. Therefore we arrive at

d
dt

W∗ε ≥
nε2

8π
d
dt

ln τ +
(

1− ε2

4π

)
λα0.



SOBOLEV INEQUALITIES ALONG RICCI-HARMONIC MAP FLOW 279

To continue this argument, we should note that either (5-7) or (5-8) implies that the
function f = f (t) satisfies the following backward heat equation

(5-12)
∂ f
∂t
=−1 f + |∇ f |2− Sg +

m
2τ
,

with v = v(x, t) satisfying

(5-13)
∂v

∂t
=−1v+

|∇v|2

v
+

Sg

2
v

on [0, t∗] with a given terminal value at t + t∗ with g = g(t∗).
Let v0 be a minimizer of the entropy Wε(g, f, τ0) for all v with

∫
M v

2
0 dµg(t0)= 1.

We can then solve heat equation (5-12) backward in time with initial data f (t0)= f0

and v0 chosen at t = t0. Let u j be the value of the conjugate heat equation (5-13)
at t = t j . We can define functions f j , j = 1, 2, by

u j =
e− f j/2

(4πτ j )n/4
, j = 1, 2.

Then by the monotonicity of Wαε(g, f, τ )-entropy, using Perelman’s approach we
have

µε(g(t1),τ (t1))= inf
‖v0‖g(t1)=1

Wε(g(t1), f0,τ1)≤Wε(g(t1), f1,τ1)

≤Wε(g(t2), f2,τ2)= inf
‖v0‖g(t2)=1

Wε(g(t2), f,τ2)=µε(g(t2),τ (t2)).

It follows from the above that

µ∗ε(g(t1), τ (t1))≤ µ
∗

ε(g(t2), τ (t2))+
nε2

8π
ln
τ1

τ2

for any t1 < t2, where τ j = τ(t j ), j = 1, 2. Choosing t1 = 0 and t2 = t∗, we then
obtain

(5-14) µ∗ε(g(0), t∗+ σ 2)≤ µ∗ε(g(t
∗), σ 2)+

nε2

8π
ln t∗+σ 2

σ
.

Since 0< t∗ < T is arbitrary, we can write (5-14) as

(5-15) µ∗ε(g(t), σ
2)≥ µ∗ε(g(0), t + σ 2)+

nε2

8π
ln σ 2

t+σ 2

for all t ∈ [0, T ). 1 We now state the proof.

Proof. We now apply (5-4) with g = g0 to estimate µ∗ε(g(0), t + σ 2). For any
function v ∈W 1,2(M, g) with ‖v‖2 = 1 and using

mθ A
2
= t + σ 2

=⇒ θ =
8(t + σ 2)

n A0
,

1 The case t = 0 is optimal, as equality is attained.
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the inequality in (5-4) becomes∫
M
v2 ln v2 dµg0 ≤ (t + σ

2)

∫
M
(4|∇v|2+ Sgv

2) dµg0 +
m
2

8(t + σ 2)

m A0
B

−
m
2

ln
8(t + σ 2)

n A0
−

m
2

= (t + σ 2)

∫
M
(4|∇v|2+ Sgv

2) dµg0 + 4(t + σ 2)B A−1
0

−
m
2

ln(t + σ 2)+
m
2
(ln A0+ ln m− 3 ln 2− 1).

Choosing ε2
≤ 4π as before, it then follows that

(5-16) µ∗ε(g(0), t + σ 2)

≥
mε2

4π

(
1
2 ln(t + σ 2)−

4
m
(t + σ)B A−1

0 −
1
2(ln A0+ ln m− 3 ln 2− 1)

)
.

Combining (5-15) and (5-16), we obtain
(5-17)

µ∗ε(g(t), σ
2)≥

mε2

8π
ln σ 2
−

mε2

π
(t +σ 2)B A−1

0 −
mε2

8π
(ln A0+ ln m− 3 ln 2− 1),

which implies

ε2

4π

∫
M

(
σ 2(4|∇v|2+ Sgv

2)− v2 ln v2) dµ

≥
mε2

8π
ln σ 2
−

mε2

π
(t + σ 2)B A−1

0 −
mε2

8π
ln m A0

8e
.

Therefore,
(5-18)∫

M
v2 ln v2 dµ≤

∫
M
σ 2(4|∇v|2+Sgv

2) dµ−m
2

ln σ 2
+4(t+σ 2)B A−1

0 −
m
2

ln n A0
8e

.

Choosing β1 = 4B A−1
0 = 4A−1

0 (B0 + A sup S−g (x, 0)) and A = A0/4, we obtain
the result. We can also derive (5-6) in a similar manner. �

6. Heat kernel bound via log-Sobolev inequalities

We apply the logarithmic Sobolev inequality obtained in the last section to derive
an upper bound for the conjugate heat kernel along the Ricci flow, demonstrating
that there is a lot of geometric information embedded in such inequalities. The
basic ideas, due to Davies and Simon [1984], relate Nelson’s hypercontractivity (see
[Gross 1975]) to ultracontractivity (see also [Davies 1989]). These ideas always
yield estimates with sharp constants. We modify the argument in [Zhang 2007]
(see also [Lieb and Loss 1997; Zhang 2011]) to prove our result.
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Theorem 6.1. Suppose there exists a solution to the (RH)α-flow with m ≥ 2 and let
H(x, t; y) be the fundamental solution to the conjugate heat equation

(6-1)
(
−∂t −1+ Sg(x, τ )

)
w(x, τ )= 0.

Then, for some nonnegative finite constant C depending on n, t, T, A0, B0 and
sup S−g ( · , 0), the estimate

(6-2) H(x, T ; y)≤ CT−m/2

holds, where ∂tτ =−1 and A0, B0 are as defined in the last section.

Without loss of generality, we may assume w = w(x, t) to be a nonnegative
solution of the conjugate heat equation (6-1) on the interval [0, T ], where ∂tτ =−1.
Let T > 0 and r(τ ) : [0, T ] → [1,∞] be a continuously differentiable increasing
function such that r(0)=∞ and r(T )= 1. The function r(τ )= T/τ gives a perfect
example as we shall see below.

The idea here follows from the fact that if

w(x, t)=
∫

H(x, t; y)w0(y) dµ(y)

solves the heat equation, where H(x, t; y) is the heat kernel, then

sup
w 6=0

‖w( · , t)‖∞
‖w( · , 0)‖1

= sup
x,y

H(x, t; y).

We may obtain an estimation of the time derivative for the logarithms of the quantity

‖w‖r(t) =

(∫
M
|w|r(t) dµg(t)

)1/r(t)

as follows: ∫ T

0

∂

∂t
ln ‖w‖r(t) dt = ln

‖w( · , t)‖∞
‖w( · , 0)‖1

.

Proof. By routine computation,

∂t‖w‖r(t) = ∂t

(∫
M
|w|r(t) dµg(τ )

)1/r(τ )

=−
ṙ(τ )
r2(τ )

‖w‖r(τ ) ln ‖w‖r(τ )r(τ )+
‖w‖

1−r(τ )
r(τ )

r(τ )

(
ṙ(τ )

∫
M
wr(τ ) lnw dµg(τ )

+ r(τ )
∫

M

(
wr(τ )−1(−1w+ Sgw)+w

r(τ )(−Sg)
)

dµg(τ )

)
.
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Multiplying both sides by r2(τ )‖w‖
r(τ )
r(τ ), we have

r2(τ )‖w‖
r(τ )
r(τ ) ∂t‖w‖r(t)

=−ṙ(τ )‖w‖r(τ )+1
r(τ ) ln ‖w‖r(τ )r(τ )+ r(τ )ṙ(τ )‖w‖r(τ )

∫
M
wr(τ ) ln u dµg(τ )

+ r2(τ )‖w‖r(τ )

∫
M
wr(τ )−1(−1w) dµg(τ )+ r2(τ )‖w‖r(τ )

×

∫
M
wr(τ )−1(Sgw) dµg(τ )− r(τ )‖w‖r(τ )

∫
M
wr(τ )Sg dµg(τ ).

By the application of integration by parts, we have

r2(τ )‖w‖r(τ )

∫
M
wr(τ )−1(−1w) dµg(τ )

= r2(τ )‖u‖r(τ )

∫
M
∇(ur(τ )−1)∇w dµg(τ )

= r2(τ )(r(τ )− 1)‖w‖r(τ )

∫
M
wr(τ )−2

|∇w|2 dµg(τ ).

Hence,

r2(τ )‖w‖
r(τ )
r(τ ) ∂t‖w‖r(t)

=−ṙ(τ )‖w‖r(τ )+1
r(τ ) ln ‖w‖r(τ )r(τ )+ r(τ )ṙ(τ )‖w‖r(τ )

∫
M
wr(τ ) lnw dµg(τ )

+ r2(τ )(r(τ )− 1)‖w‖r(τ )

∫
M
wr(τ )−2

|∇w|2 dµg(τ )

+ r(τ )(r(τ )− 1)‖w‖r(τ )

∫
M

Sg w
r(τ ) dµg(τ ).

Further dividing both sides by ‖w‖r(τ ), we obtain

(6-3) r2(τ )‖w‖
r(τ )
r(τ ) ∂t(ln ‖w‖r(t))

=−ṙ(τ )‖u‖r(τ )r(τ ) ln ‖w‖r(τ )r(τ )+ r(τ ) ṙ(τ )
∫

M
wr(τ ) lnw dµg(τ )

+ r2(τ )(r(τ )− 1)
∫

M
wr(τ )−2

|∇w|2 dµg(τ )

+ r(τ )(r(τ )− 1)
∫

M
Sg w

r(τ ) dµg(τ ).

Using

v =
wr(τ )/2

‖wr(τ )/2‖2
=⇒ v2

=
wr(τ )

‖w‖
r(τ )
r(τ )

,



SOBOLEV INEQUALITIES ALONG RICCI-HARMONIC MAP FLOW 283

we have

|∇v|2 =
r2(τ )

4‖w‖r(τ )r(τ

wr(τ )−2
|∇w|2

and

ln v2
= lnwr(τ )

− ln ‖w‖r(τ )r(τ ).

Therefore,

ṙ(τ )
∫

M
v2 ln v2 dµg(τ ) = ṙ(τ )

∫
M

wr(τ )

‖u‖r(τ )r(τ )

(lnwr(τ )
− ln ‖w‖r(τ )r(τ )g) dµg(τ )

=
ṙ(τ )r(τ )

‖w‖
r(τ )
r(τ )

∫
M
wr(τ ) lnwr(τ ) dµg(τ )− ṙ ln ‖w‖r(τ )r(τ ).

Plugging these into (6-3), we arrive at

r2(τ )∂t(ln‖w‖r(t))= ṙ(τ )
∫

M
v2 lnv2 dµg(τ )+4(r(τ )−1)

∫
M
|∇v|2 dµg(τ )

+r(τ )(r(τ )−1)
∫

M
Rv2 dµg(τ )

= ṙ(τ )
∫

M
v2 lnv2 dµg(τ )+(r(τ )−1)

∫
M
(4|∇v|2+Sgv

2)dµg(τ )

+(r(τ )−1)2
∫

M
Sgv

2 dµg(τ ).

Using the choice r(τ )= T/τ , we have ṙ(τ )=−T/τ 2 and r(τ )− 1= (T − τ)/τ
so that we write the last equality as

r2(τ )∂t(ln‖w‖r(t))=−
T
τ 2

∫
M
v2 lnv2 dµg(τ )+

T−τ
τ

∫
M
(4|∇v|2+Sgv

2)dµg(τ )

+

(T−τ
τ

)2
∫

M
Sgv

2 dµg(τ )

=
T
τ 2

(
τ(T−τ)

T

∫
M
(4|∇v|2+Sgv

2)dµg(τ )−

∫
M
v2 lnv2 dµg(τ )

)
+

(T−τ
τ

)2
∫

M
Sgv

2 dµg(τ ).

From the log-Sobolev inequality (5-5) point of view, we may choose

σ 2
=

4τ(T−τ)
T

≤
T
4
,
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and we get

(6-4) r2(τ )∂t(ln ‖w‖r(t))

≥
T
τ 2

(m
2

ln σ 2
−

m
2

ln m A
2e
− (t0+ σ 2)β1

)
+

(T−τ
τ

)2
∫

M
Sgv

2 dµg(τ )

and

(6-5) ∂t(ln ‖w‖r(t))

≥
1
T

(m
2

ln 4πτ(T−τ)
T

−
m
2

ln mπ A
2e
− (t0+ σ 2)β1− T sup S−g ( · , 0)

)
.

Notice that (since σ 2
≤ T/4)

(t+σ 2)β1+T sup R−( · ,0)= 4(t0+σ 2)
(

A−1
0 B0+

1
4 sup S−g ( · ,0)

)
+T sup S−g ( · ,0)

≤ (4t0+T )A−1
0 B0+

1
4(4t0+5T )sup S−g ( · ,0).

Denoting D by

D ≡ m
2

ln mπ A
2e
+ (4t0+ T )A−1

0 B0,

substituting into (6-5) and integrating the result from 0 to T , we have

ln
‖w( · , T )‖r(T )
‖w( · , T )‖r(0)

≥
m
2T

∫ T

0
ln

4πτ(T−τ)
T

dt−D− 1
4(4t0+5T ) sup R−( · , 0)

=
m
2

ln(4π)−
n
2

ln T−n+n ln T−D− 1
4(4t0+5T ) sup S−g ( · , 0)

=
m
2

ln(4πT )−m−D−(4t0+5T ) sup S−g ( · , 0).

This then yields

ln
‖w( · , T )‖1
‖w( · , T )‖∞

≥
m
2

ln(4πT )−m− D− 1
4(4t0+ 5T ) sup S−g ( · , 0),

which implies

‖w( · , T )‖∞ ≤ ‖w( · , T )‖1
exp

( 1
4(4t0+ 5T ) sup S−g ( · , 0)+ D+m

)
(4πT )m/2

.

Because

w(x, T )=
∫

M
H(x, T ; y)w(y, 0) dµ(y)g(τ ),

where H(x, T ; y) is the conjugate heat kernel,

H(x, T ; y)≤
exp(m D)
(4πT )m/2

˙exp
( 1

4(4t0+ 5T ) sup S−g ( · , 0)
)
.

This ends the proof of the estimate (6-2). �
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7. The Sobolev inequality along (RH)α-flow

In this section we show that global bounds on the heat kernel to the conjugate
heat equation imply a uniform Sobolev inequality under Ricci-harmonic map flow.
This type of proof is standard as contained in [Davies 1989, Chapter 2]. The same
procedures have been adapted in [Zhang 2007] for Kähler–Ricci flow; see also [Ye
2007; Hsu 2008]. For completeness we give the summary of the approach.

For any t ∈ [0, T ), we define the operator

(7-1) L := −1g +
Sg + supM S−g

4
.

Since Rg( · , τ ) ≥ −supM Rg( · , τ ), we know that 8 = 1
4(Sg + supM S−g ) ≥ 0,

8 ∈ L∞(M). Then L ≥ 0 and is essentially a self-adjoint operator on L2(M)
with the associated quadratic form

(7-2) Q(v)=
∫

M
(|∇v|2+8v2) dµg ∀v ∈W 1,2(M).

By the heat kernel convolution property, we have

(7-3) e−t Lw0 =

∫
M

H(x, t; y)w0(y) dµg(y),

where e−t L is a self-adjoint positivity preserving semigroup for all t ≥ 0. It is also
a contraction on L∞(M) and L1(M) for all t ≥ 0. Then

(7-4) ‖e−t Lw0‖∞ ≤ C0t−m/2
‖w0‖1.

The next step is to apply a theorem in [Davies 1989], which we state below as a
lemma.

Lemma 7.1. If m ≥ 2, then a bound of the form

(7-5) ‖e−t Lw0‖∞ ≤ C1t−m/4
‖w0‖2

for all t > 0 and all w0 ∈ L2(M) is equivalent to a bound of the form

(7-6) ‖w0‖
2
2m/(m−2) ≤ C2 Q(w0) ∀w0 ∈W 1,2(M).

By Lemma 7.1 we can prove that

(7-7)
(∫

M
v2m/(m−2) dµg

)(m−2)/2

≤ A0

∫
M

(
|∇v|2+ 1

4(Sg + sup
M

S−g )v
2) dµg

using an estimate of the form (1-9). The only thing remaining for us to show is that
estimates (7-4) and (7-5) are equivalent. We do this via the following lemma and
the Hölder inequality.
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Lemma 7.2. Suppose m ≥ 2 and T <∞. Let C1 > 0 be the same as C1 in (7-5).
Then we have

(7-8) ‖e−t Lw0‖2 ≤ C1t−m/4
‖w0‖1 ∀w0 ∈ L1(M).

Now write e−t Lw0 = e−1/2t Le−1/2t Lw0 and by assuming (7-5), we have

‖e−t Lw0‖∞ ≤ C1t−m/4
‖e−1/2t Lw0‖2 ≤ C2

1 t−m/2
‖w0‖1.

Similarly, combining the fact that e−t L is a contraction on L∞(M) with bound (7-4)
gives us (7-5). Indeed,

‖e−t Lw0‖∞ =

∣∣∣∣∫
M

H(x, t; y)w0(y) dµg(y)
∣∣∣∣

≤

(∫
M

Hq ′(x, t; y)µg(y)
)1/q ′(∫

M
w

q
0µg(y)

)1/q

≤ Ct−m/2q
‖w0‖q ,

for allw0 ∈ Lq(M) with 1/q= 1−1/q ′ and
∫

M H(x, t : y) dµg ≤ 1. Here we take q
to satisfy 1≤ q <m for obvious reason. (Though, by the Riez–Thorin interpolation
theorem, the above holds for any 1≤ q <∞ since e−t L is a contraction on L1(M)
and L∞(M).)

The main result of this section is as follows.

Theorem 7.3. With the conditions of the theorem in the introduction, we claim that
estimate (1-8) implies the uniform Sobolev inequality (1-7).

Proof. Based on the previous argument and a modification of the calculation in
[Zhang 2007], we define the operator L̃ = L + 1, which also has all the properties
of L , (L̃ ≥ 0 and generates a symmetric Markov semigroup). Then for any positive
constant c depending on m, T , a lower bound for Rg0 and an upper bound for A0

such that for all t ∈ [0, T ) and v ∈ Dom(L̃)⊆W 1,q(M),

(7-9) ‖L̃−1/2w‖mq/(m−q) ≤ c‖w‖q ∀w ∈W 1,2
0 (M)

holds for m ≥ 3. Since L̃−1/2 is of weak type (p, q), p = mq/(m − q) for any
1< q < m. A simple analysis and the Marcinkiewicz interpolation theorem tell us
that L̃−1/2 is a bounded operator from Lq to L p and that (7-9) holds.

Define v(x, t) = L̃−1/2w(x, t), which implies w(x, t) = L̃1/2v(x, t). Taking
q = 2, we have

‖w‖22 =

∫
M

L̃1/2v L̃1/2v dµg =

∫
M
(L̃v)v dµg =

∫
M
((L + 1)v)v dµg.

Combining with (7-9) and (7-6), we obtain the Sobolev inequality

(7-10) ‖v‖22m/(m−2) ≤ cC2

(
Q(v)+

∫
M
v2µg

)
,

whereby (1-7) follows with A = cC2 and B = 1
4 cC2(supM Sg + 1). �
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Remark 7.4. Fixing t0 during (RH)α-flow, it is clear that H̃ = e−1 H is the heat
kernel of L̃ and that∫

M
H̃(x, t; y) dµg(y)≤

∫
M

H(x, t; y) dµg(y)≤ 1.

By the upper bound for H , we are sure that H̃ obeys the global upper bound

H̃(x, t; y) dµg(y)≤ C̃t−m/2, t > 0,

where C̃ depends on m, A0, B0, t0 and T . Similarly,

‖e−t L̃w‖∞ = ‖e−t e−t L̃
‖∞ ≤ e−tCt−m/2

‖w‖1 = C̃t−m/2
‖w‖1.

As a corollary, suppose

λα0 = inf
‖v‖2=1

∫
M
(4|∇v|2+ Sgv

2) dµg0 > 0.

It can be proved by following [Zhang 2007] that Sobolev inequality (5-2) holds
with B = B(t = 0)= 0 on a compact manifold (M, g0); i.e.,

(7-11)
(∫

M
v2m/(m−2) dµg0

)(m−2)/m

≤ Ã0

∫
M
(4|∇v|2+ Sgv

2) dµg0,

where Ã depends only on m, g0 and λα0. Therefore, we have the following result.

Corollary 7.5. Let (M, g) be a compact Riemannian manifold of dimension m ≥ 3
and the metric g(t) evolved by the (RH)α-flow. Assume that L2-Sobolev embedding
(7-11) holds true with respect to the initial metric g(0)= g0. Then, there exists a
positive constant Ã depending on Ã0 such that for all v ∈W 1,2(M, g(t)), t ∈ [0, T ),

(7-12)
(∫

M
v2m/(m−2) dµg(t)

)(m−2)/m

≤ Ã
∫

M
(4|∇v|2+ Sgv

2) dµg(t),

and

(7-13)
∫

M
v2 ln v2 dµg(t) ≤ σ

2
∫

M
(4|∇v|2+ Sgv

2) dµg(t)−
m
2

ln σ 2
+

m
2

ln m A
2e
,

where σ > 0.

Remark 7.6. The smallest eigenvalue is an important quantity that gives a better
understanding of the geometric nature of the underlying manifold. For instance, con-
sider the operator semigroup e−t L generated by L :=−1+8, with8 ∈ L∞(M, g).
By spectral decomposition, we write a positive solution on M as

U = e−t Lu =
∞∑
j=1

e−λ j tψ j 〈u, ψ j 〉L2(M)
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for u ∈ L2(M) satisfying the Cauchy problem

∂

∂t
(e−t Lu)=−Le−t Lu,

U |t=0 = u,

and the eigenvalue problem Lψ = λψ , where {ψ j }
∞

j=1 forms a complete set of
L2-orthonormal eigenfunctions of L and the corresponding eigenvalues can be
arranged in a nondecreasing order λ1 ≤ λ2 ≤ · · · , with λ j →∞. An interested
reader will find the books [Davies 1989] and [Schoen and Yau 1994] useful in
this respect.
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