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FUSION PRODUCTS AND TOROIDAL ALGEBRAS

DENIZ KUS AND PETER LITTELMANN

We study the category of finite-dimensional bigraded representations of
toroidal current algebras associated to finite-dimensional complex simple
Lie algebras. Using the theory of graded representations for current al-
gebras, we construct in different ways objects in that category and prove
them to be isomorphic. As a consequence we obtain generators and relations
for certain types of fusion products, including the N-fold fusion product of
V (λ). This result shows that the fusion product of these types is independent
of the chosen parameters, proving a special case of a conjecture by Feigin
and Loktev. Moreover, we prove a conjecture by Chari, Fourier and Sagaki
on truncated Weyl modules for certain classes of dominant integral weights
and show that they are realizable as fusion products. In the last section we
consider the case g= sl2 and compute a PBW type basis for truncated Weyl
modules of the associated current algebra.

1. Introduction

Let g be a finite-dimensional complex simple Lie algebra with highest root θ . The
current algebra g[t] associated to g is the algebra of polynomial maps C→ g;
equivalently, it is the complex vector space g⊗ C[t] with Lie bracket the C[t]-
bilinear extension of the Lie bracket on g. The toroidal current algebra g[t, u]
associated to g is the algebra of polynomial maps C2

→ g and can be identified with
the complex vector space g⊗C[t, u] with similar Lie bracket. The Lie algebra g[t]
is graded by the nonnegative integers, where the r -th graded component is g⊗ tr

and g[t, u] is bigraded by pairs of nonnegative integers, where the (r, s)-th graded
component is g⊗tr us . We are interested in the category of finite-dimensional graded
representations of g[t] and finite-dimensional bigraded representations of g[t, u].
The former category contains a large number of interesting objects, for example
local Weyl modules (see for instance [Chari et al. 2014b; Chari and Pressley 2001;
Fourier and Littelmann 2007; Fourier et al. 2012]), g-stable Demazure modules
(see [Chari et al. 2014c; Fourier and Littelmann 2006; 2007]) and fusion products.
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The latter class of representations was introduced in a paper by Feigin and
Loktev [1999]: given finite-dimensional cyclic g[t]-modules V1, . . . ,VN with
cyclic vectors v1, . . . , vN and a tuple of pairwise distinct complex numbers z =
(z1, . . . , zN ) one can define a filtration on the tensor product Vz1

1 ⊗ · · ·⊗VzN
N and

build the associated graded space with respect to this filtration. This space is called
the fusion product and is denoted by Vz1

1 ∗ · · · ∗ VzN
N , where Vz is a nongraded

g[t]-module (see Section 3 for more details). The Feigin–Loktev conjecture states
that under suitable conditions on Vs and vs the fusion product is independent of the
chosen fusion parameters z. This conjecture has been proved for several classes of
representations. For example it has been proved in [Chari and Loktev 2006; Chari
and Pressley 2001; Fourier and Littelmann 2007; Naoi 2012] that the fusion product
of local Weyl modules is again a local Weyl module and hence independent of the
chosen parameters. Other examples are fusion products of Kirillov–Reshetikhin
modules (see [Ardonne and Kedem 2007; Kedem 2011]) and fusion products of
g-stable Demazure modules (see [Chari et al. 2014c; Fourier and Littelmann 2007;
Kus and Venkatesh 2014]).

Another interesting class of g[t]-modules comprises those which are obtained
as fusion products of finite-dimensional simple g-modules, where a g-module V
is made into a g[t]-module by requiring (g⊗ tC[t])V = 0. Hence for any tuple
(λ1, . . . , λN ) of dominant integral weights the fusion product Vz1(λ1)∗· · ·∗VzN (λN )

can be defined and studied. For these types of representations the Feigin–Loktev
conjecture has been proved in the case of sl2 and in some other special cases (see
for instance [Chari and Venkatesh 2015; Feigin and Feigin 2002; Feigin et al. 2004;
Ravinder 2014]). Moreover, in the case of sl2 a presentation for the fusion product
V(k1) ∗ · · · ∗V(kN ) has been established in terms of generators and relations of the
enveloping algebra (see [Chari and Venkatesh 2015; Feigin and Feigin 2002]) and a
PBW type basis has been computed [Chari and Venkatesh 2015]. An easy calculation
shows that the aforementioned presentation can be greatly simplified if the highest
weights are equal. In particular, V(k) ∗ · · · ∗ V(k) is a cyclic U(sl2[t])-module
generated by a vector v subject to the same relations as the highest weight vector of
the local Weyl module Wloc(k N ) with the only additional relation (sl2⊗ t N )v= 0.

This paper is motivated by the idea of generalizing the above observation for
arbitrary g: Is the fusion product Vz1(λ) ∗ · · · ∗VzN (λ) independent of the fusion
parameters for arbitrary g? Is there a simple presentation considered as a U(g[t])-
module? Is the truncated Weyl module W(Nλ, N ) realizable as a fusion product?
For the definition of truncated Weyl modules see Section 4A. In this paper we
give a positive answer to these questions. Our approach is based on the theory
of finite-dimensional bigraded modules for the toroidal current algebra g[t, u]. In
particular we construct an associated graded version of a g-stable Demazure module
grt N T(`, N ) and a bigraded version of a fusion product Du(`, `λ)∗· · ·∗Du(`, `λ)∗



FUSION PRODUCTS AND TOROIDAL ALGEBRAS 429

Du(`, `λ+ λ0) (for the precise definitions see Sections 3C and 3D) such that the
zeroth graded space (with respect to the u-grading) of the second construction is
isomorphic to the fusion product of finite-dimensional simple g-modules. Our first
result is the following; for the precise definition of the ingredients see Section 3.
We remark that if λ0

6= 0, then the Lie algebra g is assumed to be classical or G2;
for λ0

= 0 there is no restriction on g.

Theorem. Let ` ∈ N, λ be a dominant integral coweight and λ0 be a dominant
integral weight such that λ0(θ∨) ≤ `. We have an isomorphism of U(g[t, u])-
modules

grt N T(`, N )∼= Du(`, `λ) ∗ · · · ∗Du(`, `λ) ∗Du(`, `λ+ λ0).

Our second result gives a connection to truncated Weyl modules, where the first
part is a direct consequence of the previous theorem and the second part proves a
special case of a conjecture by Chari, Fourier and Sagaki. Again for the precise
definition of the ingredients see Section 4A.

Theorem. Let ` ∈ N, λ be a dominant integral coweight and λ0 be a dominant
integral weight such that λ0(θ∨)≤ `.

(1) The fusion product V(`λ)∗(N−1)
∗ V(`λ + λ0) is independent of the fusion

parameters.

(2) If λ0(θ∨)≤ 1 and |Nλ+ λ0
| ≥ N , then

W(Nλ+ λ0, N )∼= V(λ)∗(N−1)
∗V(λ+ λ0).

As a special case of the previous theorem we can choose ` = 1 and λ0
= 0.

This yields that the N -fold fusion product of V (λ) is independent of the fusion
parameters for any dominant integral coweight λ. The second part of the theorem
shows that the N -fold fusion product of V (λ) has a remarkably simple presentation.

In Sections 4C and 4D we deal with the case of sl2 and prove that the truncated
Weyl module is realizable as a fusion product. Moreover, we compute a PBW
type basis for truncated Weyl modules which differs from the basis described
in [Chari and Venkatesh 2015, Section 6]. For the precise definition of the set
S(k N− j , (k+ 1) j ) see Section 4B.

Theorem. Let m ∈ Z+ and write m = k N + j , 0≤ j < N.

(1) We have an isomorphism of U(sl2⊗C[t]/t N )-modules

W(m, N )∼= V (k)∗(N− j)
∗ V (k+ 1)∗ j .

(2) A PBW type basis of W(m, N ) is given by

{(x−α ⊗ 1)i0 · · · (x−α ⊗ t N−1)iN−1wm,N | (i0, . . . , iN−1) ∈ S(k N− j , (k+ 1) j )}.
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:::::::::::::::::: :::::::::::::::::: ::::::::::::::::::

Our paper is organized as follows. Section 2 establishes the basic notation needed
in the rest of the paper. In Section 3, we construct in different ways two bigraded
modules and prove them to be isomorphic. As a consequence we obtain that the
fusion product is independent of the chosen parameters. In Section 4, we give some
applications regarding the conjecture on truncated Weyl modules and compute a
PBW type basis.

2. Preliminaries

2A. Throughout the paper C denotes the field of complex numbers, Z the ring
of integers, Z+ the set of nonnegative integers and N the set of positive integers.
Given any complex Lie algebra a we let U(a) be the universal enveloping algebra
of a. Further, let a[t] be the Lie algebra of polynomial maps from C to a with the
obvious pointwise Lie bracket:

[x ⊗ f, y⊗ g] = [x, y]⊗ f g, x, y ∈ a, f, g ∈ C[t].

The Lie algebra a[t] and its universal enveloping algebra inherit a grading from
the degree grading of C[t]; thus an element a1⊗ tr1 · · · as⊗ trs , a j ∈ a, r j ∈ Z+ for
1≤ j ≤ s, will have grade r1+· · ·+rs . We shall be interested in Z-graded modules
V =

⊕
s∈Z V [s] for a[t].

2B. We refer to [Kac 1990] for the general theory of affine Lie algebras. Let g
be a finite-dimensional complex simple Lie algebra and ĝ be the corresponding
untwisted affine algebra. We fix h⊂ ĥ Cartan subalgebras of g and ĝ, respectively,
and denote by R the set of roots of g with respect to h and by R̂ the set of roots
of ĝ with respect to ĥ. The corresponding sets of positive and negative roots are
denoted as usual by R± and R̂±, respectively. We fix a basis 1= {α1, . . . , αn} for
R such that 1̂=1∪ {α0} is a basis for R̂. For α ∈ R̂, let α∨ be the corresponding
coroot. We fix d ∈ ĥ such that α0(d)= 1 and αi (d)= 0 for i 6= 0; d is called the
scaling element and it is unique modulo the center of ĝ. For 1 ≤ i ≤ n, define
ωi ∈ h

∗ by ωi (α
∨

j ) = δi, j for 1 ≤ j ≤ n, where δi, j is Kronecker’s delta symbol.
The element ωi is the fundamental weight of g corresponding to α∨i . Let ( · , · ) be
the nondegenerate symmetric bilinear form on h∗ normalized so that the square
length of a long root is two. For α ∈ R+ we set

dα =
2

(α, α)
, di := dαi for 1≤ i ≤ n.

The weight lattices P and P+ are the Z-span and Z+-span, respectively, of the
fundamental weights. The coweight lattice L is the sublattice of P spanned by the
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elements diωi , 1 ≤ i ≤ n, and the subset L+ is defined in the obvious way. For
λ ∈ P+ we define

|λ| =

n∑
i=1

λ(α∨i ) ∈ Z+.

2C. Given α ∈ R̂+ let ĝα ⊂ ĝ be the corresponding root space; note that ĝα ⊂ g if
α ∈ R. For a real root α we denote by xα a generator of ĝα . The element d defines
a Z+-graded Lie algebra structure on g[t]: for α ∈ R̂ we say that gα has grade k if

[d, xα] = kxα

or, equivalently, if α(d)= k. With respect to this grading, the zero homogeneous
component of the current algebra is g[t][0] ∼= g and the subspace spanned by the
positive homogeneous components is an ideal denoted by g[t]+. We have a short
exact sequence of Lie algebras

0→ g[t]+→ g[t]
ev0
−→ g→ 0.

Clearly the pull-back of any g-module V by ev0 defines the structure of a graded
g[t]-module on V, and we denote this module by ev∗0 V.

2D. For λ ∈ P+, denote by V(λ) the simple finite-dimensional g-module generated
by an element vλ with defining relations

n+vλ = 0, α∨i vλ = λ(α
∨

i )vλ, (x−αi )
λ(α∨i )+1vλ = 0, 1≤ i ≤ n.

It is well known that V(λ)∼=V(µ) if and only if λ=µ and that any finite-dimensional
g-module is isomorphic to a direct sum of modules V(λ), λ ∈ P+. If V is an h-
semisimple g-module (in particular if dim V<∞), we have

V=
⊕
µ∈h∗

Vµ, Vµ = {v ∈ V | hv = µ(h)v, h ∈ h},

and we set wt V= {µ ∈ h∗ | Vµ 6= 0}. By our previous comments, for any λ ∈ P+

we obtain a graded g[t]-module ev∗0 V(λ).
We also define the local Weyl module Wloc(λ), which is a finite-dimensional

g[t]-module generated by an element wλ with defining relations

n+[t]wλ = 0, (α∨i ⊗ t s)wλ = δs,0λ(α
∨

i )wλ, (x−αi ⊗ 1)λ(α
∨

i )+1wλ = 0

∀s ≥ 0, 1≤ i ≤ n.

For more details regarding the theory of local Weyl modules see [Chari et al. 2014b;
Chari and Loktev 2006; Chari and Pressley 2001; Fourier et al. 2012; Fourier and
Kus 2013; Fourier and Littelmann 2007; Naoi 2012].
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2E. We recall a general construction from [Feigin and Loktev 1999]. Let U(g[t])[k]
be the homogeneous component of degree k (with respect to the grading induced
by d) and recall that it is a g-module for all k ∈ Z+. Suppose now that we are
given a g[t]-module V which is generated by v. Define an increasing filtration
0⊂ V0

⊂ V1
⊂ · · · of g-submodules of V by

Vk
=

k⊕
s=0

U(g[t])[s]v.

The associated graded vector space gr V admits an action of g[t] given by

x(v+Vk)= xv+Vk+s, x ∈ g[t][s], v ∈ Vk+1.

Furthermore, gr V is a cyclic g[t]-module with cyclic generator v̄, the image of v
in gr V. Given a g[t]-module V and z ∈ C, let Vz be the g[t]-module with action

(x ⊗ tr )w = (x ⊗ (t + z)r )w, x ∈ g, w ∈ V, r ∈ Z+.

Starting with finite-dimensional cyclic g[t]-modules V1, . . . ,VN with cyclic vectors
v1, . . . , vN and a tuple of pairwise distinct complex numbers z = (z1, . . . , zN ), the
fusion product is defined to be Vz1 ∗ · · ·∗VzN := gr(Vz1 ⊗ · · ·⊗VzN ). It was proved
in [Feigin and Loktev 1999] that the tensor product Vz1 ⊗ · · ·⊗VzN is cyclic and
generated by v1⊗· · ·⊗vN . Clearly the definition of the fusion product depends on
the parameters zs , 1≤ s ≤ N . However, it was conjectured in that paper (and proved
in special cases; see [Chari and Loktev 2006; Feigin and Feigin 2002; Feigin and
Loktev 1999; Fourier and Littelmann 2007; Kus and Venkatesh 2014], for example)
that under suitable conditions on Vs and vs , the fusion product is independent
of the choice of the complex numbers. In this paper we cover another class of
representations, where the construction of the fusion product is independent of the
parameters. To keep the notation as simple as possible we almost always omit
the parameters in the notation for the fusion product and write V1 ∗ · · · ∗VN for
Vz1

1 ∗ · · · ∗VzN
N .

3. Filtrations and bigraded modules

The aim of this section is to construct two finite-dimensional bigraded modules in
different ways and prove them to be isomorphic. The advantage of this construction
is that a comparison of the zeroth graded components leads to a realization of the
fusion product associated to rectangular partitions.

3A. Let us start with our first construction. Let λ ∈ P+ and ` ∈ N. The g-stable
Demazure module D(`, λ) is a finite-dimensional submodule of a level ` highest
weight representation for the affine algebra ĝ. For these representations, generators
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and relations are known if we consider them as U(g[t])-modules; see [Fourier and
Kus 2013; Fourier and Littelmann 2007; Mathieu 1988] for more details. We remark
that these relations are greatly simplified for Demazure modules for untwisted affine
algebras in [Chari and Venkatesh 2015] and for twisted affine algebras in [Kus and
Venkatesh 2014]. For instance, one can use these simplified relations to see directly
that level one Demazure modules are isomorphic to local Weyl modules for simply
laced affine algebras and twisted affine algebras, initially proved in [Fourier and
Littelmann 2007] and [Chari et al. 2014b; Fourier and Kus 2013], respectively. We
recall the simplified presentation of g-stable Demazure modules. Write

(3-1) λ(β∨)= (pβ − 1)dβ`+mβ, 0< mβ ≤ dβ`, for β ∈ R+.

Proposition 3.1. The Demazure module D(`, λ) is isomorphic to the cyclic U(g[t])-
module generated by a vector v 6= 0 subject to the following relations:

n+[t]v = 0, (h⊗ t s)v = δs,0λ(h)v ∀h ∈ h, s ≥ 0,(3-2)

(x−β ⊗ 1)λ(β
∨)+1v = 0, (x−β ⊗ t pβ )v = 0 ∀β ∈ R+,(3-3)

(x−β ⊗ t pβ−1)mβ+1v = 0 ∀β ∈ R+ such that mβ < dβ`.(3-4)

We can decompose D(`, λ) into simple finite-dimensional g-modules. We remark
that the vector v in Proposition 3.1 corresponds to the highest weight vector of
ev∗0 V(λ) in the g-module decomposition of D(`, λ). We call it a highest weight
vector of the module.

3B. We are concerned with Demazure modules of the form D(`, `Nλ1
+λ0), where

λ1
∈ L+ and λ0

∈ P+ such that λ0(θ∨) ≤ `. For the rest of this paper we assume
that either λ0

= 0 and g is arbitrary or λ0
6= 0 and g is of classical type or G2. By

the results of [Chari et al. 2014c; Fourier and Littelmann 2007], the Demazure
module D(`, `Nλ1

+ λ0) is isomorphic to the fusion product of N − 1 copies of
the Demazure module D(`, `λ1) with D(`, `λ1

+ λ0):

(3-5) D(`, `Nλ1
+ λ0)∼= D(`, `λ1) ∗ · · · ∗D(`, `λ1) ∗D(`, `λ1

+ λ0).

This decomposition holds for all fusion parameters z= (z1, . . . , zN ) with zi 6= z j for
all i 6= j . We emphasize that the restriction on g is only made because (3-5) is not
proved for the remaining exceptional Lie algebras if λ0 is nonzero. In other words,
our results are applicable whenever we have such a fusion product decomposition.
We will need the following lemma.

Lemma 3.2. Let β be a positive root and λ ∈ P+. We write θ − β =
∑

j γ j as a
sum of positive roots. Then we have

λ(β∨)(β, β)≤ λ(θ∨)(θ, θ) with equality if and only if λ(γ ∨j )= 0 ∀ j.
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Proof. Since λ is a dominant integral weight we have λ(β∨)≥ 0 for a positive root
β. We obtain

θ∨ =

(
β +

∑
j

γ j

)∨
=
(β, β)

2
β∨+

∑
j

(γ j , γ j )

2
γ ∨j ,

which gives

λ(θ∨)(θ, θ)= (β, β)λ(β∨)+
∑

j

(γ j , γ j )λ(γ
∨

j )≥ (β, β)λ(β
∨).

Note that equality is only possible if λ(γ ∨j )= 0 for all j , since (γ j , γ j ) > 0. �

By Lemma 3.2 and Equation (3-3) of Proposition 3.1 we get the following result.

Corollary 3.3. (x−β ⊗ t (λ
1(θ∨)+1)N )v = 0 for all roots β ∈ R+.

Proof. Write (`Nλ1
+ λ0)(β∨) as in (3-1). Since λ1

∈ L+ we have mβ = dβ` if
λ0(β∨)= 0 and mβ = λ

0(β∨) else. Then (x−β ⊗ t pβ )v = 0 and

pβ = N
λ1(β∨)

dβ
+
λ0(β∨)−mβ

dβ`
+ 1≤ N (λ1(θ∨)+ 1). �

Hence D(`, `Nλ1
+ λ0) is a U(g⊗C[t]/t (λ

1(θ∨)+1)N )-module.

3C. We define a decreasing filtration on U(g⊗C[t]/t (λ
1(θ∨)+1)N )

T0(N )⊇ T1(N )⊇ T2(N )⊇ · · · ,

with
T0(N )= U(g⊗C[t]/t (λ

1(θ∨)+1)N ),

T j (N )= (g⊗ t N C[t])T j−1(N ) for j ≥ 1,

and study the induced decreasing filtration on our Demazure module given by

D(`, `Nλ1
+λ0)=T0(N )v=:T0(`, N )⊇T1(N )v :=T1(`, N )⊇T2(`, N )⊇ · · · .

To be consistent with the notation in [Feigin 2008], we refer to it as the t N -filtration.
Let grt N T(N ) and grt N T(`, N ), respectively, be the associated graded spaces

grt N T (N )= T0(N )/T1(N )⊕T1(N )/T2(N )⊕ · · ·

and
grt N T(`, N )= T0(`, N )/T1(`, N )⊕T1(`, N )/T2(`, N )⊕ · · · .

Since D(`, `Nλ1
+ λ0) is a module for U(g⊗ C[t]/t (λ

1(θ∨)+1)N ) we obtain that
grt N T(`, N ) is a module for grt N T(N ). By the following lemma grt N T(`, N ) is
also a module for the toroidal current algebra U(g⊗C[t, u]/〈t N , uλ

1(θ∨)+1
〉).
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Lemma 3.4. We have an isomorphism of algebras

9 : grt N T(N )−→∼ U(g⊗C[t, u]/〈t N , uλ
1(θ∨)+1

〉),

where 9(x ⊗ t j N+s)= x ⊗ u j t s for x ∈ g and 0≤ s < N.

Proof. The map 9 is clearly an isomorphism of vector spaces. In order to show
that this map is an algebra homomorphism, we have to check that the naive way of
defining 9 on a product of elements is well defined. Hence we will verify that

(x ⊗ u j t s)(y⊗ ui tq)− (y⊗ ui tq)(x ⊗ u j t s)= [x, y]⊗ ui+ j t s+q

holds on the right-hand side whenever we have

(x ⊗ t j N+s)(y⊗ t i N+q)− (y⊗ t i N+q)(x ⊗ t j N+s)= [x, y]⊗ t (i+ j)N+(s+q)

on the left-hand side. This is obvious for s + q < N . Otherwise the variables
x⊗u j t s and y⊗ui tq commute in U(g⊗C[t, u]/〈t N , uλ

1(θ∨)+1
〉). By the definition

of the associated graded space we also obtain that the variables x ⊗ t j N+s and
y⊗ t i N+q commute in grt N T(N ) since on the one hand

(x ⊗ t j N+s)(y⊗ t i N+q)− (y⊗ t i N+q)(x ⊗ t j N+s) ∈ Ti+ j (N )

and on the other hand

[x, y]⊗ t (i+ j)N+(s+q)
∈ Ti+ j+1(N ). �

3D. Now we present a quite different construction of the module grt N T(`, N ).
In fact, it is one of the main results of this paper that the two constructions give
isomorphic modules. We start with the (N − 1)-fold tensor product of Demazure
modules D(`, `λ1) with D(`, `λ1

+ λ0). The gambit: we switch the variables and
consider now the current algebra g[u] which operates on the Demazure modules
Du(`, `λ1). We add the index u to emphasize that here the algebra g[u] is acting.
We extend the action trivially to g[t, u] and denote the corresponding module by
Du(`, `λ1); i.e., g⊗ tC[t, u] acts trivially. Recall that we get a highly nontrivial
action of g[t, u] when we consider fusion products of these modules with respect
to the variable t . The bigraded fusion product

(3-6) Du(`, `λ1) ∗ · · · ∗Du(`, `λ1) ∗Du(`, `λ1+ λ0)

is a cyclic module for the Lie algebra U(g⊗ C[t, u]/〈t N , uλ
1(θ∨)+1

〉). Note the
similarity but also the difference between (3-5) and (3-6). In (3-5) we consider the
fusion product (with respect to the variable t) of g[t]-modules. The g[t, u]-module
structure comes into the picture only by the filtration defined in Section 3C. We
would like to remind the reader that if λ0

6= 0, then g is of classical type or G2.
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Theorem 3.5. Let λ1
∈ L+ and λ0

∈ P+ such that λ0(θ∨) ≤ `. We have an
isomorphism of U(g⊗C[t, u]/〈t N , uλ

1(θ∨)+1
〉)-modules

grt N T(`, N )∼= Du(`, `λ1) ∗ · · · ∗Du(`, `λ1) ∗Du(`, `λ1+ λ0).

Proof. Let v∗(N−1)
` ∗ v0 be the highest weight vector of the right-hand side. The iso-

morphism between grt N T(N ) and U(g⊗C[t, u]/〈t N , uλ
1(θ∨)+1

〉) (see Lemma 3.4)
induces a natural surjective map

grt N T(N )� U(g⊗C[t, u]/〈t N , uλ
1(θ∨)+1

〉) ◦ (v
∗(N−1)
` ∗ v0).

It remains to prove that this map induces an isomorphism between the cyclic module
grt N T(`, N ) and the fusion product. Since the dimensions of the modules coincide
it is enough to show that all relations which hold in grt N T(`, N ) also hold on the
right-hand side.

Recall that a presentation of grt N T(`, N ) is given by two types of relations,
the ones coming from the presentation of the Demazure module and the ones
coming from going to the associated graded space with respect to the t N -filtration.
We start by proving that the defining relations of D(`, `Nλ1

+ λ0) given for v in
Proposition 3.1 are satisfied by v` ∗ · · · ∗ v` ∗ v0. Since the relations (3-2) and the
first part of (3-3) are obviously satisfied it remains to verify the second part of (3-3)
and (3-4). Write (`Nλ1

+ λ0)(β∨) as in (3-1). We start by proving that

(3-7) (x−β ⊗ u jβ trβ )(v
∗(N−1)
` ∗ v0)= 0, where pβ = jβN + rβ , 0≤ rβ < N .

Since λ0(β∨)≤ dβ`, we have

pβ =
{

Nλ1(β∨)d−1
β if λ0(β∨)= 0,

Nλ1(β∨)d−1
β + 1 else.

In either case jβ ≥ λ1(β∨)d−1
β and thus (x−β ⊗ u jβ trβ )v` = 0 follows immediately

from the defining relations of D(`, `λ1). If rβ 6= 0 we can replace trβ by (t − zN )
rβ

in the associated graded space and obtain that the element in (3-7) acts trivially on
v0. If rβ = 0, then pβ is divisible by N , which forces λ0(β∨) = 0. Therefore, in
this case we obtain jβ = λ1(β∨)d−1

β , and (x−β ⊗ u jβ )v0 = 0 follows immediately
from the defining relations of D(`, `λ1

+ λ0). It remains to consider the relations
(3-4). So suppose we have

pβ − 1= N
λ1(β∨)

dβ
+
λ0(β∨)−mβ

dβ`
= jβN + rβ, 0≤ rβ < N .

Since mβ < dβ`, we must have mβ = λ
0(β∨) 6= 0 and hence pβ−1= Nλ1(β∨)d−1

β .
It follows that jβ = λ1(β∨)d−1

β and therefore (x−β ⊗ u jβ )v` = 0. So we have

(x−β ⊗ u jβ )mβ+1(v
∗(N−1)
` ∗ v0)= v

∗(N−1)
` ∗ (x−β ⊗ u jβ )mβ+1v0 = 0.
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We now consider the relations coming from the t N -filtration. Suppose

M =
∑

m

∑
i1,...,im
j1,..., jm

k(m)i1,...,im
j1..., jm

(xi1 ⊗ t i1 N+ j1) · · · (xim ⊗ t im N+ jm )

∈ U(g⊗C[t]/t (λ(θ
∨)+1)N )

is a linear combination of monomials with fixed t N -degree such that w = Mv 6= 0
in D(`, `Nλ1

+ λ0) but the image w̄ = 0 in grt N T(`, N ). This is only possible if
there exists a linear combination of monomials of greater t N -degree

M ′ =
∑
m′

∑
p1,...,pm′
q1...,qm′

k(m′)p1,...,pm′
q1,...,qm′

(x p1 ⊗ t p1 N+q1) · · · (x pm′
⊗ t pm′N+qm′ )

∈ U(g⊗C[t]/t (λ(θ
∨)+1)N )

such that w = Mv = M ′v in D(`, `Nλ1
+λ0). We assume in what follows that M ′

is of maximal t N -degree. We have (M −M ′)v = 0, so the difference M −M ′ is an
element in the left ideal generated by the elements in (3-2)–(3-4). Since M ′ is of
higher t N -degree we get M −M ′=M in grt N T(N ), and since all defining relations
of D(`, `Nλ1

+λ0) are satisfied by v∗(N−1)
` ∗v0 we get 9(M) ◦ (v∗(N−1)

` ∗ v0)= 0,
which shows that the natural surjective map

grt N T(N )� U(g⊗C[t, u]/〈t N , uλ
1(θ∨)+1

〉) ◦ (v
∗(N−1)
` ∗ v0)

induces an isomorphism of cyclic modules grt N T(`, N ) ∼= Du(`, `λ1) ∗ · · · ∗

Du(`, `λ1) ∗Du(`, `λ1+ λ0). �

For the rest of this section we discuss a crucial consequence of our result.

Corollary 3.6. Let ` ∈ N, λ1
∈ L+ and λ0

∈ P+ such that λ0(θ∨)≤ `.

(1) The fusion product Du(`, `λ1) ∗ · · · ∗Du(`, `λ1) ∗Du(`, `λ1+ λ0) is indepen-
dent of the fusion parameters.

(2) The fusion product V(`λ1)∗(N−1)
∗V(`λ1

+ λ0) is independent of the fusion
parameters.

(3) We have an isomorphism of U(g⊗C[t]/t N )-modules

V(`λ1)∗(N−1)
∗V(`λ1

+ λ0)∼= D(`, `Nλ1
+ λ0)/(g⊗ t N C[t])D(`, `Nλ1

+ λ0).

(4) If λ0(θ∨)≤ 1, the truncated level one Demazure module is isomorphic to the
truncated level ` Demazure module

D(1, `Nλ1
+ λ0)/(g⊗ t N C[t])D(1, `Nλ1

+ λ0)

∼= D(`, `Nλ1
+ λ0)/(g⊗ t N C[t])D(`, `Nλ1

+ λ0).

Proof. Since the fusion product V(`λ1)∗(N−1)
∗ V (`λ1

+ λ0) is isomorphic to the
zeroth graded component of Du(`, `λ1) ∗ · · · ∗Du(`, `λ1) ∗Du(`, `λ1+ λ0) (with
respect to the u-grading) the statement follows from Theorem 3.5. �
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Remark. Theorem 3.5 generalizes a result of [Feigin 2008], where the theorem
was proved for ` = 1, λ0

= 0 and λ1
= θ . Unfortunately, the proof in that paper

has a gap (personal communication by the author), which is now fixed by the proof
above. Ravinder [2014] used the result of [Feigin 2008] to prove a presentation for
the fusion product V(θ)∗N

∗D(1, θ)∗M .

4. Truncated Weyl modules and PBW type basis

In this section we give some evidence for the conjecture made by Chari, Fourier and
Sagaki on truncated Weyl modules (see [Chari et al. 2014a; Fourier 2015]). For the
reader’s convenience we state the precise conjecture in this paper (Conjecture 4.1).
Finally, we consider the case g= sl2 and compute a PBW type basis.

4A. Let P+(λ, N ) be the set of N -tuples of dominant integral weights λ =
(λ1, . . . , λN ) such that

∑
i λi = λ. Let λ = (λ1, . . . , λN ),µ = (µ1, . . . , µN ) ∈

P+(λ, N ). For a positive root β define

rβ,k(λ)=min{(λi1 + · · ·+ λik )(β
∨) | 1≤ i1 < · · ·< ik ≤ N }.

We say λ� µ if

rβ,k(λ)≤ rβ,k(µ) for all β ∈ R+ and 1≤ k ≤ N .

The above partial order was considered by Chari et al. [2014a], who observed that for
a tuple λ the dimension of the tensor product of the corresponding finite-dimensional
simple g-modules increases along �. Moreover, they proved in certain cases (for
instance when λ is a multiple of a fundamental minuscule weight) that there exists
an inclusion of tensor products along with the partial order and conjectured that
this remains true for N = 2 and arbitrary λ (see [Chari et al. 2014a, Conjecture
2.3]). Using the unique maximal element in the partially ordered set P+(λ, N ) one
can formulate a conjecture on truncated Weyl modules, which we will explain now.

Definition. Let λ ∈ P+. The truncated Weyl module W(λ, N ) is a cyclic module
for U(g⊗C[t]/t N ) generated by wλ,N with relations

(n+⊗C[t]/t N )wλ,N = 0, (h⊗ t s)wλ,N = δs,0λ(h)wλ,N ∀h ∈ h, s ≥ 0,(4-1)

(x−β ⊗ 1)λ(β
∨)+1wλ,N = 0 ∀β ∈ R+.(4-2)

The following conjecture gives a connection between truncated Weyl modules
and fusion products of irreducible finite-dimensional g-modules.

Conjecture 4.1. Let λ ∈ P+ such that |λ| ≥ N , and let λ = (λ1, . . . , λN ) be
the unique maximal element in P+(λ, N ). Then we have an isomorphism of
U(g⊗C[t]/t N )-modules

W(λ, N )∼= V (λ1) ∗ · · · ∗ V (λN ).
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The following result proves the above conjecture for certain classes of dominant
integral weights.

Theorem 4.2. Let λ ∈ L+ and λ0
∈ P+ such that λ0(θ∨)≤ 1 and |Nλ+ λ0

| ≥ N.
Then we have an isomorphism of U(g⊗C[t]/t N )-modules

W(Nλ+ λ0, N )∼= V (λ) ∗ · · · ∗ V (λ) ∗ V (λ+ λ0).

Proof. If λ= 0, there is nothing to prove. By Corollary 3.6 we obtain that

V (λ) ∗ · · · ∗ V (λ) ∗ V (λ+ λ0)∼= D(1, Nλ+ λ0)/(g⊗ t N C[t])D(1, Nλ+ λ0).

We show that the defining relations of D(1, Nλ+ λ0)/(g⊗ t N C[t])D(1, Nλ+ λ0)

hold in the truncated Weyl module. We shall prove only the nonobvious relations.
Let β ∈ R+ and write (Nλ+ λ0)(β∨) as in (3-1). Then, as before,

pβ − 1=
{

Nλ(β∨)d−1
β if λ0(β∨) 6= 0,

Nλ(β∨)d−1
β − 1 else.

We consider four cases. If λ(β∨) 6= 0 and λ0(β∨) 6= 0, then pβ ≥ pβ − 1≥ N and
hence

(x−β ⊗ t pβ )wNλ+λ0,N = (x−β ⊗ t pβ−1)wNλ+λ0,N = 0.

If λ(β∨) 6= 0 and λ0(β∨) = 0, then pβ ≥ N and mβ = dβ (recall that (3-4) was
only considered when mβ < dβ). If λ(β∨) = 0 and λ0(β∨) = 0, there is nothing
to show; so consider the last case, λ(β∨)= 0 and λ0(β∨) 6= 0. In this case pβ = 1
and mβ = λ

0(β∨). Thus we have to prove

(x−β ⊗ t)wNλ+λ0,N = (x−β ⊗ 1)mβ+1wNλ+λ0,N = 0,

where the last equality is clear. Note that it is enough to prove that (x−β⊗ t) acts by
zero on the highest weight vector of the local Weyl module Wloc(Nλ+ λ0). Since
Wloc(Nλ+ λ0)∼=Wz1

loc(Nλ) ∗Wz2
loc(λ

0) we get

(x−β ⊗ t)(wNλ ∗wλ0)= (x−β ⊗ (t − z2))(wNλ ∗wλ0)= wNλ ∗ (x−β ⊗ t)wλ0 .

If g is not of type G2, then Wloc(λ
0) is irreducible and the statement follows. If

g is G2 it is easy to see that the only positive root β with (x−β ⊗ t)wλ0 6= 0 is the
longest short root β = α1+ 2α2. But then λ(β∨) 6= 0. �

We shall show that (λ, . . . , λ, λ+ λ0) is in fact the unique maximal element in
P+(Nλ+λ0, N ). Since λ0(θ∨)≤ 1, there exists at most one simple root α such that
λ0(α∨)>0. Without loss of generality we suppose λ0(α∨j )=0 for all j >1. Assume
that (µ1, . . . , µN )∈ P+(Nλ+λ0, N ) such that (λ, . . . , λ, λ+λ0)� (µ1, . . . , µN ).
We fix a simple root α j and a permutation σ j such that

µσ j (1)(α
∨

j )≤ · · · ≤ µσ j (N )(α
∨

j ).
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We write µσ j (i)(α
∨

j ) = λ(α
∨

j ) + εi ( j) + δi,Nλ
0(α∨j ) for integers εi ( j). By our

assumptions we obtain

0≤ ε1( j)≤ · · · ≤ εN−1( j)≤ εN ( j)+ λ0(α∨j ) and
N∑

p=1

εp( j)= 0.

Hence, up to a permutation we have µi = λ for 1≤ i ≤ N − 1 and µN = λ+ λ
0.

4B. For the rest of this section we prove the conjecture for sl2 and compute a PBW
type basis. For 0≤ j < N , let S(k N− j , (k+1) j ) be the set of tuples (i0, . . . , iN−1)

satisfying

(4-3)
N−1∑
p=0

N !
N − p

i p ≤ N ! k−
N−4∑
`=0

N !
(N − `)!

(N − `− 2)! b`+ j (N − 1)!

for integers b` defined as follows: 0≤ b` < N − ` and

i0− j = b0 mod N ,

i`+ (b`−1 mod N − `)= b` mod N − ` for `= 1, . . . , N − 4.

The theorem we shall prove is the following.

Theorem 4.3. Let m ∈ Z+ and write m = k N + j for 0≤ j < N.

(1) We have an isomorphism of U(sl2⊗C[t]/t N )-modules

W(m, N )∼= V (k)∗(N− j)
∗ V (k+ 1)∗ j .

(2) A PBW type basis of W(m, N ) is given by

{(x−α ⊗ 1)i0 · · · (x−α ⊗ t N−1)iN−1wm,N | (i0, . . . , iN−1) ∈ S(k N− j , (k+ 1) j )}.

A simple calculation similar to the one above shows that (k, . . . , k, k+1, . . . , k+1)
∈ P+(m, N ) is in fact the unique maximal element.

The rest of this section is dedicated to the proof of Theorem 4.3.

4C. We start by proving the first part of the theorem. A presentation of the fusion
product as a U(sl2⊗C[t]) was given in [Chari and Venkatesh 2015]. So by their
results it is enough to show that the highest weight vector of W(m, N ) satisfies the
defining relations of V (k)∗(N− j)

∗ V (k+ 1)∗ j given in [Chari and Venkatesh 2015,
Proposition 2.7], which are

x−α(r, s)=
∑

(bp)p≥0∈S(r,s)

(x−α ⊗ 1)b0(x−α ⊗ t)b1 · · · (x−α ⊗ t s)bs ,

s, r, ` ∈ N, r + s ≥ 1+ r`+ q + p,
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where q = max{0, (N − `)k}, p = max{0, j − `} and S(r, s) is the set of tuples
(bp)p≥0 satisfying b0+ · · ·+ bs = r and b1+ 2b2+ · · ·+ sbs = s. We assume that
r+s ≤m, because otherwise the claim follows from the following result of Garland
[1978]:

(xα ⊗ t)(s)(x−α ⊗ 1)(s+r)
− (−1)s x−α(r, s) ∈ U(g[t])n+[t].

Our aim is to prove that for any tuple (bp)p≥0 ∈ S(r, s) there exists p ≥ N such
that bp 6= 0. Assume this is not the case. If `≥ N we obtain

r N ≥ r + s ≥ 1+ r`≥ 1+ r N ,

which is obviously a contradiction. So assume l ≤ N − 1. It follows that

m ≥ r + s ≥ 1+ r`+ (N − `)k+ p = 1+ `(r − k)+m− j + p

and thus r ≤ k. Therefore we obtain the contradiction

1+ `(r − k)+m− j + p ≤ r + s ≤ r N ⇒ 1≤ (N − `)(r − k)− p.

Hence
W(m, N )∼= V (k)∗(N− j)

∗ V (k+ 1)∗ j .

4D. Now we will prove the second part of the theorem. For simplicity we write fi

for x−α⊗ t i , 1≤ i ≤ N −1, and consider the map sh :U(n−[t])→U(n−[t]) given
by sh( fi )= fi+1. We will need the following result from [Feigin and Feigin 2002].

Proposition 4.4. Let k1 ≤ k2 ≤ · · · ≤ kN . We have a short exact sequence of
U(n−[t])-modules

0→V (k1)∗· · ·∗V (kN−1)
sh
−→V (k1)∗· · ·∗V (kN )

f −1
0
−→V (k1)∗· · ·∗V (kN−1)→0.

Using this proposition one can construct inductively a PBW type basis of the
fusion product. To be more precise, we have

(4-4) B(k1, . . . , kN )= B(k1, . . . , kN−1)sh ∪ f0 B(k1, . . . , kN − 1),

where B( · ) denotes a basis of the appropriate fusion product.

Example. We have B(1, 2)= B(1)sh ∪ f0 B(1, 1) and hence

B(1, 2)= {1, f0}sh ∪ f0{1, f0, f 2
0 , f1} = {1, f1, f0 f1, f0, f 2

0 , f 3
0 }.

Lemma 4.5. We have the recursion formula

B(k N )=

k⋃
r=0

f Nr
0 B((k−r)N−1)sh∪

N−1⋃
j=1

k⋃
r=1

f Nr− j
0 B((k−r)N− j, (k−r+1) j−1)sh .
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Proof. The proof follows by repeated applications of (4-4); for the convenience of
the reader we present the first step:

B(k N )= B(k N−1)sh ∪ f0 B((k− 1)1, k N−1)

= B(k N−1)sh ∪ f0 B((k− 1)1, kn−2)sh ∪ f 2
0 B((k− 1)2, k N−2)

= · · · =

N−1⋃
r=0

f r
0 B((k− 1)r , k N−1−r )sh ∪ f N

0 B((k− 1)N ).

The formula now follows by proceeding in the same way with B((k− 1)N ). �

Theorem 4.6. A PBW type basis of the truncated Weyl module W(k N , N ) is given
by

B(k N )= { f i0
0 f i1

1 · · · f iN−1
N−1 | (i0, . . . , iN−1) ∈ S(k N )}.

Example. (1) For N = 1 we get that S(k) is the set of 1-tuples (i0) satisfying

i0 =

0∑
j=0

1!
1− j

i j ≤ 1! k−
−3∑
`=0

1!
(1− `)!

(1− `− 2)! b` = k,

so S(k)= {0, 1, . . . , k} and B(k)= { f j
0 | j = 0, . . . , k}.

(2) For N = 4 and k = 2 we get that S(24) is the set of quadruples (i0, i1, i2, i3)

satisfying
6i0+ 8i1+ 12i2+ 24i3 ≤ 48− 2b0,

where i0 = b0 mod 4 and

B(24)= { f i0
0 f i1

1 f i2
2 f i3

3 | (i0, i1, i2, i3) ∈ S(24)}.

Proof. The proof of Theorem 4.6 proceeds by upward induction on N . The initial
step is obvious (see also the previous example) and the induction begins. So suppose
that the theorem holds for all integers less than N .

Claim. For all M < N we have

B(k M− j , (k+ 1) j )= { f i0
0 f i1

1 · · · f iM−1
M−1 | (i0, . . . , iM−1) ∈ S(k M− j , (k+ 1) j )}.

Proof of the claim. We use induction. There is nothing to prove if j = 0. Assuming
j > 0, we obtain

B(k M− j , (k+ 1) j )

= B(k M− j , (k+ 1) j−1)sh ∪ f0 B(k M− j+1, (k+ 1) j−1)

= { f i0
0 f i1

1 · · · f iM−2
M−2 | (i0, . . . , iM−2) ∈ S(k M− j , (k+ 1) j−1)}sh

∪ f0{ f i0
0 f i1

1 · · · f iM−1
M−1 | (i0, . . . , iM−1) ∈ S(k M− j+1, (k+ 1) j−1)}.
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The shift by the map sh leads to the following description:

{ f i0
0 f i1

1 · · · f iM−2
M−2 | (i0, . . . , iM−2) ∈ S(k M− j , (k+1) j−1)}sh

=

{
f i1
1 f i2

2 · · · f iM−1
M−1

∣∣
M−1∑
p=1

M !
M− p

i p ≤ M ! k−
M−4∑̀
=1

M !
(M−`)!

(M−`−2)! b`+M( j−1)(M−2)!
}

with

i1− j + 1= b1 mod M − 1,

i`+ (b`−1 mod M − `)= b` mod M − ` for `= 2, . . . ,M − 4,
and

f0{ f i0
0 f i1

1 · · · f iM−1
M−1 | (i0, . . . , iM−1) ∈ S(k M− j+1, (k+1) j−1)}

=

{
f i0+1
0 f i1

1 · · · f iM−1
M−1

∣∣
M−1∑
p=0

M !
M− p

i p ≤ M ! k−
M−4∑̀
=0

M !
(M−`)!

(M−`−2)! b`+( j−1)(M−1)!
}

=

{
f i0
0 f i1

1 · · · f iM−1
M−1

∣∣
M−1∑
p=0

M !
M− p

i p ≤ M ! k−
M−4∑̀
=0

M !
(M−`)!

(M−`−2)! b`+ j (M−1)! , i0 ≥ 1
}

with

i0− j = b0 mod M,

i`+ (b`−1 mod M − `)= b` mod M − ` for `= 1, . . . ,M − 4.

Therefore, the claim follows with

{ f i0
0 f i1

1 · · · f iM−2
M−2 | (i0, . . . , iM−2) ∈ S(k M− j , (k+1) j−1)}sh

=

{
f 0
0 f i1

1 · · · f iM−1
M−1

∣∣
M−1∑
p=0

M !
M− p

i p ≤ M ! k−
M−4∑̀
=0

M !
(M−`)!

(M−`−2)! b`+ j (M−1)!
}
.

Now it is easy to verify with Lemma 4.5 that the theorem holds. �

The proof of Theorem 4.6 gives the following.

Corollary 4.7. A PBW type basis of the truncated Weyl module W(k N + j, N ) is
given by

{ f i0
0 f i1

1 · · · f iN−1
N−1 | (i0, . . . , iN−1) ∈ S(k N− j , (k+ 1) j )}.
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Remark. The fusion product V (1)∗N is isomorphic to the truncated Weyl module
Wloc(N , N ) and also to the local Weyl module Wloc(N ). The inductively obtained
basis B(1N ) coincides with the basis of the Weyl module Wloc(N ) constructed in
[Chari and Pressley 2001]. However, we would like to emphasize that the PBW
type basis of the truncated Weyl module W(m, N ) described in Theorem 4.3 is
different from the basis described in [Chari and Venkatesh 2015, Section 6]. For
example, we have f 3

1 ∈ B(14) but f 3
1 is not contained in their basis.
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