
Pacific
Journal of
Mathematics

K-THEORY AND HOMOTOPIES OF 2-COCYCLES
ON HIGHER-RANK GRAPHS

ELIZABETH GILLASPY

Volume 278 No. 2 December 2015



PACIFIC JOURNAL OF MATHEMATICS
Vol. 278, No. 2, 2015

dx.doi.org/10.2140/pjm.2015.278.407

K-THEORY AND HOMOTOPIES OF 2-COCYCLES
ON HIGHER-RANK GRAPHS

ELIZABETH GILLASPY

This paper continues our investigation into the question of when a homo-
topy of 2-cocycles on a locally compact Hausdorff groupoid gives rise to an
isomorphism of the K-theory groups of the twisted groupoid C∗-algebras.
Our main result, which builds on work by Kumjian, Pask, and Sims, shows
that a homotopy of 2-cocycles on a row-finite higher-rank graph 3 gives
rise to twisted groupoid C∗-algebras with isomorphic K-theory groups. (The
groupoid in question is the path groupoid of 3.) We also establish a tech-
nical result: any homotopy of 2-cocycles on a locally compact Hausdorff
groupoid G gives rise to an upper semicontinuous bundle of C∗-algebras.

1. Introduction

Higher-rank graphs, or k-graphs, provide a k-dimensional analogue of directed
graphs. They were introduced by Kumjian and Pask [2000] to provide a combi-
natorial model for the higher-rank Cuntz–Krieger algebras studied by Robertson
and Steger [1999]. Much of the interest in the C∗-algebras C∗(3) associated to
k-graphs 3 stems from the multiple ways one can model C∗(3)— the k-graph
3 reflects many of the properties of C∗(3), but we can also describe C∗(3) as a
universal C∗-algebra for certain generators and relations, or as a groupoid C∗-algebra
C∗(3)∼= C∗(G3).

The class of groupoids includes groups, group actions, equivalence relations,
and group bundles. Renault [1980] initiated the study of groupoid C∗-algebras, and
the theory and applications of groupoid C∗-algebras have since been developed
by many researchers. Given a 2-cocycle ω ∈ Z2(G,T) on a groupoid G, Renault
also explained how to construct the twisted groupoid C∗-algebra C∗(G, ω). These
objects have received relatively little attention until quite recently, but it has now
become clear that twisted groupoid C∗-algebras can help answer many questions
about the structure of untwisted groupoid C∗-algebras (see [Muhly and Williams
1992; Muhly et al. 1996; Clark and an Huef 2012; an Huef et al. 2011; Brown
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and an Huef 2014]), as well as classifying those C∗-algebras which admit diagonal
subalgebras (also known as Cartan subalgebras) — see [Kumjian 1986]. In another
direction, [Tu et al. 2004] establishes a connection between the K-theory of twisted
groupoid C∗-algebras and the classification of D-brane charges in string theory.

Two recent papers have explored the effect of a homotopy {ωt }t∈[0,1] of 2-cocycles
on the K-theory of the twisted groupoid C∗-algebras. Echterhoff, Lück, Phillips, and
Walters showed in [Echterhoff et al. 2010, Theorem 1.9] that if G is a group that
satisfies the Baum–Connes conjecture with respect to the coefficient algebras K and
C([0, 1],K), and if {ωt }t∈[0,1] is a homotopy of 2-cocycles on G, then the K-theory
groups of the reduced twisted group C∗-algebras are unperturbed by the homotopy

(1) K∗(C∗r (G, ω0))∼= K∗(C∗r (G, ω1)).

In particular, taking G = Z2, we obtain another proof of the fact, established by
Pimsner and Voiculescu [1980], that all of the rotation algebras {Aθ }θ∈[0,1] have
isomorphic K-theory groups.

Kumjian, Pask, and Sims also studied the effect of a homotopy of 2-cocycles
on K-theory in [Kumjian et al. 2013]. Theorem 5.4 of [Kumjian et al. 2013]
establishes that if 3 is a row-finite, source-free k-graph and c is a 2-cocycle
on 3 such that c(λ, µ)= e2π iσ(λ,µ) for some R-valued 2-cocycle σ , then we have
K∗(C∗(3))∼=K∗(C∗(3, c)). Defining ct(λ, µ)= e2π i tσ(λ,µ) for t ∈[0, 1] gives us a
homotopy of 2-cocycles linking c and the trivial 2-cocycle. Moreover, Corollary 7.8
of [Kumjian et al. 2015] tells us that C∗(3, c) is isomorphic to a twisted groupoid
C∗-algebra C∗(G3, ωc). Thus, we can view [Kumjian et al. 2013, Theorem 5.4] as
a result about homotopic 2-cocycles on groupoids.

Inspired by the above-mentioned results, we have begun exploring the question
of when a homotopy of 2-cocycles on a locally compact Hausdorff groupoid G
induces an isomorphism of the K-theory groups of the (full or reduced) twisted
groupoid C∗-algebras. In a previous article [Gillaspy 2015], we extended the above-
mentioned Theorem 1.9 of [Echterhoff et al. 2010] to the case when G = G n X is
a transformation group, where X is locally compact Hausdorff and G satisfies the
Baum–Connes conjecture with coefficients.

We prove the following generalization of [Kumjian et al. 2013, Theorem 5.4].

Theorem 4.1. Let 3 be a row-finite k-graph with no sources and let {ct }t∈[0,1] be
a homotopy of 2-cocycles in Z2(3,T). Then {ct }t∈[0,1] gives rise to a homotopy
{σct }t∈[0,1] of 2-cocycles on G3 such that

K∗(C∗(G3, σc0))
∼= K∗(C∗(G3, σc1)).

As of this writing, we are unaware of any examples of groupoids G and homo-
topies ω = {ωt }t∈[0,1] of 2-cocycles on G where the homotopy does not induce an
isomorphism of the K-theory groups of the twisted groupoid C∗-algebras.
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Outline. This paper begins by recalling the definitions of a higher-rank graph and of
a groupoid in Section 2, as well as the definition of a 2-cocycle in each category, and
sketching the procedure by which we can construct a C∗-algebra from these objects.
In Section 3 we define a homotopy of 2-cocycles on a k-graph and on a groupoid,
and show that the definitions are compatible. We also prove a technical result
(Theorem 3.3), namely, that a homotopy {ωt }t∈[0,1] of 2-cocycles on a groupoid G
gives rise to a C([0, 1])-algebra with fiber algebra C∗(G, ωt) at t ∈ [0, 1]. We expect
that this result will prove useful in future work, as we search for more classes of
groupoids where a homotopy of 2-cocycles induces an isomorphism of the K-theory
groups of the twisted groupoid C∗-algebras.

In Section 4 we begin the proof of Theorem 4.1. Our proof technique consists
of proving a stronger version of Theorem 4.1 in a simple case, and then showing
how to use this simple case to obtain our desired result for general k-graphs. To
be precise, Proposition 4.2 shows that when the degree map d on 3 satisfies
d(λ) = b(s(λ)) − b(r(λ)) for all λ ∈ 3, the C([0, 1])-algebra associated to a
homotopy of 2-cocycles on 3 is actually a trivial continuous field. We then show
how to exploit the triviality of the continuous field in this special case to see that
a homotopy of 2-cocycles on any row-finite, source-free k-graph 3 induces an
isomorphism K∗(C∗(3, c0)) ∼= K∗(C∗(3, c1)). The argument closely parallels
Section 5 of [Kumjian et al. 2013].

2. Groupoids and k-graphs

Definition 2.1 [Kumjian and Pask 2000, Definition 1.1]. A higher-rank graph of
degree k, or a k-graph, is a nonempty countable small category 3 equipped with a
functor d :3→Nk (the degree map) satisfying the following factorization property:
Given a morphism λ ∈3 with d(λ)=m+ n, there exist unique µ, ν ∈3 such that
λ= µν, d(µ)= m, and d(ν)= n.

The simplest example of a k-graph is Nk , equipped with the identity morphism
id : Nk

→ Nk .
In this article we use the arrows-only picture of category theory, so that we think

of the objects of a category 3 as identity morphisms. Hence, λ ∈3 means that λ is
a morphism in 3. Given an element λ in a category 3, write s(λ) for the domain,
or source, of the morphism λ, and write r(λ) for its target, or range. We say a
k-graph 3 is row-finite if, for any v ∈ Obj(3) and any n ∈ Nk , the set

v3n
:= {λ ∈3 : r(λ)= v, d(λ)= n}

is finite. We say 3 has no sources if v3n
6= ∅ for every v ∈ Obj(3) and every

n ∈ Nk . We only consider k-graphs which are row-finite and have no sources,
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since these are the k-graphs which we can study via the groupoid method that was
introduced in [Kumjian and Pask 2000] and which we will explain in Section 2.

Definition 2.2 [Renault 1980, Definition I.1.12; Kumjian et al. 2015, Section 3]. For
a category 3, let 3∗2 = {(λ1, λ2) ∈3×3 : s(λ1)= r(λ2)}. A function c :3∗2→ T

is called a 2-cocycle on 3 if

(2) c(λ, µν)c(µ, ν)= c(λµ, ν)c(λ, µ)

whenever (λ, µ), (µ, ν) ∈ 3∗2 and c(λ, s(λ)) = c(r(λ), λ) = 1 for all λ ∈ 3. We
write Z2(3,T) for the set of 2-cocycles on 3.

If c, c̃ are two 2-cocycles on 3, we say that c, c̃ are cohomologous if there exists
a function b :3→ T such that

c̃(µ, ν) := b(µ)b(ν)b(µν)−1c(µ, ν)= δb(µ, ν)c(µ, ν) for all (µ, ν) ∈3∗2.

We note that cohomologous 2-cocycles give rise to isomorphic twisted C∗-algebras
(see [Kumjian et al. 2015, Proposition 5.6; Renault 1980, Proposition II.1.2]).

The only cocycles we consider in this paper are 2-cocycles, so we will occasion-
ally drop the “2” and refer to them simply as cocycles.

Definition 2.3 [Kumjian et al. 2015, Definition 5.2]. The twisted higher-rank-graph
algebra C∗(3, c) associated to a k-graph 3 and a 2-cocycle c on 3 is the universal
C∗-algebra generated by a collection {sλ}λ∈3 of partial isometries satisfying the
following twisted Cuntz–Krieger relations:

(CK1) {sv}v∈Obj(3) is a collection of mutually orthogonal projections;

(CK2) sµsν = c(µ, ν)sµν whenever s(µ)= r(ν);

(CK3) s∗µsµ = ss(µ) for all µ ∈3;

(CK4) sv =
∑

µ∈v3n sµs∗µ for all v ∈ Obj(3) and all n ∈ Nk .

Note that every k-graph 3 admits at least one 2-cocycle: the trivial cocycle,
obtained by setting c(λ, µ) = 1 for all (λ, µ) ∈ 3∗2. In this case, the definition
above of C∗(3, c) agrees with that of C∗(3) given in [Kumjian and Pask 2000,
Definition 1.5]. For example, if 3 is Nk and c is the trivial cocycle, then we
have C∗(3, c) ∼= C(Tk). More generally, if 3 is N2, let cθ : 3∗2 → T be given
by cθ ((m, n), ( j, k)) = e2π iθnj . Then cθ is a 2-cocycle on 3 and C∗(3, cθ ) is
isomorphic to the rotation algebra Aθ .

Groupoids. In this section, we review the construction of a twisted groupoid
C∗-algebra set forth in [Renault 1980], as well as the procedure given in the
seminal article [Kumjian and Pask 2000] for associating a groupoid to a k-graph.
Theorem 3.3 applies to arbitrary locally compact Hausdorff groupoids, so we
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present in full generality all the definitions necessary for the construction of a
twisted groupoid C∗-algebra.

A groupoid G is a small category with inverses. We use the notation of [Renault
1980] to denote groupoid elements and operations; for example, G(2) ⊆ G × G
denotes the set of composable pairs and G(0) denotes the unit space. If u ∈ G(0),
we write

Gu = {x ∈ G : s(x)= u}, Gu
= {x ∈ G : r(x)= u}.

In this article, we restrict our attention to groupoids which admit a locally compact
Hausdorff topology in which the operations of composition (or multiplication) and
inversion are continuous.

In addition to the groupoids associated to k-graphs, examples of groupoids include
groups, vector bundles, and transformation groups. For details and examples, see
[Goehle 2009].

Given a row-finite, source-free k-graph 3, Section 2 of [Kumjian and Pask 2000]
describes how to form the associated path groupoid G3:

Definition 2.4 [Kumjian and Pask 2000, Example 1.7(ii)]. Define the k-graph�k to
be the category with Obj(�k)=Nk and morphisms�k ={(m, n)∈Nk

×Nk
:n≥m}.

We have r(m, n)=m, s(m, n)= n, d(m, n)= n−m. Composition in �k is given
by (m, n)(n, `)= (m, `).

For a k-graph3, let3∞ denote the set of degree-preserving functors x :�k→3.
When k = 1, the elements x ∈3∞ are the infinite paths in 3.

Given p ∈Nk , define σ p
:3∞→3∞ by σ p(x)(m, n)= x(m+ p, n+ p). When

3 is row-finite and source-free, Proposition 2.3 in [Kumjian and Pask 2000] shows
that if λ ∈ 3, x ∈ 3∞ satisfy s(λ) = x(0), there is a unique y ∈ 3∞ such that
σ d(λ)(y)= x ; we often write y = λx .

Definition 2.5 [Kumjian and Pask 2000, Definition 2.1]. Given a row-finite, source-
free k-graph 3, the associated path groupoid G3 is the groupoid associated to the
equivalence relation on 3∞ of “shift equivalence with lag”. In other words,

G3 := {(x, n−m, y) ∈3∞×Zk
×3∞ : n,m ∈ Nk, σ n(x)= σm(y)}

and G(0)3 =3
∞, with r(x, `, y)= x , s(x, `, y)= y and multiplication and inversion

in G3 given by (x, `, y)(y,m, z)= (x, `+m, z), (x, `, y)−1
= (y,−`, x).

When 3 is a row-finite, source-free k-graph, Proposition 2.8 in [Kumjian and
Pask 2000] tells us that the sets

Z(µ, ν) := {(µx, d(µ)− d(ν), νx) : x(0)= s(µ)= s(ν)}

form a basis of compact open sets for a locally compact Hausdorff topology on G3
(in fact, with this topology G3 is an ample étale groupoid).
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To build a C∗-algebra out of a groupoid G we start by putting a ∗-algebra structure
on Cc(G), and to do this we need to integrate over the groupoid G. A Haar system
{λu
}u∈G(0) (the groupoid analogue of Haar measure for groups; see [Renault 1980,

Definition I.2.2]) will allow us to do this. Unlike in the group case, one cannot
make existence or uniqueness statements about Haar systems for groupoids, so one
usually starts by hypothesizing the existence of a fixed Haar system. For example,
we obtain a Haar system {λx

}x∈3∞ on G3 by setting

λx(E)= #{e ∈ E : e = (x, n, y) for some n ∈ Zk, y ∈3∞}.

We will always use this Haar system on G3 in this paper.

Definition 2.6. Let G be a locally compact Hausdorff groupoid equipped with
a Haar system {λu

}u∈G(0) and a continuous 2-cocycle ω. We define a ∗-algebra
structure on Cc(G) as follows: for f, g ∈ Cc(G) let

f ∗ω g(a)=
∫
Gs(a)

f (ab)g(b−1)ω(ab, b−1) dλs(a)(b),

f ∗(a)= f (a−1)ω(a, a−1).

From [Renault 1980, Proposition II.1.1] we know that the multiplication is well-
defined (that is, that f ∗ω g ∈Cc(G) as claimed) and associative, and that ( f ∗)∗= f
so that the involution is involutive. The proof of associativity relies on the cocycle
condition (2).

Given the fundamental role that the cocycle ω plays in the multiplication and invo-
lution on Cc(G), we will often write Cc(G, ω) to denote the set Cc(G) equipped with
the ∗-algebra structure of Definition 2.6. We define C∗(G, ω) to be the completion
of Cc(G, ω) in the maximal C∗-norm, as described in Chapter II of [Renault 1980].

Definition 2.7. When G = G3 is the groupoid associated to a row-finite k-graph 3
with no sources, Lemma 6.3 of [Kumjian et al. 2015] explains how, given a cocycle
c ∈ Z2(3,T), we can construct a cocycle σc ∈ Z2(G3,T). Then Corollary 7.8 of
[Kumjian et al. 2015] shows that C∗(3, c)∼= C∗(G3, σc). The construction of σc is
rather technical, but since we will need the details later, we present it here.

Lemma 6.6 of [Kumjian et al. 2015] establishes the existence of a subset

P ⊆ {Z(µ, ν) : s(µ)= s(ν)}

that partitions G3. In other words, every a ∈G3 has exactly one representation of the
form a = (µax, d(µa)−d(νa), νax) with Z(µa, νa) ∈P . Note that if (a, b) ∈ G(2)3 ,
we need not have µa =µab or νb= νab. However, given (a, b)∈ G(2)3 , Lemma 6.3(i)
of [Kumjian et al. 2015] shows that we can always find y ∈3∞ and α, β, γ ∈3
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such that
a = (µaαy, d(µa)− d(νa), νaαy),

b = (µbβy, d(µb)− d(νb), νbβy),

ab = (µabγ y, d(µab)− d(νab), νabγ y).

Then, given a 2-cocycle c on 3, we define a 2-cocycle σc on G3 by

σc(a, b)= c(µa, α)c(µb, β)c(νab, γ )c(νa, α)c(νb, β)c(µab, γ ).

Since c satisfies the cocycle condition (2), it’s straightforward to check that σc

does also. Lemma 6.3 of [Kumjian et al. 2015] checks that σc is well-defined and
continuous, so we can construct the groupoid C∗-algebra C∗(G3, σc) as outlined
above. Corollary 7.8 of [Kumjian et al. 2015] tells us that C∗(G3, σc)∼= C∗(3, c).

Theorem 6.5 of [Kumjian et al. 2015] establishes that different choices of par-
titions P give rise to cohomologous groupoid cocycles, and hence to isomorphic
twisted groupoid C∗-algebras.

3. Homotopies of cocycles

In order to define a homotopy of groupoid 2-cocycles, we begin by observing that,
given any locally compact Hausdorff groupoid G, we can make G × [0, 1] into a
locally compact Hausdorff groupoid by equipping it with the product topology and
setting (G×[0, 1])(2) :=G(2)×[0, 1]. In other words, (G×[0, 1])(0)=G(0)×[0, 1] and

r(γ, t)= (r(γ ), t), s(γ, t)= (s(γ ), t).

Moreover, if G has a Haar system {λu
}u∈G(0) , then setting λu,t

:=λu for every t ∈[0, 1]
gives rise to a Haar system on G×[0, 1]. We will always use this Haar system on
G×[0, 1] in this paper.

Definition 3.1 [Gillaspy 2015, Definition 2.12]. A homotopy of (2-)cocycles on a
locally compact Hausdorff groupoid G is a 2-cocycle ω ∈ Z2(G × [0, 1],T). We
say that two cocycles ω0, ω1 ∈ Z2(G,T) are homotopic if there exists a homotopy
ω ∈ Z2(G×[0, 1],T) such that ωi = ω|G×{i} for i = 0, 1.

If ω is a homotopy of cocycles on G linking ω0, ω1, Theorem 3.3 below tells us
that C∗(G, ω0) and C∗(G, ω1) are quotients of C∗(G×[0, 1], ω). This is fundamental
to the proof of our main result, Theorem 4.1.

Definition 3.2 [Williams 2007, Definition C.1]. Let X be a locally compact Haus-
dorff space. A C∗-algebra A is a C0(X)-algebra if we have a ∗-homomorphism
8 : C0(X)→ ZM(A) such that

A = span{8( f )a : f ∈ C0(X), a ∈ A}.

We usually write f · a for 8( f )a.
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If A is a C0(X)-algebra, then, for any x ∈ X , spanC0(X\x) · A is an ideal Ix .
We call Ax := A/Ix the fiber of A at x ∈ X .

Theorem 3.3. Let ω be a homotopy of cocycles on a locally compact Hausdorff
groupoid G with Haar system {λu

}u∈G(0) . Then C∗(G × [0, 1], ω) is a C([0, 1])-
algebra, with fiber C∗(G, ωt) at t ∈ [0, 1].

Proof. We begin by checking that C∗(G × [0, 1], ω) is a C([0, 1])-algebra. For
f ∈ C([0, 1]), φ ∈ Cc(G×[0, 1], ω), define

f ·φ(a, t)= f (t)φ(a, t).

It’s not difficult to check that this action extends to a ∗-homomorphism

8 : C([0, 1])→ ZM(C∗(G×[0, 1], ω))

such that ‖8( f )φ‖ ≤ ‖ f ‖∞‖φ‖, or to check that

8(C([0, 1])) ·Cc(G×[0, 1], ω)= Cc(G×[0, 1], ω)

is dense in C∗(G × [0, 1], ω). In other words, 8 makes C∗(G × [0, 1], ω) into a
C([0, 1])-algebra as claimed.

Fix t ∈ [0, 1] and denote by qt : Cc(G× [0, 1], ω)→ Cc(G, ωt) the evaluation
map. Then qt is bounded by the I -norm (see [Renault 1980, Section II.1]), and
hence extends to a surjective ∗-homomorphism qt : C∗(G×[0, 1], ω)→ C∗(G, ωt).
In other words, C∗(G, ωt) is a quotient of C∗(G×[0, 1], ω). To see that C∗(G, ωt)∼=

C∗(G×[0, 1], ω)t , we need to check that ker qt = It . A standard approximation ar-
gument will show that ker qt ⊇ It ; thus, we will only detail the proof that ker qt ⊆ It .

Note that the fiber algebra C∗(G × [0, 1], ω)t ∼= C∗(G × [0, 1], ω)/It can be
calculated as a completion Cc(G×[0, 1], ω) with respect to the norm given by

‖ f ‖t := sup{‖L( f )‖ : L(It)= 0, L is an I -norm-bounded representation}.

Thus, to show that ker qt ⊆ It , we will show that each such representation L factors
through qt .

Given such a representation L :Cc(G×[0, 1], ω)→ B(H), define L ′ :Cc(G, ωt)→

B(H) by L ′(qt( f )) := L( f ). We claim that L ′ is an I -norm-bounded representation
of Cc(G, ωt). To see this, it suffices to check that L ′ is well-defined and bounded.

Lemma 3.4. If f, g ∈ Cc(G × [0, 1], ω) satisfy qt( f ) = qt(g), then the function
h = f − g ∈ Cc(G × [0, 1], ω) lies in It . Consequently, L( f ) = L(g) and L ′ is
well-defined on Cc(G, ωt).

Proof. Let { fi }i∈I be an approximate unit for C0([0, 1]\t) such that fi (s) ↗ 1
for every s 6= t ; moreover, suppose that for each i there exists a δi > 0 such that
fi (s) = 1 if |s − t | ≥ δi . We will show that the I -norm ‖h − fi h‖I tends to 0.
Consequently, h = limi fi h in C∗(G×[0, 1], ω), so h ∈ It .
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For any k ∈ Cc(G × [0, 1], ω), the axioms of a Haar system tell us that the
function (u, t) 7→

∫
|k(a, t)|dλu,t(a) is in C0(G(0) × [0, 1]). In particular, if we

take k to be a function that equals 1 where h is nonzero and vanishes rapidly off
supp h, this shows us that φ(u, t) := λu,t(supp h) is a pointwise limit of functions
in C0(G(0)×[0, 1]), and hence is bounded. Let K =maxφ.

Let ε > 0 be given. Since h is compactly supported and since h(a, t) = 0 for
all a ∈ G, we can choose a δ > 0 such that |h(a, s)|< ε/K for all a ∈ G whenever
|s− t |< δ, and we can choose a j such that i ≥ j means δi < δ. Then, if |s− t |< δ,∫

Gu
|h(a, s)− fi (s)h(a, s)| dλu(a)= (1− fi (s))

∫
Gu
|h(a, s)| dλu(a) < 1 · ε.

On the other hand, if |s− t | ≥ δ > δi , then fi (s)= 1 and∫
Gu
|h(a, s)− fi (s)h(a, s)| dλu(a)= 0

for any u ∈ G(0). In either case, given any ε > 0 we can always choose j such that
i ≥ j implies

‖h− fi h‖I =max
{

sup
s∈[0,1]

sup
u∈G(0)

∫
Gu
|h(a, s)− fi (s)h(a, s)| dλu(a),

sup
s∈[0,1]

sup
u∈G(0)

∫
Gu
|h(a−1, s)− fi (s)h(a−1, s)| dλu(a)

}
< ε.

Since ‖h− fi h‖ ≤ ‖h− fi h‖I and It is closed, it follows that h ∈ It as desired, and
so L(h)= 0. �

Having seen that L ′ is well-defined, we now proceed to show that it is bounded.

Lemma 3.5. For any fixed f ∈ Cc(G×[0, 1], ω), the map s 7→ ‖qs( f )‖I is contin-
uous.

Proof. Fix f ∈ Cc(G×[0, 1], ω) and fix t ∈ [0, 1]. As in the proof of Lemma 3.4,
let K denote the supremum of the function (u, s) 7→ λu,s(supp f ). Since f has
compact support, given ε > 0 we can choose a δ such that

|s− t |< δ⇒ | f (a, t)− f (a, s)|< ε

2K
for all a ∈ G.

Now, by definition of the I -norm, there exists a u ∈ G(0) such that either

‖qs( f )‖I <

∫
Gu
| f (a, s)| dλu(a)+ ε

2
or

‖qs( f )‖I <

∫
Gu
| f (a−1, s)| dλu(a)+ ε

2
.
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It follows that either

‖qs( f )‖I <

∫
Gu
| f (a, t)| + ε

2K
dλu(a)+ ε

2
≤

∫
Gu
| f (a, t)| dλu(a)+ ε

or

‖qs( f )‖I <

∫
Gu
| f (a−1, t)| + ε

2K
dλu(a)+ ε

2
≤

∫
Gu
| f (a−1, t)| dλu(a)+ ε.

Thus,

‖qs( f )‖I <max
{∫

Gu
| f (a, t)| dλu(a),

∫
Gu
| f (a−1, t)| dλu(a)

}
+ ε

≤max
{

sup
u∈G(0)

∫
Gu
| f (a, t)| dλu(a), sup

u∈G(0)

∫
Gu
| f (a−1, t)| dλu(a)

}
+ ε

= ‖qt( f )‖I + ε

if |s− t |< δ. Reversing the roles of s and t in the above argument tells us that

|s− t |< δ⇒
∣∣‖qs( f )‖I −‖qt( f )‖I

∣∣< ε. �

Now we can finish the proof of Theorem 3.3. Set St = {ψ ∈C([0, 1]) :ψ(t)= 1}.
For any ψ ∈ St and any f ∈ Cc(G×[0, 1], ω), we have

‖L(ψ · f )‖ = ‖L ′(qt(ψ · f ))‖ = ‖L ′(qt( f ))‖.

Consequently,

‖L ′(qt( f ))‖ = inf
ψ∈S
‖L(ψ · f )‖ ≤ inf

ψ
‖ψ · f ‖I

= inf
ψ

max
{

sup
s∈[0,1]

sup
u∈G(0)

∫
|ψ(s) f (a, s)| dλu(a),

sup
s∈[0,1]

sup
u∈G(0)

∫
|ψ(s) f (a−1, s)| dλu(a)

}
= inf

ψ
sup

s∈[0,1]
‖qs(ψ · f )‖I .

Let ε > 0 be given. Choose a δ such that |s−t |<δ⇒
∣∣‖qs( f )‖I−‖qt( f )‖I

∣∣<ε;
choose ψε ∈C([0, 1]) such that ψε(t)= 1 and |s− t | ≥ δ⇒ψε(s)= 0. Then, since
ψε ∈ St , we have

(3) ‖qs(ψε · f )‖I = ψε(s)‖qs( f )‖I <ψε(s)(‖qt( f )‖I + ε)≤ ‖qt( f )‖I + ε

if |s− t |< δ; otherwise we have ‖qs(ψε · f )‖I = 0, and (3) still holds.
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Since we can find such a ψε for any ε > 0, it follows that

‖L ′(qt( f ))‖ ≤ inf
ψ∈St

sup
s∈[0,1]

‖qs(ψ · f )‖I ≤ inf
ε

sup
s
‖qs(ψε · f )‖I

≤ inf
ε
‖qt( f )‖I + ε = ‖qt( f )‖I .

The fact that qt is onto now tells us that L ′ is a bounded representation of Cc(G, ωt)

as claimed. In other words, every representation L of Cc(G×[0, 1], ω) that kills It

also factors through qt , so ker qt ⊆ It . This completes the proof that the fiber
algebra C∗(G × [0, 1], ω)/It of the C([0, 1])-algebra C∗(G × [0, 1], ω) is simply
C∗(G, ωt). �

In order to apply Theorem 3.3 to a homotopy of cocycles on a k-graph, we first
need to define such a homotopy. Unlike for groupoids, there is no obvious way
to make 3× [0, 1] into a higher-rank graph, so our definition of a homotopy of
k-graph cocycles will look rather different than Definition 3.1 above. However,
Proposition 3.8 below shows that the two definitions are compatible.

Definition 3.6. Let 3 be a k-graph. A family {ct }t∈[0,1] of 2-cocycles in Z2(3,T)

is a homotopy of (2-)cocycles on 3 if for each pair (λ, µ) ∈ 3∗2 the function
t 7→ ct(λ, µ) ∈ T is continuous.

Definition 3.7. Let {ct }t∈[0,1] be a homotopy of cocycles on a k-graph 3. Define
ω ∈ Z2(G3×[0, 1],T) by

ω((a, t), (b, t))= σct (a, b),

where σct is the cocycle on G3 associated to ct as in Definition 2.7.

A moment’s thought will reveal that ω satisfies the cocycle condition (2), since
each σct is a cocycle. Thus, in order to see that ω is a homotopy of cocycles on G3,
we merely need to check that ω : (G3×[0, 1])(2)→ T is continuous.

Proposition 3.8. The cocycle ω described in Definition 3.7 is continuous, and
hence is a homotopy of groupoid cocycles on G3.

Proof. We will show that if {(ai , bi , ti )}i∈I ⊆ G(2)3 ×[0, 1] is a net which converges
to (a, b, t), then

(4) ω((ai , ti ), (bi , ti )) := σcti
(ai , bi )= σcti

(a, b)

for large enough i . Recall from Definition 2.7 that σcti
(a, b) is a finite product

of terms of the form cti (µ, ν) and their inverses, where the elements µ, ν depend
only on the elements a, b and on the choice of partition P of G3 — but not on the
2-cocycle cti . Thus, (4) and the continuity of the maps t 7→ ct(µ, ν) will imply that
ω((ai , ti ), (bi , ti ))→ σct (a, b)= ω((a, t), (b, t)).
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In what follows, we use the notation of Definition 2.7. If (ai , bi , ti )→ (a, b, t),
then, for large enough i , we have ai ∈ Z(µa, νa), bi ∈ Z(µb, νb), and in addition
ai bi ∈ Z(µab, νab). In other words, we can write

a = (µaαy, d(µa)− d(νa), νaαy), ai = (µaαi yi , d(µa)− d(νa), νaαi yi ),

b = (µbβy, d(µb)− d(νb), νbβy), bi = (µbβi yi , d(µb)− d(νb), νbβi yi ),

ab = (µabγ y, d(µab)− d(νab), νabγ y),
ai bi = (µabγi yi , d(µab)− d(νab), νabγi yi )

for some α, β, γ, αi , βi , γi ∈3 and y, yi ∈3
∞.

Since ai → a we must also have αi yi → αy in 3∞. Thus, for large enough i ,
αi yi ∈ Z(α) := {αy : y ∈3∞, y(0)= s(α)} (see Proposition 2.8 of [Kumjian and
Pask 2000]). It follows that

ai = (µaαy′i , d(µa)− d(νa), νaαy′i ), bi = (µbβz′i , d(µb)− d(νb), νbβz′i )

ai bi = (µabγw
′

i , d(µab)− d(νab), νabγw
′

i ),

where (since each pair (ai , bi ) is in G(2)3 by hypothesis)

νaαy′i = µbβz′i , µaαy′i = µabγw
′

i , νbβz′i = νabγw
′

i .

Now, νaα = µbβ by [Kumjian et al. 2015, Lemma 6.3], and thus y′i = z′i . A
similar argument gives z′i = w

′

i as well, so y′i = z′i = w
′

i . In other words, for large
enough i ,

σcti
(ai , bi )= cti (µa, α)cti (µb, β)cti (νab, γ )cti (νa, α)cti (νb, β)cti (µab, γ )

= σcti
(a, b),

as claimed. As observed in the first paragraph of the proof, it now follows that ω is
a homotopy of cocycles on G3 as desired. �

Corollary 3.9. Let {ct } be a homotopy of cocycles on a k-graph 3, and define
a cocycle ω on G3 × [0, 1] as in Definition 3.7. Then C∗(G3 × [0, 1], ω) is a
C([0, 1])-algebra with fiber algebra C∗(G3, σct )

∼= C∗(3, ct) at t ∈ [0, 1].

Proof. Proposition 3.8 tells us that ω is a homotopy of cocycles on G3. Theorem 3.3
tells us that the fiber over t ∈ [0, 1] of the C([0, 1])-algebra C∗(G3 × [0, 1], ω)
is C∗(G3, σct ). The final isomorphism is provided by Corollary 7.8 of [Kumjian
et al. 2015]. �

4. The main theorem

Theorem 4.1. Let 3 be a row-finite k-graph with no sources and let {ct }t∈[0,1] be a
homotopy of cocycles on 3. Then

K∗(C∗(3, c0))∼= K∗(C∗(3, c1)).
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Moreover, this isomorphism preserves the K-theory class of the vertex projection sv
for each v ∈ Obj(3).

We begin by proving a stronger version of Theorem 4.1 in the simpler case when
the degree functor d satisfies d(λ)= δb(λ) := b(s(λ))− b(r(λ)) for some function
b : Obj(3)→ Zk ; this is Proposition 4.2 below. We then combine Proposition 4.2
with techniques from [Kumjian et al. 2013] to prove Theorem 4.1 in full generality.

The AF case. If (3, d) is a k-graph such that d = δb, then Lemma 8.4 of [Kumjian
et al. 2015] tells us that C∗(3, c) and C∗(3) are both AF-algebras, with the same
approximating subalgebras and multiplicities of partial inclusions. Consequently,
C∗(3, c) ∼= C∗(3). In order to fix notation for what follows, we describe this
isomorphism in some detail.

Lemma 3.1 of [Kumjian and Pask 2000] shows that if 3 is a row-finite, source-
free k-graph, then {sλs∗µ : s(λ) = s(µ)} spans a dense ∗-subalgebra of C∗(3).
Moreover, when d = δb, Lemma 5.4 of [Kumjian and Pask 2000] tells us that
{sλs∗µ : b(s(λ))= b(s(µ))= n} forms a collection of matrix units for the subalgebra

An = span{sλs∗µ : b(s(λ))= b(s(µ))= n} ∼=
⊕

b(v)=n

K
(
`2(s−1(v))

)
.

Observe that we can think of An as a subalgebra of C∗(3) or of C∗(3, c). In fact,
these subalgebras allow us to exhibit C∗(3, c) and C∗(3) as AF-algebras:

C∗(3, c)= lim
−−→
(An, φ

c
m,n) and C∗(3)= lim

−−→
(An, φm,n),

where the connecting maps φm,n, φ
c
m,n : An→ Am are given by

φc
m,n(sλs∗µ)=

∑
r(α)=s(λ)
b(s(α))=m

c(λ, α)c(µ, α)sλαs∗µα,

φm,n(sλs∗µ)=
∑

r(α)=s(λ)
b(s(α))=m

sλαs∗µα.

We can now describe explicitly the isomorphism C∗(3, c) ∼= C∗(3). As in
Theorem 4.2 of [Kumjian et al. 2013], write 1 for (1, . . . , 1) ∈ Nk , and define
κ :3→ T by

κ(λ)=

{
1 d(λ) 6≥ 1,

κ(µ)c(µ, α) d(α)= 1 and λ= µα.

For n ∈ Zk , let Un =
∑

b(s(λ))=n κ(λ)sλs∗λ ∈U (M(An)). A quick computation will
show that, for any λ, µ with sλs∗µ ∈ An ,

(5) Ad Un(sλs∗µ)= κ(λ)κ(µ)sλs∗µ.
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Moreover, the factorization property tells us that, for any h ∈ Z,

φc
(h+1)1,h1 ◦Ad Uh1 = Ad U(h+1)1 ◦φ(h+1)1,h1.

In other words, Ad U∗ intertwines the connecting maps φc
m,n , φm,n , and hence

implements the isomorphism C∗(3)→ C∗(3, c).
We can now use this isomorphism to prove that a homotopy of cocycles on 3

gives rise to a trivial continuous field when d = δb.

Proposition 4.2. Let (3, d) be a row-finite, source-free k-graph such that d = δb
for some function b : Obj(3)→ Zk , let {ct }t∈[0,1] be a homotopy of cocycles on 3,
and let ω be the cocycle on G3×[0, 1] associated to {ct }t∈[0,1] as in Definition 3.7.
We have an isomorphism of C([0, 1])-algebras

C∗(G3×[0, 1], ω)∼= C∗(G3×[0, 1])∼= C([0, 1])⊗C∗(3).

Proof. Recall that

C∗(G3×[0, 1])t ∼= C∗(G3, σct )
∼= C∗(3, ct)∼= C∗(3)

if d = δb. Thus, the C([0, 1])-algebras C∗(G3×[0, 1], ω) and C([0, 1])⊗C∗(3)
have isomorphic fibers over each point t ∈ [0, 1].

In order to prove the proposition, we need to show that these isomorphisms
C∗(G3, σct )

∼= C∗(3) vary continuously in t , so that they patch together to give us
an isomorphism of C([0, 1])-algebras C∗(G3×[0, 1], ω)∼= C([0, 1])⊗C∗(3).

For each t ∈ [0, 1], let π t
: C∗(3, ct)→ C∗(G3, σct ) denote the isomorphism

described in Theorem 6.7 of [Kumjian et al. 2015]. Let π : C∗(3)→ C∗(G3)
denote the equivalent isomorphism for the case of a trivial cocycle c. For each
n ∈ Zk , write U t

n for the unitary U t
n : An→ An associated to the cocycle ct as above.

Setting

9t := π
t
◦Ad U t

∗
◦π−1

consequently gives an isomorphism of C∗-algebras 9t : C∗(G3)→ C∗(G3, σct ).
We claim that 9 := {9t }t∈[0,1] defines an isomorphism of C([0, 1])-algebras

9 : C∗(G3×[0, 1])→ C∗(G3×[0, 1], ω).

In order to prove this assertion, we begin by writing down an explicit formula for9t

on the characteristic functions 1Z(µ,ν) ∈ Cc(G3) where Z(µ, ν) ∈ P and where P
is the partition of G3 described in Lemma 6.6 of [Kumjian et al. 2015].

Recall that the value of σct (a, b) depends only on the sets Z(µ, ν) ∈ P con-
taining the points a, b, and ab in G3. Moreover, the proof of [Kumjian et al.
2015, Theorem 6.7] establishes that, if 1Z(µ,ν) denotes the characteristic function
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on Z(µ, ν) ⊆ G3, and if we write a ∈ Z(µ, ν) as a = bd where b ∈ Z(µ, s(µ)),
d ∈ Z(s(ν), ν), then

π t(sµs∗ν )(a)= 1Z(µ,ν)(a)σct (b, d)σct (d−1, d)= 1Z(µ,ν)(a)σct (bd, d−1).

In addition, we have Z(µ, s(µ)) ∈ P for all µ ∈ 3 by Lemma 6.6 of [Kumjian
et al. 2015]. If we also have Z(µ, ν) ∈ P , then the elements α, β, γ in the
formula for σct (bd, d−1) given in Definition 2.7 are all units, so, for any t , we
have σct (bd, d−1) = 1 by our hypothesis that any cocycle c satisfies the equality
c(λ, s(λ))= c(r(λ), λ)= 1. Thus,

Z(µ, ν) ∈ P⇒ π t(sµs∗ν )= 1Z(µ,ν)⇒9t(1Z(µ,ν))= κt(µ)κt(ν)1Z(µ,ν).

Now observe that each f ∈ Cc(G3 × [0, 1]) can be written as a finite sum
f (a, t)=

∑
i∈N fi (a, t), where, for all i , we have fi ∈ C(Z(µi , νi )× [0, 1]) and

Z(µi , νi ) ∈ P . Consequently, on Cc(G3×[0, 1]), our map 9 becomes

(6) 9

(∑
i∈N

fi

)
(a, t)=

∑
i∈N

9t( fi ( · , t))(a)=
∑
i∈N

κt(µi )κt(νi ) fi (a, t);

the fact that all the sums are finite implies that 9 takes Cc(G3 × [0, 1]) onto
Cc(G3×[0, 1]).

Since 9 is evidently C([0, 1])-linear and is a ∗-isomorphism in each fiber,
Proposition C.10 of [Williams 2007] tells us that 9 is norm-preserving. Moreover,
9 is a ∗-homomorphism since the operations in Cc(G3×[0, 1]) preserve the fiber
over t ∈ [0, 1], and each 9t is a ∗-homomorphism.

In other words, 9 extends to an isomorphism of C([0, 1])-algebras

9 : C∗(G3×[0, 1])∼= C∗(G3×[0, 1], ω).

A straightforward check will establish that the identity map on Cc(G3 × [0, 1])
induces an isomorphism id : C∗(G3 × [0, 1])→ C([0, 1],C∗(G3)) of C([0, 1])-
algebras; the isomorphism C∗(G3)∼= C∗(3) of [Kumjian and Pask 2000, Corollary
3.5(i)] now finishes the proof. �

Remark 4.3. Note that 9 induces an isomorphism 8 : C([0, 1]) ⊗ C∗(3) →
C∗(G3×[0, 1], ω) as follows. If Z(µ, ν) ∈ P and f ∈ C([0, 1]), then

(7) 8( f ⊗ sµs∗ν )(x, t)= f (t)1Z(µ,ν)(x)κt(µ)κt(ν).

Remark 4.4. Since evaluation at t ∈[0, 1] induces a homotopy equivalence between
C([0, 1],C∗(3)) and C∗(3), the isomorphism established in the previous propo-
sition implies that evaluation at t also induces a homotopy equivalence between
C∗(G3×[0, 1], ω) and its fiber algebra C∗(G3, σct ) when d = δb.
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To leverage Proposition 4.2 into the proof of Theorem 4.1, we will use the
skew-product k-graphs 3×d Zk .

Definition 4.5 [Kumjian and Pask 2000, Definition 5.1]. Given a k-graph (3, d),
the skew-product k-graph 3×d Zk is the set 3×Zk , with the structure maps

r(λ, n)= (r(λ), n), s(λ, n)= (s(λ), n+ d(λ)), d(λ, n)= d(λ),

and with multiplication given by (λ, n)(µ, n+ d(λ))= (λµ, n) for (λ, µ) ∈3∗2.

Observe that the function b : (3×d Zk)(0)=3(0)×Zk
→Zk given by b(v, n)= n

satisfies δb = d on 3×d Zk . Moreover, if 3 is row-finite and source-free, then so
is 3×d Zk .

We can now complete the proof of Theorem 4.1.

Proof of Theorem 4.1. Let φ :3×d Zk
→3 be the projection onto the first coordinate:

φ(λ, n)= λ. A cocycle c on 3 induces a cocycle c◦φ on the skew-product k-graph
3×d Zk :

c ◦φ
(
(λ, n), (µ, n+ d(λ))

)
:= c(λ, µ)

whenever (λ, µ) ∈3∗2. Note that if {ct }t∈[0,1] is a homotopy of cocycles on 3 then
{ct ◦φ}t is also a homotopy of cocycles on 3×d Zk .

If ω is the homotopy of cocycles on G3×d Zk associated to the homotopy {ct }t∈[0,1]

of cocycles on 3, then Proposition 4.2 tells us that

C∗(G3×d Zk ×[0, 1], ω)∼= C([0, 1])⊗C∗(3×d Zk).

Now we define an action of Zk on C([0, 1])⊗C∗(3×d Zk) by setting

(8) f ⊗ sλ,n ·m := f ⊗ sλ,n+m .

To see that this formula gives a well-defined action of Zk on C([0, 1])⊗C∗(3×d Zk),
one checks first that, for each m ∈Zk , the set {sλ,m+n : λ∈3, n ∈Zk

} is a collection
of partial isometries satisfying the defining axioms (CK1)–(CK4) for C∗(3×d Zk).
Consequently, the universal property of C∗(3×d Zk) implies that, for each fixed
m ∈ Zk , the map sλ,n 7→ sλ,n+m determines a ∗-homomorphism

αm : C∗(3×d Zk)→ C∗(3×d Zk).

Each αm is invertible with inverse α−m ; it follows that m 7→ αm defines a group
action of Zk on C∗(3×d Zk). Thus, (8) describes a well-defined action id⊗α of Zk

on C([0, 1])⊗C∗(3×d Zk), given by m 7→ id⊗αm . The fact that the degree map
on 3×d Zk is a coboundary now allows us to combine the action id⊗α with the
isomorphism 8 :C([0, 1])⊗C∗(3×d Zk)→C∗(G3×d Zk×[0, 1], ω) of Remark 4.3
to obtain an action β of Zk on C∗(G3×d Zk ×[0, 1], ω):

βn(8( f ⊗ sµ,ms∗ν,m+d(µ)−d(ν))) :=8(id⊗αn( f ⊗ sµ,ms∗ν,m+d(µ)−d(ν))).
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Moreover, since both id⊗α and 8 (and hence β) fix C([0, 1]) by construction,
Lemma 5.3 of [Kumjian et al. 2013] tells us that the crossed product

C∗(G3×d Zk ×[0, 1], ω)oβ Zk ∼= (C([0, 1])⊗C∗(3×d Zk))oid⊗α Zk

is a C([0, 1])-algebra with fiber C∗(G3×d Zk , σct◦φ)oβt Zk , where

(βt)n(8t(sµ,ms∗ν,m+d(µ)−d(ν)))=8t(αn(s(µ,m)s∗(ν,m+d(µ)−d(ν))))

= κt(µ)κt(ν)1Z((µ,m+n),(ν,m+n+d(µ)−d(ν)))

whenever Z
(
(µ,m+ n), (ν,m+ n+ d(µ)− d(ν))

)
is in the partition P of G3×d Zk

that we used in the proof of Proposition 4.2.
Recall that we have a homotopy equivalence qt : C∗(G3×d Zk × [0, 1], ω) →

C∗(G3×d Zk , σct ). A computation will show that qt is equivariant with respect to the
actions β, βt of Zk ; thus, Theorem 5.1 of [Kumjian et al. 2013] tells us that

(9) K∗(C∗(G3×d Zk ×[0, 1], ω)oβ Zk)∼= K∗(C∗(G3×d Zk , σct◦φ)oβt Zk).

Thanks to Lemma 5.2 of [Kumjian et al. 2013], we know that

C∗(3×d Zk, ct ◦φ)olt Zk
∼ME C∗(3, ct),

where ltm(sλ,n) = sλ,n+m . To make use of this result, we need to show that βt

induces the action lt on C∗(3×d Zk, ct ◦φ).
Recall from the proof of Proposition 4.2 that π t(sλ,m) = 1Z((λ,m),(s(λ),m+s(λ))),

since Z
(
(λ,m), (s(λ),m+ s(λ))

)
∈ P always. Observe that

(10) C∗(G3×d Zk , σct◦φ)oβt Zk ∼= C∗(3×d Zk, ct ◦φ)oγt Zk,

where

(γt)n(sλ,m) := (π t)−1((βt)n(π
t(sλ,m))

)
= (π t)−1(βt)n(1Z((λ,m),(s(λ),m)))

= (π t)−1(βt)n
(
8t(κt(λ)s(λ,m))

)
= (π t)−1(8t(αn(κt(λ)sλ,m))

)
= (π t)−1(8t(κt(λ)sλ,m+n)

)
= (π t)−1(1Z((λ,m+n),(s(λ),m+n)))

= sλ,m+n.

It follows that the action (γt) induced by βt agrees with lt , as desired. Now, the
Morita equivalence of Lemma 5.2 of [Kumjian et al. 2013] and (10) tell us that

(11) C∗(G3×d Zk , σct◦φ)oβt Zk
∼ME C∗(3, ct).

Combining (9) and (11) now yields

K∗(C∗(3, ct))∼= K∗(C∗(G3×d Zk ×[0, 1], ω)oβ Zk)
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for any t ∈ [0, 1]. It follows that, if {ct }t∈[0,1] is a homotopy of cocycles on a
row-finite k-graph 3 with no sources, then, for any s, t ∈ [0, 1],

K∗(C∗(3, ct))∼= K∗(C∗(3, cs)).

It remains to show that this isomorphism preserves the K-theory class of each
vertex projection sv . Essentially, this follows because the cocycles ct , and thus the
functions κt , are all trivial on any v ∈ Obj(3).

To be precise, let v ∈ Obj(3) and define fv ∈ Cc(Z
k,Cc(G3×d Zk × [0, 1])) ⊆

C∗(G3×d Zk ×[0, 1], ω)oβ Zk by

fv(n)(a, t)=
{

1 a ∈ Z(v,0),(v,0) and n = 0,
0 else.

Then the projection qt o id( fv) of fv onto the fiber algebra C∗(G3×d Zk , ωt)oβt Zk

is independent of the choice of t ∈ [0, 1]:

qt o id( fv)(n)(a)=
{

1 a ∈ Z(v,0),(v,0) and n = 0,
0 else,

for any t ∈ [0, 1]. Moreover, the isomorphism 8t : C∗(3 ×d Zk, ct ◦ φ) →

C∗(G3×d Zk , σct◦φ) of Remark 4.3 satisfies

(12) 8t o id( j (s(v,0)))= qt o id( fv),

where j : C∗(3 ×d Zk, ct ◦ φ) → C∗(3 ×d Zk, ct ◦ φ) olt Zk is the canonical
embedding of C∗(3×d Zk, ct ◦φ) into the crossed product.

The fact that the Morita equivalence C∗(3, ct)∼ME C∗(3×d Zk, ct ◦φ)olt Zk

takes sv ∈ C∗(3, ct) to j (s(v,0)) (see Lemma 5.2 in [Kumjian et al. 2013]) thus
implies that our K-theoretic isomorphism K∗(C∗(G3×d Zk × [0, 1], ω)oβ Zk)→

K∗(C∗(3, ct)), which is given by the composition of the Morita equivalence (11)
with the ∗-homomorphism

qt o id : C∗(G3×d Zk ×[0, 1], ω)oβ Zk
→ C∗(G3×d Zk , ωt)oβt Zk

∼= C∗(3×d Zk, ct ◦φ)oγt Zk,

takes [ fv] to [sv] for any v ∈ Obj(3) and any t ∈ [0, 1]. Consequently, the isomor-
phism K∗(C∗(3, ct))∼= K∗(C∗(3, cs)) preserves the class of sv, as claimed. �

Remark 4.6. It’s tempting to think that, since C∗(3×d Zk, c ◦φ)∼= C∗(3×d Zk)

and C∗(3, c) ∼ME C∗(3×d Zk, c ◦ φ)olt Zk for any cocycle c on 3, any two
twisted k-graph C∗-algebras should be Morita equivalent. This statement is false,
however (the rotation algebras provide a counterexample). The flaw lies in the fact
that the isomorphism Ad U∗ :C∗(3×d Zk, c◦φ)→C∗(3×d Zk) is not equivariant
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with respect to the left-translation action of Zk , so the isomorphism

C∗(3×d Zk, c ◦φ)∼= C∗(3×d Zk)

does not pass to an isomorphism C∗(3×d Zk, c ◦φ)olt Zk
→ C∗(3×d Zk)olt Zk .

In other words, a K-theoretic equivalence of twisted k-graph C∗-algebras is the best
result we can hope for in general.

5. Future work

The standing hypotheses of this paper, that our k-graphs be row-finite and source-
free, are slightly more restrictive than the current standard for k-graphs. Thus, we
would like to extend Theorem 4.1 to apply to all finitely aligned k-graphs. Finitely
aligned k-graphs were introduced in [Raeburn and Sims 2005; Raeburn et al. 2004],
and it seems that they constitute the largest class of k-graphs to which one can
profitably associate a C∗-algebra. However, the Kumjian–Pask construction of a
groupoid G3 associated to a k-graph 3, which we described in Section 2 and which
we use throughout the proof of Theorem 4.1, only works when 3 is row-finite and
source-free. Farthing, Muhly, and Yeend [Farthing et al. 2005] provide an alternate
construction of a groupoid G which can be associated to an arbitrary finitely aligned
k-graph, and we hope that this approach will allow us to apply groupoid results
such as Theorem 3.3 to study the effect on K-theory of homotopies of cocycles for
finitely aligned k-graphs.
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