
Pacific
Journal of
Mathematics

SMOOTH REPRESENTATIONS AND HECKE MODULES
IN CHARACTERISTIC p

PETER SCHNEIDER

Volume 279 No. 1-2 December 2015





PACIFIC JOURNAL OF MATHEMATICS
Vol. 279, No. 1-2, 2015

dx.doi.org/10.2140/pjm.2015.279.447

SMOOTH REPRESENTATIONS AND HECKE MODULES
IN CHARACTERISTIC p

PETER SCHNEIDER

Dedicated to the memory of Robert Steinberg.

Let G be a p-adic Lie group and I ⊆ G be a compact open subgroup
which is a torsionfree pro- p-group. Working over a coefficient field k of
characteristic p we introduce a differential graded Hecke algebra for the
pair (G, I) and show that the derived category of smooth representations
of G in k-vector spaces is naturally equivalent to the derived category of
differential graded modules over this Hecke DGA.

1. Background and motivation

Let G be a d-dimensional p-adic Lie group, and let k be any field. We denote by
Modk(G) the category of smooth G-representations in k-vector spaces. It obviously
has arbitrary direct sums.

Fix a compact open subgroup I ⊆G. In Modk(G)we then have the representation

indG
I (1) := {k-valued functions with finite support on G/I }

with G acting by left translations. Being generated by a single element, which is the
characteristic function of the trivial coset, indG

I (1) is a compact object in Modk(G).
It generates the full subcategory ModI

k(G) of all representations V in Modk(G)
which are generated by their I -fixed vectors V I. In general, ModI

k(G) is not an
abelian category. The Hecke algebra of I by definition is the endomorphism ring

HI := EndModk(G)(indG
I (1))

op.

We let Mod(HI ) denote the category of left unital HI -modules. There is the pair
of adjoint functors

H 0
:Modk(G)−→Mod(HI )

V 7−→ V I
= HomModk(G)(indG

I (1), V ),
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and
T0 :Mod(HI )−→ModI

k(G)⊆Modk(G)

M 7−→ indG
I (1)⊗HI M.

If the characteristic of k does not divide the pro-order of I then the functor H 0

is exact. Then indG
I (1) is a projective compact object in Modk(G). Since it does

not generate the full category Modk(G), one cannot apply the Gabriel–Popescu
theorem (compare [Kashiwara and Schapira 2006, Theorem 8.5.8]) to the functor
H 0. Nevertheless, in this case, one might hope for a close relation between the
categories ModI

k(G) and Mod(HI ). This indeed happens, for example, for a con-
nected reductive group G and its Iwahori subgroup I and the field k = C; compare
[Bernstein 1984, Corollary 3.9(ii)]. In addition, in this situation the algebra HI

turns out to be a generalized affine Hecke algebra so that its structure is explicitly
known. Therefore, in characteristic zero, Hecke algebras have become one of the
most important tools in the investigation of smooth G-representations.

In this light, it is a pressing question to better understand the relation between
the two categories Modk(G) and Mod(HI ) in the opposite situation where k has
characteristic p. Since p always will divide the pro-order of I, the functor H 0

certainly is no longer exact. Both functors H 0 and T0 now have a very complicated
behavior and little is known [Koziol 2014; Ollivier 2009; Ollivier and Schneider
2015]. This suggests that one should work in a derived framework which takes into
account the higher cohomology of I.

This paper will demonstrate that by doing this — not in a naive way but in an
appropriate differential graded context — the situation does improve drastically. We
will show the somewhat surprising result that the object indG

I (1) becomes a compact
generator of the full derived category of G provided I is a torsionfree pro-p-group.

The main result of this paper was proved already in 2007 but remained unpub-
lished. At the time, we gave a somewhat ad hoc proof. Although the main arguments
remain unchanged we now, by appealing to a general theorem of Keller, have ar-
ranged them in a way which makes the reasoning more transparent. In the context of
the search for a p-adic local Langlands program, there is increasing interest in study-
ing derived situations; see [Harris 2015]. We also have now [Ollivier and Schnei-
der 2015] the first examples of explicit computations of the cohomology groups
H i (I, indG

I (1)). I hope that these are sufficient reasons to finally publish the paper.

2. The unbounded derived category of G

We assume from now on throughout the paper that the field k has characteristic p
and that I is a torsionfree pro-p-group. Let us first of all collect a few properties of
the abelian category Modk(G).
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Lemma 1. (i) Modk(G) is (AB5), i.e., it has arbitrary colimits and filtered
colimits are exact.

(ii) Modk(G) is (AB3*), i.e., it has arbitrary limits.

(iii) Modk(G) has enough injective objects.

(iv) Modk(G) is a Grothendieck category, i.e., it satisfies (AB5) and has a generator.

(v) V I
6= 0 for any nonzero V in Modk(G).

Proof. (i) This is obvious. (ii) Take the subspace of smooth vectors in the limit of
k-vector spaces. (iii) This is shown in [Vignéras 1996, §I.5.9]. Alternatively, it is
a consequence of (iv); compare [Kashiwara and Schapira 2006, Theorem 9.6.2].
(v) Since I is pro-p, where p is the characteristic of k, the only irreducible smooth
representation of I is the trivial one.

(iv) Because of (i) it remains to exhibit a generator of Modk(G). We define

Y :=
⊕

J

indG
J (1),

where J runs over all open subgroups in G. For any V in Modk(G), we have

HomModk(G)(Y, V )=
∏

J

V J.

Since V =
⋃

J V J, we easily deduce that Y is a generator of Modk(G). �

As usual, let D(G) := D(Modk(G)) be the derived category of unbounded
complexes in Modk(G).

Remark 2. D(G) has arbitrary direct sums, which can be computed as direct sums
of complexes.

Proof. See the first paragraph in [Kashiwara and Schapira 2006, §14.3]. �

According to [Lazard 1965, Théorème V.2.2.8; Serre 1965], the group I has
cohomological dimension d . This means that the higher derived functors of the left
exact functor

Modk(I )−→ Veck

E 7−→ E I

into the category Veck of k-vector spaces are zero in degrees > d. On the other
hand, the restriction functor

Modk(G)−→Modk(I )

V 7−→ V |I
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is exact and respects injective objects. The latter is a consequence of the fact that
compact induction

Modk(I )−→Modk(G)

E 7−→ indG
I (E)

is an exact left adjoint; compare [Vignéras 1996, §I.5.7]. Hence the higher derived
functors of the composed functor

H 0(I, · ) :Modk(G)−→ Veck

V 7−→ V I

are given by V 7−→ H i (I, V |I ) and vanish in degrees > d . It follows that the total
right derived functor

RH 0(I, · ) : D(G)−→ D(Veck)

between the corresponding (unbounded) derived categories exists [Hartshorne 1966,
Corollary I.5.3].

To compute RH 0(I, · ), we use the formalism of K-injective complexes as de-
veloped in [Spaltenstein 1988]. We let C(Modk(G)) and K (Modk(G)) denote the
category of unbounded complexes in Modk(G) with chain maps and homotopy
classes of chain maps, respectively, as morphisms. The K-injective complexes
form a full triangulated subcategory Kinj(Modk(G)) of K (Modk(G)). Exactly in
the same way as [op. cit., Proposition 3.11] one can show that any complex in
C(Modk(G)) has a right K-injective resolution (recall from Lemma 1(ii) that the
category Modk(G) has inverse limits). Alternatively, one may apply [Serpé 2003,
Theorem 3.13] or [Kashiwara and Schapira 2006, Theorem 14.3.1] based upon
Lemma 1(iv). The existence of K-injective resolutions means that the natural functor

Kinj(Modk(G))−→
' D(G)

is an equivalence of triangulated categories. We fix a quasi-inverse i of this functor.
Then the derived functor RH 0(I, · ) is naturally isomorphic to the composed functor

D(G) i
−→ Kinj(Modk(G))−→ K (Veck)−→ D(Veck)

with the middle arrow given by

V • 7→ Hom•Modk(G)(indG
I (1), V •).

Explanation. Let V • be a complex in C(Modk(G)). To compute RH 0(I, · ) ac-
cording to [Hartshorne 1966], one chooses a quasi-isomorphism V • −→' C • into a
complex consisting of objects which are acyclic for the functor H 0(I, · ). On the
other hand, let V • −→' A• be a quasi-isomorphism into a K-injective complex. By
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[Spaltenstein 1988, Proposition 1.5(c)] we then have, in K (Modk(G)), a unique
commutative diagram:

C •

��

V •

::

$$

A•

We claim that the induced map

(C •)I
−→
'

(A•)I

is a quasi-isomorphism. Choose quasi-isomorphisms

A• −→' C̃ • −→' Ã•

where C̃ • consists of H 0(I, · )-acyclic objects and Ã• is K-injective. By [Spaltenstein
1988, Proposition 1.5(b)], the composite is an isomorphism in K (Modk(G)) and
hence induces a quasi-isomorphism (A•)I

−→
'

( Ã•)I. But by [Hartshorne 1966,
Theorem I.5.1 and Corollary I.5.3(γ )], the composite C •−→' A•−→' C̃ • also induces
a quasi-isomorphism (C •)I

−→
'

(C̃ •)I.

Lemma 3. The (hyper)cohomology functor H `(I, · ), for any ` ∈ Z, commutes with
arbitrary direct sums in D(G).

Proof. First of all we observe that the cohomology functor H `(I, · ) commutes
with arbitrary direct sums in Modk(G) [Serre 1994, §I.2.2, Proposition 8]. This, in
particular, implies that arbitrary direct sums of H 0(I, · )-acyclic objects in Modk(G)
again are H 0(I, · )-acyclic. Now let (V •j ) j∈J be a family of objects in D(G), where
we view each V •j as an actual complex. Then, according to Remark 2, the direct
sum of the V •j in D(G) is represented by the direct sum complex

⊕
j V
•

j . Now we
choose quasi-isomorphisms V •j −→

' C •j in C(Modk(G)), where all representations
Cm

j are H 0(I, · )-acyclic. By the preliminary observation, the direct sum map⊕
j

V •j −→
' C • :=

⊕
j

C •j

again is a quasi-isomorphism where all terms of the target complex are H 0(I, · )-
acyclic. We therefore obtain

H `
(
I,
⊕

j

V •j
)
= h`((C •)I )=

⊕
j

h`((C •j )
I )=

⊕
j

H `(I, V •j ). �

As usual, we view Modk(G) as the full subcategory of those complexes in D(G)
which have zero terms outside of degree zero.

Lemma 4. indG
I (1) is a compact object in D(G).
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Proof. We have to show that the functor HomD(G)(indG
I (1), · ) commutes with

arbitrary direct sums in D(G). For any V • in D(G), we compute

(1) HomD(G)(indG
I (1), V •)= HomK (Modk(G))(indG

I (1), i(V •))

= h0(i(V •)I )= H 0(I, V •),

where the first identity uses [Spaltenstein 1988, Proposition 1.5(b)]. The claim
therefore follows from Lemma 3. �

Proposition 5. Let E • be in D(I ). Then E • = 0 if and only if H j (I, E •) = 0 for
any j ∈ Z.

Proof. The completed group ring � := lim
←−−N k[I/N ] of I over k, where N runs

over all open normal subgroups of I, is a pseudocompact local ring; compare
[Schneider 2011, §19]. If m⊆� denotes the maximal ideal, then �/m= k. Since
� is noetherian — [Lazard 1965, Proposition V.2.2.4] for k = Fp and [Schneider
2011, Theorem 33.4] together with [Bourbaki 2006, Chapitre IX, §2.3, Proposi-
tion 5] in general — its pseudocompact topology coincides with the m-adic topology
[Schneider 2011, Lemma 19.8]. This implies that:

– �/m j lies in Modk(I ) for any j ∈ N.

– For any E in Modk(I ), we have

E =
⋃
j∈N

Em j
=0 where Em j

=0
:= {v ∈ E :m jv = 0}.

Because of
Em j
=0
= HomModk(I )(�/m

j, E),

we need to consider the left exact functors HomModk(I )(�/m
j, · ) on Modk(I ). Their

right derived functors, of course, are ExtiModk(I )(�/m
j, · ). In particular,

ExtiModk(I )(�/m, · )= H i (I, · ).

For any j ∈ N, we have the short exact sequence

0−→m j/m j+1
−→�/m j+1

−→�/m j
−→ 0

in Modk(I ). Moreover, m j/m j+1 ∼= kn( j) for some n( j)≥ 0 since � is noetherian.
The associated long exact Ext-sequence therefore reads

· · · −→ ExtiModk(I )(�/m
j, · )−→ ExtiModk(I )(�/m

j+1, · )−→ H i(I, · )n( j)
−→ · · ·

By induction with respect to j, we deduce that:

– Each functor HomModk(I )(�/m
j, · ) has cohomological dimension ≤ d.
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– Each H 0(I, · )-acyclic object in Modk(I ) is HomModk(I )(�/m
j, · )-acyclic for

any j ≥ 1.

It follows that the total right derived functors RHomModk(I )(�/m
j, · ) on D(I ) exist.

More explicitly, let E • be any complex in D(I ) and choose a quasi-isomorphism
E • −→' C • into a complex consisting of H 0(I, · )-acyclic objects. It then follows
that we have the short exact sequence of complexes

0→ Hom•Modk(I )(�/m
j,C •)→ Hom•Modk(I )(�/m

j+1,C •)→ ((C •)I )n( j)
→ 0.

Suppose now that RH 0(I, E •) = 0. This means that the complex (C •)I is exact.
By induction with respect to j, we obtain the exactness of the complex

Hom•Modk(I )(�/m
j,C •)= (C •)m

j
=0

for any j ∈ N. Hence C • and E • are exact. �

Proposition 6. indG
I (1) is a generator of the triangulated category D(G) in the

sense that any strictly full triangulated subcategory of D(G), closed under all direct
sums, which contains indG

I (1), coincides with D(G).

Proof. By (1) we have

HomD(G)(indG
I (1)[ j], V •)= HomD(G)(indG

I (1), V •[− j])

= H 0(I, V •[− j])= H− j (I, V •)

for any V • in D(G). Hence, Proposition 5 implies that the family of shifts
{indG

I (1)[ j]} j∈Z is a generating set of D(G) in the sense of Neeman [2001, Defi-
nition 8.1.1]. On the other hand, by Lemma 4, each shift indG

I (1)[ j] is a compact
object. In Neeman’s language this means that {indG

I (1)[ j]} j∈Z is an ℵ0-perfect class
consisting of ℵ0-small objects [Neeman 2001, Remark 4.2.6 and Definition 4.2.7].
According to Neeman’s Lemma 4.2.1, the class {indG

I (1)[ j]} j∈Z then is β-perfect
for any infinite cardinal β. Hence Neeman’s Theorem 8.3.3 applies and shows
(see the explanations in §3.2.6–3.2.8 of that same reference) that any strictly full
triangulated subcategory of D(G) closed under all direct sums which contains
indG

I (1), and therefore the whole class {indG
I (1)[ j]} j∈Z, coincides with D(G). �

3. The Hecke DGA

In order to also “derive” the picture on the Hecke algebra side we fix an injective
resolution indG

I (1) −→
' I• in C(Modk(G)) and introduce the differential graded

algebra

H•I := End•Modk(G)(I
•)op
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over k. We recall that

Hn
I =

∏
q∈Z

HomModk(G)(I
q, Iq+n)

with differential
(da)q(x)= d(aq(x))− (−1)naq+1(dx)

for a = (aq) ∈Hn
I and multiplication

(ba)q := (−1)mnaq+m ◦ bq

for a = (aq) ∈Hn
I and b = (bq) ∈Hm

I . The cohomology of H•I is given by

h∗(H•I )= Ext∗Modk(G)(indG
I (1), indG

I (1));

compare [Hartshorne 1966, §I.6]. In particular,

h0(H•I )=HI .

Remark 7. h∗(H•I )= H∗(I, indG
I (1)) and, in particular, hi (H•I )= 0 for i > d .

Proof. We compute

h∗(H•I )= Ext∗Modk(G)(indG
I (1), indG

I (1))

= h∗(HomModk(G)(indG
I (1), I

•))

= h∗((I•)I )= H∗(I, indG
I (1)). �

Let D(H•I ) be the derived category of differential graded left H•I -modules. Note
that H•I is a compact generator of D(H•I ) [Keller 1998, §2.5]. It is well known
that H•I and D(H•I ) do not depend, up to quasi-isomorphism and equivalence,
respectively, on the choice of the injective resolution I•. For the convenience of the
reader, we briefly recall the argument. Let indG

I (1) −→
' J • be a second injective

resolution in C(Modk(G)), and let f :I•→J • be a homotopy equivalence inducing
the identity on indG

I (1) with homotopy inverse g. We form the differential graded
algebra

A• :=
{
(a, b) ∈ End•Modk(G)(J

•)op
×End•Modk(G)(I

•)op
: a ◦ f = f ◦ a

}
(with respect to componentwise multiplication) and consider the commutative
diagram

A•

pr1

��

pr2
// End•Modk(G)(I

•)op

b 7→ f ◦b

��
End•Modk(G)(J

•)op a 7→a◦ f
// Hom•Modk(G)(I

•, J •).
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Obviously, the maps pri are homomorphisms of differential graded algebras (and the
bottom horizontal and right perpendicular arrows are homotopy equivalences of com-
plexes). By direct inspection, one checks that the pri , in fact, are quasi-isomorphisms.
Hence the differential graded algebras End•Modk(G)(I

•)op and End•Modk(G)(J
•)op are

naturally quasi-isomorphic to each other. Moreover, by appealing to [Bernstein and
Lunts 1994, Theorem 10.12.5.1], we see that the functors

D(End•Modk(G)(I
•)op) −−→∼

(pr2)∗
D(A•) ←−−∼

(pr1)∗
D(End•Modk(G)(J

•)op)

are equivalences of triangulated categories.
There is the following pair of adjoint functors

H : D(G)−→ D(H•I ) and T : D(H•I )−→ D(G).

For any K-injective complex V • in Modk(G), the natural chain map

Hom•Modk(G)(I
•, V •)−→' Hom•Modk(G)(indG

I (1), V •)

is a quasi-isomorphism. But the left hand term is a differential graded left H•I -module
in a natural way. In fact, we have the functor

Kinj(Modk(G))−→ K (H•I )
V • 7−→ Hom•Modk(G)(I

•, V •)

into the homotopy category K (H•I ) of differential graded left H•I -modules, which
allows us to define the composed functor

H : D(G) i
−→ Kinj(Modk(G))−→ K (H•I )−→ D(H•I ).

The diagram

(2)

D(G)

RH 0(I, · ) %%

H
// D(H•I )

forget
��

D(Veck)

then is commutative up to natural isomorphism.
For the functor T in the opposite direction we first note that I• is naturally a

differential graded right H•I -module so that we can form the graded tensor product
I•⊗H•I M • with any differential graded left H•I -module M •. This tensor product is
naturally a complex in C(Modk(G)). We now define T to be the composite

T : D(H•I )
p
−→ Kpro,H•I

I•⊗H•I
−−−→ K (Modk(G))−→ D(G).
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Here Kpro,H•I denotes the full triangulated subcategory of K (H•I ) consisting of
K-projective modules and p is a quasi-inverse of the equivalence of triangu-
lated categories Kpro,H•I −→

' D(H•I ); compare [Bernstein and Lunts 1994, Corol-
lary 10.12.2.9].

The usual standard computation shows that T is left adjoint to H.

4. The main theorem

We need one more property of the derived category D(G).

Lemma 8. The triangulated category D(G) is algebraic.

Proof. The composite functor

D(G) i
−→ Kinj(Modk(G))

⊆
−→ K (Modk(G))

is a fully faithful exact functor between triangulated categories. Hence, the assertion
follows from [Krause 2007, Lemma 7.5]. �

In view of Lemmas 4 and 8 and Proposition 6, all assumptions of Keller’s theorem
[1994, Theorem 4.3; 1998, Theorem 3.3(a)] (compare also [Bondal and van den
Bergh 2003, Theorem 3.1.7]) are satisfied and we obtain our main result.

Theorem 9. The functor H is an equivalence between triangulated categories

D(G) '−→ D(H•I ).

Of course, it follows formally that the adjoint functor T is a left inverse of H.

Remark 10. The full subcategory D(G)c of all compact objects in D(G) is the
smallest strictly full triangulated subcategory closed under direct summands which
contains indG

I (1).

Proof. In view of Lemma 4 and Proposition 6 this follows from [Neeman 1992,
Lemma 2.2]. �

The subcategory D(G)c should be viewed as the analog of the subcategory of per-
fect complexes in the derived category of a ring; compare [Keller 1998, Lemma 1.4].

Another important subcategory of D(G) is the bounded derived category

Db(G) := Db(Modk(G)).

Correspondingly we have the full subcategory Db(H•I ) of all differential graded
modules M • in D(H•I ) such that h j (M •)= 0 for all but finitely many j ∈ Z. Since
I has finite cohomological dimension, the commutative diagram (2) shows that H
restricts to a fully faithful functor

Db(G)−→ Db(H•I ).
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On the other hand, the behavior of the functor T is controlled by an Eilenberg–Moore
spectral sequence

Er,s
2 = Torh∗(H•I )

−r (HI , h∗(M •))s H⇒ hr+s(T (M •))

[May, Theorem 4.1]. This suggests that, except in very special cases, the functor T
will not preserve the bounded subcategories.

5. Complements

5.1. The top cohomology. A first step in the investigation of the DGA H•I might
be the computation of its cohomology algebra h∗(H•I ). By Remark 7, the latter is
concentrated in degrees 0 to d . Of course the usual Hecke algebra HI = h0(H•I ) is
a subalgebra of h∗(H•I ). We determine here the top cohomology hd(H•I ) as a right
HI -module.

Using the I -equivariant linear map

πI : indG
I (1)−→ indG

I (1)
I
=HI

φ 7−→

[
h 7−→

∑
g∈I/I∩hI h−1

φ(gh)
]

we obtain the map

π∗I : h
∗(H•I )= H∗(I, indG

I (1))
H∗(I,πI )
−−−−→ H∗(I,HI )= H∗(I, Fp)⊗Fp HI .

The last equality in this chain comes from the universal coefficient theorem, which
is applicable since I as a Poincaré group [Lazard 1965, Théorème V.2.5.8] has finite
cohomology H∗(I, Fp). Of course, as a ring HI is a right module over itself. For
our purposes, we have to consider a modification of this module structure which is
specific to characteristic p.

As a k-vector space indG
I (1)

I
=HI has the basis {χI x I }x∈I\G/I consisting of the

characteristic functions of the double cosets I x I. If we denote the multiplication in
the algebra HI , as usual, by the symbol “∗” for convolution, then in this basis it is
given by the formula

χI x I ∗χI h I =
∑

y∈ I\G/I

cx,y;hχI y I ,

where the coefficients are

cx,y;h = (χI x I ∗χI h I )(y)=
∑

y∈G/I

χI x I (g)χI h I (g
−1 y)= |I x I ∩ y I h−1 I/I | · 1k,

with 1k denoting the unit element in the field k. Of course, for fixed x and h we
have cx,y;h = 0 for all but finitely many y ∈ I\G/I. But I x I ∩ y I h−1 I 6=∅ implies



458 PETER SCHNEIDER

I x I ⊆ I y I h−1 I ; by compactness, the latter is a finite union of double cosets. Hence,
also for fixed y and h, we have cx,y;h 6= 0 for at most finitely many x ∈ I\G/I.
It follows that by combining the transpose of these coefficient matrices with the
antiautomorphism

HI −→HI

χ 7−→ χ∗(g) := χ(g−1),

we obtain through the formula

χI x I ∗τ χI h I :=
∑

y∈I\G/I

cy,x;h−1χI y I

a new right action of HI on itself. We denote this new module by Hτ
I .

Remark. We compute

|I y I/I | · cx,y;h = |I y I/I | · (χI x I ∗χI h I )(y)

=

∑
z∈G/I

χI y I (z)
(
χI x I ∗χ

∗

I h−1 I
)
(z)

=
(
χI y I ∗ (χI x I ∗χ

∗

I h−1 I )
∗
)
(1)

=
(
(χI y I ∗χI h−1 I ) ∗χ

∗

I x I
)
(1)

=

∑
z∈G/I

(χI y I ∗χI h−1 I )(z)χI x I (z)

= |I x I/I | · (χI y I ∗χI h−1 I )(x)

= |I x I/I | · cy,x;h−1 .

This, of course, is valid with integral coefficients (instead of k). Moreover, |I x I/I |
is always a power of p. It follows that over any field of characteristic different
from p one has Hτ

I
∼=HI . It also follows that cx,y;h = cy,x;h−1 whenever both are

nonzero.
It is straightforward to check that

πI (φ) ∗τ χI h I = πI (φ ∗χI h I )

holds true for any φ ∈ indG
I (1) and any h ∈ G. Hence,

πI : indG
I (1)−→Hτ

I and π∗I : h
∗(H•I )−→ H∗(I, Fp)⊗Fp H

τ
I

are maps of right HI -modules.

Proposition 11. The map πd
I is an isomorphism

hd(H•I )
∼=
−→ H d(I, Fp)⊗Fp H

τ
I
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of right HI -modules. By fixing a basis of the one dimensional Fp-vector space
H d(I, Fp), we therefore obtain hd(H•I )∼=Hτ

I as right HI -modules.

Proof. It remains to show that πd
I is bijective. We have the I-equivariant decompo-

sition
indG

I (1)=
⊕

x∈I\G/I

indI
I∩x I x−1(1).

The map πI restricts to

πI : indI
I∩x I x−1(1)−→ k ·χI x I ⊆HI

φ 7−→

( ∑
y∈I/I∩x I x−1

φ(y)
)
·χI x I .

Since H∗(I, · ) commutes with arbitrary direct sums it therefore suffices to show
that the map

H d
(

I, φ 7−→
∑

y∈I/I∩x I x−1

φ(y)
)
: H d(I, indI

I∩x I x−1(1Fp))−→ H d(I, Fp)

is bijective. Using Shapiro’s lemma this latter map identifies (compare [Serre 1994,
§I.2.5]) with the corestriction map

Cor : H d(I ∩ x I x−1, Fp)−→ H d(I, Fp),

which for Poincaré groups of dimension d is an isomorphism of one dimensional
vector spaces [op. cit., (4) on p. 37]. �

5.2. The easiest example. As an example, we will make explicit the case where
G = I = Zp is the additive group of p-adic integers, which we nevertheless write
multiplicatively with unit element e. In order to distinguish it from the unit element
1 ∈ k we will denote the multiplicative unit in Zp by γ. Let � denote the completed
group ring of Zp over k. We have:

(a) The category Modk(G) coincides with the category of torsion �-modules.

(b) Sending γ − 1 to t defines an isomorphism of k-algebras �∼= k[[t]] between �
and the formal power series ring in one variable t over k.

For any V in Modk(G) we have the smooth G-representation C∞(G, V ) of all
V-valued locally constant functions on G, where g ∈ G acts on f ∈ C∞(G, V ) by
g f (h) := g( f (g−1h)). One easily checks:

(c) C∞(G, V )=C∞(G, k)⊗k V with the diagonal G-action on the right hand side.

(d) The map HomModk(G)(W,C∞(G, V )) ∼=−→Homk(W, V ) sending F to [w 7→
F(w)(e)] is an isomorphism for any W in Modk(G). It follows that C∞(G, V )
is an injective object in Modk(G).
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(e) The short exact sequence

(3) 0−→ V −→ C∞(G, k)⊗k V
γ∗−1⊗id
−−−→C∞(G, k)⊗k V −→ 0,

where γ∗(φ)(h)= φ(hγ ) is an injective resolution of V in Modk(G).

(f) For any g∈G define the map Fg :C∞(G, k)→C∞(G, k) by Fg(φ)(h) :=φ(hg).
In particular, Fγ = γ∗. Sending g to Fg defines an isomorphism of k-algebras

�
∼=
−→EndModk(G)(C

∞(G, k)).

Obviously indG
I (1)= k is the trivial G-representation. By (3) we may take for I•

the injective resolution

C∞(G, k)
γ∗−1
−−→C∞(G, k)−→ 0−→ · · ·

Using (f) we deduce that H•I is

· · · −→H−1
I =�

d−1
−→H0

I =�×�
d0
−→H1

I =�−→ · · ·

with

d−1a = ((γ − 1)a, (γ − 1)a) and d0(a, b)= (γ − 1)(a− b)

and multiplication

(a−1, (a0, b0), a1) · (a′−1, (a
′

0, b′0), a′1)

= (a′0a−1+ a′
−1b0, (a′0a0− a′

−1a1, b′0b0− a′1a−1), a′1a0+ b′0a1).

Using (b) we then identify H•I with the upper row in the commutative diagram

k[[t]]
a 7→(ta,ta)

// k[[t]]× k[[t]]
(a,b) 7→t (a−b)

// k[[t]]

0

OO

// k

a 7→(a,a)

OO

0
// k

⊆

OO

We view the bottom row as the differential graded algebra of dual numbers k[ε]/(ε2)

in degrees 0 and 1 with the zero differential. It is easy to check that the vertical
arrows in the above diagram constitute a quasi-isomorphism of differential graded
algebras. In particular, this says that H•I is quasi-isomorphic to its cohomology
algebra with zero differential (ε corresponds to the projection map G=Zp→Fp⊆ k,
as a generator of H 1(G, k) = Homcont(Zp, k)). According to our Theorem 9,
we therefore obtain that H composed with the pullback along the above quasi-
isomorphism is an equivalence of triangulated categories

(4) D(Zp)
'
−→ D(k[ε]/(ε2)).
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We finish by determining this functor explicitly. Let V be an object in Modk(G).
Using the injective resolution (3) we can represent H(V ) by the complex

Hom•Modk(G)
(
[C∞(G, k)

γ∗−1
−−→C∞(G, k)], [C∞(G, k)⊗kV

γ∗−1⊗id
−−−→C∞(G, k)⊗kV ]

)
.

Furthermore, using the identifications in (c) and (d), this latter complex can be
computed to be the complex

Homk(C∞(G, k),V ) d−1
−−→Homk(C∞(G, k),V )×Homk(C∞(G, k), V )

d0
−−→Homk(C∞(G, k),V )

in degrees −1, 0, and 1 with the differentials

d−1 f = ( f ◦ (γ∗− 1), f ◦ (γ∗− 1)+ (γ − 1) ◦ f ◦ γ∗) and

d0( f0, f1)= (γ − 1) ◦ f0 ◦ γ∗+ ( f0− f1) ◦ (γ∗− 1).

Let δe ∈ Homk(C∞(G, k), k) denote the “Dirac distribution” δe(φ) := φ(e) in the
unit element. The diagram

0

��

// Homk(C∞(G, k), V )

d−1

��

V

γ−1
��

v 7→(δe( · )v,δe( · )γ (v))
// Homk(C∞(G, k), V )×Homk(C∞(G, k), V )

d0

��

V
v 7→δe( · )v

// Homk(C∞(G, k), V )

is commutative. We claim that the horizontal arrows form a quasi-isomorphism α•.
In order to define a map in the opposite direction we let φ1 ∈ C∞(G, k) denote the
constant function with value 1. Using that γ∗(φ1)= φ1, one checks that the diagram

Homk(C∞(G, k), V )

d−1

��

// 0

��

Homk(C∞(G, k), V )×Homk(C∞(G, k), V )

d0

��

( f0, f1) 7→ f0(φ1)
// V

γ−1
��

Homk(C∞(G, k), V )
f 7→ f (φ1)

// V

is commutative. Hence the horizontal arrows define a homomorphism of complexes
β• such that β• ◦ α• = id. Applying Homk( · , V ) to our injective resolution of k,
we obtain the short exact sequence

0−→ Homk(C∞(G, k), V )
f 7→ f ◦(γ∗−1)
−−−−−−−−→ Homk(C∞(G, k), V )

β1

−−→ V −→ 0.
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This implies that d−1 is injective and that im(d0)⊇ ker(β1). The former says that
the cohomology in degree −1 is zero. Because of

(5) Homk(C∞(G, k), V )= ker(β1)⊕ im(α1),

the latter shows the surjectivity of h1(α•). Hence h1(α•) is bijective. A pair ( f0, f1)

represents a class in ker(h0(β•)) if and only if d0( f0, f1)= 0 and β0( f0, f1)= 0.
The first condition implies that

f1 ◦ (γ∗− 1)= (γ − 1) ◦ f0 ◦ γ∗+ f0 ◦ (γ∗− 1).

By (5) the second condition says that we may write f0 = δe( · )v+ f ◦ (γ∗− 1) for
v := f0(φ1) ∈ V and some f ∈ Homk(C∞(G, k), V ). Inserting this into the above
equation we obtain

f1 ◦ (γ∗− 1)= δe( · )(γ (v)− v)+ (γ ◦ f ◦ γ∗− f ) ◦ (γ∗− 1).

It follows that
γ (v)= v and f1 = (γ ◦ f ◦ γ∗− f ).

Using this last identity one checks that ( f0, f1)= d−1 f + (δe( · )v, 0). But we have
0= d0(δe( · )v, 0)= δe(γ∗ · )(γ − 1)(v)+ δe((γ∗− 1) · )v = δe((γ∗− 1) · )v, which
implies that v = 0. We conclude that h0(β•) is injective and hence bijective and
that therefore h0(α•) is bijective.

A differential graded k[ε]/(ε2)-module is the same as a graded k-vector space
with two anticommuting differentials ε and d of degree 1. Given the smooth
G-representation V, we form the graded k[ε]/(ε2)-module k[ε]/(ε2)⊗k V (sitting
in degrees 0 and 1) and equip it with the differential dV (v0+ v1ε) := (γ − 1)(v0)ε.
The above computations together with the fact that ε corresponds to the identity in
H1

I = HomModk(G)(I0, I1)= EndModk(G)(C
∞(G, k)) proves the following:

Proposition 12. The equivalence (4) sends V in Modk(G) to the differential graded
module (k[ε]/(ε2)⊗k V, dV ).
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