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Symplectic field theory is the study of J-holomorphic curves in almost com-
plex manifolds with cylindrical ends. One natural generalization is to re-
place “cylindrical” by “asymptotically cylindrical”. We generalize a num-
ber of asymptotic results about the behavior of J-holomorphic curves near
infinity to the asymptotically cylindrical setting. We also sketch how these
asymptotic results allow compactness theorems in symplectic field theory to
be extended to the asymptotically cylindrical case.
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1. Introduction

Introduced by Gromov [1985], J-holomorphic curves have been studied inten-
sively in closed symplectic manifolds. Hofer [1993] studied the behaviors of
J-holomorphic curves in symplectizations of contact manifolds, which are noncom-
pact. Shortly after that, Eliashberg, Givental and Hofer [2000] invented symplectic
field theory, which greatly helps us understand symplectic manifolds and contact
manifolds. In most of the previous literature, the almost complex structure J is
cylindrical near the ends of the noncompact symplectic manifolds. Here cylindrical
means that J is independent of the radial direction. In [Bourgeois et al. 2003] the
notion was introduced of an asymptotically cylindrical almost complex structure,
which is a natural generalization of a cylindrical almost complex structure. How-
ever, no results corresponding to the notion of asymptotically cylindrical almost
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complex structures in that paper have been proven. Intuitively, we expect similar
results as in the cylindrical case. However, the original proofs rely heavily on
the cylindrical nature of the almost complex structure, which prevents us from a
direct generalization to the asymptotically cylindrical case. In this paper, we give a
modified definition of asymptotically cylindrical almost complex structure, which
includes an exponential decay condition that is satisfied in all interesting examples,
and prove some parallel analytical results as in the cylindrical case. Based on these
results we can compactify the moduli space of J-holomorphic curves in almost
complex manifolds with asymptotically cylindrical ends by adding the holomorphic
buildings introduced by [Bourgeois et al. 2003].

This generalization is needed for application purposes, since in many cases the
natural almost complex structure is only asymptotically cylindrical (see Examples
2.5 and 4.1). For instance, we can use the generalized results to prove Gromov’s
monotonicity theorem with multiplicity (see [Bao 2014]). We also take this chance
to fill in some gaps in the literature.

In the asymptotically cylindrical case, the proofs of some theorems are signif-
icantly different and more sophisticated than the proofs in the cylindrical case
(see the proofs of Proposition 3.4, Theorem 2.8 and Theorem 3.7, for exam-
ple). The extra difficulties mainly come from the following two facts: (1) the
translations in the cylindrical almost complex manifold are not J-holomorphic
anymore; (2) the unmodified Hofer energy is not positive when restricted to J-
complex planes, and the modified Hofer energy is not closed. Crucial uses of
Gromov’s monotonicity theorem are the main ingredients to overcoming these
extra difficulties.

In Section 2, we give the definition of asymptotically cylindrical almost complex
manifolds and the definition of Hofer energy of J-holomorphic curves in this context.

In Section 3, we give the proofs of the main results listed in Section 2. The
proofs follow the schemes of [Hofer 1993; Hofer et al. 2001; Hofer et al. 2002;
Bourgeois 2002; Bourgeois et al. 2003].

In Section 4, we give the definition of almost complex manifolds with asymptot-
ically cylindrical ends and the definition of Hofer energy in this context. Finally
we state and outline the proof of the compactness result in this context.

2. Asymptotically cylindrical almost complex structures

2A. Definitions. Let V be a smooth closed oriented manifold of dimension 2n+1,
and let J be a smooth almost complex structure in W := R+× V . Assume that
the orientation of W determined by J is the same as the orientation coming from
the standard orientation of R+ and the orientation of V . Let R := J (∂/∂r) be
a smooth vector field on W , and let ξ be a subbundle of the tangent bundle TW
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defined by ξ(r,v) = (0× TvV )∩ J (0× TvV )⊂ T(r,v)W , for (r, v) ∈W . The tangent
bundle TW splits as TW = R(∂/∂r)⊕R(R)⊕ ξ .

Define a 1-form λ on W by λ(ξ)= 0, λ(∂/∂r)= 0, λ(R)= 1, and a 1-form σ

on W by σ(ξ)= 0, σ(∂/∂r)= 1, σ(R)= 0.
We call a tensor on W translationally invariant if it is independent of the

r -coordinate. Let fs :W →W be the translation along the R+-direction defined by
fs(r, v) := (r + s, v).

Definition 2.1. Under the above notation, J is called asymptotically cylindrical at
positive infinity if, for all l ∈ Z≥0, the following five conditions are satisfied:

(AC1) There exists a smooth translationally invariant almost complex structure J∞
on W and constants K+l , δl > 0 such that

(1)
∥∥∇l(J − J∞)|[r,+∞)×V

∥∥
C0 ≤ K+l e−δlr

for all r ≥ 0, where ‖ · ‖C0 is computed using a translationally invariant
metric gW on W (for example, gW = dr2

+ gV ), and ∇ is the corresponding
Levi-Civita connection. We further require that K+l is sufficiently small
such that the ω defined in Equation (2) satisfies requirements (a) and (b) in
Section 2B. (Remark 2.2 explains that K+l being small is not restrictive.)

(AC2) i(R∞) dλ∞= 0, where R∞ := lims→∞ f ∗s R, λ∞ := lims→∞ f ∗s λ, and both
limits exist by (AC1).

(AC3) R∞(r, v)= J∞(∂/∂r) ∈ 0× TvV .

(AC4) There exists a closed 2-form ω∞ on V such that i(R∞)ω∞ = 0.

(AC5) ω∞( · , J∞ · ) is a metric on ξ∞, where ξ∞ = lims→∞ f ∗s ξ .

Remark 2.2. The definition we use is slightly different from the one in [Bourgeois
et al. 2003]. We require that J converges to J∞ exponentially fast in condition (AC1).
This is the accurate condition to guarantee that the J-holomorphic curve converges
to the periodic orbits of R∞ exponentially fast by the footnote of formula (35). If
we are only interested in the behavior of a J-holomorphic curve near infinity, then
the requirement that K+l is small can be achieved by restricting W to r ≥ r0 for
some large r0.

We can restate the above conditions using the notion of hamiltonian structure
as in [Eliashberg 2007]. That the 2-form ω∞ has rank 2n says that (V, ω∞) is a
hamiltonian structure. The conditions (AC3), i(R∞)ω∞ = 0 = i(R∞) dλ∞ and
λ∞(R∞) = 1 say that (V, ω∞) is a stable hamiltonian structure. The condition
ξ∞ = ker λ∞, that J∞ is an almost complex structure on ξ∞, and that J∞ is
compatible with ω∞ (by (AC5)) imply that (λ∞, J∞) is a framing of (V, ω∞). If
in addition ω∞ = dλ∞, then we say (V, ω∞) is of contact type.
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We call (λ, J ) defined as above an asymptotically cylindrical framing of the
stable hamiltonian structure (V, ω∞).

Similarly, we can define the notion of J being asymptotically cylindrical on
R−× V at −∞. When we say J is asymptotically cylindrical, we choose ω±∞
without mention.

The following definition is the case considered in [Hofer 1993; Hofer et al. 2001;
Hofer et al. 2002; Bourgeois 2002; Bourgeois et al. 2003].

Definition 2.3. An almost complex structure J on R±×V is said to be a cylindrical
almost complex structure at±∞ if J is an asymptotically cylindrical almost complex
structure at ±∞ and J is translationally invariant near ±∞.

An almost complex structure J on R × V is said to be a cylindrical almost
complex structure if J is asymptotically cylindrical at both∞ and −∞ and J is
translationally invariant.

Example 2.4 (Symplectization). Assume (V, ξ) is a contact manifold with contact
1-form λ and Reeb vector field R, i.e., ξ = ker λ, λ∧ (dλ)n 6= 0, iR dλ = 0, and
λ(R)= 1. Let ω∞ = dλ and let Jξ be an almost complex structure in ξ such that it
is compatible with ω∞|ξ , i.e., dλ( · , Jξ · ) is a metric on ξ . We extend Jξ to R× V
by setting J (∂/∂r)= R. Then J is a cylindrical almost complex structure and, in
particular, an asymptotically cylindrical almost complex structure at ±∞.

Refer to [Bourgeois et al. 2003] for other interesting examples of cylindrical
almost complex structures.

Example 2.5. Assume J is a smooth almost complex structure on R2n+2 with
J (0) = J0(0), where J0 is the standard complex structure on R2n+2. Consider
R2n+2

\{0} and pick a polar coordinate chart

ϕ : R−× S2n+1
→ R2n+2

\{0}, (r,2) 7→ er2,

where we view S2n+1 as the unit sphere inside R2n+2. Let λ−∞ be the standard
contact form on S2n+1. Define the 2-form ω−∞ on R−× S2n+1 by ω−∞ = dλ−∞.
Now it is clear that J |R−×S2n+1 is an asymptotically cylindrical almost complex
structure near −∞.

By (AC1) and (AC3) we can see that R∞ is a translationally invariant vector
field on W and that it is tangent to each level set {r}× V , so we can view R∞ as
a vector field on V . Let φt be the flow of R∞ on V , i.e., let φt

: V → V satisfy
(d/dt)φt

= R∞ ◦φt . Then we have

d
dt
[(φt)∗λ∞] = (φ

t)∗(i(R∞) dλ∞+ di(R∞)λ∞)= 0.

Hence φt preserves λ∞ and thus also ξ∞. Similarly, φt preserves ω∞.
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Let’s denote by P the set of periodic trajectories, counting their multiples, of
the vector field R∞ restricting to V . Notice that any smooth family of periodic
trajectories from P has the same period by Stokes’ theorem.

Definition 2.6. A T-periodic orbit γ of R∞ is called nondegenerate if dφT
|ξ∞(γ (0))

does not have 1 as an eigenvalue, where φt is the flow of R∞. We say that J is
nondegenerate if all the periodic solutions of R∞ are nondegenerate.

A weaker requirement for J than nondegenerate is Morse–Bott.

Definition 2.7. We say that J is of the Morse–Bott type if, for every T > 0, the
subset NT ⊂ V formed by the closed trajectories from P of period T is a smooth
closed submanifold of V such that the rank of ω∞|NT is locally constant and
Tp NT = ker(dφT

− Id)p.

We always assume J is of Morse–Bott type in this paper.

2B. Energy of J-holomorphic curves. Let J be an asymptotically cylindrical al-
most complex structure on W := R+× V . Let’s denote the projections from
TW = R(∂/∂r)⊕R(R)⊕ ξ to each subbundle by πr , πR and πξ . It is convenient
to introduce a 2-form ω on W by

(2) ω(x, y)= 1
2 [ω∞(πξ x, πξ y)+ω∞(Jπξ x, Jπξ y)].

It is easy to check that i(∂/∂r)ω = 0 = i(R)ω. We assume that K+l in (AC1) is
sufficiently small for all l ∈ Z≥0 such that ω satisfies the following two conditions:

(a) ω|ξ ( · , J · ) is a metric on ξ .

(b) There exist constants εl, δl > 0 such that, for all r ≥ 0,∥∥(ω−ω∞)|[r,+∞)×V
∥∥

C l ≤ εle−δlr .

Let (6, j) be a punctured Riemann surface (with or without boundary) and let
ũ = (a, u) : (6, j)→ (W, J ) be a J-holomorphic curve, i.e., T ũ ◦ j = J (ũ) ◦ T ũ.
The following definition is a modification of Hofer energy in the cylindrical almost
complex structure case. The ω-energy and λ-energy are defined, respectively, as

Eω(ũ)=
∫
6

ũ∗ω, Eλ(ũ)= sup
φ∈C

∫
6

ũ∗(φ(r) σ ∧ λ),

where C = {φ ∈ C∞c (R, [0, 1]) :
∫
+∞

−∞
φ(x) dx = 1}1, and λ, σ are defined as in the

beginning of Section 2A. Let’s define the energy of ũ by

E(ũ)= Eω(ũ)+ Eλ(ũ).

1In [Bourgeois et al. 2003], the set C is given by C = {φ ∈ C∞c (R,R+) :
∫
+∞

−∞
φ(x) dx = 1}. It is

easier to get uniform energy bounds using the modified definition in the case when the almost complex
structure is only asymptotically cylindrical.
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Equip R+× S1 with the standard complex structure and coordinate (s, t), and
consider a J-holomorphic map ũ = (a, u) :R+× S1

→W . Here we view S1 as R/Z.
Notice that

ũ∗ω = ω(πξ ũs, J (ũ)πξ ũs) ds ∧ dt,(3)

ũ∗(φ(r) σ ∧ λ)= φ(a)[σ(ũs)
2
+ λ(ũs)

2
] ds ∧ dt.(4)

Thus, we have Eω(ũ)≥ 0 and Eλ(ũ)≥ 0.

2C. Main results. The next two theorems tell us the behaviors of J-holomorphic
curves near infinity.

Theorem 2.8. Suppose that J is an asymptotically cylindrical almost complex
structure on R±× V at ±∞, and suppose that J is of the Morse–Bott type. Let
ũ = (a, u) : R±×R/Z→ R±× V be a finite energy J-holomorphic curve. Suppose
that the image of ũ is unbounded in R±× V . Then there exists a periodic orbit γ
of R∞ of period |T | with T 6= 0 such that, in C∞(S1),

lim
s→±∞

u(s, t)= γ (Tt) and lim
s→±∞

a(s, t)
s
= T .

The above theorem tells us that when |s| is large enough u(s, t) lies inside a small
neighborhood of γ . We will construct a coordinate chart for such a neighborhood
U ⊂ S1

×R2n
→ V , and then we can view the map ũ as

ũ(s, t)= (a(s, t), ϑ(s, t), z(s, t)) ∈ R±×R×R2n,

where ϑ is the coordinate of the universal cover of S1
= R/Z.

Theorem 2.9. Under the same assumption as in Theorem 2.8, there exist constants
Mβ, dβ, a0, ϑ0, s0 > 0 such that

|Dβ
{a(s, t)− Ts− a0}| ≤ Mβe∓dβs,

|Dβ
{ϑ(s, t)− Tt −ϑ0}| ≤ Mβe∓dβs,

|Dβz(s, t)| ≤ Mβe∓dβs,

for all s > s0 and β = (β1, β2) ∈ Z≥0×Z≥0.

3. Proof of main results

The proofs for R+×V and R−×V are almost the same, so we will focus on the R+×V
case. The proof is done in three steps. The first step is to show that the gradient of
a finite Hofer energy J-holomorphic curve ũ = (a, u) is bounded. The second step
is to show “subsequence convergence”: briefly, given a sequence of numbers Rk

converging to infinity, we want to show that there exists a subsequence Rkn such
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that u(Rkn , t) converges to a periodic solution of the vector field R∞. The third
step is to get an exponential decay estimate and then prove Theorems 2.8 and 2.9.

3A. Gradient bounds. We cite the following two lemmata for later use.

Lemma 3.1 [Hofer 1993]. Let (X, d) be a metric space. The following statements
are equivalent:

(a) (X, d) is complete.

(b) For every continuous map φ : X→ [0,+∞) and a given x ∈ X , ε > 0 there
exist x ′ ∈ X , ε′ > 0 such that
• ε′ ≤ ε, φ(x ′)ε′ ≥ φ(x)ε,
• d(x, x ′)≤ 2ε,
• 2φ(x ′)≥ φ(y) for all y ∈ X with d(y, x ′)≤ ε′.

Let J be an asymptotically cylindrical almost complex structure on W =R+×V
at ∞, and let ũ = (a, u) be a J-holomorphic map from B(0, R) to W , where
B(z0, R) := z = {s+

√
−1t ∈ C : |z− z0|< R}. Define

(5) ‖∇ũ‖ := sup
(s,t)∈B(0,R)

|∇ũ(s, t)|

and

‖ũ‖Ck(B(0,R),W ) := sup
x∈B(0,R)

k∑
|l|=0

|∇
l ũ(x)|,

where the norm |·| is taken with respect to the standard metric ds2
+dt2 on B(z0, R)

and to a translationally invariant metric gW on W (for example, gW = gV + dr2),
and ∇ is the Levi-Civita connection with respect to gW on W . The following lemma
says that the gradient bound implies a C∞ bound.

Lemma 3.2 (Gromov–Schwarz). Fix 0< ε < 1 and k ∈ N. If ‖∇ũ‖< C ′ <+∞,
then there exists a C(k,C ′) > 0 such that

‖ũ‖Ck(B(0,R−ε),W ) ≤ C(k,C ′),

where C(k,C ′) does not depend on ũ.

Proof. This is a standard result. Using the gradient bound of ũ, we can find uniform
coordinate charts both in domain and in target, then we can apply Proposition 2.36
in [Audin and Lafontaine 1994]. �

The following proposition, whose proof reveals the relation between the ω-energy
and trajectory of R∞, is one of the key steps in [Hofer 1993].

Proposition 3.3 [Hofer 1993]. Suppose J is a cylindrical almost complex structure
on R× V and let ũ = (a, u) : C→ R× V be a finite Hofer energy J-holomorphic
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plane (i.e., E(ũ)= Eλ(ũ)+ Eω(ũ) <+∞). If Eω(ũ)= 0 and ‖∇ũ‖ ≤ C for some
C > 0, then ũ is constant.

Proof. Suppose ũ is not constant. By (3), πξ ũs = 0= πξ ũt . Hence πξ ◦ T ũ is the
zero section of ũ∗ξ→C. Therefore we have u(s, t)= x ◦ f (s, t), where x :R→ V
satisfies ẋ = R(x) and f : C→ R is a smooth function. Consequently, fs = −at

and ft = as . Hence 8 := f + ia is a holomorphic function on C. Since ‖∇ũ‖ is
bounded, ‖∇8‖ is bounded; thus 8 is a linear function. By (4),

Eλ(ũ)= sup
φ∈C

∫
C

φ(a)(a2
s + a2

t ) ds ∧ dt =+∞,

via a linear change of variables. �

The proposition below generalizes Proposition 27 in [Hofer 1993] to the asymp-
totically cylindrical case.

Proposition 3.4. If J is an asymptotically cylindrical almost complex structure
on W = R+× V at ∞, and ũ is a J-holomorphic map from C to W satisfying
E(ũ) <+∞, then ‖∇ũ‖<+∞.

Proof. Suppose to the contrary that there exists a sequence of points zk ∈C satisfying
|zk | →∞, Rk := ‖∇ũ(zk)‖→∞, as k→∞. By Lemma 3.1, we can modify zk

such that there exists a sequence of εk > 0 satisfying εk→ 0, εk Rk→+∞, and
|∇ũ(z)| ≤ 2Rk for z ∈ B(zk, εk). Now there are two cases.

Case 1: {a(zk)}k∈Z is unbounded.
Then there exists a subsequence of zk , still denoted by zk , such that a(zk)→+∞

or a(zk)→−∞. Without loss of generality, let’s assume a(zk)→+∞. Pick a
further subsequence of zk such that a(zk)≥ 2k+2. Let ε′k :=min{εk, 2k/Rk}. Then
we have ε′k→ 0, ε′k Rk→+∞, and |a(z)− a(zk)| ≤ 2ε′k Rk ≤ 2(2k/Rk)Rk = 2k+1,
for |z− zk | ≤ ε

′

k . Thus, a(z)≥ a(zk)−2k+1
≥ 2k+2

−2k+1
= 2k+1, for |z− zk | ≤ ε

′

k .
Since ũ is J-holomorphic, we have

(6) J (ũ) ◦ T ũ = T ũ ◦ i.
Thus

(7) J∞(ũ) ◦ T ũ = T ũ ◦ i + (J∞− J )(ũ) ◦ T ũ.

By (AC1), we have, as k→+∞,2

sup
z∈B(zk ,ε

′

k)

‖(J∞− J )(ũ(z))‖→ 0.

2Actually, to prove Proposition 3.4, Proposition 3.5 and Theorem 3.7 we only need f ∗s J → J∞
in C1

loc as s→∞. We need the stronger condition (AC1) to prove exponential decay in Section 3C
and thus the main theorems.
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Define maps ũk(z) = (a(zk + z/Rk)− a(zk), u(zk + z/Rk)) from C to R× V .
For any R′ > 0, when k is large, ‖∇ũk(z)‖ ≤ 2 for z ∈ B(0, R′). By Lemma 3.2,
for any n ∈ Z≥0, there exists a C(n, R′) satisfying

(8) ‖ũk‖Cn(B(0,R′−1),W ) ≤ C(n, R′).

We also have

|∇ũk(0)| = 1,(9)

|∇ũk(z)| ≤ 2 for all |z| ≤ ε′k Rk .(10)

We apply the Ascoli–Arzela theorem to get a subsequence, still called ũk , satisfying
ũk → ũ∞ in C∞loc as k →∞. Here ũ∞ : C→ R× V is a J∞-holomorphic map
satisfying

|∇ũ∞(0)| = 1 and ‖∇ũ∞‖ ≤ 2.

Indeed, ũk satisfies

(11) J∞(ũk)T ũk = T ũki + ok,

where ‖ok‖C0(B(0,ε′k Rk))→ 0 as k→∞. Therefore, ũ∞ is J∞-holomorphic.
Now let’s look at its energy:

(12)
∫

B(0,R′)

ũ∗kω∞ =
∫

B(zk ,R′/Rk)

ũ∗ω+
∫

B(zk ,R′/Rk)

ũ∗(ω−ω∞).

From E(ũ) <+∞ we see that
∫

B(zk ,R′/Rk)
ũ∗ω→ 0 as k→+∞. We also have∣∣∣∣ ∫

B(zk ,R′/Rk)

ũ∗(ω∞−ω)
∣∣∣∣≤ ∫

B(zk ,R′/Rk)

(2Rk)
2
∣∣∣∣(ω∞−ω)( ũs

2Rk
,

ũt

2Rk

)∣∣∣∣ ds ∧ dt

≤ π

(
R′

Rk

)
(2Rk)

2ck→ 0,

where

ck := sup
z∈B(zk ,ε

′

k)

∣∣∣∣(ω∞−ω)( ũs

2Rk
,

ũt

2Rk

)∣∣∣∣,
and by (AC4) ck→ 0 as k→∞. Therefore,

Eω∞(ũ∞)=
∫
C

ũ∗
∞
ω∞ = 0.
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Moreover, we have Eλ∞(ũ∞)<+∞. Given φ ∈ C, define φk(r) :=φ(r−a(zk))∈ C.
Then we have

(13)
∣∣∣∣ ∫
B(0,R′)

ũ∗k(φ(r) dr ∧ λ∞)
∣∣∣∣

≤

∣∣∣∣ ∫
B(zk ,R′/Rk)

φk(a)ũ∗(σ ∧ λ)
∣∣∣∣+ ∣∣∣∣ ∫

B(zk ,R′/Rk)

φk(a)ũ∗(dr ∧ λ∞− σ ∧ λ)
∣∣∣∣.

We also have

(14)
∣∣∣∣ ∫
B(zk ,R′/Rk)

φk(a)ũ∗(σ ∧ λ)
∣∣∣∣≤ ∣∣∣∣∫

C

φk(a)ũ∗(σ ∧ λ)
∣∣∣∣≤ Eλ(ũ)

and

(15)
∣∣∣∣ ∫
B(zk ,R′/Rk)

φk(a)ũ∗(dr ∧ λ∞− σ ∧ λ)
∣∣∣∣

≤

∫
B(zk ,R′/Rk)

φk(a)(2Rk)
2
∣∣∣∣(dr ∧ λ∞− σ ∧ λ)

(
ũs

2Rk
,

ũt

2Rk

)∣∣∣∣ ds ∧ dt

≤
(
sup
x∈R

φ(x)
)
(2Rk)

2rkπ

(
R′

Rk

)2

→ 0,

where

rk := sup
z∈B(zk ,R′/Rk)

∣∣∣∣(dr ∧ λ∞− σ ∧ λ)
(

ũs

2Rk
,

ũt

2Rk

)∣∣∣∣→ 0

as k →∞. Combining (13), (14) and (15), we get the following result: given
R′ > 0 and φ ∈ C, there exists a constant K such that, for all k > K ,∣∣∣∣ ∫

B(0,R′)

ũ∗k(φ(r) dr ∧ λ∞)
∣∣∣∣≤ Eλ(ũ)+ 1.

Therefore, Eλ∞(ũ∞) ≤ Eλ(ũ) + 1. Altogether, we get a J∞-holomorphic map
ũ∞ : C→W satisfying

‖∇ũ∞‖ ≤ 2, |∇ũ∞(0)| = 1, Eω∞(ũ∞)= 0, E(ũ∞) <+∞.

By Proposition 3.3, we get a contradiction, which finishes the proof for Case 1.

Case 2: {a(zk)}k∈Z is bounded.
Now let us define ũk , differently from Case 1, by

ũk(z) := ũ ◦ lk = (a(zk + z/Rk), u(zk + z/Rk)).
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Then ũk satisfies

|∇ũk(z)| ≤ 2 for z ∈ B(0, εk Rk),

{ũk(0)}k∈Z+ is bounded,

|∇ũ(0)| = 1.

Similar to Case 1, by applying the Ascoli–Arzela theorem we get a subsequence,
still called ũk , converging to ũ∞ = (a∞,u∞) : C→W in the C∞loc sense. Here ũ∞
is J-holomorphic, satisfying

|∇ũ∞(0)| = 1,(16)

‖∇ũ∞‖ ≤ 2,(17) ∫
B(0,εk Rk)

ũ∗kω =
∫

B(zk ,εk)

ũ∗ω→ 0 as k→+∞.(18)

Thus, Eω(ũ∞)=
∫

C
ũ∗
∞
ω = 0. Moreover, given R′ > 0 and φ ∈ C, we have∫

B(0,R′)

ũ∗k [φ(r) σ ∧ λ] =
∫

B(zk ,R′/Rk)

ũ∗[φ(r) σ ∧ λ] → 0

as k→+∞. This means
∫

B(0,R′) ũ∗
∞
[φ(r) σ ∧λ] = 0, and so Eλ(ũ∞)= 0. Hence,

ũ∞ is constant, contradicting (16). �

Proposition 3.5. Suppose J is a cylindrical almost complex structure on R× V .
Let ṽ : R+× S1

→W be a J-holomorphic map with respect to the standard complex
structure on R+× S1, and assume E(ṽ) <+∞. Then we have

‖∇ṽ‖<+∞, where ‖∇ṽ‖ := sup
(s,t)∈R+×S1

|∇ṽ(s, t)|,

and the norm |·| is taken with respect to the standard metric ds2
+dt2 on R+×S1 and

to a translationally invariant metric gW on W , and ∇ is the Levi-Civita connection
with respect to gW .

Proof. The proof is almost the same as the proof of Proposition 3.4. �

Remark 3.6. Actually, we can see that we can get a gradient bound with respect
to a metric gD on the domain and a translationally invariant metric gW on W , as
long as the injectivity radius of gD is bounded away from 0.

3B. Subsequence convergence.

Theorem 3.7. Let J be an asymptotically cylindrical almost complex structure
on R±× V , and let ṽ = (a, v) : R±× S1

→ R±× V be a J-holomorphic curve
with E(ṽ) <+∞. Suppose that ṽ(R±× S1) is unbounded. Then for any sequence
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kn→+∞, there exists a subsequence kni such that v(kni , · ) converges in C∞(S1)

to a map S1
→ V given by t 7→ x(tT ), where x : R→ V is a |T |-periodic solution

of ẋ = R∞(x).

Proof. We prove this theorem for the case R+× V . The proof for the R−× V case
can be carried out similarly, and hence is omitted. By Proposition 3.5 we have
‖∇ṽ‖≤C for some C > 0. Since ṽ(R+×S1) is not bounded, there exists a sequence
of points (sk, tk) ∈ R+× S1 such that |a(sk, tk)| → +∞. Now there are two cases.

Case 1: a(sk, tk)→+∞.
Suppose that there exists a sequence of points (s ′k, t ′k) ∈ R+× S1 such that

a(s ′k, t ′k)<Q for some constant Q. Pick a subsequence of (sk, tk), still called (sk, tk),
and a subsequence of (s ′k, t ′k), still called (s ′k, t ′k), so that they satisfy s ′k<sk<s ′k+1 for
all k. This is possible because sk→+∞. Since ‖∇ṽ‖≤C , we have a(s ′k, t)<Q+C
for t ∈ S1. Consider the compact manifold N := [Q, Q+2C]×M ⊂W =R+×V .
Pick a φ ∈ C such that φ|[Q,Q+2C] > 0. By Gromov’s monotonicity theorem (see
for example Theorem 1.3 in [Hummel 1997]), there exists an ι > 0 such that∫

ṽ([s′k ,sk ]×S1)

ω+φ(r) σ ∧ λ≥ ι > 0

for all k. This contradicts the fact that E(ṽ) <+∞. Thus a(s, t)→+∞ uniformly
in t as s→+∞.

Define
ṽn(s, t)= (a(s+ kn, t)− a(kn, 0), v(s+ kn, t)).

Then the sequence ṽn(0, 0)= (0, v(kn, 0)) is bounded. Since ṽ is J-holomorphic, by
Lemma 3.2 and the Ascoli–Arzela theorem, there exists a subsequence, still called ṽn ,
converging to ṽ∞= (b, v∞) :R×S1

→W in C∞loc. We know ṽ∞ is J∞-holomorphic.
Define the translation map τn : R× S1

→ R× S1 by τn(s, t) = (s + kn, t). Now
observe that

(19)
∫

[−R,R]×S1

ṽ∗nω∞ =

∫
[−R+kn,R+kn]×S1

ṽ∗ω+

∫
[−R+kn,R+kn]×S1

ṽ∗(ω∞−ω).

For the first term on the right-hand side we have

(20)
∫

[−R+kn,R+kn]×S1

ṽ∗ω→ 0

as n→∞, since Eω(ṽ) is finite. By (AC4), the second term satisfies, as n→+∞,

(21)
∫

[−R+kn,R+kn]×S1

ṽ∗(ω∞−ω)≤

∫
[−R+kn,R+kn]×S1

|(ω∞−ω)(ṽs, ṽt)| ds ∧ dt→ 0.
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Combining (19), (20) and (21), we can see that
∫
[−R,R]×S1 ṽ

∗
∞
ω∞ = 0 and hence

Eω∞(ṽ∞)= 0, so there exists a smooth map f : R2
→ R such that ṽ∞ = (b, x ◦ f ),

where x : R → V is the solution of ẋ = R∞(x). Let 8 be the holomorphic
function defined by 8 = b + i f . Since ‖∇8‖ ≤ C , we know that 8 is linear.
Thus, 8(s, t) = α(s + i t)+ β, where α = T + il, β = m + in ∈ C are constants.
But b(s, t)− b(s, t + 1)= 0 implies l = 0, and b(0, 0)= 0 implies m = 0. Thus,

f = Tt + n,(22)

b = Ts.(23)

Therefore, as(kn, t)→ T uniformly in t as n→+∞ (recall the notation ṽ= (a, v),
ṽ∞ = (b, v∞)). Moreover, we have

(24)
∫

{0}×S1

ṽ∗
∞
λ∞ =

∫
{0}×S1

λ∞[(ṽ∞)t ] dt =
∫

{0}×S1

bs dt = T .

Claim: T 6= 0.
It follows from the claim and (22) that ṽ∞ is not constant. Indeed, by (22),

f (s, t+1)= T (t+1)+n, so x(T (t+1)+n)= x(Tt+n). Hence, x is T-periodic.

Proof. Suppose T = 0. Since a(s, t)→ +∞ uniformly in t as s → +∞, we
can choose a subsequence knm of kn and a sequence tm ∈ S1 so that we have
a(knm+1, tm+1)−a(knm , tm)≥ 4C . Denote a(knm , tm) by am . Then from ‖∇ũ‖ ≤ C
we get

a(knm , t) ∈ [am −C, am +C],(25)

a(knm+1, t)≥ am + 3C.(26)

Let ψm : R→ [0, 1] be a smooth map, satisfying ψm(r) = 1
7C (r − am +

3
2C) for

r ∈ [am − C, am + 5C] and φm = ψ
′
m ∈ C. If we further require C > 1, then

φm(r)≤ 1
7C < 1. Observe that∫

[knm ,knm+1 ]×S1

ṽ∗ d(ψm(r)λ)=
∫

{knm+1 }×S1

ṽ∗(ψm(r)λ)−
∫

{knm }×S1

ṽ∗(ψm(r)λ).

We also have, as m→+∞,∣∣∣∣ ∫
{knm+1 }×S1

ṽ∗(ψm(r)λ)
∣∣∣∣= ∣∣∣∣ ∫

{knm+1 }×S1

ψm(ṽ)λ(ṽt) dt
∣∣∣∣≤ ∫
{knm+1 }×S1

|λ(ṽt)| dt→ T = 0.
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Similarly,
∫
{knm }×S1 ṽ

∗(ψm(r)λ)→ 0. Thus, by Stokes’ theorem,

(27)
∫

[knm ,knm+1 ]×S1

ṽ∗ d(ψm(r)λ)→ 0.

Observe that

(28)
∫

[knm ,knm+1 ]×S1

ṽ∗(φm(r) σ ∧ λ)

=

∫
[knm ,knm+1 ]×S1

ṽ∗(φm(r) dr ∧ λ)+
∫

[knm ,knm+1 ]×S1

ṽ∗[φm(r) (σ − dr)∧ λ].

For the first term on the right-hand side, we have, for some c > 0, cm > 0,

(29)
∣∣∣∣ ∫
[knm ,knm+1 ]×S1

ṽ∗(φm(r) dr ∧ λ)
∣∣∣∣

≤

∣∣∣∣ ∫
[knm ,knm+1 ]×S1

ṽ∗ d(ψm(r)λ)
∣∣∣∣+ ∫
[knm ,knm+1 ]×S1

|ṽ∗(ψm(r) dλ)|

≤

∣∣∣∣ ∫
[knm ,knm+1 ]×S1

ṽ∗ d(ψm(r)λ)
∣∣∣∣+ ∫
[knm ,knm+1 ]×S1

ṽ∗(cω+ cm σ ∧ λ).

The second inequality is due to the fact that cω+cm σ∧λ is positive on all J-complex
planes; also since dλ→ dλ∞ and i(∂/∂r) dλ∞ = 0= i(R∞) dλ∞, we can require
that c is independent of m and cm goes to 0 as m→+∞. Similarly, we have

(30)
∣∣∣∣ ∫
[knm ,knm+1 ]×S1

ṽ∗[φm(r) (σ − dr)∧ λ]
∣∣∣∣≤ ∫
[knm ,knm+1 ]×S1

ṽ∗[cω+ cm σ ∧ λ].

When k is large, from (28), (29) and (30) we get
(31) ∫
[knm ,knm+1 ]×S1

ṽ∗(φm(r) σ ∧ λ)≤ D
{∣∣∣∣ ∫
[knm ,knm+1 ]×S1

ṽ∗ d(ψm(r)λ)
∣∣∣∣+ ∫
[knm ,knm+1 ]×S1

ṽ∗ω

}
,

for some constant D > 0 which does not depend on m and ṽ. The term∫
[knm ,knm+1 ]×S1

ṽ∗(cm σ ∧ λ)
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does not show up on the right-hand side of (31) because it is absorbed by the
left-hand side, since φm |[knm ,knm+1 ]×S1 = 1/7. Since Eω(ṽ) is finite,∫

[knm ,knm+1 ]×S1

ṽ∗ω→ 0.

Together with (27), we get ∫
[knm ,knm+1 ]×S1

ṽ∗(φm(r) dr ∧ λ)→ 0.

Summing up, we have, as m→+∞,

(32)
∫

[knm ,knm+1 ]×S1

ṽ∗(ω+φm(r) dr ∧ λ)→ 0.

Now consider Nm = [am + C, am + 3C] × V ⊆ W with an almost complex
structure Jm := J |Nm and a nondegenerate 2-form �m := ω + φm(r) σ ∧ λ|Nm .
Because of the asymptotic condition, we can find uniform constants C0, r0 > 0
such that by Gromov’s monotonicity theorem, for any Jm-holomorphic curve
hm : (S, j) → (Nm, Jm), where (S, j) is a Riemann surface with boundary, if
the boundary hm(∂S) is contained in the complement of the ball B(hm(s0), r),
where s0 ∈ Int Sm and r < r0, then we have∫

hm(S)∩B(hm(s0),r))

�m ≥ C0r2.

By (25) and (26) we can see ũ(knm , S1)∩Int Nm =∅ and ũ(knm+1, S1)∩Int Nm =∅.
This contradicts (32). Thus, T 6= 0. �

Case 2: a(sk, tk)→−∞.
We deal with this case similarly. �

Corollary 3.8. Under the assumptions of Theorem 3.7, there exists a number T > 0
such that, as s→±∞,

(33) ∂β[a(s, t)− Ts] → 0

uniformly in t, provided β = (β1, β2) ∈ Z≥0×Z≥0 and |β| = β1+β2 ≥ 1.

Proof. By Theorem 3.7, there exist a number T > 0 and a sequence of numbers s ′k
such that s ′k → +∞ and v(s ′k, · )→ x(T · ), for some T-periodic orbit x of R∞.
Suppose (33) is not true for this T . Then there exists a sequence of points (sk, tk)
such that sk→+∞ and ∂β[a(s, t)− Ts]|(sk ,tk)→ c as k→+∞ for some |β| ≥ 1,
where c is a nonzero constant (or±∞). Define āk(s, t) :=a(s+sk, t+tk)−a(sk, tk)
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and then āk(0, 0)= 0. From the proof of Theorem 3.7 we get a subsequence of k,
still called k, and a T ′-periodic orbit x ′ of R∞ such that āk→T ′s in C∞loc(R

+
×S1,R).

By a straightforward modification of the proof of Proposition 2.1 in [Hofer et al.
2001] to the Morse–Bott case, we can show that x ′ and x lie in the same component
of NT (see Definition 2.7) and in particular T ′ = T . Thus,

∂β[a(s, t)− Ts]|(sk ,tk) = ∂
β
[a(s+ sk, t + tk)− a(sk, tk)− Ts]|(0,0)

= ∂β(āk(s, t)− Ts)|(0,0)

→ 0,

which contradicts the assumption. �

To prove Theorems 2.8 and 2.9, we need to obtain exponential decay estimates.

3C. Exponential decay estimates. In this subsection, we will follow the schemes
in [Bourgeois 2002] to prove Theorems 2.8 and 2.9. The strategy is as follows: firstly,
we pick a neighborhood U of the orbit γ , restrict the J-holomorphic curve ũ to a
sequence of cylinders inside the domain so that the images lie in the neighborhood
and satisfy certain inequalities, and estimate the behaviors of each finite cylinder
by the behaviors of boundaries of the cylinder. Secondly, since we have a sequence
of circles in the domain whose images lie in U , we get that the cylinders bounded
by the circles also lie in U , based on the estimates. We also show that near the end
of the domain ũ satisfies the inequalities. Once these are achieved, Theorems 2.8
and 2.9 follow easily.

In order to study the J-holomorphic curve equation around γ , we need to intro-
duce a good coordinate chart around a neighborhood of γ .

Lemma 3.9 [Bourgeois et al. 2003]. Suppose that J∞ is a cylindrical almost
complex structure of the Morse–Bott type on R+× V at∞. Let N be a component
of the set NT ⊂ V (see Definition 2.7), and let γ be one of the orbits from N.

(a) If T is the minimal period of γ then there exists a neighborhood U ⊃ γ in V
such that U ∩ N is invariant under the flow of R∞, and one finds coordinates
(ϑ, x1, . . . , xn, y1, . . . , yn) of U such that

N = {x1, . . . , x p = 0, y1, . . . , yq = 0},

for 0≤ p, q ≤ n, and

R∞|N =
∂

∂ϑ
, ω∞|N = ω0|N ,

where ω0 =
∑n

i=1 dxi ∧ dyi .

(b) If γ is an m-multiple of a trajectory γ̄ of a minimal period T/m then there
exists a tubular neighborhood U of γ̄ such that its m-multiple cover U together
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with all the structures induced by the covering map from U → U from the
corresponding objects on U satisfy the properties of part (a).

Proof. Refer to Lemma A.1 in [Bourgeois et al. 2003]. �

Using this coordinate chart, we can work locally in U ⊂ (R/T Z)×R2n and make
T the minimal period of γ . Denote by zin the coordinate (x1, . . . , x p, y1, . . . , yq)

and by zout the coordinate (xn−p+1, . . . , xn, yn−p+1, . . . , yn). We easily obtain the
following lemma about the behavior of a J-holomorphic curve in the zout direction.

Lemma 3.10. Let J be an asymptotically cylindrical almost complex structure on
W = R+× V , and let ũ be a finite Hofer energy J-holomorphic curve from R+× S1

to W . Suppose [mk, nk] is a sequence of intervals in R+ with mk → +∞ and
ũ([mk, nk]× S1)⊂U. Then we have, as k→+∞,

sup
(s,t)∈[mk ,nk ]×S1

|∂βzout(s, t)| → 0

for all β ∈ Z≥0×Z≥0.

Proof. The proof is very similar to the proof of Corollary 3.8, so we omit it here. �

Let’s study the J-holomorphic curve equation in R+×U ⊂ R+× (R/T Z)×R2n .
Define θ := [s0, s1] × S1 for some s0 < s1 and let ũ = (a, ϑ, z) : θ → R×U be a
J-holomorphic curve. Then we have

(34) (as, ϑs, zs)+ J (ũ)(at , ϑt , zt)= 0.

Rewriting this equation according to its z-, ϑ-, and a-components we get3

zs +Mzt + Szout+ L = 0,(35)

as −ϑt + Bzout+ B ′zt + N = 0,(36)

at +ϑs +Czout+C ′zs + O = 0,(37)

where M , S, B, B ′, C , C ′ depend on a(s, t), ϑ(s, t), z(s, t) and are bounded by
a constant C0, and L , N , O depend on a(s, t), ϑ(s, t), z(s, t) and are bounded
by C0e−δa .

Define an operator A(s) :W 1,2(S1,R2n)→ L2(S1,R2n) by

(A(s)w)(t)=−M(ũ(s, t))wt(t)− S(ũ(s, t))wout(t).

Then by (35) we get

(38) A(s)z(s, · )= zs + L .

3From (35) we can see that if we require z, zs and zt to decay exponentially, L must decay expo-
nentially. The condition f ∗s J → J∞ in C∞loc is not enough to guarantee that L decays exponentially.
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Notice that A(s) depends on the map ũ = (a, ϑ, zin, zout). If we do not use the
original J-holomorphic curve ũ and instead we substitute ϑ(s, t)= ϑ(s0, 0)+ Tt ,
a(s, t)= Ts, zout(s, t)= 0, and zin(s, t)= zin(s0, t), then we get another operator
denoted by Ã(s). We can easily see that lims→+∞ Ã(s) exists and denote the
limiting operator by A0. Similarly, we get two matrices M0(t) and S0(t), and then
we have

M0(t)2 =−id,

and

(39) (A0w)(t)=−M0(t)wt(t)− S0(t)wout.

Consider an inner product on L2(S1,R2n) defined by

(40) 〈u, v〉0 =
∫ 1

0
〈u,−J0 M0v〉 dt,

where the inner product is given by 〈 · , · 〉 = ω0( · , J0 · ), and J0 is the standard
complex structure on R2n . With respect to the inner product 〈 · , · 〉0, one can check
directly that M0 is antisymmetric and that A0 is self-adjoint.

Remark 3.11. A0 is injective if and only if γ is nondegenerate.

It is not hard to see that ker A0 consists of the constant vector fields in N along γ0.
Denote by P0 the projection onto ker A0 with respect to 〈 · , · 〉0, and let Q0 := I−P0.
It is easy to check the following lemma.

Lemma 3.12. Q0 satisfies

(Q0w)t = wt , (Q0w)s = Q0ws, (Q0w)out = wout, Q0 A0 = A0 Q0.

The following lemma will be needed in proving Lemma 3.14.

Lemma 3.13. There exists a constant C > 0 such that

‖A0 Q0w‖0 ≥ C(‖Q0w‖0+‖(Q0w)t‖0)

for w ∈W 1,2(S1,R2n), where ‖ · ‖0 is defined using the inner product 〈 · , · 〉0.

Proof. To prove the lemma we only need to prove that ‖A0 Q0w‖0 ≥ C ′‖Q0w‖0

for some C ′ > 0, because by definition we have

(41) A0 Q0w =−M0(Q0w)t − S0 Q0w.

Suppose to the contrary that there exist an εn→0 andwn ∈W 1,2(S1,R2n) satisfying
‖Q0wn‖0 = 1 and ‖A0 Q0wn‖0 ≤ εn . Then we have

‖(Q0wn)t‖0 ≤ ‖M0 A0 Q0wn‖0+‖M0S0 Q0wn‖0 ≤ εn +C ′′.
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Therefore, Q0wn is bounded in W 1,2(S1,R2n). Since W 1,2(S1,R2n) embeds com-
pactly in L2(S1,R2n) we get a subsequence of wn , still denoted by wn , such that
Q0wn is a Cauchy sequence in L2(S1,R2n). But it is easy to see that (Q0wn)t is
also a Cauchy sequence in L2(S1,R2n). Therefore, Q0wn converges to some η
in W 1,2(S1,R2n), so η is an element of ker A0. Because η also lies in the orthog-
onal complement of ker A0, we must have η = 0, which contradicts the fact that
‖η‖0 = limn→0 ‖Q0wn‖0 = 1. �

Define κ0(s) := (ϑ(s0, 0)−ϑ(s, 0), zin(s0, 0)− zin(s, 0)), g0(s) := 1
2‖Q0z(s)‖20.

Lemma 3.14. There exist δ = δ(β) > 0, [= [(β) > 0 and κ̄ = κ̄(β) > 0 such that
if , for any multi-indices β,

a(s0, 0)≥ [, |κ0(s0)| ≤ κ̄, sup
(s,t)∈θ

|∂βzout(s, t)| ≤ δ,

and, for any multi-indices β with |β|> 0,

sup
(s,t)∈θ

|∂β(a(s, t)−Ts)|≤ δ, sup
(s,t)∈θ

|∂β(ϑ(s, t)−Tt)|≤ δ, sup
(s,t)∈θ

|∂βzin(s, t)|≤ δ,

then we have, for s ∈ [s0, s],

g′′0 (s)≥ c2g0(s)− c2e−c1(s−s0),

where
s := sup{s ∈ [s0, s1] : |κ0(s ′)| ≤ κ̄ for all s ′ ∈ [s0, s]},

and c, c1, c2 > 0 are constants independent of s0 and s1.

Proof. All constants in the proof may depend on β. Notice that from the assumption
we have

sup
(s,t)∈θ

|∂β(ϑ(s, t)−ϑ(s, 0)− Tt)| ≤ δ, sup
(s,t)∈θ

|∂β(zin(s, t)− zin(s, 0))| ≤ δ,

for all multi-indices β.
Define an operator Ā(s)w =−M(ũ(s, t))wt(t)− S(ũ(s, t))wout(t) in the same

way as A(s) but using J∞ instead of J .
From (38) we get

(42) zs = A0z+ (10+ 1̃0κ0)zt + (1̂0+ 1̄0κ0)zout+ [A(s)− Ā(s)]z− L .

Applying Q0 to (42) gives us

(43) (Q0z)s = A0 Q0z+ Q0(10+ 1̃0κ0)(Q0z)t
+Q0(1̂0+ 1̄0κ0)(Q0z)out+ Q0[A(s)− Ā(s)]z− Q0L ,
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where 10 = M0−M and 1̂0 = S0− S, satisfying for any multi-indices β

sup
(s,t)∈θ

|∂β10(s, t)| ≤ Cδ, sup
(s,t)∈θ

|∂β1̂0(s, t)| ≤ Cδ,

and 1̃0κ0 = M0−M0 and 1̄0κ0 = S0− S0, satisfying for any multi-indices β

sup
(s,t)∈θ

|∂β1̃0(s, t)| ≤ C, sup
(s,t)∈θ

|∂β1̄0(s, t)| ≤ C.

We can require 0< δ < T/2, and then we get

a(s, t)≥ a(s0, 0)+
T
2
(s− s0)− δ ≥ ([− δ)+

T
2
(s− s0).

Because J is an asymptotically cylindrical almost complex structure, we get

‖Q0L‖0 ≤ c0e−c′0([−δ)e−c′0
T
2 (s−s0)

for some constants c0, c′0 > 0. Define c1 := c′0T/2 and c2 := c0e−c′0([−δ). Then
we have

‖Q0L‖0 ≤ c2e−c1(s−s0).

We also have

(44) ‖{∂β[A(s)− Ā(s)]}z‖0 ≤ c2e−c1(s−s0)‖Q0z‖0,W 1,2

for multi-indices β, by picking c0 larger if necessary.
Now we are ready to estimate g′′0 (s). Obviously we have

g′′0 (s)≥ 〈Q0zss, Q0z〉0.

Now let’s compute the right-hand side of the above inequality. Differentiating (43)
with respect to s, we obtain

(Q0z)ss = A0 Q0zs + Q0(10+ 1̃0κ0)(Q0z)st + Q0(10+ 1̃0κ0)s(Q0z)t

+ Q0(1̂0+ 1̄0κ0)(Q0zs)out+ Q0(1̂0+ 1̄0κ0)s(Q0z)out

+ Q0[A(s)− Ā(s)]sz+ Q0[A(s)− Ā(s)]zs − Q0Ls .

Thus we see that 〈Q0zss, Q0z〉0 contains 8 terms. When we are estimating these
terms, each time we see Q0zs , we replace it using (43). A straightforward calculation
using Lemma 3.13 and the fact that

−c2e−c1(s−s0)‖Q0z‖0,W 1,2 ≥−c2e−c1(s−s0)− c2e−c1(s−s0)‖Q0z‖20,W 1,2

gives us

g′′0 (s)≥ (1− 10Cδ− 10C |κ0| − 10Cc2e−c1(s−s0))g0(s)− c2e−c1(s−s0).
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From the definition of c2 we can see that if [ is large enough, c2 can be very close
to 0. Therefore,

g′′0 (s)≥ c2g0(s)− c2e−c1(s−s0).

We can require further that c1 > c > 0. �

From Lemma 3.14 we easily obtain the following lemma.

Lemma 3.15. Under the same assumption as in Lemma 3.14, we have for s0≤ s≤ s,

g0(s)≤max{g0(s0), g0(s)}
cosh

[
c
(
s− s0+s

2

)]
cosh

(
c s−s0

2

) +
c2

c2
1− c2

sinh(c(s− s))
sinh(c(s− s0))

.

Proof. Let

h(s) :=max{g0(s0), g0(s)}
cosh

[
c
(
s− s0+s

2

)]
cosh

(
c s−s0

2

) +
c2

c2
1− c2

1
sinh(c(s− s0))

×{sinh(c(s− s))+ e−c1(s−s0) sinh(c(s− s0))− e−c1(s−s0) sinh(c(s− s0))}.

Then h(s) satisfies

(45)


h′′(s)− c2h(s)=−c2e−c1(s−s0),

h(s0)=max{g0(s0), g0(s)},

h(s)=max{g0(s0), g0(s)}.

Let l(s) := g0(s)− h(s). Then l(s) satisfies

(46)


l ′′(s)− c2l(s)≥ 0,
l(s0)≤ 0,
l(s)≤ 0.

Then by the maximal principle we get l(s) ≤ 0 for s0 ≤ s ≤ s. Now the lemma
follows from the fact that

e−c1(s−s0) sinh(c(s− s0))− e−c1(s−s0) sinh(c(s− s0))≤ 0. �

Now let’s study the component zin.

Lemma 3.16. Let e be a unit vector in R2n with eout = 0. Under the assumption of
Lemma 3.14 and for s ∈ [s0, s], we have

|〈z(s), e〉0−〈z(s0), e〉0| ≤
8C
c

max(‖Q0z(s0)‖0, ‖Q0z(s)‖0)+ o(c2),

where o(c2) satisfies limc2→0 o(c2)= 0, and C is a constant independent of s0, s1.

Proof. The inner product of the Cauchy–Riemann equation (35) with e gives

d
ds
〈z, e〉0+〈Mzt , e〉0+〈Szout, e〉0+〈L , e〉0 = 0.
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From

〈Mzt , e〉0 =
∫ 1

0
ω0(M(Q0z)t ,M0e) dt

=−

∫ 1

0
ω0(Mt Q0z,M0e) dt −

∫ 1

0
ω0(M Q0z, (M0)t e) dt

we can see that

|〈Mzt , e〉0| ≤ C‖Q0z‖0.

Together with the facts |〈Szout, e〉0| ≤C‖Q0z‖0 and |〈L , e〉0| ≤ c2e−c1(s−s0) we get

〈z(s), e〉0−〈z(s0), e〉0 ≤
∫ s

s0

[2C‖Q0z(x)‖0+ c2e−c1(x−s0)] dx

≤ 2C
∫ s

s0

√
2g0(x) dx+

c2

c1
.

The proof is finished with a straightforward calculation using Lemma 3.15 and
the fact that

√
cosh u <

√
2 cosh(u/2). �

Remark 3.17. By requiring [ to be sufficiently large, we can make c2 sufficiently
small.

Now let’s estimate the derivatives of z.

Lemma 3.18. There exist δ = δ(β) > 0, [= [(β) > 0 and κ̄ = κ̄(β) > 0 such that
if , for any multi-indices β,

sup
(s,t)∈θ

|∂βzout(s, t)| ≤ δ, a(s0, 0)≥ [,

and, for any multi-indices β with |β|> 0,

sup
(s,t)∈θ

|∂β(a(s, t)−Ts)|≤ δ, sup
(s,t)∈θ

|∂β(ϑ(s, t)−t)|≤ δ, sup
(s,t)∈θ

|∂βzin(s, t)|≤ δ,

then we have, for s ∈ [s0, s],

‖∂βz(s)‖0 ≤ Cβ max
|β ′|≤|β|

{‖Q0∂
β ′z(s0)‖0, ‖Q0∂

β ′z(s)‖0}

√
cosh

(
c1
(
s− s0+s

2

))
cosh

(
c1
( s0−s

2

))
+ Dβ(c2)

√
sinh(c(s− s))
sinh(c(s− s0))

+ c2e−c1(s−s0),

where

s := sup{s ∈ [s0, s1] : |κ0(s ′)| ≤ κ̄ for all s ′ ∈ [s0, s]},
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and Cβ, c1 > 0 are constants independent of s0 and s1, and Dβ(c2) is a function
of c2 independent of s0 and s1, satisfying limc2→0 Cβ(c2)= 0, and l is the integer
in Definition 2.1.

Proof. Let’s prove the estimate for |β| = 1. The proof of the estimates of the higher
derivatives is almost the same. Refer to Lemma A.6 in [Bourgeois et al. 2003] for
the estimates for all derivatives in the cylindrical case.

Equation (42) can be rewritten as

(47) zs = A0z+ 1̇zt + 1̈zout+
...
1z− L ,

with 1̇ = 10 + 1̃0κ0, 1̈ = 1̂0 + 1̄0κ0, and
...
1 = [A(s)− Ā(s)]. If we define

W := (Q0z, ∂/∂s(Q0z), A0 Q0z, ∂/∂s(A0 Q0z)), then W satisfies

Ws =A0W +Q01̇Wt +Q01̈Wout+
...
1W −L,

where A0 = diag(A0, A0, A0, A0), Q0 = diag(Q0, Q0, Q0, Q0), and 1̇, 1̈,
...
1, L

satisfy similar estimates as 1̇, 1̈,
...
1, L respectively. Indeed, for |β| = 1 we can

derive this equation by direct computation. For general β, we can derive it by
induction on |β|. This equation is of the same type as (47). Copying the proofs of
Lemmata 3.14, 3.15 and 3.16, we can get the desired estimate for W . In particular,
we get the estimates for (Q0z)s and A0 Q0z.

From the equation zt = M0 A0 Q0z + M0 Q0S0zout we get the estimate for zt .
Applying P0 to (47), we get

(P0z)s = P01̇zt + P01̈zout+ P0
...
1z− P0L .

This equation together with the estimate of
...
1z (see (44)) gives us the desired

estimate for P0zs . Then the estimate for zs follows from zs = P0zs + Q0zs . �

Lemma 3.19. Define

ϑ0 =

∫ 1

0

[
ϑ
( s0+s

2 , t
)
− Tt

]
dt, a0 =

∫ 1

0

[
a
( s0+s

2 , t
)
− Ts0

]
dt,

and define ã = a(s, t)−Ts−a0 and ϑ̃ = ϑ(s, t)−Tt−ϑ0. Under the assumptions
of Lemma 3.18, we have, for s ∈ [s0, s] and every multi-index β,

‖∂β(ã(s, t)‖2, ‖∂β(ϑ̃(s, t))‖2

≤ C1 max
|β ′|≤|β|+3

{‖Q0∂
β ′z(s0)‖

2
0, ‖Q0∂

β ′z(s)‖20}

+C1 max{‖ã(s0, · )‖
2
+‖ϑ̃(s0, · )‖

2, ‖ã(s, · )‖2+‖ϑ̃(s, · )‖2}+ o(c2),

where ‖ · ‖ is the L2-norm, o(c2) satisfies limc2→0 o(c2)= 0, and C1 is a constant
independent of ũ.



314 ERKAO BAO

Proof. We can modify the proofs of Lemmata 3.8–3.13 in [Hofer et al. 2002] in
the obvious way, similar to what we did in the proof of Lemma 3.14, and then use
Lemma 3.18 to prove this lemma. We omit the proof here, since it is essentially
not new.4 �

Remark 3.20. When s is infinity, we can get a better exponential decay estimate
using the same proof, and in that case the term o(c2) can be replaced by c2e−(s−s0).

Proof of Theorem 2.8. Let’s follow the proof in [Bourgeois 2002]. By Theorem 3.7,
we can find a sequence s0m→∞ such that

lim
m→∞

u(s0m, t)= γ (Tt), lim
m→∞

a(s0m, t)=±∞

for some T-periodic orbit γ of R∞. From the proof of Theorem 3.7, we can further
require for any multi-indices α with |α| > 0 we have supt∈S1 ‖∂αz(s0m, t)‖ → 0
as m→+∞.

Given σ > 0, let ζm > 0 be the largest number such that u(s, t) ∈ S1
×[−σ, σ ]2n

for all s ∈ [s0m, s0m + ζm]. Let θm := [s0m, s0m + ζm] × S1 and let κ0m(s) :=
(ϑ(s0m, 0)−ϑ(s, 0), zin(s0m, 0)− zin(s, 0)). Now we can define the operator A0m ,
similar to how it was defined before, in the obvious way.

By Corollary 3.8, given δ > 0 we have

sup
(s,t)∈θm

|∂β(a(s, t)− Ts)| ≤ δ

for those multi-indices β with |β| > 0, when m is large. This implies that
a(s0m, 0)→+∞ as m→+∞. Notice that the other requirements in Lemmata 3.14
and 3.18 are also satisfied; i.e., given δ > 0, there exists an mδ such that for m >mδ

we have
sup

(s,t)∈θm

|∂βzout(s, t)| ≤ δ

for multi-indices β, and

sup
(s,t)∈θm

|∂β(ϑ(s, t)− Tt)| ≤ δ,(48)

sup
(s,t)∈θm

|∂βzin(s, t)| ≤ δ

for those multi-indices β with |β|> 0. Indeed, if {(smk , tmk )} violates one of these
properties, we can define

ũmk (s, t) := (a(s− smk , t − tmk )− a(smk , tmk ), u(s− smk , t − tmk )).

4The proof of Proposition 3.4 in [Bourgeois 2002] is inaccurate, and this lemma fills in the gap.
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By Ascoli–Arzela, we can extract a subsequence, still called ũmk (s, t), such that
ũmk (s, t) converges in C∞loc to a J∞-holomorphic cylinder ũ∞ over a periodic
orbit γ ′ ∈ N . Since ũ∞ must satisfy those three properties, we get a contradiction.

By construction, |〈z(s0m), e〉0m | → 0 and ‖Q0m∂
αz(s0m)‖ → 0, for all multi-

indices α with |α| ≥ 0. Let κ̄m be the “κ̄” in Lemmata 3.14 and 3.18 applied
to ũ|θm and let sm := sup{s ∈ [s0m, s0m + ζm] : |κ0m(s ′)| ≤ κ̄m for all s ′ ∈ [s0, s]},
and notice that κ̄m can actually be chosen independent of m. We can extract a
subsequence so that u(sm, t) converges to a closed Reeb orbit γ ′′ ∈ N . Therefore,
‖Q0m∂

αz(sm)‖ → 0, for all multi-indices α with |α| ≥ 0. Since 〈z(sm), e〉0→ 0
and supt∈S1 |(∂/∂t)zin(sm, t)| → 0, we obtain supt∈S1 |zin(sm, t)| → 0. By Lem-
mata 3.14 and 3.18, we have

(49) sup
s∈[s0m ,sm ]

‖∂βz(s)‖0m→ 0

for |β| ≤ k. Therefore,

sup
(s,t)∈[s0m ,sm ]×S1

|zin(s, t)| ≤ sup
s∈[s0m ,sm ]

‖zin(s, · )‖C0(S1)

≤ C sup
s∈[s0m ,sm ]

‖zin(s, · )‖W 1,2(S1)

≤ C1

{
sup

s∈[s0m ,sm ]

‖(∂/∂t)zin(s, · )‖0l + sup
s∈[s0m ,sm ]

‖zin(s, · )‖0m

}
→ 0.

Lemma 3.19 and formula (48) imply that |ϑ(sm, 0)−ϑ(s0m, 0)| → 0 as m→∞.
Thus, we have sm = s0m + ζm for m large enough, and

sup
(s,t)∈[s0m ,s0m+ζm ]×S1

|z(s, t)| → 0

as m→∞. Therefore, ζm =+∞ for m large. �

Furthermore, we can show that the convergence of a J-holomorphic curve is
exponentially fast.

Proof of Theorem 2.9. Now with the help of the previous lemmata, the proof of the
third inequality is almost evident. Indeed, since s=+∞, Lemma 3.15 becomes

g0(s)≤
(

g0(s0)+
c2

c2
1−c2

)
e−c(s−s0).

Consequently, in the proof Lemma 3.16, we can get

|〈z(s), e〉0| ≤
∫
+∞

s
[2C‖Q0z(x)‖0+ c2e−c1(x−s0)] dx≤ C ′e−c(s−s0),
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where C ′ is independent of s. Similarly, we can get the corresponding statement of
Lemma 3.18 for s=+∞.

The proof for the rest is a straightforward modification of the original proof in
[Hofer et al. 2001]. �

So far we have studied the behaviors of a finite energy J-holomorphic curve
whose domain is an infinite cylinder. In order to compactify the moduli space of
holomorphic curves, we also need to understand the behavior of a finite energy
J-holomorphic curve whose domain is a long but finite interval and whose ω-energy
is small. To do that, we need the following lemma.

Lemma 3.21 (bubbling lemma [Bourgeois et al. 2003; Hofer and Viterbo 1992]).
Let J 0 be a cylindrical almost complex structure on W = R+× V . There exists
a constant h̄ > 0 depending only on (W, J 0, ω0) where J 0

= J 0
∞

and ω0
= ω0

∞

(see Definitions 2.1 and 2.3 and Section 2B), such that the following holds true.
Let (J n, ωn

∞
) be a sequence of pairs satisfying (AC1)–(AC5) on W and converging

to (J 0, ω0) in the C∞loc sense. Consider a sequence of J n-holomorphic maps ũn =

(an, un) from the unit disc B(0, 1) to W satisfying En(ũn)= Eωn (ũn)+Eλn (ũn)≤C
(see Section 2B) for some constant C , such that the sequence an(0) is bounded,
and such that ‖∇ũn(0)‖ → +∞ as n → +∞. Then there exists a sequence of
points zn ∈ B(0, 1) converging to 0, and sequences of positive numbers εn and Rn

satisfying

εn→ 0, Rn→+∞, εn Rn→+∞, |zn| + εn < 1,

such that the rescaled maps

ũ0
n : B(0, εn Rn)→W, z 7→ ũn(zn + R−1

n z)

converge in C1
loc to a J0-holomorphic map ũ0

: C→W which satisfies E(ũ0)≤ C
and Eω0(ũ0) > h̄.

Moreover, this map is either a J0-holomorphic plane asymptotic as |z| →∞ to
a periodic orbit of the vector field R0 defined by R0

= J0(∂/∂r), or extendable to a
J0-holomorphic sphere P1

→W by Gromov’s removal of singularity theorem.
A similar statement is also true for R−× V .

Proof. See [Hofer and Viterbo 1992]. �

The following theorem studies the behavior of a long cylinder having small
ω-area. It is needed in order to prove the compactness results for the moduli space
of J-holomorphic curves in symplectic field theory. Refer to [Hofer et al. 2002;
Bourgeois et al. 2003] for the cylindrical case.

Theorem 3.22. Suppose that J is an asymptotically cylindrical almost complex
structure on W = R±× V at ±∞, and suppose that J is of the Morse–Bott type.
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Given E0 > 0 and ε > 0, there exist constants σ, c > 0 such that for every R > c
and every J-holomorphic cylinder ũ = (a, u) : [−R, R] × S1

→ W satisfying
the inequalities Eω(ũ) < σ and E(ũ) < E0, we have u(s, t) ∈ Bε(u(0, t)) for all
s ∈ [−R+ c, R− c] and all t ∈ S1.

Proof. The proof follows the scheme in [Bourgeois et al. 2003] with some modifi-
cation.

By contradiction, assume that there exist sequences cn →+∞, Rn > cn and
ũn = (an, un) : [−Rn, Rn]×S1

→W . The sequence ũn is J-holomorphic, satisfying
E(ũn)≤ E0, Eω(ũn)→ 0, and un(sn, tn) /∈ B(un(0, tn), ε) for some sn ∈ [−kn, kn],
kn = Rn−cn and tn ∈ S1. By the proof of Proposition 3.4 together with the bubbling
lemma (Lemma 3.21), ‖∇ũn‖ is uniformly bounded on each compact subset. We
can extract a subsequence of n, still denoted by n, such that an(sn, tn)→±∞. This
is because, otherwise, we can get a contradiction as in the proof of Proposition 3.4.
Now define ũ0

n(s, t) := (a0
n, u0

n)= (an(s, t)−an(sn, tn), un(s, t)). By Ascoli–Arzela,
we can extract a subsequence, still called ũ0

n , converging to a J∞-holomorphic
cylinder ũ :R× S1

→R×V . Since ũ satisfies Eω(ũ)= 0 and E(ũ)≤ E0, we have
that ũ is a trivial cylinder over some periodic orbit γ . Let’s choose a neighborhood
around γ , and pick the coordinate as in Lemma 3.9, and show that

(50) sup
(s,t)∈[−kn,kn]×S1

|∂βzout,n(s, t)| → 0

for multi-indices β and

sup
(s,t)∈[−kn,kn]×S1

|∂β(an(s, t)− Ts)| → 0,(51)

sup
(s,t)∈[−kn,kn]×S1

|∂βzin,n(s, t)| → 0,(52)

sup
(s,t)∈[−kn,kn]×S1

|∂β(ϑn(s, t)− Tt)| → 0(53)

for multi-indices β with |β|> 0, when n→+∞.
If this were not true, suppose there exists a subsequence of {n}, still denoted

by {n}, such that (s ′n, t ′n) violates one of these properties. Then we can make the
same argument using (s ′n, t ′n) instead of (sn, tn) as above and get a trivial cylinder
contradicting the fact that (s ′n, t ′n) violates one of these properties.

Define A0n and Q0n in the obvious way using γ and s0n = 0. Then apply Lem-
mata 3.14–3.16 and 3.18 to each ũn|[−kn,kn] to get sups∈[−kn,kn]

‖Q0nzn(s)‖0,n→ 0.
Then the Sobolev embedding theorem tells us that κ0n → 0 as n → +∞. This
contradicts the assumption that un(sn, tn) /∈ B(un(0, t), ε). �

We need the following theorem later to prove the surjectivity of the gluing map
in the subsequent paper. After proving all the previous lemmata and theorems, the
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proof of the following theorem is standard. For the case when J is cylindrical and
nondegenerate and V is a contact manifold, the proof is given in [Hofer et al. 2002].

Theorem 3.23. Suppose that J is an asymptotically cylindrical almost complex
structure on W =R+×V at∞, and suppose that J is of the Morse–Bott type. Given
E0 > 0 and sufficiently small ε > 0, there exist constants σ, c, [, ν > 0 such that,
for every R > c and every J-holomorphic cylinder ũ = (a, u) : [−R, R] × S1

→

([,∞)×V satisfying the inequalities Eω(ũ) < σ and E(ũ) < E0, there exists either
a point w ∈ W such that ũ(s, t) ∈ Bε(w) for s ∈ [−R + c, R − c] and t ∈ S1, or
a T-periodic orbit γ of R∞ such that u(s, t) ∈ Bε(γ (Tt)) for s ∈ [−R+ c, R− c]
and t ∈ S1. In the second case, we have a coordinate around γ as in Lemma 3.9
such that

|Dβ
{a(s, t)− Ts− a0}|

2
≤ ε2 Mβ

cosh(2νs)
cosh(2ν(R− c))

+Cβe−cβ (s+R−c),

|Dβ
{ϑ(s, t)− Tt −ϑ0}|

2
≤ ε2 Mβ

cosh(2νs)
cosh(2ν(R− c))

+Cβe−cβ (s+R−c),

|Dβz(s, t)|2 ≤ ε2 Mβ

cosh(2νs)
cosh(2ν(R− c))

+Cβe−cβ (s+R−c),

for s ∈ [−R + c, R − c], t ∈ S1, and β ∈ N×N such that |β| ≤ l − 3, where Mβ ,
Cβ , cβ are constants independent of ũ and ε, and Cβ converges to 0 as [ converges
to +∞, and Mβ and cβ are independent of [.

A similar statement is also true for R−× V .

4. Almost complex manifolds with asymptotically cylindrical ends

In this section, we introduce the notion of almost complex manifolds with asymp-
totically cylindrical ends.

4A. Definitions. Let (W0, ω
′) be a closed symplectic manifold with boundary

∂W0=V+tV−, where V± is an oriented closed manifold. Let W be the noncompact
smooth manifold obtained by attaching E± :=R±×V± to W0 along {0}×V± and V±.
Suppose that there exists an almost complex structure J on W such that J |W0 is
compatible with ω′ and (E±, J |E±) is asymptotically cylindrical at±∞. We assume
that the orientation of E± determined by J |E± coincides with the orientation coming
from the standard orientation of R± and the orientation of V±. This assumption
distinguishes V+ from V−. Furthermore, we assume ω′|V± = ω±∞, where ω±∞ is
the 2-form on V± from Definition 2.1. In this case, we say (W, J ) is an almost
complex manifold with asymptotically cylindrical ends.

Example 4.1 [Bourgeois et al. 2003]. Let (X, ω′, J ) be an almost Kähler manifold,
and let Y ⊂ X be an embedded closed almost Kähler submanifold. We claim
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that (X\Y, J |X\Y ) has an asymptotically cylindrical negative end. Let N be the
normal bundle of Y in X with the metric ω′( · , J · )|Y , let V be the associated
unit sphere bundle of N defined by V = {u ∈ N : |u| = 1}, and let Uε be the disc
bundle of N defined by Uε = {u ∈ N : |u| ≤ ε}. For small enough ε > 0, we have
that Uε is diffeomorphic to a tubular neighborhood of Y in X via the exponential
map with respect to the metric ω′( · , J · ). Since Uε\Y is also diffeomorphic
to (−∞, log ε] × V via the map u 7→ (log |u|, u/|u|), one can check that this
makes (X\Y, J |X\Y ) an almost complex manifold with an asymptotically cylindrical
negative end.

In particular, if we pick Y to be a point in X , we get Example 2.5 as a special
case.

4B. Energy of J-holomorphic curves. Let w be a J-holomorphic map from a
punctured Riemann surface (6, j) to (W, J ), and define

Esymp(w)=

∫
w−1(W0)

w∗ω′,

Eω(w)=
∫

w−1(E+)

w∗ω+

∫
w−1(E−)

w∗ω,

Eλ(w)= sup
φ∈C+

∫
w−1(E+)

w∗(φ σ ∧ λ)+ sup
φ∈C−

∫
w−1(E−)

w∗(φ σ ∧ λ),

where

C+ =
{
φ ∈ C∞c (R

+, [0, 1]) :
∫
φ = 1

}
, C− =

{
φ ∈ C∞c (R

−, [0, 1]) :
∫
φ = 1

}
,

and
E(w)= Esymp(w)+ Eω(w)+ Eλ(w).

Theorem 4.2. Suppose (W, J ) is an almost complex manifold with asymptoti-
cally cylindrical ends, and suppose that J is of the Morse–Bott type. Let w be a
J-holomorphic curve from a punctured Riemann surface 6 to W with E(w) <∞.
Then around each puncture, either w can be extended holomorphically over the
puncture, or one can choose a holomorphic coordinate chart R+× S1 or R−× S1

in S around the puncture such that w converges to a Reeb orbit in E+ or E− in the
sense of Theorems 2.8 and 2.9.

Proof. If w is bounded around a puncture, then Gromov’s removal of singularity
theorem implies that w can be extended holomorphically over the puncture.

Suppose that w is not bounded around a puncture. We pick a holomorphic
cylindrical coordinate R+× S1 around the puncture of 6. By Proposition 3.5,
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|∇w| < C with respect to the standard metric on R+× S1. If w keeps coming
back to a compact region of W and also escaping to the positive (or negative)
end of W , we can find an r0 such that w touches {r0} × V± and {r0 ± 3C} × V±
infinitely many times. Then we can apply Gromov’s monotonicity theorem to w
in the region [r0±C, r0± 2C]× V± as in the argument of Case 1 in the proof of
Theorem 3.7, and get E(w) =∞, which contradicts the assumption. Therefore,
near the puncture, w converges to ∞ or −∞ in E+ or E−. Then Theorem 4.2
follows from Theorems 2.8 and 2.9. �

Proposition 4.3. Suppose (W, J ) is an almost complex manifold with asymptoti-
cally cylindrical ends, and suppose that J is of the Morse–Bott type. Then there
exists a constant ε0 > 0 such that if K±0 < ε0, where K±0 is the constant in (AC1),
the following holds.

Let w be a J-holomorphic curve from a punctured Riemann surface 6 to W
such that, around punctures of 6, we have that w converges to the periodic orbits
γ+1 , . . . , γ

+
p inside V+ and γ−1 , . . . , γ

−
q inside V−. Then

E(w)≤C1

p∑
i=1

∫
γ+i

λ∞−C2

q∑
j=1

∫
γ−j

λ−∞+C3

{ ∫
w−1(E+)

w∗ω∞+

∫
w−1(W0)

w∗ω′+

∫
w−1(E−)

w∗ω−∞

}
,

where C1, C2, C3 are positive constants that are independent of w. In particular,
E(w) only depends on the homology class ofw in H2

(
W,

(⋃p
i=1 γ

+

i

)
∪
(⋃q

j=1 γ
−

j

))
.

Proposition 4.3 is the asymptotically cylindrical version of Proposition 6.13 in
[Bourgeois et al. 2003]. The extra work to prove it for the asymptotically cylindrical
case is essentially carried out in the Appendix of [Bao 2014] where we assume
ω±∞ = dλ∞. For the sake of completeness, we reproduce the proof here.

Proof. First, we restrict ourselves to E+ and denote w± := w|w−1(E±). Note that,
when restricted to J-complex planes, we have

|ω−ω∞| ≤ εe−δs(ω+ σ ∧ λ),(54)

|dλ∞| ≤ Cω+ εe−δsσ ∧ λ,(55)

|σ ∧ λ− dr ∧ λ∞| ≤ εe−δs(σ ∧ λ+ω),(56)

where C is a positive constant and the constant ε > 0 can be chosen to be small
if K+0 is small. Since

∫
∞

0 δe−δs ds = 1, we get∫
w−1(E+)

w∗ω ≤

∫
w−1(E+)

w∗ω∞+ ε

∫
w−1(E+)

w∗ω+
ε

δ
Eλ(w+),
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where

Eλ(w±) := sup
φ∈C±

∫
w−1(E±)

w∗(φ σ ∧ λ).

Absorbing the second term on the right-hand side to the left-hand side, we get

(57) Eω(w+)≤ C1

∫
w−1(E+)

w∗ω∞+C2εEλ(w+),

for some constants C1, C2, where Eω(w±) :=
∫
w−1(E±)

w∗ω.
For any φ ∈ C+, let 8(s)=

∫ s
0 φ(l) dl. Then using (55) and (56) we have∫

w−1(E+)

w∗φ σ ∧ λ

=

∫
w−1(E+)

w∗φ dr ∧ λ∞+
∫

w−1(E+)

w∗φ(σ ∧ λ− dr ∧ dλ∞)

≤

∫
w−1(E+)

w∗ d(8λ∞)−
∫

w−1(E+)

w∗8 dλ∞+
∫

w−1(E+)

w∗εe−δsφ(σ ∧ λ+ω)

≤

p∑
i=1

∫
γ+i

λ∞+

∫
w−1(E+)

w∗(Cω+ εe−δsσ ∧ λ)+
∫

w−1(E+)

w∗εe−δsφ(σ ∧ λ+ω)

≤

p∑
i=1

∫
γ+i

λ∞+C Eω(w+)+ εEλ(w+),

where in the last inequality we get the constants C and ε by slightly abusing the
notations, but we can still have ε small. Taking the sup over φ, we get

(58) Eλ(w+)≤
p∑

i=1

∫
γ+i

λ∞+C Eω(w+)+ εEλ(w+).

Therefore, by (57) and (58) we have

(59) Eω(w+)+ Eλ(w+)≤ C1

∫
γ+

λ∞+C2

∫
w−1(E+)

w∗ω∞,

where constants C1 and C2 are not necessarily the same as before.
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For E−, by the proof of Theorem 10 in [Bao 2014], if K−0 is small we have

(60) Eω(w−)+ Eλ(w−)≤ C ′1 Esymp(w)+C ′2

∫
w−1(E−)

w∗ω∞−C ′3

q∑
j=1

∫
γ−j

λ−∞,

where C ′1, C ′2, C ′3 are positive constants independent of w. Here we recall that

(61) Esymp(w)=

∫
w−1(W0)

w∗ω′.

Now by (59) and (60) we have

E(w)= Eω(w+)+ Eλ(w+)+ Eω(w−)+ Eλ(w+)+ Esymp(w)

≤ a1(Eω(w+)+ Eλ(w+))+ a2(Eω(w−)+ Eλ(w+))+ a3 Esymp(w0)

≤ C1

∫
γ+

λ∞−C2

∫
γ−

λ−∞+C3

{ ∫
w−1(E+)

w∗ω∞+

∫
w−1(W0)

w∗ω′+

∫
w−1(E−)

w∗ω∞

}
,

where a1, a2, a3 ≥ 1 are positive constants chosen in a way such that the last
inequality holds for some positive constants C1, C2 and C3. �

Let MA
g,p+q(γ

+

1 , . . . , γ
+
p , γ

−

1 , . . . , γ
−
q ; J ) be the moduli space of J-holomorphic

curves of genus g in W that converge to periodic orbits γ+1 , . . . , γ
+
p inside V+ and

γ−1 , . . . , γ
−
q inside V− and represent the homology class A, which is an element

of H2
(
W,

(⋃p
i=1 γ

+

i

)
∪
(⋃q

j=1 γ
−

j

))
. Let MA

g,p+q(γ
+

1 , . . . , γ
+
p , γ

−

1 , . . . , γ
−
q ; J )

be the compactification of the space MA
g,p+q(γ

+

1 , . . . , γ
+
p , γ

−

1 , . . . , γ
−
q ; J ) by al-

lowing stable holomorphic buildings. See Theorems 8.1 and 8.2 in [Bourgeois
et al. 2003] for the definition of stable holomorphic buildings in manifolds with
cylindrical ends and the topology of the moduli space of holomorphic buildings.
Finally, let us state the compactness results.

Theorem 4.4. Suppose (W, J ) is an almost complex manifold with asymptot-
ically cylindrical ends, and suppose that J is of the Morse–Bott type. Then
MA

g,p+q(γ
+

1 , . . . , γ
+
p , γ

−

1 , . . . , γ
−
q ; J ) is compact.

Proof. The extra difficulty of proof that comes from J being asymptotically cylin-
drical is taken care of by Theorem 4.2; the rest of the proof is a straightforward
modification of [Bourgeois et al. 2003]. For the sake of completeness, we outline
the proof as follows.

Suppose that (6n, wn) is a sequence of J-holomorphic maps from a punctured
Riemann surface 6n , with E(wn) < C .

First, we add additional marked points to 6n to stabilize 6n , and we use the
unique hyperbolic metric on 6n to decompose 6n into ε-thick part 6ε-thick

n and
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ε-thin part 6ε-thin
n according to the injectivity radius, for ε > 0. Take a subse-

quence of 6n , still called 6n , such that 6n converges to a nodal surface 6∞ in the
Deligne–Mumford sense. By continuing to add marked points to 6n , if necessary,
one can keep track of all the sphere bubbles of wn as n→∞. Eventually, for fixed
ε> 0, we achieve thatwn|6ε-thick

n
has a uniformly gradient bound. By Ascoli–Arzela

and elliptic estimates, we can extract a convergent subsequence ofwn , still calledwn .
Now letting ε tend to 0 and picking a diagonal subsequence, we get a convergent
subsequence of wn , still called wn , with the limit (6∞, w∞|6∞). By Theorem 4.2,
we know that, around a puncture, the limitw∞|6∞ either has a removable singularity
or converges to a Reeb orbit. But at the current stage, w∞ may not be defined
around the nodal points.

Secondly, for ε sufficiently small, the ε-thin part is a disjoint union of finite
cylinders or half-finite cylinders. If Eω(wn|6ε-thin

n
)→0 as n→∞, then the behavior

of wn|6ε-thin
n

is controlled by Theorem 3.22. In this case, the convergence of wn in
the thick part can be continuously extended over 6n . Otherwise, wn|6ε-thin

n
can have

the additional broken trajectory degeneration. By adding more marked points to keep
track of all of the broken trajectory, one has that Eω(wn|6ε-thin

n
)→ 0 as n→∞. �
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