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INTEGRATION OF COUPLING DIRAC STRUCTURES

OLIVIER BRAHIC AND RUI LOJA FERNANDES

Coupling Dirac structures are Dirac structures defined on the total space of
a fibration, generalizing hamiltonian fibrations from symplectic geometry,
where one replaces the symplectic structure on the fibers by a Poisson struc-
ture. We study the associated Poisson gauge theory, in order to describe the
presymplectic groupoid integrating coupling Dirac structures. We find the
obstructions to integrability, and we give explicit geometric descriptions of
the integration.
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1. Introduction

A Dirac structure on a manifold M is a (possibly singular) foliation of M by
presymplectic leaves. It is well known that Dirac structures can be expressed in
terms of a Lagrangian subbundle L of the generalized tangent bundle TM ⊕ T ∗M.
The bundle L inherits a Lie algebroid structure from the Courant bracket [1990], so
Dirac structures are infinitesimal objects. Bursztyn et al. [2004] showed that the
global object underlying a given Dirac structure L is a presymplectic groupoid, i.e.,
a Lie groupoid G ⇒ M with a multiplicative closed 2-form �G satisfying a certain
nondegeneracy condition. Not all Lie algebroids can be integrated to Lie groupoids,
and Dirac structures are no exception: not all Dirac structures can be integrated to
presymplectic groupoids. The obstructions to integrability follow from the general
obstruction theory discovered by Crainic and Fernandes [2003; 2004].
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The general methods presented in [Crainic and Fernandes 2003; 2004] allow one
to decide if a given Lie algebroid is integrable or not, and to produce a canonical
integration in terms of an abstract path space construction. While the obstructions to
integrability can be computed explicitly in many examples, describing the canonical
integration G(L)⇒ M of a given integrable Dirac structure (M, L) is, in general, a
very difficult task. However, for a few classes of Dirac structures one does have
explicit integrations and often in such cases the construction of the groupoid has a
nice geometric flavor.

In this paper we discuss the integration of coupling Dirac structures. The simplest
examples of such couplings arise in the context of a symplectic fibration p : E→ B:
a coupling form is a closed 2-form ω ∈ �2(E) on the total space of the fibration
whose pullback to each fiber Fb is the symplectic form ωFb on the fiber. The
obstructions to the existence of such a coupling form are well known and we will
recall them below. We are interested in the more general situation of a Poisson
fibration: now one looks for a coupling Dirac structure on the total space of the
fibration which glues the Poisson structures on the fibers. This idea of a coupling is
only a rough approximation: Dirac structures are very flexible and extra care must
be taken in defining precisely the notion of a coupling [Dufour and Wade 2008;
Brahic and Fernandes 2008; Vaisman 2006; Wade 2008].

Coupling Dirac structures appear very naturally in Poisson and Dirac geometry.
One reason is that tubular neighborhoods of symplectic and presymplectic leaves
in arbitrary Poisson and Dirac manifolds are always coupling Dirac structures. Our
first main result concerning the integration of couplings can be stated as follows:

Theorem 1.1. Let L be a coupling Dirac structure on p : E→ B. If L is integrable
and (G, �)⇒ B is a source connected, presymplectic groupoid integrating L , then
� is a coupling form for a fibration p : G → 5(B) obtained by integrating the
algebroid morphism p∗ ◦ ] : L→ T B.

In other words, coupling Dirac structures integrate to coupling forms. Moreover,
one can express the geometric data of the integration in terms of the geometric data
associated with the coupling Dirac structure L . As a consequence of this result,
any presymplectic groupoid integrating a coupling Dirac structure on p : E→ B is
Morita equivalent to a symplectic groupoid integrating the induced vertical Poisson
structure on a fiber Eb.

The previous result describes the symplectic geometry of the integration. One is
also interested in the groupoid structure of the integration and the obstructions to
integrability. Our inspiration to deal with this integration problem comes from a
beautiful gauge construction, known as the Yang–Mills setup, which yields coupling
Dirac structures [Brahic and Fernandes 2014; Guillemin et al. 1996; McDuff and
Salamon 1998; Weinstein 1980; Wade 2008].
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Start with a principal G-bundle P→ B, with a connection 0, and a hamiltonian
action G× F→ F on a Poisson manifold (F, πF ), and construct a coupling Dirac
structure L on the associated bundle E = P ×G F extending the Poisson structures
on the fibers. This construction can be further twisted by a closed 2-form on the
base B, and it leads to many examples of coupling Dirac structures.

We show that one can integrate a Yang–Mills phase space as follows:

(i) First integrate the fiber (F, πF ) to a symplectic groupoid F ⇒ F, and the
principal G-bundle P→ B to the gauge groupoid G(P)⇒ B.

(ii) Then integrate the vertical Poisson structure Ver∗ to a fibered symplectic
groupoid GV = P ×G F ⇒ E .

(iii) The gauge groupoid G(P)⇒ B acts on the fibered groupoid GV ⇒ E→ B,
yielding a semidirect product groupoid G(P)nGV ⇒ E .

(iv) Finally, the integration of the Yang–Mills phase space is a quotient

G(L)= G(P)nGV / C,

where C is a certain curvature groupoid.

Along the way we obtain the obstructions to integrability of a Yang–Mills phase
space. Our integration procedure does not uses the principal bundle connection;
hence, all the different couplings obtained by varying the connection have the same
integrating Lie groupoid G ⇒ E . On the other hand, we also provide a construction
for the presymplectic form �G , which obviously depends on the choice of principal
connection.

We show that, provided one is willing to accept infinite dimensional principal
bundles, every coupling on a locally trivial fibration arises as a Yang–Mills phase
space. This observation turns out to be the clue to integrate arbitrary coupling Dirac
structures:

Theorem 1.2. Let L be a coupling Dirac structure on E → B. The source
1-connected groupoid G(L) integrating L naturally identifies with equivalence
classes in P(TB)nB G(Ver∗) under the equivalence relation:

• (γ0, g0) ∼ (γ1, g1) if and only if there exists a homotopy γB : I × I → B,
(t, ε) 7→ γ εB (t) between γ0 and γ1, such that g1 = ∂(γB, t(g0)) . g0.

where ∂ : P(TB)×B E → G(Ver∗) is a certain “groupoid” homomorphism that
can be computed explicitly.

The quotes in “groupoid” are used here because the path space P(TB) is not
really a groupoid, since associativity only holds up to isomorphism.

Again, Theorem 1.2 should be viewed as an infinite dimensional version of
the groupoid integrating the Yang–Mills phase space. It also gives rise to the
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integrability obstructions of coupling Dirac structure. Namely, one checks that
the restriction of the map ∂ : P(TB)×B E → G(Ver∗) to a sphere in B based at
some b ∈ B (seen as a map γB : I

2
→ B such that γB(∂ I 2)= {b}) is independent

of its homotopy class. Then, if we let M := ∂(π2(B)×B E), which we call the
monodromy groupoid of the fibration, then we have the theorem:

Theorem 1.3. Let L be a coupling Dirac structure on E→ B and assume that the
associated connection 0 is complete. Then, L is an integrable Lie algebroid if and
only if the following conditions hold:

(i) the typical Poisson fiber (Ex , πV |Ex ) is integrable;

(ii) the injection M ↪→ G(Ver∗) is an embedding.

The transgression map ∂ : π2(B) ×B E → G(Ver∗) is computable in many
examples, and so are the integrability obstructions of Theorem 1.3. We refer to the
last section of the paper, where we will discuss for example the trivial fibration
p : S2

× so∗(3)→ S2, with the usual Lie–Poisson structure on the fibers. Using
Theorem 1.3 one can see that there is only a 2-parameter family of integrable Dirac
couplings of rank 4, while there is an infinite dimensional family of nonintegrable
Dirac couplings of rank 4.

2. Coupling Dirac structures

The notion of a coupling was first introduced in the context of Dirac geometry
[Vaisman 2006] (see also [Brahic and Fernandes 2008; Dufour and Wade 2008;
Wade 2008]) but their origins lie in the theory of symplectic and hamiltonian
fibrations; see, e.g., [Guillemin et al. 1996; McDuff and Salamon 1998]. In this
section we recall the definition of a coupling Dirac structure and study its first
properties.

2A. Fiber nondegenerate Dirac structures. We shall use some standard notions
from Dirac geometry; see, e.g., [Courant 1990]. So given a smooth manifold M, we
denote by TM := TM⊕ T ∗M its generalized tangent bundle. The space of sections
0(TM) has two natural pairings:

(1) 〈(X, α), (Y, β)〉± := 1
2(iYα± iXβ),

and a skew-symmetric bracket, called the Courant bracket, given by

(2) [[(X, α), (Y, β)]] :=
(
[X, Y ], LX β −LY α+ d〈(X, α), (Y, β)〉−

)
.

An almost Dirac structure L on M is a subbundle L ⊂ TM := TM⊕T ∗M of the
generalized tangent bundle, which is maximally isotropic with respect to 〈 · , · 〉+.
An almost Dirac structure is said to be a Dirac structure if it is furthermore closed
under the bracket [[ · , · ]].
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In general, the Courant bracket does not satisfy the Jacobi identity. For a Dirac
structure L , however, its restriction to 0(L) yields a Lie bracket, and if we let
] : L→ TM be the restriction of the projection to TM, then (L , [[ · , · ]], ]) defines
a Lie algebroid. Each leaf of the corresponding characteristic foliation, obtained
by integrating the singular distribution Im ], carries a presymplectic form ω: if
X, Y ∈ Im ], we can choose α, β ∈ T ∗M such that (X, α), (Y, β) ∈ L and set

(3) ω(X, Y ) := 〈(X, α), (Y, β)〉− = iYα =−iXβ.

One can check that this definition is independent of choices and that ω is indeed
closed. Thus we may think of a Dirac manifold as a manifold foliated by (possibly
singular) presymplectic leaves.

In what follows, unless otherwise stated, by a fibration p : E→ B we mean a
surjective submersion.

Definition 2.1. Let p : E→ B be a fibration. An almost Dirac structure L on E is
called fiber nondegenerate if

(4) (Ver⊕Ver0)∩ L = {0}.

Here, Ver := ker p∗ ⊂ TE denotes the vertical distribution, and Ver0
⊂ T ∗E its

annihilator. When L is both Dirac and fiber nondegenerate, we shall refer to L as a
coupling Dirac structure.

In the terminology of [Mărcuţ and Frejlich 2013], when L is a Poisson structure,
this condition means that the fibers of p : E→ B are Poisson transversals.

In order to understand the geometric meaning of this definition, one needs to
decompose a fiber nondegenerate almost structure L into its various components:

• First, L gives rise to an Ehresmann connection by setting:

(5) Hor := {X ∈ TE : ∃α ∈ (Ver)0 such that (X, α) ∈ L}.

The fact that Hor⊕Ver= TE is an easy consequence of (4).

• Next, it follows from (5) that the horizontal distribution Hor is contained
in the characteristic distribution of L . Hence, we obtain a horizontal 2-form
ωH ∈�

2(Hor) by restricting the natural 2-form on the characteristic distribution
to Hor. More precisely, (4) and (5) together show that for each X ∈Hor, there
exists a unique α ∈ Ver0 such that (X, α) ∈ L . The skew-symmetric bilinear
form ωH : Hor×Hor→ R is defined by

(6) ωH (X1, X2) := 〈(X1, α1), (X2, α2)〉−,

where α1, α2 ∈ Ver0 are the unique elements with (X1, α1), (X2, α2) ∈ L .
Since L is maximal isotropic, this 2-form can also be written ωH (X1, X2)=

α1(X2)=−α2(X1).
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• Finally, we can associate to L a vertical bivector field πV ∈ X
2(Ver). To see

this, first observe that the annihilator of the horizontal distribution is:

Hor0
= {α ∈ T ∗E : ∃X ∈ Ver such that (X, α) ∈ L}.

This, together with (4), shows that for each α ∈ Hor0, there exists a unique
X ∈ Ver such that (X, α) ∈ L . Then one can define a skew-symmetric bilinear
form πV : Hor0

×Hor0
→ R by letting:

(7) πV (α1, α2) := 〈(X1, α1), (X2, α2)〉−,

where X1, X2 ∈Ver are the unique elements with (X1, α1), (X2, α2)∈ L . Since
L is maximal isotropic, the form πV :Hor0

×Hor0
→R can also be written as

πV (α1, α2) = α1(X2) = −α2(X1). Notice that the splitting TE = Hor⊕Ver
allows us to identify Hor0

= Ver∗; thus, πV becomes a bivector field on the
fibers of p : E→ B.

A more geometric interpretation of πV is that it is formed by the pullback to
each fiber of the Dirac structure L; an easy computation shows that for each fiber
Fb = p−1(b), the pullback Dirac structure i∗b L under the inclusion ib : Fb ↪→ E
coincides with πV :

i∗b L := {(X, α|Ver) ∈ Ver⊕Ver∗ : (X, α) ∈ L} = Graph(πV ).

The preceding discussion justifies the following definition:

Definition 2.2. A geometric data on a fibration p : E→ B is a triple (πV , 0, ωH ),
where

• πV ∈ X
2(Ver) is a vertical bivector field.

• 0 is an Ehresmann connection, whose horizontal distribution is denoted Hor,

• ωH ∈�
2(Hor) is a horizontal 2-form,

Proposition 2.3. Given a fibration E→ B, there is a one-to-one correspondence
between fiber nondegenerate almost Dirac structures and geometric data on the
fibration.

Proof. We have seen above how to associate to a fiber nondegenerate almost Dirac
structure L , a geometric data (πV , 0, ωH ). Conversely, given a geometric data
(0L , ωH , πV ) on a fibration p : E→ B, define an almost Dirac structure L by

(8) L := {(X +π ]V (α), iXωH +α) : X ∈ Hor and α ∈ Hor0
}.

Notice that by using the identifications Hor0
= Ver∗ and Ver0

= Hor∗, we obtain
simply L = GraphωH ⊕GraphπV , which will prove to be a meaningful way of
presenting L later on. �
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Given a fiber nondegenerate almost Dirac structure L with associated geometric
data (0, ωH , πV ), we now express the conditions on this data which will guarantee
that L is a Dirac structure, i.e., that it is closed under the Courant bracket.

Let us first introduce some notations associated with the connection 0. For a
vector field v ∈ X(B), we denote by h(v) ∈ X(E) its horizontal lift. The exterior
covariant differential d0 :�k(B)⊗C∞(E)→�k+1(B)⊗C∞(E) is given by

d0ω(v0, . . . , vk) :=

k∑
i=0

(−1)i Lh(vi ) ω(v0, . . . , v̂i , . . . , vk)

+

∑
i< j

(−1)i+ jω([vi , v j ], v0, . . . , v̂i , . . . , v̂ j , . . . , vk)

The curvature of 0 will be denoted by Curv0 ∈�2(B,Ver) and is defined by

Curv0(v,w) := [h(v), h(w)] − h([v,w]) for v,w ∈ X(B).

The curvature measures the failure of Hor in being involutive or, equivalently, the
failure of d0 being a differential since

d2
0 f (u, v)= LCurv(u,v) f,

for any f ∈ C∞(E) and u, v ∈ X(B).

Proposition 2.4. Let (πV , 0, ωH ) be the geometric data determined by a fiber
nondegenerate almost Dirac structure L on a fiber bundle p : E→ B. Then, L is a
Dirac structure if and only if the following conditions hold:

(i) πV is a vertical Poisson structure:

[πV , πV ] = 0;

(ii) parallel transport along 0 preserves the vertical Poisson structure:

Lh(v) πV = 0, for any v ∈ X(B);

(iii) the horizontal 2-form ωH is 0-closed:

d0ωH = 0;

(iv) the curvature is hamiltonian:

(9) Curv(u, v)= π ]V (dih(u)ih(v)ωH ), for any u, v ∈ X(B).

A proof of Proposition 2.4 can be found in [Brahic and Fernandes 2008]. We
shall refer to (9) as the curvature identity.
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2B. Examples. The notion of coupling Dirac structure contains as special cases
the notion of coupling form for symplectic fibrations (see, e.g., [Guillemin et al.
1996]) and the coupling Poisson tensor considered by Vorobjev [2001]. We now
recall these examples as well as other ones.

2B1. Coupling forms. Let ω be a closed 2-form on the total space of a fibration
p : E→ B. The associated Dirac structure L := Graph(ω) is fiber nondegenerate
if and only if the pullback of ω to each fiber is a nondegenerate 2-form. In this
case, the fibration with the restriction of ω to the fibers becomes a symplectic
fibration. The geometric data (πV , 0, ωH ) associated to L has a nondegenerate
vertical Poisson structure πV which coincides with the inverse of the restriction
of ω to the fibers.

The converse is also true: a fiber nondegenerate Dirac structure L for which the
geometric data (πV , 0, ωH ) has a nondegenerate vertical Poisson structure πV is
determined by a presymplectic form ω. In fact, it follows from (8) that L is the
graph of the closed 2-form

ω = ωH ⊕ (πV )
−1.

Hence, fiber nondegenerate presymplectic forms are the same as coupling forms
for symplectic fibrations [Guillemin et al. 1996].

2B2. Coupling Poisson structures. Let π be a Poisson structure on the total space
of a fibration p : E→ B. The Dirac structure L =Graph(π) is fiber nondegenerate
if and only if π is horizontal nondegenerate in the sense of [Vorobjev 2001], i.e.,
if the bilinear form π |Ver0 : Ver0

×Ver0
→ R is nondegenerate. In terms of the

associated geometric data (πV , 0L , ωH ) the Poisson structure on the fibers is πV

and ωH is nondegenerate; in fact, π induces an isomorphism Ver0
→ Hor under

which ωH coincides with the restriction π |Ver0 .
The converse is also true: a fiber nondegenerate Dirac structure L for which the

horizontal 2-form ωH is nondegenerate is given by a Poisson structure π . In fact, it
follows from (8) that

π = (ωH )
−1
⊕πV .

Hence, fiber nondegenerate Poisson structures are the same thing as the horizontal
nondegenerate Poisson structures of Vorobjev.

2B3. Neighborhood of a presymplectic leaf. Let L be any Dirac structure on a
manifold M and fix a presymplectic leaf (S, ω) of L . Then, the restriction of L to
any sufficiently small tubular neighborhood p : ν(S)→ S of the leaf is a coupling
Dirac structure. To see this, one observes that along S:

L x ∩
(
ν(S)x ⊕ νx(S)0

)
= {0}, for all x ∈ S.
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It follows that L is fiber nondegenerate on a sufficiently small neighborhood of the
zero section.

This shows that in a neighborhood of a presymplectic leaf the Dirac structure
takes a special form and we can associate to it the geometric data (πV , 0, ωH ). The
Poisson structure πV is the transverse Poisson structure along S, while S (viewed as
the zero section) is an integral leaf of Hor and the 2-form ωH restricted to this leaf
coincides with ω. Note that, in general, the distribution Hor fails to be integrable at
other points.

2B4. Reduction of canonical bundles. Let P→ M be a principal G-bundle. The
action of G naturally lifts to a hamiltonian action of G on (T ∗P, ωcan). Clearly,
T ∗P is itself a principal G-bundle, sometimes called a canonical bundle, and it
follows that the base manifold T ∗P/G has an induced Poisson structure π .

Each choice of a principal bundle connection θ : T P→ g induces a projection
map pθ : T ∗P/G→ T ∗M. It is easy to check that, for any choice of connection, the
Dirac structure L = Graph(π) on E = T ∗P/G is a coupling Dirac structure over
B = T ∗M.

2B5. Yang–Mills–Higgs phase spaces. There is a construction using principal
bundles and hamiltonian actions which leads to an important class of coupling Dirac
structures.

Definition 2.5. A classical Yang–Mills–Higgs setting is a triple (P,G, F) where
P→ B is a principal G-bundle and (F, πF ) is a G-hamiltonian Poisson manifold
with equivariant moment map µF : F→ g∗.

Proposition 2.6. Let (P,G, F) be a classical Yang–Mills–Higgs setting. Each
choice of a principal bundle connection θ : T P→ g determines a coupling Dirac
structure on the associated fiber bundle E := P ×G F→ B.

The construction is well known (see [Brahic and Fernandes 2014; Weinstein
1980; Wade 2008]), so it will only be sketched. First, the connection θ : T P→ g

gives a G-equivariant embedding iθ : (ker dp)∗ ↪→ T ∗P, where p : P→ B is the
principal bundle projection. This allows us to pullback the hamiltonian G-space
(T ∗P, ωcan, µcan), where µcan : T ∗P → g∗ is the dual of the infinitesimal ac-
tion g→ T P, to obtain a hamiltonian G-space ((ker dp)∗, Lθ , µθ ), where Lθ :=
Graph(i∗θωcan) and µθ : (ker dp)∗→ g∗ is the composition µcan ◦ iθ .

Next, combine the hamiltonian G-spaces ((ker dp)∗, Lθ , µθ ) and (F, LπF , µF ),
where LπF = Graph(πF ), to obtain a hamiltonian G-space

((ker dp)∗× F, Lθ × LπF , µθ +µF ),

where G acts diagonally on (ker dp)∗× F.
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Finally, observe that the hamiltonian quotient

((ker dp)∗× F)//G := {(v, f ) ∈ (ker dp)∗× F : µθ (u)+µF ( f )= 0}/G

is isomorphic to E := P ×G F : the map [(v, f )] 7→ [(u, f )], where v ∈ ker du p,
gives the desired isomorphism. It follows that E has a quotient Dirac structure L ,
and this is indeed a coupling Dirac structure for the fibration E→ B.

The associated coupling Dirac structure can be described as follows. Since G acts
on F by Poisson automorphisms, the associated bundle E := P×G F has an induced
vertical Poisson structure πV with typical fiber (F, πF ). The induced connection
0 on E is a Poisson connection. Denoting by ωθ ∈�2(B, g) the curvature of the
principal connection θ : T P→ g, one obtains a well defined horizontal 2-form ωH

on E by setting
ωH (h(v1), h(v2)) := 〈µF, ωθ (v1, v2)〉.

The triple (πV , 0, ωH ) is the geometric data associated with L . One can also easily
check that this triple satisfies the conditions in proposition 2.4.

Dirac structures obtained in this way are sometimes called classical Yang–Mills–
Higgs phase spaces. We will be interested in the problem of integrability of such
structures. In particular, the integrability of (F, πF ) is not enough to ensure the
integrability of the associated bundle, as shown in the following example.

Example 2.7. Consider the Hopf fibration P = S3
→ S2, seen as an S1-principal

bundle. One can choose a principal connection θ whose curvature is given by
ωθ = p∗ω, where ω is the standard symplectic form on S2. Consider, furthermore,
F = R endowed with the trivial Poisson structure πF = 0, and let S1 act trivially
on F. Any smooth function f : F→ R serves as a momentum map.

The associated bundle is trivial: E = P ×S1 F = S2
× R. Moreover, it is

easily checked that the induced coupling Dirac structure has presymplectic leaves
(S2
×{x}, f (x)ω). Here, the associated geometric data is given by (πV ,Hor, ωH )

where πV =0, Hor is the flat connection given by the trivialization, and ωH := f p∗ω.
Although πV is integrable, the coupling Dirac structure L is not integrable whenever
f has some critical point; see [Crainic and Fernandes 2004].

Remark 2.8. General coupling Dirac structures can be seen as infinite dimensional
Yang–Mills–Higgs phase spaces, provided one allows for infinite dimensional
structure groups, as shown in [Brahic and Fernandes 2008]. A precise formulation
requires the theory of Fréchet manifolds and Fréchet Lie groups. However, one
can use this Poisson gauge theory heuristically, offering guidance on how to extend
constructions which work for a Yang–Mills–Higgs phase space to a general coupling
Dirac structure. We will use this principle later in our construction of the integration
of general coupling Dirac structures.
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2C. Coupling Dirac structures as extensions. In the Yang–Mills–Higgs approach
to general coupling Dirac structures, one must allow for infinite dimensional struc-
ture groups. An alternative approach (see [Brahic 2010]) is to observe that coupling
Dirac structures give rise to Lie algebroid extensions.

Proposition 2.9. Let L be a coupling Dirac structure on p : E→ B. The morphism
p∗ ◦ ] : L→ TB induces a Lie algebroid extension

(10) Graph(πV ) ↪→ L � TB

Moreover, the decomposition (8) induces an Ehresmann connection with horizontal
space Graph(ωH ), namely

(11) L = Graph(πV )⊕Graph(ωH ).

Proof. The map p∗ ◦ ] : L → TB is clearly a Lie algebroid morphism, being
the composition of algebroid morphisms. It is a surjective morphism because
Hor⊂ Im ] and, since it covers the surjective submersion p : E→ B, it defines a
Lie algebroid extension. The fiber nondegeneracy condition also implies that the
kernel of the extension is given by

ker(p∗ ◦ ])= ]−1(Ver)= Graph(πV ).

Hence, the kernel is exactly Graph(πV )⊂Ver∗⊕Ver. The decomposition (11) gives
a complementary vector subbundle to this kernel, i.e., an Ehresmann connection in
the sense of Brahic. �

For a Lie algebroid extension which is split, as in (11), there is a natural decom-
position of its Lie bracket [Brahic 2010, Lemma 1.8].

First, we may identify Graph(πV ) with Ver∗, so sections of Graph(πV ) are iden-
tified with vertical forms. Vertical forms α, β ∈ 0(Ver∗) come naturally equipped
with a bracket and an anchor inherited from πV :

]V (α) := π
]
V (α),(12)

[α, β]V := L]V (α) β −L]V (β) α− dVπV (α, β),(13)

where dV : C∞(E)→ 0(Ver∗) denotes the vertical de Rham differential. Since πV

is Poisson, this makes Ver∗ into a Lie algebroid.
Second, for each v ∈ X(B) there is a unique section h∗(v) of Graph(ωH ) such

that dp ◦ ](h∗(v))= v. In fact, we have an isomorphism ] : Graph(ωV )→ Hor, so
we can first lift v to h(v) ∈ 0(Hor) and then apply ]−1, which gives

h∗(v)= (h(v), ih(v)ωH ) ∈ 0(Graph(ωH )).

We refer to h∗ : X(B)→ 0(Graph(ωH )) as the cohorizontal lifting map.
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Sections of L are generated by sections α ∈ 0(Ver∗) and h∗(v), for v ∈ X(B),
so the Lie bracket on L is entirely determined by its value on these two types of
sections.

Proposition 2.10 (Splitting Brackets). Let L be a coupling Dirac structure on
E→ B. Under the decomposition (11) the Lie bracket of L satisfies:

[α, β]L = [α, β]V , [h
∗(v), α]L = Lh(v)α,

[h∗(v), h∗(w)]L = h∗([v,w])+ dVωH (h(v), h(w)),

while the anchor takes the form:

(14) ](h∗(v)+α)= h(v)+ ]V (α)

for any elements v,w ∈ X(B) and α, β ∈ 0(Ver∗).

Proof. The proposition follows from straightforward computation using (2) and the
identifications Hor∗ ' Ver0 and Ver∗ ' Hor0. �

In particular, we see that the curvature of Graph(ωH ), as an Ehresmann connec-
tion on the Lie algebroid extension L , is given by

(π
]
V dVωH , dVωH ) ∈�

2(B, 0(Graph(πV ))
)
.

Notice that this is just another way of expressing the curvature identity (9).

3. Integration of coupling Dirac structures I

As stated in the introduction, our main aim is to understand the integration of cou-
pling Dirac structures. We now take care of the symplectic geometry, showing that
an s-connected groupoid integrating a coupling Dirac structure has a presymplectic
2-form which is itself a coupling form.

3A. Presymplectic groupoids. In the sequel, we will denote by G ⇒ M a Lie
groupoid, with source and target maps s, t : G→ M, identity section ι : M → G,
m 7→ 1m , and inversion i : G → G, x 7→ x−1. The composition of two arrows,
denoted by x · y, is only defined provided s(x)= t(y).

We will denote by pA : A→ M a Lie algebroid with Lie bracket [ · , · ]A and
anchor ] : A→ TM. Given a Lie groupoid G, the corresponding Lie algebroid has
underlying vector bundle A(G) := ker dι(M)s and anchor ] := dι(M) t . The sections of
A(G) can be identified with the right invariant vector fields on G, and this determines
the Lie bracket on sections of A(G). A groupoid that arises in this way is called
integrable.

Not every Lie algebroid pA : A → M is integrable. However, there always
exists a topological groupoid G(A) with source 1-connected fibers, that formally
“integrates” A, called the Weinstein groupoid of A. Moreover, A is integrable if and
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only if G(A) is smooth, in which case A(G(A)) is canonically isomorphic to A; see
[Crainic and Fernandes 2003; 2011].

Let us recall briefly the construction of G(A). More details can be found in
[loc. cit.]. An A-path is a path a : I → A such that:

]a(t)= d
dt

pA(a(t)).

We denote by P(A) the space of A-paths (up to reparametrization), and we set
s(a) := pA◦ a(0) and t(a) := pA◦ a(1). On the space P(A), there is an equivalence
relation ∼, called A-homotopy, that preserves the multiplication. The Weinstein
groupoid is the quotient of P(A) by A-homotopies:

G(A) := P(A)/∼ .

Given an A-path a, we denote its A-homotopy class by [a]A, or simply [a] when
no confusion seems possible.

When a Lie algebroid arises from a geometric structure, the corresponding Lie
groupoid usually inherits some extra geometric structure. In the case of Dirac
structures L , the Weinstein groupoid G(L) comes equipped with a multiplicative
presymplectic form; see [Bursztyn et al. 2004].

Definition 3.1. A 2-form � ∈�2(G) is multiplicative if

m∗�= pr∗1 �+ pr∗2 �,

where m : G(2)→ G is the multiplication of composable arrows and pri : G(2)→ G is
the projections onto factor i . A presymplectic groupoid is a Lie groupoid endowed
with a multiplicative 2-form � such that

(15) ker�x ∩ ker(ds)x ∩ ker(dt)x = {0}, for all x ∈ M.

Roughly speaking, Dirac structures integrate to presymplectic groupoids.

Theorem 3.2 [Bursztyn et al. 2004]. Let L be a Dirac structure on a manifold M.
If L is integrable, then G(L) has a naturally induced multiplicative presymplectic
form such that the map (t, s) : (G(L),�)→ (M ×M, L × Lop) is f -Dirac.

The aforementioned multiplicative presymplectic form � on G(L) is related
to sections of L in the following way: for any X ∈ TG and any pair of sections
η = (v, α), ξ = (w, β) in 0(L),

�( Eη, X)=−α(s∗X), �(Eξ, X)= β(t∗X),

where we denoted by Eη the left invariant vector field on G(L) associated to η and
by Eξ the right invariant vector field associated to ξ . Also, source and target fibers



338 OLIVIER BRAHIC AND RUI LOJA FERNANDES

turn out to be presymplectically orthogonal:

�( Eη, Eξ)= 0.

Finally, if (S, ωS) is the presymplectic leaf of (M, L) through x ∈ M, then the map
t : s−1(x)→ S defines a principal Gx -bundle, and

i∗s−1(x)�= t|∗s−1(x)ωS,

where is−1(x) : s−1(x) ↪→ G(L) denotes the inclusion.
Note that, given an integrable Dirac structure (M, L), there can be other pre-

symplectic groupoids (G, �G) integrating (M, L) besides (G(L),�). However,
if (G, �G) has source connected fibers, then there is a covering Lie groupoid
homomorphism 8 : (G(L),�)→ (G, �G) with 8∗�G =�.

3B. Couplings integrate to couplings. Assume that L is an integrable coupling
Dirac structure on a fibration p : E→ B. The anchor ] : L→ TE is a Lie algebroid
morphism that integrates to the groupoid morphism G(L)→5(E) which associates
to the homotopy class of an L-path the homotopy class of its base path. On the other
hand, p∗ : TE→ TB is a Lie algebroid morphism whose integration5(E)→5(B)
is the morphism [γ ] 7→ [p◦γ ]. We will denote the composition of this two groupoid
morphisms by p̃ : G(L)→5(B).

Now the morphism p̃ : G(L)→ 5(B) integrates the Lie algebroid morphism
p∗ ◦ ] : L→ TB. Since p∗ ◦ ] is surjective on the fibers, by the coupling condition,
we see that p̃ : G(L)→5(B) is a submersion, which is not necessarily surjective.

Proposition 3.3. Suppose that L is an integrable coupling Dirac structure on a
fibration p : E → B and the induced Ehresmann connection is complete. Then,
p̃ : G(L)→5(B) is surjective, so it is a fibration.

Proof. Given [γ ] ∈5(B), where γ : I → B is a smooth path, completeness allows
us to lift γ to a horizontal path γ̃ : I → E . Since γ̃ ′(t) ∈ Im ], we can find an
L-path a : I → L with base path γ̃ . Then, p̃([a])= [γ ]. �

Remark 3.4. One can show that if a locally trivial fibration p : E→ M admits a
complete Ehresmann connection, then p∗ :5(E)→5(B) is also locally trivial and
carries an induced Ehresmann connection. It follows then that if L is an integrable
coupling Dirac structure on a fibration p : E → B and the induced Ehresmann
connection is complete, then p̃ : G(L)→5(B) is also a locally trivial fibration.

From now on, we will make the implicit assumption that our coupling Dirac
structures have complete induced connections. This is the case, for example, if the
fibers are compact.
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Theorem 3.5. Let L be a coupling Dirac structure on p : E→ B. If L is integrable,
then the multiplicative presymplectic form � on G(L) is fiber nondegenerate for the
fibration

(16) p̃ : G(L)→5(B),

obtained by integrating the Lie algebroid morphism p∗ ◦ ] : L→ TB.

Proof. Let us denote by VerGL := ker p̃. We only need to check that the non-
degeneracy condition (4) holds:

(VerG(L)⊕Ver0
G(L))∩Graph�= {0}.

First notice that since p̃ is obtained by composing the groupoid maps

G(L)→5(E)→5(B),

it follows that (X, α) ∈ TG(L)⊕ T ∗G(L) lies in VerG(L)⊕Ver0
G(L) if and only if it

satisfies

(s∗× t∗)(X) ∈ Ver×Ver and α ∈ (s∗× t∗)(Ver0
×Ver0).

Let g ∈ G(L) be the base point of (X, α), and set x := s(g) ∈ E and y := t(g) ∈ E .
The second condition shows that α ∈ s∗(Ver0

x)+ t∗(Ver0
x), so there exists a0 ∈Ver0

x
and a1 ∈ Ver0

y such that α = s∗a0− t∗a1. It follows from the first condition that

(s∗X, a0) ∈ Verx ⊕Ver0
x and (t∗X, a1) ∈ Very ⊕Ver0

y .

Thus, for any (X, α)∈ (VerG(L)⊕Ver0
G(L))∩Graph�, we must have (s∗X, a0) ∈ L x

and (t∗X, a1) ∈ L y , since s× t is a forward Dirac map. By the fiber nondegeneracy
condition of L , we conclude that (s∗X, a0)= 0 and (t∗X, a1)= 0.

It follows that α = s∗a0− t∗a1 = 0 and that X ∈ ker s∗ ∩ ker t∗. Since (X, α) ∈
Graph�, we conclude that X ∈ ker s∗∩ker t∗∩ker�. The nondegeneracy condition
of � (see Definition 3.1) shows that we must also have X = 0. �

Remark 3.6. For each b ∈ B, the fiber p̃−1(1b) is a Lie subgroupoid of G(L) over
the fiber Eb := p−1(b), and the restriction of � to the fiber is symplectic: it is a
symplectic groupoid integrating the vertical Poisson structure (Eb, πb); the fact
that ker p∗ ◦ ]= ]−1(Ver) is identified with GraphπV = Ver∗ as a Lie algebroid is
a consequence of Proposition 2.10. The kernel of p̃ is also a Lie subgroupoid of
G(L) over E of a special kind, called a fibered symplectic groupoid, which we will
study in Section 4A.

If (G, �G) is another presymplectic groupoid integrating (E, L) with source
connected fibers, then we claim that there is also a fibration p : G→ GB , where
GB is a certain Lie groupoid integrating TB; in fact, since G has source connected
fibers, there is a covering homomorphism 8 : G(L)→ G, whose kernel N ⊂ G(L)
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is an embedded bundle of normal subgroups. Its image p̃(N )⊂ π1(B) is also an
embedded bundle of normal subgroups and so the quotient GB := π1(B)/ p̃(N ) is
another Lie groupoid integrating TB. Moreover, we obtain a groupoid morphism
p : G→ GB from p̃ : G(L)→ π(B) by passing to the quotient. We then obtain as a
corollary of Theorem 3.5:

Corollary 3.7. Let L be a coupling Dirac structure on E→ B. If (G, �G) is any
source connected presymplectic groupoid integrating L , then �G is a coupling
form relative to the fibration p : G→ GB , the unique Lie groupoid homomorphism
integrating the Lie algebroid morphism ] ◦ p∗.

3C. Integration of the geometric data. Let L be an integrable coupling Dirac
structure on p : E→ B, with associated geometric data (πV , 0, ωH ), and (G, �) a
source connected presymplectic groupoid integrating L . According to the results of
the previous section, � is a coupling form relative to a fibration p : G→ GB , which
is a Lie groupoid homomorphism integrating the Lie algebroid morphism p∗ ◦ ].
We denote by (�V , 0̃, �H ) the corresponding geometric data.

One can obtain the geometric data of the coupling multiplicative 2-form � in
terms of the geometric data of the coupling Dirac structure L as follows:

Proposition 3.8 (integration of the geometric data). The geometric data (�V , 0̃, �H )

for � is related to the geometric data (πV , 0, ωH ) for L in the following way:

(i) (GEb , �Eb) := ( p̃
−1(1b), i∗b�V ) is a symplectic Lie groupoid over Eb, which

integrates πV |Eb , where ib : p̃−1(1b) ↪→ G is the inclusion.

(ii) The connection 0̃ has horizontal lift given by

(17) H(v,w)= Eh
∗
(v)− Eh

∗
(w),

where h∗ denotes the cohorizontal lift.

(iii) Under the natural identification TgGB = Tt(g)B× Ts(g)B, the horizontal form
�H is given by

(18) �H (H(v1, w1), H(v2, w2))=ωH (h(v1), h(v2))◦ t−ωH (h(w1), h(w2))◦ s.

Proof. Item (i) was already discussed in Section 3B (see Remark 3.6).
To prove item (ii), consider an element (v,w) ∈ TgGB = Tt(g)B× Ts(g)B. Using

the expression h∗(v) := (h(v), ih(v)ωH ) for the cohorizontal lifts, one checks that
the right hand term in (17) projects onto (v,w) and lies in Ver⊥�L

G . By uniqueness,
it must coincide with H(v,w).
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Finally, expression (18) for the horizontal 2-form follows by straightforward
computation, using the general properties of multiplicative 2-forms:

�H
(
H(v1, w1),H(v2, w2)

)
=�

(
Eh∗(v1), Eh∗(v2)

)
+�

(
Eh∗(w1), Eh∗(w1)

)
=
〈
(h(v1), ηv1), (h(v2), ηv2)

〉
−
◦ s −

〈
(h(w1), ηw1), (h(w2), ηw2)

〉
−
◦ t

= ωH (h(v1), h(v2)) ◦ t − ωH (w1, w2) ◦ s.

�

Remark 3.9. the groupoid geometric data (�V , 0̃, �H ) has a multiplicative nature:

• The fiberwise symplectic forms are multiplicative 2-form on the vertical
groupoids ker p̃.

• The Ehresmann connection H ⇒ Hor is a multiplicative distribution, since it
is a subgroupoid of TG ⇒ TE over Hor⊂ TE .

• Similarly, Equation (18) indicates that �H is a multiplicative 2-form. There
are several ways of expressing this multiplicativity. For example, one may say
that for any pair of composable arrows (v1, w1), (v2, w2) ∈ Hor(2), based at
the same composable arrow (g1, g2) ∈ G(2),

�H (mHor(v1, w1),mHor(v2, w2))=�H (v1, v2)+�H (w1, w2).

One may also say that the composition Hor→ Hor∗→ T ∗G is a groupoid
morphism, where the first map is contraction by �H and the second one is the
inclusion coming from the splitting TG = Ver⊕Hor.

Observing that � is fiber nondegenerate for both p ◦ s and p ◦ t , we obtain:

Corollary 3.10. For each b ∈ B, the presymplectic groupoid (G, �) and the sym-
plectic groupoid (GEb , �Eb) are Morita equivalent presymplectic groupoids:

(P, �P)t|P
zz

s|P
&&

(G, �) (GEb , �Eb)

where P := s−1(Eb) and �P := i∗P�, with iP : P ↪→ G denoting the inclusion.

4. Integration of the Yang–Mills–Higgs phase space

In [Brahic and Fernandes 2014], we have proposed an integration procedure for
a Yang–Mills–Higgs phase space. This procedure consists in forming a certain
hamiltonian quotient which is hard to make sense out of for arbitrary coupling Dirac
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structures, since it will involve an infinite dimensional reduction. In this section,
we give a different approach to integrating a Yang–Mills–Higgs phase space.

This new construction of the integration of a Yang–Mills–Higgs phase space
E= P×G F associated with a triple (P,G, F) and a choice of connection θ :T P→g

involves the following steps:

(i) Integrate the Poisson structure on the fiber (F, πF ) to a symplectic groupoid
F ⇒ F.

(ii) Integrate the vertical Poisson structure Ver∗ to a fibered symplectic groupoid
GV = P ×G F ⇒ E .

(iii) Integrate the principal G-bundle P→ B to the gauge groupoid G(P)⇒ B.

(iv) Let the gauge groupoid G(P)⇒ B act on the fibered groupoid GV ⇒ E→ B,
yielding a semidirect product groupoid G(P)nGV ⇒ E .

(v) Finally, integrate the Yang–Mills phase space, forming a quotient

G(L)= G(P)nGV / C,

where C is a certain curvature groupoid.

The next paragraphs describe these constructions.

4A. Fibered symplectic groupoids. We discuss the first two integration steps above.
For this, we recall briefly from [Brahic and Fernandes 2008] a few notions about
fibered symplectic groupoids.

4A1. Fibered groupoids. Let us fix a base B. We have the category Fib of fibrations
over B, where the objects are the fibrations p : E→ B and the morphisms are the
fiber preserving maps over the identity.

A fibered groupoid is an internal groupoid in Fib, i.e., an internal category where
every morphism is an isomorphism. This means that both the total space GV and
the base E of a fibered groupoid are fibrations over B and all structure maps are
fibered maps. For instance, the source and the target maps are fiber preserving maps
over the identity:

GV

  

//
// E

p
��

B

It follows that any orbit of GV lies in a fiber of p : E → B. In fact, GV |Eb :=

(p ◦ s)−1(b)= (p ◦ t)−1(b) is a Lie groupoid over Eb.
The infinitesimal version of a fibered Lie groupoid GV ⇒ E→ B is a fibered Lie

algebroid AV → E→ B. This means π : AV → E is a Lie algebroid, the vector
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bundle projection is map of fibrations:

AV

!!

// E
p
��

B

and the image of the anchor ]V takes value in the vertical bundle Ver⊂ TE . There
is an obvious Lie functor from fibered groupoids to fibered algebroids.

A elementary way to obtain a fibered groupoid/algebroid is by using a principal
bundle whose structure group acts on a Lie groupoid/algebroid by automorphisms.
Then we have the following:

Proposition 4.1. Given a principal G-bundle P and an action A : G→ Aut(F)
of G on a Lie groupoid F ⇒ F by Lie groupoid automorphisms, the associated
bundle GV := P ×G F carries a natural structure of a fibered Lie groupoid over
E := P ×G F. The corresponding fibered Lie algebroid is P ×G A(F)→ E.

Proof. The associated bundle P ×G F is given by equivalence classes [u : a] of
couples (u, a) ∈ P ×F under the relation [u : a] = [ug−1, Ag(a)] for all g ∈ G.
The source and targets map s, t : P ×G F→ P ×G F, given by

s[u : a] := [u : s(a)] and t[u : a] := [u : t(a)],

are easily checked to be well defined. Then, we define a composition by setting
[u′ : a′] · [u : a] = [u, Ag(a′) · a], where g is the unique element of G such that
u′ = ug. Once we check that it is independent of g, we can write

[u : a′] · [u : a] = [u : a · a′],

which makes it straightforward to obtain a groupoid structure P ×G F ⇒ P ×G F,
with inverse [u : a]−1

= [u : a−1
] and units 1[u:x] = [u : 1x ]. �

Remark 4.2. As a basic observation, note that each fiber of P×GF comes naturally
equipped with the structure of a Lie groupoid over the corresponding fiber of P×G F,
clearly isomorphic to the model F ⇒ F.

4A2. Poisson fibrations. We now apply these constructions to integrate Poisson
fibrations into fibered symplectic groupoids.

Definition 4.3. A Poisson fibration p : E → B is a locally trivial fiber bundle,
with fiber type a Poisson manifold (F, πF ) and with structure group a subgroup
G ⊂ Diffπ (F). When π is symplectic the fibration is called a symplectic fibration.

The fibers Eb := p−1(b) of a Poisson fibration come with an induced Poisson
structure πEb that glue to a Poisson structure πV on the total space of the fibration,
so that πEb = πV |Eb .
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The bivector field πV is vertical; that is, it takes values in
∧2 Ver ⊂

∧2TE .
Hence, the fibers (Eb, πEb) become Poisson submanifolds of (E, πV ).

It is important to distinguish πV as a vertical Poisson structure from its underlying
Poisson structure on E . In particular, the Lie algebroid structure associated to πV

as a vertical Poisson structure is defined on the covertical bundle Ver∗, rather than
on T ∗E . The corresponding bracket and anchor are given by (13) and (12). Clearly,
this is a fibered version of the usual construction, which we formalize as follows:

Definition 4.4. A fibered symplectic groupoid is a fibered Lie groupoid GV whose
fiber type is a symplectic groupoid (F, ω).

Therefore, if GV is a fibered symplectic groupoid over B, then p ◦ s = p ◦ t :
GV → B is a symplectic fibration, and each symplectic fiber GV |Eb is a symplectic
groupoid over the corresponding fiber Eb.

Proposition 4.5. The base E→ B of a fibered symplectic groupoid GV ⇒ E→ B
has a natural structure of a Poisson fibration.

Conversely, a Poisson fibration whose fiber type is an integrable Poisson manifold,
integrates to a fibered symplectic groupoid. In fact, standard facts about integration
of Lie algebroids yield the following (see [Brahic and Fernandes 2008] for details):

Theorem 4.6. Let p : E → B be a Poisson fibration with fiber type (F, πF ) an
integrable Poisson manifold. There exists a unique (up to isomorphism) source
1-connected fibered symplectic groupoid integrating Ver∗.

Remark 4.7. The integration of πV as a Poisson fibration and as a Poisson structure
differ since G(Ver∗) has only dimension 2 dim(F)+ dim(B).

4B. Action groupoids. Next we will discuss steps (iii) and (iv) in the integration of
Yang–Mills phase spaces. We describe an action of the gauge groupoid of a principal
bundle on an associated fibered groupoid, and the resulting action groupoid.

4B1. Action of a Lie groupoid on a fibered Lie groupoid. Given a fibered groupoid
GV ⇒ E

p
→ B, the gauge groupoid is the transitive (infinite dimensional) groupoid

Gau(GV ) := {GV |Eb

g
−→ GV |Eb′

: g is a Lie groupoid isomorphism},

with source s(g)= b, target t(g)= b′, and with the obvious composition.

Definition 4.8. An action of a groupoid G⇒ B on a fibered groupoid GV ⇒ E→ B
is a Lie groupoid homomorphism 8 : G→ Gau(GV ).

There is an associated semidirect action groupoid GnGV ⇒ E associated to such
an action, whose space of arrows is defined as

GnGV := G s×p◦ t GV = {(g, a) ∈ G×GV : a ∈ GV |Es(g)}.



INTEGRATION OF COUPLING DIRAC STRUCTURES 345

The source and target are given by s(g, a) := s(a) and t(g, a) := t(8g(a)), the units
by 1x = (1p(x), 1x), the inverses by (g, a)−1

= (g−1,8g(a)−1), and the composition
by

(19) (g2, a2) · (g1, a1)= (g2 · g1,8
−1
g1
(a2) · a1).

When both G and GV are Lie groupoid, we say that the action is smooth whenever
GnGV is a Lie groupoid for the obvious manifold structure.

In order to define the infinitesimal counterpart of this action groupoid, for a
fibered Lie algebroid AV → E , define

DerB(AV ) := {D ∈ Der(AV ) : the symbol of D is p∗-projectable}

There is a well defined map ρ : DerB(AV ) → X(B), D 7→ p∗X D, where X D

denotes the symbol of D. Note that DerB(AV ) is a C∞(B)-module by the formula
( f . D)(α) := f D(α). In fact, DerB(AV ) is a Lie algebra over C∞(B) and ρ a
C∞(B)-linear morphism of Lie algebras. In this work, we will always assume that
AV is locally trivial, so that ρ is surjective.

Definition 4.9. An action of a Lie algebroid A→ B on a fibered Lie algebroid
AV → E → B is a C∞(B)-linear Lie algebra morphism D : 0(A)→ DerB(AV )

covering the anchor map, that is, such that ]A = ρ ◦D.

Given such an action, An AV := p∗A⊕ AV comes naturally with the structure
of a Lie algebroid over E . The bracket and anchor are given by

](v, α) := XDv
+ ]V (α),

[v,w] := [v,w]A, [α, β] := [α, β]AV , [v, α] := Dv(α).

for any sections α, β ∈ 0(AV ) and v,w ∈ 0(A) seen as sections of An AV . The
above brackets and anchor naturally extend to arbitrary sections of An AV since
γ (A) generates 0(p∗A) as a C∞(E)-module.

Definition 4.10. Given an action D : 0(A)→ DerB(AV ) of A on AV , we call the
Lie algebroid An AV described above the action Lie algebroid.

Remark 4.11. If AV is the Lie algebroid of a fibered Lie groupoid GV , then
DerB(AV ) can be thought of as the Lie algebroid of Gau(GV ). Indeed, any smooth
action 8 : G→Gau(GV ) differentiates to an action D : A→DerB(AV ). Moreover,
An AV → E is the Lie algebroid of GnGV ⇒ E .

In order to integrate an infinitesimal action D :0(A)→DerB(AV ), note however
that we need to assume that A acts by complete lifts, meaning that the symbol of
Dα is a complete vector field on E for any α ∈ 0(A).
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4B2. Actions of principal bundles on fibered Lie groupoids. Given a principal
G-bundle P, recall that its gauge groupoid G(P)⇒ B has spaces of arrows the
associated bundle P ×G P.

Denoting by [u2 : u1] the equivalence class of a couple (u2, u1) ∈ P × P, the
source and target of G(P) are defined by s([u2 : u1]) := q(u1), t([u2 : u1]) := q(u2),
and the composition is well defined by setting:

[w : v] · [v : u] = [w : u].

The inverses are given by [v : u]−1
= [v : u] and identities by 1x = [u : u].

The groupoid G(P)⇒ B is transitive, and its isotropy groups fit into a Lie group
bundle IsoP→ B that canonically identifies with the associated bundle P×G G by
the injection [u : h] 7→ [uh : u]. Note that the same goes for neutral components,
namely Iso◦P = P ×G G◦.

We will be interested in the s-simply connected groupoid G̃(P) corresponding
to G(P) rather than G(P) itself. The principal bundle corresponding to G̃(P) has
total space the universal cover P̃ of P. When G is connected, the structure group
G of P̃ fits into an exact sequence:

1→ Im ∂2→ G̃→ G→ 1,

where ∂2 : π2(B)→ π1(G) is the boundary operator in the homotopy sequence of
the projection P → B. This means one can always assume that π1(G) = Im ∂2,
provided one chooses to work with G̃(P) instead of G(P).

Finally, the Lie algebroid associated to G(P) is usually denoted by T P/G. It is
a vector bundle over B whose sections are the G-invariant vector fields on P, and
who fits in the Atiyah sequence:

ker ] ↪→ T P/G � TB.

Proposition 4.12. Let P be a principal G-bundle and A : G→ Aut(F) an action
of G on a Lie groupoid F ⇒ F by Lie groupoid automorphisms. Then, there is a
natural action of the gauge groupoid G(P) on the associated fibered Lie groupoid
GV := P ×G F ⇒ E := P ×G F.

Proof. Define 8 : G(P)→ Gau(GV ) by 8[u2:u1]([u : a]) := [u2g : a], where g is
the unique element of G such that u1g = u. After checking that 8 is well defined,
notice that a more convenient formula for 8 is simply:

8[v:u]([u : a])= [v : a] for u,v ∈ P, a ∈ F .

This makes it straightforward to check that 8 indeed takes values in Gau(GV ), and
that it is a groupoid morphism. �
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Proposition 4.13. With the same assumptions as in Proposition 4.12, the action
groupoid GnGV ⇒ E identifies with the quotient (P× P×F)/G, where G acts on
P × P × F diagonally: [v : u : a] = [vg : ug : A−1

g (a)], for any g ∈ G. Moreover,
under this identification, the structure maps are given as follows:

• the source and target map are

s[v : u : a] = [u : s(a)] and t[v : u : a] = [v : t(a)],

• the unit at a point [u : x], where x ∈ F, u ∈ P, is

1[u:x] = [u : u : 1x ],

• the inverses are
[v : u : a]−1

= [u : v : a−1
],

• and the composition is

[w : v : a′] · [v : u : a] = [w : u : a′ · a].

Proof. By the construction of the Section 4B1, an arrow in G(P)nGV is a couple
([u2 : u1], [u : a]), where q(u)= q(u1). Since there exists a unique g ∈G such that
u1g = u, we can always assume that u1 = u and the identification easily follows.
The formulas for the structure maps then come from Proposition 4.12 and the
construction of the semidirect product. �

4B3. Action groupoid of a Poisson fibration. Let E = P ×G F→ B be a Poisson
fibration associated with a principal G-bundle p : P→ B and an action of G on
an integrable Poisson manifold (F, πF ) by Poisson diffeomorphisms. The results
above show that one obtains an action groupoid as follows.

First, we consider the source connected symplectic groupoid F ⇒ F integrating
(F, πF ). The G-action on F by Poisson diffeomorphisms lifts to Lie groupoid
action A : G→ Aut(F) by groupoid automorphisms; see, e.g., [Fernandes et al.
2009]. Therefore, according to Propositions 4.12 and 4.13, there is a natural
action of the gauge groupoid G(P)⇒ B on the associated fibered Lie groupoid
GV := P ×G F ⇒ E→ B, giving rise to an action Lie groupoid G(P)nGV ⇒ E .

According to the preceding discussion (see Remark 4.11), the Lie algebroid of
the action Lie groupoid G(P)nGV ⇒ E has underlying vector bundle

p∗An AV = p∗(T P/G)nVer∗.

To determine the bracket and the anchor, we need to find the Lie algebra homo-
morphism D : 0(T P/G)→ DerB(Ver∗). Since Ver∗ identifies naturally with the
associated bundle Ver∗ = P ×G T ∗F and since the action of G on T ∗F is naturally
lifted from the G-action on F, it follows that D associates to each G-invariant vector
field X in P the Lie derivative of the vector field XE ∈X(E), induced by the natural
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action on T ∗P/G on E . In other words, Dv coincides with the Lie derivative of its
own symbol:

DX (α)= LXE α for X ∈ 0(T P/G), α ∈ 0(Ver∗),

where XE is the projection on E = P ×G F of the vector field (X, 0) ∈ X(P × F).
It follows that if X, Y denote G-invariant vector fields in P and α, β ∈ 0(Ver∗),
then the anchor of p∗(T P/G)nVer∗ is given by

(20) ](X, α) := XE +π
]
V (α),

while the bracket takes the form

(21) [X, Y ]AnAV := [X, Y ], [α, β]AnAV := [α, β], [X, α]AnAV := LXE (α).

4C. Integrability of Yang–Mills–Higgs phase spaces. We consider now the last
steps in the construction of the integration of Yang–Mills–Higgs phase space. So
now we assume that we have

• p : P→ B a principal G-bundle;

• (F, πF ) a Poisson manifold;

• G× F→ F a hamiltonian G-action on (F, πF ) with equivariant moment map
JF : F→ g∗.

Each choice of a principal connection θ : T P→ g yields a coupling Dirac structure
on E = P ×G F.

The fact that the action is hamiltonian implies that the G action on the algebroid
T ∗F is prehamiltonian, with premoment map (see ):

ψ : gn F −→ T ∗F

(ξ,m) 7−→ dm〈J, ξ〉.

Therefore, by Theorem A.19, ψ integrates to a groupoid morphism

9 : G◦n F→ F,

where
F :=6(F) / 9̃(π1(G)n F).

We will assume that 9̃(π1(G)× F) is embedded in 6(F), so that F is smooth.
Clearly, GV := P ×G F is a symplectic groupoid integrating Ver∗ = P ×G T ∗F.

The G-action on F lifts to a Lie groupoid action A : G→ Aut(F), so we can
apply the construction of the previous subsection: we obtain an action groupoid
G(P)nGV ⇒ E .
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Definition 4.14. The curvature subgroupoid, denoted by C⇒ E , is the subgroupoid
C ⊂ G(P)nGV given by:

C := Graph(9P ◦ i)⊂ G(P)nGV ,

where 9P : Iso◦P ×B E → GV is obtained by fibrating 9 : G◦ n F → F along P
and i : Iso◦→ Iso◦ denotes the inversion.

More explicitly, with the notations of Proposition 4.13, the curvature groupoid C
is given by

(22) C := {[uh−1
: u :9(h, x)] ∈ G(P)nGV : u ∈ P, h ∈ G◦, x ∈ F}.

Proposition 4.15. The curvature groupoid C ⇒ E is a wide, normal, completely
intransitive subgroupoid of G(P)nGV .

Proof. The result follows using the expression (22) for C, the compositions rules
in Proposition 4.13 and Equation (32) in Theorem A.19. The fact that C is a
subgroupoid is rather straightforward. In order to see that it is normal, we pick any
[uh−1

: u : 9(h, x)] ∈ C and [v : u : a] ∈ G(P)n GV which are composable, i.e.,
such that x = s(a), and we find that

[v : u : a] · [uh−1
: u :9(h, x)] · [v : u : a]−1

= [vh−1
: v :9(h, x)],

is an element in C. �

Finally, putting all together, we conclude the following:

Theorem 4.16. Suppose that (P,G, F) is a classical Yang–Mills–Higgs setting
and θ : T P → g is a principal connection. Let L be the corresponding coupling
Dirac structure on E = P ×G F and assume that

(i) the Poisson manifold (F, πF ) is integrable, and

(ii) the groupoid 9̃(π1(G)× F) is embedded in 6(F).

Then, the quotient groupoid G(P)nGV /C integrates (E, L).

Proof. As we saw above, the Lie algebroid of G(P)n GV is given by A n AV ,
where A= T P/G and AV =Ver∗. Furthermore, the principal connection induces a
splitting of the Atiyah sequence, and we have an identification T P/G'TB⊕ker ]A.
With this identification, the Lie algebroid AC of C lies in

T P/G nVer∗ ' (TB⊕ ker ]A)nVer∗

as
AC =

{
(0, ξ,−ψ(ξ)) ∈ (TB⊕ ker ]A)nVer∗ : ξ ∈ ker ]A

}
,

and the quotient (TB⊕ker ]A)nVer∗/AC identifies with TB×B Ver∗, with canonical
projection given by π(X, ξ, α)= (X, α+ψ(ξ)). It now follows from expressions
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(20) and (21) for the anchor and the brackets that the Lie algebroid structure on
AnVer∗ descends to a Lie algebroid structure on TB×B AV whose brackets and
anchor are the same as those given in Proposition 2.10. Hence AnVer∗/AC and L
are isomorphic as Lie algebroids.

For the smoothness of the quotient, we observe that G(P)nGV / C can also be
thought of as an “associated bundle” G(P)nIso◦P GV . Indeed, there is an action of
the bundle of Lie groups Iso◦P on G(P)n GV which can be described as follows.
On the one hand, the Lie groupoid morphism 9 induces an action λ of G◦ on F
by left multiplication: λh(a) :=9(h, x) · a, where h ∈ G◦ and x := s(a). Fibering
along P, we obtain an action of the bundle of Lie groups Iso◦P on GV :

λP
[u:h]([u : a]) := [u :9(h, x) · a].

Here we use the identification Iso◦P ' P ×G G◦ to write an element of Iso◦P as a
pair [u : h]. Note that this action is well defined by (33). On the other hand, Iso◦P
acts on G(P) by right multiplication, which is a proper and free action. The two
actions together give a proper and free action of Iso◦P on G(P)nGV :

g · (b, a) :=
(
bg−1

: λP
g (a)

)
.

and the quotient is the “associated bundle” G(P)nIso◦P GV .
We claim that G(P)nIso◦P GV can be identified with G(P)nGV/C. This follows

by observing that any g ∈ Iso◦P can be written as g = [u : uh] ∈ G(P) so that (see
Theorem A.19):

g · (b, a)=
(
bg−1, λP

g (a)
)
= (b, a) · c

where c := ([uh−1
: u :9(h)]) ∈ C. Since the assignment c↔ g is one-to-one, the

two quotients coincide. �

Remark 4.17. Consider the Hopf fibration P = S3
→ S2, seen as an S1-principal

bundle, and F =R acted upon trivially with momentum map f : F→R any smooth
function, as in Example 2.7. Then, the second condition in Theorem 4.16 fails if f
has a critical point as explained in Example A.20.

Theorem 4.16 shows that the groupoid structure of G(L) does not depend on the
choice of the principal G-bundle connection. In other words, two coupling Dirac
structures associated with Yang–Mills data with the same principal G-bundle and
hamiltonian G-action, but different principle bundle connections, give rise to the
same Lie groupoid. Note, however, that the presymplectic forms will be distinct, as
it is clear from their geometric data given in Proposition 3.8.

We can also give an explicit description of the presymplectic form � on G(L),
as follows. First, we use Proposition 4.13 to identify G(P)nGV ' (P× P×F)/G.
We then construct a presymplectic form �̃ on G(P)nGV : we have a closed 2-form
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on P × P ×F given by

�̃ := p∗F�F + d〈θ, µ〉1− d〈θ, µ〉2,

where pF : P×P×F→F is the projection, and d〈θ, µ〉i denotes the closed 2-form
in �2(P × P × F) obtained by differentiating the 1-form αi ∈ �

1(P × P × F)
given by

αi |(u1,u2,g)(v1, v2, w) := 〈θ |ui (vi ), µ(g)〉.

Here, µ : F → g∗ denotes the moment map for the lifted G-action on F, so that
µ = µ ◦ t − µ ◦ s. One checks easily that the closed 2-form �̃ is basic for the
G-action on P × P ×F, so it descends to a multiplicative 2-form in the quotient
(P × P ×F)/G ' G(P)nGV .

Finally, one checks that resulting multiplicative 2-form on G(P)n GV further
descends to the quotient G(P)nGV /C, giving a closed, multiplicative 2-form �G
satisfying the nondegeneracy condition (15). A more-or-less tedious computa-
tion shows that the target map t : (G(L),�G)→ (E, L) is a forward Dirac map.
Summarizing this discussion, we have:

Corollary 4.18. Under the conditions of Theorem 4.16, the presymplectic form on
the groupoid G(L)= G(P)nGV / C is the quotient of the closed 2-form

�̃ := p∗F�F + d〈θ, µ〉1− d〈θ, µ〉2.

The integrability conditions in Theorem 4.16 can be made more explicit. On
the one hand, the integrability of the fiber type (F, πF ) follows from general
theory developed in [Crainic and Fernandes 2004] and can be expressed in terms
of monodromy maps ∂ : π2(S, x)→ G(gx), where S is the symplectic leaf of F
through x and gx = kerπ ]F |x is the isotropy Lie algebra at x . On the other hand,
condition (ii) can be treated by the same methods as in [Brahic and Fernandes
2014, Section 4.3], and one gets another monodromy type map π1(G) → Fm

controlling (ii). This will be treated elsewhere.

5. Integration of coupling Dirac structures II

A general coupling Dirac structure may not come from a principal bundle with
structure group a finite dimensional Lie group. For instance, this is the case if
the holonomy group induced by the connection (i.e., the group spanned by the
holonomy along loops in the base) is not a finite dimensional subgroup of the
Poisson automorphisms of the fiber. In such cases, one needs a formulation of the
construction of Section 4C which avoids infinite dimensional reductions. In this
section, we will take advantage of the fact that L fits into a Lie algebroid extension,
to reformulate the construction given in Section 4C, without any mentioning to
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these infinite dimensional group quotients. We follow the ideas of [Brahic 2010] in
order to describe L-paths and L-homotopies.

Recalling that Ver∗ = Graph(πV ), we know that L is a Lie algebroid extension

Ver∗ ↪→ L � TB,

which splits. The notion of holonomy makes sense for any Lie algebroid extension
with a splitting (see [op. cit., Section 2.1]), and in our situation, given a TB-path
γ̇B ∈ P(TB), the holonomy is a Lie algebroid morphism

8γB
: Ver∗

∣∣
EγB(0)
→ Ver∗

∣∣
EγB(1)

.

It will be useful to restrict γB to a path [0, t] → TB, where t ∈ [0, 1]. The corre-
sponding holonomy will then be

8
γB
t,0 : Ver∗

∣∣
EγB(0)
→ Ver∗

∣∣
EγB(t)

.

In the case of a coupling Dirac structure, there is another notion of holonomy to
be taken into account, namely, the one induced by the usual Ehresmann connection
Hor. Given a path γB : [0, 1] → B it gives rise to a holonomy map

φγB : EγB(0)→ EγB(1).

Again, restricting γB to a path [0, t] → B the corresponding holonomy will be
denoted

φ
γB
t,0 : EγB(0)→ EγB(t).

The two holonomies are related in a simple way:

Proposition 5.1. The holonomy 8γB
t,0 induced by the connection Graph (ωH ) on L

is related to the holonomy φγB
t,0 induced by Hor on TE by

8
γB
t,0 = (φ

γB
0,t)
∗.

Proof. The result follows directly from the identification Ver∗ = Graph(πV ) and
from the particular form of the bracket given in Proposition 2.10. �

Recall that a Lie algebroid extension is called a fibration whenever the Ehresmann
connection is complete [Brahic and Zhu 2011]. It follows from Proposition 5.1
that (10) is a fibration whenever the Ehresmann connection Hor is complete. In the
sequel, we will always assume that this is the case.

5A. Splitting L-paths and L-homotopies. We see from Proposition 2.9 that any
L-path a over γ := pL ◦ a decomposes uniquely as a sum:

(23) a(t)= h∗(γ̇B(t))γ (t)+ aV (t)
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where γB := p ◦γ . In this decomposition, neither t 7→ h∗(γ̇B(t))γ (t), nor t 7→ aV (t)
is an L-path in general. However, it is possible to “split” the paths in P(L) into
horizontal and vertical parts, as follows:

Proposition 5.2 (splitting L-paths). Let L be a coupling Dirac structure on a
fibration p : E→ B. If the associated connection 0 is complete, then there is an
isomorphism of Banach manifolds:

P(L) −→ P(TB) s×t◦p P(Ver∗),
a 7−→ (γ̇B, ã),

where the couple (γ̇B, ã) is defined by

(24) γ̇B := dp ◦ ]a, ãt := aV (t) ◦ dφγB
t,0 ,

where φγB
t,0 : EγB(0)→ EγB(t) denotes the holonomy along γB .

Proof. This follows from [Brahic 2010, Proposition 4.1] and Proposition 5.1. �

One should think of the couple (γ̇B, ã) as a concatenation of L-paths of the form
h∗(γ̇B) · ã. Here, h∗(γ̇B) denotes the L-path defined by

(25) h∗(γ̇B)(t) := h∗(γ̇B(t))φγB
t,1 (y)

,

where y = s(a). Notice that the L-path (25) is different from the horizontal
component appearing in (23) since the base paths are different. In particular, h∗(γ̇B)

as defined in (25) is always an L-path by construction.
Then Proposition 5.2 can be illustrated in a simple way as follows:

φ−1
γB
(y)

h∗(γ̇B)

,, y

L

��

x

ã

LL

a

55

γB(0)

γ̇B
--
γB(1) TB

In fact, it can be proved that a is L-homotopic to the concatenation h∗(γ̇B) · ã.
However, for the sake of simplicity, in this work we shall simply think of the map
a 7→ (ã, γ̇B) as an mere identification.

Recall that for any A-path a, its inverse path is the A-path a−1 defined by
a−1(t) := −a(1− t). Using Proposition 5.2, one can express the concatenation and
inverses of L-paths as follows:
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Proposition 5.3. Under the isomorphism of Proposition 5.2, given two composable
L-paths a ' (γ̇B, ã) and b ' (δ̇B, b̃), their concatenation is

(δ̇B, b̃) · (γ̇B, ã) :=
(
δ̇B · γ̇B, 8

−1
γB
(b̃) · ã

)
.

Moreover, the inverse path a−1 of a is

(γ̇B, ã)−1
:=
(
γ̇−1

B , 8γB
(ã)−1).

Proof. The result follows directly from (24) and from the fact that the holonomy
commutes with taking concatenation and inverse of A-paths. �

Notice the analogy between the formula for concatenation in the previous propo-
sition and formula (19) for the product in the action groupoid. In fact, if one thinks
of P(TB) as a groupoid over B, then the holonomy gives an action of P(TB) on
P(Ver∗) similar to the action of G(P) on GV discussed in Section 4B1. For this
reason, one may think of the fibered product P(TB) s×t◦p P(Ver∗) as a semidirect
product P(TB)n P(Ver∗).

In general, the presence of curvature prevents the fundamental groupoid 5(B)
from acting on P(Ver∗). However, holonomy along a path γB ∈ P(B) is a Lie
algebroid morphism 8γB

: Ver∗ |EγB(0)
→ Ver∗ |EγB(1)

. Hence, it integrates to a
groupoid morphism 8γB

: G(Ver∗)|EγB(0)
→ G(Ver∗)|EγB(1)

that we still denote by
8γB

. Here, G(Ver∗) denotes the Weinstein groupoid of Ver∗. Finally, notice that
the formulas in Proposition 5.3 still make sense when replacing Ver∗-paths by
their homotopy classes; therefore, we will denote by P(TB)nG(Ver∗) the fibered
product P(TB) s×t◦p G(Ver∗).

Theorem 5.4. Suppose that L is a coupling Dirac structure on E→ B. The source
1-connected groupoid G(L) integrating L naturally identifies with equivalence
classes in P(TB)nB G(Ver∗) under the following relation:

• (γ0, g0) ∼ (γ1, g1) if and only if there exists a homotopy γB : I × I → B,
(t, ε) 7→ γ εB(t) between γ0 and γ1, such that g1 = ∂(γB, t(g0)) . g0.

Here, ∂(γB, x0) is the element in G(Ver∗) represented by the Ver∗-path

(26) ε 7−→ (dV )γ̃ ε

(∫ 1

0
(φ
γ εB
s,0)
∗ωH (γB)s,ε ds

)
∈ Ver∗γ̃ (ε),

where γ̃ (ε) :=8−1
γ εB
◦8γ 0

B
(x0) and

ωH (γB)s,ε := ωH

(
h
(dγB

dt
(s, ε)

)
, h
(dγB

dε
(s, ε)

))
∈ C∞(EγB(s,ε))
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One may illustrate the homotopy condition appearing in Theorem 5.4 in the
following way:

x

x0
LL

g0

y--h∗(γ1) 11
h∗(γ0)

x1
UU

g1

bb ∂(γB, x0)

b0

γ0

55

γ1 ))
b1γB

HP

Example 5.5. Let us consider the case where πV is the trivial Poisson structure.
This occurs, for instance, if L is the restriction of a regular Dirac structure to a
tubular neighborhood E → B of one of its leaves B. Then G(Ver∗) is a bundle
of Lie groups that identifies with Ver∗ with its additive structure. Furthermore, it
follows from the curvature identity (9) that the connection is flat, so we have a
genuine action of the fundamental groupoid 5(B) on Ver∗. Up to a cover of B, we
may assume that E is trivial as a representation of 5(B). This means that E can
be identified with B × F in such a way that the holonomy along any path is the
identity:

φ
γ

s,0 = idF : {γ (0)}× F −→ {γ (1)}× F.

It follows that the horizontal and vertical distributions are respectively given by
Hor= TB× F and Ver= B× TF in the decomposition TE = TB⊕ TF . Hence,
ωH can be seen as a family of 2-forms on B parametrized by F, and the leaves of
L are of the form B×{x} with presymplectic form ωH |B×{x}, where x ∈ F.

The homotopy condition appearing in Theorem 5.4 can then be expressed as
follows: two elements (γ0, g0) and (γ1, g1) in P(TB)× T ∗x0

F are homotopic if and
only if there exists a TB-homotopy γB : I

2
7→ B between γ0 and γ1 such that

g1− g0 = (dV )x0

∫
γB

ωH ,

where we integrate ωH along γB as a 2-form with values in C∞(F). In order to
obtain the above formula, we simply replace φγ

ε
B

0,s by idF in (26) and then we use the
fact that, T ∗F being a bundle of abelian groups, any path in T ∗x0

F can be represented
by a constant paths. This amounts in (26) to average with respect to the ε variable.
In particular, when F = R, we recover the leafwise prequantization Lie algebroids
and the homotopy condition appearing in [Crainic 2004].
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Notice also that, applying the resulting 1-form to a vector Xx0 ∈ TF, one gets a
geometrical interpretation of g1− g0 as the variation of the presymplectic area of
γB in the vertical directions:〈

dV

∫
γB

ωH , Xx0

〉
=

d
dt

∣∣∣∣
t=0

∫
γB×{φ

X
t (x0)}

ωH ,

where φX
t is the flow of any vector field X ∈ X(F) extending Xx0 .

Remark 5.6. The construction given in Theorem 5.4 can be interpreted as an
infinite dimensional analogue of the construction given in Section 4 of the groupoid
integrating a Yang–Mills phase space.

For this interpretation, one considers the Poisson frame bundle (see [Brahic and
Fernandes 2008]), so that we can view our coupling as an infinite dimensional
Yang–Mills phase space. One needs first to reduce the structure group from the
group of Poisson diffeomorphisms between a fixed fiber Eb0 and any other fiber
to the subgroup generated by the holonomy transformations 8γB along any path
γB ∈ P(B), with γB(0) = b0. If P → B denotes the resulting principal bundle,
then one can “identify” the corresponding gauge groupoid Gau(P)= P ×B P with
the “groupoid” P(TB). Moreover, the equivalence relation ∼ of Theorem 5.4 can
be viewed as the equivalence relation associated with the corresponding curvature
groupoid.

5B. The monodromy groupoid. We now use the constructions of [Brahic 2010;
Crainic and Fernandes 2004] in order to obtain the obstructions to integrability of a
coupling Dirac structure L .

Consider the short exact sequence of Lie algebroids

(27) Ver∗ ↪→ L � TB.

We obtain by integration the sequence of groupoid morphisms

(28) G(Ver∗) j
−→G(L) q

−→5(B),

where5(B) denotes the fundamental groupoid of B. Recall that j and q are defined
at the level of paths:

j ([ã]V ) := [i ◦ a]L and q([a]L) := [p∗ ◦ ](a)]TB .

for any Ver∗-path ã : I → Ver∗ and any L-path a : I → L . Although the sequence
(27) is exact, the sequence (28) might not be exact anymore, pointing out a lack
of exactness of the integration functor. However, one can always ensure the right
exactness:
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Proposition 5.7. Let L be a coupling Dirac structure whose induced Ehresmann
connection is complete. Then, the sequence (28) is surjective at 5(B) and exact at
G(L).

Proof. One may see that q is surjective, provided the connection is complete, by
observing that, given [γ̇B]TB ∈5(B), the element [h∗(γ̇B)] ∈ G(L), defined by (25)
maps to [γ̇B].

For the exactness at G(L) one observes that, by the definition, the elements of
ker q are represented by L-paths whose projection on TB is a contractile loop.
Therefore, the inclusion Im j ⊂ ker q is obvious. Conversely, given an element
[a]L ∈ ker q, represented by some L-path a, we see that a ∼ (ã, γ̇B), under the
identifications of Proposition 5.2, where γB is a contractible loop based at some
b ∈ B. Consider a contraction γ εB : I 2

→ B between γB and the trivial path 0b.
Then, by Theorem 5.4, we see that (ã, γ̇B) is L-homotopic to (∂(γB) · ã, 0b). Since
(∂(γB) · ã, 0b) represents a Ver∗-path, we conclude that [a]L ∈ Im j , as claimed. �

It follows that (28) can only fail to be exact because of the lack of injectivity
of j . In order to measure this failure, we introduce the following:

Definition 5.8. The monodromy groupoid associated with the fibration is the kernel
of j : G(Ver∗)→ G(L), denoted by M.

Obviously, by construction, we have an exact sequence of groupoids

M ↪→ G(Ver∗)� ker q,

and we can replace (28) by the exact sequence of groupoids:

G(Ver∗)/M ↪→ G(Ver∗)�5(B).

The kernel of this sequence ker q = G(Ver∗)/M is a bundle of groupoids with
typical fiber the neutral component of the restricted groupoid G(L)|Eb0

to a fiber
Eb0 . In particular, we see that if G(L) is integrable, then the monodromy groupoid
M must be embedded in G(Ver∗).

It remains to relate M to the global data associated with L on E .

Theorem 5.9. Consider a coupling Dirac structure L on a fibration E→ B, and
assume that the induced Eheresmann connection is complete. Then there exists a
homomorphism

∂ : π2(B)×B E→ G(Ver∗),

that makes the following sequence exact:

· · · → π2(B)×B E→ G(Ver∗)→ G(L)→5(B).
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In other words, Theorem 5.9 states that the monodromy groupoids of the fibration
coincide with the image of the transgression map M= Im ∂|π2(B).

Proof. The map ∂ in Theorem 5.4, when restricted to a sphere in B based at some
b ∈ B (seen as a map γB : I

2
→ B such that γB(∂ I 2)= {b}) is independent of its

homotopy class; see [Brahic 2010]. Then, it follows from that reference and [Brahic
and Zhu 2011] that the restriction of the map ∂ to π2(B) corresponds precisely to
the transgression map. �

Note the analogy between the monodromy groupoid described above and the
monodromy groups that measure the integrability of an algebroid [Crainic and
Fernandes 2003]. In fact, when E is a tubular neighborhood of a leaf B ⊂ E in
a Dirac structure, the restriction M|B coincides, by construction, with the usual
monodromy groups along B.

Finally, we can relate the monodromy groupoid of a coupling Dirac structure
with the problem of integrability.

Theorem 5.10. Let L be a coupling Dirac structure on E → B and assume that
the associated connection 0 is complete. Then, L is an integrable Lie algebroid if
and only if the following conditions hold:

(i) the typical Poisson fiber (Ex , πV |Ex ) is integrable;

(ii) the injection M ↪→ G(Ver∗) is an embedding.

Proof. First, it is easily seen that since the associated Poisson fibration is locally
trivial, Ver∗ is integrable if and only if the typical Poisson fiber (Ex , πV |Ex ) is
integrable.

Assume now that L is integrable. Then, the projection q : G(E)→ 5(B) is
a smooth surjective submersion. Therefore, ker q is a Lie groupoid integrating
Ver∗; in particular, the typical Poisson fiber is integrable. Furthermore, since
ker q = G(Ver∗)/M is smooth, M is necessarily embedded in G(Ver∗).

Conversely, suppose that M is embedded in G(Ver∗) and consider a sequence
(ξn)⊂N (L) of monodromy elements of L converging to a trivial path 0x . Since
ker ]⊂Ver∗, one can consider the sequence [ξn]V ∈ G(Ver∗), where ξn is considered
as a constant path. By the definition [Crainic and Fernandes 2004] of the monodromy
groups N (L) controlling the integrability of L , [ξn]L ∈ G(L) is a sequence of units
[ξn]L = 1xn , therefore [ξn]V ∈M. In other words, there exists a neighborhood U of
the identity section in G(L) such that N (L)∩U ⊂M∩U. Since M is embedded
in G(Ver∗), it follows that there exists a neighborhood V ⊂U of the identity section
in G(L) such that N (L)∩ V coincides with the identity section. This shows that
the obstructions to integrability of L vanish. �

Example 5.11 (hamiltonian symplectic fibrations). Assume L that is the graph of
a presymplectic form. Then L identifies with TE as a Lie algebroid (using the
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anchor map). In particular L is integrable and G(L) identifies with the fundamental
groupoid of E . Let us see how one can recover this using the previous construction.

In that case, πV is the inverse of a symplectic (vertical) form. Thus, Ver∗

identifies with Ver as a Lie algebroid, and G(Ver∗) ' G(Ver), which is just a
fibered version of the fundamental groupoid. Therefore, the transgression map
becomes ∂ : π2(B)n E→ G(Ver) and, as easily checked, corresponds to the usual
transgression map in the homotopy long exact sequence associated to the fibration
E → B. It follows that Mx lies in the fundamental group π1(E p(x)) of the fiber
through x ∈ E , and M is locally trivial over E . Now, Theorem 5.10 shows that L
is integrable.

In fact, if the fibers are compact, one can even show that the transgression
map vanishes. Indeed, given a sphere in B, it follows from (26) that the loops
representing the image of the transgression map are the so-called hamiltonian loops;
see [McDuff and Salamon 1998]. For compact symplectic manifolds, it is a well
known fact that such hamiltonian loops are always contractile.

Example 5.12 (split Poisson structures). When a coupling Dirac structure L is the
graph of a Poisson structure π , the decomposition (8) corresponds to a splitting
π = πV +πH , where πH is a bivector field; see [Vorobjev 2001].

One may check that the corresponding connection has vanishing curvature if
and only if πH is Poisson. The characteristic foliation of πH is then given by the
integrable distribution Hor. Moreover, it follows from the curvature identity (9) that
the connection is flat if and only if ωH takes values in the space of Casimirs of πV .

Let us assume that πH is indeed Poisson and, for the sake of simplicity, assume
that E = B× F is a trivial fibration. Then, one can still interpret the elements of
M in terms of variations of the symplectic area of spheres. First, notice that γ̃ ε is
necessarily a trivial path since the connection is trivial. Furthermore, the integral in
(26) involves

ωH

(dγB
dt
,

dγB
dε

)
,

which are Casimirs of the vertical Poisson structure on F. The resulting element in
Ver∗x0

lies in the center of the isotropy algebra at x0. Thus, taking the corresponding
Ver∗-homotopy class amounts to integrating along the ε variable.

Example 5.13. As a particular case of Example 5.12, consider the trivial Poisson
fibration E = S2

× so∗3→ S2, where p is the projection onto the first factor. Let
πV be the linear Poisson structure on the fibers so∗3 of the projection, and let
Hor(b,x) = Tb S2

×{x} be the trivial connection. Then, ωH must necessarily be of
the form ωH = f ·ω, where ω denotes the standard symplectic form on S2 and f
is a Casimir of so∗3, i.e., a smooth function of the radius r ∈ C∞(so∗3).
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One knows (see, e.g., [Crainic and Fernandes 2003]) that the (usual) monodromy
groups of the vertical Poisson structure at some (b, x) ∈ B× so∗3 are

N (Ver∗)(b,x) =
{

4πZ . dr if x 6= 0,
{0} if x = 0,

Applying the integrability criteria of Theorem 5.10, we see that L is integrable if
and only if 4π f ′(r) is a rational multiple of 4π , for any r . This means that f ′ must
be constant, so f (r)= αr +β, with α ∈Q and β ∈ R.

One can also recover this result using the prequantization Lie algebroids of
[Crainic 2004] associated with a product of presymplectic spheres. On each leaf,
the restricted Lie algebroid L|S2×S2×{v} is the prequantization of a product of
presymplectic spheres (S2

× S2, f ′(v)ω×ω). It is well known that leaf wise, f ′(v)
must be a rational multiple of

∫
S2 ω = 4π .

This example shows how rigid the integrability conditions can be: in this example,
the value and the derivative of f at a point entirely determines the structure.

Appendix

A1. Actions on Lie groupoids and Lie algebroids. We will have to look at various
actions of Lie groups and algebras on Lie groupoids and Lie algebroids. The
following diagram summarizes the various possibilities:

Lie group action
on a groupoid:

A : G→ Aut(G)
+3

��

Lie group action
on an algebroid
a : G→ Aut(A)

��
Lie algebra action

on a groupoid
A : g→ Xmult(G)

+3
Lie algebra action
on an algebroid
a∗ : g→ Der(A)

where the four corners have the following precise meaning:

• Action of a Lie group G on a Lie groupoid G: This means a smooth action
A : G × G→ G such that for each g ∈ G the map Ag : G→ G, x 7→ gx , is a
Lie groupoid automorphism.

• Action of a Lie group G on a Lie algebroid A: This means a smooth action
a : G × A→ A such that for each g ∈ G the map ag : A→ A, a 7→ ax , is a
Lie algebroid automorphism.

• Action of a Lie algebra g on a Lie groupoid G: This means a Lie algebra homo-
morphism A : g→Xmult(G), where Xmult(G)⊂X(G) denotes the multiplicative
vector fields in G.
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• Action of a Lie algebra g on a Lie algebroid A: This means a Lie algebra
homomorphism a∗ : g→ Der(A), where Der(A) is the space of derivations of
the Lie algebroid A.

Clearly, Lie group actions on Lie groupoids and algebroids cover ordinary Lie
group actions on the base manifold. Similarly, Lie algebra actions on Lie groupoids
and algebroids cover ordinary Lie algebra actions on the base manifold.

The arrows in the diagram above represent natural differentiation operations,
either along the group action or along the groupoid. The explicit description is left
to the reader, and then the commutativity of the diagram becomes obvious.

Under appropriate assumptions one can also invert the arrows in the diagram
above, namely:
• One can invert the horizontal arrows (integrate actions on Lie algebroids to

actions on Lie groupoids) if G = G(A), the source 1-connected Lie groupoid
integrating A.

• One can invert the vertical arrows (integrate Lie algebra actions to Lie group
actions) if G = G(g), the source 1-connected Lie group integrating g, and if
the infinitesimal actions are complete (the flows are defined for all t ∈ R).

The reader should be able to fill in the details.

A2. Inner actions. Recall that a bisection b : M→ G is a smooth section of the
source map such that t ◦b is a diffeomorphism of M. The space Bis(G) of bisections
has natural structure of a group, induced from the groupoid structure, and the map
Bis(G)→ Diff(M), b 7→ t ◦ b is a morphism of groups.

The notion of inner action for Lie groupoids follows immediately from the
following definitions:

• An inner Lie groupoid automorphism is a Lie groupoid automorphism 8 : G→ G
of the form

8(x)= b(t(x)) · x · b(s(x))−1.

for some bisection b : M→ G. They clearly form a subgroup InnAut(G)⊂ Aut(G).
• A inner Lie algebroid automorphism is a Lie algebroid automorphism φ : A→ A
of the form

φ = ϕ
Dα

1,0,

for some time dependent section αt ∈ 0(A). Here, t 7→ ϕ
Dα

t,0 denotes the flow of the
time dependent derivation Dαt := [αt , · ]). They generate a subgroup InnAut(A)⊂
Aut(A).

• A multiplicative exact vector field is a multiplicative vector field X ∈ Xmult(G)
of the form

X = Eα− Eα,
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where α is a section of A= A(G), and Eα and Eα are the right and left invariant vector
fields in G determined by α. They form a Lie subalgebra Xexact(G)⊂ Xmult(G).
• An inner derivation is a Lie algebroid derivation D ∈ Der(A) of the form

D = [α, · ]A,

for some section α∈0(A). They clearly form a Lie subalgebra InnDer(A)⊂Der(A).

Now, one can define inner actions in a more-or-less obvious fashion. We obtain
a diagram as above:

inner Lie group
action on a groupoid
A : G→ InnAut(G)

+3

��

inner Lie group
action on an algebroid

a : G→ InnAut(A)

��
inner Lie algebra

action on a groupoid
A : g→ Xexact(G)

+3
inner Lie algebra

action on an algebroid
a∗ : g→ InnDer(A)

In this work, we will mainly consider inner actions associated with a Lie groupoid
morphism 9 : G×M→ G given by

(29) Ag(x)=9(g, t(x)) · x ·9(g, s(x))−1, for g ∈ G, x ∈ G.

Notice that the map 9 covers the ordinary action G × M → M on the base.
Furthermore, one may check that 9 : G × M → G is a Lie groupoid morphism
if and only if the map G→ Bis(G), g 7→ bg(x) := 9(g, x) is a group morphism
covering the usual Lie group action of G on M.

Similarly, the inner Lie algebra actions on a Lie algebroid a∗ : g→ InnDer(A)
will come associated with a Lie algebroid morphism ψ : g×M→ A (covering the
identity on M) such that

(30) (aξ )∗ = [ψ∗(ξ), · ]A, for ξ ∈ g,

where ψ∗(ξ) ∈ 0(A) is defined by ψ∗(ξ)m = ψ(ξ,m), for any m ∈ M. The
map ψ∗ : g→ 0(A) covers the ordinary Lie algebra action g→ X(M) on the
base. Moreover, ψ∗ is a Lie algebra morphism covering the infinitesimal action
g→ X(M) if and only if ψ is a Lie algebroid.

Proposition A.14. Let G × M → M be an action of a Lie group on a manifold.
Then, any homomorphism 9 : G n M→ G from the action Lie groupoid to a Lie
groupoid G determines by formula (29) an inner action of G on G that covers the
action on M.
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Similarly, let g→ X(M) be an action of a Lie algebra on a manifold. Then any
homomorphism ψ∗ : gn M→ A from the action Lie algebroid to a Lie algebroid A
determines by formula (30) an inner action of g on A that covers the infinitesimal
action on M.

Remark A.15. Note that 9 and ψ as above do not need to be morphisms in order
for (29) and (30) to induce inner actions. In this paper though, we will always
assume that it is the case.

The relevant notion for this work is the following:

Definition A.16. A prehamiltonian action of a Lie group G on a Lie algebroid A
with prehamiltonian moment map ψ∗ : g→0(A) is an action a :G→Aut(A) such
that:

•
d
dt (aexp(−tξ))∗(β)

∣∣
t=0 = [ψ∗(ξ), β]A, for ξ ∈ g, β ∈ 0(A),

• ψ∗ is a G-equivariant morphism of Lie algebras.

Note that the G-equivariance is always satisfied when G is connected.

A3. Integration of inner actions. Let us now see in which circumstances one is
able to invert arrows in the last diagram.

Proposition A.17. Suppose that g→ X(M) is a complete Lie algebra action and
ψ : gn M→ A is a Lie algebroid morphism from the action Lie algebroid to a Lie
algebroid A. For any Lie groupoid G integrating A, the associated inner action
a∗ : g→ InnDer(A) integrates to an inner action A : G(g)→ InnAut(G), where
G(g) is the 1-connected Lie group integrating g.

Proof. By the assumptions, we have a Lie group action G(g)×M→ M , and the
corresponding action groupoid G(g)nM ⇒ M is source 1-connected. Furthermore,
the Lie algebroid morphism ψ : gn M→ A integrates to a Lie groupoid morphism
9̃ : G(g) n M → G(A). Denote by 9 the composition of 9̃ with the natural
projection G(A)→ G. Then, one obtains an inner action A : G(g)→ InnAut(G)
by (29). As is easily checked, it integrates the inner action a∗ : g→ InnDer(A). �

The above result is slightly better than the integration of non-inner actions we
referred to in the end of the preceding subsection. In general, in order to integrate a
Lie algebra action of g on a Lie algebroid A to a Lie group action of G on a Lie
groupoid G, we need both G to be 1-connected and G to be source 1-connected
(and the action to be complete).

This is important for our purposes, as G is the structure group of a principal
bundle, thus its topology is imposed. So, we need to refine Proposition A.17 to
groups that are neither simply connected nor connected.

Hence, assume that we want to integrate an inner action a : g→ InnDer(A)
associated with ψ : gn M → A to an action of a connected (but not necessarily
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1-connected) Lie group G with Lie algebra g. Recall that for a connected Lie group
G, its fundamental group fits into the exact sequence

(31) 1−→ π1(G)−→ G(g)−→ G −→ 1.

Proposition A.18. Suppose that G is a connected Lie group acting on a manifold
M, G is a Lie groupoid over M, and 9 :G(g)nM→ G is a Lie groupoid morphism.
Then, 9 descends to a Lie groupoid morphism 9 : G n M → G if and only if it
takes values in units when restricted to π1(G)n M ⊂ G(g)n M, namely

9(π1(G)n M)= 1M .

The proof is left to the reader. Note that although ψ : gn M → A may not
integrate to 9 : G n M→ G, it may still integrate to a morphism 9 ′ : G n M→ G′

for a smaller Lie groupoid G′ integrating A. This can be decided as follows. First
we integrate ψ : gn M→ A to a Lie groupoid morphism 9̃ : G(g)n M→ G(A)
with values in the source 1-connected Lie groupoid integrating A. Then, given any
connected Lie group G integrating g, we introduce a bundle of groups 1 over M,
defined in the following way:

1 := 9̃(π1(G)n M)⊂ G(A)

Recall that if 1 is a totally disconnected wide normal subgroupoid of G(A), then
the quotient G(A)/1 is a Lie groupoid; see, e.g., the discussion in [Gualtieri and
Li 2014, Theorem 1.14]. Furthermore, it is easy to see that G(A)/1 integrates A.
Therefore, we obtain a Lie groupoid morphism:

9 : G n M→ G(A)/1.

Of course, ψ integrates to a morphism G n M → G whenever G is covered by
G0 := G(A)/1.

Theorem A.19. Let a : G→ Aut(A) be a prehamiltonian action of a Lie group G
on a Lie algebroid A with premoment map ψ∗ : g→ 0(A) and:

• ψ : gn M→ A the Lie algebroid associated with ψ∗,

• 9̃ : G(g)n M→ G(A) the groupoid morphism integrating ψ ,

• 1⊂ G(A), the subset defined by 1 := 9̃(π1(G)n M)⊂ G(A).

Then, the following assertions hold:

(i) 1 is a wide, normal, totally disconnected subgroupoid of G(A),

(ii) a integrates to a groupoid action A : G→ Aut(G(A)/1).
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Moreover, G(A)/1 is a Lie groupoid if and only if 1⊂ G(A) is an embedding. In
this case, 9̃ descends to a Lie groupoid morphism 9 : G×M→ G(A)/1 and

Ah(x)=9n(h) · x ·9m(h)−1(32)

9gm(ghg−1)= Ag(9m(h))(33)

for any h ∈ G◦, x ∈ G(A)/1, g ∈ G, where m := s(x) and n := t(x).

Proof. Since G acts on A by Lie algebroid automorphisms, one can lift a into an
action Ã of G on G(A) by groupoid automorphisms via

Ãg([q]A) := [ag◦ q]A, for q ∈ P(A), g ∈ G.

Consider now an A-path q and an element h lying in the neutral component G◦ of
G. We extend q into a time dependent section of A (which we still denote by q) and
consider any g-path ξ : ε 7→ ξε ∈ g that induces a path hε in G◦ between the identity
and h. By the construction, (ahε )∗(qt) is a solution of the evolution equation

[(ahε )∗(qt), ψ∗(ξε)]A =
d
dε
(ahε )∗(qt), for ε, t ∈ I.

Then, by [Brahic 2010, Proposition A.1], we obtain

(34) Ãh([q]A)= 9̃y([ξ ]g) · [q]A · 9̃x([ξ ]g)
−1.

In particular, if h=1, that is, ξε induces a loop in G◦, then1 is a normal subgroupoid
of G(A).

Next, we have to make sure that Ã induces an action on G(A)/1, so we need to
check that Ãh(1)=1. For this, we apply Equation (34) with q = 9̃[η]g, where
η is a g-path inducing a loop in G, and we use successively the fact that 9̃ is a
Lie groupoid homomorphism, then that π1(G) lies in G(g) as a normal subgroup.
The first relation follows. The second one is obtained by using the equivariance
condition in Definition A.16. �

Example A.20. Here is a basic example where the resulting groupoid G(A)/1
is not smooth. Consider the 1-dimensional (abelian) Lie algebra z = R, its dual
z∗ endowed with the trivial linear Poisson structure, and A := T ∗z∗ ' zn z∗ the
corresponding Lie algebroid. Then, A integrates to a bundle of Lie groups Z n z∗,
where Z is the Lie group R.

Consider furthermore the trivial action of G := S1
' R/2πZ on z∗. Then, any

application J : z∗→ Lie(S1) can be chosen to be a moment map. From the Lie
algebroid point of view (see Definition A.16) we only have a prehamiltonian moment
map ψ∗ : Lie(S1)→ 0(zn z∗), X 7→ dJ (X). The corresponding Lie algebroid
morphism ψ : Lie(S1)n z∗→ zn z∗ is given by (X, z) 7→ (dJz(X), z). It integrates
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to a Lie groupoid morphism Rn z∗→ Z n z∗ given by (θ, z) 7→ (dJz(θ), z). The
exact sequence (31) reads

1−→ 2−→ R−→ S1
−→ 1,

Hence, we obtain 1z = {(dJz(2kπ), z) : k ∈ Z}. Clearly, 1 defines a normal
subgroupoid of Z n z∗; however, Z n z∗/1 is not smooth if dJ vanishes at some
point z0.
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2000), edited by J. Kubarski and R. Urbański, Pawełand Wolak, Banach Center Publ. 54, Polish
Acad. Sci. Inst. Math., Warsaw, 2001. MR 2003d:53145 Zbl 1007.53062

[Wade 2008] A. Wade, “Poisson fiber bundles and coupling Dirac structures”, Ann. Global Anal.
Geom. 33:3 (2008), 207–217. MR 2009d:53122 Zbl 1151.53070

[Weinstein 1980] A. Weinstein, “Fat bundles and symplectic manifolds”, Adv. in Math. 37:3 (1980),
239–250. MR 82a:53038 Zbl 0449.53035

Received October 6, 2014. Revised March 26, 2015.

OLIVIER BRAHIC

DEPARTMENT OF MATHEMATICS

FEDERAL UNIVERSITY OF PARANÁ

CP 19081
81531-980 CURITIBA-PR
BRAZIL

brahicolivier@gmail.com

RUI LOJA FERNANDES

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

1409 W. GREEN STREET

URBANA, IL 61801
UNITED STATES

ruiloja@illinois.edu

http://msp.org/idx/mr/2000g:53098
http://dx.doi.org/10.1016/j.geomphys.2005.05.007
http://msp.org/idx/mr/2007f:53109
http://msp.org/idx/zbl/1109.53076
http://journals.impan.gov.pl/bc/
http://msp.org/idx/mr/2003d:53145
http://msp.org/idx/zbl/1007.53062
http://dx.doi.org/10.1007/s10455-007-9079-3
http://msp.org/idx/mr/2009d:53122
http://msp.org/idx/zbl/1151.53070
http://dx.doi.org/10.1016/0001-8708(80)90035-3
http://msp.org/idx/mr/82a:53038
http://msp.org/idx/zbl/0449.53035
mailto:brahicolivier@gmail.com
mailto:ruiloja@illinois.edu




PACIFIC JOURNAL OF MATHEMATICS
msp.org/pjm

Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2015 is US $420/year for the electronic version, and $570/year for print and electronic.
Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2015 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:balmer@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:blasius@math.ucla.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:yang@math.princeton.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 278 No. 2 December 2015

257Differential Harnack and logarithmic Sobolev inequalities along
Ricci-harmonic map flow

ABIMBOLA ABOLARINWA

291On J-holomorphic curves in almost complex manifolds with
asymptotically cylindrical ends

ERKAO BAO

325Integration of coupling Dirac structures
OLIVIER BRAHIC and RUI LOJA FERNANDES

369Asymptotic behavior of Palais–Smale sequences associated with
fractional Yamabe-type equations

YI FANG and MARÍA DEL MAR GONZÁLEZ

407K-theory and homotopies of 2-cocycles on higher-rank graphs
ELIZABETH GILLASPY

427Fusion products and toroidal algebras
DENIZ KUS and PETER LITTELMANN

447Differential Harnack estimates for positive solutions to heat equation
under Finsler–Ricci flow

SAJJAD LAKZIAN

463On the one-endedness of graphs of groups
NICHOLAS TOUIKAN

479On the structure of vertex cuts separating the ends of a graph
GARETH R. WILKES

0030-8730(201512)278:2;1-X

Pacific
JournalofM

athem
atics

2015
Vol.278,N

o.2


	1. Introduction
	2. Coupling Dirac structures
	2A. Fiber nondegenerate Dirac structures
	2B. Examples
	2B1. Coupling forms
	2B2. Coupling Poisson structures
	2B3. Neighborhood of a presymplectic leaf
	2B4. Reduction of canonical bundles
	2B5. Yang–Mills–Higgs phase spaces

	2C. Coupling Dirac structures as extensions

	3. Integration of coupling Dirac structures I
	3A. Presymplectic groupoids
	3B. Couplings integrate to couplings
	3C. Integration of the geometric data

	4. Integration of the Yang–Mills–Higgs phase space
	4A. Fibered symplectic groupoids
	4A1. Fibered groupoids
	4A2. Poisson fibrations

	4B. Action groupoids
	4B1. Action of a Lie groupoid on a fibered Lie groupoid
	4B2. Actions of principal bundles on fibered Lie groupoids
	4B3. Action groupoid of a Poisson fibration

	4C. Integrability of Yang–Mills–Higgs phase spaces

	5. Integration of coupling Dirac structures II
	5A. Splitting L-paths and L-homotopies
	5B. The monodromy groupoid

	Appendix
	A1. Actions on Lie groupoids and Lie algebroids
	A2. Inner actions
	A3. Integration of inner actions

	References
	
	

