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DIFFERENTIAL HARNACK ESTIMATES
FOR POSITIVE SOLUTIONS TO HEAT EQUATION

UNDER FINSLER–RICCI FLOW

SAJJAD LAKZIAN

We prove first order differential Harnack estimates for positive solutions of
the heat equation (in the sense of distributions) under closed Finsler–Ricci
flows. We assume suitable Ricci curvature bounds throughout the flow and
also assume that the S-curvature vanishes along the flow. One of the key
tools we use is the Bochner identity for Finsler structures proved by Ohta
and Sturm (Adv. Math. 252 (2014), 429–448).

1. Introduction

In the past few decades, geometric flows and, more notably among them, the Ricci
flow have proved very useful in attacking long standing geometry and topology
questions. One important application is finding the so-called round (of constant
curvature, Einstein, soliton, etc.) metrics on manifolds by homogenizing a given
initial metric.

There is also a hope that similar methods can be applied in the Finsler setting.
One might hope to find an answer for, for instance, Professor Chern’s question
about the existence of Finsler–Einstein metrics on every smooth manifold by using
a suitable geometric flow resembling the Ricci flow.

In the Finsler setting, there are notions of Ricci and sectional curvatures, and
Bao [2007] has proposed an evolution of Finsler structures that in essence shares
a great resemblance with the Ricci flow of Riemannian metrics. The flow Bao
suggests is ∂F2/∂t =−2F2 R where R = (1/F2)Ric. In terms of the symmetric
metric tensor associated with F and Akbarzadeh’s Ricci tensor, this flow takes the
form of ∂gij/∂t =−2 Ricij which is the familiar Ricci flow.

The notion of Finsler–Ricci flow is very recent and very little has been done
about it. Some partial results regarding the existence and uniqueness of such flows
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are obtained in [Azami and Razavi 2013]. Also, the solitons of this flow have
been studied in [Bidabad and Yarahmadi 2014]. Our focus in these notes will be
to consider a positive solution of the heat equation (in the sense of distributions)
under Finsler–Ricci flow and prove first order differential Harnack estimates that
are similar to those in the Riemannian case (see [Liu 2009; Sun 2011]). The key
tools we use are the Bochner identity for Finsler metrics (pointwise and in the sense
of distributions) proven by Ohta and Sturm [2014] and, as is customary in such
estimates, the maximum principle.

We should mention that, in this paper, we are not dealing with the existence
and Sobolev regularity of such solutions (which is very important and extremely
delicate — for example, in the static case, solutions will be C2 if and only if the
structure is Riemannian). For existence and regularity in the static case see [Ohta
and Sturm 2009]. Our main theorem is the following.

Theorem 1.1. Let (Mn, F(t)), t ∈ [0, T ] be a closed Finsler–Ricci flow. Suppose
there is a real number K ∈ R and positive real numbers K1 and K2 such that, for
all t ∈ [0, T ],

(i) −K1 ≤ (Ricij (v))
n
i, j=1 ≤ K2 as quadratic forms on Tx M for all v ∈ Tx M \ {0},

in any coordinate system, {∂/∂xi }, that is orthonormal with respect to gv , and

(ii) S-curvature vanishes (see Section 2.2.7).

Let u(x, t) ∈ L2([0, T ], H 1(M)) ∩ H 1([0, T ], H−1(M)) be a positive global
solution (in the sense of distributions) of the heat equation under Finsler–Ricci flow;
i.e., for any test function φ ∈ C∞(M) and for all t ∈ [0, T ],

(1)
∫

M
φ∂t u(t, · ) dm =−

∫
M

Dφ(∇u(t, · )) dm dt.

Then, u satisfies

(2) F2(∇(log u)(t, x))− θ∂t(log u)(t, x)≤
nθ2

t
+

nθ3C1

θ − 1
+ n3/2θ2

√
C2,

for any θ > 1 and where

(3) C1 = K1 and C2 =max{K 2
1 , K 2

2 }.

Remark 1.2. Our results can be applied to any Finsler–Ricci flow of Berwald
metrics on closed manifolds, since the S-curvature vanishes for Berwald metrics
(for example, see [Ohta 2011]).

We will note that it might be possible to obtain stronger results with fewer
curvature bound conditions by using different methods such as Nash–Moser iteration
(as is done by Xia [2014] for harmonic functions in the static case).
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Integrating the differential Harnack inequalities, in a standard manner, leads to
Harnack-type inequalities.

Corollary 1.3. Let (M, F(t)), t ∈ [0, T ] be as in Theorem 1.1. Then for any two
points (x, t1), (y, t2) ∈ M × (0, T ] with t1 < t2, we get
(4)

u(x, t1)≤ u(y, t2)
(

t2
t1

)2nε

exp
{∫ 1

0

εF2(γ ′(s))|τ
2(t2− t1)

ds+C(n, ε)(t2−t1)(C1+
√

C2)

}
,

whenever ε>1/2, and for C depending on n and ε only, and where the dependencies
of C1 and C2 on our parameters are as in Theorem 1.1. Here γ is a curve joining
x and y, with γ (1) = x and γ (0) = y, and F(γ ′(s))|τ is the speed of γ at time
τ = (1− s)t2+ st1.

The organization of this paper is as follows: in Section 2, we first briefly review
some facts and results about differential Harnack estimates in the Riemannian setting
and about Finsler geometry; in Section 3, we present lemmas and computations
that we need in order to obtain a useful parabolic partial differential inequality; and
in Section 4, we will complete the proof of our main theorem.

2. Background

2.1. Differential Harnack estimates for heat equations in Riemannian Ricci flow.
The Ricci flow equation, ∂g/∂t =−2 Ric, was first proposed by Richard Hamilton
in his seminal paper [1982]. Ricci flow is a heat-type quasilinear partial differential
equation but, as is well-known, it enjoys a short-time existence and uniqueness
theorem (see [Hamilton 1982]) and has been the key tool in proving the Poincaré
and geometrization conjectures.

The gradient estimates for solutions of parabolic equations under Ricci flow are
a very important part of Ricci flow theory. Perelman in his groundbreaking work
[2002] proves such estimates for the conjugate heat equation; he then benefited from
these estimates in the analysis of his W-entropy functional. Since then there have
been many important results in this direction (for both heat equation and conjugate
heat equation) in, for example, [Kuang and Zhang 2008; Bailesteanu et al. 2010;
Cao et al. 2013; Cao and Hamilton 2009; Cao 2008], to name a few.

Since our proof, in spirit, is closer to ones in Liu [2009] and Sun [2011], we
will only mention their result without commenting on the other literature in this
direction. Their estimates for positive solutions of the heat equation under a closed
Ricci flow can be stated as follows.

Theorem [Liu 2009; Sun 2011]. Let (M, g(t)); t ∈ [0, T ] be a closed Ricci flow
solution with −K1 ≤ Ric ≤ K2 (K1, K2 > 0) along the flow. For u(x, t), a posi-
tive solution of the heat equation (1g(t) − ∂t)u(x, t) = 0, one has the first order
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gradient estimate

(5)
|∇u(x, t)|2

u2(x, t)
− θ

∂t u(x, t)
u(x, t)

≤
nθ2

t
+

nθ3K1

θ − 1
+ n

3
2 θ2(K1+ K2),

where θ > 1.

Their method of proof is to take f = log u and

(6) α := t
(
|∇u(x, t)|2

u2(x, t)
− θ

∂t u(x, t)
u(x, t)

)
= t (|∇ f |2− θ∂t f )

and apply the maximum principle to the parabolic partial differential inequality

(1g(t)−∂t)α+2D f (∇α)≥−
α

t
+

t
n
(|∇ f |2−∂t f )2−2θK1t |∇ f |2−tθ2n2(K1+K2)

2.

This is the method that we will adopt throughout the paper.

2.2. Finsler structures.

2.2.1. Finsler metric. Let M be a C∞-connected manifold. A Finsler structure
on M consists of a C∞ Finsler norm F :TM→R satisfying the following conditions:

(F1) F is C∞ on TM \ 0.

(F2) F restricted to the fibers is positively 1-homogeneous.

(F3) For any nonzero tangent vector y ∈ TM , the approximated symmetric metric
tensor defined by

(7) gy(u, v) :=
1
2
∂2

∂s∂t
F2( y+ su+ tv)|s=t=0

is positive definite.

2.2.2. Cartan tensor. One way to measure the nonlinearity of a Finsler structure is
to introduce the so-called Cartan tensor defined by

(8) C y : ⊗
3TM→ R, C y(u, v,w) :=

1
2

d
dt
[gy+tw(u, v)].

2.2.3. Legendre transform. In order to define the gradient of a function, we need
the Legendre transform, L∗ : T ∗M→ TM . For ω ∈ T ∗M , let L∗(ω) be the unique
vector y ∈ TM such that

(9) ω( y)= F∗(ω)2 and F( y)= F∗(ω),

where F∗ is the dual norm to F .
For a smooth function u : M→ R, the gradient of u is ∇u(x) := L∗(Du(x)).
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2.2.4. Geodesic spray, Chern connection and curvature tensor. It is easy to see
that the geodesic spray in the Finsler setting is of the form G = yi∂/∂xi −

2Gi (x, y)∂/∂yi , where

(10) Gi (x, y)=
1
4

gik
y

{
2
∂(gy)jk

∂xl
−
∂(gy) jl

∂xk

}
y j yl .

The nonlinear connection that we will be using in this work is the Chern connec-
tion, the connection coefficients of which are given by

(11) 0i
jk = 0

i
k j :=

1
2

gil
{
∂gl j

∂xk
−
∂gjk

∂xl
+
∂gkl

∂xj
−
∂gl j

∂yr Gr
k +

∂gjk

∂yr Gr
l −

∂gkl

∂yr Gr
j

}
,

where Gi
j := ∂Gi/∂y j and g is in fact gy.

For Berwald metrics, the geodesic coefficients Gi are quadratic in terms of y
(by definition) which immensely simplifies the formula for connection coefficients.
In fact for Berwald metrics we have 0i

jk = ∂
2Gi/∂y j∂yk .

Similar to the Riemannian setting, one uses the Chern connection (and the
associated covariant differentiation) to define the curvature tensor

(12) RV (X, Y )Z := [∇V
X ,∇

V
Y ]Z −∇

V
[X,Y ]Z ,

which, of course, depends on a nonzero vector field V .

2.2.5. Flag and Ricci curvatures. Flag curvature is defined similar to the sectional
curvature in the Riemannian setting. For a fixed flag pole v ∈ Tx M and for w ∈ Tx M ,
the flag curvature is defined by

(13) Kv(v,w) :=
gv(Rv(v,w)w, v)

gv(v, v)gv(w,w)− gv(v,w)2
.

The Ricci curvature is then the trace of the flag curvature, i.e.,

(14) Ric(v) := F2(v)

n−1∑
i=1

Kv(v, ei ),

where {e1, . . . , en−1,
v

F(v)} constitutes a gv-orthonormal basis of Tx M .

2.2.6. Akbarzadeh’s Ricci tensor. Akbarzadeh’s Ricci tensor is defined by

(15) Ricij :=
∂2

∂yi∂y j

(
Ric
2

)
.

It can be shown that the scalar Ricci curvature, Ric, and Akbarzadeh’s Ricci
tensor, Ricij , have the same geometrical implications. For further details regarding
this tensor, see [Bao and Robles 2004].



452 SAJJAD LAKZIAN

2.2.7. S-curvature. Associated with any Finsler structure, there is one canonical
measure, called the Busemann–Hausdorff measure, which is given by

(16) dVF := σF (x) dx1 ∧ · · · ∧ dxn,

where σF (x) is the volume ratio

(17) σF (x) :=
vol(BRn (1))

vol( y ∈ Tx M : F( y) < 1)
.

The set whose volume appears in the denominator of (17) is called the indicatrix,
and there is often no known way to express its volume in terms of F .

The S-curvature, which is another measure of nonlinearity, is then defined by

(18) S( y) :=
∂Gi

∂yi (x, y)− yi ∂

∂xi
(ln σF (x)).

For more details, see [Shen 2004], for example.

2.2.8. Hessian, divergence and Laplacian. The Hessian in a Finsler structure is
defined by

(19) Hess(u)(X, Y ) := XY (u)−∇∇u
X Y (u)= g∇u(∇

∇u
X ∇u, Y ).

As usual, for a twice differentiable function u,

(20) Hess(u)
(
∂

∂xi
,
∂

∂xj

)
=

∂2u
∂xi∂xj

−0k
ij
∂u
∂xk

For a smooth measureµ=e−9dx1∧· · ·∧dxn and a vector field V , the divergence
is defined by

(21) divµV :=
n∑

i=1

(
∂Vi

∂xi
− Vi

∂9

∂xi

)
.

Now, using this divergence, one can define the distributional Laplacian of a
function u ∈ H 1(M) by 1u := divµ(∇u), i.e.,

(22)
∫

M
φ1u dµ := −

∫
M

Dφ(∇u) dµ,

for φ ∈ C∞(M).
The Finsler distributional Laplacian is nonlinear but fortunately there is a way to

relate it to the trace of the Hessian by adding an S-curvature term. Indeed, one has

(23) 1u = tr∇u Hess(u)− S(∇u).

For a proof of (23), see for instance [Wu and Xin 2007].



DIFFERENTIAL HARNACK ESTIMATES UNDER FINSLER–RICCI FLOW 453

2.3. Weighted Ricci curvature and Bochner–Weitzenböck formula. The notion
of the weighted Ricci curvature, RicN , of a Finsler structure equipped with a
measure µ was introduced by Ohta [2009]. Take a unit vector v ∈ Tx M and let
γ : [−ε,+ε] → M be a short geodesic whose velocity at time t = 0 is γ̇ (0) = v.
Decompose the measure µ along γ with respect to the Riemannian volume form;
i.e., let µ= e−9dvolγ̇ . Then

Ricn(v) :=

{
Ric(v)+ (9 ◦ γ )′′(0) if (9 ◦ γ )′(0)= 0,
−∞ otherwise,

(24)

RicN (v) := Ric(v)+ (9 ◦ γ )′′(0)−
(9 ◦ γ )′(0)2

N − n
when n < N <∞,(25)

Ric(v) := Ric(v)+ (9 ◦ γ )′′(0).(26)

Also RicN (λv) := λ
2 RicN (v) for λ≥ 0.

It is proven in [Ohta 2009] that the curvature bound RicN ≥ KF2 is equivalent
to the Lott–Villani–Sturm CD(K , N ) condition.

Using the weighted Ricci curvature bounds, Ohta and Sturm [2014] proved the
Bochner–Weitzenböck formulae (both pointwise and integrated versions) for Finsler
structures. For u ∈ C∞(M), the pointwise version of the identity and inequality are

1∇u
(

F2(∇u)
2

)
− D(1u)(∇u)= Ric∞(∇u)+‖∇2u‖2HS(∇u) (identity),(27)

1∇u
(

F2(∇u)
2

)
− D(1u)(∇u)≥ RicN (∇u)+

(1u)2

N
(inequality).(28)

3. Estimates

In this section we will gather all the required lemmas and estimates that will be
needed to apply the maximum principle.

Evolution of the Legendre transform. Since in the Finsler setting the gradient
is nonlinear and depends on the Legendre transform, we will need to know the
evolution of the Legendre transform under Finsler–Ricci flow.

Let (M, F) be a Finsler structure evolving under Finsler–Ricci flow. Then the
inverse of the Legendre transform is defined by

(29) (L∗)−1
: TM→ T ∗M, (L∗)−1(x, y)= (x, p), where pi = gij (x, y)y j .

To explicitly formulate the Legendre transform, we have, for any given ω ∈ Tx
∗M ,

that L∗(ω)= y ∈ Tx M , where y is the unique solution to the nonlinear system

(30) g(x, y)k1 · y1
+ · · ·+ g(x, y)kn · yn

= ωk, for k = 1, . . . , n,
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or, in the matrix form,

(31) g( y) y = ω.

Lemma 3.1. Let (M, F(t)) be a Finsler structure evolving by Finsler–Ricci flow.
Then the Legendre transform L∗ : T ∗M→ TM satisfies

(32) ∂tL∗ = 2 Rici
j L
∗
;

i.e., for any fixed 1-form ω with L∗(ω)= y = yi∂/∂xi ∈ TM , we have

(33) ∂t yi
= 2 Rici

r yr ,

where Rici
r := gij Ricjr .

Proof. Fix ω and differentiate both sides of (31) with respect to t to get

(34) [∂t g( y)] y+ g( y) ∂t y = 0.
Therefore,

(35) ∂t y =−g( y)−1 ∂t g( y) y.

Expanding the right-hand side of (35), we have, for every i ,

(36) ∂t yi
=−g( y)ij (∂t g( y))jr yr

= 2g( y)ij Ricjr ( y)yr
− g( y)ij

(
∂gjr

∂yk ∂t yk
)

yr

= 2 Rici
r ( y)yr .

Notice that the second term in the second line of (36) vanishes by Euler’s theorem.
�

Evolution of F2(∇ f ). One crucial step in the proof of the gradient estimates is to
be able to estimate the evolution of the term F2(∇ f ).

Lemma 3.2. Let (M, F(t)) be a time-dependent Finsler structure. Then

(37) ∂t [F2(∇ f )] = 2gij (D f )[∂t f ]i fj + [∂t gij
](D f ) fi fj .

Proof. Simple differentiation gives

(38) ∂t [F2(∇ f )] = ∂t [F∗(D f )2]

= ∂t [gij (D f ) fi fj ]

= 2gij (D f )[∂t f ]i fj + ∂t [gij (D f )] fi fj .

Expanding the second term of the last line in (38), we have

(39) ∂t [gij (D f )] fi fj = [∂t gij
](D f ) fi fj +

∂gij

∂yk ∂t yk(D f ) fi fj .
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Using Euler’s theorem, the second term of the right-hand side of (39) vanishes. �

Lemma 3.3. Suppose F is evolving by the Finsler–Ricci flow equation. Then

(40) ∂t [F2(∇ f )] = 2D(∂t f )(∇ f )+ 2 Ricij(D f ) fi fj .

Proof. It is standard to see that under Finsler–Ricci flow, we have

(41) ∂t gij
= 2 Ricij ,

where, as before, Ricij
:= gir g js Ricrs . �

4. Proof of main theorem

In this section we will complete the proof of our main theorem. Throughout the
rest of these notes, we consider a solution u of the heat equation. The Laplacian,
gradient and Legendre transform are all with respect to V := ∇u and are valid on
Mu := {x ∈ M : ∇u(x) 6= 0}.

Let σ(t, x)= t∂t f (t, x) where f = log u. Then we have g∇ f = gV . Let

(42) α(t, x) := t{F2(∇ f (t, x))− θ ∂t f (t, x)} = t F2(∇ f (t, x))− θσ.

Lemma 4.1. In the sense of distributions, σ(t, x) satisfies the parabolic differential
equality

(43) 1σ − ∂tσ +
σ

t
+ 2Dσ(∇ f )= t{−2 Ricij(∇ f ) fi fj − 2(Ric)kl(∇ f ) fkl}.

Proof. We first note that, for any nonnegative test function φ ∈ H 1([0, T ] × M)
whose support is included in the domain of the local coordinate,

(44)
∂t(D(tφ)(∇ f ))= D(∂t(tφ))(∇ f )+ D(tφ)(∇(∂t f ))+ 2(Ric)ij(∇ f )

∂(tφ)
∂xi

∂ f
∂xj

.

Indeed,

(45) ∂t(D(tφ)(∇ f ))

= D(∂t(tφ))(∇ f )+ D(tφ)(∂t(L∗(D f ))

= D(∂t(tφ))(∇ f )+ D(tφ)(∂t(L∗)(D f )+L∗(D∂t f ))

= D(∂t(tφ))(∇ f )+ D(tφ)(∂t(L∗)(D f ))+ D(tφ)(L∗(D∂t f ))

= D(∂t(tφ))(∇ f )+ D(tφ)(∇(∂t f ))+ 2gs j (Ric)is(∇ f )
∂(tφ)
∂xi

∂ f
∂xj

= D(∂t(tφ))(∇ f )+ D(tφ)(∇(∂t f ))+ 2(Ric)ij(∇ f )
∂(tφ)
∂xi

∂ f
∂xj

.
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That is,

(46)
−D(tφ)(∇(∂t f ))=−∂t(D(tφ)(∇ f ))+D(∂t(tφ))(∇ f )+2(Ric)ij(∇ f )

∂(tφ)
∂xi

∂ f
∂xj

.

Multiplying the left-hand side of (43) by φ, integrating and then substituting
(46), we get

(47) A=
∫ T

0

∫
M

{
−Dφ(∇σ)+ ∂tφ · σ +

φσ

t
+ 2φDσ(∇ f )

}
dm dt

=

∫ T

0

∫
M

{
−D(tφ)(∇(∂t f ))+ ∂t(tφ)∂t f + 2tφD(∂t f )(∇ f )

}
dm dt

=

∫ T

0

∫
M

{
D(∂t(tφ))(∇ f )+ ∂t(tφ)(1 f + F2(∇ f ))

+ 2(Ric)ij(∇ f )
∂(tφ)
∂xi

∂ f
∂xj
+ 2tφD(∂t f )(∇ f )

}
dm dt.

Using the estimates we have obtained for ∂t [F(∇ f )2] in Lemmas 3.2 and 3.3,
we arrive at

(48) A=
∫ T

0

∫
M

{
D(∂t(tφ))(∇ f )+ ∂t(tφ)(1 f )+ ∂t(tφ)(F2(∇ f ))

+2(Ric)ij(∇ f )
∂(tφ)
∂xi

∂ f
∂xj
+ 2tφD(∂t f )(∇ f )

}
dm dt

=

∫ T

0

∫
M

{
∂t(tφ)(F2(∇ f ))+ 2(Ric)ij(∇ f )

∂(tφ)
∂xi

∂ f
∂xj
+ tφ∂t [F(∇ f )2]

−2tφ Ricij(∇ f ) fi fj

}
dm dt

=

∫ T

0

∫
M

tφ
{
−2 Ricij(∇ f ) fi fj − 2 Ricij(∇ f ) fij

}
dm dt.

Notice that Euler’s theorem has been used in the last line of (48). �

Now we can compute a parabolic partial differential inequality for α(t, x) with
a similar left-hand side.

Lemma 4.2. In the sense of distributions, α(t, x) satisfies

(49) 1Vα+ 2Dα(∇ f )− ∂tα+
α

t
= B,

where

B = θ(2t Ricij(∇ f ) fi fj + 2t Rickl(∇ f ) fkl)

+ 2t Ric(∇ f )+ 2t‖∇2 f ‖2HS(∇ f )− 2t Ricij(∇ f ) fi fj .
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Proof. For a nonnegative test function φ, one computes

(50)
∫ T

0

∫
M

{
−Dφ(∇α)+ ∂tφα+

φα

t
+ 2φDα(∇ f )

}
dm dt

=−θ A+
∫ T

0

∫
M

{
−t Dφ

(
∇(F2(∇ f ))

)
+ ∂tφ(t F2(∇ f ))

+φ(F2(∇ f ))+ 2tφD(F2(∇ f ))(∇ f )
}

dm dt

=−θ A+
∫ T

0

∫
M

{
−t Dφ

(
∇(F2(∇ f ))

)
−φ · ∂t

(
t (F2(∇ f ))

)
+φ(F2(∇ f ))+ 2tφD(F2(∇ f ))(∇ f )

}
dm dt

=−θ A+
∫ T

0

∫
M

{
−t Dφ

(
∇(F2(∇ f ))

)
−φ ·

(
F2(∇ f )+ t∂t(F2(∇ f ))

)
+φ(F2(∇ f ))+ 2tφD(F2(∇ f ))(∇ f )

}
dm dt

=−θ A+
∫ T

0

∫
M

{
−t Dφ

(
∇(F2(∇ f ))

)
−φ · t∂t(F2(∇ f ))

+ 2tφD(F2(∇ f ))(∇ f )
}

dm dt,

where A is as in (48).
Again using the estimates for ∂t [F(∇ f )2] (as in Lemmas 3.2 and 3.3), we arrive at

(51)
∫ T

0

∫
M

{
−Dφ(∇α)+ ∂tφ ·α+

φα

t
+ 2φDα(∇ f )

}
dm dt

=−θ A+
∫ T

0

∫
M

{
−t Dφ

(
∇(F2(∇ f ))

)
−φ · t∂t(F2(∇ f ))

+ 2tφD(F2(∇ f ))(∇ f )
}

dm dt

=−θ A+
∫ T

0

∫
M

{
−t Dφ

(
∇(F2(∇ f ))

)
− 2tφD(∂t f )(∇ f )

− 2tφ Ricij(∇ f ) fi fj + 2tφD(F2(∇ f ))(∇ f )
}

dm dt

=−θ A+
∫ T

0

∫
M

{
−t Dφ

(
∇(F2(∇ f ))

)
− 2tφD(1 f )(∇ f )

− 2tφD(F2(∇ f ))(∇ f )− 2tφ Ricij fi fj

+ 2tφD(F2(∇ f ))(∇ f )
}

dm dt

=−θ A+
∫ T

0

∫
M

{
−t Dφ

(
∇(F2(∇ f ))

)
− 2tφD(1 f )(∇ f )− 2tφ Ricij(∇ f ) fi fj

}
dm dt.
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By applying the Bochner–Weitzenböck formula (proven in [Ohta and Sturm
2014]; see also Section 2.3) and noticing that S= 0 implies Ric∞(v)= Ric(v), we
can continue as follows:

−θ A+
∫ T

0

∫
M

{
−t Dφ

(
∇(F2(∇ f ))

)
− 2tφD(1 f )(∇ f )− 2tφ Ricij fi fj

}
dm dt

=−θ A+
∫ T

0

∫
M
φ
{
2t Ric(∇ f )+ 2t‖∇2 f ‖2HS(∇ f )− 2t Ricij(∇ f ) fi fj

}
dm dt.

Now, substituting A from (47), we have

B = θ(2t Ricij(∇ f ) fi fj + 2t Rickl(∇ f ) fkl)+ 2t Ric(∇ f )

+ 2t‖∇2 f ‖2HS(∇ f )− 2t Ricij(∇ f ) fi fj . �

Proof of Theorem 1.1. Assume the curvature bounds given in the statement of
Theorem 1.1, and assume that the S-curvature vanishes. The constants obtained
below all depend on our curvature bounds and the ellipticity of the flow.

Let’s start with B(t, x):

B(t, x)= θ(2t Ricij(∇ f ) fi fj + 2t Rickl(∇ f ) fkl)+ 2t Ric(∇ f )

+ 2t‖∇2 f ‖2HS(∇ f )− 2t Ricij(∇ f ) fi fj .

Young’s inequality tells us that

(52) |Rickl fkl | ≤
θ

2
(Rickl)2+

1
2θ

f 2
kl,

and therefore

(53) 2θ t |Rickl fkl | ≤ tθ2(Rickl)2+ t f 2
kl .

Pick a normal coordinate system with respect to g∇ f , with ∇ f (x) = ∂/∂x1 as
well as 01

ij (∇ f (x))= 0 for all i , j . Then

(54) Ricij(∇ f )= Ricij (∇ f ), ‖∇2 f ‖2HS(∇ f ) =
∑

f 2
ij ,

n∑
i=1

fii =1 f (x),

and consequently

(55) B(t, x)≥ 2tθ Ricij (∇ f ) fi fj − t
∑

θ2(Rickl)
2
− t

∑
f 2
kl

+ 2t Ric(∇ f )+ 2t‖∇2 f ‖2HS(∇ f )− 2t Ricij (∇ f ) fi fj

≥−2tθK1 F2(∇ f )− 2t K1 F2(∇ f )+ t
∑

f 2
ij

− tθ2n2C2+ 2t K1 F2(∇ f ).
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On the other hand, one computes

(56)
∑

f 2
ij ≥

∑
f 2
ii ≥

1
n

(∑
fii

)2
=

1
n
(1 f )2.

Hence,

(57) t
∑

f 2
ij ≥

t
n
(1 f )2.

Putting all the above estimates together and noting that θ > 1, we get

B(t, x)≥
t
n
(1 f )2− 2tθK1 F2(∇ f )− 2t K1 F2(∇ f )− tθ2n2C2+ 2t K1 F2(∇ f )

≥
t
n
(1 f )2− 2tθK1 F2(∇ f )− tθ2n2C2.

Replacing the term 1 f with (F(∇ f )2− ∂t f ), we get the inequality

(58) B(t, x)≥
t
n
(F(∇ f )2− ∂t f )2− 2tθC1 F2(∇ f )− tθ2n2C2,

where

C1 = K1,(59)

C2 =max{K 2
1 , K 2

2 }.(60)

This means that

(61) 1Vα+ 2Dα(∇ f )− ∂tα

≥−
α

t
+

t
n
(F(∇ f )2− ∂t f )2− 2tθC1 F2(∇ f )− tθ2n2C2.

This inequality is exactly of the form that appears in [Liu 2009], and a computa-
tion similar to the one at the end of the proof of [Liu 2009, Theorem 2] (using the
quadratic formula and maximum principle) gives the desired result. For the sake of
clarity, we will repeat the computation here.

Let

(62) ᾱ := α− t
nθ3C1

(θ − 1)
− tn3/2θ2

√
C2.

Suppose the maximum of ᾱ is attained at (x0, t0) and suppose ᾱ(x0, t0) > nθ2

(which implicitly implies t0 > 0). Therefore, at (x0, t0), we have

(63) 0≥ (1− ∂t)ᾱ ≥ (1− ∂t)α.

Let w := F2(∇ f ) and z := ∂t f . Then in terms of w and z we have

(64) 0≥−
α

t0
+

t0
n
(w− z)2− 2t0θC1w− t0θ2n2C2.
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By the quadratic formula, we get

(65)
t0
n
(w− z)2− 2t0θC1w

=
t0
n

(
1
θ2 (w− θ z)2+

(
θ − 1
θ

)2

w2
− 2θnC1w+ 2

(
θ − 1
θ2 w

)
(w− θ z)

)
≥

t0
n

(
1
θ2 (w− θ z)2−

θ4n2C2
1

(θ − 1)2
+ 2

(
θ − 1
θ2 w

)
(w− θ z)

)
.

Therefore,

(66) 0≥
t0

nθ2

(
α

t0

)2

−
α

t0
−

nθ4C2
1

(θ − 1)2
t0− t0θ2n2C2+

2t0
n
θ − 1
θ2 F2(∇ f )

(
α

t0

)
≥

t0
nθ2

(
α

t0

)2

−
α

t0
−

nθ4C2
1

(θ − 1)2
t0− t0θ2n2C2.

Using the quadratic formula one more time, (66) implies that

(67)
α

t0
≤

nθ2

t0
+

nθ3C1

θ − 1
+ n

3
2 θ2
√

C2,

which in turn implies

(68) ᾱ(x0, t0)≤ nθ2,

and this is a contradiction. Therefore,

(69) F2(∇(log u)(t, x))− θ∂t(log u)(t, x)≤
nθ2

t
+

nθ3C1

(θ − 1)
+ n3/2θ2

√
C2,

with C1 and C2 as in (59) and (60). �

Proof of Corollary 1.3. From Theorem 1.1, we know that

(70) F2(∇(log u)(t, x))− θ∂t(log u)(t, x)≤
nθ2

t
+C(n, θ)(C1+

√
C2).

Let l(s) := ln u(γ (s), τ (s))= f (γ (s), τ (s)). Then

(71)
∂l(s)
∂s
= (t2− t1)

(
D f (γ̇ (s))

t2− t1
− ∂t f

)
≤ (t2− t1)

(
F(∇ f )F(γ̇ )

t2− t1
− ∂t f

)
≤ (t2− t1)

(
εF2(γ̇ )|τ

2(t2− t1)2
+

1
2ε

F2(∇ f )− ∂t f
)

≤
εF2(γ̇ )|τ

2(t2− t1)
+ (t2− t1)

(
2nε
τ
+C(n, ε)(C1+

√
C2)

)
.
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Integrating this inequality gives

ln
u(x, t1)
u(y, t2)

=

∫ 1

0

∂l(s)
∂s

ds

≤

∫ 1

0

εF2(γ̇ )|τ

2(t2− t1)
ds+C(n, ε)(t2− t1)(C1+

√
C2)+ 2εn ln

t2
t1
. �
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