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ON THE ONE-ENDEDNESS OF GRAPHS OF GROUPS

NICHOLAS TOUIKAN

We give a technical result that implies a straightforward necessary and suffi-
cient condition for a graph of groups with virtually cyclic edge groups to be
one-ended. For arbitrary graphs of groups, we show that if their fundamen-
tal group is not one-ended, then we can blow up vertex groups to graphs of
groups with simpler vertex and edge groups. As an application, we general-
ize a theorem of Swarup to decompositions of virtually free groups.

1. Introduction

A finitely generated group G = 〈S〉 is said to be one-ended if the corresponding
Cayley graph Cay(G, S) cannot be separated into two or more infinite components
by removing a finite subset. Otherwise G is said to be many-ended. It is a classical
result due to Stallings [1971] that a many-ended group decomposes as either an
amalgamated free product or an HNN extension over a finite group.

Given the Bass–Serre correspondence between group actions on simplicial trees
and their decompositions, or splittings, as (fundamental groups of) graphs of groups
(see [Serre 1980]), a finitely generated group G is many-ended if and only if it acts
minimally, without inversions, and cocompactly on a simplicial tree T in which for
some edge e the stabilizer Ge is finite.

It is often the case that a graph of groups with many-ended vertex groups is
itself one-ended. For example, the fundamental group of a closed surface is one-
ended but it is an amalgamated free product of free groups, which are many-ended.
Theorem 3.1, stated and proved in Section 3, essentially characterizes one-ended
graphs of groups. This result is rather technical, but has many “nontechnical”
corollaries which we now present.

We say that G is one-ended relative to a collection H of subgroups if for any
minimal nontrivial G-tree T with finite edge stabilizers, there exists a subgroup
H ∈H that acts without a global fixed point. Otherwise G is said to be many-ended
relative to H. In this case, G admits a nontrivial splitting as a graph of groups relative
to H (i.e., groups in H are conjugate into vertex groups) with finite edge groups.
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Corollary 1.1. If G1 is one-ended relative to a collection H1 ∪ {C1}, and G2 is
one-ended relative to H2 ∪ {C2} with C1 ≈ C2 virtually cyclic groups, then any free
product with amalgamation of the form

G1 ∗C1=C2 G2

is one-ended relative to H1 ∪H2.

In the case of graphs of free groups with cyclic edge groups, this corollary
(actually its natural generalization, see Corollary 1.5) is proved in [Wilton 2012,
Theorem 18] and implied by results in [Diao and Feighn 2005]. Corollary 1.1
is false if we do not require the amalgamating subgroups to be virtually cyclic
or, synonymously, two-ended. Nonetheless, we can still understand the failure of
one-endedness of general graphs of groups.

Definition 1.2. A G-equivariant map S → T of simplicial G-trees is called a
collapse if T is obtained by identifying some edge orbits of S to points. In this
case we also say that S is obtained from T by a blow up. We call the preimage
qTv ⊂ S of a vertex v ∈ T its blowup.

Definition 1.3. We write H 4 G to signify that G splits essentially as a graph of
groups with finite edge groups and H is a vertex group. A group G is accessible if
it admits no infinite proper chains

G � G1 � G2 � . . . .

For example, if F is a free group and H 4 F , then H is a free factor of F . This
next theorem, a formal consequence of Theorem 3.1, states that if a graph of groups
with finitely generated infinite edge group is not one-ended, then we can blow up
some of its vertex groups.

Theorem 1.4. Suppose that T is a G-tree (in which a collection of subgroups H

act elliptically) with infinite edge groups, and that G is not one-ended relative to
H. Then there is a vertex v ∈ Vertices(T ) and an edge e ∈ Edges(T ) with v ∈ e
such that the orbit of v can be blown up with Gv acting minimally on the nontrivial
blowups qTv satisfying the following properties:

• Ge ≤ Gv is the stabilizer of a vertex in qTv.

• The edge groups of qTv are conjugate in Gv to the vertex groups of an essential
amalgamated free product or HNN decomposition of Ge with a finite edge
group.

In particular, in the tree S obtained by blowing up the orbit of v in T to qTv, each
vertex or edge stabilizer of S is 4 a vertex or edge stabilizer of T , and at least one
of these inclusions is strict. Furthermore the groups in H act elliptically on S.
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We note that blowing up a G-tree is equivalent to refining a graph of groups.
If G acts on a tree with accessible vertex and edge stabilizers then the order ≺
actually tells us that the vertex groups of the blowup given by Theorem 1.4 have
lower complexity, in the sense that the process of successively blowing up vertex
groups in this manner must terminate in finitely many steps.

Accessible groups, in turn, are abundant. Linnell [1983] showed that if there is a
global bound on the order of finite order elements in a finitely generated group, then
the group is accessible. Dunwoody [1985] showed that finitely presented groups
are accessible. We now use Theorem 1.4 to give a proof of Corollary 1.1.

Proof of Corollary 1.1. We show the contrapositive. Let T be the Bass–Serre tree
dual to the splitting G = G1 ∗C G2, and suppose that G is not one-ended relative to
H=H1 ∪H2. Note that any decomposition of a virtually cyclic group as an HNN
extension or an essential amalgamated free product must have finite edge groups. It
follows that in all cases, by Theorem 1.4, some orbit of vertices Gv can be blown
up to minimal gGvg−1-trees with finite edge groups. This implies that one of the
vertex groups Gi fixing some vertex v ∈ Vertices(T ) acts minimally on qTv with
finite edge stabilizers, with

Hi = {H ∈H | H ∩Gi 6= {1}}

and Ci = Ge for some v ∈ e ∈ Edges(T ) acting elliptically. It follows that Gi is
not one-ended relative to Hi ∪ {C}. �

This proof is easily adapted to give:

Corollary 1.5. The fundamental group G of a graph of groups with two-ended
edge groups is one-ended (relative to a collection H of subgroups) if and only if
every vertex group Gv is one-ended relative to the incident edge groups (and the
collection {H g

∩Gv | g ∈ G, H ∈H}).

Using the full strength of Theorem 3.1, we also generalize a result of Swarup
[1986] on the decomposition of free groups to virtually free groups. This result was
already partially generalized by Cashen [2012] to decompositions of virtually free
groups with virtually cyclic edge groups.

Theorem 1.6. Let G be finitely generated and virtually free.

(1) If G splits as an amalgamated free product G= A∗C B with C finitely generated
and infinite, then there is some C1 4 C such that C1 4 A or C1 4 B.

(2) If G splits as an HNN extension G = A∗C,t with C finitely generated and
infinite, then there is an infinite subgroup C1 4 C and a splitting 1 of A as
a graph of groups with finite edge groups relative to {C1, t−1C1t} such that
either C1 or t−1C1t is a vertex group of 1.
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Unlike in Swarup’s proof, we do not use homological methods. Our proof is more
along the lines of the geometric arguments found in [Wilton 2012; Louder 2008;
Bestvina and Feighn 1994; Diao and Feighn 2005] using graphs of spaces X with
π1(X)= G. The presence of torsion, however, can make the attaching maps in the
graphs of spaces difficult to describe. By using the more abstract G-cocompact core
of the product of two G-trees [Guirardel 2005], we sidestep these difficulties. The
core has been used before to study pairs of group splittings. In particular, Fujiwara
and Papasoglu [2006] use it to show the existence of QH subgroups for one-ended
groups that have hyperbolic-hyperbolic pairs of slender splittings; this is the main
technicality in constructing group theoretical JSJ decompositions. Although it could
be noted that the action of our group on the core gives rise to a G-orbihedron à
la [Haefliger 1991], we will not need this machinery; in fact, modulo classical
Bass–Serre theory and Guirardel’s Core Theorem for simplicial trees (Theorem 2.3,
of which we sketch a proof), our argument is self-contained.

2. Preliminaries

Group actions. All group actions will be from the left. Let X be a G-set. If S ⊂ X
is a subset, we denote by GS the (setwise) stabilizer {g ∈ G | gS = S}. If S = {x} is
a singleton, then we write Gx instead of G{x}. We call a subset S ⊂ X G-regular if
for any x, y ∈ S in the same G-orbit, there is some g ∈ GS such that gx = y. The
following lemma is immediate.

Lemma 2.1. Let X be a G-set. If S ⊂ X is G-regular, then we have an embedding

GS\S ↪→ G\X.

In this paper, all trees will be simplicial. In particular we consider them to be topo-
logical spaces, equipped with a CW-structure, which also makes them into graphs.
We further metrize these graphs by viewing edges as real intervals of length 1.

All G-trees T will be without inversions, meaning that for any edge e∈Edges(T ),
if ge= e then g fixes e pointwise. Equivalently, if u, v ∈Vertices(T ) are the vertices
at the ends of the edge e, then we have inclusions

Gu ≥ Ge ≤ Gv.

We call vertex stabilizers vertex groups, and edge stabilizers edge groups. We
assume the reader is familiar with Bass–Serre theory and we switch freely between
G-trees and splittings as graphs of groups, viewing the two as being equivalent.

A G-tree T is essential if every edge of T divides it into two infinite components.
T is minimal if there are no proper subtrees S ⊂ T with GS = G. T is cocompact
if G\T is compact. An element g or a subgroup H of G are said to act elliptically
on T if the groups 〈g〉 or H fix some v ∈ Vertices(T ).
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Products of trees, cores, and leaf spaces. If T1 and T2 are G-trees, then we have
a natural induced action G y T1 × T2. Since the trees T1, T2 are 1-dimensional
CW complexes, we may consider their product T1× T2 as a square complex, i.e.,
a 2-dimensional CW complex whose cells consist of vertices, edges, and squares.
There are natural projections pi : T1×T2� Ti . The following lemma is immediate.

Lemma 2.2. If the actions G y T1 and G y T2 are without inversions, then so
is the action G y T1 × T2, i.e., if σ ⊃ ε is an inclusion of cells (e.g., a square
containing an edge), then Gσ ≤ Gε .

If H is a collection of subgroups acting elliptically on T1 and T2, then each
subgroup in H fixes a vertex of T1× T2.

The action G y T1× T2 is not cocompact in general. It turns out, however, that
we can extract a useful subset, namely Guirardel’s cocompact core. We state the
special case of his result applied to simplicial trees.

Theorem 2.3 (the Core Theorem, see [Guirardel 2005, Théorème principal and
Corollaire 8.2]). Let G y T1, G y T2 be two minimal actions of a finitely generated
group G on simplicial trees T1, T2 with finitely generated edge stabilizers. Suppose
furthermore that T1, T2 do not equivariantly collapse to a common nontrivial tree.

Then there is a G-invariant subset C ⊂ T1 × T2, called the core of the action
G y T1× T2, which is defined as the smallest connected G-invariant subset such
that the restrictions of the projections pi |C : C� Ti have connected fibers. The
quotient S= G\C is compact.

Suppose for the remainder of this section that T1, T2 satisfy the hypotheses of
Theorem 2.3. The restrictions of the projections pi |σ : σ → Ti are well defined
for each cell (i.e., a vertex, edge, square) σ ⊂ T1 × T2. If σ is a square then the
projection is onto an edge pi (σ ) ∈ Edges(T )i . If λ1, λ2 ⊂ σ are two fibers of such
a projection (see Figure 1), we can define a distance dσi (λ1, λ2) to be the distance

pi

Figure 1. The projection of a square on an edge and some of its fibers.

in pi (σ ) between the points pi (λ1) pi (λ2), thus putting a metric dσi on the set of
pi -fibers in a cell σ . We now define the i -leaf space Li of a subset Z ⊂ T1× T2 to
be the set of connected unions of pi -fibers of cells in Z , called leaves, so that we
see Z as being foliated by the leaves in Li . Li is a 1-complex with metrized edges;
therefore we can endow Li with the path metric di . As a consequence of the direct
product structure we have the following.

Lemma 2.4. If Z ⊂ T1× T2, then the leaf spaces Li are forests (see Figure 2).
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Figure 2. The i-leaves in a square complex and the resulting leaf
space, which is a tree.

If C⊂ T1× T2 is a core then the leaf spaces Li are homeomorphic to the trees
Ti . Later, however, we will be performing operations that will alter the leaf spaces.

Induced splittings. Let v ∈Vertices(Ti ), e ∈ Edges(Ti ) and let me be the midpoint
of e. Let τv = p−1

i ({v})∩C and τe= p−1
i ({me})∩C. By Theorem 2.3 the preimages

τv, τe are connected and are therefore leaves in Li .
Since we have an action G y C, since τv, τe are defined as Ti -point preimages

via a G-equivariant map, and since Gv,Ge are exactly the stabilizers of these points
v,me, the subsets τv, τe ≤C are G-regular. So, by Lemma 2.1 we have embeddings

Gv\τv ↪→ G\C←↩ Ge\τe.

By Theorem 2.3, G\C is compact so the quotients Gv\τv,Gv\τv must be as well.
Moreover, because τv, τe are contained in pi -fibers, for j 6= i the restrictions

p j |τv : τv→ T j , p j |τe : τe→ T j

are injective. Finally, the projection p j |C :C� T j is G-equivariant. We have shown
the following.

Lemma 2.5. If v ∈ Vertices(Ti ), e ∈ Edges(Ti ), j 6= i , then the fibers τv, τe are
mapped injectively via p j to subtrees that are Gv,Ge-invariant, respectively.
Viewed as subsets of the core C ⊂ T1 × T2, τv and τe coincide with their j-leaf
spaces.

The actions Ge y τe,Gv y τv are cocompact. Moreover τv, τe are infinite if
and only if the actions of the subgroups Gv y T j ,Ge y T j are without global fixed
points.

The Gv,Ge-trees τv, τe give splittings induced by the action on T j . The blowups
of Theorem 3.1 will be obtained by modifying the trees τv. For aficionados of
CAT(0) cube complexes, it is worth remarking that the core C is a CAT(0) square
complex, in fact a VH-complex, and that the set of fibers τe, e ∈ Edges(Ti ) is the
set of hyperplanes.

Spurs, free faces, and cleavings. In the previous subsection we obtained cocom-
pact Gv,Ge-trees τv, τe. We say a tree has a spur if it has a vertex of degree 1. An
edge adjacent to a spur is called a hair. We now give a shaving process.
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Lemma 2.6. Let T be a cocompact G-tree. T is minimal if T doesn’t have any
spurs. If T is not minimal, then we can obtain the minimal subtree T (G) as the
final term of a finite sequence

T = T0, . . . , Tk = T (G),

where Ti+1 is obtained from Ti by G-equivariantly contracting one G-orbit of hairs
to points.

Proof. Let v ∈ Vertices(T ) be a spur adjacent to an edge e ∈ Edges(T ) and let
u ∈ Vertices(T ) be the other endpoint of e. The map T → T obtained by G-
equivariantly collapsing ge onto gu for g ∈ G is a deformation retraction onto a
proper G-invariant subtree, so T is not minimal.

Suppose now that T is not minimal. Then there is some proper G-invariant
subtree S ⊂ T . Let K be the closure of some connected component of T \ S. Then
K ∩ S = {v} for some v ∈ Vertices(S). Since S is G-invariant and connected, we
must have G K ≤ Gv. It follows that for any w ∈ Vertices(K ) and any g ∈ G K the
distance dT (w, v)= dT (gw, v), i.e., the action of G K on K is the action on a rooted
tree with root v. Since K is G-regular, we have an embedding G K \K ↪→ G\T
which is compact; thus K must have finite radius since G K preserves distances
from the root.

Since K is a rooted tree with finite diameter it must have a nonroot vertex of
valence 1. By the argument at the beginning of the proof, we can G K -equivariantly
collapse hairs, and since G K y K is cocompact, after finitely many collapses we
will have collapsed K to v. Again since G y T is cocompact, there are only finitely
many orbits of connected components of T \ S, so the result follows. �

If σ is a square in some Z ⊂ T1× T2, then we say an edge ε ⊂ σ is a free face
if it is only contained in one square. The following terminology is due to Wise
[2004].

Definition 2.7. Let e ∈ Edges(Ti ) and let τe ⊂ C be the fiber of e as in Lemma 2.5.
The hypercarrier HC(τe) is the union of squares of C intersecting τe nontrivially.

We note that for e ∈ Ti , a hypercarrier is mapped to an edge of Ti and that HC(τe)

is homeomorphic to τe×[−1, 1].

Definition 2.8. We say an edge ε in some Z ⊂ T1×T2 is i-transverse if it coincides
with its i-leaf space, or equivalently if it is mapped monomorphically via pi |ε , or
equivalently if it is contained in a j-leaf.

An immediate consequence of Lemma 2.6 and Figure 3 is the following.

Lemma 2.9. Let e ∈ Edges(Ti ). If Ge y τe is not minimal then HC(τe) has a
square σ containing an i-transverse free face ε.
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ε

. . . . . .e
pi

Figure 3. A spur of τe and the corresponding free face ε in the
hypercarrier HC(τe).

We now borrow some terminology from [Diao and Feighn 2005].

Definition 2.10. A simplicial map S→ T between two trees that is obtained by
identifying edges sharing a common vertex is called a folding. If T is obtained
from S by a folding, then we say S is obtained from T by a cleaving.

The next lemma is now immediate (see Figure 4).

Lemma 2.11. Let ε ⊂ Z ⊂ T1× T2 be an i-transverse free face in a square σ . If
we collapse σ onto the face opposite to ε, then the leaf space Li is unchanged and
the leaf space L j gets cleaved.

In fact this lemma can be used backwards to give a proof of Theorem 2.3. We will
sketch it, leaving the details to an interested reader familiar with folding sequences
[Bestvina and Feighn 1991; Stallings 1991; Dunwoody 1998; Kapovich et al. 2005].

Sketch of the proof of Theorem 2.3. Pick some vertex v ∈ T1× T2 and consider its
G-orbit. We can add finitely many connected G-orbits of edges to get a connected
G-complex Gv⊂C1⊂ T1×T2. C1 has leaf spaces L1,L2 which project onto T1, T2.
The disconnectedness of the fibers of the projections pi |C1 :C1� Ti coincides with

ε Li

L j

Li

L j

Figure 4. The effects of collapsing an i-transverse free face ε: the
leaf space L j gets cleaved, Li remains unchanged. On the right
the j-leaves are drawn.
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the failure of injectivity of the projections Li � Ti . By Lemma 2.11 (backwards)
adding a square can give a folding of one of the leaf spaces. Since the edge groups
of T1, T2 are finitely generated, and because adding all the squares of T1× T2 folds
Li to Ti , it follows that the leaf spaces Li can be made to coincide with Ti after
adding finitely many G-orbits of squares. �

3. The statement and proof of the main theorem

For this section we fix a collection H of subgroups of G. We let T∞ and TF be
cocompact, minimal G-trees in which the subgroups in H act elliptically. We further
require that edge groups of T∞ are infinite and finitely generated and that edge
groups of TF are finite. Note that any nontrivial tree obtained by a collapse of
T∞ has infinite edge groups whereas any collapse of TF has finite edge groups.
It follows that T∞ and TF, having no nontrivial common collapses, satisfy the
hypotheses of Theorem 2.3.

Theorem 3.1 (Main Theorem). Let H be a collection of subgroups of G and let T∞
and TF be cocompact, minimal G-trees in which the subgroups in H act elliptically.
Suppose furthermore that the edge groups of TF are finite and that the edge groups
of T∞ are infinite. Then there exists a vertex v ∈ Vertices(T∞) and a nontrivial,
cocompact, minimal Gv-tree qTv such that

(i) for every f ∈ Edges(T∞) incident to v the subgroups G f ≤ Gv act elliptically
on qTv, and

(ii) for every H ∈H and g ∈G the subgroup H g
∩Gv ≤Gv acts elliptically on qTv .

Moreover, either

(1) every edge group of qTv is finite, or

(2) there is some edge e ∈ Edges(T∞), incident to v, that not only satisfies (i), but
also satisfies the following:
(a) Ge splits essentially as an amalgamated free product or an HNN extension

with finite edge group.
(b) Ge = Gve for some vertex ve ∈ Vertices

(
qTv
)
.

(c) The edge stabilizers of qTv are conjugate in Gv to the vertex group(s) of the
splitting of Ge found in (a); in particular, the edge groups of qTv are ≺ Ge.

(d) The vertex groups of qTv that are not conjugate in Gv to Ge are also vertex
groups of a one-edge splitting of Gv with a finite edge group; in particular
these vertex groups of qTv are ≺ Gv.

An example of what happens in situation (2) is shown in Figure 7.

Proof. Let C be the core of T∞× TF. The∞-leaf space L∞ is the tree T∞, and we
can see C as a tree of spaces (see [Scott and Wall 1979] for details) which is a union
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of vertex spaces τv for v ∈ Vertices(T∞) and edge spaces HC(τe) = τe × [−1, 1]
for e ∈ Edges(T∞) attached to the τv along the subspaces τe×{±1}.

It may be that for some e∈Edges(T∞), the Ge-trees τe are not minimal. By Lem-
mas 2.9, 2.6, and 2.11, we can repeatedly G-equivariantly collapse∞-transverse
free faces, so that after finitely many steps we obtain a shaved core C′s such that the
τe ∩C′s are minimal Ge-trees. Although the F-leaf space was cleaved repeatedly in
the shaving process given by Lemma 2.6, the∞-leaf space is unchanged. We still
write L∞ = T∞.

We now construct a complex Cs ⊂C′s ⊂C, called the∞-minimal core. Its princi-
pal feature is that for every v∈Vertices(T∞) and e∈Edges(T∞), the trees τv∩Cs and
τe∩Cs are minimal Gv- and Ge-trees, respectively. Define HC′S

(τe)=HC(τe)∩C′s .
We call HC′S

(τe) the C′s-hypercarrier attached to a vertex space τv in C′s . Note that
τe∩C′s naturally projects injectively into τv as a minimal Ge-invariant subtree where
Ge ≤ Gv. If T is a G-tree and H ≤ G, denoting by T (S) the minimal S-invariant
subtree, we have T (H)⊂ T (G). It therefore follows that all the C′s-hypercarriers
attached to τv are actually attached to the minimal Gv-invariant subtree of τv. By
Lemma 2.6, after finitely many equivariant spur collapses we can make the vertex
spaces τv into minimal Gv-trees. None of these collapses will affect the attached C′s-
hypercarriers HC′s (τe), and the leaf space L∞= T∞ is preserved. We have therefore
constructed Cs , the∞-minimal core. Denote HCs (τe) = HC′s (τe)∩Cs . By what
was written above, HCs (τe)=HC′s (τe), and we now call HCs (τe) a Cs-hypercarrier.

For every k ∈ Edges(TF), Gk is finite, therefore a minimal Gk-tree is a point;
thus, by cocompactness and regularity, the trees τk ∈ C have finite diameter and the
same must be true of every connected component of τk ∩Cs . So, every connected
component of τk ∩ Cs has a spur. It therefore follows that Cs must have an F-
transverse free face ε containing a spur of some connected component of τk∩Cs for
some k ∈ Edges(TF). Furthermore, the stabilizer Gε ≤ G pF(ε) is an edge stabilizer
of TF, and therefore finite. This F-transverse free face ε must be contained in
some τv ∩Cs for v ∈ Vertices(T∞). Suppose first that ε was not contained in any
Cs-hypercarrier attached to τv ∩Cs . Then for every e 3 v in Edges(T∞), Ge fixes
some Cs-hypercarrier HCs (τe) such that HCs (τe) ∩ τv = τ

+
e is contained in the

complement (τv ∩Cs) \Gvε.

Definition 3.2. Let T be a minimal G-tree and e∈Edges(T ). We denote by C(T, e)
the non-e-collapse of T , the tree whose edges are the orbit Ge ⊂ T and whose
vertices are the closures of the connected components of T \Ge, with a vertex v
adjacent to an edge e′ in C(T, e) if and only if, viewed as subsets of T , e′ ∩ v 6=∅.

It therefore follows that qTv = C(τv ∩ Cs, ε) is a tree with finite edge groups,
in which each Ge ≤ Gv (e ∈ Edges(T∞)) acts elliptically, and also conjugates of
groups in H intersecting Gv act elliptically. Thus (i), (ii) and (1) are satisfied.
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Otherwise, the free face ε ⊂ τv ∩Cs is, by definition of a free face, contained in
exactly one Cs-hypercarrier HCs (τe). We now construct the Gv-tree qTv satisfying
(2). This construction is illustrated in Figure 5. We first take the subset

Z =
(
τv ∪

⋃
e3v

HCs (τe)
)
∩Cs,

i.e., τv∩Cs to which we attach all adjacent Cs-hypercarriers. Now the Gv-translates
of ε are contained in the Cs-hypercarriers HCs (τge) for g ∈ Gv. For each such
Cs-hypercarrier we denote by τ−ge the connected component of τe×{±1}⊂HCs (τge)

not contained in τv ∩Cs (see the top of Figure 5).

ε

ε
τv ∩Cs

τ−e

. . . . . .

C0 C1C−1

K−1 K0 K1ε

. . . . . .

v−1 v0 v1

ve

. . . . . .

Figure 5. Constructing qTv. The top shows a portion of Z , the
middle shows the result of equivariantly collapsing the free face ε,
and the bottom shows the corresponding∞-leaf space.

We now Gv-equivariantly collapse the square σ ⊃ ε onto the opposite side ε,
obtaining a connected Gv-subset Zc ⊂ Z (see the middle of Figure 5). The resulting
intersection τv ∩ Zc consists of a collection of connected components {Ci | i ∈ I }.
Similarly, the Ge-translates of ε give connected components {Ki | i ∈ I } of τe \Geε.
Because Ge acts on C(τ−e , ε), and by minimality of τe ∩ Cs , this action is also
minimal with one edge orbit. This gives us (a).

For every edge f ∈ Edges(T∞) incident to v that is not in the Gv-orbit of e,
the orbit Gvε does not intersect HCs (τ f )∩ τv. It follows that each such G f ≤ Gv

stabilizes some component Ci . We now detach from Zc all Cs-hypercarriers not
stabilized by a Gv-conjugate of Ge, producing a Gv-complex Z ′c ⊂ Zc, specifically

Z ′c = Zc ∩

(
τv ∪

⋃
g∈Gv

HCs (τge)
)
.
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Next, to get the Gv-tree Tv, we collapse each Gv-translate of τ−e to a vertex ve,
collapse each component Ci to a vertex vi , and collapse each connected component
of Gv-translates of HCS (τe)∩ Z ′c onto an edge connecting ve and the corresponding
vertex vi . This is illustrated at the bottom of Figure 5.

Equivalently, if we consider the∞-leaf space corresponding to the union of the
Cs-hypercarriers gHCs (τe) attached to τv ∩Cs for g ∈ Gv, then we have a tree of
radius 1, which is Gv-isomorphic to {v} ∪

(⋃
g∈Gv

ge
)
⊂ T∞. After equivariantly

collapsing the free face ε, Lemma 2.11 gives us a cleaving of this radius 1 subtree
to the infinite tree qTv constructed above. See Figure 6. We note that if we took the
∞-leaf space of Zc, i.e., had we not detached the other hypercarriers, the resulting
leaf space would be a tree with many spurs. The tree qTv we obtain is a minimal
Gv-tree that satisfies (b) and (i).

Moreover, we note that by construction, every subgroup H g
∩Gv , for g ∈ G and

H ∈H, acts elliptically on qTv. So (ii) is satisfied as well.
Since τ−e is Gv-regular, the vertex stabilizers of C(τ−e , ε) coincide with the

component stabilizers (Ge)Ki = (Gv)Ki . We also have (Gv)Ci ∩ (Gv)τ−e = (Gv)Ki

(again referring to the middle of Figure 5). It now follows that the edge stabilizers
of qTv satisfy (c).

Finally note that the vertex groups of qTv that are not stabilized by Gv-conjugates
of Ge are also the vertex groups of C(τv, ε) (see the top of Figure 5). Finally, since
Gε is finite, (d) follows. �

e

ge
v

ve

· · ·

vge

· · · · · ·

· · · · · ·
cleave

fold

Figure 6. Equivariant collapsing free faces cleaves the leaf space
of Z ′C to a tree qTv with infinite diameter.

4. Splittings of virtually free groups

Another way to use Theorem 3.1 is to obtain cleavings of G-trees whose edge and
vertex groups are “smaller”. This will be used as the inductive step in our proof of
Theorem 1.6.

Corollary 4.1. Let T be a G-tree in which the subgroups H act elliptically with
infinite edge groups, and let G be many-ended relative to H. Either some vertex
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A C B A C
C

C1 B1

C2 B2

A
C1

B1

A

C2
B2

A C1 B1

Theorem 3.1
Blow up B

Corollary 4.1

Collapse C

C
leave

C

Second construction
Delete C2

Figure 7. An example of the effects of Theorem 3.1, Corollary 4.1,
and the second construction of the proof of Theorem 1.6 on a graph
of groups. The vertices and edges are labeled by the corresponding
vertex and edge groups. In all cases Bi ≺ B and Ci ≺ C .

v ∈ Vertices(T ) can be blown up to a tree with finite edge groups; or, there is an
edge e ∈ Edges(T ) such that we can blow up T , relative to H, to some tree qT , and
then collapse the edges in the orbit of e to points. The resulting tree T ′ can also
be obtained from T by equivariantly cleaving some edge e. If e′ ∈ Edges(T ′) is a
new edge obtained by a cleaving of e, then Ge′ ≺ Ge. Also, for each new vertex
v′ ∈Vertices(T ′), there is some v ∈Vertices(T ) that got cleaved such that Gv′ ≺Gv .

Furthermore, in passing from T to T ′ the number of edge orbits and the number
of vertex orbits does not decrease and increases by at most 1.

Proof. Suppose we are in case (2) of Theorem 3.1. Then some vertex v gets blown
up to qTv and some vertex stabilizer of qTv coincides with Ge. Specifically qT can
be obtained by deleting each blown up vertex v from T and then equivariantly
reattaching every edge incident to v to the corresponding vertex in qTv.

In particular, if e ∈ Edges(T ) is an edge incident to v that satisfies (2) of
Theorem 3.1, then it is attached to the vertex ve ∈ Vertices

(
qTv
)
. We obtain T ′

by collapsing the G-orbits of e to points. This amounts to identifying the vertex ve

with the vertex ue ∈ Vertices
(

qT
)

that is the other endpoint of e. From Figure 6 it is
clear that T ′ is obtained by cleaving T .

We finally note that in passing from T to qT and then from qT to T ′, the vertex
and edge groups are nonincreasing. Otherwise, the required properties of T ′ are
immediately satisfied by Theorem 3.1 (see Figure 7). �

Finally, we can give our description of the decompositions of virtually free
groups as amalgamated free products or HNN extensions.

Proof of Theorem 1.6. We prove this result by successively applying Corollary 4.1
until some desirable terminating condition is met. Virtually free groups have no
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one-ended subgroups, so we will always be able to apply our corollary; further-
more, virtually free groups are finitely presented. It now follows by Dunwoody
accessibility [Dunwoody 1985] that there are no infinite chains C1 � C2 � · · · of
virtually free groups (recall Definition 1.3), and that all such chains must terminate
with finite groups.

First construction (pass to relatively one-ended vertex subgroups): Let T be a
G-tree with one edge orbit Ge with Ge infinite. By accessibility, we may pass to
a tree T (2) obtained by blowing up some vertices v of T to trees qTv such that the
vertex groups of qTv are either finite or one-ended relative to the stabilizers G f of the
incident edges f 3 v. If possible, we take T (1)

⊂ T (2) to be an infinite connected
subtree obtained by deleting edges with finite stabilizers, and we set G(1)

= GT (1) ,
the setwise stabilizer. Note that the vertex groups of T (1) are 4 the vertex groups
of T , and vertex groups are one-ended relative to the incident edge groups.

Second construction (pass to smaller edge groups): The second construction
utilizes Corollary 4.1. If Ti is a Gi -tree with one edge orbit whose vertex groups
are one-ended relative to the incident edge groups, we first apply Theorem 3.1 to
blow up a vertex v ∈ Vertices(Ti ), and find ourselves in case (2) of the theorem. If
qTv has a finite edge group then Gv is not one-ended relative to the incident edge
groups, contradicting our assumption. By Corollary 4.1 we can collapse an edge of
the blowup of Ti to get a cleaving T ′i that has at most two edge orbits, with edge
groups ≺ the edge groups of Ti . The new vertex groups are also 4 the old vertex
groups. If there are two edge orbits, then we obtain Ti+1 ⊂ T ′i as a maximal subtree
containing only one edge orbit and set Gi+1 = (Gi )Ti+1 , the setwise stabilizer. (See
Figure 7.) If T ′ already has only one edge orbit then Ti+1 = Ti and Gi+1 = Gi .

In both constructions, we pass to subgroups that split as graphs of groups such
that the edge groups and vertex groups are 4 the edge and vertex groups of the
original splitting of the overgroup.

We start with the amalgamated free product case. Let T = T0 be the Bass–Serre
tree corresponding to the splitting given in (1) of the statement of Theorem 1.6.
Take the blowup T (2)

0 obtained from the first construction. If one of the vertex
groups of this blowup coincides with an incident edge group then we are done.
Otherwise, we may pass to the G(1)-tree T (1)

0 , which still has one edge orbit and
two vertex orbits, and whose vertex groups are one-ended relative to the incident
edge groups. Furthermore, because the new vertex groups are 4 the vertex groups
of T , if the statement of the theorem holds for G(1) and the splitting corresponding
to its action on T (1)

0 (which is also an amalgamated free product), then the statement
also holds for G and the splitting corresponding to its action on T .

We can now apply our second construction to the G(1)
0 -tree T (1)

0 to obtain a G1-
tree T1, which again must have one edge orbit and two vertex orbits. Furthermore,
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for the (conjugacy class of the) edge group, we have a proper containment C1 ≺ C .
Again, because the vertex groups of T1 are 4 the vertex groups of T (1)

0 , if the
Theorem holds for this subgroup, it holds for G.

We repeatedly apply our construction, thus obtaining a sequence of groups that
split as amalgamated free products. With each iteration of the second construction,
we pass to a smaller edge group. Hence, by accessibility, eventually there is a
subgroup Gi acting on T (2)

i (see the first construction) such that the vertex groups
split as graphs of groups with finite edge groups and one of the incident edge
groups coincides with the vertex group. Since 4 is transitive, (1) of Theorem 1.6 is
satisfied.

We now tackle the HNN extension case. The proof proceeds in the same way.
We repeatedly blow up, cleave, and pass to subtrees, the main difference being that
the G-tree T has only one vertex orbit. If at some point one of the trees Ti or T (1)

i
has two vertex orbits, then these vertex groups are vertex groups of a splitting of
the vertex group of Ti−1 with finite edge groups. It follows that if Ti satisfies (1) of
Theorem 1.6, then Ti−1 satisfies (2) of Theorem 1.6, and thus by transitivity of 4,
so must our original splitting T . Otherwise, the proof goes through identically. �
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