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I dedicate this work to the memory of Robert Steinberg, having in mind both a nice encounter in
Los Angeles and the representations named after him, which play such a fundamental role in the

representation theory of reductive p-adic groups.

We give basic properties of the parabolic induction and coinduction functors
associated to R-algebras modelled on the pro- p Iwahori Hecke R-algebras
HR(G) and HR(M) of a reductive p-adic group G and of a Levi subgroup M
when R is a commutative ring. We show that the parabolic induction and
coinduction functors are faithful, have left and right adjoints that we de-
termine, respect finitely generated R-modules, and that the induction is a
twisted coinduction.
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1. Introduction

We give basic properties of the parabolic induction and coinduction functors as-
sociated to R-algebras modelled on the pro-p Iwahori Hecke R-algebras HR(G)
and HR(M) of a reductive p-adic group G and of a Levi subgroup M when R is a
commutative ring. We show that the parabolic induction and coinduction functors
are faithful, have left and right adjoints that we determine, respect finitely generated
R-modules, and that the induction is a twisted coinduction.

When R is an algebraically closed field of characteristic p, Abe [2014, §4] proved
that the induction is a twisted coinduction when he classified the simple HR(G)-
modules in terms of supersingular simple HR(M)-modules. In two forthcoming
articles [Ollivier and Vignéras ≥ 2015; Abe et al. ≥ 2015], we will use this paper
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to compute the images of an irreducible admissible R-representation of G by the
basic functors: invariants by a pro-p-Iwahori subgroup, left or right adjoint of the
parabolic induction.

Let R be a commutative ring and let H be a pro-p Iwahori Hecke R-algebra,
associated to a pro-p Iwahori Weyl group W (1) and parameter maps S

q
−→ R,

S(1) c
−→ R[Zk] [Vignéras 2013a, §4.3; 2015b].

For the reader unfamiliar with these definitions, we recall them briefly. The pro-p
Iwahori Weyl group W (1) is an extension of an Iwahori–Weyl group W by a finite
commutative group Zk , and X (1) denotes the inverse image in W (1) of a subset X
of W . The Iwahori–Weyl group contains a normal affine Weyl subgroup W aff; S is
the set of all affine reflections of W aff, and q is a W -equivariant map S→ R, with W
acting by conjugation on S and trivially on R; c is a (W (1)× Zk)-equivariant map
S(1)→ R[Zk], with W (1) acting by conjugation and Zk by multiplication on
both sides.

The Iwahori–Weyl group is a semidirect product W =3o W0, where 3 is the
(commutative finitely generated) subgroup of translations and W0 is the finite Weyl
subgroup of W aff.

Let Saff be a set of generators of W aff such that (W aff, Saff) is an affine Coxeter
system and (W0, S := Saff

∩W0) is a finite Coxeter system. The Iwahori–Weyl
group is also a semidirect product W =W aff o�, where � denotes the normalizer
of Saff in W. Let ` denote the length of (W aff, Saff) extended to W and then inflated
to W (1) such that �⊂W and �(1)⊂W (1) are the subsets of length-0 elements.

Let w̃ ∈W (1) denote a fixed but arbitrary lift of w ∈W .
The subset S⊂W aff of all affine reflections is the union of the W aff-conjugates

of Saff and the map q is determined by its values on Saff; the map c is determined
by its values on any set S̃aff

⊂ Saff(1) of lifts of Saff in W (1).

Definition 1.1. The R-algebra H associated to (W (1), q, c) and Saff is the free
R-module of basis (Tw̃)w̃∈W (1) and relations generated by the braid and quadratic
relations

Tw̃Tw̃′ = Tw̃w̃′, T 2
s̃ = q(s)(s̃)2+ c(s̃)Ts̃

for all w̃, w̃′ ∈W (1) with `(w)+ `(w′)= `(ww′) and all s̃ ∈ Saff(1).

By the braid relations, the map R[�(1)] →H sending ũ ∈�(1) to Tũ identifies
R[�(1)] with a subring of H containing R[Zk]. This identification is used in the
quadratic relations. The isomorphism class of H is independent of the choice of Saff.

Let SM be a subset of S. We recall the definitions of the pro-p Iwahori Weyl
group WM(1), the parameter maps SM

qM
−→ R, SM(1)

cM
−→ R[Zk] and Saff

M given in
[Vignéras 2015b].

The set SM generates a finite Weyl subgroup WM,0 of W0, WM := 3o WM,0

is a subgroup of W , WM(1) is the inverse image of WM in W (1), SM(1) =
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S(1)∩WM(1), qM is the restriction of q to SM , and cM is the restriction of c

to SM(1). The subgroup W aff
M := W aff

∩WM ⊂ WM is an affine Weyl group and
Saff

M denotes the set of generators of W aff
M containing SM such that (W aff

M , Saff
M ) is an

affine Coxeter system.

Definition 1.2. For SM ⊂ S, the R-algebra HM associated to (WM(1), qM , cM) and
Saff

M is called a Levi algebra of H.

Let (T M
w̃
)
w̃∈WM (1)

denote the basis of HM associated to (WM(1), qM , cM) and
Saff

M and `M the length of WM(1) associated to Saff
M .

Remark 1.3. When SM = S, we have HM = H, and when SM = ∅, we have
HM = R[3(1)].

In general when SM 6= S, Saff
M is not WM ∩ Saff, and HM is not a subalgebra of H;

it embeds in H only when the parameters q(s) ∈ R for s ∈ Saff are invertible.

As in the theory of Hecke algebras associated to types, one introduces the
subalgebra H+M ⊂HM of basis (T M

w̃
)
w̃∈WM+ (1)

associated to the positive monoid

WM+ := {w ∈WM | w(6
+
−6+M)⊂6

aff,+
},

where 6M ⊂ 6 are the reduced root systems defining W aff
M ⊂ W aff, the upper

index indicates the positive roots with respect to Saff, Saff
M , and 6aff is the set of

affine roots of 6. One chooses an element µ̃M central in WM(1), in particular of
length `M(µ̃M) = 0, lifting a strictly positive element µM in 3M+ := 3∩WM+ .
The element T M

µ̃M
of HM is invertible of inverse T M

µ̃−1
M

, but in general Tµ̃M is not
invertible in H.

Theorem 1.4. (i) The R-submodule HM+ of basis (T M
w̃
)
w̃∈WM+ (1)

is a subring
of HM , called the positive subalgebra of HM .

(ii) The R-algebra HM =HM+[(T M
µ̃M
)−1
] is a localization of HM+ at T M

µ̃M
.

(iii) The injective linear map HM
θ
−→H sending T M

w̃
to T

w̃
for w̃∈WM(1) restricted

to HM+ is a ring homomorphism.

(iv) As a θ(HM+)-module, H is the almost localization of a left free θ(HM+)-module
VM+ at Tµ̃M .

The theorem was known in special cases. Part (iv) means that H is the union
over r ∈ N of

rVM+ := {x ∈H | T r
µ̃M

x ∈ VM+}, VM+ =⊕d∈MW0θ(HM+)Td̃ .

Here MW0 is the set of elements of minimal lengths in the cosets WM,0\W0 and
d̃ ∈W (1) is an arbitrary lift of d . The theorem admits a variant for the subalgebra
HM− ⊂HM associated to the negative submonoid WM− , inverse of WM+ , for the
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linear map HM
θ∗
−→H sending (T M

w̃
)∗ to T ∗

w̃
for w̃∈WM(1) [Vignéras 2013a, Propo-

sition 4.14], and with left replaced by right in (iv): HM =HM−[T M
µ̃M
], θ∗ restricted

to HM− is a ring homomorphism, and the right θ∗(HM−)-module H is the almost
localisation at T ∗µ̃−1

M
of a right free θ∗(HM−)-module V∗M− of rank |WM,0|

−1
|W0|,

meaning that H is the union over r ∈ N of

rV∗M− := {x ∈H | x(T
∗

µ̃−1
M
)r ∈ V∗M−}, V∗M− :=

∑
d∈W M

0

T ∗
d̃
θ∗(HM−).

Here W M
0 is the inverse of MW0.

For a ring A, let ModA denote the category of right A-modules and A Mod the
category of left A-modules. Given two rings A ⊂ B, the induction −⊗A B and the
coinduction HomA(B,−) from ModA to ModB are the left and the right adjoint of
the restriction ResB

A . The ring B is considered as a left A-module for the induction,
and as a right A-module for the coinduction.

Property (iv) and its variant describe H as a left θ(HM+)-module and as a right
θ∗(HM−)-module. The linear maps θ and θ∗ identify the subalgebras HM+,HM−

of HM with the subalgebras θ(HM+), θ
∗(HM−) of H.

Definition 1.5. The parabolic induction and coinduction from ModHM to ModH
are the functors IHHM

=−⊗HM+ ,θ
H and IHHM

= HomHM− ,θ
∗(H,−).

We show the following:

Theorem 1.6. The parabolic induction IHHM
is faithful, transitive, respects finitely

generated R-modules, and admits a right adjoint HomHM+
(HM ,−).

If R is a field, the right adjoint functor respects finite dimension.

The transitivity of the parabolic induction means that for SM ⊂ SM ′ ⊂ S,

IHHM
= IHHM ′

◦ IHM ′
HM
:ModHM →ModHM ′

→ModH .

Let w0 denote the longest element of W0, Sw0(M) the subset w0SMw0 of S, and
wM

0 := w0wM,0, where wM,0 is the longest element of WM,0. A lift w̃M
0 ∈ W0(1)

of wM
0 defines an R-algebra isomorphism

(1) HM →Hw0(M), T M
w̃ 7→ Tw0(M)

w̃M
0 w̃(w̃

M
0 )
−1 for w̃ ∈WM(1),

inducing an equivalence of categories

ModHM

w̃M
0

−−→ModHw0(M)

of inverse w̃w0(M)
0 defined by the lift (w̃M

0 )
−1
∈W0(1) of ww0(M)

0 = (wM
0 )
−1.

Definition 1.7. The w0-twisted parabolic induction and coinduction from ModHM

to ModH are the functors IHHw0(M)
◦ w̃M

0 and IHHw0(M)
◦ w̃M

0 .
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Up to modulo equivalence, these functors do not depend on the choice of the lift
of wM

0 used for their construction.

Theorem 1.8. The parabolic induction (resp. coinduction) is equivalent to the
w0-twisted parabolic coinduction (resp. induction):

IHHM
' IHHw0(M)

◦ w̃M
0 , IHHM

' IHHw0(M)
◦ w̃M

0 .

Using that the coinduction admits a left adjoint and that the induction is a twisted
coinduction, one proves the following:

Theorem 1.9. The parabolic induction IHHM
admits a left adjoint equivalent to

w̃w0(M)
0 ◦ (−⊗Hw0(M)

− ,θ∗ Hw0(M)) :ModH→ModHw0(M)
→ModHM .

When R is a field, the left adjoint functor respects finite dimension.

The coinduction satisfies the same properties as the induction:

Corollary 1.10. The coinduction IHHM
is faithful, transitive, respects finitely gener-

ated R-modules, and admits a left and a right adjoint. When R is a field, the left
and right adjoint functors respect finite dimension.

Note that the induction and the coinduction are exact functors, as they admit a
left and a right adjoint.

We prove Theorem 1.4 in Section 2, and Theorems 1.6, 1.8 and 1.9 in Section 4.

Remark 1.11. One cannot replace (H,HM ,H
+

M) by (H,HM ,H
−

M) to define the
induction IHHM

.
When no nonzero element of the ring R is infinitely p-divisible, is the parabolic

induction functor

ModHM

IHHM−−→ModH

fully faithful? The answer is yes for the parabolic induction functor

Mod∞R (M)
IndG

P
−−→Mod∞R (G)

when M is a Levi subgroup of a parabolic subgroup P of a reductive p-adic
group G and Mod∞R (G) the category of smooth R-representations of G [Vignéras
2014, Theorem 5.3].

2. Levi algebra

We prove Theorem 1.4 and its variant on the subalgebra HεM ⊂ HM , its image in H,
on HM as a localisation of HεM and on H as an almost left localisation of θ(H+M),
and almost left localisation of θ∗(H−M).
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2A. Monoid WMε . Let SM ⊂ S and ε ∈ {+,−}. To Saff is associated a submonoid
WMε ⊂WM defined as follows.

Let 6 denote the reduced root system of affine Weyl group W aff, V the real
vector space of dual generated by 6, 6aff

=6+Z the set of affine roots of 6 and
H= {KerV (γ ) | γ ∈6

aff
} the set of kernels of the affine roots in V . We fix a W0-

invariant scalar product on V . The affine Weyl group W aff identifies with the group
generated by the orthogonal reflections with respect to the affine hyperplanes of H.

Let A denote the alcove of vertex 0 of (V,H) such that Saff is the set of orthogonal
reflections with respect to the walls of A and S is the subset associated to the walls
containing 0. An affine root which is positive on A is called positive. Let 6aff,+

denote the set of positive affine roots, 6+ := 6 ∩6+aff, 6
aff,−
:= −6aff,−, and

6− := −6+.
Let 1M denote the set of positive roots α ∈6+ such that Kerα is a wall of A

and the orthogonal reflection sα of V with respect to Kerα belongs to SM , 6M ⊂6

the reduced root system generated by 1M , and 6εM :=6M ∩6
ε
aff.

Definition 2.1. The positive monoid WM+ ⊂WM is

{w ∈WM | w(6
+
−6+M)⊂6

aff,+
}.

The negative monoid WM− := {w ∈WM | w
−1
∈WM+} is the inverse monoid.

It is well known that the finite Weyl group WM,0 is the W0-stabilizer of 6ε−6εM .
This implies

WMε =3Mε o WM,0, where 3Mε :=3∩WMε .

Let 3 ν
−→ V denote the homomorphism such that λ ∈3 acts on V by translation

by ν(λ).

Lemma 2.2. 3Mε = {λ ∈3 | −(γ ◦ ν)(λ)≥ 0 for all γ ∈6ε −6εM}.

Proof. Let λ ∈ 3. By definition, λ ∈ 3M+ if and only if λ(γ ) is positive for all
γ ∈6+−6+M . We have λ(γ )= γ − ν(λ). The minimum of the values of γ on A

is 0 [Vignéras 2013a, (35)]. So γ (v− ν(λ)) ≥ 0 for γ ∈ 6+−6+M and v ∈ A is
equivalent to −(γ ◦ ν)(λ)≥ 0 for all γ ∈6+−6+M . �

When SM ⊂ SM ′ ⊂ S, we have the inclusion 6εM ⊂ 6
ε
M ′ , the inverse inclusion

6ε −6εM ⊂6
ε
−6εM ′ , and the inclusions WM ⊂WM ′ and WMε ⊂W ε

M ′ .

Remark 2.3. Set Dε
:= {v ∈ V | γ (v) ≥ 0 for γ ∈ 6ε} and 3ε := (−ν)−1(Dε).

The antidominant Weyl chamber of V is D− and the dominant Weyl chamber is D+.
Careful: [Vignéras 2015a, §1.2(v)] uses a different notation: 3ε = (ν)−1(Dε).

The Bruhat order ≤ of the affine Coxeter system (W aff, Saff) extends to W : for
w1, w2 ∈W aff, u1, u2 ∈�, we have w1u1≤w2u2 if u1= u2 and w1≤w2 [Vignéras
2006, Appendice]. We write w <w′ if w ≤w′ and w 6=w′ for w,w′ ∈W . Careful:
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the Bruhat order ≤M on WM associated to (W aff
M , Saff

M ) is not the restriction of ≤
when Saff

M is not contained in Saff [Vignéras 2015b].

Remark 2.4. The basic properties of (W aff, Saff) extend to W :

(i) If x ≤ y for x, y ∈W and s ∈ Saff,

sx ≤ (y or sy), xs ≤ (y or ys), (x or sx)≤ sy, (x or xs)≤ ys

[Vignéras 2015a, Lemma 3.1, Remark 3.2].

(ii) W =
⊔
λ∈3ε W0λW0 [Henniart and Vignéras 2015, §6.3, Lemma].

(iii) For λ ∈3+, W0λW0 admits a unique element of maximal length wλ = w0λ,
where w0 is the unique element of maximal length in W0, and `(wλ)= `(w0)+

`(λ) [Vignéras 2015a, Lemma 3.5].

(iv) For λ ∈ 3+, {w ∈ W |w ≤ wλ} ⊃
⊔
µ∈3+,µ≤λ W0µW0 [Vignéras 2015a,

Lemma 3.5].

Remark 2.5. The set {w ∈ W |w ≤ wλ} is a union of (W0,W0)-classes only if
λ,µ ∈3+, µ≤ w0λ implies µ≤ λ. I see no reason for this to be true.

Lemma 2.6. The monoid WMε is a lower subset of WM for the Bruhat order ≤M :
for w ∈WMε , any element v ∈WM such that v ≤M w belongs to WMε .

Proof. See [Abe 2014, Lemma 4.1]. �

An element w ∈W admits a reduced decomposition in (W, Saff), w = s1 · · · sr u
with si ∈ Saff, u ∈�. As in [Vignéras 2013a], we set for w,w′ ∈W ,

(2) qw := q(s1) · · · q(sr ), qw,w′ := (qwqw′q
−1
ww′)

1/2.

This is independent of the choice of the reduced decomposition. For w,w′ ∈WM

and si ∈ Saff
M , u ∈�M , let qM,w, qM,w,w′ denote the similar elements. They may be

different from qw, qw,w′ .

Lemma 2.7. We have Saff
M ∩WMε ⊂ Saff and qw,w′ = qM,w,w′ if w,w′ ∈WMε .

In particular, `M(w)+`M(w
′)−`M(ww

′)=`(w)+`(w′)−`(ww′) if w,w′∈WMε.

Proof. See [Abe 2014, Lemma 4.4, proof of Lemma 4.5]. �

An element λ ∈ 3Mε such that all the inequalities in Lemma 2.2 are strict is
called strictly positive if ε =+, and strictly negative if ε =+. We choose

a central element µ̃M of WM(1) lifting a strictly positive element µM of 3.

We set µ̃M+ := µ̃M and µ̃M− := µ̃
−1
M . The center of the pro-p Iwahori Weyl

group WM(1) is the set of elements in the center of 3(1) fixed by the finite Weyl
group WM,0 [Vignéras 2014]. Hence µ̃Mε is an element of the center of 3(1) fixed
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by WM,0 and −γ ◦ ν(µMε ) > 0 for all γ ∈6ε −6εM . We have γ ◦ ν(µMε )= 0 for
γ ∈6M . The length of µMε is 0 in WM , and is positive in W when SM 6= S.

Let HMε denote the R-submodule of the Iwahori–Hecke R-algebra HM of M
of basis (T M

w̃
)
w̃∈WMε (1)

, and HM
θ
−→ H the linear map sending T M

w̃
to T

w̃
for

w̃ ∈WM(1).

The proofs of the properties (i), (ii), (iii) of Theorem 1.4 and its variant are as
follows:

(i) HMε is a subring of HM , because T M
w̃

T M
w̃′

is a linear combination of elements
Tṽ such that v ≤M ww′ [Vignéras 2013a].

(iii) We have θ(T M
w̃1

T M
w̃2
)=Tw̃1 Tw̃2 and θ∗((T M

w̃1
)∗(T M

w̃2
)∗)=T ∗

w̃1
T ∗
w̃2

forw1,w2∈WMε .
This follows from the braid relations if `M(w1)+ `M(w2) = `M(w1w2) because
`(w1)+ `(w2)= `(w1w2) (Lemma 2.7). If w2 = s ∈ Saff

M with `M(w1) − 1 =
`M(w1s), this follows from the quadratic relations

Tw̃1 Ts̃ = Tw̃1 s̃−1
(
q(s)(s̃)2+ Ts̃c(s̃)

)
= q(s)Tw̃1 s̃ + Tw̃1c(s̃),

T ∗w̃1
T ∗s̃ = q(s)T ∗w̃1 s̃ − T ∗w̃1

c(s̃),

s ∈ Saff, `(w1)−1= `(w1s) (Lemma 2.7) and q(s)= qM(s), c(s̃)= cM(s̃) [Vignéras
2015b]. In general the formula is proved by induction on `M(w2) [Abe 2014, §4.1].
The proof of [Abe 2014, Lemma 4.5] applies.

(ii) HM = HMε [(T M
µ̃Mε

)−1
], because for w ∈ WM , there exists r ∈ N such that

µεrMw ∈WMε .

Remark 2.8. If the parameters q(s) are invertible in R, then HM+
θ
−→H extends

uniquely to an algebra homomorphism HM ↪→H, sending T M
µ̃−εrM w̃

to T−r
µ̃Mε

Tw̃ for
w̃ ∈WM+(1), r ∈ N.

Remark 2.9. The trivial character χ1 :H→ R of H is defined by

χ1(Tw̃)= qw (w̃ ∈W (1)).

When H is the Hecke algebra of the pro-p-Iwahori subgroup of a reductive p-adic
group G, we know that H acts on the trivial representation of G by χ1. Note that
the restriction of the trivial character of HM to θ(HM+) is not equal to χ1 ◦ θ when
`M(µM)= 0, `(µM) 6= 0.

2B. An anti-involution ζ . The R-linear bijective map

(3) H ζ
−→H such that ζ(Tw̃)= Tw̃−1 for w̃ ∈W (1)

is an anti-involution when ζ(h1h2)= ζ(h2)ζ(h1) for h1, h2 ∈H because ζ ◦ ζ = id.
For SM ⊂ S, let H ζM

−→HM denote the linear map such that ζ(T M
w̃
) = T M

w̃−1 for
w̃ ∈WM(1).
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Lemma 2.10. 1. The following properties are equivalent:
(i) ζ is an anti-involution.

(ii) ζ(c(s̃))= c(s̃)−1 for s̃ ∈ Saff(1).
(iii) ζ ◦ c= c ◦ (−)−1, where S(1) c

−→ R[Zk] is the parameter map.

2. If ζ is an anti-involution then ζM is an anti-involution.

Proof. Let w̃ = s̃1 · · · s̃`(w)ũ be a reduced decomposition, s̃i ∈ Saff(1), ũ ∈ W (1),
`(ũ)= 0 and let s̃ ∈ Saff(1). Then,

ζ(Tw̃)= T(w̃)−1 = T(ũ)−1 Ts̃−1
`(w)
· · · Ts̃−1

1
= ζ(Tũ)ζ(Ts̃`(w)) · · · ζ(Ts̃1),

(ζ(Ts̃))
2
= T 2

s̃−1 = q(s)s̃−2
+ c(s̃−1)Ts̃−1 .

The map ζ is an antiautomorphism if and only if ζ(c(s̃))= c(s̃−1) for s̃ ∈ Saff(1).
This is equivalent to ζ◦c=c◦(−)−1 becauseS(1) is the union of the W(1)-conjugates
of Saff(1), c is W (1)-equivariant and ζ commutes with the conjugation by W (1).

If c satisfies (iii), its restriction cM to SM(1) satisfies (iii). �

Lemma 2.11. When H=H(G) is the pro-p Iwahori Hecke R-algebra of a reductive
p-adic group G, we have that ζ is an anti-involution.

Proof. Let s ∈S, s̃ be an admissible lift and t ∈ Zk . Then c(s̃) is invariant by ζ
[Vignéras 2013a, Proposition 4.4]. If u ∈U∗γ for γ = α+ r ∈8aff

red, then u−1
∈U∗γ

and mα(u)−1
= mα(u−1). Hence the set of admissible lifts of s is stable by the

inverse map. As the group Zk is commutative, we have

(ζ ◦ c)(t s̃)= ζ(tc(s))= t−1c(s)= c(s)t−1
= c(t s̃)−1. �

From now on, we suppose that ζ is an anti-involution. We recall the involutive
automorphism [Vignéras 2013a, Proposition 4.24]

H ι
−→H such that ι(Tw̃)= (−1)`(w)T ∗w̃ for w̃ ∈W (1),

and [Vignéras 2013a, Proposition 4.13 2)]:

(4) T ∗s̃ := Ts̃ − c(s̃) for s̃ ∈ Saff(1), T ∗w̃ := T ∗s̃1
· · · T ∗s̃r

Tũ for w̃ ∈W (1)

of reduced decomposition w̃ = s̃1 · · · s̃`(w)ũ.

Remark 2.12. We have ζ(T ∗
w̃
)=T ∗

(w̃)−1 for w̃∈W (1), ζ and ι commute, ζM(HMε )=

H−εM and θ ◦ ζM = ζ ◦ θ , θ∗ ◦ ζM = ζ ◦ θ
∗.

2C. ε-alcove walk basis. We define a basis of H associated to ε ∈ {+,−} and an
orientation o of (V,H), which we call an ε-alcove walk basis associated to o.

For s ∈ Saff, let αs denote the positive affine root such that s is the orthogonal
reflection with respect to Kerαs . For an orientation o of (V,H), let Do denote the
corresponding (open) Weyl chamber in (V,H), Ao the (open) alcove of vertex 0
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contained in Do, and o.w the orientation of Weyl chamber w−1(Do) for w ∈ W .
We recall [Vignéras 2013a]:

Definition 2.13. The following properties determine uniquely elements Eo(w̃)∈H
for any orientation o of (V,H) and w̃ ∈W (1). For w̃ ∈W (1), s̃ ∈ Saff(1), ũ ∈�(1),

Eo(s̃)=
{

Ts̃ if αs is negative on Ao,

T ∗s̃ = Ts̃ − c(s̃) if αs is positive on Ao,
(5)

Eo(ũ)= Tũ,(6)

Eo(s̃)Eo.s(w̃)= qs,wEo(s̃w̃).(7)

They imply, for w′ ∈W, λ ∈3,

(8) Eo(w̃
′)Eo.w′(w̃)= qw′,wEo(w̃

′w̃), Eo(λ̃)Eo(w̃)= qλ,wEo(λ̃w̃).

We recall that λ acts on V by translation by ν(λ). The Weyl chamber Do of the
orientation o is characterized by

(9) Eo(λ̃)= T
λ̃

when ν(λ) belongs to the closure of Do.

The alcove walk basis of H associated to o is (Eo(w̃))w̃∈W (1) [Vignéras 2013a]. The
Bernstein basis (E(w̃))w̃∈W (1) is the alcove walk basis associated to the antidominant
orientation (of Weyl chamber D−). By Remark 2.3 and [Vignéras 2013a],

E(w̃)= Tw̃ for w ∈3+ ∪W0, E(w̃)= T ∗w̃ for w ∈3−.

Definition 2.14. The ε-alcove walk basis (Eεo(w̃))w̃∈W (1) of H associated to o is

(10) Eεo(w̃) :=
{

Eo(w̃) if ε =+,
ζ(Eo(w̃

−1)) if ε =−.

Lemma 2.15. The elements E−o (w̃) for any orientation o of (V,H) and w̃ ∈W (1)
are determined by the following properties. For w̃ ∈W (1), s̃ ∈ Saff(1), ũ ∈�(1),

E−o (s̃)= Eo(s̃), E−o (ũ)= Eo(ũ),(11)

E−o.s(w̃)E
−

o (s̃)= qw,s E−o (w̃s̃).(12)

They imply, for w′ ∈W, λ ∈3,

(13) E−
o.w′−1(w̃)E

−

o (w̃
′)= qw,w′E−o (w̃w̃

′), E−o (w̃)E
−

o (λ̃)= qw,λE−o (w̃λ̃).

Proof.

E−o (s̃)= ζ(Eo((s̃)
−1))= Eo(s̃),

E−o (w̃ũ)= ζ(Eo((w̃ũ)−1))= ζ(Eo((ũ)
−1(w̃)−1))= ζ(T(ũ)−1 Eo((w̃)

−1))

= ζ(Eo((w̃)
−1))Tũ = E−o (w̃)Tũ,
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E−o.s(w̃)E
−

o (s̃)= ζ(Eo.s((w̃)
−1))ζ(Eo((s̃)

−1))= ζ(Eo((s̃)
−1)Eo.s((w̃)

−1))

= qs,w−1ζ(Eo((s̃)−1(w̃)−1))= qw,sζ(Eo((w̃s̃)−1))= qw,s E−o (w̃s̃).

We used that qw = qw−1 implies

q
w−1

1 ,w−1
2
= (q

w−1
1

q
w−1

2
q−1
w−1

1 w−1
2
)1/2 = (qw1

qw2
q−1
w2w1

)1/2 = qw2,w1

for w1, w2 ∈W . �

The ε-alcove walk bases satisfy the triangular decomposition

(14) Eεo(w̃)− Tw̃ ∈
∑

w̃′∈W (1),w̃′<w̃

RTw̃′ .

Remark 2.16. The basis E−(w̃) introduced in [Abe 2014] is the − alcove walk
basis associated to the dominant Weyl chamber, satisfying E−(w̃)= T ∗

w̃
if w ∈W0

and E−(λ̃)= Tλ̃ if λ ∈3−.

Let VM be the real vector space of dual generated by 6M with a WM,0-invariant
scalar product and the corresponding set HM of affine hyperplanes.

Lemma 2.17. If ε, ε′ ∈ {+,−} and oM is any orientation of (VM ,HM), then
(Eε

′

oM
(w̃))

w̃∈WMε (1)
is a basis of HMε .

When q(s)= 0, see [Abe 2014, Lemma 4.2].

Proof. A basis of HMε is (T M
w̃
)
w̃∈WMε (1)

. Asw<M w
′ andw′∈WMε impliesw∈WMε

(Lemma 2.6), the triangular decomposition (14) implies that (Eε
′

oM
(w̃))

w̃∈WMε (1)
is

a basis of HMε . �

Lemma 2.18. The ε-Bernstein basis satisfies Eε(w̃)= Tw̃ if w ∈3ε ∪W0.

Proof. The inverse of 3+ ∪W0 is 3− ∪W0; hence

E−(w̃)= ζ(E((w̃)−1))= ζ(T(w̃)−1)= Tw̃. �

The ε-Bernstein elements on WMε (1) are compatible with θ and θ∗:

Proposition 2.19 [Ollivier 2010, Proposition 4.7; 2014, Lemma 3.8; Abe 2014,
Lemma 4.5].

θ(EεM(w̃))= θ
∗(EεM(w̃))= Eε(w̃) for w̃ ∈WMε (1).

Proof. It suffices to prove the proposition when the q(s) are invertible. Let w̃∈W (1).
We write w̃ = λ̃ũ = λ̃1(λ̃2)

−1ũ with u ∈W0, and λ1, λ2 in 3ε . We have

E(λ̃1)E((λ̃2)
−1)= qλ1,λ

−1
2

E(λ̃), E(λ̃2)E((λ̃2)
−1)= qλ2,λ

−1
2
= qλ2

,

E(λ̃1)E((λ̃2)
−1)E(ũ)= qλ1,λ

−1
2

qλ,u E(w̃).
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We suppose the q(s) are invertible. Then,

(15) E(w̃)= qλ2(qλ1,λ
−1
2

qλ,u)−1 E(λ̃1)E(λ̃2)
−1 E(ũ),

= qλ2(qλ1,λ
−1
2

qλ,u)−1

{
T
λ̃1

T−1
λ̃2

Tũ if ε =+,

T ∗
λ̃1
(T ∗
λ̃2
)−1Tũ if ε =−.

We suppose now w ∈ WMε , that is, λ ∈ 3Mε , u ∈ WM,0. Note 3ε ⊂ 3Mε and
qM,λ,u = qλ,u (Lemma 2.7). If ε =+, we have

EM(w̃)= qM,λ2(qM,λ1,λ
−1
2

qλ,u)−1T M
λ̃1
(T M
λ̃2
)−1T M

ũ ,

and
θ(EM(w̃))= qM,λ2(qM,λ1,λ

−1
2

qλ,u)−1T
λ̃1

T−1
λ̃2

Tũ

= qM,λ2
(qM,λ1,λ

−1
2

qλ,u)−1q−1
λ2

qλ1,λ
−1
2

qλ,u E(w̃)

= qM,λ2(qM,λ1,λ
−1
2

qλ2)
−1qλ1,λ

−1
2

E(w̃).

The triangular decomposition of EM(w̃) and E(w̃) implies

qM,λ2(qM,λ1,λ
−1
2

qλ2)
−1qλ1,λ

−1
2
= 1

and θ(EM(w̃))= E(w̃) for w ∈WM+ . If ε =−, the same argument applied to θ∗

gives θ∗(EM(w̃))= E(w̃) for w ∈WM− .
By Remark 2.12, ζ ◦ θ = θ ◦ ζM , ζ ◦ θ

∗
= θ ◦ ζ ∗M , WM−ε is the inverse of WMε

and E−(w̃)= ζ(E((w̃)−1)). Hence for w ∈WM− ,

E−(w̃)= (ζ ◦ θ)(EM((w̃)
−1))= (θ ◦ ζM)(EM((w̃)

−1))= θ(E−M(w̃)).

Similarly, for w ∈WM+ , we have E−(w̃)= θ∗(E−M(w̃)). �

2D. w0-twist. Let SM ⊂ S, w0 denote the longest element of W0 and Sw0(M) =

w0SMw0 ⊂w0Sw0 = S. The longest element wM,0 of WM,0 satisfies wM,0(6
ε
M)=

6−εM , and wM,0(6
ε
−6εM)=6

ε
−6εM . The longest element ww0(M),0 of Ww0(M),0

is w0wM,0w0.
LetwM

0 :=w0wM,0. Its inverse Mw0 :=wM,0w0 isww0(M)
0 andwM

0 (6
ε
M)=6

ε
w0(M).

This implies thatwM
0 (6

aff,ε
M )=6

aff,ε
w0(M). Indeed the image bywM

0 of the simple roots
of6M is the set of simple roots of6w0(M), and this remains true for the simple affine
roots which are not roots. Note that the irreducible components 6M,i of 6M have a
unique highest root aM,i , and that the −aM,i + 1 are the simple affine roots of 6
which are not roots. We havewM

0 (−aM,i+1)=w0wM,0(−aM,i+1)=w0(aM,i )+1.
The irreducible components of 6w0(M) are the w0(6M,i ) and −w0(aM,i ) is the
highest root of w0(6M,i ).
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We deduce

wM
0 Saff

M (w
M
0 )
−1
= Saff

w0(M),

wM
0 W aff

M,0(w
M
0 )
−1
=W aff

w0(M,)0, wM
0 WM,0(w

M
0 )
−1
=Ww0(M,)0.

We have 3 = wM
0 3(w

M
0 )
−1 and wM

0 3
ε
M(w

M
0 )
−1
= 3−εw0(M). Recalling WM =

3oWM,0, WMε =3Mε oWM,0 and the group �M of elements which stabilize AM ,
we deduce

(16)
wM

0 WM(w
M
0 )
−1
=Ww0(M),

wM
0 �M(w

M
0 )
−1
=�w0(M), wM

0 WMε (wM
0 )
−1
=W−εw0(M).

Let νM denote the action of WM on VM and AM the dominant alcove of (VM ,HM).
The linear isomorphism

VM
wM

0
−→ Vw0(M), 〈α, x〉 = 〈wM

0 (α), w
M
0 (x)〉 for α ∈6M ,

satisfies

wM
0 ◦ νM(w)= νw0(M)(w

M
0 w(w

M
0 )
−1) ◦wM

0 for w ∈WM .

It induces a bijection HM → Hw0(M) sending AM to Aw0(M), a bijection DM 7→

wM
0 (DM) between the Weyl chambers, and a bijection oM 7→ wM

0 (oM) between
the orientations such that DwM

0 (oM )
= wM

0 (DoM ).

Proposition 2.20. Let w̃M
0 ∈W0(1) be a lift of wM

0 . The R-linear map

HM
j
−→Hw0(M), T M

w̃ 7→ Tw0(M)
w̃M

0 w̃(w̃
M
0 )
−1 for w̃ ∈WM(1),

is an R-algebra isomorphism sending HMε onto Hw0(M)−ε and respecting the
ε′-alcove walk basis

j (Eε
′

oM
(w̃))= Eε

′

wM
0 (oM )

(w̃M
0 w̃(w̃

M
0 )
−1) for w̃ ∈WM(1)

for any orientation oM of (VM ,HM) and ε, ε′ ∈ {+,−}.

Proof. The proof is formal using the properties given above the proposition and the
characterization of the elements in the ε′-alcove walks bases given by (5), (6), (7)
if ε′ =+ and (11), (12) if ε′ =−. �

We study now the transitivity of the w0-twist. Let SM ⊂ SM ′ ⊂ S. We have
the subset wM ′,0SMwM ′,0 = SwM ′,0(M) of S and we associate to the conjugation
by a lift w̃M ′,0 of wM ′,0 in W (1) an isomorphism HM

j ′
−→HwM ′,0(M) similar to

HM
j
−→Hw0(M) in Proposition 2.20. We will show that j factorizes by j ′.
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We have wM
0 = w

M ′
0 wM

M ′ , where wM
M ′ := wM ′,0wM,0 (equal to wM

0 if S = SM ′),

WwM ′,0(M) = w
M
M ′WM(w

M
M ′)
−1,

Ww0(M) = w
M ′
0 WwM ′,0(M)

(wM ′
0 )−1

= wM
0 WM(w

M
0 )
−1.

For SM1⊂ SM ′ , let WMε,M ′
1
⊂WM1 denote the submonoid associated to Saff

M ′ as in
Definition 2.1 and replace the pair (6+ −6+M1

, 6aff,+) by (6+M ′ −6
+

M1
, 6

aff,+
M ′ ).

We note that

WwM ′,0(M)−ε,M
′ = wM

M ′WMε (w
M
M ′)
−1,

Ww0(M)−ε = w
M ′
0 WwM ′,0(M)−ε,M

′ (wM ′
0 )−1

= wM
0 WMε (w

M
0 )
−1.

Let w̃M
0 , w̃

M ′
0 , w̃M

M ′ be in W0(1) lifting wM
0 , w

M ′
0 , wM

M ′ and satisfying w̃M
0 =

w̃M ′
0 w̃M

M ′ . The algebra isomorphisms

HM
j ′
−→HwM ′,0(M), HM ′

j ′′
−→Hw0(M ′), HM

j
−→Hw0(M)

defined by w̃M
M ′, w̃

M ′
0 , w̃M

0 respectively, as in Proposition 2.20, send the ε-subalgebra
to the −ε-subalgebra and are compatible with the ε′-Bernstein bases. We cannot
compose j ′ with the map j ′′ defined by w̃M ′

0 , but we can compose j ′ with the
bijective R-linear map defined by the conjugation by w̃M ′

0 in W (1)

HwM ′,0(M)
k′′
−→Hw0(M), T

wM ′,0(M)
w̃

7→ Tw0(M)
w̃M ′

0 w̃(w̃M ′
0 )−1 for w̃ ∈WwM ′,0(M)(1).

Proposition 2.21. We have j = k ′′ ◦ j ′ and k ′′ is an R-algebra isomorphism re-
specting the ε-subalgebras and the ε-Bernstein bases: k ′′(HwM ′,0(M)ε ) =Hw0(M)ε

and k ′′(EεwM ′,0(M)
(w̃))= Eεw0(M)(w̃

M ′
0 w̃(w̃M ′

0 )−1) for ε ∈ {+,−}, w ∈WwM ′,0(M).

Proof. The relations between the groups W∗ and W∗ε imply obviously that j = k ′′◦ j ′

and that k ′′ respects the ε-subalgebras.
Now, k ′′ is an algebra isomorphism respecting the ε′-Bernstein bases because j, j ′

are algebra isomorphisms respecting the ε′-Bernstein bases and k ′′ = j ◦ ( j ′)−1. �

2E. Distinguished representatives of W0 modulo WM,0. The classical set M W0

of representatives on WM,0\W0 is equal to M D1 = M D2, where

M D1 := {d ∈W0 | d−1(6+M) ∈6
+
},(17)

M D2 := {d ∈W0 | `(wd)= `(w)+ `(d) for all w ∈WM,0}(18)

[Carter 1985, §2.3.3]. The properties of M W0 used in this article that we are going
to prove are probably well known. Note that the classical set of representatives of
W0\W is studied in [Vignéras 2015a], that + can be replaced by ε ∈ {+,−} in the
definition of M D1, that Mw0 = wM,0w0 ∈

M W0 and that M W0 ∩ S = S− SM .
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Taking inverses, we get the classical set W M
0 of representatives on W0/WM,0

equal to DM,1 = DM,2, where

DM,1 := {d ∈W0 | d(6+M)⊂6
+
},(19)

DM,2 := {d ∈W0 | `(dw)= `(d)+ `(w) for all w ∈WM,0}.(20)

The length of an element of W is equal to the length of its inverse, and [Vignéras
2013a, Corollary 5.10] gives that for λ ∈3,w ∈W0,

(21) `(λw)=
∑

β∈6+∩w(6+)

|β ◦ ν(λ)| +
∑
β∈8w

| −β ◦ ν(λ)+ 1|,

where 8w := 6+ ∩ w(6−). If w = s1 · · · s`(w) is a reduced decomposition in
(W0, S), 8w = {αs1}∪s1(8s1w) and `(w) is the order of 8w. If w ∈WM,0, we have
8w ⊂6

+

M . Let `β(λw) denote the contribution of β ∈6+ to the right side of (21).
We show now that WM,0 can be replaced by WM+ in (18) and by WM− in (20)

(taking the inverses). It is also a variant of the equivalence `(λw) < `(λ)+`(w)⇔
β ◦ ν(λ) > 0 for some β ∈8w for λ,w as in (21).

Lemma 2.22.

(i)
`(wd)= `(w)+ `(d) for w ∈WM+ and d ∈ M W0,

`(dw)= `(d)+ `(w) for w ∈WM− and d ∈W M
0 .

(ii) If λ ∈3,w ∈WM,0, d ∈ M W0, then `(λwd) < `(λw)+ `(d) is equivalent to

w(β) ◦ ν(λ) > 0 and d−1(β) ∈6− for some β ∈6+−6+M .

Proof. [Ollivier 2010, Lemma 2.3; Abe 2014, Lemma 4.8]. Let λ ∈ 3,w ∈
WM,0, d ∈ M W0 and β ∈6+.

Suppose β ∈6+M . Then `β(d)= 0,8d =∅ because d−1(6εM)⊂6
ε by (17), and

`β(λwd)= `β(λw) because w−1(β) ∈ 6ε ⇔ w−1(β) ∈ 6εM ⇒ d−1w−1(β) ∈ 6ε

by (17).
Suppose β ∈6+−6+M . Then w−1(β) ∈6+−6+M and `β(λw)= |β ◦ ν(λ)|.
The number `(d) of β ∈6+−6+M such that d−1(β)∈6− is equal to the number

of β ∈6+−6+M such that (wd)−1(β) ∈6−.
When λ ∈ 3M+ and (wd)−1(β) ∈ 6−, we have β ◦ ν(λ) ≤ 0 and `β(λwd) =
|β ◦ ν(λ)| + 1. Therefore `(λwd)= `(λw)+ `(d), which gives (i).

When λ 6∈ 3 − 3M+ , `(λwd) < `(λw) + `(d) if and only if there exists
β ∈6+−6+M such that β ◦ν(λ)> 0 and d−1w−1(β)∈6−. This gives (ii) because
β 7→ w−1(β) is a permutation map of 6+−6+M . �

Lemma 2.23. (i) For λ ∈3,w ∈W0, we have qλ = qwλw−1, qw = qw0ww0 , and

`(w0)= `(w)+ `(w
−1w0)= `(w0w

−1)+ `(w).

(ii) For w ∈WM,0, we have qw = qwM
0 w(w

M
0 )
−1 .
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Proof. (i) See [Vignéras 2013a, Proposition 5.13]. The length on W0 is invariant by
inverse and by conjugation by w0 because w0Sw0 = S and by [Bourbaki 1968, VI,
§1, Corollaire 3].

(ii) We have qw = qwM,0ww
−1
M,0
= qwM

0 w(w
M
0 )
−1 for w ∈WM,0. �

Lemma 2.24. W M
0 =Ww0(M)

0 wM
0 = w0W M

0 wM,0.

Proof. By (19),

d ∈W M
0 ⇐⇒ d(6+M)⊂6

+
⇐⇒ d(wM

0 )
−1(6+w0(M))⊂6

+
⇐⇒ d(wM

0 )
−1
∈Ww0(M)

0 .

This proves the equality W M
0 = Ww0(M)

0 wM
0 . The equality W M

0 = w0W M
0 wM,0,

follows from

d(wM
0 )
−1(6+w0(M))⊂6

+
⇐⇒ w0dwM,0w0(6

+

w0(M))⊂6
−

⇐⇒ w0dwM,0(6
−

M)⊂6
−
⇐⇒ w0dwM,0 ∈W M

0 . �

Remark 2.25. WM =3o WM,0 but qλw = qwM
0 λw(w

M
0 )
−1 could be false for λ ∈3,

w ∈WM,0 such that `(λw) < `(λ)+ `(w).

Lemma 2.26. We have `(wM
0 )= `(w

M
0 d−1)+ `(d) for any d ∈W M

0 .

Proof. For d ∈W M
0 , we have `(dwM,0)= `(d)+`(wM,0) by (20) and w=wM

0 d−1

satisfiesw0=wdwM,0 and `(w0)=`(w)+`(dwM,0). We havewM
0 =w0wM,0=wd

and `(wM
0 )= `(w0)− `(wM,0)= `(w)+ `(d). �

The Bruhat order x ≤ x ′ in W0 is defined by the following equivalent two
conditions:

(i) There exists a reduced decomposition of x ′ such that by omitting some terms
one obtains a reduced decomposition of x .

(ii) For any reduced decomposition of x ′, by omitting some terms one obtains a
reduced decomposition of x .

A reduced decomposition of w ∈W0 followed by a reduced decomposition of
w′ ∈W0 is a reduced decomposition of ww′ if and only `(ww′)= `(w)+`(w′). A
reduced decomposition of d ∈W M

0 cannot end by a nontrivial element w ∈WM,0.

Lemma 2.27. For w,w′ ∈ WM,0, d, d ′ ∈ W M
0 , we have dw ≤ d ′w′ if and only if

there exists a factorisation w = w1w2 such that `(w)= `(w1)+ `(w2), dw1 ≤ d ′

and w2 ≤ w
′.

Proof. We prove the direction “only if” (the direction “if” is obvious). If dw≤ d ′w′,
a reduced decomposition of dw is obtained by omitting some terms of the product
of a reduced decomposition of d ′ and of a reduced decomposition of w′. We have
dw = d1w2 with d1 ≤ d ′, w2 ≤ w

′ and `(d1w2) = `(d1)+ `(w2). We have d1 =
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dw1, w1 :=ww
−1
2 . As w,w2 ∈wM,0 and d ∈W M

0 , we have `(dw1)= `(d)+`(w1)

and `(dw)= `(d)+ `(w). Hence `(w1)+ `(w2)= `(w). �

Lemma 2.28. Let d ′ ∈ w0(M)W0, d ∈W M
0 .

(i) If there exists u ∈WM,0, u′ ∈W M
0 such that v=wM

0 u≤w= du′, then d =wM
0 .

(ii) We have d ′d ∈ wM
0 WM,0 if and only if d ′d = wM

0 .

Proof. (i) As `(w)= `(d)+ `(u′), we have u = u1u2 with wM
0 u1 ≤ d, u2 ≤ u′ and

u1, u2 ∈WM,0 (Lemma 2.27). We have

`(wM
0 u1)= `(w

M
0 )+ `(u1)= `(w

M
0 d−1)+ `(d)+ `(u1)

(Lemma 2.26). Hence d = wM
0 , u1 = 1.

(ii) If there exists u ∈WM,0 such that d = d ′−1wM
0 u, we have d = d ′−1wM

0 because
d ′−1wM

0 ∈W M
0 (Lemma 2.24). �

2F. H as a left θ(HM+)-module and as a right θ∗(HM−)-module. We prove
Theorem 1.4(iv) on the structure of the left θ(HM+)-module H and its variant
for the right θ∗(HM−)-module H. We suppose SM 6= S.

Recalling the properties (i), (ii), (iii) of Theorem 1.4, HM =HM+[(T M
µ̃M
)−1
] is the

localisation of the subalgebra HM+ at the central element T M
µ̃M

. The algebra HM+

embeds in H by θ . Recalling (17), (18) we choose a lift d̃ ∈W (1) for any element d
in the classical set of representatives M W0 of WM,0\W0. We define

(22) VM+ =
∑

d∈M W0

θ(HM+)Td̃ .

Proposition 2.29. (i) VM+ is a free left θ(HM+)-module of basis (Td̃)d∈M W0 .

(ii) For any h ∈H, there exists r ∈ N such that T r
µ̃M

h ∈ VM+ .

(iii) If q= 0, Tµ̃M is a left and right zero divisor in H.

For GL(n, F), (ii) is proved in [Ollivier 2010, Proposition 4.7] for (q(s))= (0).
When the q(s) are invertible, Tw̃ is invertible in H for w̃ ∈W (1).

Proof. (i) As M W0 is a set of representatives of WM+\W , a set of representatives
of WM+(1)\W (1) is the set {d̃ | d ∈ M W0} of lifts of M W0 in W (1). The canonical
bases of HM+ and of H are respectively (Tw̃)(w̃)∈WM+ (1) and (Tw̃d̃)(w̃,d)∈WM+ (1)×M W0 ,
and Tw̃d̃ = Tw̃Td̃ by the additivity of lengths (Lemma 2.22).

(ii) We can suppose that h runs over in a basis of H. We cannot take the Iwahori–
Matsumoto basis (Tw̃)w̃∈W (1) and we explain why. For w̃ = w̃M d̃ with w̃M ∈

WM+(1), d ∈ M W0, we choose r ∈ N such that µ̃r
Mw̃M ∈ WM+(1). By the length

additivity (Lemma 2.22) Tµ̃r
M w̃
= Tµ̃r

M w̃M Td̃ lies in θ(HM+)Td̃ , but we cannot deduce
that Tµ̃r

M
Tw̃ lies in θ(HM+)Td̃ .



516 MARIE-FRANCE VIGNÉRAS

We take the Bernstein basis satisfying Lemma 2.18 and we suppose that q(s)= qs

is indeterminate (but not invertible) with the same arguments as in [Ollivier 2010,
Proposition 4.8]. Then E(d̃) = Td̃ for d ∈ M W0. If we prove that E(µ̃r

Mw̃) lies
in θ(HM+)Td̃ then E(µ̃M)

r Eo(w̃)= qµr
M ,w

E(µ̃r
Mw̃) lies also in θ(HM+)Td̃ . This

implies T r
µ̃M

Eo(w̃) ∈ θ(HM+)Td̃ .
Now we prove E(µ̃r

Mw̃)∈ θ(HM+)Td̃ . We write w̃M = λ̃w̃M,0, λ̃∈3(1), w̃M,0 ∈

WM,0(1). Recalling E(∗) = T∗ for ∗ ∈ W0(1) and the additivity of the length
(Lemma 2.22),

qµr
Mλ,wM,0d E(µ̃r

Mw̃)= E(µ̃r
M λ̃)E(w̃M,0d̃)= E(µ̃r

M λ̃)Tw̃M,0d̃ = E(µ̃r
M λ̃)Tw̃M,0 Td̃

= qµr
Mλ,wM,0 E(µ̃r

Mw̃M)Td̃ .

The monoid WMε is a lower subset of (WM ,≤M) (Lemma 2.6). The triangular
decomposition (14) implies EM(µ̃

r
Mw̃M)∈HM+ . By Proposition 2.19, E(µ̃r

Mw̃M)∈

θ(HM+) and by the additivity of the length (Lemma 2.22),

qwM,0d = qwM,0 qd , qµr
MλwM,0d = qµr

MλwM,0 qd ,

implying
qµr

Mλ
qwM,0d q−1

µr
MλwM,0d = qµr

Mλ
qwM,0

q−1
µr

MλwM,0
;

hence qµr
Mλ,wM,0d = qµr

Mλ,wM,0 .

(iii) We have `(µM) 6= 0 and equivalently, ν(µM) 6= 0 in V . We choose w ∈ W0

with w(ν(µM)) 6= ν(µM). Then ν(wµMw
−1)= w(ν(µM)) and ν(µM) belong to

different Weyl chambers. The alcove walk basis (Eo(w̃))w̃∈W (1) of H associated to
an orientation o of V of Weyl chamber containing ν(µM) satisfies

(23)
Eo(µ̃M)= Tµ̃M ,

Eo(µ̃M)Eo(w̃µ̃Mw̃
−1)= Eo(w̃µ̃Mw̃

−1)Eo(µ̃M)= 0. �

The properties of the left θ(HM+)-module H transfer to properties of the right
θ∗(HM−)-module H, with the involutive antiautomorphism ζ ◦ι of H (Remark 2.12)
exchanging Tw̃ and (−1)`(w)T ∗

(w̃)−1 for w̃ ∈W (1), θ(HM+) and θ∗(HM−), VM+ and

(24) V∗M− :=
∑

d∈W M
0

T ∗
d̃
θ∗(HM−),

where W M
0 = {d

′−1
| d ′ ∈ M W0} is the set of classical representatives of W0/WM,0

(19), and d̃ = (d̃ ′)−1 if d = d ′−1.

Corollary 2.30. (i) V∗M− is a free right θ∗(HM−)-module of basis (T ∗
d̃
)

d∈W M
0

.

(ii) For any h ∈H, there exists r ∈ N such that h(T ∗
(µ̃M )−1)

r
∈ V∗M− .

(iii) If q= 0, T ∗
µ̃−1

M
is a left and right zero divisor in H.
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3. Induction and coinduction

3A. Almost localisation of a free module. In this chapter, all rings have unit ele-
ments.

Definition 3.1. Let A be a ring and a∈ A a central nonzero divisor. We say that a left
A-module B is an almost a-localisation of a left A-module BD⊂ B of basis D when:

(i) D is a finite subset of B, and the map⊕d∈D A→ B, (xd)→
∑

xdd , is injective,

(ii) for any b ∈ B, there exists r ∈ N such that ar b lies in BD :=
∑

d∈D Ad.

Example 3.2. Our basic example is (A, a, B, D) = (HM+, TµM ,H, (Td̃)d∈M W0)

(Proposition 2.29).

As a is central and not a zero divisor in A, the a-localisation of A is a A= Aa =

∪n∈N Aa−n . The left multiplication by a in A is an injective A-linear endomorphism
A→ A, x 7→ ax , and the left multiplication by a in B is an A-linear endomorphism
aB : x 7→ ax of B which may be not injective; hence B may be not a flat A-module.
The ring B is the union for r ∈ N of the A-submodules

r BD := {b ∈ B | ar b ∈ BD},

and looks like a localisation of BD at a.

Definition 3.3. Let A be a ring and a ∈ A a central nonzero divisor. We say that a
right A-module B is an almost a-localisation of a right A-module D B of basis D if:

(i) D is a finite subset of B, and the map ⊕d∈D A → B, (xd) →
∑

d xd , is
injective,

(ii) for any b ∈ B, there exists r ∈ N such that bar
∈ D B :=

∑
d∈D d A.

The ring B is the union for r ∈ N of the A-submodules

D Br = {b ∈ B | bar
∈ D B}.

Example 3.4. Our basic example is (A, a, B, D) = (HM− , Tµ−1
M

, H, (Td̃)d∈W M
0
)

(Corollary 2.30).

We note that (Aa, B)= (HM ,H) in Example 3.2 and in Example 3.4.

3B. Induction and coinduction.

3B1. For a ring A, let ModA denote the category of right A-modules, and A Mod
the category of left A-modules. The A-duality X 7→ X∗ :=HomA(X, A) exchanges
left and right A-modules.

A functor from ModA to a category admits a left adjoint if and only if it is left
exact and commutes with small direct products (small projective limits); it admits a
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right adjoint if and only if it is right exact and commutes with small direct sums
(small injective limits) [Vignéras 2013b, Proposition 2.10].

For two rings A ⊂ B, we define two functors

the induction I B
A := −⊗A B,

the coinduction IB
A := HomA(B,−) :ModA→ModB,

where B is seen as an (A, B)-module for the induction, and as a (B, A)-module for
the coinduction. For M ∈ModA, we have (m⊗ x)b = m⊗ xb, ( f b)(x)= f (bx)
if x, b ∈ B and m ∈M, f ∈ HomA(B,M).

The restriction ResB
A : ModB → ModA is equal to HomB(B,−) = − ⊗B B,

where B is seen first as an (A, B)-module and then as a (B, A)-module. The
induction and the coinduction are the left and right adjoints of the restriction
[Benson 1998, §2.8.2].

For two rings A and B and an (A, B)-module J , the functor

−⊗A J :ModA→ModB is left adjoint to HomB(J ,−) :ModB→ModA.

Let M∈ModA, N ∈ModB . The adjunction is given by the functorial isomorphism

HomB(M⊗A J ,N ) α
−→HomA(M,HomB(J ,N )), f (m⊗ x)= α( f )(m)(x),

for f ∈ HomB(M⊗A J ,N ),m ∈M, x ∈ J [Benson 1998, Lemma 2.8.2].
For three rings A ⊂ B, A ⊂ C , the isomorphism α applied to M = C,J = B

gives an isomorphism

HomB(C ⊗A B,−)' HomA(C,−) :ModB→ModC .

3B2. Let A⊂ B be two rings and a ∈ A a central nonzero divisor. Let Aa = A[a−1
]

denote the localisation of A at a. There is a natural inclusion A⊂ Aa . The restriction
ModAa → ModA identifies ModAa with the A-modules where the action of a is
invertible. For M,M′ in ModAa , we have

(25) HomAa (M,M′)= HomA(M,M′), M⊗Aa M
′
=M⊗A M′.

For f ∈ HomA(M,M′),m ∈M,m′ ∈M′, we have f (aa−1m) = a f (a−1m)⇒
a−1 f (m)= f (a−1m), and m⊗a−1m′=ma−1a⊗a−1m′=ma−1

⊗m′ in M⊗AM′.
We view ModAa as a full subcategory of ModA.

The restriction followed by the induction, respectively the coinduction, ModA→

ModB defines an induction, respectively coinduction,

I B
Aa
= I B

A ◦ResAa
A =−⊗A B, IB

Aa
= IB

A ◦ResAa
A =HomA(B,−) :ModAa→ModB,

even when Aa is not contained in B. The induction I B
Aa

admits a right adjoint

I
Aa
A ◦ResB

A = HomA(Aa,−) :ModB→ModAa
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because the restriction ResAa
A and the induction I B

A admit a right adjoint: the
coinduction I

Aa
A and the restriction ResB

A . The coinduction IB
Aa

admits a left adjoint

I Aa
A ◦ResB

A =−⊗A Aa :ModB→ModAa

because the restriction ResAa
A and the induction I B

A admit a left adjoint: the induction
I Aa

A and the corestriction ResB
A.

When a is invertible in B, we have Aa ⊂ B and they coincide with the induction
and coinduction from Aa to B.

The induction and the coinduction of Aa seen as a right Aa-module, are the
(Aa, B)-modules

(26) I B
Aa
(Aa)= Aa ⊗A B, IB

Aa
(Aa)= HomA(B, Aa).

Lemma 3.5. Let M ∈ModAa . Then I B
Aa
(M)=M⊗Aa I B

Aa
(Aa) in ModB .

Proof. M⊗A B = (M⊗Aa Aa)⊗A B =M⊗Aa (Aa ⊗A B). �

3B3. Let (A, a, B, D) satisfy Definition 3.1. Let M ∈ModAa . As R-modules,

(27) I B
Aa
(M)=M⊗A BD

because the action of a on M is invertible; hence M⊗A r BD =M⊗A BD for
r ∈ N. In particular, we have the following:

Lemma 3.6. The left Aa-module I B
Aa
(Aa) is free of basis (1⊗ d)d∈D .

Remark 3.7. The A-dual (BD)
∗ of the left A-module BD is the right A-module

⊕d∈Dd∗A of basis the dual basis D∗ = {d∗ | d ∈ D} of D. Let M ∈ModAa . We
have canonical isomorphisms of R-modules

⊕d∈DM '
−→M⊗A BD

'
−→HomA((BD)

∗,M),

(xd) 7→
∑
d∈D

xd ⊗ d 7→ (d∗ 7→ xd)d∈D.

The tensor product over A by a free A-module is exact and faithful; hence the
induction is exact and faithful.

Let R ⊂ A be a subring central in B. The ring R is automatically commutative
and a central subring of the localisation Aa of A. The modules over Aa or B are
naturally R-modules.

Let M∈ModAa be a finitely generated R-module. The R-module M⊗Aa I B
Aa
(Aa)

is finitely generated.
Let N ∈ModB be a finitely generated R-module. The R-module HomA(Aa,N )

is finitely generated if R is a field by the Fitting lemma applied to the action
of a on N . There exists a positive integer n such that N is a direct sum N =
Na ⊕N ′a , where an acts on Na as an automorphism and an is 0 on N ′a . Then,
HomA(Aa,N )'Na is finite-dimensional.
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We obtain the following:

Proposition 3.8. Let (A, a, B, D) satisfy Definition 3.1. The induction functor

I B
Aa
=−⊗A B :ModAa →ModB

is exact, faithful and admits a right adjoint RB
Aa
:= HomA(Aa,−).

Let R ⊂ A be a subring central in B. Then I B
Aa

respects finitely generated
R-modules. If R is a field, RB

Aa
respects finite dimension over R.

3B4. Let (A, a, B, D) satisfy Definition 3.3.
For M ∈ ModA, the set Md of f ∈ HomA(D B,M) vanishing on D − {d} is

isomorphic to M by the value at d . The A-dual (D B)∗ of D B is a free left A-module
of basis D∗. We have

(28) HomA(D B,M)=⊕d∈DMd '⊕d∗∈D∗M⊗ d∗ =M⊗A (D B)∗.

The A-modules Md and M⊗ d∗ are isomorphic by f 7→ f (d)⊗ d∗.
For M ∈ModAa , we have linear isomorphisms

IB
Aa
(M)=HomA(B,M)'HomA(D B,M), M⊗A(D B)∗=M⊗A Aa⊗A(D B)∗.

For d ∈ D, let fd ∈ HomA(B, Aa) equal to 1 on d and 0 on D−{d}. We deduce
from these arguments:

Lemma 3.9. Let (A, a, B, D) satisfy Definition 3.3. The left Aa-module IB
Aa
(Aa)

is free of basis ( fd)d∈D and IB
Aa
(M)'M⊗Aa IB

A(Aa).

Let R ⊂ A be a subring central in B. Let M ∈ModAa be a finitely generated
R-module. The R-module M⊗Aa IB

Aa
(Aa) is finitely generated. If R is a field, and

the dimension of N ∈ModB is finite over R, then N ⊗A Aa =Na⊗A Aa 'Na has
finite dimension over R by the Fitting lemma, as in the proof of Proposition 3.8.
We obtain the following:

Proposition 3.10. Let (A, a, B, D) satisfy Definition 3.3. The coinduction

IB
Aa
= HomA(B,−) :ModAa →ModB

is exact, faithful, and admits a left adjoint L B
Aa
=−⊗A Aa .

Let R ⊂ A be a subring central in B. Then IB
Aa

respects finitely generated
R-modules. If R is a field, L B

Aa
respects finite dimension over R.

4. Parabolic induction and coinduction from HM to H

We prove Theorems 1.6, 1.8 and 1.9 giving the properties of the parabolic induction
from HM to H.
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4A. Basic properties of the parabolic induction and coinduction. Example 3.2
satisfies Definition 3.1 and Example 3.4 satisfies Definition 3.3. In these two
examples, (Aa, B)= (HM ,H). The first one,

(A, a, D)=
(
θ(HM+), Tµ̃M , (Td̃)d∈M W0

)
,

where we identify HM+ with θ(HM+), defines the parabolic induction IHHM
=

−⊗HM+ ,θ
H :ModHM →ModH. The second one,

(A, a, D)=
(
θ∗(HM−), T ∗

(µ̃M )−1, (T ∗d̃ )d∈W M
0

)
,

where we identify HM− with θ∗(HM−), defines the parabolic coinduction IHHM
=

HomHM−,θ∗
(H,−) :ModHM →ModH. Propositions 3.8 and 3.10 imply:

Proposition 4.1. The parabolic induction IHHM
and the coinduction IHHM

are exact,
faithful and respect finitely generated R-modules. The parabolic induction admits a
right adjoint

RH
HM
= HomHM+ ,θ

(HM ,−) :ModH→ModHM .

The parabolic coinduction admits a left adjoint

LH
HM
:= −⊗HM− ,θ

∗ HM :ModH→ModHM .

If R is a field, the adjoint functors RH
HM

and LH
HM

respect finite dimension over R.

4B. Transitivity. Let SM ⊂ SM ′ ⊂ S. Let WMε,M ′ =3Mε,M ′ oWM,0 denote the sub-
monoid of WM associated to Saff

M ′ as in Definition 2.1 (see before Proposition 2.21),
and

3Mε,M ′ =3∩WMε,M ′ = {λ ∈3 | −(γ ◦ ν)(λ)≥ 0 for all γ ∈6εM ′ −6
ε
M}.

By the properties (i), (ii), (iii) of Theorem 1.4, the R-submodule HMε,M ′ of HM of
basis (T M

w̃
)
w̃∈W

Mε,M ′
(1), is a subring of HM , the restriction to HMε,M ′ of the injective

linear map
HM

θ ′
−→HM ′, T M

w̃ 7→ T M ′
w̃ for w̃ ∈WM(1),

respects the product, and HM =HMε,M ′ [(T M
µ̃Mε

)−1
]. Obviously, the map HM

θ
−→H

satisfies θ = θM ′ ◦ θ
′ for the linear map

HM ′
θM ′
−→H, T M ′

w̃ 7→ Tw̃, for w̃ ∈WM ′(1).

Lemma 4.2. We have:

(i) WM ⊂WM ′ , WMε =WMε,M ′ ∩WM ′ε , θ ′(HMε )= θ ′(HMε,M ′ )∩HM ′ε ,

(ii) µ̃Mε µ̃M ′ε is central in WM(1), satisfies −(γ ◦ ν)(µMεµM ′ε ) > 0 for all γ ∈
6ε −6εM , and the additivity of the lengths `(µMεµM ′ε )= `(µMε )+ `(µM ′ε ),

(iii) M W0 =
M WM ′,0

M ′W0.
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Proof. (i) We have WM,0 ⊂WM ′,0 and 3Mε =3′Mε ∩3M ′ε . Therefore

WM =3o WM,0 ⊂3o WM ′,0 =WM ′,

and
WMε,M ′ ∩W ε

M ′ = (3
′

Mε o WM,0)∩ (3
′

M ′ε o WM ′,0)

= (3′Mε ∩3M ′ε )o WM,0

=3Mε o WM,0 =WMε .

(ii) Now µ̃M ′ε is central in WM ′(1), which contains WM(1), and µ̃Mε is central in
WM(1); hence µ̃Mε µ̃M ′ε is central in WM(1). We have

−(γ ◦ ν)(µM ′ε ) > 0 for all γ ∈6ε −6εM ′,

−(γ ◦ ν)(µM ′ε )= 0 for all γ ∈6M ′,

−(γ ◦ ν)(µMε ) > 0 for all γ ∈6ε −6εM ,

−(γ ◦ ν)(µMε )= 0 for all γ ∈6M .

Hence −(γ ◦ ν)(µ′MεµM ′ε ) > 0 for all γ ∈6ε −6εM and

`(µMεµM ′ε )= `(µMε )+ `(µM ′ε ).

(iii) Let u ∈ M WM ′,0, v ∈
M ′W0 and let w ∈WM,0. We have

`(wuv)= `(wu)+ `(v)= `(w)+ `(u)+ `(v)= `(w)+ `(uv);

hence uv ∈ M W0. The injective map (u, v) 7→ uv : M WM ′,0 ×
M ′W0 →

M W0 is
bijective because

|
M W0| = |WM,0\W0| = |WM,0\WM ′,0||WM ′,0\W0| = |

M WM ′,0||
M ′W0|,

where |X | denotes the number of elements of a finite set X . �

Proposition 4.3. The induction is transitive:

IHHM
= IHHM ′

◦ IHM ′
HM
:ModHM →ModHM ′

→ModH .

The coinduction is also transitive. This is proved at the end of this paper.

Proof. By Lemma 3.5, the proposition is equivalent to

HM ⊗HM+
H'HM ⊗H

M+,M ′
HM ′ ⊗HM ′+

H

in ModH. As HM ′ =HM ′+[(T
M ′
µ̃M ′+

)−1
] is the localisation of the ring HM ′+ at the

central element T M ′
µ̃M ′+
∈HM ′+ , the right H-module HM ′ ⊗HM ′+

H is the inductive
limit of (T M ′

µ̃M ′+
)−r
⊗H for r ∈ N with the transition maps

(T M ′
µ̃M ′+

)−r
⊗ x 7→ (T M ′

µ̃M ′+
)−r−1

⊗ Tµ̃M ′+
x for x ∈H.
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As HM = HM+,M ′ [(T
M
µ̃M+

)−1
] is the localisation of the ring HM+,M ′ at the central

element T M
µ̃M+
∈ HM+,M ′ , the right H-module HM ⊗H

M+,M ′
HM ′ ⊗HM ′+

H is the
inductive limit of (T M

µ̃M+
)−s
⊗HM ′ ⊗HM ′+

H for s ∈ N with the transition maps

(T M
µ̃M+

)−s
⊗ y 7→ (T M

µ̃M+
)−s−1

⊗ T M ′
µ̃M+

y for y ∈HM ′ ⊗HM ′+
H.

Using that T M ′
µ̃M ′+

is central in HM ′ and T M ′
µ̃M+
∈HM ′+ , we have, for y= (T M ′

µ̃M ′+
)−r
⊗x ,

T M ′
µ̃M+

y = T M ′
µ̃M+

(T M ′
µ̃M ′+

)−r
⊗ x = (T M ′

µ̃M ′+
)−r T M ′

µ̃M+
⊗ x = (T M ′

µ̃M ′+
)−r
⊗ Tµ̃M+

x .

Altogether, the right H-module HM ⊗H
M+,M ′

HM ′⊗HM ′+
H is the inductive limit of

(T M
µ̃M+

)−s
⊗ (T M ′

µ̃M ′+
)−r
⊗H for r, s ∈ N with the transition maps

(T M
µ̃M+

)−s
⊗ (T M ′

µ̃M ′+
)−r
⊗ x 7→ (T M

µ̃M+
)−s−1

⊗ (T M ′
µ̃M ′+

)−r
⊗ Tµ̃M+

x,

(T M
µ̃M+

)−s
⊗ (T M ′

µ̃M ′+
)−r
⊗ x 7→ (T M

µ̃M+
)−s
⊗ (T M ′

µ̃M ′+
)−r−1

⊗ Tµ̃M ′+
x .

The right H-module HM ⊗H
M+,M ′

HM ′ ⊗HM ′+
H is also the inductive limit of the

modules (T M
µ̃M+

)−r
⊗ (T M ′

µ̃M ′+
)−r
⊗H for r ∈ N with the transition maps

(T M
µ̃M+

)−r
⊗ (T M ′

µ̃M ′+
)−r
⊗ x 7→ (T M

µ̃M+
)−r−1

⊗ (T M ′
µ̃M ′+

)−r−1
⊗ Tµ̃M+

Tµ̃M ′+
x .

By Lemma 4.2(ii), Tµ̃M+
Tµ̃M ′+

= Tµ̃M+ µ̃M ′+
. Hence, in ModH we have

HM ⊗H
M+,M ′

HM ′ ⊗HM ′+
H' lim

−−→
x 7→Tµ̃M+ µ̃M ′+

x
H.

On the other hand, HM = HM+[(T M
µ̃M+

µ̃M ′+)
−1
] is the localisation of HM+ at

T M
µ̃M+ µ̃M ′+

(Lemma 4.2); hence HM⊗HM+
H is the inductive limit of (T M

µ̃M+ µ̃M ′+
)−r
⊗H

for r ∈ N with the transition maps

(T M
µ̃M+ µ̃M ′+

)−r
⊗ x 7→ (T M

µ̃M+ µ̃M ′+
)−r−1

⊗ Tµ̃M+ µ̃M ′+
x .

We deduce that
HM ⊗HM+

H' lim
−−→

x 7→Tµ̃M+ µ̃M ′+
x
H

is isomorphic to HM ⊗H
M+,M ′

HM ′ ⊗HM ′+
H in ModH. �

4C. w0-twisted induction is equal to coinduction. We prove Theorem 1.8. When
H=HR(G) is the pro-p Iwahori Hecke algebra of a reductive p-adic group G over
an algebraically closed field R of characteristic p, Theorem 1.8 is proved by Abe
[2014, Proposition 4.14]. We will extend his arguments to the general algebra H.

Let w̃M
0 ∈ W0(1) lifting wM

0 . The algebra isomorphism HM 'Hw0(M) defined
by w̃M

0 (Proposition 2.20) induces an equivalence of categories

(29) ModHM

w̃M
0
−→ModHw0(M)
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called a w0-twist. Let M be a right HM -module. The underlying R-module of
w̃M

0 (M) and of M is the same; the right action of T M
w̃

on M is equal to the right
action of Tw0(M)

w̃M
0 w̃(w̃

M
0 )
−1 on w̃M

0 (M) for w̃ ∈WM(1). The inverse of w̃M
0 is the algebra

isomorphism induced by (w̃M
0 )
−1 lifting

Mw0 := (w
M
0 )
−1
= wM,0w0 = w0w0wM,0w0 = w

w0(M)
0 .

Remark 4.4. The lifts of wM
0 are tw̃M

0 = w̃M
0 t ′ with t, t ′ ∈ Zk , the elements

T M
t ′ ∈HM , Tw0(M)

t ∈Hw0(M) are invertible, and the conjugation by Tt in HM , by
Tw0(M)

t in Hw0(M) induce equivalences of categories

ModHM
t′
−→ModHM , ModHw0(M)

t
−→ModHw0(M)

such that tw̃M
0 = t ◦ w̃M

0 = w̃M
0 ◦ t

′
= w̃M

0 t′.

Remark 4.5. The trivial characters of HM and Hw0(M) correspond by w̃M
0 .

We will prove that, for all SM ⊂ S, the coinduction

ModHM

IHHM−−→ModH

is equivalent to the w0-twist induction

ModHM

w̃M
0
−→ModHw0(M)

IHHw0(M)−−−−→ModH .

This proves Theorem 1.8 because

(30) IHHM
' IHHw0(M)

◦ w̃M
0 ⇐⇒ IHHM

' IHHw0(M)
◦ w̃M

0 .

Indeed, if the left-hand side is true for all SM ⊂ S, permuting M and w0(M) we
have IHw0(M)

' IHHM
◦ w̃w0(M)

0 , and composing with (w̃w0(M)
0 )−1, we get

IHHM
' IHHw0(M)

◦ (w̃w0(M)
0 )−1

' IHHw0(M)
◦ w̃M

0

as ww0(M)
0 = (wM

0 )
−1. The arguments can be reversed to get the equivalence.

Let M∈ModHM . We will construct an explicit functorial isomorphism in ModH:

(31) (IHHw0(M)
◦ w̃M

0 )(M) b
−→ IHHM

(M).

From Lemmas 3.5, 3.6, 3.9 and Examples 3.2, 3.4, we get

(i) IHHw0(M)
(Hw0(M))=Hw0(M)⊗Hw0(M)

+ ,θ H is a left free Hw0(M)-module of basis
1⊗ Td̃ ′ for d ′ ∈ w0(M)W0, and

(IHHw0(M)
◦ w̃M

0 )(M)= w̃M
0 (M)⊗Hw0(M)

IHHw0(M)
(Hw0(M)).

(ii) IHHM
(HM)=HomHM− ,θ

∗(H,HM), where H is seen as a right θ∗(HM−)-module,
is a left free HM -module of basis ( f ∗

d̃
)d∈W M

0
, where f ∗

d̃
(T ∗

d̃
)=1 and f ∗

d̃
(T ∗x̃ )=0

for x ∈W M
0 −{d}, and

IHHM
(M)=M⊗HM IHHM

(HM).
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It is an exercise to prove that the left HM -module IHHM
(HM) admits also the basis

( fd̃)d∈W M
0

, where fd̃(Td̃) = 1 and fd̃(Tx̃) = 0 for x ∈ W M
0 − {d}. We will prove

that the linear map

(32) m⊗ Td̃ ′ 7→ m⊗ fw̃M
0

Td̃ ′ : ⊕d ′∈w0(M)W0
w̃M

0 (M)⊗ Td̃ ′
b
−→⊕d∈W M

0
M⊗ fd̃

is a functorial isomorphism in ModH. The bijectivity follows from the bijectivity
of the map d ′ 7→ d ′−1wM

0 :
w0(M)W0→W M

0 (Lemma 2.24) and the following:

Lemma 4.6. The map fw̃M
0

Td̃ ′ − f(d ′−1wM
0 )̃

lies in ⊕x∈W M
0 ,x<d ′−1wM

0
M⊗ f x̃ .

Proof. For d ∈W M
0 , we have

( fw̃M
0

Td̃ ′)(Td̃)= fw̃M
0
(Td̃ ′Td̃)= fw̃M

0
(Td̃ ′d̃)+ x,

where x ∈
∑

R fw̃M
0
(Tw̃) and the sum is over the w̃ ∈W0(1) with w < d ′d and w ∈

wM
0 WM,0. If d ′d 6∈wM

0 WM,0, there is no w ∈wM
0 WM,0 with w< d ′d (Lemma 2.26).

We have d ′d ∈ wM
0 WM,0 if and only if d = d ′−1wM

0 (part (ii) of Lemma 2.28). �

The restriction
ResHHw0(M)

+ ,θ :ModH→ModHw0(M)
+

is left adjoint to −⊗Hw0(M)
+ ,θ H, and the Hw0(M)+-equivariance of the linear map

(33) m 7→ m⊗ fw̃M
0
: w̃M

0 (M)→ IHHM
(M)

implies the H-equivariance of (31), i.e., of (32). Let HM
j
−→Hw0(M) denote the

isomorphism induced by w̃M
0 (Proposition 2.20), and θM the linear map HM

θ
−→H.

The Hw0(M)+-invariance of the map m 7→ m⊗ fw̃M
0

is equivalent to

(34) fw̃M
0
θw0(M)(h)= j−1(h) fw̃M

0
for h ∈Hw0(M)+ .

We can suppose that h lies in the Bernstein basis of Hw0(M)+ . Let w̃ ∈Ww0(M)+(1)
and h= Ew0(M)(w̃). As θw0(M)(Ew0(M)(w̃))= E(w̃), and j−1(Ew0(M)(w̃)) is equal
to EM((w̃

M
0 )
−1w̃w̃M

0 ), (34) is equivalent to the following:

Proposition 4.7. For w ∈Ww0(M)+ , we have fw̃M
0

E(w̃)= EM((w̃
M
0 )
−1w̃w̃M

0 ) fw̃M
0

.

Proof. By the usual reduction arguments, we suppose that the q(s) are invertible in R.
Using Ww0(M)+ =3w0(M)+ o Ww0(M),0, the product formula (8) and Lemma 2.23,
we reduce to w ∈3w0(M)+ ∪Ww0(M),0. By induction on the length in Ww0(M),0 with
respect to Sw0(M), we reduce to w ∈3w0(M)+ ∪ Sw0(M).

Let d ∈W M
0 . We have ( fw̃M

0
E(w̃))(Td̃)= fw̃M

0
(E(w̃)Td̃) in HM . We must prove

(35) fw̃M
0
(E(w̃)Td̃)=

{
0 if d 6= wM

0 ,

EM((w̃
M
0 )
−1w̃w̃M

0 ) if d̃ = w̃M
0

for w ∈3w0(M)+ ∪ Sw0(M).
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(i) Suppose w = λ ∈ 3w0(M)+ . Let A denote the subalgebra of H of basis
(E(x̃))x̃∈3(1) [Vignéras 2013a, Corollary 2.8]. By the Bernstein relations [Vignéras
2013a, Theorem 2.9], we have

E(λ̃)Td̃ = Td̃ E((d̃)−1λ̃d̃)+
∑

Tw̃aw̃,

where aw̃∈A and the sum is over w̃∈W0(1), w<d . If d 6=wM
0 , the image by fw̃M

0
of

the right-hand side vanishes because w ∈ wM
0 WM,0, w ≤ d implies w = d = wM

0 ;
hence fw̃M

0
(E(λ̃)Td̃)= 0 as we want. For d̃ = w̃M

0 , using (wM
0 )
−1λw̃M

0 ∈Ww0(M)− ,
we have

fw̃M
0
(E(λ̃)Tw̃M

0
)= fw̃M

0
(Tw̃M

0
E((w̃M

0 )
−1λ̃w̃M

0 )

= θ∗(E((w̃M
0 )
−1λ̃w̃M

0 ))

= EM((w̃
M
0 )
−1λ̃w̃M

0 ).

(ii) Suppose w = s ∈ Sw0(M). We have w0sw0 ∈ SM , w0sw0wM,0 <wM,0 and

swM
0 = sw0wM,0 = w0w0sw0wM,0 >w0wM,0 = w

M
0 .

Assume sd < d . We deduce d 6= wM
0 . Assume d̃ = s̃ ˜(sd). Then

E(s̃)Td̃ = Ts̃ Td̃ = T 2
s̃ T ˜(sd) = (q(s)(s̃)

2
+ c(s̃)Ts̃)T ˜(sd) = q(s)(s̃)2T ˜(sd)+ c(s̃)Td̃ .

We deduce that fw̃M
0
(E(s̃)Td̃)= 0.

Assume sd > d. We write s̃ d̃ = d̃1ũ with d1 ∈ W M
0 , u ∈ WM,0. Then Ts̃ Td̃ =

Ts̃d̃ = Td̃1ũ . Therefore fw̃M
0
(E(s̃)Td̃) = fw̃M

0
(Td̃1ũ) = 0 if d1 6= w

M
0 . We suppose

now d1 = w
M
0 . We have d ≤ wM

0 ≤ sd; hence wM
0 = d or wM

0 = sd. In the latter
case, a reduced decomposition of wM

0 starts by s. But this is incompatible with
s ∈ Sw0(M) because wM

0 =
w0(M)w0. We deduce that d =wM

0 . For d̃ = w̃M
0 , we have

fw̃M
0
(E(s̃)Tw̃M

0
)= fw̃M

0
(Ts̃ w̃M

0
)= fw̃M

0
(Tw̃M

0
T(wM

0 )
−1 s̃w̃M

0
)

= fw̃M
0
(Tw̃M

0
E(wM

0 )
−1 s̃w̃M

0
)= θ∗(E(wM

0 )
−1 s̃w̃M

0
))

= EM((w̃
M
0 )
−1s̃w̃M

0 ).

This ends the proof of Proposition 4.7, and hence of Theorem 1.8. �

Corollary 4.8. The right H-modules HM⊗HM+ ,θ
H and HomHw0(M)

− ,θ∗(H,Hw0(M))

are isomorphic.

4D. Transitivity of the coinduction. Let SM ⊂ SM ′ ⊂ S. By Proposition 2.21, the
algebra isomorphisms

HM
j
−→Hw0(M), HM

j ′
−→HwM ′,0(M)

k′′
−→Hw0(M)
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corresponding to w̃M
0 , w̃

M
M ′, w̃

M ′
0 , w̃M

0 = w̃
M ′
0 w̃M

M ′ , satisfy j = k ′′◦ j ′. The associated
equivalences of categories, denoted by

MHM

w̃M
0
−→MHw0(M)

, MHM

w̃M
M ′
−−→MHwM ′,0(M)

w̃M ′
0,k
−−→MHw0(M)

,(36)

satisfy w̃M
0 = w̃M ′

0,k ◦ w̃
M
M ′ . We refer to this as the transitivity of the w0-twisting.

Lemma 4.9. The functors w̃M ′
0 ◦ IHM ′

HwM ′,0(M)
and I

Hw0(M
′)

Hw0(M)
◦ w̃M ′

0,k from ModHwM ′,0(M)

to ModHw0(M
′)

are isomorphic.

The proof gives an explicit isomorphism.

Proof. Let M∈ModHwM ′,0(M)
. The R-module M⊗HwM ′,0(M)

+ ,θHM ′ with the right
action of Hw0(M ′) defined by

(x ⊗ T M ′
ũ )Tw0(M ′)

w̃M ′
o ṽ(w̃M ′

o )−1 = x ⊗ T M ′
ũ T M ′

ṽ

for x ∈M, u, v ∈WM ′ , is w̃M ′
0 ◦ IHM ′

HwM ′,0(M)
(M).

As k ′′(HwM ′,0(M)+)=Hw0(M)+ (Proposition 2.21), the R-linear map

M⊗R HM ′→ w̃M ′
0,k(M)⊗Hw0(M)

+ ,θ Hw0(M ′)

defined by x ⊗ T M ′
ũ → x ⊗ Tw0(M ′)

w̃M ′
0 ũ(w̃M ′

0 )−1 is the composite of the quotient map

M⊗R HM ′→ w̃M ′
0 ◦M⊗HwM ′,0(M)

+
HM ′,

and of the bijective linear map

w̃M ′
0 ◦ IHM ′

HwM ′,0(M)
(M)→ w̃M ′

0,k(M)⊗Hw0(M)
+ ,θ Hw0(M ′).

The above map is clearly Hw0(M ′)-equivariant. �

Proposition 4.10. The coinduction is transitive.

Proof. By the transitivity of the w0-twisting (36), Lemma 4.9, and the transitivity
of the induction (Proposition 4.3), we have

IHHM ′
◦ I

HM ′
HM
= IHHw0(M

′)
◦ w̃M ′

0 ◦ I
Hw0(M

′)M ′

Hw0(M)
◦ w̃M

M ′

= IHHw0(M
′)
◦ I

Hw0(M
′)

Hw0(M)
◦ w̃M ′

0,k ◦ w̃
M
M ′

= IHHw0(M
′)
◦ I

Hw0(M
′)

Hw0(M)
◦ w̃M

0

= IHHw0(M)
◦ w̃M

0 = IHHM
. �

Proof of Theorem 1.9. The induction IHHM
is equivalent to IHHw0(M)

◦ w̃M
0 . The

coinduction IHHM
is the composite of the restriction ModHM → ModHM−

and
of HomHM− ,θ

∗(H,−) : ModHM−
→ ModH. These functors admit left adjoints,



528 MARIE-FRANCE VIGNÉRAS

the restriction ModH → ModHM−
for HomHM− ,θ

∗(H,−), and the induction
−⊗HM−

HM :ModHM−
→ModHM for the restriction ModHM →ModHM−

; hence
−⊗HM− ,θ

∗ HM :ModH→ModHM for IHHM
, and

(w̃M
0 )
−1
◦ (−⊗Hw0(M)

− ,θ∗ Hw0(M))' w̃w0(M)
0 ◦ (−⊗Hw0(M)

− ,θ∗ Hw0(M))

for IHHw0(M)
◦ w̃M

0 . �
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