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ON THE STRUCTURE OF VERTEX CUTS
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Dinic, Karzanov and Lomonosov showed that the minimal edge cuts of a
finite graph have the structure of a cactus, a tree-like graph constructed
from cycles. Evangelidou and Papasoglu extended this to minimal cuts sep-
arating the ends of an infinite graph. In this paper we show that minimal
vertex cuts separating the ends of a graph can be encoded by a succulent, a
mild generalisation of a cactus that is still tree-like. We go on to show that
the earlier cactus results follow from our work.

1. Introduction and definitions

Lying on the boundaries of several topic areas, vertex and edge cuts of graphs have
been considered by graph theorists, network theorists, topologists and geometric
group theorists, and the study of their structure has led to applications ranging from
algorithms to classical group theoretic propositions.

Vertex cut pairs of finite graphs were studied by Tutte [1984], who showed that
a graph possessing such cuts can be modelled with a tree. This was extended to
infinite, locally finite graphs in [Droms et al. 1995]. Dunwoody and Krön [2015]
then extended this work to cuts of other cardinalities, using vertex cuts to associate
structure trees to graphs in a more general context.

This process of finding trees associated to graphs gives a way into geometric
group theory. If, for instance, we find a structure tree for the Cayley graph of a group,
then in light of the work of Bass and Serre [Serre 1980], we can obtain information
about the group from its action on the tree. An example is Stallings’ theorem [1968]
on the classification of groups with many ends. The work of Dunwoody and Krön
[2015] and of Evangelidou and Papasoglu [2014] yields more proofs of Stallings’
theorem along these lines.

Dinic, Karzanov and Lomonosov [Dinic et al. 1976] showed that minimal edge
cuts of a finite graph have, in addition to a tree-like nature, the finer structure
of a cactus graph. For a recent elementary proof, see [Fleiner and Frank 2009].
Evangelidou and Papasoglu [2014] extended this, encoding all minimal edge cuts
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separating the ends of an infinite graph by a cactus. The important stages in these
proofs involve showing that certain collections of “crossing” cuts have a circular
structure. In this paper we switch our attention to vertex cuts, showing that we
can encode all minimal vertex end cuts of a graph by a tree-like structure called
a succulent, which is a mild generalisation of a cactus. A traditional cactus is
composed of cycles joined together at vertices in a tree-like fashion. For our
succulents, we also allow cycles to attach along a single edge, again in a tree-like
way. Once again the key step is to show that crossing cuts have a cyclic nature.

We will also show how the earlier cactus theorems can be regarded as special
cases of our work, and discuss an application to certain finite graphs.

Let 0 = (V, E) be a connected graph. If K ⊆ V is a set of vertices of the graph,
we denote by 0 − K the graph obtained from 0 by removing K and all edges
incident to K . K is called a vertex cut if K is finite and 0− K is not connected. If
A, B ⊆ 0 then we say K separates A and B if any path joining a vertex of A to a
vertex of B intersects K .

A ray of 0 is an infinite sequence of distinct consecutive vertices of 0. We say
that two rays r1, r2 are equivalent if for any vertex cut K , all vertices of r1 ∪ r2

except finitely many are contained in the same component of 0−K . The ends of 0
are equivalence classes of rays. If K is a vertex cut of 0, we say K is an end cut
if there are at least two components of 0− K which contain rays. We say that an
end cut is a mincut if its cardinality is minimal amongst end cuts of 0. A mincut
is said to separate ends e1, e2 of a graph if there are rays r1, r2 representing e1, e2

respectively such that r1, r2 are contained in different components of 0 − K . A
mincut gives a partition of the set E of ends of the graph. Two mincuts are called
equivalent if they give the same partition of E . We denote the equivalence class of
a mincut K by [K ], and write K ∼ L if K , L are equivalent.

A succulent is a graph constructed from cycles by joining cycles together at
vertices or at single edges, in a “tree-like” fashion. We give a more formal definition
of this as Definition 8.1 below. An end vertex of a succulent is one incident to at
most two edges. We now state the main theorem of the paper.

Theorem 8.2. Let 0 be a connected graph such that there are vertex end cuts of 0
with finite cardinality. There is a succulent S with the following properties:

(1) There is a subset A of vertices of S called the anchors of S. If two anchors
are adjacent, one of them is an end vertex of the graph. Every vertex of S not
in A is adjacent to an anchor. We define an anchor cut of S to be a vertex cut
containing no anchors which separates some anchors of S. We say anchor
cuts are equivalent if they partition A in the same way.

(2) There is an onto map f from the ends of 0 to the union of the ends of S with
the end vertices of S which are anchors.
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(3) There is a bijective map g from equivalence classes of minimal end cuts of 0
to equivalence classes of minimal anchor cuts of S such that ends e1, e2 of 0
are separated by [K ] if and only if f (e1), f (e2) are separated by g([K ]).

(4) Any automorphism of 0 induces an automorphism of S.

2. Preliminaries

Definition 2.1. Given a mincut K , we call a component of 0 − K proper if it
contains an end, and a slice if not. Given a set of vertices C , its boundary ∂C is the
set of those vertices not in C but adjacent to a vertex of C ; and C∗=V (0)−(C∪∂C).

It will be convenient to assume our graph contains no slices. In the following
lemmas we show that we can do this by replacing 0 with another graph 0̂ which
has the same ends and cuts, but no slices. The results in this section are adapted for
our needs from more general results proved by Dunwoody and Krön [2015].

Lemma 2.2. Let K , L be mincuts and C, D proper components of 0− K , 0− L.
Suppose that both C ∩D and C∗∩D∗ contain an end. Then ∂(C ∩D), ∂(C∗∩D∗)
are mincuts,

∂(C ∩ D)= (C ∩ L)∪ (K ∩ L)∪ (K ∩ D),

∂(C∗ ∩ D∗)= (C∗ ∩ L)∪ (K ∩ L)∪ (K ∩ D∗),

and
|C ∩ L| = |K ∩ D∗|,

|D ∩ K | = |L ∩C∗|.

Proof. The boundaries ∂(C ∩ D), ∂(C∗ ∩ D∗) are certainly end cuts, with

∂(C ∩ D)⊆ (C ∩ L)∪ (K ∩ L)∪ (K ∩ D),

∂(C∗ ∩ D∗)⊆ (C∗ ∩ L)∪ (K ∩ L)∪ (K ∩ D∗).

Consider the following diagram (see Figure 1), where a, b, c, d, u denote the
cardinalities of the indicated sets. Let n be the cardinality of a mincut.

Then
a+ c+ u = n,

b+ d + u = n.

Since (C ∩ L)∪ (K ∩ L)∪ (K ∩ D) is an end cut, we have

d + a+ u ≥ n,

and similarly
b+ c+ u ≥ n.

Summing these and comparing with the equalities above, we find them to be
equalities; it follows that a = b, c = d. �
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Figure 1. Diagram for Lemma 2.2.

An analogous result holds when C∗ ∩ D, D∗ ∩C both contain ends.

Lemma 2.3. If C, D are proper components of cuts K , L then there is a proper
component of 0− K containing C∗ ∩ L.

Proof. Since K , L are end cuts, one of the pairs {C∩D,C∗∩D∗}, {C∗∩D,C∩D∗}
both contain ends. Let A be the appropriate one of C∗ ∩ D∗, C∗ ∩ D. Then using
Lemma 2.2, ∂A is a mincut. Let E be a component of A containing an end; then
∂E = ∂A is a mincut. Let C∗0 be the component of C∗ containing E . By Lemma 2.2
every vertex x ∈ C∗ ∩ L is adjacent to E , so x ∈ C∗0 and C∗ ∩ L ⊆ C∗0 . �

Lemma 2.4. A slice component of a mincut has empty intersection with each
mincut. Distinct slices are disjoint. If Q is a slice, then no pair of elements of ∂Q
are separated by any mincut.

Proof. Let Q1 be a slice component of 0−K for a mincut K and let L be a mincut,
with a proper component D of 0− L . By Lemma 2.3, there is a proper component
of 0− K containing C∗ ∩ L , and C , a proper component, contains C ∩ L . Q is
disjoint from both of these, so Q1 ∩ L =∅.

Suppose Q2 is a slice component of 0− L . We have ∂Q2 ⊆ L , ∂Q1 ⊆ K , and
hence Q1∩∂Q2, Q2∩∂Q1 are both empty. The components Q1, Q2 are connected,
so this implies that they are disjoint or equal.

Finally suppose x, y ∈ ∂Q for a slice component Q of 0 − K and x, y are
separated by a mincut L . The slice Q is connected so there is a path in Q from x
to y, which must intersect L , but we have seen this is impossible. �

We will now show how to replace0 with another graph 0̂ which has the same ends
and cuts, but no slices. The vertex set V̂ of 0̂ consists of those vertices of 0 which
are contained in no slice. Two vertices u, v∈ V̂ are joined by an edge in 0̂ if and only
if they are joined by an edge in 0 or if u, v lie in the boundary of some slice of 0.

Lemma 2.5. The graph 0̂ is connected and the mincuts of 0̂ are the same as the
mincuts of 0. There are no slices in 0̂. The ends of 0̂ are in bijection with the
ends of 0.

Proof. First we show that if K is a mincut and C is a proper component thereof,
then ∂Ĉ , the boundary of Ĉ = C ∩ 0̂ as a subset of 0̂, is equal to K .
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Suppose there is x ∈ ∂Ĉ − K . If x ∈ C then x ∈ Ĉ , so x ∈ C∗. Also x ∈ ∂Ĉ so
there is y ∈ Ĉ adjacent to x in 0̂. Then there is an edge from x to y in 0̂, but not
in 0; so x, y lie in the boundary of some slice Q of 0. By Lemma 2.4, K ∩Q =∅.
The slice Q is connected, and Q intersects C (at y), so Q ⊆ C . We then have a
path from x to y in 0 which is contained in Q except for its endpoint x , which is a
path from C∗ to C not intersecting K , a contradiction.

Suppose there exists x ∈ K − ∂Ĉ ; x has a neighbour y in C − Ĉ . Then y is
contained in a slice component Q of 0− L for a mincut L . If K = L then C, Q
are disjoint; but y ∈ C ∩ Q. So K 6= L and since Q ⊆ C (Q does not intersect K
but does intersect C), there is z ∈ C ∩ ∂Q ⊆ C ∩ L . Now z is not in any slice, so
z ∈ Ĉ . Then x, z are adjacent in 0̂; but z ∈ Ĉ , x /∈ Ĉ ∪ ∂Ĉ , a contradiction.

Let us discuss the ends of 0̂. By definition, slices contain no rays. Thus if r is
any ray in 0, we can form a new ray in 0̂ by deleting any vertices in a slice; the
extra edges added in the construction of 0̂ will ensure that this is a bona fide ray.
If two rays are separated by a (not necessarily minimal) end cut K in 0, then the
union of K ∩V (0̂) with the boundaries of any slices intersecting K gives an end cut
separating the images of the rays in 0̂. Similarly, if two rays in 0̂ are separated by an
end cut K in 0̂, then taking the union of K with any slice boundaries intersecting K
gives an end cut separating the same rays in 0. It follows that the ends of 0̂ are in
a natural bijection with those of 0.

The end cuts of 0̂ inherited from mincuts of 0 are indeed the minimal end cuts
of 0̂. Suppose K is an end cut of 0̂ which is not also an end cut of 0. Then two
proper components of 0̂− K are connected in 0. A path between them can only
not intersect K if it passes through a slice Q; but points on the boundary of Q
are connected in 0̂ so we get a path between the two components in 0̂ as well,
a contradiction. So all mincuts of 0̂ are mincuts of 0 as well, and the notion of
minimality carries over to 0̂ too.

Finally, there are no slices in 0̂. Let C be a component of 0̂−K for a mincut K
of 0̂ (equivalently of 0). Let C ′ be the component of 0−K containing C . Now C ′

cannot be a slice as it intersects V (0̂). So C ′ contains an end of 0, whence from
above so does C . So C is not a slice. �

For the rest of the paper we replace 0 with 0̂. As we have seen, the ends and
cuts of the two graphs are the same, and this is all the structure with which we are
concerned, so we lose nothing by doing this. All components of a cut are now proper.

We now start to prove some basic properties of mincuts, putting restrictions on
cuts which “interact” with each other in some sense, and showing that a mincut
does not interact with any but finitely many other mincuts. We first define what it
means for cuts to not interact with each other. We are still following Dunwoody
and Krön [2015] here, with some minor modifications.
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Definition 2.6. Two cuts K , L are called nested if there are components E, F of
0− K , 0− L respectively with E ⊆ F or F ⊆ E .

Note that if K , L are nested and not equal with say E ⊆ F then all components
of 0− L except F are contained in the same component of 0− K . This follows
since there is an element of L in E∗, and by minimality all components of 0− L
except F are connected to this vertex by paths which do not intersect F ∪ L , and
hence do not intersect E ∪ K . Note also that these components are still connected
in 0− K by similar reasoning. Conversely, all components of 0− K except one
are contained in F .

Definition 2.7. A mincut is called an A-cut if it is nested with all other mincuts. It
is called a B-cut if it separates 0 into exactly two components.

Lemma 2.8. A mincut is either an A-cut or a B-cut.

Proof. Let K be a mincut which is not an A-cut. Then there is a mincut L with
which K is not nested. Let C be a (proper) component of 0− K and D a (proper)
component of 0− L . By Lemma 2.3, there is a component C∗0 of C∗ containing
C∗ ∩ L . We wish to show this is the only component of C∗. If there is another
one C∗1 then C∗1 ∩ L is empty; C∗1 is connected so C∗1 ⊆ D or C∗1 ⊆ D∗. In the first
case, K , L are nested; so the second one happens no matter which component C∗1
we choose. So D ∩C∗ ⊆ C∗0 . Also, K = ∂C∗1 by minimality, so C∗1 ⊆ D∗ implies
K ∩ D =∅. Then D ⊆ C or D ⊆ C∗ (whence D ⊆ C∗0 ); in either case, K and L
are nested. This is a contradiction, so K is a B-cut. �

We call a set S of vertices a tight x-y-separator if 0 − S has two distinct
components A, B which are adjacent to all elements of S, with x ∈ A, y ∈ B.

Lemma 2.9. For each integer k and every pair x, y of vertices of a graph, there
are only finitely many tight x-y-separators of order k.

Proof. We proceed by induction. If we take a path from x to y, any tight
x-y-separator of order 1 would have to be a vertex on this path, so there are
only finitely many of these.

Suppose the lemma holds for all tight x-y-separators of order k in all connected
graphs. Take a path π from x to y in a graph 0 and suppose there are infinitely
many tight x-y-separators of order k+ 1≥ 2. Then there is a vertex z ∈ π −{x, y}
which is contained in infinitely many of these separators. If S1, S2 are distinct such
tight x-y-separators of order k + 1 in 0 then S1 − {z}, S2 − {z} are distinct tight
x-y-separators of order k in 0−{z}, so there are infinitely many of these, giving
the required contradiction. �

Lemma 2.10. A mincut is nested with all but finitely many mincuts.
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Proof. Suppose K is a mincut and L is a mincut not nested with K . By Lemma 2.8
both K , L are B-cuts, with components C1,C2 of 0− K and D1, D2 of 0− L . If
L ∩ C1 was empty then by connectedness C1 ⊆ D1 or C1 ⊆ D2, both of which
would imply that K , L were nested. Similarly none of C2∩ L , D1∩ K , D2∩ K are
empty. Then L is a tight x-y-separator for some x ∈ K ∩ D1, y ∈ K ∩ D2. There
are only finitely many such separators for each pair x, y and only finitely many
elements of K , so only finitely many such L are possible. �

3. Crossing cuts

The complexity in the structure of mincuts comes from so-called “crossing” cuts,
which we now define.

Definition 3.1. Let K , L be mincuts. Let E be the set of ends of 0, and let E =
K (1)
tK (2)

t· · ·tK (r), E= L(1)tL(2)t· · ·tL(s) be the partitions of E given by K , L
respectively. We say [K ], [L] cross if, possibly after relabelling, K (i)

∩ L( j)
6=∅

for i, j = 1, 2. We write K + L .

The following is a direct consequence of Lemma 2.8, having removed slices
from our graph.

Lemma 3.2. If [K ], [L] cross then 0− K , 0− L have exactly two components.

Later we will show that crossing mincuts possess a cyclic structure. Initially,
however, we shall just consider two or three crossing cuts.

Lemma 3.3. Let [K ], [L] be crossing classes of mincuts. Let 0 − K = C1 tC2,
0− L = D1 t D2. Then |C1 ∩ L| = |C2 ∩ L| = |D1 ∩ K | = |D2 ∩ K |; i.e., K ∪ L
splits into four equal pieces, plus the “centre” U = K ∩ L.

Proof. This follows from two applications of Lemma 2.2. �

In the case of edge cuts, one can also show that the centre K ∩ L is empty, but in
the case of vertex cuts this fails to be true. As we will show in Lemma 3.5 below,
the centre is in some sense distinguished, but this result must wait until we have
placed some restrictions on the division of a graph produced by three cuts.

Let K , L ,M be mincuts with K crossing L and L crossing M , and let C1 tC2,
D1tD2, E1tE2 be the components of 0−K , 0−L , 0−M respectively. A priori,
these three cuts could divide 0 into eight components each containing an end. The
natural diagram with which to illustrate this would be a suitably divided cube. To
produce this in 2D we divide the cube into three slices as shown in Figure 2.

We now rule out certain arrangements of ends of the graph.

Lemma 3.4. It is not possible for each of C1∩D1∩E1, C2∩D1∩E2, C2 ∩ D2 ∩ E1,
C1 ∩ D2 ∩ E2 to contain an end (or any arrangement obtained from this by rela-
bellings).
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C1

K

C2

E1 M E2

D1

(1)

L

(2)

D2

Figure 2. The notation shows that, for example, (1) is C1∩D1∩E2

and (2) is C2 ∩ D2 ∩M .

Proof. Denote by a, . . . , u the cardinalities of the various subgraphs as shown in
Figure 3; the εi indicate the presence of ends.

Let n be the cardinality of a mincut. Then |K | = |L| = |M | = n, so

n = a+ c+ l + j +m+ p+ r + t + u,

n = e+ f + g+ h+ q + r + s+ t + u,

n = b+ d + i + k+m+ p+ q + s+ u.

We also have an end cut separating each εi from the others; these yield, in order,

n ≤ a+ b+ e+m+ q + t + u,

n ≤ c+ d + g+m+ r + s+ u,

n ≤ k+ l + h+ p+ s+ t + u,

n ≤ i + j + f + p+ q + r + u.

Summing these four, we have

4n ≤ (a+ c+ l + j +m+ p+ r + t + u)+ (e+ f + g+ h+ q + r + s+ t + u)
+ (b+ d + i + k+m+ p+ q + s+ u)+ u

= 3n+ u,

whence u = n, everything else vanishes, and K = L =M , each separating the graph
into at least four components, contradicting Lemma 3.4. �

C1

K

C2

b

a m c

d

E1 M E2

D1

ε1

ε2

q

t u r

s

L

e f

gh

i

l p j

k

D2

ε4

ε3

Figure 3. Diagram for Lemma 3.4.
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L

e f

gh

i

l p j

k

D2

ε3

ε4

Figure 4. Diagram for Lemma 3.5.

Note that this result implies that the three cuts split the graph into at most
six components containing ends. Since K crosses L , there are at least four such
components. A quick exercise in filling in corners with ends subject to the crossings
and Lemma 3.4 shows that, following relabellings, C1 ∩ D1 ∩ E1, C2 ∩ D1 ∩ E2,
C1 ∩ D2 ∩ E1, C2 ∩ D2 ∩ E2 all contain ends (with possibly other corners also).

Lemma 3.5. Let K , L ,M be mincuts with K crossing L and L crossing M (in
particular, if K is equivalent to M). Then K ∩ L = L ∩M , and L ∩C1 = L ∩ E1,
L ∩C2 = L ∩ E2.

Proof. Retain the notations of the previous lemma and see Figure 4. Again since
K , L ,M are mincuts,

n = a+ c+ l + j +m+ p+ r + t + u,

n = e+ f + g+ h+ q + r + s+ t + u,

n = b+ d + i + k+m+ p+ q + s+ u,

and again, considering end cuts separating a corner containing an end εi from the
others, we have

n ≤ a+ b+ e+m+ q + t + u,

n ≤ c+ d + g+m+ r + s+ u,

n ≤ i + l + e+ p+ q + t + u,

n ≤ j + k+ g+ p+ r + s+ u.

Summing these,

4n ≤ (a+ c+ l + j +m+ p+ r + t + u)+ (b+ d + i + k+m+ p+ q + s+ u)
+ 2e+ 2g+ q + r + s+ t + 2u

= 2(e+ f + g+ h+ q + r + s+ t + u)+ 2n− 2 f − 2h− q − r − s− t

= 4n− (2 f + 2h+ q + r + s+ t),

whence f = h = q = r = s = t = 0, so that K ∩ L = L ∩M . �
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Lemma 3.6. A cut is crossed by at most finitely many cuts.

Proof. If two cuts cross they are not nested, so this lemma follows directly from
Lemma 2.10. �

4. Half-cuts

It follows from the last section’s results that each mincut in a crossing system can be
decomposed into three pieces; two “half-cuts” and a “centre”. We now prove some
facts about these half-cuts, which enable us to arrange the half-cuts on a circle.

Definition 4.1. If K ,M are mincuts (more properly, classes of mincuts under ∼,
but we will often pass over this technicality), we write K # L if there are mincuts
K = L0, L1, . . . , Ln = M such that L0+ L1+· · ·+ Ln; that is, L0 crosses L1, L1

crosses L2 and so on. L0 may or may not cross L2. Note that # is an equivalence
relation on∼-classes of mincuts, decomposing these into equivalence classes, which
we call #-classes.

By Lemma 3.5, elements K of a #-class have a unique decomposition K =
K1∪U∪K2, where if K+L then K∩L=U and K1, K2 are in different components
of 0− L . From the same lemma, this U is the same for all cuts in the #-class; we
call it the centre of the #-class. Also, |K1| = |K2| and this cardinality is again the
same across the class. The Ki are called the half-cuts of the #-class. We now prove
a series of lemmas clarifying the structure of a #-class and its half-cuts.

Lemma 4.2. If K ,M are mincuts in the same #-class then either K +M or there
is an L in this #-class such that K + L +M ; that is, K + L and L +M.

Proof. By definition we have a sequence of cuts K = L0, L1, . . . , Ln = M such
that L0+ L1+· · ·+ Ln . Take a shortest such sequence, and suppose n ≥ 3. We will
show we can find a shorter sequence. Without loss of generality we can assume
n = 3. Let E = L(1)i ∪ L(2)i be the partition induced by L i . The fact that K does not
cross L2, and similar facts, give us, after relabelling,

K (1)
⊆ L(1)2 , L(2)2 ⊆ K (2),

M (2)
⊆ L(2)1 , L(1)1 ⊆ M (1),

whence the crossings give us that each of M (2)
∩ K (2),M (1)

∩ K (2),M (1)
∩ K (1) is

nonempty. Hence K +M unless M (2)
∩ K (1) is empty, and hence K (1)

⊆ M (1). It
is this that allows us to place the ends ε3, ε6 in Figure 5, and hence to conclude that
K + (L11∪U ∪ L22)+M , where for instance L11 is the half-cut of L1 lying in the
K (1)-component of 0− K . �

Corollary 4.3. There are only finitely many cuts in a #-class and hence only finitely
many half-cuts.
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K (1)

K

K (2)

L(1)2 L2 L(2)2

L(1)1

ε1

ε2

∅ ∅

∅ ∅

∅ ∅

L1

ε3

ε6 ε4

L(2)1

ε5

ε3 ε6

L(1)1

L1

L(2)1

M (1) M M (2)

L(1)2

∅ ∅

∅ ∅

∅ ∅

L2

ε7

ε8

L(2)2

Figure 5. Diagram for Lemma 4.2. The cut L11∪U∪L22 is shown
shaded in both diagrams.

Lemma 4.4. Let K1,M1 be half-cuts in the same #-class. Then K1 ∪U ∪ M1 is
a mincut if and only if there are mincuts K ′,M ′ containing K1,M1 as half-cuts
respectively such that K ′+M ′.

Proof. One direction is clear. For the other, pick K2,M2 such that K = K1∪U∪K2,
M = M1 ∪U ∪M2 are cuts in this #-class. Then either K +M , in which case we
are done, or there is L such that K + L+M . Now K1∪U ∪M1 is a cut; hence we
have ε5 in Figure 6. Then K1 ∪U ∪M2, K2 ∪U ∪M1 cross. �

Definition 4.5. Two half-cuts K1, L1 in the same #-class are equivalent if whenever
K2 is a half-cut such that K1∪U ∪K2 is a mincut, then L1∪U ∪K2 is an equivalent
cut and vice versa.

ε1

ε5 ε2

C1

K

C2

E1 M E2

D1

∅ ∅

∅ ∅

∅ ∅

L

ε3

ε4

D2

Figure 6. Diagram for Lemma 4.4. The cut K1 ∪U ∪M2 is shown shaded.
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C1

K1

C2

E1 L1 E2

D1

ε1

ε2

∅ ∅

∅ ∅

∅ ∅

N

ε3

ε4

L2

D2

M1

Figure 7. Diagram for Lemma 4.6.

Two half-cuts K1, L1 in the same #-class are quasiequivalent if there is a half-
cut K2 such that K1 ∪U ∪ K2 is a mincut and L1 ∪U ∪ K2 is an equivalent cut.

Lemma 4.6. If two half-cuts K1,M1 form a cut then they are not quasiequivalent.

Proof. Let K = K1 ∪U ∪ M1 be the cut formed by hypothesis. Let L1 be some
other half-cut; we will show that K1 ∪U ∪ L1 is not equivalent to L1 ∪U ∪M1 as
cuts, and hence that K1,M1 are not quasiequivalent. Let L2 be a half-cut such that
L = L1∪U ∪ L2 is in the #-class. If L+K then the result is clear. If not, there is a
mincut N such that K + N + L; without loss of generality take K1, L1 to be in the
same component of 0− N . Then L1 ∪U ∪M1 is a cut, and from Figure 7 we see
that either K1 ∪U ∪ L1 is not an end cut or it is not equivalent to L1 ∪U ∪M1. �

Lemma 4.7. Let K = K1 ∪U ∪ K2 be a cut in the #-class and let M1 be a half-cut
in the same class not quasiequivalent to either K1, K2. Then there is M2 such that
M1 ∪U ∪M2 is a cut crossing K . Hence K1 ∪U ∪M1 and K2 ∪U ∪M2 are cuts.

Proof. Let M2 be a half-cut such that M = M1 ∪U ∪M2 is a cut of the class; see
Figure 8. If K+M , we are done. Otherwise, there is a cut L with K+L+M . After
possibly relabelling the Ki , we can assume that K1,M1 are in the same component
of 0− L . If there is an end in C1 ∩ D1 ∩ E2 then M1 ∪U ∪ L2 is a cut crossing K .
If there is an end in C2 ∩ D1 ∩ E1 then M1 ∪U ∪ L1 is a cut crossing K . If neither
of these happens, then K2 ∪U ∪M1 is equivalent to K2 ∪U ∪ K1, a contradiction

C1

K1

C2

E1 M1 E2

D1

ε1

ε2

L1

L2

∅ ∅

∅ ∅

∅ ∅

N

ε3

ε4

M2

D2

K2

Figure 8. Diagram for Lemma 4.7.
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ε3

ε4

L2
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Figure 9. Diagram for Lemma 4.8.

(we note that these cuts are genuinely equivalent, since the presence of “links” such
as L1 guarantees that ends which appear to be connected up really are). �

Lemma 4.8. Quasiequivalence is an equivalence relation. If K1, L1 are quasi-
equivalent and L2 is a half-cut such that L1 ∪ U ∪ L2 is in the #-class then
K1 ∪U ∪ L2 ∼ L1 ∪U ∪ L2.

Proof. Let K2 be such that K = K1 ∪U ∪ K2 is in the #-class; see Figure 9. The
cut K does not cross L = L1 ∪U ∪ L2 since in this case K1 ∪U ∪ L1 would be a
cut, so K1, L1 are not quasiequivalent by Lemma 4.6, giving a contradiction. Then
there is an N such that K +N + L . Again, K1∪U ∪ L1 is not a cut, so there are no
ends in certain corners as indicated. Then K1 ∪U ∪ L2 ∼ L1 ∪U ∪ L2 as required,
noting again that ends which appear connected actually are so that the cuts are
genuinely equivalent.

As for quasiequivalence being an equivalence relation, it is clearly symmetric
and reflexive. If M1 is another half-cut quasiequivalent to L1, then by the above

K1 ∪U ∪ L2 ∼ L1 ∪U ∪ L2 ∼ M1 ∪U ∪ L2,

so K1,M1 are quasiequivalent. �

Lemma 4.9. Let K = K1∪U∪K2 be a cut in the #-class and let L1,M1 be half-cuts
in the same class not quasiequivalent to K1, K2. Then either L1 ∪U ∪M1 is a cut
crossing K or L1,M1 are contained in the same component of 0− K .

Proof. By Lemma 4.7, we can complete L1 to a cut crossing K , so that L1 separates
some ends of a component of 0 − K , and it works similarly for M1. If the two
half-cuts are in different components, then L1∪U∪M1 is a cut crossing K provided
it separates 0− K into two components, as indeed it must. �

5. Separation systems

We now turn our attention to demonstrating that the half-cuts of a system have a
cyclic structure. We will do this by showing that they satisfy a certain axiomatic
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system, which implies that they can be arranged cyclically in a fashion compatible
with their cut structure. This axiomatic structure is taken from [Huntington 1935].

Definition 5.1. A separation relation on a set Z is a relation R ⊆ Z4 satisfying the
following axioms. We write abcd if (a, b, c, d) ∈ R.

(1) If abcd then a, b, c, d are distinct.

(2) There are a, b, c, d such that abcd, i.e., R 6=∅.

(3) If abcd then bcda.

(4) If abcd then ¬(abdc).

(5) There are a, b, c, d such that abcd and dcba.

(6) If abcd and x ∈ Z is another element then either axcd or abcx .

Lemma 5.2. Let Z be a set equipped with a separation relation. Then

(1) if a, b, c, d ∈ Z are distinct, then at least one of the twenty-four tetrads
abcd, abdc, . . . , dcba is true,

(2) if abcd then dcba,

(3) if abxc and abcy then abxy,

(4) if abcx and abcy then abxy or abyx ,

(5) if abcx and abcy then acxy or acyx ,

where in the last three statements distinct letters are assumed to represent different
elements of Z.

Proofs can be found in [Huntington and Rosinger 1932] along with further similar
propositions.

Lemma 5.3. Let Z be a finite set with a separation relation. For each z, there are
unique a, b such that for all c ∈ Z − {z, a, b}, we have azbc. We call these the
elements adjacent to z.

Proof. We approach existence by induction. For |Z |=4, the result is trivial. Assume
it is true for all separation relations with |Z | = n, and suppose |Z | = n+1. Remove
an element d of Z not equal to z to leave a smaller separation relation, and let a, b
be the elements adjacent to z in this new relation, so that for all c ∈ Z −{z, a, b, d},
we have azbc.

By Lemma 5.2, one of azbd , adzb, azdb holds. If azbd holds then a, b are adja-
cent to z in Z . If not, without loss of generality, azdb. We claim a, d are adjacent to z
in Z . By Lemma 5.2 above, if c ∈ Z −{z, a, d, b} then azdb and azbc imply azdc.

For the uniqueness part, suppose there are two such pairs a1, b1, a2, b2. If any
of these coincide we have an immediate contradiction to part (4) of the definition of
the relation. So suppose they are all distinct. Then a1zb1a2, a1zb1b2 imply a1za2b2

or a1zb2a2, both of which contradict a2zb2a1. �
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Lemma 5.4. Let Z be a finite set equipped with a separation relation. Then there is
a map F : Z→ S1 such that for a, b, c, d ∈ Z , abcd if and only if F(b) and F(d)
lie in different components of S1

− {F(a), F(c)}; i.e., Z is isomorphic to a finite
subset of the circle under its natural separation relation.

Proof. We will proceed by induction. Pick an element z ∈ Z and take a separation-
preserving map F : Z −{z} → S1. By the previous lemma, there are elements a, b
of Z adjacent to z. We will map z to the circle by placing it between F(a), F(b),
but first we must show these are adjacent on the circle. If not, there are c, d so
that F(a)F(c)F(b)F(d), whence acbd . But azbc, azbd imply abcd or abdc, both
contradicting acbd. So F(a), F(b) are adjacent on the circle, and we can define
F : Z→ S1 by setting F = F on Z −{z} and F(z) to lie between F(a), F(b) on
the circle.

A full proof that this F works would be lengthy and uninformative, so we just
indicate the main steps; the remainder is just use of axioms and Lemma 5.2. We
inherit from F that any relations not involving z are preserved. Let z ABC be another
relation and suppose A, B,C are distinct from a, b; the other cases are easier. Then
we have azbA, azbB, azbC, z ABC from which we deduce a ABC, bABC . These
relations carry over to the circle under F , as do azbA, azbB, azbC by construction.
From these relations on the circle, we then find F(z)F(A)F(B)F(C). �

Definition 5.5. Let Z be the set of quasiequivalence classes of half-cuts of a #-class.
We define a separation relation R on Z by setting (a, b, c, d) ∈ R if and only if
ac+ bd, where ac denotes the cut K1 ∪U ∪ L1 and K1, L1 are representatives
of a, c and so on.

Lemma 5.6. This is well-defined; i.e., it does not matter which representatives of
quasiequivalence classes we choose. Furthermore, it is a bona fide separation
relation.

Proof. Well-definedness follows immediately from Lemma 4.8. Parts (1)–(5) of
the definition of a separation relation are trivial. For part (6), by Lemma 4.9 either
abcx or b, x are in the same component of 0− ac; and either axcd or x, d are in
the same component of 0− ac. But b, d are in different components of 0− ac so
one of abcx, axcd holds. �

Hence we have:

Proposition 5.7. To each #-class we can associate a cycle where each vertex
represents a quasiequivalence class and each cut of the #-class is associated to a
vertex cut of the cycle, with the notions of crossing preserved.
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6. The structure of a #-class

We are now in a position to characterize the structure of a #-class. Let [K1]q denote
the quasiequivalence class of a half-cut K1. From Proposition 5.7, there are two
quasiequivalence classes adjacent to [K1]q in this #-class. If L1 is a half-cut in the
#-class not in [K1]q or either quasiequivalence class adjacent to it, then Lemma 4.8
implies that

K1 ∪U ∪ L1 ∼ K ′1 ∪U ∪ L1

for all K ′1 ∈ [K1]q . So only the two quasiequivalence classes adjacent to [K1]q can
contain L1 such that K = K1 ∪U ∪ L1 and K ′ = K ′1 ∪U ∪ L1 are not equivalent
for K ′1 ∈ [K1]q .

How can these cuts be nonequivalent? We recall that by minimality every
component left by a mincut is connected to every element of that cut. Thus in the
“larger component” left by the cut, i.e, the one containing half-cuts in the same
class, every vertex is connected to the half-cuts in this “component”, which is thus
genuinely connected. Thus one part of the partitions induced by K , K ′ is the same.
The others can only differ if at least one of the cuts splits 0 into more than two
parts, and hence splits the “smaller” component into more than one part. Suppose K
intersects one of the smaller components of 0−K ′. Then each end not in the larger
component of 0− K ′ is connected to each vertex of the part of K in the smaller
component; hence K ′ splits 0 into exactly two components. If K does not intersect
one of the smaller components of 0− K ′, then since K 6= K ′ and K , K ′ have the
same cardinality, K ′ intersects one of the smaller components of 0−K , whence K
splits 0 into exactly two components.

Hence, having chosen L1, there are at most two equivalence classes of cuts
formed from L1 and [K1]q . By symmetry, there are at most two equivalence classes
of cuts formed from K1 and [L1]q . From these discussions, it follows that for
each quasiequivalence class adjacent to [K1]q , there are at most two equivalence
classes of cuts formed by these two classes; one producing a split of 0 into two
components, the other more. Hence there are at most four equivalence classes of
half-cuts within [K1]q .

We now define the structure by which we model the #-class. For edge cuts
this would be a simple cycle, but here we need extra complexity to deal with the
possibility of splitting the graph into more than two components.

Definition 6.1. A ring is constructed as follows. Take a finite cycle of vertices and
attach to each edge some number of triangles by identifying an edge of the triangle
with the edge of the cycle. The vertex of the triangle not included in the original
cycle is called an anchor; see Figure 11.
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Figure 10. A 3-vertex connected to two 1-vertices, and the
schematic representation of this.

Definition 6.2. An n-vertex will be a copy of the complete graph on n vertices;
we will say it is connected to a vertex if there is an edge from the vertex to each
constituent vertex of the n-vertex. We will depict a 3-vertex as a triangle and only
draw one edge from it to each vertex to which it is connected; see Figure 10.

We now associate to each #-class an appropriate ring encoding the cuts formed
by half-cuts in the class. First use Proposition 5.7 to form a cycle with one vertex
for each quasiequivalence class. For each pair of adjacent quasiequivalence classes,
find half-cuts in those classes separating 0 into as many components as possible,
and attach one fewer anchors than this between the two classes in the cycle (one
fewer to account for the “large” component). If a quasiequivalence class contains
more than one equivalence class, insert an extra vertex into the cycle here. If we

Figure 11. A ring, with the anchors replaced by 3-vertices.

Figure 12. A #-class and its associated ring. Hexagons represent
6-vertices and arrows ends.
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“thicken” up the anchors to 3-vertices to remove cut-points, there is now a bijective
correspondence between equivalence classes of cuts formed from half-cuts of the
#-class and equivalence classes of cuts of the ring, where we treat the anchors as
ends for the purpose of equivalence etc.; see Figure 12.

7. Pretrees

We now proceed towards the central theorem of the paper. First we seek to impose
a tree structure on the #-classes and the other cuts; then we will reintroduce the
extra complexity. We will do this using pretrees, which we now define.

Definition 7.1. Let P be a set and let R ⊆ P3 be a ternary relation on P . If
(x, y, z) ∈ R then we write xyz and say y is between x, z. A set P equipped with
this relation is a pretree if the following hold:

(1) If xyz then y 6= x, z, and there are no x, y such that xyx .

(2) If xyz then zyx .

(3) For all x, y, z, if xyz then ¬(xzy).

(4) If xzy and w 6= x, y, z then xzw or yzw.

If there is no z such that xzy we say x, y are adjacent.
A pretree is called discrete if for any x, y ∈ P there are at most finitely many z

such that xzy.

It should perhaps be noted that despite us using the word “between” this is not a
betweenness relation in the usual sense of the word as, for example, in [Huntington
1935]. Let P be a discrete pretree. We will describe briefly how to pass from P to
a tree; a fuller description may be found in [Bowditch 1999].

We call a subset H of P a star if all a, b ∈ H are adjacent. We now define a
tree T as follows:

V (T )= P ∪ {maximal stars of P},
E(T )= {(v, H) : v ∈ P, v ∈ H, H a maximal star}.

We show that T is indeed a tree. If x, y ∈ P then by discreteness there are only
finitely many z between x, y. From among these z we can then find z1, . . . , zn such
that x is adjacent to z1, zi is adjacent to zi+1 and zn is adjacent to y, giving a path
in T from x to y. Hence T is connected.

If T contains a circuit then there are x1, . . . , xn in P such that xi is adjacent to
xi+1 but not to xi+2 for each i ∈ Zn . Then there is y such that xi yxi+2. If y 6= xn+1

then either xi yxi+1 or xi+1 yxi+2, both of which are forbidden. So xi xi+1xi+2. We
claim x1xi xi+1 holds for all i ≤ n by induction. Since x1xi−1xi and xi−1 6= xi+1,
either x1xi−1xi+1 holds or we have a contradiction. Since xi−1xi xi+1 and x1 6= xi ,
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Figure 13. Diagram for Lemma 7.3.

either x1xi xi+1 or xi−1xi x1; so to avoid contradiction, x1xi xi+1. But then we have
x1xn−1xn; but x1, xn were supposed to be adjacent. The contradiction means T is
a tree.

We now prove some lemmas which will allow us to define a pretree of cut classes.

Definition 7.2. We call a mincut isolated if it does not cross any mincut, and hence
is not contained in any #-class.

A cut is a corner cut of a #-class if it is (equivalent to) a cut formed from two
half-cuts of the class but is not itself in the class. We call a mincut totally isolated
if it does not cross any mincut and is not a corner cut of any #-class.

Lemma 7.3. Corner cuts are isolated.

Proof. Let Q be a #-class and let K = K1 ∪U ∪ K2 be a corner cut of Q. Suppose
there is a cut L with K + L . Then L separates some ends of each component of
0− K . Let M1,M2 be half-cuts in Q adjacent to K , with K1 adjacent to M2 and
K2 adjacent to M1, with no quasiequivalences present; see Figure 13. Either L
crosses K1 ∪U ∪M1 or all ends of the component of 0− K1 ∪U ∪M1 containing
M2 are in the same component of 0− L , whence L crosses K2 ∪U ∪M2. So L ,
hence K , are in the #-class Q, a contradiction. �

Each #-class Q induces two partitions

E = Q(1)
t · · · t Q(m),

E = Q(1)
t · · · t Q(m′)

of the ends of 0. In one partition, which we call the fine partition and denote
without bars, each member of the partition corresonds to one of the anchors in the
ring representing Q; and for each Q(i), there is a corner cut of Q separating Q(i)

from all the other Q( j). For the other partition, the coarse partition, we identify
those Q(i) together which lie between the same two adjacent half-cuts. Then in the
coarse partition we can distinguish between members Q(i) using only cuts properly
in the #-class Q; for the fine partition, we may need corner cuts also. We recall
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also that a cut K also gives a partition of the ends of 0:

E = K (1)
t · · · t K (n).

Lemma 7.4. Given a cut K and a #-class Q, with K neither in Q nor a corner cut
of it, there are i, j such that all Q(k) except Q(i) are contained in K ( j); i.e.,∐

k 6=i

Q(k)
⊆ K ( j)

or ∐
k 6= j

K (k)
⊆ Q(i).

We say K divides Q(i).

Proof. Suppose K is an A-cut. Then it is nested with every cut and corner cut of Q,
hence the result.

Otherwise K is a B-cut, separating 0 into two components. If the result is not
true, then both K (i) intersect at least two Q(i).

Suppose a Q(i) intersects both K (i). Let M be the corner cut of Q splitting
off Q(i). If M is a B-cut, then K + M , giving a contradiction. Otherwise, M is
nested with K , whence a K (i) is contained in a Q(i), again giving a contradiction.

If both K (i) contain two Q(i) not between two adjacent half-cuts (in the ring
representing Q), we can find a cut of Q crossing K . So for say K (1), all the Q(i)

contained in K (1) lie between two adjacent half-cuts of Q. Let M be the corner cut
corresponding to these half-cuts.

M is necessarily an A-cut, and hence is nested with K . As in the discussion of
quasiequivalent cuts earlier, K can only intersect the “large” component of 0−M ,
that containing the other half-cuts of Q; conversely M does not intersect the large
component C1 of 0− K . Pick another half-cut L1 in Q, with L = M1 ∪U ∪ L1 a
cut of Q. The cut L also only intersects the large component E1 of 0−M . With
suitable labelling of the L(i), we have

L(1) ⊆ M (1), L(1) ⊆ K (1), K (2)
⊆ L(2), K (1)

= M (1).

Hence we have the arrangement shown in Figure 14.
Then, using the notations from Figure 14, we have

a+m+ p+ l + t + u = n,

d +m+ p+ k+ s+ u = n,

e+ t + u+ h+ s = n,

a+m+ e+ t + u ≥ n,

p+ l + e+ t + u ≥ n,

p+ k+ u+ s ≥ n,
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Figure 14. Diagram for Lemma 7.4.

where n is the cardinality of a mincut. Immediately d =m = 0. Furthermore, since
L2,M1,M2 are half-cuts in the same class, s = e+ t + h. Then

2n ≤ (a+ e+ t + u)+ (p+ l + e+ t + u)

= (a+ p+ l + t + u)+ (e+ e+ t + u)

≤ n+ e+ t + h+ s+ u

= 2n.

Then all the inequalities are equalities; hence t = h = 0, and K decomposes into U
together with two equal half-cuts; and choosing L1 appropriately we find that these
half-cuts are quasiequivalent to the half-cuts of M , so K was a corner cut of Q. �

Lemma 7.5. Given two #-classes Q, R, all cuts in R divide the same Q(i).

Proof. Note first that the cuts in R do divide a Q(i) because they are not isolated,
hence not corner cuts, and are not in Q. Suppose K ∈ R divides Q(i) and L ∈ R
divides Q( j), with i 6= j ; see Figure 15.

If there is one, take a cut M crossing K and L . We have K (2)
⊆Q(i) and

L(2)⊆Q( j), so M contradicts Lemma 7.4.
Then K+L . Take a cut M ∈Q separating Q(i) from Q( j), and let N =K2∪U∪L2.

The cut N separates some ends of Q(i) and Q( j); it is not nested with M , and hence
is a B-cut and crosses M , giving a contradiction. �

Q( j)
⊇ L(2)

L

L(1)

ε

ε ε

K (1) K K (2)
⊆ Q(i)

ε

Figure 15. Diagram for Lemma 7.5. The cut N is shown shaded.
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Lemma 7.6. Given two totally isolated cuts K , L , we have that K divides only
one L(i); i.e., there are i, j such that∐

k 6=i

L(k) ⊆ K ( j),
∐
k 6= j

K (k)
⊆ L(i).

Proof. If K , L are nested, the result is immediate. If not, they are both B-cuts, and
the result follows since they do not cross. �

We now define a pretree encoding the mincuts of 0. Let P be the set of all
#-classes of 0 and all equivalence classes of totally isolated cuts of 0. Given
x, y, z ∈ P , we say y is between x, z if the cuts in x , z divide different elements of
the coarse partition of E induced by y, and y is not equal to x, z.

Lemma 7.7. This relation defines a pretree.

Proof. Let
E = x (1) t · · · t x (nx ),

E = y(1) t · · · t y(ny),

E = z(1) t · · · t z(nz)

be the coarse partitions of the ends of 0 induced by x, y, z. First we check that the
definition makes sense; i.e., given x, y ∈ P , there are unique i, j with∐

k 6=i

x (k) ⊆ y( j).

If one of x, y is an equivalence class of totally isolated cuts, then Lemmas 7.4 and
7.6 yield this. Suppose both are #-classes Q, R. By Lemma 7.5, given K ∈ R there
is Q(i) such that

K (2)
⊆ Q(i).

Q(i) is contained in a Q(i), so

K (2)
⊆ Q(i),

and furthermore this Q(i) is independent of the cut K chosen. For each j, j ′, we
can find K ∈ R with R( j), R( j ′) in different K (k) since we are using the coarse
partition, whence one of R( j), R( j ′) is contained in Q(i). Hence all but one R( j) is
contained in Q(i); i.e., ∐

k 6=i

R(k) ⊆ Q(i).

For part (1) of the definition of a pretree, note that if∐
k 6=i1

x (k) ⊆ y( j1),
∐
k 6=i2

x (k) ⊆ y( j2),
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with j1 6= j2, then since y( j1), y( j2) are disjoint, nx = 2= ny and x, y are equivalent
cuts, and hence are equal as elements of P . So xyx does not hold.

Part (2) is trivial. For part (3), after relabelling we have∐
k 6=1

y(k) ⊆ x (1),
∐
k 6=1

x (k) ⊆ y(1),

∐
k 6=2

y(k) ⊆ z(1),
∐
k 6=1

z(k) ⊆ y(2).

Then y(1) ∩ y(2) =∅ implies x (i) ∩ z( j)
=∅ for i, j 6= 1. Hence∐

k 6=1

x (k) ⊆ z(1),

so x, y divide the same z(k), and thus xzy does not hold.
For part (4), suppose that xzy so that∐

k 6=1

z(k) ⊆ x (1),
∐
k 6=2

z(k) ⊆ y(1);

i.e., x divides z(1), y divides z(2). If w 6= z then w divides a unique z(i). If i = 1
then yzw. If not, then xzw. �

We recall the vertex version of Menger’s theorem (see, for instance, [Bondy and
Murty 2008, Theorem 9.1]):

Menger’s theorem. Let 0 be a graph and a, b be vertices of 0. Then the minimum
size of a vertex cut separating a, b is equal to the maximum number of vertex-
independent simple paths joining a, b.

Lemma 7.8. This pretree is discrete.

Proof. Let K , L ,M be mincuts with M between K , L . Elements of P are of course
not cuts; take a representative cut of any equivalence class or an appropriate corner
cut of a #-class. By Lemma 2.10, only finitely many cuts are not nested with both
K , L , so we need only consider the case when M is nested with both. Let Ci , Di , Ei

denote components of 0−K , 0− L , 0−M respectively. We have that K is nested
with M , so (after relabelling if necessary) C1 ⊆ E1, and similarly D1 ⊆ E2. We
have E1 6= E2 as M is between K , L . By the remarks following Definition 2.6, E1

is contained in a component Di , whence K , L are nested.
If we now form a new graph by collapsing both of K , L to a single vertex and

apply Menger’s theorem in this graph, we obtain n vertex-independent paths from
K to L , where n is the cardinality of a mincut. In the case when K , L are not
disjoint, some of these paths collapse into points. The cut M must intersect each of
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Figure 16. A succulent.

these paths as it separates K , L , and |M | = n, so M is contained in the union of
these paths. Then there are only finitely many choices for M .

If we took different choices for K , L the only additional choices for M would
be equivalent in P to some already considered. So the pretree is discrete. �

We now have a discrete pretree P , which as discussed above gives us a tree
encoding the mincuts of 0 and how they interact with the ends of 0.

8. Succulents

We have now obtained a tree encoding the cuts of the graph, with #-classes collapsed
down to points. We now seek to reintroduce the cyclic structure of these in order to
obtain the final “cactus” theorem. We will not be able to use cactus graphs as such;
these work well for encoding edge cuts, but cannot represent a vertex cut yielding
several components. We will therefore use a slightly more general structure which,
for the sake of a horticultural joke, we call succulents.

Definition 8.1. A succulent is a connected graph built up from cycles (including pos-
sibly 2-cycles, consisting of two vertices joined by a double edge) in the following
manner. Two cycles may be joined together either at a single vertex or along a single
edge. The construction is tree-like in the sense that if we have a “cycle of cycles”
C1, . . . ,Cn with Ci attached to Ci+1 (mod n) then all the Ci share a common
edge/vertex. See Figure 16 for an example. The analogous property in a tree is that
if we have a cycle of edges with each attached to the next one, they all meet at a
common vertex. An end vertex of a succulent is one contained in only one cycle;
a vertex of a succulent is an end vertex if it has at most two edges adjacent to it.
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Figure 17. Diagrams illustrating how we connect rings around a
star vertex if both corner cuts are B-cuts (left), if the corner cuts
are nested and not equal (middle), and if they are equal (right).

We now construct a succulent encoding the mincuts of 0. We already have the
tree T from the previous section whose vertices are (equivalence classes of) totally
isolated cuts and #-classes joined together via “star” vertices. There is at most one
star for each corner cut of a #-class. If there is no corresponding star, then the
components split off by this cut are not further subdivided by mincuts.

Before moving on further, we note that totally isolated cuts can be represented
by a degenerate sort of ring, constructed by attaching triangles to a segment rather
than to a cycle. So we can always talk about the anchors of a member of P .

To form our succulent, we replace each member of P by its associated ring. We
must now consider how we connect these; i.e., we need to consider the behaviour
around each star vertex. Recall that if Q is a #-class attached to some star vertex,
all members of P divide the same member of the (coarse) partition of the ends of 0
corresponding to Q, Q(1) say, and that there is a corner cut of Q separating Q(1)

from the rest of the ends.
Suppose Q, R are #-classes adjacent to the same star vertex, so that there is

no member of P between them. See Figure 17. Let K , L be the corresponding
corner cuts and Q(1), R(1) the members of the coarse partition. If both K , L are
B-cuts then each of Q(1), R(1) comprises only one Q(i), R(i) and there is only one
member of the fine partitions divided by the other #-class. We join these classes
by identifying the appropriate anchors. If there are no other elements of P joined
to this star vertex then K , L are equivalent so we could further simplify things by
removing the anchors and joining the cycles for Q, R together directly.

If one of K , L is not a B-cut then the two cuts are nested. Then either they are
equal or all components except one of 0− L are contained in the same component
of 0− K and vice versa. In the latter case, there is only one member of the fine
partitions divided by the other #-class, so again we can represent this by identifying
the appropriate anchors. If the corner cuts are equal, then we glue together the rings
via the corner cuts. Of the anchors attached to each, one represents the other #-class
and we simply delete this; the other anchors come in pairs, each representing the
same set of ends but originating from different rings; we identify these together
so we don’t get redundancy. Then to produce our succulent, we first glue together
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those rings sharing a corner cut, and then attach the other members of P adjacent to
this star by identifying the appropriate anchors (for totally isolated cuts we simply
note that the coarse and fine partitions coincide so there will be an obvious anchor
to use and we have none of the issues above).

We must now show that this is a true succulent, that is, that we still have a tree-like
structure. We inherit much of the tree-like nature from T ; we only need check that
no “cycles of cycles” form from the identifications made between rings all adjacent
to the same star vertex. We will proceed by contradiction, supposing we have a
shortest cycle of cycles C preventing our graph being a succulent. We can place
limitations on which constituent cycles of the graph can be present in C. First the
cycles on which our rings are based do not appear. This is because any two cycles
meeting one of these in the same Q(i) intersect along an edge. So C consists of the
triangles which contain anchors; these can be joined together either at an anchor
or along the opposite edge. Because our cycle is shortest, we alternate between
joins along edges and at anchors. Hence our cycle has at least four members. Let
T1, . . . , T4, . . . be the triangles in C with T1, T2 meeting at an anchor, T2, T3 at an
edge and so on. By construction the points at the bases of the Ti represent cuts Ki

of 0 partitioning the ends of 0, and after suitable labelling we have∐
i 6=1

K (1)
1 ⊆ K (1)

2 = K (1)
3 ,

∐
i 6=1

K (1)
4 ⊆ K (2)

2 = K (2)
3 ,

whence ∐
i 6=1

K (1)
1 ⊆ K (1)

4 ⊆ K (1)
6 . . . .

But C is a cycle, so we eventually come back to the start, whence all the inequalities
become equalities, K1 becomes a B-cut and

K (2)
1 = K (1)

2 = K (1)
4 = . . . .

We could have started at any other point, so the other Ki are also B-cuts and all
of them are equivalent. Then C becomes trivial and we have indeed constructed a
succulent.

We have now proved most of this:

Theorem 8.2. Let 0 be a connected graph such that there are vertex end cuts of 0
with finite cardinality. There is a succulent S with the following properties:

(1) There is a subset A of vertices of S called the anchors of S. If two anchors
are adjacent, one of them is an end vertex of the graph. Every vertex of S not
in A is adjacent to an anchor. We define an anchor cut of S to be a vertex cut
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containing no anchors which separates some anchors of S. We say anchor
cuts are equivalent if they partition A in the same way.

(2) There is an onto map f from the ends of 0 to the union of the ends of S with
the end vertices of S which are anchors.

(3) There is a bijective map g from equivalence classes of minimal end cuts of 0
to equivalence classes of minimal anchor cuts of S such that ends e1, e2 of 0
are separated by [K ] if and only if f (e1), f (e2) are separated by g([K ]).

(4) Any automorphism of 0 induces an automorphism of S.

Proof. We already have a succulent containing a representative of each mincut;
i.e., we already have the map g. We now discuss how we modify the succulent
to define the map f of the ends of 0. Some issues arise because there may be
ends of 0 which are distinguished from each other only by nonminimal cuts. If
such ends exist, we will treat them as a single end for the present section; i.e., we
will map them all to the same place using f . Let ε be an end of 0. If there is a
mincut K such that this end is the sole element of one of the sets K (i), then this
mincut appears somewhere in the succulent either as a corner cut of a #-class or as
a totally isolated cut and there is an end anchor of the succulent corresponding to
this K (i); define f (ε) to be this anchor.

If not, there may be a sequence of xi ∈ P with

x (1)1 ⊇ x (1)2 ⊇ · · · 3 ε.

This defines a ray in the tree T associated to P , hence an end of that tree. There is a
unique such end, since T is a tree so two ends can be separated using a single point,
which we may take to be some y ∈ P . But there is only one y(i) containing ε, so
only one end will do. So we have an end of T , hence of the succulent, associated
with ε; this is where we will map ε.

The remaining cases will correspond to ends which can only be split off by
nonminimal cuts, which are not associated to some end of the tree T . To fit these
into our succulent, we will essentially pretend that they can be split off by a mincut;
we will add an element to P for each such end, inducing a partition

E = {ε} ∪ (E −{ε}).

This member of P will not be between any two members of P; and it does not
disrupt the discreteness of P because an infinite set of betweenness in P would
induce a descending sequence of partitions as above, so we would already have dealt
with this end. So we have added an end vertex to the tree T . When constructing
the succulent, the extra member of P will be modelled as two anchors joined by a
double edge, one of which becomes attached to a relevant anchor in the succulent.
The other anchor is an end anchor, which we define to be f (ε).
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We now have the map f , which by construction interacts with g in the way
stated; note that the extra anchors added in the third step above are never split off
by an anchor cut of S.

To see that f is onto, we note that any end anchors of S arise either as f (ε) in
the third case above, or as part of a ring, where they correspond to some member
of a partition of E , whose members will be mapped there. Any ends of S arise from
ends of T , hence from sequences of members of P . From the vertices in the relevant
cuts, we can construct a ray in 0, giving an end that will be mapped to the end of S.

Part (4) arises since an automorphism of 0 induces corresponding automorphisms
of the cuts and ends of 0, preserving crossings, nestings, equivalences; in short,
all the information used to construct S. �

We make some remarks about the theorem. In part (3) we must say equivalence
classes of cuts of S because we may have equivalent distinct cuts of S; these arise if
there are quasiequivalent, nonequivalent half-cuts in a #-class , whence there will be
some equivalent cuts contained in the relevant ring; but this is not really a concern.

If we wish to obtain a graph in which we do not have to exclude anchors from
cuts, we can replace each anchor with a 3-vertex and treat these as ends, so that the
anchor cuts in the theorem become bona fide mincuts of the resulting graph S ′.

If we collapse the extra end anchors we added in the proof above onto the adjacent
anchors, then we obtain a variant theorem:

Theorem 8.3. Let 0 be a connected graph such that there are vertex end cuts of 0
with finite cardinality. There is a succulent S with the following properties:

(1) There is a subset A of vertices of S called the anchors of S. No two anchors
are adjacent, and every vertex of S not in A is adjacent to an anchor. We define
an anchor cut of S to be a vertex cut containing no anchors which separates
some anchors of S. We say anchor cuts are equivalent if they partition A in
the same way.

(2) There is a map f from the ends of 0 to the union of the ends of S with the
anchors of S.

(3) There is a bijective map g from equivalence classes of minimal end cuts of 0
to equivalence classes of minimal anchor cuts of S such that ends e1, e2 of 0
are separated by [K ] if and only if f (e1), f (e2) are separated by g([K ]).

(4) Any automorphism of 0 induces an automorphism of S.

Consider a finite graph 0. We call a set J of vertices of a graph 0 n-inseparable
if |J | ≥ n+1 and for any set K of vertices with |K | ≤ n, J is contained in a single
component of 0−K . Let κ be the smallest integer for which there are κ-inseparable
sets J1, J2 and a vertex cut K with |K | = κ and J1, J2 in different components of
0− K . We can consider the maximal κ-inseparable sets of 0 as ends of the graph;
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or attach a sequence of (κ+1)-vertices to each to turn them into a bona fide end.
The inseparability conditions ensure that this does not affect the cuts of 0 of size κ .
Then the size-κ vertex cuts separating two inseparable sets become minimal end
cuts of our graph, so we can obtain a succulent theorem for them:

Theorem 8.4. Let 0 be a finite connected graph such that there exists κ for which
there are κ-inseparable sets J1, J2 and a vertex cut K with |K | = κ and J1, J2 in
different components of 0−K , and take the minimal such κ . There is a succulent S
with the following properties:

(1) There is a subset A of vertices of S called the anchors of S. No two anchors
are adjacent, and every vertex of S not in A is adjacent to an anchor. We define
an anchor cut of S to be a vertex cut containing no anchors which separates
some anchors of S. We say anchor cuts are equivalent if they partition A in
the same way.

(2) There is a map f from the κ-inseparable sets of 0 to the anchors of S.

(3) There is a bijective map g from equivalence classes of minimal cuts of 0
separating κ-inseparable sets to equivalence classes of minimal anchor cuts of
S such that κ-inseparable sets J1, J2 of 0 are separated by [K ] if and only if
f (J1), f (J2) are separated by g([K ]).

(4) Any automorphism of 0 induces an automorphism of S.

Tutte [1984] produced structure trees for the cases κ=1, 2, which Dunwoody and
Krön [2015] then extended to higher κ . These trees were based on “optimally nested”
cuts in the language of [loc. cit.], which in this case means A-cuts. Roughly speaking,
the trees consist of the totally isolated cuts and corner cuts of our succulents, together
with “blocks” which are not decomposed by the cuts in question; these include the
maximal inseparable sets, and also sets broken up by cuts which are not optimally
nested; these sets correspond to the #-classes. The structure trees can then be
obtained from our succulents by replacing each ring with a star with one central
vertex and one vertex joined to it for each corner cut. So these earlier results also
follow from our work.

9. Applications

First we note that our work yields a proof of Stallings’ theorem, based on the
Bass–Serre theory of groups acting on trees (see [Serre 1980]).

Stallings’ theorem. Let G be a finitely generated group acting transitively on
a graph 0 with more than two ends. Then G can be expressed as an amalgam
G = A ∗F B or an HNN extension G = A∗F , where F has a finite index subgroup
which is the stabilizer of a vertex of 0.
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Proof. From the pretree P we obtain a tree T on which G acts. The tree T is
nontrivial; the action is transitive and 0 has more than two ends so there are infinitely
many ends and many inequivalent cuts. The action is without inversion since T
is bipartite, formed of star vertices and elements of P . Then G is isomorphic to
the fundamental group of a certain graph of groups; G is finitely generated so this
graph is finite. The action is nontrivial as G acts transitively on 0, so it follows
that G splits over the stabilizer of an edge of T . An element fixing an edge of T
fixes the adjacent element of P , and hence fixes either a #-class or an equivalence
class of totally isolated cuts. A #-class contains finitely many vertices; and the
transitivity of the action implies that there can only be finitely many cuts in each
equivalence class, since we can find two cuts between which every cut of the class
lies, and then apply the methods of Lemma 7.8. The result follows. �

Stallings’ original theorem covers the two-ended case as well, but our tree is trivial
here. The two-ended case can be covered by more elementary means, however.

We now discuss how earlier cactus theorems concerning edge cuts follow from
ours. We turn a question about edge end cuts into a question about vertex end cuts
as follows. First replace the graph 0 with its barycentric subdivision 0b. This is
defined as follows:

V (0b)= V (0)∪ E(0),

E(0b)= {(v, e) : v ∈ V (0), e ∈ E(0), v an endpoint of e}.

If the cardinality of a minimal edge end cut of 0 is n, we now “thicken up” each
vertex of 0b that was a vertex of 0 by replacing it with an (n+1)-vertex (see
Definition 6.1) to obtain a graph 0∗. In this way, an edge cut of 0 separating some
ends of 0 corresponds precisely with a vertex cut of 0∗ of the same cardinality.
In 0∗, because all the vertex cuts are essentially edge cuts, all of the minimal vertex
cuts of 0∗ split the graph into precisely two pieces, each containing an end. So
we do not need to remove slices from the graph, and all cuts are B-cuts. It follows
that quasiequivalent half-cuts are equivalent, and each ring becomes simple enough
to be replaced by a cycle, in which the anchors become the vertices and the other
vertices become the edges. Our succulent from Theorem 8.3 can then be replaced
with a cactus, so we have the cactus theorem for edge end cuts:

Theorem 9.1 [Evangelidou and Papasoglu 2014]. Let 0 be a connected graph such
that there are edge end cuts of 0 with finite cardinality. There is a cactus C with the
following properties:

(1) There is a map f from the ends of 0 to the union of the ends of C with the
vertices of C.

(2) There is a bijective map g from equivalence classes of minimal end cuts of 0
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to minimal edge cuts of C such that ends e1, e2 of 0 are separated by [K ] if
and only if f (e1), f (e2) are separated by g([K ]).

(3) Any automorphism of 0 induces an automorphism of C.

To deal with the classical cactus theorem for edge cuts of finite graphs, we
proceed as before to get the graph 0∗. Then to each (n+1)-vertex we attach an
infinite chain of (n+1)-vertices, so that a vertex in the original graph 0 becomes
a de facto end of our new graph. “Equivalent cuts” in this graph correspond to the
same cut of the original graph. Once again the succulent can be replaced with a
cactus, so we have the cactus theorem of Dinic, Karzanov, and Lomonosov:

Theorem 9.2 [Dinic et al. 1976]. Let 0 be a connected finite graph. There is a
cactus C with the following properties:

(1) There is a map f from the vertices of 0 to the vertices of C.

(2) There is a bijective map g from equivalence classes of minimal edge cuts of 0
to minimal edge cuts of C such that vertices v1, v2 of 0 are separated by [K ]
if and only if f (v1), f (v2) are separated by g([K ]).

(3) Any automorphism of 0 induces an automorphism of C.
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