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MICHEL BRION

Consider an exact sequence of group schemes of finite type over a field k,

1−→ N −→ G −→ Q −→ 1,

where Q is finite. We show that Q lifts to a finite subgroup scheme F of G;
if Q is étale and k is perfect, then F may be chosen étale as well. As applica-
tions, we obtain generalizations of classical results of Arima, Chevalley, and
Rosenlicht to possibly nonconnected algebraic groups. We also show that
every homogeneous space under such a group has a projective equivariant
compactification.

1. Introduction

Consider an extension of algebraic groups, that is, an exact sequence of group
schemes of finite type over a field,

(1) 1 −−−→ N −−−→ G
f

−−−→ Q −−−→ 1.

Such an extension is generally not split, i.e., f admits no section which is a
morphism of group schemes. In this note, we obtain the existence of a splitting in a
weaker sense, for extensions with finite quotient group:

Theorem 1.1. Let G be an algebraic group over a field k, and N a normal subgroup
of G with G/N finite. Then there exists a finite subgroup F of G such that G= N ·F.

Here N ·F denotes, as in [SGA 3 I 1970, VIA.5.3.3], the quotient of the semidirect
product N o F by N ∩ F embedded as a normal subgroup via x 7→ (x, x−1). If
G/N is étale and k is perfect, then the subgroup F may be chosen étale as well.
But this fails over any imperfect field k, see Remark 3.3 for details.

In the case where G is smooth and k is perfect, Theorem 1.1 was known to
Borel and Serre, and they presented a proof over an algebraically closed field of
characteristic 0 (see [Borel and Serre 1964, Lemma 5.11 and footnote on p. 152]).
That result was also obtained by Platonov [1966, Lemma 4.14] for smooth linear
algebraic groups over perfect fields. In the latter setting, an effective version of
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Theorem 1.1 has been obtained recently by Lucchini Arteche [2015a, Theorem
1.1]; see [Lucchini Arteche 2015b, Proposition 1.1; Chernousov et al. 2008, p. 473;
Lötscher et al. 2013, Lemma 5.3] for earlier results in this direction.

Returning to an extension (1) with an arbitrary quotient Q, one may ask whether
there exists a subgroup H of G such that G = N · H and N ∩ H is finite (when Q
is finite, the latter condition is equivalent to the finiteness of H ). We then say that
(1) is quasisplit, and H is a quasicomplement of N in G, with defect group N ∩ H .

When Q is smooth and N is an abelian variety, every extension (1) is quasisplit
(as shown by Rosenlicht [1956, Theorem 14]; see [Milne 2013, Section 2] for a
modern proof). The same holds when Q is reductive (i.e., Q is smooth and affine,
and the radical of Q k̄ is a torus), N is arbitrary and char(k)= 0, as we will show in
Corollary 4.8. On the other hand, the group G of unipotent 3× 3 matrices sits in a
central extension

1−→ Ga −→ G −→ G2
a −→ 1,

which is not quasisplit. It would be interesting to determine which classes of groups
N , Q yield quasisplit extensions. Another natural problem is to bound the defect
group in terms of N and Q. The proof of Theorem 1.1 yields some information
in that direction; see Remark 3.4, and [Lucchini Arteche 2015a] for an alternative
approach via nonabelian Galois cohomology.

This article is organized as follows. In Section 2, we begin the proof of
Theorem 1.1 with a succession of reductions to the case where Q = G/N is
étale and N is a smooth connected unipotent group, a torus, or an abelian variety.
In Section 3, we show that every class of extensions (1) is torsion in that setting
(Lemma 3.1); this quickly implies Theorem 1.1. Section 4 presents some applica-
tions of Theorem 1.1 to the structure of algebraic groups: we obtain analogues of
classical results of Chevalley, Rosenlicht and Arima on smooth connected algebraic
groups (see [Rosenlicht 1956; 1961; Arima 1960]) and of Mostow [1956] on linear
algebraic groups in characteristic 0. Finally, we show that every homogeneous
space under an algebraic group admits a projective equivariant compactification;
this result seems to have been unrecorded so far. It is well known that any such
homogeneous space is quasiprojective (see [Raynaud 1970, Corollary VI.2.6]);
also, the existence of equivariant compactifications of certain homogeneous spaces
having no separable point at infinity has attracted recent interest (see, e.g., [Gabber
2012; Gabber et al. 2014]).

2. Proof of Theorem 1.1: some reductions

We first fix notation and conventions which will be used throughout this article.
We consider schemes and their morphisms over a field k, and choose an algebraic
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closure k̄. Given a scheme X and an extension K/k of fields, we denote by X K the
K -scheme obtained from X by the base change Spec(K )→ Spec(k).

We use mostly [SGA 3 I 1970; SGA 3 II 1970; SGA 3 III 1970], and occasionally
[Demazure and Gabriel 1970], as references for group schemes. Given such a group
scheme G, we denote by eG ∈ G(k) the neutral element, and by G0 the neutral
component of G, with quotient map π : G→ G/G0

= π0(G). The group law of G
is denoted by µ : G×G→ G, (x, y) 7→ xy.

Throughout this section, we consider an extension (1) and a subgroup F of G.
Then the map

ν : N o F −→ G, (x, y) 7−→ xy

is a morphism of group schemes with kernel N ∩ F , embedded in N o F via
x 7→ (x, x−1). Thus, ν factors through a morphism of group schemes

ι : N · F −→ G.

Also, the composition F → G → G/N factors through a morphism of group
schemes

i : F/(N ∩ F)−→ G/N .

By [SGA 3 I 1970, VIA.5.4], ι and i are closed immersions of group schemes.

Lemma 2.1. The following conditions are equivalent:

(i) ι is an isomorphism.

(ii) i is an isomorphism.

(iii) ν is faithfully flat.

(iv) For any scheme S and g ∈ G(S), there exists a faithfully flat morphism of finite
presentation f : S′→ S and x ∈ N (S′), y ∈ F(S′) such that g = xy in G(S′).

When G/N is smooth, these conditions are equivalent to:

(v) G(k̄)= N (k̄)F(k̄).

Proof. (i)⇔ (ii): Recall from [SGA 3 I 1970, VIA.5.5.3] that i factors through an
isomorphism F/(N ∩ F)→ (N · F)/N . Thus, we obtain a commutative diagram

N · F
ι

−−−→ G

ϕ

y f
y

F/(N ∩ F)
i

−−−→ G/N

where both vertical arrows are N -torsors for the action of N by right multiplication.
As a consequence, this diagram is cartesian. In particular, i is an isomorphism if
and only if so is ι; this yields the desired equivalence.
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(i)⇒ (iii): Since ν is identified with the quotient map of N o F by N ∩ F , the
assertion follows from [SGA 3 I 1970, VIA.3.2].

(iii)⇒ (iv): This follows by forming the cartesian square

S′ −−−→ Sy g
y

N o F
ν

−−−→ G

and observing that ν is of finite presentation, since the schemes G, N and F are of
finite type.

(iv)⇒ (i): By our assumption applied to the identity map G→ G, there exists
a scheme S′ and morphisms x : S′ → N , y : S′ → F such that the morphism
ν ◦ (x × y) : N o F→ G is faithfully flat of finite presentation. As a consequence,
the morphism of structure sheaves OG→ ν∗(x × y)∗(OS′) is injective. Thus, so are
OG→ ν∗(ONoF ), and hence OG→ i∗(ON ·F ). Since i is a closed immersion, it must
be an isomorphism.

(ii)⇔ (v): When G/N is smooth, i is an isomorphism if and only if it is surjective
on k̄-rational points. Since (G/N )(k̄)= G(k̄)/N (k̄) and likewise for F/(N ∩ F),
this yields the desired equivalence. �

We assume from now on that the quotient group Q in the extension (1) is finite.

Lemma 2.2. If the exact sequence 1→ H 0
→ H → π0(H)→ 1 is quasisplit for

any smooth algebraic group H such that dim(H)= dim(G), then (1) is quasisplit
as well.

Proof. Consider first the case where G is smooth. Then Q is étale, and hence N
contains G0. By our assumption, there exists a finite subgroup F ⊂ G such that
G = G0

· F . In view of Lemma 2.1 (iv), it follows that G = N · F .
If char(k)= 0, then the proof is completed as every algebraic group is smooth

(see, e.g., [SGA 3 I 1970, VIB.1.6.1]). So we may assume that char(k) = p > 0.
Consider the n-fold relative Frobenius morphism

Fn
G : G −→ G(pn)

and its kernel Gn . Then Fn
G is finite and bijective, so that Gn is an infinitesimal

normal subgroup of G. Moreover, the quotient G/Gn is smooth for n � 0 (see
[SGA 3 I 1970, VIIA.8.3]). We may thus choose n so that G/Gn and N/Nn are
smooth. The composition N → G→ G/Gn factors through a closed immersion
of group schemes N/Nn→ G/Gn by [SGA 3 I 1970, VIA.5.4] again. Moreover,
the image of N/Nn is a normal subgroup of G/Gn , as follows, e.g., from our
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smoothness assumption and [SGA 3 I 1970, VIB.7.3]. This yields an exact sequence

1−→ N/Nn −→ G/Gn −→ Q′ −→ 1,

where Q′ is a quotient of Q and hence is finite; moreover, dim(G/Gn)= dim(G).
By our assumption and the first step, there exists a finite subgroup F ′ of G/Gn such
that G/Gn= (N/Nn)·F ′. In view of [SGA 3 I 1970, VIA.5.3.1], there exists a unique
subgroup F of G containing Gn such that F/Gn = F ′; then F is finite as well.

We check that G = N · F by using Lemma 2.1 (iv) again. Let S be a scheme, and
g ∈G(S). Then there exists a faithfully flat morphism of finite presentation S′→ S
and x ′ ∈ (N/Nn)(S′), y′ ∈ F ′(S′) such that Fn

G(g)= x ′y′ in (G/Gn)(S′). Moreover,
there exists a faithfully flat morphism of finite presentation S′′→ S′ and x ′′ ∈ N (S′′),
y′′ ∈ F(S′′) such that Fn

G(x
′′) = x ′ and Fn

G(y
′′) = y′. Then y′′−1x ′′−1g ∈ Gn(S′′),

and hence g ∈ N (S′′)F(S′′), since F contains Gn . �

Remark 2.3. With the notation of the proof of Lemma 2.2, there is an exact
sequence of quasicomplements

1−→ Gn −→ F −→ F ′ −→ 1.

When N = G0, so that Gn ⊂ N , we also have an exact sequence of defect groups

1−→ Gn −→ N ∩ F −→ (N/Gn)∩ F ′ −→ 1.

By Lemma 2.2, it suffices to prove Theorem 1.1 when G is smooth and N = G0,
so that Q=π0(G). We may thus choose a maximal torus T of G (see [SGA 3 II 1970,
XIV.1.1]). Then the normalizer NG(T ) and the centralizer ZG(T ) are (represented
by) subgroups of G (see [SGA 3 I 1970, VIB.6.2.5]). Moreover, NG(T ) is smooth
by [SGA 3 II 1970, XI.2.4]. We now gather further properties of NG(T ):

Lemma 2.4. (i) G = G0
· NG(T ).

(ii) NG(T )0 = ZG0(T ).

(iii) We have an exact sequence 1→ W (G0, T )→ π0(NG(T ))→ π0(G)→ 1,
where W (G0, T ) := NG0(T )/ZG0(T )= π0(NG0(T )) denotes the Weyl group.

Proof. (i) By Lemma 2.1 (v), it suffices to show that G(k̄)= G0(k̄)NG(T )(k̄). Let
x ∈ G(k̄), then xT x−1 is a maximal torus of G0(k̄), and hence xT x−1

= yT y−1

for some y ∈ G0(k̄). Thus, x ∈ yNG(T )(k̄), which yields the assertion.

(ii) We may assume that k is algebraically closed and G is connected (since
NG(T )0 = NG0(T )0). Then ZG(T ) is a Cartan subgroup of G, and hence equals
its connected normalizer by [SGA 3 II 1970, XII.6.6].

(iii) By (i), the natural map NG(T )/NG0(T )→ π0(G) is an isomorphism. Com-
bined with (ii), this yields the statement. �
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Remark 2.5. If NG(T ) = NG(T )0 · F for some subgroup F ⊂ NG(T ), then by
Lemmas 2.1 and 2.4, G = G0

· F . Moreover, the commutative diagram of exact
sequences

1−→NG(T )0 ∩ F−→F−→π0(NG(T ))−→ 1y id

y y
1−→ G0

∩ F −→F−→ π0(G) −→ 1

together with Lemma 2.4 yields the exact sequence

1−→ ZG0(T )∩ F −→ G0
∩ F −→W (G0, T )−→ 1.

In view of Lemma 2.1 (iv) and Lemma 2.4 (i), it suffices to prove Theorem 1.1
under the additional assumption that T is normal in G. Then T is central in G0, and
hence G0

k̄
is nilpotent by [SGA 3 II 1970, XII.6.7]. It follows that G0 is nilpotent,

in view of [SGA 3 I 1970, VIB.8.3]. To obtain further reductions, we will use the
following:

Lemma 2.6. Let N ′ be a normal subgroup of G contained in N. Assume that the
resulting exact sequence 1→ N/N ′→ G/N ′→ Q→ 1 is quasisplit, and that any
exact sequence of algebraic groups 1→ N ′→ G ′→ Q′→ 1, where Q′ is finite, is
quasisplit as well. Then (1) is quasisplit.

Proof. By assumption, there exists a finite subgroup F ′ of G/N ′ for which
G/N ′ = (N/N ′) · F ′. Denote by G ′ the subgroup of G containing N ′ such that
G ′/N ′ = F ′. By assumption again, there is a finite subgroup F of G ′ containing
N ′ such that G ′ = N ′ · F . We check that G = N · F using Lemma 2.1 (iv). Let S be
a scheme, and g ∈ G(S); denote by f ′ : G→ G/N ′ the quotient map. Then there
exists a faithfully flat morphism of finite presentation S′→ S and x ∈ (N/N ′)(S′),
y ∈ F ′(S′) such that f ′(g)= xy in (G/N ′)(S′). Moreover, there exists a faithfully
flat morphism of finite presentation S′′→ S′ and z ∈ N (S′′), w ∈ G ′(S′′) such that
f ′(z)= x and f ′(w)= y. Then w−1z−1g ∈ N ′(S′′), and hence g ∈ N (S′′)G ′(S′′),
as G ′ contains N ′. This shows that G = N ·G ′ = N · (N ′ · F). We conclude by
observing that N · (N ′ · F)= N · F , in view of Lemma 2.1 (iv) again. �

Remark 2.7. With the notation of the proof of Lemma 2.6, we have an exact
sequence 1→ N ′ → G ′ = N ′ · F → F ′ → 1, and hence an exact sequence of
quasicomplements

1−→ N ′ ∩ F −→ F −→ F ′ −→ 1.

Moreover, we obtain an exact sequence 1→ N ′→ N ∩G ′→ (N/N ′)∩ F ′→ 1,
by using [SGA 3 I 1970, VIA.5.3.1]. Since N ∩G ′ = N ∩ (N ′ · F)= N ′ · (N ∩ F),
where the latter equality follows from Lemma 2.1 (iv), this yields an exact sequence
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of defect groups

1−→ N ′ ∩ F −→ N ∩ F −→ (N/N ′)∩ F ′ −→ 1.

Next, we show that it suffices to prove Theorem 1.1 when G0 is assumed in
addition to be commutative.

We argue by induction on the dimension of G (assumed to be smooth, with
G0 nilpotent). If dim(G) = 1, then G0 is either a k-form of Ga or Gm , or an
elliptic curve; in particular, G0 is commutative. In higher dimensions, the derived
subgroup D(G0) is a smooth, connected normal subgroup of G contained in G0,
and the quotient G0/D(G0) is commutative of positive dimension (see [SGA 3 I

1970, VIB.7.8, 8.3]). Moreover, G/D(G0) is smooth, and π0(G/D(G0))= π0(G).
By the induction assumption, it follows that the exact sequence

1−→ G0/D(G0)−→ G/D(G0)−→ π0(G)−→ 1

is quasisplit. Also, every exact sequence 1→ D(G0)→ G ′→ Q′→ 1, where Q′

is finite, is quasisplit, by the induction assumption again together with Lemma 2.2.
Thus, Lemma 2.6 yields the desired reduction.

We now show that we may further assume G0 to be a torus, a smooth connected
commutative unipotent group, or an abelian variety.

Indeed, we have an exact sequence of commutative algebraic groups

1−→ T −→ G0
−→ H −→ 1,

where T is the maximal torus of G0, and H is smooth and connected. Moreover,
we have an exact sequence

1−→ H1 −→ H −→ H2 −→ 1,

where H1 is a smooth connected affine algebraic group, and H2 is a pseudoabelian
variety in the sense of [Totaro 2013], i.e., H2 has no nontrivial smooth connected
affine normal subgroup. Since H1 contains no nontrivial torus, it is unipotent; also,
H2 is an extension of a smooth connected unipotent group by an abelian variety
A, in view of [Totaro 2013, Theorem 2.1]. Note that T is a normal subgroup of G
(the largest subtorus). Also, H1 is a normal subgroup of G/T (the largest smooth
connected affine normal subgroup of the neutral component), and A is a normal
subgroup of (G/T )/H1 as well (the largest abelian subvariety). Thus, arguing
by induction on the dimension as in the preceding step, with D(G0) replaced
successively by T , H1 and A, yields our reduction.

When G0 is unipotent and char(k)= p > 0, we may further assume that G0 is
killed by p. Indeed, by [SGA 3 II 1970, XVII.3.9], there exists a composition series
{eG} = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G0 such that each Gi is normal in G, and each
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quotient Gi/Gi−1 is a k-form of some (Ga)
ri ; in particular, Gi/Gi−1 is killed by

p. Our final reduction follows by induction on n.

3. Proof of Theorem 1.1: extensions by commutative groups

In this section, we consider smooth algebraic groups Q, N such that Q is finite and
N is commutative. Given an extension (1), the action of G on N by conjugation
factors through an action of Q by group automorphisms, which we denote by
(x, y) 7→ yx , where x ∈ Q and y ∈ N . Recall that the isomorphism classes of such
extensions with a prescribed Q-action on N form a commutative (abstract) group,
which we denote by Ext1(Q, N ); see [SGA 3 II 1970, XVII.App. I] (and [Demazure
and Gabriel 1970, III.6.1] for the setting of extensions of group sheaves).

Lemma 3.1. With the above notation and assumptions, the group Ext1(Q, N ) is
torsion.

Proof. Any extension (1) yields an N -torsor over Q for the étale topology, since
Q is finite and étale. This defines a map τ : Ext1(Q, N )→ H 1

ét(Q, N ), which is a
group homomorphism (indeed, the sum of any two extensions is obtained by taking
their direct product, pulling back under the diagonal map Q→ Q×Q, and pushing
forward under the multiplication N × N → N ; and the sum of any two torsors is
obtained by the analogous operations). The kernel of τ consists of those classes
of extensions that admit a section (which is a morphism of schemes). In view of
[SGA 3 II 1970, XVII.App. I.3.1], this yields an exact sequence

0−→ HH 2(Q, N )−→ Ext1(Q, N )
τ
−→ H 1

ét(Q, N ),

where HH i stands for Hochschild cohomology (denoted by H i in [SGA 3 I 1970;
SGA 3 II 1970; SGA 3 III 1970], and by H i

0 in [Demazure and Gabriel 1970]). More-
over, the group H 1

ét(Q, N ) is torsion (as follows, e.g., from [Rosenlicht 1956,
Theorem 14]), and HH 2(Q, N ) is killed by the order of Q, as a special case of
[SGA 3 II 1970, XVII.5.2.4]. �

Remark 3.2. The above argument yields that Ext1(Q, N ) is killed by md if Q
is finite étale of order m, and N is a torus split by an extension of k of degree d.
Indeed, we just saw that HH 2(Q, N ) is killed by m; also, H 1

ét(Q, N ) is a direct sum
of groups of the form H 1

ét(Spec(k ′), N ) for finite separable extensions k ′ of k, and
these groups are killed by d . This yields a slight generalization of [Lucchini Arteche
2015b, Proposition 1.1], via a different approach.

End of the proof of Theorem 1.1. Recall from our reductions in Section 2 that we
may assume G0 to be a smooth commutative unipotent group, a torus, or an abelian
variety. We will rather denote G0 by N , and π0(G) by Q.
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We first assume in addition that char(k) = 0 if N is unipotent. Then the n-th
power map

nN : N −→ N , x 7−→ xn

is an isogeny for any positive integer n. Consider an extension (1) and denote
by γ its class in Ext1(Q, N ). By Lemma 3.1, we may choose n so that nγ = 0.
Also, nγ = (nN )∗(γ ) (the pushout of γ by nN ); moreover, the exact sequence of
commutative algebraic groups

1 −−−→ N [n] −−−→ N
nN
−−−→ N −−−→ 1

yields an exact sequence

Ext1(Q, N [n]) −−−→ Ext1(Q, N )
(nN )∗
−−−→ Ext1(Q, N )

due to [SGA 3 II 1970, XVII.App. I.2.1]. Thus, there is a class γ ′ ∈ Ext1(Q, N [n])
with pushout γ , i.e., we have a commutative diagram of extensions

1−→N [n]−→G ′−→Q−→ 1y y id

y
1−→ N −→G−→Q−→ 1,

where the square on the left is cartesian. It follows that G ′ is a finite subgroup of
G, and G = N ·G ′.

Next, we consider the remaining case, where N is unipotent and char(k)= p> 0.
In view of our final reduction at the end of Section 2, we may further assume that
N is killed by p. Then there exists an étale isogeny N → N1, where N1 is a vector
group (see [Conrad et al. 2015, Lemma B.1.10]). This yields another commutative
diagram of extensions

1−→ N −→ G −→Q−→ 1y y id

y
1−→N1−→G1−→Q−→ 1.

Assume that there exists a finite subgroup F1 of G1 such that G1= N1 ·F1. Let F be
the pullback of F1 to G; then F is a finite subgroup, and one checks that G = N · F
using Lemma 2.1 (iv). Thus, we may finally assume that N is a vector group.

Under that assumption, the N -torsor G→ Q is trivial, since Q is affine. Thus,
we may choose a section s : Q→G. Also, we may choose a finite Galois extension
of fields K/k such that QK is constant. Then s yields a section sK : QK → G K ,
equivariant under the Galois group 0K := Gal(K/k). So we may view G(K ) as
the set of the y s(x), where y ∈ N (K ) and x ∈ Q(K ), with multiplication

y s(x) y′ s(x ′)= y y′x c(x, x ′) s(xx ′),
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where c ∈ Z2(Q(K ), N (K ))0K . Consider the (abstract) subgroup H ⊂ N (K )
generated by the c(x ′, x ′′)x , where x, x ′, x ′′ ∈ Q(K ). Then H is finite, since N (K )
is killed by p and Q(K ) is finite. Moreover, H s(Q(K )) is a subgroup of G(K ), in
view of the above formula for the multiplication. Clearly, H s(Q(K )) is finite and
stable under 0K ; thus, it corresponds to a finite (algebraic) subgroup G ′ of G. Also,
we obtain as above that G = N ·G ′. This completes the proof of Theorem 1.1. �

Remark 3.3. If k is perfect, then the subgroup F as in Theorem 1.1 may be chosen
étale. Indeed, the reduced subscheme Fred is then a subgroup by [SGA 3 I 1970,
VIA.0.2]. Moreover, G(k̄) = G0(k̄)Fred(k̄), and hence G = G0

· Fred in view of
Lemma 2.1 (v).

In contrast, when k is imperfect, there exists a finite group G admitting no étale
subgroup F such that G = G0

· F . Consider for example (as in [SGA 3 I 1970,
VIA.1.3.2]) the subgroup G of Ga,k defined by the additive polynomial X p2

− t X p,
where p := char(k) and t ∈ k \ k p. Then G has order p2 and G0 has order p. If
G=G0

·F with F étale, then G0
∩F is trivial. Thus, G∼=G0oF and F has order p.

Let K := k(t1/p). Then FK is contained in (G K )red, which is the subgroup of Ga,K

defined by the additive polynomial X p
− t1/p X . By counting dimensions, it follows

that FK = (G K )red, which yields a contradiction as (G K )red is not defined over k.

Remark 3.4. One may obtain information on the defect group N ∩F by examining
the steps in the proof of Theorem 1.1 and combining Remarks 2.3, 2.5 and 2.7. For
instance, if G is smooth, then N∩F is an extension of the Weyl group W (G0, T ) by
the nilpotent group ZG0(T )∩ F , where T is a maximal torus of G. If char(k)= 0
(so that G is smooth), then ZG0(T ) ∩ F is commutative. Indeed, ZG0(T ) is a
connected nilpotent algebraic group, and hence an extension of a semiabelian
variety S by a connected unipotent algebraic group U . Thus, U ∩ F is trivial, and
hence ZG0(T )∩ F is isomorphic to a subgroup of S.

Remark 3.5. When k is finite, Theorem 1.1 follows readily from our first reduction
step (Lemma 2.2) together with a theorem of Lang [1956, Theorem 2]. More specif-
ically, let H be a smooth algebraic group and choose representatives x1, . . . , xm of
the orbits of the Galois group 0 := Gal(k̄/k) in π0(H)(k̄). Denote by 0i ⊂ 0 the
isotropy group of xi and set ki := k̄0i for i = 1, . . . ,m. Then xi ∈ π0(H)(ki ), and
hence the fiber π−1

ki
(xi ) (a torsor under H 0

ki
) contains a ki -rational point. Consider

the subfield

K :=
n∏

i=1

ki ⊂ k̄.

Then the finite étale group scheme π0(H)K is constant, and π is surjective on
K -rational points. Thus, π0(H) has a quasicomplement in H : the finite étale group
scheme corresponding to the constant, 0-stable subgroup scheme H(K ) of HK .
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4. Some applications

We first recall two classical results on the structure of algebraic groups. The first
one is the affinization theorem (see [Demazure and Gabriel 1970, III.3.8] and also
[SGA 3 I 1970, VIB.12.2]): any algebraic group G has a smallest normal subgroup
H such that G/H is affine. Moreover, H is smooth, connected and contained in
the center of G0; we have O(H)= k (such an algebraic group is called antiaffine)
and O(G/H)= O(G).

Consequently, H is the fiber at eG of the affinization morphism G→ Spec O(G);
moreover, the formation of H commutes with arbitrary field extensions. Also, note
that H is the largest antiaffine subgroup of G; we will denote H by Gant. The
structure of antiaffine groups is described in [Brion 2009] and [Sancho and Sancho
2009].

The second structure result is a version of a theorem of Chevalley, due to Raynaud
[1970, Lemma IX.2.7] (see also [Bosch et al. 1990, 9.2 Theorem 1]): any connected
algebraic group G has a smallest affine normal subgroup N such that G/N is an
abelian variety. Moreover, N is connected; if G is smooth and k is perfect, then N
is smooth as well. We will denote N by Gaff.

We will also need the following observation:

Lemma 4.1. Let G be an algebraic group, and N a normal subgroup. Then the
quotient map f : G→ G/N yields an isomorphism Gant/(Gant ∩ N )∼= (G/N )ant.

Proof. We have a closed immersion of group schemes Gant/(Gant ∩ N )→ G/N ;
moreover, Gant/(Gant ∩ N ) is antiaffine. So we obtain a closed immersion of
commutative group schemes i : Gant/(Gant ∩ N )→ (G/N )ant. The cokernel of
i is antiaffine, as a quotient of (G/N )ant. Also, this cokernel is a subgroup of
(G/N )/(Gant/(Gant∩N )), which is a quotient of G/Gant. Since the latter is affine,
it follows that Coker(i) is affine as well, by using [SGA 3 I 1970, VIB.11.17]. Thus,
Coker(i) is trivial, i.e., i is an isomorphism. �

We now obtain a further version of Chevalley’s structure theorem, for possibly
nonconnected algebraic groups:

Theorem 4.2. Any algebraic group G has a smallest affine normal subgroup N
such that G/N is proper. Moreover, N is connected.

Proof. It suffices to show that G admits an affine normal subgroup N such that
G/N is proper. Indeed, given another such subgroup N ′, the natural map

G/(N ∩ N ′)−→ G/N ×G/N ′

is a closed immersion, and hence G/(N∩N ′) is proper. Taking for N a minimal such
subgroup, it follows that N is the smallest one. Moreover, the natural morphism
G/N 0

→ G/N is finite, since it is a torsor under the finite group N/N 0 (see
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[SGA 3 I 1970, VIA.5.3.2]). As a consequence, G/N 0 is proper; hence N = N 0 by
the minimality assumption. Thus, N is connected.

Also, we may reduce to the case where G is smooth by using the relative
Frobenius morphism as in the proof of Lemma 2.2.

If in addition G is connected, then we just take N =Gaff. In the general case, we
consider the (possibly nonnormal) subgroup H := (G0)aff; then the homogeneous
space G/H is proper, since G/G0 is finite and G0/H is proper. As a consequence,
the automorphism functor of G/H is represented by a group scheme AutG/H ,
locally of finite type; in particular, the neutral component Aut0G/H is an algebraic
group (see [Matsumura and Oort 1967, Theorem 3.7]). The action of G by left
multiplication on G/H yields a morphism of group schemes

ϕ : G −→ AutG/H .

The kernel N of ϕ is a closed subscheme of H , and hence is affine. To complete
the proof, it suffices to show that G/N is proper. In turn, it suffices to check that
(G/N )0 is proper. Since (G/N )0 ∼= G0/(G0

∩ N ), and G0
∩ N is the kernel of the

restriction G0
→ Aut0G/H , we are reduced to showing that Aut0G/H is proper (by

using [SGA 3 I 1970, VIA.5.4.1] again).
We claim that Aut0G/H is an abelian variety. Indeed, (G/H)k̄ is a finite disjoint

union of copies of (G0/H)k̄ , which is an abelian variety. Also, the natural morphism
A → Aut0A is an isomorphism for any abelian variety A. Thus, (Aut0G/H )k̄ is
an abelian variety (a product of copies of (G0/H)k̄); this yields our claim, and
completes the proof. �

Remark 4.3. The formation of Gaff (for a connected group scheme G) commutes
with separable algebraic field extensions, as follows from a standard argument of
Galois descent. But this formation does not commute with purely inseparable field
extensions, in view of [SGA 3 II 1970, XVII.C.5].

Likewise, the formation of N as in Theorem 4.2 commutes with separable
algebraic field extensions. As a consequence, N = (G0)aff for any smooth group
scheme G (since (G0)aff is invariant under any automorphism of G, and hence is a
normal subgroup of G when k is separably closed). In particular, if k is perfect and
G is smooth, then N is smooth as well.

For an arbitrary group scheme G, we may have N 6= (G0)aff, e.g., when G is
infinitesimal: then N is trivial, while (G0)aff = G.

We do not know if the formations of Gaff and N commute with arbitrary separable
field extensions.

The structure of proper algebraic groups is easily described as follows:

Proposition 4.4. Given a proper algebraic group G, there exists an abelian variety
A, a finite group F equipped with an action F → AutA and a normal subgroup
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D ⊂ F such that D acts faithfully on A by translations and G ∼= (Ao F)/D, where
D is embedded in AoF via x 7→ (x, x−1). Moreover, A=Gant and F/D∼=G/Gant

are uniquely determined by G. Finally, G is smooth if and only if F/D is étale.

Proof. Note that Gant is a smooth connected proper algebraic group, and hence an
abelian variety. Moreover, the quotient group G/Gant is affine and proper, hence
finite. By Theorem 1.1, there exists a finite subgroup F ⊂G such that G =Gant · F .
In particular, G ∼= (F nGant)/(F ∩Gant); this implies the existence assertion. For
the uniqueness, just note that O(G) ∼= O(G/A) ∼= O(F/D), and this identifies the
affinization morphism to the natural homomorphism G→ F/D, with kernel A.

If G is smooth, then so is G/A ∼= F/D; as F/D is finite, it must be étale. Since
the homomorphism G→ F/D is smooth, the converse holds as well. �

Remark 4.5. The simplest examples of proper algebraic groups are the semidirect
products G = Ao F , where F is a finite group acting on the abelian variety A. If
this action is nontrivial (for example, if A is nontrivial and F is the constant group
Z/2Z acting via x 7→ x±1), then every morphism of algebraic groups f : G→ H ,
where H is connected, has a nontrivial kernel. (Otherwise, A is contained in the
center of G by the affinization theorem.) This yields examples of algebraic groups
which admit no faithful representation in a connected algebraic group.

Remark 4.6. With the notation and assumptions of Proposition 4.4, consider a
subgroup H ⊂ G and the homogeneous space X := G/H . Then there exists an
abelian variety B quotient of A, a subgroup I ⊂ F containing D, and a faithful
homomorphism I → AutB such that the scheme X is isomorphic to the associated
fiber bundle F ×I B. Moreover, the schemes F/I and B are uniquely determined
by X , and X is smooth if and only if F/I is étale.

Indeed, let K := A · H , then X ∼= G×K K/H ∼= F ×I K/H , where I := F ∩ K .
Moreover, K/H ∼= A/(A ∩ H) is an abelian variety. This shows the existence
assertion; those on uniqueness and smoothness are checked as in the proof of
Proposition 4.4.

Conversely, given a finite group F and a subgroup I ⊂ F acting on an abelian
variety B, the associated fiber bundle F ×I B exists (since it is the quotient of the
projective scheme F× B by the finite group I ), and is homogeneous whenever F/I
is étale (since (F ×I B)k̄ is just a disjoint union of copies of Bk̄). We do not know
how to characterize the homogeneity of F ×I B when the quotient F/I is arbitrary.

Returning to an arbitrary algebraic group G, we have the “Rosenlicht decompo-
sition” G = Gant ·Gaff when G is smooth and connected (see, e.g., [Brion 2009]).
We now extend this result to possibly nonconnected groups:

Theorem 4.7. Let G be an algebraic group. Then there exists an affine subgroup
H of G such that G = Gant · H. If G is smooth and k is perfect, then H may be
chosen smooth.
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Proof. By Theorem 4.2, we may choose an affine normal subgroup N ⊂ G such
that G/N is proper. In view of Proposition 4.4, there exists a finite subgroup F of
G/N such that G/N = (G/N )ant · F , and (G/N )ant is an abelian variety. Let H be
the subgroup of G containing N such that G/H = F . Then H is affine, since it
sits in an extension 1→ N → H → F→ 1. We check that G = Gant · H by using
Lemma 2.1 (iv). Let S be a scheme, and g ∈ G(S). Denote by g′ the image of g in
(G/N )(S). Then there exist a faithfully flat morphism of finite presentation S′→ S
and x ′ ∈ (G/N )ant(S′), y′ ∈ F(S′) such that g′ = x ′y′ in (G/N )(S′). Moreover, in
view of Lemma 4.1, x ′ lifts to some x ′′ ∈ Gant(S′′), where S′′→ S′ is faithfully flat
of finite presentation. So gx ′′−1

∈ G(S′′) lifts y′, and hence g ∈ Gant(S′′)H(S′′).
If G is smooth and k is perfect, then N may be chosen smooth by Remark 4.3;

also, F may be chosen smooth by Remark 3.3. Then H is smooth as well. �

We now derive from Theorem 4.7 a generalization of our main Theorem 1.1,
under the additional assumption of characteristic 0 (then reductivity is equivalent to
linear reductivity, also known as full reducibility):

Corollary 4.8. Every extension (1) with reductive quotient group Q is quasisplit
when char(k)= 0.

Proof. Choose an affine subgroup H ⊂ G such that G = Gant · H and denote by
Ru(H) its unipotent radical. By a result of Mostow [1956, Theorem 6.1], H has a
Levi subgroup, i.e., a fully reducible algebraic subgroup L such that H = Ru(H)oL .
Note that Ru(H) is normal in G, since it is normalized by H and centralized by
Gant. It follows that Gant · Ru(H) is normal in G, and G = (Gant · Ru(H)) · L . Also,
note that the quotient map f : G→ Q sends Gant to eQ (since Q is affine), and
Ru(H) to eQ as well (since Q is reductive). It follows that the sequence

1−→ N ∩ L −→ L
f
−→ Q −→ 1

is exact, where N = Ker( f ). If N ∩ L has a quasicomplement H in L , then H is
a quasicomplement to N in G (as follows, e.g., from Lemma 2.1 (v)). Thus, we
may assume that G is reductive. Since every quasicomplement to N 0 in G is a
quasicomplement to N , we may further assume that N is connected.

We have a canonical decomposition

G0
= D(G0) · R(G0),

where the derived subgroup D(G0) is semisimple, the radical R(G0) is a central
torus, and D(G0)∩ R(G0) is finite (see, e.g., [SGA 3 III 1970, XXII.6.2.4]). Thus,
G = D(G0) · (R(G0) · F), where F ⊂ G is a quasicomplement to G0. Likewise,
N = D(N ) · R(N ), where D(N ) ⊂ D(G0), R(N ) ⊂ R(G0) and both are normal
in G. Denote by S the neutral component of the centralizer of D(N ) in D(G0).
Then S is a normal semisimple subgroup of G, and a quasicomplement to D(N )
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in D(G0). If R(N ) admits a quasicomplement T in R(G0) · F , then one readily
checks that S · T is a quasicomplement to N in G. As a consequence, we may
replace G with R(G0) · F , and hence assume that G0 is a torus.

Denote by X∗(G0) the character group of G0
k̄
; this is a free abelian group of

finite rank, equipped with a continuous action of F(k̄) o 0, where 0 denotes
the absolute Galois group of k. Moreover, we have a surjective homomorphism
ρ : X∗(G0)→ X∗(N ), equivariant for F(k̄)o0. Thus, ρ splits over the rationals,
and hence there exists a subgroup3⊂ X∗(G0), stable by F(k̄)o0, which is mapped
isomorphically by ρ to a subgroup of finite index of X∗(N ). The quotient X∗(G0)/3

corresponds to a subtorus H ⊂ G0, normalized by G, which is a quasicomplement
to N in G0. So H · F is the desired quasicomplement to N in G. �

Remark 4.9. Corollary 4.8 does not extend to positive characteristics, due to the
existence of groups without Levi subgroups (see [Conrad et al. 2015, Appendix A.6;
McNinch 2010, Section 3.2]). As a specific example, when k is perfect of charac-
teristic p > 0, there exists a nonsplit extension of algebraic groups

1−→ V −→ G
f
−→ SL2 −→ 1,

where V is a vector group on which SL2 acts linearly via the Frobenius twist of its
adjoint representation. We show that this extension is not quasisplit. Otherwise, let
H be a quasicomplement to N in G. Then so is the reduced neutral component of
H , and hence we may assume that H is smooth and connected. The quotient map
f restricts to an isogeny H → SL2, and hence to an isomorphism. Thus, the above
extension is split, a contradiction.

Next, we obtain an analogue of the Levi decomposition (see [Mostow 1956]
again) for possibly nonlinear algebraic groups:

Corollary 4.10. Let G be an algebraic group over a field of characteristic 0. Then
G = R · S, where R ⊂ G is the largest connected solvable normal subgroup, and
S ⊂ G is an algebraic subgroup such that S0 is semisimple; also, R ∩ S is finite.

Proof. By a standard argument, G has a largest connected solvable normal subgroup
R. The quotient G/R is affine, since R ⊃ Gant. Moreover, R/Gant contains the
radical of G/Gant, and hence (G/R)0 is semisimple. In particular, G/R is reductive.
So Corollary 4.8 yields the existence of the quasicomplement S. �

Remark 4.11. One may ask for a version of Corollary 4.10 in which the normal
subgroup R is replaced with an analogue of the unipotent radical of a linear alge-
braic group, and the quasicomplement S is assumed to be reductive. But such a
version would make little sense when G is an antiaffine semiabelian variety (for
example, when G is the extension of an abelian variety A by Gm , associated with
an algebraically trivial line bundle of infinite order on A). Indeed, such a group G
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has a largest connected reductive subgroup: its maximal torus, which admits no
quasicomplement.

Also, recall that the radical R may admit no complement in G, e.g., when
G = GLn with n ≥ 2.

Finally, one may also ask for the uniqueness of a minimal quasicomplement in
Corollary 4.10, up to conjugacy in R(k) (as for Levi complements, see [Mostow
1956, Theorem 6.2]). But this fails when k is algebraically closed and G is the
semidirect product of an abelian variety A with a group F of order 2. Denote by σ
the involution of A induced by the nontrivial element of F ; then R = A, and the
complements to R in G are exactly the subgroups generated by the involutions xσ
where x ∈ A−σ (k), i.e., σ(x)= x−1. The action of R(k) on complements is given
by yxσ y−1

= xyσ(y)−1σ ; moreover, the homomorphism A→ A−σ , y 7→ yσ(y)−1

is generally not surjective. This holds for example when A= (B× B)/C , where B
is a nontrivial abelian variety, C is the subgroup of B× B generated by (x0, x0) for
some x0 ∈ B(k) of order 2, and σ arises from the involution (x, y) 7→ (y−1, x−1)

of B× B; then A−σ has 2 connected components.

Another consequence of Theorem 4.7 concerns the case where k is finite; then
every antiaffine algebraic group is an abelian variety (see [Brion 2009, Proposition
2.2]). This yields readily:

Corollary 4.12. Let G be an algebraic group over a finite field. Then G sits in an
extension of algebraic groups

1−→ F −→ A× H −→ G −→ 1,

where F is finite, A is an abelian variety, and H is affine. If G is smooth, then H
may be chosen smooth as well.

Returning to an arbitrary base field, we finally obtain the existence of equivariant
compactifications of homogeneous spaces:

Theorem 4.13. Let G be an algebraic group, and H a closed subgroup. Then
there exists a projective scheme X equipped with an action of G, and an open
G-equivariant immersion G/H ↪→ X with schematically dense image.

Proof. When G is affine, this follows from a theorem of Chevalley asserting that
H is the stabilizer of a line L in a finite-dimensional G-module V (see [SGA 3 I

1970, VIB.11.16]). Indeed, one may take for X the closure of the G-orbit of L in
the projective space of lines of V ; then X satisfies the required properties in view
of [Demazure and Gabriel 1970, III.3.5.2]. Note that X is equipped with an ample
G-linearized invertible sheaf.

When G is proper, the homogeneous space G/H is proper as well, and hence is
projective by [Raynaud 1970, Corollary VI.2.6] (alternatively, this follows from the
structure of X described in Remark 4.5).



ON EXTENSIONS OF ALGEBRAIC GROUPS WITH FINITE QUOTIENT 151

In the general case, Theorem 4.2 yields an affine normal subgroup N of G such
that G/N is proper. Then N · H is a subgroup of G, and G/(N · H) is proper as
well, hence projective. It suffices to show the existence of a projective scheme
Y equipped with an action of N · H , an open immersion (N · H)/H → Y with
schematically dense image, and a N · H -linearized ample line bundle: indeed, by
[Mumford et al. 1994, Proposition 7.1] applied to the projection G× Y → Y and
the N · H -torsor G→ G/(N · H), the associated fiber bundle G×N ·H Y yields the
desired equivariant compactification. In view of Chevalley’s theorem used in the
first step, it suffices in turn to check that N · H acts on (N · H)/H via an affine
quotient group; equivalently, (N · H)ant ⊂ H .

By Lemma 4.1, (N · H)ant is a quotient of (N o H)ant. The latter is the fiber at
the neutral element of the affinization morphism N o H → Spec O(N o H). Also,
N o H ∼= N × H as schemes, N is affine and the affinization morphism commutes
with products; thus, (N o H)ant = Hant. As a consequence, (N · H)ant = Hant; this
completes the proof. �

Remark 4.14. If char(k)= 0, the equivariant compactification X of Theorem 4.13
may be taken smooth, as follows from the existence of an equivariant desingular-
ization (see [Kollár 2007, Proposition 3.9.1, Theorem 3.36]).

In arbitrary characteristics, X may be taken normal if G is smooth. Indeed, the
G-action on any equivariant compactification X stabilizes the reduced subscheme
Xred (since G× Xred is reduced), and lifts to an action on its normalization X̃ (since
G × X̃ is normal). But the existence of regular compactifications (equivariant or
not) is an open question.

Over any imperfect field k, there exist smooth connected algebraic groups G
having no smooth compactification. Indeed, we may take for G the subgroup of Ga×

Ga defined by y p
− y− t x p

= 0, where p := char(k) and t ∈ k \k p. This is a smooth
affine curve, and hence has a unique regular compactification X . One checks that X
is the curve (y p

− yz p−1
− t x p

= 0)⊂P2, which is not smooth at its point at infinity.
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qeskie gruppy”, Izv. Akad. Nauk SSSR Ser. Mat. 30:3 (1966), 573–620. Translated as “Theory of
algebraic linear groups and periodic groups”, pp. 61–110 in Seven papers on algebra, Transl. Amer.
Math. Soc. (2) 69, Amer. Math. Soc., Providence, RI, 1968. MR 33 #7428 Zbl 0146.04405

[Raynaud 1970] M. Raynaud, Faisceaux amples sur les schémas en groupes et les espaces homogènes,
Lecture Notes in Math. 119, Springer, Berlin, 1970. MR 41 #5381 Zbl 0195.22701

[Rosenlicht 1956] M. Rosenlicht, “Some basic theorems on algebraic groups”, Amer. J. Math. 78
(1956), 401–443. MR 18,514a Zbl 0073.37601

http://dx.doi.org/10.1007/978-3-642-51438-8
http://msp.org/idx/mr/91i:14034
http://msp.org/idx/zbl/0705.14001
http://dx.doi.org/10.1016/j.jalgebra.2008.09.034
http://msp.org/idx/mr/2009j:14059
http://msp.org/idx/mr/2009j:14059
http://msp.org/idx/zbl/1166.14029
http://dx.doi.org/10.1007/s00229-008-0180-0
http://dx.doi.org/10.1007/s00229-008-0180-0
http://msp.org/idx/mr/2009f:14090
http://msp.org/idx/zbl/1157.14028
http://dx.doi.org/10.1017/CBO9781316092439
http://msp.org/idx/mr/2011k:20093
http://msp.org/idx/zbl/1314.20037
http://msp.org/idx/mr/46:1800
http://msp.org/idx/zbl/0203.23401
http://dx.doi.org/10.4171/OWR/2012/38
http://msp.org/idx/mr/3156730
http://dx.doi.org/10.14231/AG-2014-025
http://dx.doi.org/10.14231/AG-2014-025
http://msp.org/idx/mr/3296806
https://books.google.com?id=Oygejj1QFhgC
http://msp.org/idx/mr/2008f:14026
http://msp.org/idx/zbl/1113.14013
http://dx.doi.org/10.2307/2372673
http://msp.org/idx/mr/19,174a
http://msp.org/idx/zbl/0073.37901
http://dx.doi.org/10.2140/ant.2013.7.1817
http://dx.doi.org/10.2140/ant.2013.7.1817
http://msp.org/idx/mr/3134035
http://msp.org/idx/zbl/1288.20061
http://msp.org/idx/arx/1503.06582
http://dx.doi.org/10.1007/s00031-015-9301-5
http://dx.doi.org/10.1007/s00031-015-9301-5
http://msp.org/idx/mr/3348564
http://msp.org/idx/zbl/06458683
http://www.digizeitschriften.de/dms/resolveppn/?PID=GDZPPN002086638
http://www.digizeitschriften.de/dms/resolveppn/?PID=GDZPPN002086638
http://msp.org/idx/mr/36:181
http://msp.org/idx/zbl/0173.22504
http://dx.doi.org/10.1007/s00031-010-9111-8
http://msp.org/idx/mr/2012b:20110
http://msp.org/idx/zbl/1221.20034
http://msp.org/idx/arx/1311.6060v2
http://dx.doi.org/10.2307/2372490
http://msp.org/idx/mr/19,1181f
http://msp.org/idx/zbl/0073.01603
http://dx.doi.org/10.1007/978-3-642-57916-5
http://msp.org/idx/mr/95m:14012
http://msp.org/idx/zbl/0797.14004
http://mi.mathnet.ru/rus/izv/v30/i3/p573
http://mi.mathnet.ru/rus/izv/v30/i3/p573
http://msp.org/idx/mr/33:7428
http://msp.org/idx/zbl/0146.04405
http://dx.doi.org/10.1007/BFb0059504
http://msp.org/idx/mr/41:5381
http://msp.org/idx/zbl/0195.22701
http://dx.doi.org/10.2307/2372523
http://msp.org/idx/mr/18,514a
http://msp.org/idx/zbl/0073.37601


ON EXTENSIONS OF ALGEBRAIC GROUPS WITH FINITE QUOTIENT 153

[Rosenlicht 1961] M. Rosenlicht, “Toroidal algebraic groups”, Proc. Amer. Math. Soc. 12 (1961),
984–988. MR 24 #A3162 Zbl 0107.14703

[Sancho and Sancho 2009] C. Sancho de Salas and F. Sancho de Salas, “Principal bundles, quasi-
abelian varieties and structure of algebraic groups”, J. Algebra 322:8 (2009), 2751–2772. MR 2010m:
14058 Zbl 1191.14055

[SGA 3 I 1970] M. Demazure and A. Grothendieck, Schémas en groupes, Tome I: Propriétés générales
des schémas en groupes, Exposés I–VII (Séminaire de Géométrie Algébrique du Bois Marie 1962–
1964), Lecture Notes in Math. 151, Springer, Berlin, 1970. MR 43 #223a Zbl 0207.51401

[SGA 3 II 1970] M. Demazure and A. Grothendieck, Schémas en groupes, Tome II: Groupes de type
multiplicatif, et structure des schémas en groupes généraux, Exposés VIII–XVIII (Séminaire de
Géométrie Algébrique du Bois Marie 1962–1964), Lecture Notes in Math. 152, Springer, Berlin,
1970. MR 43 #223b Zbl 0209.24201

[SGA 3 III 1970] M. Demazure and A. Grothendieck, Schémas en groupes, Tome III: Structure
des schémas en groupes réductifs, Exposés XIX–XXVI (Séminaire de Géométrie Algébrique du
Bois Marie 1962–1964), Lecture Notes in Math. 153, Springer, Berlin, 1970. MR 43 #223c
Zbl 0212.52810

[Totaro 2013] B. Totaro, “Pseudo-abelian varieties”, Ann. Sci. Éc. Norm. Supér. (4) 46:5 (2013),
693–721. MR 3185350 Zbl 1286.14061

Received May 27, 2015. Revised July 12, 2015.

MICHEL BRION

INSTITUT FOURIER

UNIVERSITÉ DE GRENOBLE I (JOSEPH FOURIER)
100 RUE DES MATHÉMATIQUES

38402 SAINT-MARTIN D’HÈRES CEDEX

FRANCE

michel.brion@ujf-grenoble.fr

http://dx.doi.org/10.2307/2034407
http://msp.org/idx/mr/24:A3162
http://msp.org/idx/zbl/0107.14703
http://dx.doi.org/10.1016/j.jalgebra.2009.08.001
http://dx.doi.org/10.1016/j.jalgebra.2009.08.001
http://msp.org/idx/mr/2010m:14058
http://msp.org/idx/mr/2010m:14058
http://msp.org/idx/zbl/1191.14055
http://www.msri.org/publications/books/sga/sga/pdf/sga3-1.pdf
http://www.msri.org/publications/books/sga/sga/pdf/sga3-1.pdf
http://msp.org/idx/mr/43:223a
http://msp.org/idx/zbl/0207.51401
http://www.msri.org/publications/books/sga/sga/pdf/sga3-2.pdf
http://www.msri.org/publications/books/sga/sga/pdf/sga3-2.pdf
http://msp.org/idx/mr/43:223b
http://msp.org/idx/zbl/0209.24201
http://www.msri.org/publications/books/sga/sga/pdf/sga3-3.pdf
http://www.msri.org/publications/books/sga/sga/pdf/sga3-3.pdf
http://msp.org/idx/mr/43:223c
http://msp.org/idx/zbl/0212.52810
http://smf4.emath.fr/Publications/AnnalesENS/4_46/html/ens_ann-sc_46_693-721.php
http://msp.org/idx/mr/3185350
http://msp.org/idx/zbl/1286.14061
mailto:michel.brion@ujf-grenoble.fr




PACIFIC JOURNAL OF MATHEMATICS
msp.org/pjm

Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2015 is US $420/year for the electronic version, and $570/year for print and electronic.
Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2015 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:balmer@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:blasius@math.ucla.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:yang@math.princeton.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 279 No. 1-2 December 2015

In memoriam: Robert Steinberg

1Robert Steinberg (1922–2014): In memoriam
V. S. VARADARAJAN

11Cellularity of certain quantum endomorphism algebras
HENNING H. ANDERSEN, GUSTAV I. LEHRER and RUIBIN ZHANG

37Lower bounds for essential dimensions in characteristic 2 via orthogonal representations
ANTONIO BABIC and VLADIMIR CHERNOUSOV

65Cocharacter-closure and spherical buildings
MICHAEL BATE, SEBASTIAN HERPEL, BENJAMIN MARTIN and GERHARD RÖHRLE

87Embedding functor for classical groups and Brauer–Manin obstruction
EVA BAYER-FLUCKIGER, TING-YU LEE and RAMAN PARIMALA

101On maximal tori of algebraic groups of type G2

CONSTANTIN BELI, PHILIPPE GILLE and TING-YU LEE

135On extensions of algebraic groups with finite quotient
MICHEL BRION

155Essential dimension and error-correcting codes
SHANE CERNELE and ZINOVY REICHSTEIN

181Notes on the structure constants of Hecke algebras of induced representations of finite Chevalley groups
CHARLES W. CURTIS

203Complements on disconnected reductive groups
FRANÇOIS DIGNE and JEAN MICHEL

229Extending Hecke endomorphism algebras
JIE DU, BRIAN J. PARSHALL and LEONARD L. SCOTT

255Products of partial normal subgroups
ELLEN HENKE

269Lusztig induction and `-blocks of finite reductive groups
RADHA KESSAR and GUNTER MALLE

299Free resolutions of some Schubert singularities
MANOJ KUMMINI, VENKATRAMANI LAKSHMIBAI, PRAMATHANATH SASTRY and C. S. SESHADRI

329Free resolutions of some Schubert singularities in the Lagrangian Grassmannian
VENKATRAMANI LAKSHMIBAI and REUVEN HODGES

357Distinguished unipotent elements and multiplicity-free subgroups of simple algebraic groups
MARTIN W. LIEBECK, GARY M. SEITZ and DONNA M. TESTERMAN

383Action of longest element on a Hecke algebra cell module
GEORGE LUSZTIG

397Generic stabilisers for actions of reductive groups
BENJAMIN MARTIN

423On the equations defining affine algebraic groups
VLADIMIR L. POPOV

447Smooth representations and Hecke modules in characteristic p
PETER SCHNEIDER

465On CRDAHA and finite general linear and unitary groups
BHAMA SRINIVASAN

481Weil representations of finite general linear groups and finite special linear groups
PHAM HUU TIEP

499The pro-p Iwahori Hecke algebra of a reductive p-adic group, V (parabolic induction)
MARIE-FRANCE VIGNÉRAS

531Acknowledgement

0030-8730(2015)279:1;1-1

Pacific
JournalofM

athem
atics

2015
Vol.279,N

o.1-2


	1. Introduction
	2. Proof of 0=theorem.31=Theorem 1.1: some reductions
	3. Proof of 0=theorem.31=Theorem 1.1: extensions by commutative groups
	4. Some applications
	Acknowledgements
	References
	
	

