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By a result of Mathas, the basis element Tw0 of the Hecke algebra of a finite
Coxeter group acts in the canonical basis of a cell module as a permutation
matrix times plus or minus a power of v. We generalize this result to the
unequal parameter case. We also show that the image of Tw0 in the corre-
sponding asymptotic Hecke algebra is given by a simple formula.

Introduction

0.1. The Hecke algebra H (over A = Z[v, v−1
], v an indeterminate) of a finite

Coxeter group W has two bases as an A-module: the standard basis {Tx ; x ∈W }
and the basis {Cx ; x ∈W } introduced in [Kazhdan and Lusztig 1979]. The second
basis determines a decomposition of W into two-sided cells and a partial order for
the set of two-sided cells, see [Kazhdan and Lusztig 1979]. Let l→N be the length
function, let w0 be the longest element of W and let c be a two-sided cell. Let a
(resp. a′) be the value of the a-function [Lusztig 2003, 13.4] on c (resp. on w0c).
The following result was proved by Mathas [1996].

(a) There exists a unique permutation u 7→ u∗ of c such that for any u ∈ c we
have Tw0(−1)l(u)Cu = (−1)l(w0)+a′v−a+a′(−1)l(u

∗)Cu∗ plus an A-linear com-
bination of elements Cu′ with u′ in a two-sided cell strictly smaller than c.
Moreover, for any u ∈ c we have (u∗)∗ = u.

A related (but weaker) result appears in [Lusztig 1984, (5.12.2)]. A result similar
to (a) which concerns canonical bases in representations of quantum groups appears
in [Lusztig 1990, Corollary 5.9]; now, in the case where W is of type A, (a) can be
deduced from [loc. cit.] using the fact that irreducible representations of the Hecke
algebra of type A (with their canonical bases) can be realized as 0-weight spaces of
certain irreducible representations of a quantum group with their canonical bases.
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As R. Bezrukavnikov pointed out to the author, (a) specialized for v = 1 (in the
group algebra of W instead of H) and assuming that W is crystallographic can
be deduced from [Bezrukavnikov et al. 2012, Proposition 4.1] (a statement about
Harish-Chandra modules), although it is not explicitly stated there.

In this paper we shall prove a generalization of (a) which applies to the Hecke
algebra associated to W and any weight function assumed to satisfy the properties
P1–P15 in [Lusztig 2003, §14], see Theorem 2.3; (a) corresponds to the special
case where the weight function is equal to the length function. As an application
we show that the image of Tw0 in the asymptotic Hecke algebra is given by a simple
formula (see Corollary 2.8).

0.2. Notation. W is a finite Coxeter group; the set of simple reflections is denoted
by S. We shall adopt many notations of [Lusztig 2003]. Let ≤ be the standard
partial order on W . Let l→ N be the length function of W and let L → N be a
weight function (see [Lusztig 2003, 3.1]), that is, a function such that L(ww′)=
L(w)+ L(w′) for any w,w′ in W such that l(ww′) = l(w)+ l(w′); we assume
that L(s) > 0 for any s ∈ S. Let w0,A be as in Section 0.1 and let H be the
Hecke algebra over A associated to W, L as in [Lusztig 2003, 3.2]; we shall
assume that properties P1–P15 in [Lusztig 2003, §14] are satisfied. (This holds
automatically if L = l by [Lusztig 2003, §15] using the results of [Elias and
Williamson 2014]. This also holds in the quasisplit case, see [Lusztig 2003, §16].)
We have A⊂A′ ⊂ K where A′ = C[v, v−1

], K = C(v). Let HK = K ⊗A H (a K -
algebra). Recall that H has an A-basis {Tx ; x ∈W }, see [Lusztig 2003, 3.2] and an
A-basis {cx ; x ∈W }, see [Lusztig 2003, 5.2]. For x ∈W we have cx =

∑
y∈W py,x Ty

and Tx =
∑

y∈W (−1)l(xy) pw0x,w0 ycy (see [Lusztig 2003, 11.4]) where px,x = 1 and
py,x ∈ v

−1Z[v−1
] for y 6= x . We define preorders ≤L,≤R,≤LR on W in terms

of {cx ; x ∈W } as in [Lusztig 2003, 8.1]. Let ∼L,∼R,∼LR be the corresponding
equivalence relations on W , see [Lusztig 2003, 8.1] (the equivalence classes are
called left cells, right cells, two-sided cells). Let ¯:A→A be the ring involution
such that vn = v−n for n ∈ Z. Let ¯ : H→ H be the ring involution such that
f Tx = f̄ T−1

x−1 for x ∈ W, f ∈ A. For x ∈ W we have cx = cx . Let h 7→ h† be the
algebra automorphism of H or of HK given by Tx 7→ (−1)l(x)T−1

x−1 for all x ∈ W ,
see [Lusztig 2003, 3.5]. Then the basis {c†

x ; x ∈ W } of H is defined. (In the case
where L = l, for any x we have c†

x = (−1)l(x)Cx where Cx is as in Section 0.1.) Let
h 7→ h[ be the algebra antiautomorphism of H given by Tx 7→ Tx−1 for all x ∈W ,
see [Lusztig 2003, 3.5]; for x ∈W we have c[x = cx−1 , see [Lusztig 2003, 5.8]. For
x, y ∈W we have cx cy =

∑
z∈W hx,y,zcz , c†

x c†
y =

∑
z∈W hx,y,zc†

z , where hx,y,z ∈A.
For any z ∈W there is a unique number a(z) ∈ N such that for any x, y in W we
have

hx,y,z = γx,y,z−1va(z)
+ strictly smaller powers of v,
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where gx,y,z−1 ∈ Z and gx,y,z−1 6= 0 for some x, y in W . We have also

hx,y,z = γx,y,z−1v−a(z)
+ strictly larger powers of v.

Moreover z 7→ a(z) is constant on any two-sided cell. The free abelian group J with
basis {tw;w ∈W } has an associative ring structure given by tx ty =

∑
z∈W γx,y,z−1 tz;

it has a unit element of the form
∑

d∈D nd td where D is a subset of W consisting
of certain elements with square 1 and nd = ±1. Moreover for d ∈ D we have
nd = γd,d,d .

For any x ∈ W there is a unique element dx ∈ D such that x ∼L dx . For a
commutative ring R with 1 we set JR = R⊗ J (an R-algebra).

There is a unique A-algebra homomorphism φ : H→ JA such that φ(c†
x) =∑

d∈D,z∈W ;dz=d hx,d,znd tz for any x ∈W . After applying C⊗A to φ (we regard C

as an A-algebra via v 7→ 1), φ becomes a C-algebra isomorphism φC :C[W ] −→∼ JC

(see [Lusztig 2003, 20.1(e)]). After applying K⊗A to φ, φ becomes a K -algebra
isomorphism φK :HK −→

∼ JK (see [Lusztig 2003, 20.1(d)]).
For any two-sided cell c let H≤c (resp. H<c) be the A-submodule of H spanned by
{c†

x , x ∈W, x ≤LR x ′ for some x ′ ∈ c} (resp. {c†
x , x ∈W, x<LR x ′ for some x ′ ∈ c}).

Note that H≤c,H<c are two-sided ideals in H. Hence Hc
:=H≤c/H<c is an (H,H)-

bimodule. It has an A-basis {c†
x , x ∈ c}. Let J c be the subgroup of J spanned by

{tx ; x ∈ c}. This is a two-sided ideal of J . Similarly, J c
C
:= C⊗ J c is a two-sided

ideal of JC and J c
K := K ⊗ J c is a two-sided ideal of JK .

We write E ∈ IrrW whenever E is a simple C[W ]-module. We can view E as a
(simple) JC-module E♠ via the isomorphism φ−1

C
. Then the (simple) JK -module

K ⊗C E♠ can be viewed as a (simple) HK -module Ev via the isomorphism φK . Let
E† be the simple C[W ]-module which coincides with E as a C-vector space but
with the w action on E† (for w ∈W ) being (−1)l(w) times the w-action on E . Let
aE ∈ N be as in [Lusztig 2003, 20.6(a)].

1. Preliminaries

1.1. Let σ : W → W be the automorphism given by w 7→ w0ww0; it satisfies
σ(S)= S and it extends to a C-algebra isomorphism σ :C[W ]→C[W ]. For s∈ S we
have l(w0)= l(w0s)+l(s)= l(σ (s))+l(σ (s)w0) hence L(w0)= L(w0s)+L(s)=
L(σ (s))+ L(σ (s)w0)= L(σ (s))+ L(w0s) so that L(σ (s))= L(s). It follows that
L(σ (w)) = L(w) for all w ∈ W and that we have an A-algebra automorphism
σ : H→ H where σ(Tw) = Tσ(w) for any w ∈ W . This extends to a K -algebra
isomorphism σ : HK → HK . We have σ(cw) = cσ(w) for any w ∈ W . For any
h ∈ H we have σ(h†) = (σ (h))†. Hence we have σ(c†

w) = c†
σ(w) for any w ∈ W .

We have hσ(x),σ (y),σ (z) = hx,y,z for all x, y, z ∈W . It follows that a(σ (w))= a(w)
for all w ∈W and γσ(x),σ (y),σ (z) = γx,y,z for all x, y, z ∈W so that we have a ring
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isomorphism σ : J → J where σ(tw)= tσ(w) for any w ∈ W . This extends to an
A-algebra isomorphism σ : JA→ JA, to a C-algebra isomorphism σ : JC→ JC

and to a K -algebra isomorphism σ : JK → JK . From the definitions we see that
φ :H→ JA (see Section 0.2) satisfies φσ = σφ. Hence φC satisfies φCσ = σφC

and φK satisfies φKσ = σφK . We show:

(a) For h ∈H we have σ(h)= Tw0hT−1
w0

.

It is enough to show this for h running through a set of algebra generators of H. Thus
we can assume that h = T−1

s with s ∈ S. We must show that T−1
σ(s)Tw0 = Tw0 T−1

s :
both sides are equal to Tσ(s)w0 = Tw0s .

Lemma 1.2. For any x ∈W we have σ(x)∼LR x.

From 1.1(a) we deduce that Tw0cx T−1
w0
= cσ(x). In particular, σ(x)≤LR x . Replacing

x by σ(x) we obtain x ≤LR σ(x). The lemma follows.

1.3. Let E ∈ IrrW . We define σE : E→ E by σE(e)=w0e for e∈ E . We have σ 2
E=1.

For e ∈ E, w ∈ W , we have σE(we) = σ(w)σE(e). We can view σE as a vector
space isomorphism E♠ −→∼ E♠. For e ∈ E♠, w ∈W we have σE(twe)= tσ(w)σE(e).
Now σE : E♠→ E♠ defines by extension of scalars a vector space isomorphism
Ev→ Ev denoted again by σE . It satisfies σ 2

E = 1. For e ∈ Ev, w ∈ W we have
σE(Twe)= Tσ(w)σE(e).

Lemma 1.4. Let E ∈ IrrW . There is a unique (up to multiplication by a scalar in
K −{0}) vector space isomorphism g : Ev→ Ev such that g(Twe)= Tσ(w)g(e) for
allw∈W, e∈ Ev . We can take for example g= Tw0 : Ev→ Ev or g=σE : Ev→ Ev .
Hence Tw0 = λEσE : Ev→ Ev where λE ∈ K −{0}.

The existence of g is clear from the second sentence of the lemma. If g′ is another
isomorphism g′ : Ev→ Ev such that g′(Twe)= Tσ(w)g′(e) for all w ∈W , e ∈ Ev,
then for any e ∈ Ev we have g−1g′(Twe)= g−1Tσ(w)g′(e)= Twg−1g′(e) and using
Schur’s lemma we see that g−1g′ is a scalar. This proves the first sentence of the
lemma hence the third sentence of the lemma.

1.5. Let E ∈ IrrW . We have

(a)
∑
x∈W

tr(Tx , Ev) tr(Tx−1, Ev)= fEv dim(E)

where fEv ∈A′ is of the form

(b) fEv = f0v
−2aE + strictly higher powers of v

and f0 ∈ C−{0}. (See [Lusztig 2003, 19.1(e), 20.1(c), 20.7].)



ACTION OF LONGEST ELEMENT ON A HECKE ALGEBRA CELL MODULE 387

From Lemma 1.4 we see that λ−1
E Tw0 acts on Ev as σE . Using [Lusztig 2005,

34.14(e)] with c = λ−1
E Tw0 (an invertible element of HK ) we see that

(c)
∑
x∈W

tr(TxσE , Ev) tr(σ−1
E Tx−1, Ev)= fEv dim(E).

Lemma 1.6. Let E ∈ IrrW . We have λE = v
nE for some nE ∈ Z.

For any x ∈W we have

tr(σE c†
x , Ev)=

∑
d∈D,z∈W ;d=dz

hx,d,znd tr(σE tz, E♠) ∈A′

since tr(σE tz, E♠)∈C. It follows that tr(σE h, Ev)∈A′ for any h ∈H. In particular,
both tr(σE Tw0, Ev) and tr(T−1

w0
σE , Ev) belong to A′. Thus λE dim E and λ−1

E dim E
belong to A′ so that λE = bvn for some b ∈C−{0} and n ∈ Z. From the definitions
we have λE |v=1 = 1 (for v = 1, Tw0 becomes w0) hence b = 1. The lemma is
proved.

Lemma 1.7. Let E ∈ IrrW . There exists εE ∈ {1,−1} such that for any x ∈W we
have

(a) tr(σE† Tx , (E†)v)= εE(−1)l(x) tr(σE T−1
x−1, Ev).

Let (Ev)† be the HK -module with underlying vector space Ev such that the
action of h ∈HK on (Ev)† is the same as the action of h† on Ev. From the proof
in [Lusztig 2003, 20.9] we see that there exists an isomorphism of HK -modules
b : (Ev)† −→∼ (E†)v . Let ι : (Ev)†→ (Ev)† be the vector space isomorphism which
corresponds under b to σE† : (E†)v → (E†)v. Then we have tr(σE† Tx , (E†)v) =

tr(ιTx , (Ev)†). It is enough to prove that ι=±σE as a K -linear map of the vector
space Ev = (Ev)† into itself. From the definition we have ι(Twe) = Tσ(w)ι(e)
for all w ∈ W, e ∈ (Ev)†. Hence (−1)l(w)ι(T−1

w−1e) = (−1)l(w)T−1
σ(w−1)

ι(e) for all
w ∈ W, e ∈ Ev. It follows that ι(he) = (−1)l(w)Tσ(h)ι(e) for all h ∈ H, e ∈ Ev.
Hence ι(Twe)= Tσ(w)ι(e) for all w ∈W, e ∈ Ev . By the uniqueness in Lemma 1.4
we see that ι= εEσE : Ev→ Ev where εE ∈ K −{0}. Since ι2 = 1, σ 2

E = 1, we see
that εE =±1. The lemma is proved.

Lemma 1.8. Let E ∈ IrrW . We have nE =−aE + aE† .

For x ∈W we have (using Lemmas 1.4 and 1.6)

(a) tr(Tw0x , Ev)= tr(Tw0 T−1
x−1, Ev)= vnE tr(σE T−1

x−1, Ev).



388 GEORGE LUSZTIG

Making a change of variable x 7→ w0x in 1.5(a) and using that Tx−1w0 = Tw0σ(x)−1

we obtain

fEv dim(E)=
∑
x∈W

tr(Tw0x , Ev) tr(Tw0σ(x)−1, Ev)

= v2nE
∑
x∈W

tr(σE T−1
x−1, Ev) tr(σE T−1

σ(x), Ev).

Using now Lemma 1.7 and the equality l(x)= l(σ (x−1)) we obtain

fEv dim(E)= v2nE
∑
x∈W

tr(σE† Tx , (E†)v) tr(σE† Tσ(x−1), (E
†)v)

= v2nE
∑
x∈W

tr(σE† Tx , (E†)v) tr(Tξ−1σE†, (E†)v)

= v2nE f(E†)v dim(E†).

(The last step uses 1.5(c) for E† instead of E .) Thus we have fEv = v
2nE f(E†)v .

The left-hand side is as in 1.5(b) and similarly the right-hand side of the form

f ′0v
2nE−2aE† + strictly higher powers of v

where f0, f ′0 ∈ C−{0}. It follows that −2aE = 2nE − 2aE† . The lemma is proved.

Lemma 1.9. Let E ∈ IrrW and let x ∈W . We have

tr(Tx , Ev)= (−1)l(x)v−aE tr(tx , E♠) mod v−aE+1C[v],(a)

tr(σE Tx , Ev)= (−1)l(x)v−aE tr(σE tx , E♠) mod v−aE+1C[v].(b)

For a proof of (a), see [Lusztig 2003, 20.6(b)]. We now give a proof of (b) along
the same lines as that of (a). There is a unique two sided cell c such that tz|E♠ = 0
for z ∈ W − c. Let a = a(z) for all z ∈ c. By [Lusztig 2003, 20.6(c)] we have
a = aE . From the definition of cx we see that Tx =

∑
y∈W fycy , where fx = 1

and fy ∈ v
−1Z[v−1

] for y 6= x . Applying † we obtain (−1)l(x)T−1
x−1 =

∑
y∈W

fyc†
y;

applying we obtain (−1)l(x)Tx =
∑

y∈W
f̄yc†

y . Thus we have

(−1)l(x) tr(σE Tx , Ev)=
∑
y∈W

f̄y tr(σE c†
y, Ev)=

∑
y,z∈W

d∈D; d=dz

f̄yh y,d,znd tr(σE tz, E♠).

In the last sum we can assume that z ∈ c and d ∈ c so that h y,d,z = γy,d,z−1v−a

mod v−a+1Z[v]. Since f̄x = 1 and f̄y ∈ vZ[v] for all y 6= x we see that

(−1)l(x) tr(σE Tx , Ev)=
∑
z∈c

d∈D∩c

γx,d,z−1ndv
−a tr(σE tz, E♠) mod v−a+1C[v].
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If x /∈ c then γx,d,z−1 = 0 for all d, z in the sum so that tr(σE Tx , Ev)= 0; we have
also tr(σE tx , E♠)= 0 and the desired formula follows. We now assume that x ∈ c.
Then for d, z as above we have γx,d,z−1 = 0 unless x = z and d = dx in which case
γx,d,z−1nd = 1. Thus (b) holds again. The lemma is proved.

Lemma 1.10. Let E ∈ IrrW . Let c be the unique two sided cell such that tz|E♠ = 0
for z ∈W−c. Let c′ be the unique two sided cell such that tz|(E†)♠ = 0 for z ∈W−c′.
We have c′ = w0c.

Using 1.8(a) and 1.7(a) we have

(a) tr(Tw0x , Ev)= vnE tr(σE T−1
x−1, Ev)= vnE εE(−1)l(x) tr(σE† Tx , (E†)v).

Using 1.9(a) for E and 1.9(b) for E† we obtain

tr(Tw0x , Ev)= (−1)l(w0x)v−aE tr(tw0x , E♠) mod v−aE+1C[v],

tr(σE† Tx , (E†)v)= (−1)l(x)v−aE† tr(σE† tx , E†
♠
) mod v−aE†+1C[v].

Combining with (a) we obtain

(−1)l(w0x)v−aE tr(tw0x , E♠)+ strictly higher powers of v

= vnE εEv
−aE† tr(σE† tx , E†

♠
)+ strictly higher powers of v.

Using the equality nE =−aE + aE† (see Lemma 1.8) we deduce

(−1)l(w0x) tr(tw0x , E♠)= εE tr(σE† tx , E†
♠
).

Now we can find x ∈W such that tr(tw0x , E♠) 6= 0 and the previous equality shows
that tx |(E†)♠ 6= 0. Moreover from the definition we have w0x ∈ c and x ∈ c′ so that
w0c∩ c′ 6=∅. Since w0c is a two-sided cell (see [Lusztig 2003, 11.7(d)]) it follows
that w0c= c′. The lemma is proved.

Lemma 1.11. Let c be a two-sided cell of W . Let c′ be the two-sided cellw0c= cw0

(see Lemma 1.2). Let a = a(x) for any x ∈ c; let a′ = a(x ′) for any x ′ ∈ c′. The
K -linear map J c

K → J c
K given by ξ 7→ φ(va−a′Tw0)ξ (left multiplication in JK ) is

obtained from a C-linear map J c
C
→ J c

C
(with square 1) by extension of scalars from

C to K .

We can find a direct sum decomposition J c
C
= ⊕

m
i=1 E i where E i are simple left

ideals of JC contained in J c
C

. We have J c
K =⊕

m
i=1K ⊗ E i . It is enough to show that

for any i , the K -linear map K ⊗ E i
→ K ⊗ E i given by the action of φ(va−a′Tw0)

in the left JK -module structure of K⊗E i is obtained from a C-linear map E i
→ E i

(with square 1) by extension of scalars from C to K . We can find E ∈ IrrW such
that E i is isomorphic to E♠ as a JC-module. It is then enough to show that the
action of va−a′Tw0 in the left HK -module structure of Ev is obtained from the map
σE : E→ E by extension of scalars from C to K . This follows from the equality
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va−a′Tw0 = σE : Ev → Ev (since σE is obtained by extension of scalars from a
C-linear map E → E with square 1) provided that we show that −nE = a − a′.
Since nE = −aE + aE† (see Lemma 1.8) it is enough to show that a = aE and
a′ = aE† . The equality a = aE follows from [Lusztig 2003, 20.6(c)]. The equality
a′ = aE† also follows from [Lusztig 2003, 20.6(c)] applied to E†, c′ = w0c instead
of E, c (see Lemma 1.10). The lemma is proved.

Lemma 1.12. In the setup of Lemma 1.11 we have

(a) φ(va−a′Tw0)tx =
∑
x ′∈c

mx ′,x tx ′

and

(b) φ(v2a−2a′T 2
w0
)tx = tx

for any x ∈ c, where mx ′,x ∈ Z.

Now (b) and the fact that (a) holds with mx ′,x ∈C is just a restatement of Lemma 1.11.
Since φ(va−a′Tw0) ∈ JA we have also mx ′,x ∈A. We now use that A∩C= Z and
the lemma follows.

Lemma 1.13. In the setup of Lemma 1.11 we have for any x ∈ c the equalities

(a) va−a′Tw0c†
x =

∑
x ′∈c

mx ′,x c†
x ′

and

(b) v2a−2a′T 2
w0

c†
x = c†

x

in Hc, where mx ′,x ∈ Z are the same as in Lemma 1.12. Moreover, if mx ′,x 6= 0 then
x ′ ∼L x.

The first sentence follows from Lemma 1.12 using [Lusztig 2003, 18.10(a)]. Clearly,
if mx ′,x 6= 0 then x ′ ≤L x , which together with x ′ ∼LR x implies x ′ ∼L x .

2. The main results

2.1. In this section we fix a two-sided cell c of W ; a, a′ are as in Lemma 1.11.
We define an A-linear map θ : H≤c

→ A by θ(c†
x) = 1 if x ∈ D ∩ c, θ(c†

x) = 0 if
x ≤LR x ′ for some x ′ ∈ c and x /∈ D∩ c. Note that θ is zero on H<c hence it can
be viewed as an A-linear map Hc

→A.

Lemma 2.2. Let x, x ′ ∈ c. We have

(a) θ(c†
x−1c†

x ′)= ndx δx,x ′v
a
+ strictly lower powers of v.
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The left-hand side of (a) is∑
d∈D∩c

hx−1,x ′,d =
∑

d∈D∩c

γx−1,x ′,dv
a
+ strictly lower powers of v

= ndx δx,x ′v
a
+ strictly lower powers of v.

The lemma is proved.
We now state one of the main results of this paper.

Theorem 2.3. There exists a unique permutation u 7→ u∗ of c (with square 1) such
that for any u ∈ c we have

(a) va−a′Tw0c†
u = εuc†

u∗ mod H<c

where εu = ±1. For any u ∈ c we have εu−1 = εu = εσ(u) = εu∗ and σ(u∗) =
(σ (u))∗ = ((u−1)∗)−1.

Let u ∈ c. We set Z = θ((va−a′Tw0c†
u)
[va−a′Tw0c†

u). We compute Z in two ways,
using Lemma 2.2 and Lemma 1.13. We have

Z = θ(c†
u−1v

2a−2a′T 2
w0

c†
u)= θ(c

†
u−1c†

u)= nduv
a
+ strictly lower powers of v,

Z = θ
((∑

y∈c
m y,uc†

y

)[∑
y′∈c

m y′,uc†
y′

)
=

∑
y,y′∈c

m y,um y′,uθ(c
†
y−1c†

y′)

=

∑
y,y′∈c

m y,um y′,undyδy,y′v
a
+ strictly lower powers of v

=

∑
y∈c

ndy m2
y,uv

a
+ strictly lower powers of v

=

∑
y∈c

ndu m2
y,uv

a
+ strictly lower powers of v

,

where m y,u ∈ Z is zero unless y ∼L u (see Lemma 1.13), in which case we have
dy = du . We deduce that

∑
y∈c m2

y,u = 1, so that we have m y,u =±1 for a unique
y ∈ c (denoted by u∗) and m y,u = 0 for all y ∈ c−{u∗}. Then 2.3(a) holds. Using
2.3(a) and Lemma 1.13(b) we see that u 7→ u∗ has square 1 and that εuεu∗ = 1.

The automorphism σ :H→H (see Section 1.1) satisfies the equality σ(c†
u)=c†

σ(u)
for any u ∈W ; note also that w ∈ c↔ σ(w) ∈ c (see Lemma 1.2). Applying σ to
2.3(a) we obtain

va−a′Tw0c†
σ(u) = εuc†

σ(u∗)

in Hc. By 2.3(a) we have also va−a′Tw0c†
σ(u) = εσ(u)c

†
(σ (u))∗ in Hc. It follows that

εuc†
σ(u∗) = εσ(u)c

†
(σ (u))∗ hence εu = εσ(u) and σ(u∗)= (σ (u))∗.

Applying h 7→ h[ to 2.3(a) we obtain

va−a′c†
u−1 Tw0 = εuc†

(u∗)−1
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in Hc. By 2.3(a) we have also

va−a′c†
u−1 Tw0 = v

a−a′Tw0c†
σ(u−1)

= εσ(u−1)c
†
(σ (u−1))∗

in Hc. It follows that εuc†
(u∗)−1 = εσ(u−1)c

†
(σ (u−1))∗

hence εu = εσ(u−1) and (u∗)−1
=

(σ (u−1))∗. Since εσ(u−1) = εu−1 , we see that εu = εu−1 . Replacing u by u−1 in
(u∗)−1

= (σ (u−1))∗ we obtain ((u−1)∗)−1
= (σ (u))∗ as required. The theorem is

proved.

2.4. For u ∈ c we have

u ∼L u∗,(a)

σ(u)∼R u∗.(b)

Indeed, (a) follows from Lemma 1.13. To prove (b) it is enough to show that
σ(u)−1

∼L (u∗)−1. Using (a) for σ(u)−1 instead of u we see that it is enough to
show that (σ (u−1))∗ = (u∗)−1; this follows from Theorem 2.3.

If we assume that

(c) any left cell in c intersects any right cell in c in exactly one element

then by (a), (b), for any u ∈ c,

(d) u∗ is the unique element of c in the intersection of the left cell of u with right
cell of σ(u).

Note that condition (c) is satisfied for any c if W is of type An or if W is of type
Bn (n ≥ 2) with L(s)= 2 for all but one s ∈ S and L(s)= 1 or 3 for the remaining
s ∈ S. (In this last case we are in the quasisplit case and we have σ = 1 hence
u∗ = u for all u.)

Theorem 2.5. For any x ∈W we set ϑ(x)= γw0d
w0x−1 ,x,(x∗)−1 .

(a) If d ∈ D and x, y ∈ c satisfy γw0d,x,y 6= 0 then y = (x∗)−1.

(b) If x ∈ c then there is a unique d ∈ D∩w0c such that γw0d,x,(x∗)−1 6= 0, namely
d = dw0x−1 . Moreover we have ϑ(x)=±1.

(c) For u ∈ c we have εu = (−1)l(w0d)ndϑ(u) where d = dw0u−1 .

Applying h 7→ h† to 2.3(a) we obtain for any u ∈ c:

(d) va−a′(−1)l(w0)Tw0cu =
∑
z∈c

δz,u∗εucz mod
∑

z′∈W−c

Acz′ .

We have Tw0 =
∑

y∈W (−1)l(w0 y) p1,w0 ycy hence Tw0 =
∑

y∈W (−1)l(w0 y) p1,w0 ycy .
Introducing this in (d) we obtain

va−a′
∑
y∈W

(−1)l(y) p1,w0 ycycu =
∑
z∈c

δz,u∗εucz mod
∑

z′∈W−c

Acz′,
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that is,

va−a′
∑

y,z∈W

(−1)l(y) p1,w0 yh y,u,zcz =
∑
z∈c

δz,u∗εucz mod
∑

z′∈W−c

Acz′ .

Thus, for z ∈ c we have

(e) va−a′
∑
y∈W

(−1)l(y) p1,w0 yh y,u,z = δz,u∗εu .

Here we have h y,u,z=γy,u,z−1v−a mod v−a+1Z[v] and we can assume than z≤R y
so that w0 y ≤R w0z and a(w0 y)≥ a(w0z)= a′.

For w ∈ W we set sw = nw if w ∈ D and sw = 0 if w /∈ D. By [Lusztig
2003, 14.1] we have p1,w = swv−a(w) mod v−a(w)−1Z[v−1

] hence p1,w = swva(w)

mod va(w)+1Z[v]. Hence for y in the sum above we have p1,w0 y = sw0 yv
a(w0 y)

mod va(w0 y)+1Z[v]. Thus (e) gives

va−a′
∑
y∈c
(−1)l(y)sw0 yγy,u,z−1va(w0 y)−a

− δz,u∗εu ∈ vZ[v]

and using a(w0 y)= a′ for y ∈ c we obtain∑
y∈c
(−1)l(y)sw0 yγy,u,z−1 = δz,u∗εu .

Using the definition of sw0 y we obtain

(f)
∑

d∈D∩w0c

(−1)l(w0d)ndγw0d,u,z−1 = δz,u∗εu .

Next we note that

(g) if d ∈ D and x, y ∈ c satisfy γw0d,x,y 6= 0 then d = dw0x−1 .

Indeed from [Lusztig 2003, §14, P8] we deduce w0d ∼L x−1. Using [Lusztig 2003,
11.7] we deduce d ∼L w0x−1 so that d = dw−1

0 x−1 . This proves (g).
Using (g) we can rewrite (f) as follows.

(h) (−1)l(w0)(−1)l(d)ndγw0d,u,z−1 = δz,u∗εu

where d = dw0u−1 .
We prove (a). Assume that d ∈ D and x, y ∈ c satisfy γw0d,x,y 6= 0, y 6= (x∗)−1.

Using (g) we have d=dw0x−1 . Using (h) with u= x, z= y−1 we see that γw0d,x,y=0,
a contradiction. This proves (a).

We prove (b). Using (h) with u = x, z = x∗ we see that

(i) (−1)l(w0d)ndγw0d,x,(x∗)−1 = εu
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where d = dw0x−1 . Hence the existence of d in (b) and the equality ϑ(x) = ±1
follow; the uniqueness of d follows from (g).

Now (c) follows from (i). This completes the proof of the theorem.

2.6. In the case where L = l, ϑ(u) (in 2.5(c)) is ≥ 0 and ±1 hence 1; moreover,
nd = 1, (−1)l(d) = (−1)a

′

for any d ∈ D∩w0c (by the definition of D). Hence we
have εu = (−1)l(w0)+a′ for any u ∈ c, a result of Mathas [1996].

Now Theorem 2.5 also gives a characterization of u∗ for u ∈ c; it is the unique
element u′ ∈ c such that γw0d,u,u′−1 6= 0 for some d ∈ D∩w0c.

We will show:

(a) The subsets X={d∗; d ∈ D∩ c} and X ′={w0d ′; d ′ ∈ D∩w0c} of c coincide.

Let d ∈ D ∩ c. By 2.5(b) we have γw0d ′,d,(d∗)−1 = ±1 for some d ′ ∈ D ∩w0c.
Hence γ(d∗)−1,w0d ′,d =±1. Using [Lusztig 2003, 14.2, P2] we deduce d∗ = w0d ′.
Thus X ⊂ X ′. Let Y (resp. Y ′) be the set of left cells contained in c (resp. w0c).
We have ](X) = ](Y ) and ](X ′) = ](Y ′). By [Lusztig 2003, 11.7(c)] we have
](Y )= ](Y ′). It follows that ](X)= ](X ′). Since X ⊂ X ′, we must have X = X ′.
This proves (a).

Theorem 2.7. We have

φ(va−a′Tw0)=
∑

d∈D∩c

ϑ(d)εd td∗ mod
∑

u∈W−c

Atu .

We set φ(va−a′Tw0)=
∑

u∈W pu tu where pu ∈A. Combining 1.12a, 1.13a, 2.3(a) we
see that for any x ∈ c we have

φ(va−a′Tw0)tx = εx tx∗,

hence
εx tx∗ =

∑
u∈c

pu tu tx =
∑

u,y∈c
puγu,x,y−1 ty .

It follows that for any x, y ∈ c we have∑
u∈c

puγu,x,y−1 = δy,x∗εx .

Taking x = w0d where d = dw0 y ∈ D∩w0c we obtain∑
u∈c

puγw0dw0 y ,y−1,u = δy,(w0dw0 y)∗εw0dw0 y

which, by Theorem 2.5, can be rewritten as

p((y−1)∗)−1ϑ(y−1)= δy,(w0dw0 y)∗εw0dw0 y .
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We see that for any y ∈ c we have

pσ(y∗) = δy,(w0dw0 y)∗ϑ(y
−1)εw0dw0 y .

In particular we have pσ(y∗) = 0 unless y = (w0dw0 y)
∗ in which case

pσ(y∗) = p(σ (y))∗) = ϑ(y−1)εy .

(We use that εy∗ = εy .) If y = (w0dw0 y)
∗ then y∗ ∈ X ′ hence by 2.6(a), y∗ = d∗

that is y = d for some d ∈ D. Conversely, if y ∈ D then w0 y∗ ∈ D (by 2.6(a)) and
w0 y∗ ∼L w0 y (since y∗ ∼L y) hence dw0 y = w0 y∗. We see that y = (w0dw0 y)

∗ if
and only if y ∈ D. We see that

φ(va−a′Tw0)=
∑

d∈D∩c

ϑ(d−1)εd t(σ (d))∗ +
∑

u∈W−c

pu tu .

Now d 7→ σ(d) is a permutation of D∩c and ϑ(d−1)=ϑ(d)=ϑ(σ(d)), εσ(d)= εd .
The theorem follows.

Corollary 2.8. φ(Tw0)=
∑
d∈D

ϑ(d)εdv
−a(d)+a(w0d)td∗ ∈ JA.

2.9. We set Tc =
∑

d∈D∩c ϑ(d)εd td∗ ∈ J c. We show:

(a) T2
c =

∑
d∈D∩c nd td .

(b) txTc = Tctσ(x) for any x ∈W .

By Theorem 2.7 we have φ(va−a′Tw0)=Tc+ξ where ξ ∈ J W−c
K :=

∑
u∈W−c K tu .

Since J c
K , J W−c

K are two-sided ideals of JK with intersection zero and φK :HK→ JK

is an algebra homomorphism, it follows that

φ(v2a−2a′T 2
w0
)= (φ(va−a′Tw0))

2
= (Tc+ ξ)

2
= T2

c+ ξ
′

where ξ ′ ∈ J W−c
K . Hence, for any x ∈ c we have φ(v2a−2a′T 2

w0
)tx = T2

ctx so that
(using 1.12b): tx = T2

ctx . We see that T2
c is the unit element of the ring J c

K . Thus
(a) holds.

We prove (b). For any y ∈W we have TyTw0 = Tw0 Tσ(y) hence, applying φK ,

φ(Ty)φ(v
a−a′Tw0)= φ(v

a−a′Tw0)φ(Tσ(y)),

that is, φ(Ty)(Tc+ξ)= (Tc+ξ)φ(Tσ(y)). Thus, φ(Ty)Tc=Tcφ(Tσ(y))+ξ1 where
ξ1 ∈ J W−c

K . Since φK is an isomorphism, it follows that for any x ∈ W we have
txTc = Tctσ(x) mod J W−c

K . Thus (b) holds.
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2.10. In this subsection we assume that L = l. In this case Corollary 2.8 becomes

φ(Tw0)=
∑
d∈D

(−1)l(w0)+a(w0d)v−a(d)+a(w0d)td∗ ∈ JA.

(We use that ϑ(d)= 1.)
For any left cell 0 contained in c let n0 be the number of fixed points of the

permutation u 7→ u∗ of 0. Now 0 carries a representation [0] of W and from
Theorem 2.3 we see that tr(w0, [0])=±n0. Thus n0 is the absolute value of the
integer tr(w0, [0]). From this the number n0 can be computed for any 0. In this
way we see for example that if W is of type E7 or E8 and c is not an exceptional
two-sided cell, then n0 > 0.
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