
Pacific
Journal of
Mathematics

ESSENTIAL DIMENSION AND ERROR-CORRECTING CODES

SHANE CERNELE AND ZINOVY REICHSTEIN

APPENDIX BY ATHENA NGUYEN

Volume 279 No. 1-2 December 2015



PACIFIC JOURNAL OF MATHEMATICS
Vol. 279, No. 1-2, 2015

dx.doi.org/10.2140/pjm.2015.279.155

ESSENTIAL DIMENSION AND ERROR-CORRECTING CODES

SHANE CERNELE AND ZINOVY REICHSTEIN

APPENDIX BY ATHENA NGUYEN

To the memory of Robert Steinberg

One of the important open problems in the theory of central simple algebras
is to compute the essential dimension of GLn =�m, i.e., the essential dimen-
sion of a generic division algebra of degree n and exponent dividing m. In
this paper we study the essential dimension of groups of the form

G D .GLn1
� � � � �GLnr /=C;

where C is a central subgroup of GLn1
� � � � �GLnr . Equivalently, we are

interested in the essential dimension of a generic r-tuple .A1; : : : ;Ar/ of
central simple algebras such that deg.Ai / D ni and the Brauer classes of
A1; : : : ;Ar satisfy a system of homogeneous linear equations in the Brauer
group. The equations depend on the choice of C via the error-correcting
code Code.C / which we naturally associate to C . We focus on the case
where n1; : : : ; nr are powers of the same prime. The upper and lower
bounds on ed.G/ we obtain are expressed in terms of coding-theoretic pa-
rameters of Code.C /, such as its weight distribution. Surprisingly, for many
groups of the above form the essential dimension becomes easier to estimate
when r � 3; in some cases we even compute the exact value. The Appendix
by Athena Nguyen contains an explicit description of the Galois cohomol-
ogy of groups of the form .GLn1

� � � � �GLnr /=C . This description and its
corollaries are used throughout the paper.

1. Introduction

Let k be a base field. Unless otherwise specified, we will assume that every field
appearing in this paper contains k and every homomorphism (i.e., inclusion) of
fields restricts to the identity map on k.
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Columbia. Cernele and Reichstein gratefully acknowledge financial support from the University of
British Columbia and the Natural Sciences and Engineering Research Council of Canada.
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We begin by recalling the definition of the essential dimension of a covariant
functor F from the category of fields to the category of sets. Given a field K and an
object ˛ 2 F.K/, we will say that ˛ descends to an intermediate field k �K0 �K
if ˛ lies in the image of the natural map F.K0/! F.K/. The essential dimension
ed.˛/ of ˛ is defined as the minimal value of trdegk.K0/ such that ˛ descends to a
subfield k �K0 �K. Given a prime integer p, the essential dimension edp.˛/ of
˛ at p is defined as the minimal value of trdegk.K0/, where the minimum is taken
over all finite field extensions L=K and all intermediate fields k �K0 � L, such
that ŒL WK� is prime to p and ˛L descends to K0.

The essential dimension ed.F / (respectively, the essential dimension edp.F /
at p) of the functor F is defined as the maximal value of ed.˛/ (respectively of
edp.˛/), where the maximum is taken over all field extensions K=k and all objects
˛ 2 F.K/.

Informally speaking, ed.˛/ is the minimal number of independent parameters
required to define ˛, ed.F / is the minimal number of independent parameters
required to define any object in F , and edp.˛/, edp.F / are relative versions of these
notions at a prime p. These relative versions are somewhat less intuitive, but they
tend to be more accessible and more amenable to computation than ed.˛/ and ed.F /.
Clearly ed.˛/> edp.˛/ for each ˛, and ed.F /> edp.F /. In most cases of interest,
ed.˛/ is finite for every ˛. On the other hand, ed.F / (and even edp.F /) can be
infinite. For an introduction to the theory of essential dimension, we refer the reader
to the surveys [Berhuy and Favi 2003; Reichstein 2010; 2012; Merkurjev 2013].

To every algebraic group G one can associate the functor

FG WDH 1.�; G/ WK 7! fisomorphism classes of G-torsors over Spec.K/g:

If G is affine, then the essential dimension of this functor is known to be finite;
it is usually denoted by ed.G/, rather than ed.FG/. For many specific groups G,
H 1.K;G/ is in a natural bijective correspondence with the set of isomorphism
classes of some algebraic objects defined over K. In such cases, ed.G/ may be
viewed as the minimal number of independent parameters required to define any
object of this type. This number is often related to classical problems in algebra.

For example, in the case whereG is the projective linear group PGLn, the objects
in question are central simple algebras. That is,

(1) H 1.K;PGLn/D fisomorphism classes of
central simple K-algebras of degree ng:

The problem of computing ed.PGLn/ is one of the important open problems in the
theory of central simple algebras; see [Auel et al. 2011, Section 6]. This problem
was first posed by C. Procesi, who showed (using different terminology) that

(2) ed.PGLn/6 n2 I
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see [Procesi 1967, Theorem 2.1]. Stronger (but still quadratic) upper bounds can
be found in [Lorenz et al. 2003, Theorem 1.1] and [Lemire 2004, Theorem 1.6].

A more general but closely related problem is computing ed.GLn =�m/, where
m and n are positive integers and m divides n. Note that

(3) H 1.K;GLn =�m/D fisomorphism classes of central simple K-algebras
of degree n and exponent dividing mg:

In particular, ed.PGLn/D ed.GLn =�n/. The problem of computing ed.GLn =�m/
partially reduces to the case where m D ps and n D pa are powers of the same
prime p and 16 s 6 a.

From now on we will always assume that char.k/¤ p. The inequalities

(4) p2a�2Cpa�s > edp.GLpa =�ps />
�
.a�1/2a�1 if p D 2 and s D 1,
.a�1/paCpa�s otherwise,

proved in [Baek and Merkurjev 2012] represent a striking improvement on the best
previously known bounds. (Here a > 2.) Yet the gap between the lower and upper
bounds in (4) remains wide. The gap between the best known upper and lower
bounds becomes even wider when edp.GLpa =�ps / is replaced by ed.GLpa =�ps /.

These gaps in our understanding of ed.GLn =�m/ will not deter us from con-
sidering the vastly more general problem of computing the essential dimension of
groups of the form

(5) G WD .GLn1
� � � � �GLnr

/=C

in the present paper. Here n1; : : : ; nr > 2 are integers, and C � Grm is a central
subgroup of GLn1

� � � � �GLnr
.

As usual, we will identify elements .m1; : : : ; mr/ of Zr with characters

xWGrm! Gm; where xW .�1; : : : ; �r/ 7! �
m1

1 � � � �
mr
r :

The subgroup C � Grm is completely determined by the Z-module

(6) X.Grm=C /D
˚
.m1; : : : ; mr/ 2 Zr j �

m1

1 � � � �
mr
r D 1 8.�1; : : : ; �r/ 2 C

	
;

consisting of characters of Grm which vanish on C . The Galois cohomology of G
is explicitly described in the Appendix: by Theorem A.1, H 1.K;G/ is naturally
isomorphic to the set of isomorphism classes of r-tuples .A1; : : : ; Ar/ of central
simple K-algebras such that

deg.Ai /D ni and A
˝m1

1 ˝ � � �˝A˝mr
r is split over K

for every .m1; : : : ; mr/ 2 X.Grm=C /. (Note that in the special case where r D 1,
we recover (1) and (3).) It follows from this description that the essential dimension
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of G does not change if C is replaced by C \�, where

(7) � WD �n1
� � � � ��nr

I

see Corollary A.2. Thus we will assume throughout that C � �. Unless otherwise
specified, we will also assume that n1D pa1 ; : : : ; nr D p

ar are powers of the same
prime p. Here a1; : : : ; ar > 1 are integers. Under these assumptions, instead of
X.Grm=C /� Zr , we will consider the subgroup of

X.�/D .Z=pa1Z/� � � � � .Z=par Z/

given by

(8) Code.C / WDX.�=C/D˚
.m1; : : : ; mr/ 2X.�/ j �

m1

1 � � � �
mr
r D 1 8.�1; : : : ; �r/ 2 C

	
:

In other words, Code.C / consists of those characters of � which vanish on C . The
symbol “Code” indicates that we will view this group as an error-correcting code.
In particular, we will define the Hamming weight w.y/ of

y D .m1; : : : ; mr/ 2 .Z=p
a1Z/� � � � � .Z=par Z/

as follows. Write mi WD uipei with ui 2 .Z=pai Z/� and 0� ei � ai . Then

w.y/ WD
rX
iD1

.ai � ei /:

Our main results relate ed.G/ to coding-theoretic invariants of Code.C /, such as its
weight distribution; see also Corollary A.3. For an introduction to error-correcting
coding theory, see [MacWilliams and Sloane 1977].

At this point we should warn the reader that our notions of error-correcting
code and Hamming weight are somewhat unusual. In coding-theoretic literature
(linear) codes are usually defined as linear subspaces of Fnq , where Fq is the field
of q elements. In this paper, by a code we will mean an additive subgroup of
.Z=pa1Z/ � � � � � .Z=par Z/. Nevertheless, in an important special case, where
a1 D � � � D ar D 1, our codes are linear codes of length r over Fp in the usual
sense of error-correcting coding theory, and our definition of the Hamming weight
coincides with the usual definition.

Theorem 1.1. Let p be a prime, G WD .GLpa1 � � � � � GLpar /=C , where C �
�pa1 � � � � � �par is a central subgroup, and y1; : : : ; yt be a minimal basis for
Code.C /; see Definition 3.2. Then

(a) edp.G/>
�Pt

iD1 p
w.yi /

�
�p2a1 � � � � �p2ar C r � t ,

(b) ed.G/6
�Pt

iD1p
w.yi /

�
�tCed.G/ and edp.G/6

�Pt
iD1p

w.yi /
�
�tCedp.G/,

where G WD PGLpa1 � � � � �PGLpar .
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Although the upper and lower bounds of Theorem 1.1 never meet, for many
central subgroups C � ��G, the term

Pt
iD1 p

w.yi / is much larger than any of
the other terms appearing in the above inequalities and may be viewed as giving
the asymptotic value of ed.G/. In particular, note that in view of (2),

(9) edp.G/6 ed.G/6 ed.PGLpa1 /C � � �C ed.PGLpar /6 p2a1 C � � �Cp2ar :

Under additional assumptions on C , we will determine the exact value of ed.G/;
see Theorem 1.2.

The fact that we can determine ed.G/ for many choices of C , either asymptoti-
cally or exactly, was rather surprising to us, given the wide gap between the best
known upper and lower bounds on ed.G/ in the simplest case, where r D 1; see (4).
Our informal explanation of this surprising phenomenon is as follows. If Code.C /
can be generated by vectors y1; : : : ; yt of small weight, then

Pt
iD1 p

w.yi / no longer
dominates the other terms. In particular, this always happens if r 6 2. In such cases
the value of ed.G/ is controlled by the more subtle “lower order effects”, which
are poorly understood.

To state our next result, we will need the following terminology. Suppose
that 2 6 n1 6 � � � 6 nt and z D .z1; : : : ; zr/ 2 .Z=n1Z/� � � � � .Z=nrZ/, where
zj1
; : : : ; zjs

¤ 0 for some 16 j1 < � � �<js 6 r and zj D 0 for any j 62 fj1; : : : ; jrg.
We will say that z is balanced if

(i) njs
6 1
2
nj1
nj2
� � �njs�1

and

(ii) .nj1
; : : : ; njs

/¤ .2; 2; 2; 2/; .3; 3; 3/ or .2; n; n/ for any n> 2.

Note that condition (i) can only hold if s> 3. In particular, .Z=n1Z/�� � ��.Z=nrZ/

has no balanced elements if r 6 2. In the sequel, we will usually assume that
n1; : : : ; nr are powers of the same prime p. In this situation, condition (ii) is
vacuous, unless p D 2 or 3.

Theorem 1.2. Let p be a prime,

G WD .GLpa1 � � � � �GLpar /=C;

where ar > � � �> a1 > 1 are integers, and C is a subgroup of �, as in (7). Assume
that the base field k is of characteristic zero and Code.C / has a minimal basis
yi D .yi1; : : : ; yir/, i D 1; : : : ; t satisfying the following conditions:

(a) yij D�1, 0 or 1 in Z=paj Z for every i D 1; : : : ; t and j D 1; : : : ; r .

(b) For every j D 1; : : : ; r , there exists an i 2 f1; : : : ; tg such that yi is balanced
and yij ¤ 0.

Then ed.G/D edp.G/D
�Pt

iD1 p
w.yi /

�
�p2a1 � � � � �p2ar C r � t .

Specializing Theorem 1.2 to the case where Code.C / is generated by the single
element .1; : : : ; 1/, we obtain the following.
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Theorem 1.3. Let ar > ar�1 > � � �> a1 > 1 be integers and F W Fieldsk! Sets be
the covariant functor where F.K/ is defined as the set of isomorphism classes of
r-tuples .A1; : : : ; Ar/ of central simple K-algebras such that deg.Ai /D pai for
all i D 1; : : : ; r , and A1˝ � � �˝Ar is split over K.

(a) If ar > a1C � � �C ar�1, then ed.F /D ed.PGLpa1 � � � � �PGLpar�1 / and

edp.F /D edp.PGLpa1 � � � � �PGLpar�1 /:

In particular, ed.F /6 p2a1 C � � �Cp2ar�1 .

(b) Assume that char.k/D 0, ar < a1C � � �C ar�1, and .pa1 ; : : : ; par / is not of
the form .2; 2; 2; 2/, .3; 3; 3/ or .2; 2a; 2a/ for any a > 1. Then

(10) ed.F /D edp.F /D pa1C���Car �

rX
iD1

p2ai C r � 1:

(c) If .pa1 ; : : : ; par /D .2; 2; 2/, then ed.F /D ed2.F /D 3.

Here part (c) treats the smallest of the exceptional cases in part (b). Note that in
this case p D 2, r D 3 and a1 D a2 D a3 D 1. Thus

pa1C���Car �

rX
iD1

p2ai C r � 1D�2;

and formula (10) fails. The values of ed.F / and edp.F / in the other exceptional
cases, where .pa1 ; : : : ; par /D .2; 2; 2; 2/, .3; 3; 3/, or .2; 2a; 2a/ for some a > 2,
remain open.

The results of this paper naturally lead to combinatorial questions, which we
believe to be of independent interest but will not address here. For each code
(i.e., subgroup) X � .Z=pa1Z/� � � �� .Z=par Z/ of rank t , let .w1; : : : ; wt / be the
minimal profile of X with respect to the Hamming weight function, in the sense
of Proposition 3.1. That is, wi D w.yi /, where y1; : : : ; yt is a minimal basis of X .
Fixing p, a1 6 � � � 6 ar and t , and letting X range over all possible codes with
these parameters:

� What is the lexicographically largest profile .w1; : : : ; wt /?

� What is the maximal value of wt?

� What is the probability that w1 D � � � D wt?

� What is the maximal value of pw1 C � � �Cpwt ?

� What is the average value of pw1 C � � �Cpwt ?

� What is the probability that wt > 2ar?
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Note that the expression pw1 C � � � C pwt appears in the formulas given in
Theorem 1.1. For large p, the condition that wt > 2ar makes pw1 C � � �Cpwt the
dominant term in these formulas. To the best of our knowledge, questions of this
type (focusing on the minimal profile of a code, rather than the minimal weight)
have not been previously investigated by coding theorists, even in the case where
a1 D � � � D ar D 1.

The rest of this paper is structured as follows. In Section 2 we prove general
bounds on the essential dimension of certain central extensions of algebraic groups.
These bounds will serve as the starting point for the proofs of the main theorems.
To make these bounds explicit for groups of the form .GLpa1 � � � � �GLpar /=C ,
we introduce and study the notion of a minimal basis in Section 3. Theorems 1.1,
1.2 and 1.3 are then proved in Sections 4, 5 and 6, respectively. The Appendix by
Athena Nguyen contains an explicit description of the Galois cohomology of groups
of the form (5). This description and its corollaries are used throughout the paper.

2. Essential dimension and central extensions

Let T D Grm be a split k-torus of rank r , and

(11) 1! T !G!G! 1

be a central exact sequence of affine algebraic groups. This sequence gives rise to
the exact sequence of pointed sets

H 1.K;G/!H 1.K;G/ @
�!H 2.K; T /

for any field extension K of the base field k. Any character xWT !Gm, induces
a homomorphism x�WH

2.K; T / ! H 2.K;Gm/. We define indx.G; T / as the
maximal index of x� ı @K.E/ 2H 2.K; T /, where the maximum is taken over all
field extensions K=k and over all E 2H 1.K;G/. In fact, this maximal value is
always attained in the case where E DEvers! Spec.K/ is a versal G-torsor (for a
suitable field K). That is,

(12) indx.G; T /D ind.x� ı @K.Evers//

for every x 2X.T /; see [Merkurjev 2013, Theorem 6.1]. Finally, we set

(13) ind.G; T / WDmin
n rP
iD1

indxi .G; T /
ˇ̌
x1; : : : ; xr generate X.T /

o
:

Our starting point for the proof of the main theorems is the following proposition.

Proposition 2.1. Assume that the image of every E 2H 1.K;G/ under

@WH 1.K;G/!H 2.K; T /
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is p-torsion for every field extension K=k. Then

(a) edp.G/> ind.G; T /� dim.G/,

(b) ed.G/6 ind.G; T /C ed.G/� r and edp.G/6 ind.G; T /C edp.G/� r .

These bounds are variants of results that have previously appeared in the literature.
Part (a) is a generalization of [Brosnan et al. 2011, Corollary 4.2] (where r is taken
to be 1). In the case where T is �rp , rather than Grm, a variant of part (a) is proved
in [Reichstein 2010, Theorem 4.1] (see also [Merkurjev 2013, Theorem 6.2]) and a
variant of part (b) in [Merkurjev 2013, Corollaries 5.8 and 5.12].

Our proof of Proposition 2.1 proceeds along the same lines as these earlier proofs;
it relies on the notions of essential and canonical dimension of a gerbe (for which we
refer the reader to [Brosnan et al. 2011] and [Merkurjev 2013]), and the computation
of the canonical dimension of a product of p-primary Brauer–Severi varieties
in [Karpenko and Merkurjev 2008, Theorem 2.1]. In fact, the argument is easier for
T DGrm than for�rp . In the former case (which is of interest to us here), the essential
dimension of a gerbe banded by T is readily expressible in terms of its canonical
dimension (see formula (15) below), while an analogous formula for gerbes banded
by �rp requires a far greater effort to prove. (For r D 1, compare the proofs of parts
(a) and (b) of [Brosnan et al. 2011, Theorem 4.1]. For arbitrary r > 1, see [Karpenko
and Merkurjev 2008, Theorem 3.1] or [Merkurjev 2013, Theorem 5.11].)

Proof. If K=k is a field, and E 2H 1.K;G/, i.e., E! Spec.K/ is a G-torsor, then
the quotient stack ŒE=G� is a gerbe over Spec.K/ banded by T . By [Brosnan et al.
2011, Corollary 3.3] and [Merkurjev 2013, Corollary 5.7],

ed.G/>max
K;E

ed.ŒE=G�/�dim.G/ and edp.G/>max
K;E

edp.ŒE=G�/�dim.G/;

where the maximum is taken over all field extensions K=k and all E 2H 1.K;G/.
On the other hand, by [Lötscher 2013, Example 3.4(i)],

ed.G/6 ed.G/Cmax
K;E

ed.ŒE=G�/ and edp.G/6 edp.G/Cmax
K;E

edp.ŒE=G�/I

see also [Merkurjev 2013, Corollary 5.8]. Since dim.G/D dim.G/C r , it remains
to show that

(14) max
K;E

ed.ŒE=G�/Dmax
K;E

edp.ŒE=G�/D ind.G; T /� r:

Choose a Z-basis x1; : : : ; xr for the character group X.T /' Zr and let P WD
P1 � � � � �Pr , where Pi is the Brauer–Severi variety associated to .xi /� ı @.E/ 2
H 2.K;Gm/. Since T is a special group (i.e., every T -torsor over every field K=k
is split), the set ŒE=G�.K/ of isomorphism classes of K-points of ŒE=G� consists
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of exactly one element if P.K/¤∅ and is empty otherwise. Thus

(15) ed.ŒE=G�/D cdim.P / and edp.ŒE=G�/D cdimp.P /;

where cdim.P / denotes the canonical dimension of P . (The same argument is used
in the proof of [Brosnan et al. 2011, Theorem 4.1(a)] in the case where r D 1.)
Since we are assuming that @.E/ is p-torsion, the index of each Brauer–Severi
variety Pi is a power of p. Thus by [Karpenko and Merkurjev 2008, Theorem 2.1],

cdim.P /Dcdimp.P /Dmin
n rP
iD1

ind
�
.xi /�ı@K.E/

�ˇ̌
x1; : : : ;xr generateX.T /

o
�r I

see also [Merkurjev 2013, Theorem 4.14]. TakingE WDEvers to be a versalG-torsor,
we obtain

cdim.P /D cdimp.P /Dmin
n rP
iD1

indxi .G; T //
ˇ̌
x1; : : : ; xr generate X.T /

o
� r I

see (12). By the definition (13) of ind.G; T /, the last formula can be rewritten as
cdim.P /D cdimp.P /D ind.G; T /� r . Combining these equalities with (15), we
obtain (14). �

Remark 2.2. Our strategy for proving Theorem 1.1 will be to apply Proposition 2.1
to the exact sequence (11) with G D .GLpa1 � � � � �GLpar /=C , and T WD Grm=C .
The only remaining issue is to find an expression for ind.G; T / in terms of Code.C /.

Usually, the term ind.G; T / is computed using the formula

indx.G; T /D gcd dim.�/;

as �WG!GL.V / ranges over all finite-dimensional representations of G such that
� 2 T acts on V via scalar multiplication by x.�/. See, for example, [Karpenko and
Merkurjev 2008, Theorem 4.4] or [Merkurjev 2013, Theorem 6.1] or [Lötscher et al.
2013, Theorem 3.1]. We will not use this approach in the present paper. Instead, we
will compute the values of indx.G; T / and ind.G; T / directly from the definition,
using the description of the connecting map @WH 1.K;G/!H 2.K; T / given by
Theorem A.1; see the proof of Proposition 4.1 below.

3. Minimal bases

To carry out the program outlined in Remark 2.2, we will need the notion of a
minimal basis. This section will be devoted to developing this notion.

The general setting is as follows. Let R be a local ring with maximal ideal
I � R and A be a finitely generated R-module. We will refer to a generating
set S � A as a basis if no proper subset of S generates A. In the sequel we will
specialize R to Z=paZ and A to a submodule of .Z=pa1Z/�� � ��.Z=pat Z/, where
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aDmax.a1; : : : ; ar/. However, in this section it will be convenient for us to work
over an arbitrary local ring R.

Let � WA ! A=IA be the natural projection. We will repeatedly appeal to
Nakayama’s lemma, which asserts that a subset S �A generates A as an R-module
if and only if �.S/ generates A=IA as an R=I -vector space; see [Lang 2002,
Section X.4].

By a weight function on A we shall mean any function w W A ! N, where
N denotes the set of nonnegative integers. We will fix w throughout and will
sometimes refer to w.y/ as the weight of y 2 A. For each basis B D fy1; : : : ; ytg
of A, we will define the profile of B as

w.B/ WD .w.y1/; : : : ;w.yt // 2 Nt ;

where y1; : : : ; yt are ordered so that w.y1/6w.y2/6 � � �6w.yt /. Let Prof.A/�Nt

denote the set of profiles of bases of A.

Proposition 3.1. Prof.A/ has a unique minimal element with respect to the partial
order on Nt given by .˛1; : : : ; ˛t /� .ˇ1; : : : ; ˇt / if ˛i 6 ˇi for every i D 1; : : : ; t .

Note that since every descending chain in .Prof.A/;�/ terminates, the unique
minimal element is comparable to every element of Prof.A/.

Proof. We argue by contradiction. Set t WD dim.A=IA/. Suppose X D fx1; : : : ; xtg
and Y Dfy1; : : : ; ytg are bases of A such that w.X/ and w.Y / are distinct minimal
elements of Prof.A/. Let us order X and Y so that w.x1/ 6 � � � 6 w.xt / and
w.y1/6 � � �6 w.yt /. Since w.X/¤ w.Y /, there exists an s between 0 and t � 1
such that

w.xi /D w.yi / for all i D 1; : : : ; s;

but w.xsC1/¤ w.ysC1/. After possibly interchanging X and Y , we may assume
without loss of generality that w.xsC1/ < w.ysC1/.

Let � WA! A=IA be the natural projection, as above. By Nakayama’s lemma,
�.x1/; : : : ; �.xsC1/ are R=I -linearly independent in A=IA. Choose t � s� 1 ele-
ments of Y , say yjsC2

; : : : ; yjt
, such that �.x1/; : : : ; �.xsC1/; �.yjsC2

/; : : : ; �.yjt
/

form an R=I -basis of A=IA. After permuting yjsC2
; : : : ; yjt

, we may assume that
w.yjsC2

/ 6 � � � 6 w.yjt
/. Applying Nakayama’s lemma once again, we see that

Z D fx1; : : : ; xsC1; yjsC2
; : : : ; yjt

g is a basis of A.
We claim that w.Z/� w.Y /, where the inequality is strict. Since we assumed

that w.Y / is minimal in Prof.A/, this claim leads to a contradiction, thus completing
the proof of Proposition 3.1.

To prove the claim, let z1; : : : ; zt be the elements of Z, in increasing order of
their weight: w.z1/6 w.z2/6 � � �6 w.zt /. It suffices to show that w.zi /6 w.yi /
for every i D 1; : : : ; t , and w.zsC1/ < w.ysC1/. Let us consider three cases.
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Case 1: i 6 s. Since

w.x1/D w.y1/6 w.x2/D w.y2/6 � � �6 w.xi /D w.yi /;

Z has at least i elements whose weight is at most w.yi /, namely x1; : : : ; xi . Thus
w.zi /6 w.yi /.

Case 2: i D s C 1. Z has at least s C 1 elements, namely x1; : : : ; xsC1 whose
weight is at most w.xsC1/. Hence, w.zsC1/6 w.xsC1/ < w.ysC1/, as desired.

Case 3: i > sC 1. Recall that both y1; : : : ; yt and yjsC2
; : : : ; yjt

are arranged in
weight-increasing order. For any i > sC 2, there are at least t � i C 1 elements
of Y whose weight is at least w.yji

/, namely yji
; yjiC1

; : : : ; yjt
. Thus

w.yji
/6 w.yi /

for any i D s C 2; : : : ; t . Consequently, Z has at least i elements of weight at
most w.yi /, namely x1; : : : ;xsC1;yjsC2

; : : : ;yji
. Hence, w.zi /6w.yi /, as desired.

This completes the proof of the claim and hence of Proposition 3.1. �

Definition 3.2. We will say that a basis y1; : : : ; yt ofA is minimal if its profile is the
minimal element of Prof.A/, as in Proposition 3.1. Note that a minimal basis in A
is usually not unique; however, any two minimal bases have the same profile in Nt .

Remark 3.3. We can construct a minimal basis of A using the following “greedy
algorithm”. Select y12A of minimal weight, subject to the condition that �.y1/¤0.
Next select y2 of minimal weight, subject to the condition that �.y1/ and �.y2/
are R=I -linear independent in A=IA. Then select y3 of minimal weight, subject to
the condition that �.y1/; �.y2/ and �.y3/ are R=I -linear independent in A=IA.
Continue recursively. After t D dimR=I .A=IA/ steps, we obtain a minimal basis
y1; : : : ; yt for A.

Example 3.4. Set R WD Fp, I WD .0/, G a finite p-group, D WD Z.G/Œp� the
subgroup of p-torsion elements of the center Z.G/, and A WD X.D/ the group
of characters of D. For x 2 A, define w.x/ to be the minimal dimension of a
representationG!GL.Vx/, such thatD acts on Vx via scalar multiplication by x. If
fx1; : : : ; xtg is a minimal basis of A, then Vx1

˚� � �˚Vxt
is a faithful representation

of G of minimal dimension; see [Karpenko and Merkurjev 2008, Remark 4.7].

4. Conclusion of the proof of Theorem 1.1

Recall that we are interested in the essential dimension of the group

G D .GLpa1 � � � � �GLpar /=C;

where C is a subgroup of � WD �pa1 � � � � ��par . We will think of the group of
characters X.Grm/ as Zr by identifying the character x.�1; : : : ; �r/D �

m1

1 � � � �
mr
r
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with .m1; : : : ; mr/ 2 Zr . Characters of T WD Grm=C are identified in this man-
ner with the r-tuples .m1; : : : ; mr/ 2 Zr such that �m1

1 � � � �
mr
r D 1 for every

.�1; : : : ; �r/ 2 C . The relationship among these character groups is illustrated
by the following diagram:

X.Grm=C /

��

� � // X.Grm/

�

��

Z� � � � �Z (r times)

�

��

Code.C / X.�=C/
� � // X.�/ .Z=pa1Z/� � � � � .Z=par Z/

Here Code.C / is as in (8) and � is the natural projection, given by restricting a
character from Grm to �.

Our proof of Theorem 1.1 will be based on the strategy outlined in Remark 2.2.
In view of Proposition 2.1 it suffices to establish the following:

Proposition 4.1. Consider the central exact sequence

(16) 1! T !G!G! 1;

where G D .GLpa1 � � � � �GLpar /=C , C is a subgroup of � WD �pa1 � � � � ��par ,
T WD Grm=C and G WD PGLpa1 � � � � �PGLpar .

(a) If x 2X.T / and y D �.x/ 2 Code.C / then indx.G; T /D pw.y/.

(b) ind.G; T /D pw.z1/C� � �Cpw.zt /Cr� t , where z1; : : : ; zt is a minimal basis
of Code.C /.

Proof of Proposition 4.1(a). Consider the connecting map @WH 1.K;G/!H 2.K;T /

associated to the central exact sequence (16). Given a character xWT ! Gm,
x.�1; : : : ; �r/ D �

m1

1 � � � �
mr
r , indx.G; T / is, by definition, the maximal value of

ind.x�@.E//, asK ranges over all fields containing k andE ranges overH 1.K;G/.
In this case, G D PGLpa1 � � � � � PGLpar , and thus H 1.K;G/ is the set of r-
tuples .A1; : : : ; Ar/ of central simple algebras, where the degree of Ai is pai .
The group H 2.K;Gm/ is naturally identified with the Brauer group Br.K/, and
the map x�@ takes an r-tuple .A1; : : : ; Ar/, as above, to the Brauer class of
A WD A

˝m1

1 ˝ � � �˝A
˝mr
r .

Since deg.Ai /D pai , the Brauer class of A depends only on

y D �.x/D .m1 mod pa1 ; : : : ; mr mod par / 2 .Z=pa1Z/� � � � � .Z=par Z/:

Moreover, if mi � uipei .mod pai /, where ui is prime to p and 06 ei 6 ai , then
ind.A˝mi

i /6 pai�ei . Now recall that w.y/ is defined as
Pr
iD1.ai � ei /. Thus

ind.A/6
rY
iD1

ind.A˝mi

i /6
rY
iD1

pai�ei D pw.y/:
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To prove the opposite inequality, we set Ai to be the symbol algebra .˛i ; ˇi /pai ,
over the fieldKDk.�/.˛1; : : : ; ˛r ; ˇ1; : : : ; ˇr/, where � is a primitive root of unity
of degree pmax.a1;:::;ar / and ˛1; : : : ; ˛r ; ˇ1; : : : ; ˇr are 2r independent variables
over k. Writing mi D uipei , as above, we see that A˝mi

i is Brauer equivalent to
Bi WD .˛i ; ˇ

ui

i /pai�ei over K. An easy valuation-theoretic argument shows that
B WD B1˝K � � � ˝K Bt is a division algebra. (In particular, the norm form of B is
a Pfister polynomial and hence, is anisotropic; see [Reichstein 1999, Theorem 3.2
and Proposition 3.4].) Thus

ind.A/D ind.B/D ind.B1/ � � � � � ind.Bt /D p.a1�e1/C���C.at�et / D pw.y/;

as desired. We conclude that indx.G; T / > ind.A/D pw.y/, thus completing the
proof of Proposition 4.1(a). �

Our proof of Proposition 4.1(b) will rely on the following elementary lemma.

Lemma 4.2. Let p be a prime,M be a finite abelian p-group, and f WZn!M be a
surjective Z-module homomorphism for some n>1. Then for every basis y1; : : : ; yt
of M , there exists a Z-basis x1; : : : ; xn of Zn and an integer c prime to p such that
f .x1/D cy1; f .x2/D y2; : : : ; f .xt /D yt and f .xtC1/D � � � D f .xn/D 0.

Proof. By [Lang 2002, Theorem III.7.8], there exists a basis e1; : : : ; en of Zn

such that Ker.f / is generated by pdi ei for some integers d1; : : : ; dt > 0. Since
M has rank t , we may assume without loss of generality that d1; : : : ; dt > 1 and
dtC1D � � � D dnD 0. That is, we may identify M with .Z=pd1Z/�� � ��.Z=pdt Z/

and assume that

f .r1; : : : ; rn/D .r1 mod pd1 ; : : : ; rt mod pdt / 8.r1; : : : ; rn/ 2 Zn:

It now suffices to lift cy1; : : : ; yt 2M to a basis x1; : : : ; xt of Zt for a suitable
integer c, prime to p. Indeed, if we manage to do this, then we will obtain a basis
of Zn of the desired form by appending

xtC1 WD etC1; : : : ; xn WD en 2 Ker.f /

to x1; : : : ; xt . Thus we may assume that nD t .
Now observe that f WZn!M , factors as Zn! .Z=pdZ/n!M , where d WD

max.d1; : : : ; dt /. Lift each yi 2M to some y0i 2 .Z=p
dZ/n. By Nakayama’s lemma,

y01; : : : ; y
0
n form a Z=pdZ-basis of .Z=pdZ/n. It now suffices to lift cy01; y

0
2; : : : ; y

0
n

to a basis of Zn for a suitable integer c, prime to p. In other words, we may assume
without loss of generality that M D .Z=pdZ/n, and f WZn ! .Z=pdZ/n is the
natural projection.

Now suppose yi D .yi1; : : : ; yin/ for some yij 2Z=pdZ. Since y1; : : : ; ym form
a basis of .Z=pdZ/n, the matrix A D .yij / is invertible, i.e., A 2 GLn.Z=pdZ/.
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After rescaling y1 by c WD det.A/�1 in Z=pdZ, we may assume that det.A/D 1.
The lemma now follows from the surjectivity of the natural projection

SLt .Z/! SLt .Z=pdZ/I

see [Shimura 1971, Lemma 1.38]. �

Proof of Proposition 4.1(b). By definition, ind.G; T / is the minimal value of
indx1.G; T /C� � �C indxr .G; T /, as x1; : : : ; xr range over the bases of X.T /�Zr .
By part (a), we can rewrite this as

ind.G; T /Dmin
˚
pw.�.x1//C � � �Cpw.�.xr // j x1; : : : ; xr is a Z-basis of X.T /

	
:

Here, as before, �.xi / 2Code.C / is the restriction of xi from T DGrm=C to �=C .
Let z1; : : : ; zt 2 Code.C / be a minimal basis, as in the statement of the proposi-

tion. We will prove part (b) by showing that

(i) pw.�.x1//C � � �Cpw.�.xr // > pw.z1/C � � �Cpw.zt /C r � t for every Z-basis
x1; : : : ; xr of X.T /, and

(ii) there exists a particular Z-basis x1; : : : ; xr ofX.T / such that pw.�.x1//C� � �C

pw.�.xr // D pw.z1/C � � �Cpw.zt /C r � t .

To prove (i), note that if x1; : : : ; xr form a Z-basis ofX.T /, then�.x1/; : : : ;�.xr/
form a generating set for Code.C /. By Nakayama’s lemma, every generating set
for Code.C / contains a basis. After renumbering x1; : : : ; xr , we may assume
that �.x1/; : : : ; �.xt / is a basis of Code.C / and w.�.x1//6 � � �6 w.�.xt //. By
Proposition 3.1, w.zi /6 w.�.xi // for every i D 1; : : : ; t . Thus

pw.�.x1//C� � �Cpw.�.xr //

> pw.�.x1//C� � �Cpw.�.xt //Cp0C� � �Cp0„ ƒ‚ …
r�t times

> pw.z1/C� � �Cpw.zt /Cr�t:

To prove (ii), recall that by Lemma 4.2 there exists an integer c, prime to p, and
a Z-basis x1; : : : ; xr of X.T / such that �.x1/D cz1; �.x2/D z2; : : : ; �.xt /D zt ,
and �.xtC1/D � � � D �.xr/D 0. Since c is prime to p, w.cz1/D w.z1/. Thus for
this particular choice of x1; : : : ; xr , we have

pw.�.x1//C� � �Cpw.�.xr // D

pw.cz1/Cpw.z2/C� � �Cpw.zt /Cp0C� � �Cp0„ ƒ‚ …
r�t times

D pw.z1/C� � �Cpw.zt /Cr�t;

as desired. �
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5. Proof of Theorem 1.2

Consider the action of a linear algebraic group � on an absolutely irreducible
algebraic variety X defined over k. We say that a subgroup S � � is a stabilizer
in general position for this action if there exists a dense open subset U �X such
that the scheme-theoretic stabilizer Stab�.x/ is conjugate to S over k for every
x 2 U.k/. Here, as usual, k denotes the algebraic closure of k. In the sequel we
will not specify U and will simply say that Stab�.x/ is conjugate to S for x 2X.k/
in general position. Note that a stabilizer in general position S for a �-action on X
does not always exist, and when it does, it is usually not unique. However, over k,
S is unique up to conjugacy.

For the rest of this section we will always assume that char.k/D 0. A theorem
of R. W. Richardson [1972] tells us that under this assumption every linear action
of a reductive group � on a vector space V has a stabilizer S � � in general
position. Note that in [Richardson 1972], k is assumed to be algebraically closed.
Thus a priori the subgroup S and the open subset U � V , where all stabilizers
are conjugate to S , are only defined over k. However, U has only finitely many
Galois translates. After replacing U by the intersection of all of these translates,
we may assume that U is defined over k. Moreover, we may take S WD StabG.x/
for some k-point x 2U.k/ and thus assume that S is defined over k. For a detailed
discussion of stabilizers in general position over an algebraically closed field of
characteristic zero, see [Popov and Vinberg 1994, Section 7].

We will say that a �-action on X is generically free if the trivial subgroup
S D f1�g � � is a stabilizer in general position for this action.

Lemma 5.1. Let � be a reductive linear algebraic group and �W�! GL.V / be a
finite-dimensional representation. If Stab�.v/ is central in � for v 2 V in general
position, then the induced action of �=Ker.�/ on V is generically free.

Proof. Let S �� be the stabilizer in general position for the �-action on V . Clearly
Ker.�/ � S . We claim that, in fact, Ker.�/ D S ; the lemma easily follows from
this claim.

To prove the opposite inclusion, S � Ker.�/, note that under the assumption
of the lemma, S is central in � . Let U � V be a dense open subset such that the
stabilizer of every v 2 U.k/ is conjugate to S . Since S is central, Stab�.v/ is, in
fact, equal to S . In other words, S stabilizes every point in U and thus every point
in V . That is, S � Ker.�/, as claimed. �

Our interest in generically free actions in this section has to do with the following
fact: if there exists a generically free linear representation G! GL.V / then

(17) ed.G/6 dim.V /� dim.G/I
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see, e.g., [Reichstein 2010, (2.3)] or [Merkurjev 2013, Proposition 3.13]. This
inequality will play a key role in our proof of Theorem 1.2.

Now set � WD GLn1
� � � � �GLnr

and � 0 WD SLn1
� � � � � SLnr

. Let Vi be the
natural ni -dimensional representation, V �1i be the dual representation, and V 0i be
the trivial 1-dimensional representation of GLni

. For �D .�1; : : : ; �r/, where each �i
is�1, 0 or 1, we define �� to be the natural representation of � on the tensor product

(18) V� D V
�1

1 ˝ � � �˝V
�r
r :

Lemma 5.2. Suppose 26 n1 6 � � �6 nr 6 1
2
n1 � � �nr�1, and

.n1; : : : ; nr/¤ .2; 2; 2; 2/; .3; 3; 3/ or .2; n; n/ for any n> 2:

If � D .�1; : : : ; �r/ 2 f˙1gr , then the induced action of �=Ker.��/ on V� is generi-
cally free.

Proof. By Lemma 5.1 it suffices to prove the following claim: the stabilizer Stab�.v/
is central in � for v 2 V� in general position. To prove this claim, we may assume
without loss of generality that k is algebraically closed.

We first reduce to the case where �D .1; : : : ; 1/. Suppose the claim is true in this
case, and let .�1; : : : ; �r/2f˙1gr . By choosing bases of V1; : : : ; Vr , we can identify
Vi with V �i

i (we can take the identity map if �i D 1). Define an automorphism

� W �! �;

.g1; : : : ; gr/ 7! .g�1 ; : : : ; g
�
r /;

where

g�i D

�
gi if �i D 1;
.g�1i /T if �i D�1:

Now �.�1;:::;�r / is isomorphic to the representation �.1;:::;1/ ı � . Since the center
of � is invariant under � , we see that the claim holds for �� as well.

From now on we will assume � D .1; : : : ; 1/. By [Popov 1987, Theorem 2],

�=Z.�/D PGLn1
� � � � �PGLnr

D � 0=Z.� 0/

acts generically freely on the projective space P.V�/D V�=Z.�/. In other words,
for v 2 V� in general position, the stabilizer in � of the associated projective point
Œv� 2 P.V�/ is trivial. Hence, the stabilizer of v is contained in Z.�/; see the exact
sequence in [Reichstein and Vonessen 2007, Lemma 3.1]. This completes the proof
of the claim and thus of Lemma 5.2. �

We are now ready to proceed with the proof of Theorem 1.2. We begin by special-
izing ni to pai for every i D 1; : : : ; r , so that � becomes GLpa1 � � � ��GLpar . Let

y1; : : : ; yt 2 .Z=p
a1Z/� � � � � .Z=par Z/
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be a basis of Code.C / satisfying the conditions of Theorem 1.2. Lift each yi D
.yi1; : : : ; yir/ to xi WD .xi1; : : : ; xir/ 2 Zr by setting xij WD �1, 0 or 1, depending
on whether yij is �1, 0 or 1 in Z=paj Z. (If paj D 2, then we define each xij to be
0 or 1.) By Nakayama’s lemma, the images of y1; : : : ; yt are Fp-linearly indepen-
dent in Code.C /=p Code.C /. Thus the integer vectors x1; : : : ; xt are Z-linearly
independent. (Note that, unlike in the situation of Lemma 4.2, here it will not matter
to us whether x1; : : : ; xt can be completed to a Z-basis of Zr .) We view each xi
as a character Grm! Gm and set

zC WD Ker.x1/\ � � � \Ker.xt /� Grm:

Since x1; : : : ; xt are linearly independent,

(19) dim. zC/D r � t:

Set G WD �=C and zG WD �= zC . By our construction, zC \�D C . Corollary A.2
now tells us that edp.G/6 ed.G/D ed. zG/. By Theorem 1.1(a),

ed.G/> edp.G/>
� tX
iD1

pw.yi /

�
�p2a1 � � � � �p2ar C r � t:

It thus suffices to show that ed. zG/ 6
�Pt

iD1 p
w.yi /

�
�p2a1 � � � � �p2ar C r � t ,

or equivalently,

ed. zG/6
� tX
iD1

pw.yi /

�
� dim. zG/I

see (19). By (17), in order to prove the last inequality, it is enough to construct
a generically free linear representation of zG of dimension

Pt
iD1 p

w.yi /. Such a
representation is furnished by the lemma below.

Recall that xi D .xi1; : : : ; xir/2Zr , where each xij D�1, 0 or 1, and �xi
is the

natural representation of � WD GLpa1 � � � � �GLpar on Vxi
WD V

xi1

1 ˝ � � �˝V
xir
r ,

as in (18), with dim.Vi /D ni D pai .

Lemma 5.3. Let V D Vx1
˚� � �˚Vxt

and � WD �x1
˚� � �˚�xt

W�!GL.V /. Then

(a) dim.V /D pw.y1/C � � �Cpw.yt /,

(b) Ker.�/D zC , and

(c) the induced action of zG D �= zC on V is generically free.

Proof. For each i D 1; : : : t , we have

dim.Vxi
/D

Y
xij¤0

paj D

Y
yij¤0

paj D p
P

yij¤0 aj :

Since each yij D �1, 0 or 1,
P
yij¤0

aj D w.yi /. Thus dim.Vxi
/D pw.yi /, and

part (a) follows.
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Now choose vi 2 Vxi
in general position and set v WD .v1; : : : ; vr/. We claim

that Stab�.v/ is central in � .
Suppose for a moment that this claim is established. Since the centerZ.�/DGrm

acts on Vxi
via scalar multiplication by the character xi WGrm! Gm, we see that

Ker.�/D Ker.�jGr
m
/D Ker.x1/\ � � � \Ker.xt /D zC ;

and part (b) follows. Moreover, by Lemma 5.1, the induced action of �=Ker.�/ on
V is generically free. By part (b), Ker.�/D zC and part (c) follows as well.

It remains to prove the claim. Choose vi 2 Vxi
in general position and assume

that g D .g1; : : : ; gr/ stabilizes v WD .v1; : : : ; vt / in V for some gj 2 GLpaj . Our
goal is to show that gj is, in fact, central in GLpaj for each j D 1; : : : ; r .

Let us fix j and focus on proving that gj is central for this particular j . By
assumption (b) of Theorem 1.2, there exists an i D 1; : : : ; t such that yi is balanced
and yij ¤ 0. Let us assume that yij1

; : : : ; yijs
D ˙1 and yih D 0 for every

h 62 fj1; : : : ; jrg and consequently, xij1
; : : : ; xijs

D ˙1 and xih D 0 for every
h 62 fj1; : : : ; jrg. By our assumption, j 2 fj1; : : : ; jsg.

The representation �xi
of � D GLpa1 � � � � �GLpar on

Vxi
WD V xi1 ˝ � � �˝V xit D V xij1 ˝ � � �˝V xijs

factors through the projection �!GL
p

aj1
�� � ��GLpajs . Thus if gD .g1; : : : ;gr/

stabilizes vD .v1; : : : ;vt /2V then, in particular, g stabilizes vi and so .gj1
; : : : ;gjs

/

stabilizes vi .
Since yi is assumed to be balanced, the conditions of Lemma 5.2 for the action

of GLnj1
� � � � �GLnjs

on Vxi
D V xj1 ˝� � �˝V xjs are satisfied. (Recall that here

ni D p
ai .) Since .gj1

; : : : ; gjs
/ stabilizes vi 2 Vxi

in general position, Lemma 5.2
tells us that gj1

; : : : ; gjs
are central in GLnj1

; : : : ;GLnjs
, respectively. In particular,

gj is central in GLnj
, as desired. This completes the proof of Lemma 5.3 and thus

of Theorem 1.2. �

6. Proof of Theorem 1.3

Consider the central subgroups zC and C of � D GLpa1 � � � � �GLpar given by

zC Df.�1; : : : ; �r/2Grm j�1 � � � �rD1g and C Df.�1; : : : ; �r/2� j�1 � � � �rD1g:

Set G WD �=C and zG WD �= zC . Note that C D zC \ �. By Theorem A.1 and
Corollary A.2, H 1.�; G/ and H 1.�; zG/ are both isomorphic to the functor F
defined in the statement of Theorem 1.3. In particular, ed. zG/D ed.G/D ed.F /
and edp. zG/D edp.G/D edp.F /. We are now ready to proceed with the proof of
Theorem 1.3.
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(a) If A1˝ � � �˝Ar is split over K, then Ar can be recovered from A1; : : : ; Ar�1
as the unique central simple K-algebra of degree par which is Brauer-equivalent to

.A1˝ � � �˝Ar�1/
op:

(Here Bop denotes the opposite algebra of B .) In other words, the morphism of
functors

(20) F !H 1.�;PGLpa1 /� � � � �H
1.�;PGLpar�1 /

given by .A1; : : : ; Ar�1; Ar/ ! .A1; : : : ; Ar�1/ is injective. We claim that if
ar > a1C � � �C ar�1 (which is our assumption in part (a)), then this morphism is
also surjective. Indeed,

deg.A1˝ � � �˝Ar�1/D pa1C���Car�1

for any choice of central simpleK-algebras A1; : : : ; Ar�1 such that deg.Ai /Dpai .
Hence, for any such choice, there exists a central simple algebra of degree par

which is Brauer-equivalent to .A1˝ � � �˝Ar�1/op. This proves the claim.
We conclude that if ar > a1C � � �C ar�1 then (20) is an isomorphism and thus

ed. zG/D ed.G/D ed.F /D ed.PGLpa1 � � � � �PGLpar�1 /;

edp. zG/D edp.G/D edp.F /D edp.PGLpa1 � � � � �PGLpar�1 /:

The inequality ed.F /6 p2a1 C � � �Cp2ar�1 now follows from (9).

(b) Now suppose ar < a1C � � � C ar�1. Note that Code.C / has a minimal basis
consisting of the single element .1; : : : ; 1/2 .Z=pa1Z/�� � ��.Z=par Z/. Moreover,
par 6 1

2
pa1 � � �par�1 and consequently, Theorem 1.2 applies. It tells us that if the

r-tuple .pa1 ; : : : ; par / is not of the form .2; 2; 2; 2/, .3; 3; 3/ or .2; 2a; 2a/, then

ed.F /D edp.F /D ed. zG/D edp. zG/D

ed.G/D edp.G/D pa1C���Car �

rX
iD1

p2ai C r � 1;

as claimed.

(c) In the case where .pa1 ; : : : ; par /D .2; 2; 2/, F.K/ is the set of isomorphism
classes of triples .A1; A2; A3/ of quaternion K-algebras, such that A1˝A2˝A3
is split over K. We will show that (i) ed.F /6 3 and (ii) ed2.F /> 3.

To prove (i), recall that by a theorem of Albert [Lam 2005, Theorem III.4.8], the
condition thatA1˝A2˝A3 is split overK implies thatA1 andA2 are linked overK.
That is, there exist a; b; c 2 K� such that A1 ' .a; b/ and A2 ' .a; c/ over K.
Hence, the triple .A1; A2; A3/2F.K/ descends to the triple .B1; B2; B3/2F.K0/,
where K0 D k.a; b; c/, B1 D .a; b/, B2 D .a; c/ and B3 D .a; bc/ over K0. Since
trdeg.K0=k/6 3, assertion (i) follows.
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To prove (ii), consider the morphism of functors f WF !H 1.�;SO4/ given by

f W .A1; A2; A3/ 7! ˛;

where ˛ is a 4-dimensional quadratic form such that

˛˚H˚HŠN.A1/˚ .�N.A2//:

Here H denotes the 2-dimensional hyperbolic form h1;�1i,N.A1/ denotes the norm
form of A1, and �N.A2/ denotes the opposite norm form of A2, i.e., the unique
4-dimensional form such that N.A2/˚ .�N.A2// is hyperbolic. Since N.A1/ and
N.A2/ are forms of discriminant 1, so is ˛ (this will also be apparent from the
explicit computations below). Thus we may view ˛ as an element of the Galois
cohomology set H 1.K;SO4/, which classifies 4-dimensional quadratic forms of
discriminant 1 over K, up to isomorphism. Note also that by the Witt cancellation
theorem, ˛ is unique up to isomorphism. We conclude that the morphism of
functors f is well-defined.

Equivalently, using the definition of the Albert form given in [Lam 2005, p. 69],
˛ is the unique 4-dimensional quadratic form such that ˛˚HŠ q, where q is the
6-dimensional Albert form of A1 and A2. Here the Albert form of A1 and A2 is
isotropic, and hence, can be written as ˛˚H, because A1 and A2 are linked; once
again, see [Lam 2005, Theorem III.4.8].

Suppose A1 D .a; b/, A2 D .a; c/, and A3 D .a; bc/, as above. Then

N.A1/D hh�a;�bii D h1;�a;�b; abi;

and similarly N.A2/ D h1;�a;�c; aci; see, e.g., [Lam 2005, Corollary III.2.2].
Thus

N.A1/˚.�N.A2//Dh1;�1;�a; a;�b; c; ab;�aci' h�b; c; ab;�aci˚H˚H;

and we obtain an explicit formula for ˛ D f .A1; A2; A3/: ˛ Š h�b; c; ab;�aci.
It is easy to see that any 4-dimensional quadratic form of discriminant 1 over K

can be written as h�b; c; ab;�aci for some a; b; c 2 K�. In other words, the
morphism of functors f WF !H 1.�;SO4/ is surjective. Consequently,

ed2.F /� ed2.H 1.�;SO4//D ed2.SO4/I

see, e.g., [Berhuy and Favi 2003, Lemma 1.9] or [Reichstein 2010, Lemma 2.2]. On
the other hand, ed2.SO4/D 3; see [Reichstein and Youssin 2000, Theorem 8.1(2)
and Remark 8.2] or [Reichstein 2010, Corollary 3.6(a)]. Thus

ed2.F /> ed2.SO4/D 3:

This completes the proof of (ii) and thus of part (c) of Theorem 1.3. �
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Appendix: Galois cohomology of central quotients
of products of general linear groups

Athena Nguyen1

In this appendix we will study the Galois cohomology of algebraic groups of the
form

G WD �=C;

where � WD GLn1
� � � � �GLnr

and C �Z.�/D Grm is a central subgroup. Here
n1; : : : ; nr > 1 are integers, not necessarily prime powers. Let

G WDG=Z.G/D PGLn1
� � � � �PGLnr

D �=Z.�/:

Recall that for any field K=k, H 1.K;PGLn/ is naturally identified with the set of
isomorphism classes of central simple K-algebras of degree n, and

H 1.K;G/DH 1.K;PGLn1
/� � � � �H 1.K;PGLnr

/

is identified with the set of r-tuples .A1; : : : ; Ar/ of central simple K-algebras
such that deg.Ai / D ni . Denote by @iK the coboundary map H 1.K;PGLni

/!

H 2.K;Gm/ induced by the short exact sequence

1! Gm! GLni
! PGLni

! 1:

This map sends a central simple algebra Ai to its Brauer class ŒAi � inH 2.K;Gm/D

Br.K/.
Of particular interest to us will be

X.Grm=C /D
˚
.m1; : : : ; mr/ 2 Zr j �

m1

1 � � � �
mr
r D 1 8.�1; : : : ; �r/ 2 Grm

	
;

as in (6). We are now ready to state the main result of this appendix.

Theorem A.1. Let � WG! G WD PGLn1
� � � � � PGLnr

be the natural projection
and ��WH 1.K;G/!H 1.K;G/ be the induced map in cohomology. Here K=k is
a field extension. Then:

(a) The map ��WH 1.K;G/!H 1.K;G/ is injective for every field K=k.

(b) The map �� identifies H 1.K;G/ with the set of isomorphism classes of
r-tuples .A1; : : : ; Ar/ of central simple K-algebras such that deg.Ai / D ni
and A˝m1

1 ˝ � � �˝A
˝mr
r is split over K for every .m1; : : : ; mr/ 2X.Grm=C /.

1This appendix is based on a portion of Nguyen’s master’s thesis completed at the University
of British Columbia. Nguyen gratefully acknowledges the financial support from the University of
British Columbia and the Natural Sciences and Engineering Research Council of Canada.
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Proof. Throughout, we will identify H 2.K;Grm/ with H 2.K;Gm/
r and X.Grm/

with Zn. A character x D .m1; : : : ; mr/ 2 Zn, i.e., a character xWGrm! Gm given
by .�1; : : : ; �r/! �

m1

1 � � � �
mr
r , induces a map x�WH 2.K;Gm/

r !H 2.K;Gm/ in
cohomology given by

(21) x�.˛1; : : : ; ˛r/D ˛
m1

1 � � � � �˛
mr
r :

Let us now consider the diagram

1 // Grm
//

�

��

� //

��

rQ
iD1

PGLni
// 1

1 // Grm=C
// G

�
//
rQ
iD1

PGLni
// 1

Since H 1.K;Grm=C / D f1g by Hilbert’s theorem 90, we obtain the following
diagram in cohomology with exact rows:

H 1.K;
rQ
iD1

PGLni
/

.@1
K ;:::;@

r
K/

// H 2.K;Grm/

��

��

1 // H 1.K;G/
��
// H 1.K;

rQ
iD1

PGLni
/

@K
// H 2.K;Grm=C /

(a) It follows from [Serre 1997, I.5, Proposition 42] that �� is injective.

(b) Thus, �� identifiesH 1.K;G/ with the set of r-tuples .A1; : : : ; Ar/, where Ai 2
H 1.K;PGLni

/ is a central simple algebra of degree ni , and .@1K.A1/; : : : ;@
r
K.Ar//2

Ker.��/. Recall that @iK sends a central simple algebra Ai to its Brauer class
ŒAi �2H

2.K;Gm/. In the sequel we will use additive notation for the abelian group
H 2.K;Gm/D Br.K/.

Consider an r-tuple ˛ WD .ŒA1�; : : : ; ŒAr �/ 2 H 2.K;Grm/. Since Grm=C is di-
agonalizable, ��.˛/ D 0 if and only if x�.��.˛// D 0 for all x 2 X.Grm=C /. If
x D .m1; : : : ; mr/ 2X.G

r
m=C /, then x� ı �� D .m1; : : : ; mr/ 2X.Grm/. By (21),

x�.��.˛//D ŒA
˝m1

1 ˝ � � �˝A
˝mr
r �, and part (b) follows. �

Corollary A.2. Let � WDGLn1
� � � ��GLnr

, C1; C2 be k-subgroups ofZ.�/DGrm,
G1 D �=C1 and G2 D �=C2. Denote the central subgroup �n1

� � � � ��nr
of �

by �.
If C1 \ � D C2 \ � then the Galois cohomology functors H 1.�; G1/ and

H 1.�; G2/ are isomorphic.
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Proof. By Theorem A.1, H 1.K;Gi / is naturally identified with the set of r-tuples
.A1; : : : ; Ar/ of central simple algebras such that deg.Ai /D ni and

A
˝m1

1 ˝ � � �˝A˝mr
r is split over K for every .m1; : : : ; mr/ 2X.Gm=Ci /:

Note that since A˝ni

i is split for every i , this condition depends only on the image
of .m1; : : : ; mr/ under the natural projection

� WX.Grm/D Zr ! .Z=n1Z/� � � � � .Z=nrZ/DX.�/:

Our assumption thatC1\�DC2\� is equivalent toX.Grm=C1/ andX.Grm=C2/
having the same image under � , and the corollary follows. �

In order to state the second corollary of Theorem A.1, we will need the following
definition. By a code we shall mean a subgroup ofX.�/D .Z=n1Z/�� � ��.Z=nrZ/.
Given a subgroup C � �, we define the code Code.C / WDX.�=C/, as in (8).

We will say that two codes are called equivalent if one can be obtained from the
other by repeatedly performing the following elementary operations:

(1) Permuting entries i and j in every vector of the code, for any i; j with ni D nj .

(2) Multiplying the i -th entry in every vector of the code by an integer c prime to ni .

Corollary A.3. Suppose C1 and C2 are subgroups of � WD �n1
� � � � ��nr

, G1 D
�=C1 and G2 WD �=C2. If Code.C1/ and Code.C2/ are equivalent, then

(a) the Galois cohomology functors H 1.�; G1/, H 1.�; G2/ are isomorphic, and

(b) in particular, ed.G1/D ed.G2/ and edp.G1/D edp.G2/ for every prime p.

Proof. To prove part (a), it suffices to show that H 1.�; G1/ and H 1.�; G2/ are
isomorphic if C2 is obtained from C1 by an elementary operation.
(1) Suppose ni D nj for some i; j D 1; : : : ; r , and Code.C2/ is obtained from
Code.C1/ by permuting entries i and j in every vector. In this case C2 D ˛.C1/,
where ˛ is the automorphism of � D GLn1

� � � � �GLnr
which swaps the i -th and

the j -th components. Then ˛ induces an isomorphism between G1 D �=C1 and
G2 D �=C2, and thus an isomorphism between H 1.�; G1/ and H 1.�; G2/.
(2) Now suppose that Code.C1/ is obtained from Code.C2/ by multiplying the
i -th entry in every vector by some c 2 .Z=niZ/�. The description of H 1.K;G=�/

given by Theorem A.1 now tells us that

H 1.K;G1/!H 1.K;G2/;

.A1; : : : ; Ar/ 7! .A1; : : : ; Ai�1; ŒA
˝c
i �ni

; AiC1; : : : ; Ar/;

is an isomorphism. Here, by ŒA˝ci �ni
we mean the unique central simple K-algebra

of degree ni which is Brauer equivalent to A˝ci .
Part (b) follows from (a), because ed.G/ and edp.G/ are defined entirely in

terms of the Galois cohomology functor H 1.�; G/. �
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