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The aim of this paper is to classify simply connected 6-dimensional torus
manifolds with vanishing odd-degree cohomology. It is shown that there
is a one-to-one correspondence between equivariant diffeomorphism types
of these manifolds and 3-valent labelled graphs, called torus graphs, in-
troduced by Maeda, Masuda and Panov. Using this correspondence and
combinatorial arguments, we prove that a simply connected 6-dimensional
torus manifold with Hodd(M) = 0 is equivariantly diffeomorphic to the
6-dimensional sphere S6 or an equivariant connected sum of copies of 6-
dimensional quasitoric manifolds or S4-bundles over S2.

1. Introduction

Let M be a 2n-dimensional closed, connected, oriented manifold with an effective
n-dimensional (i.e., half-dimensional) torus T n-action. We call M , or (M, T ), a
torus manifold if MT

6= ∅ (see [Hattori and Masuda 2003]), where MT is the
set of fixed points. A toric manifold (i.e., a nonsingular, complete toric variety
viewed as a complex analytic space) with restricted T n-action is a typical example
of a torus manifold. Recall that a toric manifold is a complex (C∗)n-manifold
with a dense orbit (see [Oda 1988; Fulton 1993]), and T n is the maximal compact
subgroup of (C∗)n . A fundamental result of toric geometry tells us that there is a one-
to-one correspondence between toric manifolds and combinatorial objects called
fans. Thus, topological (more precisely, geometric) invariants of toric manifolds
can be described in terms of combinatorial invariants of fans, such as equivariant
cohomology rings, equivariant characteristic classes and other topological invariants.
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Hattori and Masuda [2003] introduced a torus manifold as the topological gener-
alization of a toric manifold. They also introduced the combinatorial objects called
multifans (see [Masuda 1999; Hattori and Masuda 2003]), and computed topological
invariants (such as equivariant characteristic classes or Todd genus for unitary torus
manifolds) in terms of multifans. However, unlike the case for toric geometry,
a multifan does not contain enough information to determine some topological
invariants of torus manifolds (e.g., equivariant cohomology). So, in 2007, Maeda,
Masuda and Panov introduced combinatorial objects called torus graphs, which
were motivated by the GKM graphs introduced by Guillemin and Zara [2001]. The
combinatorial information of torus graphs can completely determine the equivariant
cohomology rings of torus manifolds with vanishing odd-degree cohomology, i.e.,
H odd(M;Z)= 0 (in this paper, we only consider integer coefficients); see [Masuda
and Panov 2006; Maeda et al. 2007], and see also Section 3 in this paper about
torus graphs. However, in general, there is no one-to-one correspondence between
torus manifolds with H odd(M)= 0 and torus graphs.

So, we are naturally led to ask the following two questions: (1) Which subclasses
of torus manifolds are completely determined by combinatorial objects (like mul-
tifans or torus graphs)? (2) If we find such a subclass of torus manifolds, how
can we classify such torus manifolds? Several mathematicians have answered the
first question: for example, Davis and Januszkiewicz [1991] for the subclass called
quasitoric manifolds (see [Buchstaber and Panov 2002] or Section 4C in this paper),
Ishida, Fukukawa and Masuda [2013] for the subclass called topological toric
manifolds, and Wiemeler [2013] for the class of simply connected 6-dimensional
torus manifolds with H odd(M)= 0 (see Theorem 2.7). The aim of this paper is to
answer the second question for the class of simply connected 6-dimensional torus
manifolds with H odd(M)= 0 using torus graphs.

Let us briefly recall the classification results for torus manifolds with lower
dimensions. If T 1 acts on a compact 2-dimensional manifold M , then M is the
2-dimensional sphere S2, the 2-dimensional real projective space RP2, the 2-
dimensional torus T 2 or the Klein bottle. Because MT

6=∅ and M is oriented, M
must be equivariantly diffeomorphic to S2 with T 1-action (see [Kawakubo 1991]).
When dim M = 4, by Orlik and Raymond’s theorem [1970], we have the following:

Theorem 1.1 (Orlik–Raymond). Let M be a 4-dimensional simply connected torus
manifold. Then, M is equivariantly diffeomorphic to the 4-sphere S4 or an equi-
variant connected sum of copies of complex projective spaces CP2, CP2 (reversed
orientation) or a Hirzebruch surface Hk .

Here a Hirzebruch surface Hk (k ∈ Z) is a manifold which is defined by the
projectivization of the complex 2-dimensional vector bundle γ⊗k

⊕ ε over CP1,
where γ and ε are the tautological and the trivial complex line bundles over CP1.
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In this paper, we prove an Orlik–Raymond type theorem similar to Theorem 1.1
for simply connected 6-dimensional torus manifolds with H odd(M) = 0. Before
we state our main results, we introduce the result for torus manifolds that are not
simply connected. One of the consequences of Masuda and Panov’s theorem (see
Theorem 2.2 in Section 2B) is the following proposition (see also [Wiemeler 2013]).

Proposition 1.2. Let W be a 6-dimensional torus manifold with H odd(W )= 0 (it
might not be simply connected). Then, there are a simply connected 6-dimensional
torus manifold M with H odd(M)= 0 and a homology 3-sphere hS3 such that

W ∼= M #T (hS3
× T 3)

up to equivariant diffeomorphism.

Here the product manifold hS3
×T 3 is the product of hS3 and the 3-dimensional

torus T 3 with the free T 3-action on the second factor, and the symbol #T represents
the equivariant gluing along two free orbits of M and hS3

× T 3.
In Proposition 1.2, because the fundamental groups π1(W ) and π1(hS3) are

isomorphic, W is simply connected if and only if hS3 is simply connected, i.e., the
standard sphere. Our main theorem is a classification of the simply connected torus
manifolds that appear in Proposition 1.2.

Theorem 1.3. Let M be a simply connected 6-dimensional torus manifold with
H odd(M) = 0. Then, M is equivariantly diffeomorphic to the 6-sphere S6 or
obtained by an equivariant connected sum of copies of 6-dimensional quasitoric
manifolds or S4-bundles over S2 equipped with the structure of a torus manifold.

This type of classification, i.e., classification by equivariant connected sum, may
be regarded as the 6-dimensional analogue of Orlik and Raymond’s classification
in Theorem 1.1. So, in this paper, we call this theorem an Orlik–Raymond type
classification (see [McGavran 1976; Kuroki 2008]).

Remark 1.4. Izmestiev [2001] proved an Orlik–Raymond type classification for a
class of 3-dimensional small covers (i.e., the real analogue of quasitoric manifolds;
see Section 4B), called a linear model (see also [Lü and Yu 2011; Nishimura 2012]).

The organization of this paper is as follows. In Section 2, we recall the basic facts
about torus manifolds. In Section 3, we do the same for torus graphs. In particular,
Corollary 3.5 is the key fact used to prove Theorem 1.3. In Section 4, we introduce
the torus graphs of S6, quasitoric manifolds and S4-bundles over S2. These torus
graphs will be the basic graphs used to classify simply connected 6-dimensional
torus manifolds with H odd(M)= 0. In Section 5, we introduce the “oriented” torus
graphs and translate the equivariant connected sum around fixed points of torus
manifolds to the connected sum around vertices of oriented torus graphs. In Sections
6 and 7, we prove Theorem 1.3. A brief outline of the proof is as follows. By
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Corollary 3.5, there is a one-to-one correspondence between 6-dimensional simply
connected torus manifolds with H odd(M)= 0 and 3-valent torus graphs. Therefore,
to prove Theorem 1.3, it is enough to prove that an (oriented) torus graph can be
decomposed into basic torus graphs in Section 4 by the connected sum. We prove
this using combinatorial arguments.

2. Orbit spaces of torus manifolds

In this section, we recall some basic facts about torus manifolds (see [Masuda 1999]
or [Hattori and Masuda 2003] for details).

2A. Torus manifolds. A 2n-dimensional torus manifold M is said to be locally
standard if every point in M has a T -invariant open neighborhood U which is
weakly equivariantly homeomorphic to an open subset �U ⊂Cn invariant under the
standard T n-action on Cn , where two group actions (U, T ) and (�U , T ) are said to
be weakly equivariantly homeomorphic if there is an equivariant homeomorphism
from U to �U up to an automorphism on T n (see, e.g., [Kuroki 2011, Section 2.1]
for details).

Let Mi , i = 1, . . . ,m, be a codimension-2 torus submanifold in a 2n-dimensional
torus manifold M which is fixed by some circle subgroup Ti in T . Such an Mi is
a (2n− 2)-dimensional torus manifold with T/Ti -action, called a characteristic
submanifold. Because a torus manifold M is compact, the cardinality of all charac-
teristic submanifolds in M is finite. If M is locally standard, each characteristic
submanifold is also locally standard.

An omniorientation O of M is a choice of orientation for the torus manifold M
as well as for each characteristic submanifold. If there are just m characteristic
submanifolds in M , there are exactly 2m+1 omniorientations (see [Buchstaber and
Panov 2002; Hattori and Masuda 2003]). If M has a T -invariant almost complex
structure J (in this case, M is automatically locally standard), then there exists the
canonical omniorientation OJ determined by J . We call the torus manifold M with
a fixed omniorientation O an omnioriented torus manifold and denote it by (M,O).

2B. Orbit spaces of locally standard torus manifolds. The orbit space M/T of a
locally standard torus manifold M naturally admits the structure of a “topological”
manifold with corners. We next recall the basic facts about a topological manifold
with corners (cf. the definition of a smooth manifold with corners in [Lee 2013])
and introduce the structure on M/T .

We will use the notation

[n] = {0, 1, . . . , n}
and

Rn
+
= {(x1, . . . , xn) ∈ Rn

| xi ≥ 0, i = 1, . . . , n}.
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Let Qn be an n-dimensional topological manifold with boundary. A chart with
corners for Qn is a pair (V, ψV ), where V is an open subset of Qn and

ψV : V → Rn
+

is homeomorphic from V to a (relatively) open subset �V ⊂ Rn
+

. Two charts
with corners (V, ψV ) and (W, ψW ) are said to be (topologically) compatible if
the composition of functions ψV ◦ψ

−1
W : ψW (V ∩W )→ ψV (V ∩W ) is a strata-

preserving homeomorphism. This implies that if ψW (p) ∈ Rn
+

contains exactly
k zero-coordinates then ψV (p) ∈ Rn

+
also contains exactly k zero-coordinates for

0 ≤ k ≤ n. We call the collection of compatible charts with corners {(V, ψV )}

whose domains cover Qn an atlas. Then, its maximal atlas is called a structure with
corners of Qn . A topological manifold with boundary together with a structure
with corners is called a (topological) manifold with corners. Let p ∈ Qn be a point
of an n-dimensional manifold with corners Qn . For a chart (V, ψV ) with corners
such that p ∈ V , we define d(p) ∈ [n] to be the number of zero-coordinates of
ψV (p) ∈ Rn

+
. By the compatibility of charts, this number is independent of the

choice of a chart with corners which contains p. Therefore, the map d : Qn
→ [n]

is well defined. The number d(p) is called the depth of p. We call the closure of a
connected component of d−1(k), 0≤ k ≤ n, a codimension-k face. In particular, the
codimension-0 face is Qn itself. Moreover, codimension-1, codimension-(n−1) and
codimension-n faces are called facets, edges and vertices, respectively. The set of all
edges and vertices is called a one-skeleton of Qn (or a graph of Qn). By restricting
the structure with corners on Qn to faces, we may regard each codimension-k face
as an (n− k)-dimensional (sub)manifold with corners.

Definition 2.1 (manifold with faces). An n-dimensional manifold with corners Q
is said to be a manifold with faces (or a nice manifold with corners) if Q satisfies
the following conditions:

(1) For every k ∈ [n], there exists a codimension-k face.

(2) For each codimension-k face H , there are exactly k facets F1, . . . , Fk such
that H is a connected component of

⋂k
i=1 Fi ; moreover, H ∩ F 6= H for any

facet F 6= Fi (i = 1, . . . , k).

Let (M, T ) be a torus manifold. When (M, T ) is locally standard, by the differ-
entiable slice theorem, the orbit space M/T has the structure of an n-dimensional
manifold with faces. On the other hand, when M satisfies H odd(M)= 0, its orbit
space M/T satisfies a stronger condition by the following theorem (see [Masuda
and Panov 2006, Lemma 2.1 and Theorem 2]).

Theorem 2.2 (Masuda–Panov). Let M be a 2n-dimensional torus manifold. Then,
the following conditions are equivalent:
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(1) H odd(M)= 0.

(2) The T -action on M is locally standard and its orbit space M/T has the
structure of an n-dimensional face acyclic manifold with corners.

Here, an n-dimensional face acyclic manifold with corners Q is an n-dimensional
manifold with faces such that all faces F of Q (including Q) are acyclic, i.e.,
H∗(F)' H0(F)' Z. For example, if Q is a simply connected 3-dimensional face
acyclic manifold with corners, then it is easy to check that the boundary of Q is
homeomorphic to the 2-sphere S2. Moreover, in this case, we can also check that
Q itself is homeomorphic to the 3-dimensional disk D3. Therefore, as one of the
consequences of Theorem 2.2, we have the following corollary.

Corollary 2.3. Let M be a simply connected 6-dimensional torus manifold with
H odd(M)= 0. Then, its orbit space M/T is homeomorphic to the 3-dimensional
disk.

By the definition of a manifold with faces Q, we can define a simplicial poset
(partially ordered set) P(Q), called a face poset of Q (see [Masuda 2005]), to be the
set of faces in Q with the empty set ∅ ordered by inclusion, where ∅ is the smallest
element under this ordering, say �. We often denote the face poset structure of
Q by (P(Q),�). Let Q1 and Q2 be n-dimensional manifolds with faces. We say
Q1 and Q2 are combinatorially equivalent if their face posets (P(Q1),�1) and
(P(Q2),�2) are isomorphic as posets (i.e., there is an order-preserving bijection
between them). We denote the equivalence by Q1 ≈c Q2. By the definition of
weakly equivariant homeomorphism, if two locally standard torus manifolds M1

and M2 are weakly equivariantly homeomorphic then M1/T ≈c M2/T .

2C. Characteristic functions. Let M be a 2n-dimensional locally standard torus
manifold. By the argument demonstrated in Section 2B, the orbit map π : M→
M/T = Q may be regarded as the projection onto some manifold with faces Q.
Let F(Q)= {F1, . . . , Fm} ⊂ P(Q) be the set of all facets in Q. By the definition
of facet Fi ∈ F(Q), its preimage π−1(Fi ) is a characteristic submanifold Mi .
Then, there exists the circle subgroup Ti (⊂ T ) fixing Mi = π

−1(Fi ) (recall that
dim Mi = 2n− 2). Recall that Ti is determined by a primitive element in tZ ' Zn

(the lattice of the Lie algebra of T ). Therefore, using this primitive element (up to
sign) in tZ, we can define the map

λ : F(Q)→ tZ/{±1},

where tZ/{±1} represents the quotient of tZ by signs. We call λ a characteristic
function.

Now the choice of omniorientation O of M determines the sign of λ as follows.
Fix an omniorientation O of M . Namely, we fix the orientation of the tangent bundle
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of M (resp. Mi ), say τ (resp. τi ). Restricting τ to the submanifold Mi , say τ |Mi ,
we obtain the T n-equivariant decomposition τ |Mi ' τi ⊕ νi , where νi is the Ti -
equivariant normal bundle of Mi . Therefore, because we fix the orientation of τ |Mi

(induced from the orientation of τ ) and that of τi , we may choose an orientation
of νi such that the orientation of τ |Mi coincides with that of τi ⊕ νi (thus, we may
regard νi as the complex line bundle over Mi ). Because Ti acts on νi , we may
choose an orientation of Ti such that the Ti -action preserves the orientation of νi .
This orientation of Ti determines the sign of λ(Fi ) for i = 1, . . . ,m. In this way,
we have the function

λO : F(Q)→ tZ.

In this paper, this is called an omnioriented characteristic function (of (M,O)).

Remark 2.4. The characteristic function defined in [Wiemeler 2013] may be re-
garded as the characteristic function λ above. On the other hand, the characteristic
function defined in [Davis and Januszkiewicz 1991] may be regarded as the char-
acteristic function λO above by taking an appropriate omniorientation (see also
[Buchstaber and Panov 2002, Section 5.2]).

Let p ∈ MT . We define the subset Ip ⊂ [m] by

Ip = {i ∈ [m] | p ∈ Mi }.

By the differentiable slice theorem around p ∈ MT , we have that its cardinality |Ip|

equals n for every p ∈ MT . Put Ip = {i1, . . . , in}. Because the T -action on M is
effective, {λ(Fi1), . . . , λ(Fin )} spans t∗Z/{±1}, i.e., the determinant of the induced
(n× n)-matrix

(λ(Fi1) · · · λ(Fin ))

satisfies

(2-1) det(λ(Fi1) · · · λ(Fin ))=±1.

Similarly, we have

(2-2) det(λO(Fi1) · · · λO(Fin ))=±1

for each set of n facets such that
⋂n

j=1 Fi j = {p} for some vertex p ∈ Q (called the
facets around a vertex).

Motivated by the above observations, we may abstractly define the characteristic
function on a manifold with faces as follows (see [Buchstaber and Panov 2002;
Davis and Januszkiewicz 1991] for simple polytopes and [Masuda and Panov 2006;
Wiemeler 2013] for manifolds with faces).

Definition 2.5. Let Q be an n-dimensional manifold with faces and F(Q) be the set
of its facets. Let tZ be the lattice of the Lie algebra of T n and tZ/{±1} be its quotient



96 SHINTARÔ KUROKI

by {±1}. A function λ :F(Q)→ tZ/{±1} is said to be a characteristic function if λ
satisfies (2-1) for the facets around every vertex, and a function λO : F(Q)→ tZ is
said to be an omnioriented characteristic function if λO satisfies (2-2) for the facets
around every vertex.

We denote an n-dimensional manifold with faces Q with its characteristic func-
tion λ (resp. omnioriented characteristic function λO) by (Q, λ) (resp. (Q, λO)).

Let Q1 and Q2 be manifolds with faces, and let λ1 and λ2 be their characteristic
functions and λO1 and λO2 be their omnioriented characteristic functions, respectively.
Assume that Q1≈c Q2, induced by the bijective map f̃ :P(Q1)→P(Q2). Denote
its restriction onto the set of facets by

f = f̃ |F(Q1) : F(Q1)→ F(Q2).

We say that (Q1, λ1) and (Q2, λ2) are combinatorially equivalent if the following
diagram commutes:

F(Q1)

f
��

λ1
// tZ/{±1}

Id
��

F(Q2)
λ2
// tZ/{±1}

Similarly, (Q1, λO1) and (Q2, λO2) are combinatorially equivalent if the following
diagram commutes:

F(Q1)

f
��

λO1
// tZ

Id
��

F(Q2)
λO2
// tZ

Note that the characteristic function λ can be obtained by ignoring signs from the
omnioriented characteristic function λO; we call such a λ an induced characteristic
function from λO. On the other hand, by choosing a sign for each facet, we can
obtain an omnioriented characteristic function λO from the characteristic function λ;
we call such a λO an induced oriented characteristic function from λ.

Lemma 2.6. If (Q1, λO1) and (Q2, λO2) are combinatorially equivalent, then their
induced (Q1, λ1) and (Q2, λ2) are also combinatorially equivalent.

If (Q1, λ1) and (Q2, λ2) are combinatorially equivalent, then there are induced
omnioriented characteristic functions λO1 and λO2 such that (Q1, λO1) and (Q2, λO2)

are combinatorially equivalent.

We now introduce one of the key facts used to prove our main theorem (see
[Wiemeler 2013, Theorems 1.3 and 6.1]).

Theorem 2.7 (Wiemeler). Let M1 and M2 be 6-dimensional simply connected
torus manifolds with H odd(M1)= H odd(M2)= 0, and let (Q1, λ1) and (Q2, λ2) be
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their orbit spaces with characteristic functions. Then, the following statements are
equivalent:

(1) (Q1, λ1) and (Q2, λ2) are combinatorially equivalent.

(2) M1 and M2 are equivariantly homeomorphic.

(3) M1 and M2 are equivariantly diffeomorphic.

Therefore, by Corollary 2.3 and Theorem 2.7, to classify all 6-dimensional simply
connected torus manifolds with H odd(M)= 0, it is enough to classify all (Q, λ)’s
up to combinatorial equivalence, where Q is a 3-dimensional disk equipped with
the structure of a manifold with faces.

3. Torus graph induced from manifold with faces

Let (M,O) be an omnioriented locally standard 2n-dimensional torus manifold and
(Q, λO) be its orbit space with an omnioriented characteristic function. From the
one-skeleton of (Q, λO), we can define a labelled graph called a torus graph. One
of the key steps in proving the main theorem is to classify all possible torus graphs
(see Section 7). We first recall the definition of torus graph given by Maeda et al.
[2007].

Let 0 be the graph of Q. Let V (0) be its vertices and E(0) be its oriented edges,
i.e., we distinguish two edges pq and qp. For p ∈ V (0), we denote the set of
outgoing edges from p by E p(0). Because Q is an n-dimensional manifold with
faces, |E p(0)| = n and each edge e ∈ E(0) is a connected component of

⋂n−1
i=1 Fi

for some F1, F2, . . . , Fn−1 ∈ F(Q). Moreover, for a p ∈ V (0) which is one of
two vertices on e, there is another facet Fn ∈ F(Q) such that {p} is a connected
component of

⋂n
i=1 Fi . In other words, Fn may be regarded as a normal facet of

e ∈ E(0) on p ∈ V (0). Put λO(Fi ) = ai ∈ tZ ' Zn . Then, there exists a unique
α ∈ t∗Z such that

(3-1) 〈α, ai 〉 = 0 for i = 1, . . . , n− 1 and 〈α, an〉 = +1,

where 〈 · , · 〉 represents the pairing of t∗ and t. Therefore, in this way, we can define
a map A : E(0)→ t∗Z from the omnioriented characteristic function λO. This map A

is called an axial function on 0. We call the labelled graph (0,A) a torus graph
induced from (Q, λO) (or equivalently (M,O)). We denote such a torus graph by
0(Q, λO) (or (0M ,AM)). We can easily check the following proposition using the
definition of torus graph (see also [Maeda et al. 2007]).

Proposition 3.1. Let (0,A) be a torus graph induced from (Q, λO). Then, 0 is an
n-valent regular graph, i.e., |E p(0)| = n for all p ∈ V (0), and (0,A) satisfies the
following conditions:

(1) A(e)=±A(ē), where ē is the orientation-reversed edge of e.
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(2) {A(e) | e ∈ E p(0)} spans t∗Z for all vertices p ∈ V (0).

(3) There is a bijection ∇pq : E p(0)→ Eq(0) for all edges whose initial vertex is
p and terminal vertex is q such that

(a) ∇ē =∇
−1
e ,

(b) ∇e(e)= ē,
(c) A(∇pq(e))−A(e)≡ 0 mod A(pq) for all e ∈ E p(0).

We call ∇ = {∇e | e ∈ E(0)} a connection on (0,A).

Remark 3.2. The original definition of torus graph (induced from an omnioriented
torus manifold) uses tangential representations; see [Masuda and Panov 2006;
Maeda et al. 2007]. The definition of torus graph given above is essentially the
same as the original definition.

In [Maeda et al. 2007], motivated by the GKM graph introduced by Guillemin
and Zara [2001], an n-valent graph 0 with a label A : E(0)→ t∗Z which satisfies
the three conditions in Proposition 3.1 is called an (abstract) torus graph (i.e., there
might be no geometric objects which define (0,A)).

We next define the equivalence relation between two torus graphs. We call the
map f :01 = (V (01), E(01))→02 = (V (02), E(02)) a graph isomorphism if the
restricted maps f |V : V (01)→ V (02) and f |E : E(01)→ E(02) are bijective and
the following diagram commutes:

E(01)

πV1
��

f |E
// E(02)

πV2
��

V (01)
f |V
// V (02)

Here the map πV : E(0)→ V (0) is the projection onto the initial vertex, i.e.,
πV (pq)= p. In other words, the bijection f |V preserves the edges. Now we may
define the equivalence relation.

Definition 3.3. Let (01,A1) and (02,A2) be torus graphs. We say (01,A1) and
(02,A2) are equivalent if there is a graph isomorphism f : 01→ 02 such that the
following diagram commutes:

E(01)

f |E
��

A1
// t∗Z

Id
��

E(02)
A2
// t∗Z



ORLIK–RAYMOND CLASSIFICATION OF 6-DIMENSIONAL TORUS MANIFOLDS 99

Assume (0,A)=0(Q, λO). Let Pk(0,A) be the set of k-valent torus subgraphs
in (0,A), i.e., k-valent subgraphs in 0 closed under the connection ∇, where
−1≤ k ≤ n and we define P−1(0,A)= {∅}. Then, the set

P(0,A)=

n⋃
k=−1

Pk(0,A)

admits the structure of a simplicial poset by inclusion (see [Maeda et al. 2007]).
We denote this structure by (P(0,A),�). Let P(Q) be the face poset of Q (see
Section 2B) and Pk(Q) be the set of all k-dimensional faces, where −1 ≤ k ≤ n
and P−1(Q)= {∅}. Then, each element of Pk(0,A) is nothing but the graph of
an element in Pk(Q). This implies that the poset (P(0,A),�) is equivalent to the
poset (P(Q),�). Therefore, we have the following lemma.

Lemma 3.4. The following two statements are equivalent:

(1) Two manifolds with faces with omnioriented characteristic functions (Q1, λO1)

and (Q2, λO2) are combinatorially equivalent.

(2) Their induced torus graphs 0(Q1, λO1) and 0(Q2, λO2) are equivalent.

By Lemma 2.6, Theorem 2.7 and Lemma 3.4, we have the following corollary.

Corollary 3.5. Let (M1, T ) and (M2, T ) be 6-dimensional simply connected torus
manifolds with vanishing odd-degree cohomology. Then, the following statements
are equivalent:

(1) (M1, T ) and (M2, T ) are equivariantly diffeomorphic.

(2) Their orbit spaces, i.e., 3-dimensional disks with the structures of manifolds
with faces, with characteristic functions (M1/T, λ1) and (M2/T, λ2) are com-
binatorially equivalent.

(3) There are omnioriented characteristic functions λO1 and λO2 such that their in-
duced 3-valent torus graphs 0(M1/T, λO1) and 0(M2/T, λO2) are equivalent.

Therefore, to prove our main theorem (Theorem 7.1), it is enough to classify all
3-valent torus graphs (0,A), induced from (M,O), up to equivalence.

4. Basic 6-dimensional torus manifolds

Let (M, T ) be a simply connected 6-dimensional torus manifold with H odd(M)= 0,
and let (0M ,AM) (= (0,A)) be its torus graph induced by some omniorientation.
As a preliminary to proving the main theorem (Theorem 7.1), in this section
we introduce some of the basic torus graphs (0,A) and their corresponding 6-
dimensional torus manifolds (M, T ).
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p

β β

α

γ γ

α

q

Figure 1. The torus graph (0sp,Aα,β,γ ), where α, β, γ ∈ t∗Z ' Z3

are a Z-basis.

4A. 6-sphere. Because the induced torus graphs from (M, T ) are 3-valent, if there
is a 3-multiple edge, i.e., three edges that are incident to the same two vertices, then
it follows from Proposition 3.1 that such a torus graph must be the torus graph in
Figure 1, denoted (0sp,Aα,β,γ ).

Put α= k11e1+k12e2+k13e3, β = k21e1+k22e2+k23e3 and γ = k31e1+k32e2+

k33e3, using the standard basis e1, e2, e3 in t∗Z ' Z3. Then, we have

(4-1) det

k11 k12 k13

k21 k22 k23

k31 k32 k33

=±1.

Let S6
⊂ C3

⊕R be the unit sphere, i.e., the set (z1, z2, z3, r) ∈ C3
⊕R such

that |z1|
2
+ |z2|

2
+ |z3|

2
+ r2
= 1. Define the T 3-action on the first three complex

coordinates in S6 by

(4-2) (t1, t2, t3)(z1, z2, z3, r) 7→ (ρ1(t)z1, ρ2(t)z2, ρ3(t)z3, r),

where t = (t1, t2, t3) ∈ T and ρi : T → S1, i = 1, 2, 3, is a 1-dimensional complex
representation defined by

ρi (t1, t2, t3)= tki1
1 tki2

2 tki3
3 .

Then, by choosing an appropriate omniorientation on S6, we have that its induced
torus graph is equivalent to (0sp,Aα,β,γ ). Therefore, using Corollary 3.5, we have
the following lemma.

Lemma 4.1. Let (M,O) be an omnioriented 6-dimensional simply connected torus
manifold with H odd(M)=0. If its induced torus graph is (0sp,Aα,β,γ ), then (M, T )
is equivariantly diffeomorphic to one of (S6, T ) defined by (4-2).

4B. S4-bundles over S2. Assume that a 3-valent torus graph (0,A) does not have
3-multiple edges but does have multiple edges, i.e., two edges that are incident to
the same two vertices. In this section, we classify the easiest case of such torus
graphs.

Because 0 is a one-skeleton of a 3-dimensional manifold with faces Q, we have
|V (0)| ≥ 4. Assume that |V (0)| = 4. Then, we can easily check that such a torus
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γ

γ

γ + b α

γ + b α

β + a α

β + a α
β

Figure 2. The torus graph (0S,AS)= (0S,Aε,a,b
α,β,γ ), where ε=±1,

a, b ∈ Z, and α, β, γ ∈ t∗Z are a Z-basis of t∗Z.

manifold is the one-skeleton of the 3-simplex (see Figure 3 in Section 4C) or the
graph drawn in Figure 2, say 0S . It is well known that the torus manifold whose
torus graph is the one-skeleton of the 3-simplex is equivariantly diffeomorphic to the
complex projective space with some T -action (see, e.g., [Davis and Januszkiewicz
1991], and see also Figure 3 in Section 4C). So, we only study the torus manifold
which induces the graph 0S . Because Q is homeomorphic to D3, we may regard
a Q whose one-skeleton is 0S as the product D2

× I , where D2 is the 2-dimensional
disk and I is the interval. By considering all functions on facets of Q which satisfy
(2-2), we can classify all omnioriented characteristic functions λO on Q. Then, in
the same way we induced the axial function AS from (Q, λO) in Section 3, we can
obtain all possible axial functions on 0S , as shown in Figure 2.

The torus graph (0S,AS) in Figure 2 can be induced from an S4-bundle over S2

as follows. First, by choosing ε = ±1, we may define two free T 1-actions on
S3
⊂ C2:

(w, z) 7→ (t−1w, tεz).

We denote S3 with the above T 1-action by S3
ε . Note that S3

ε /T 1 is diffeomorphic
to the 2-sphere S2, and a complex line bundle over S2 can be denoted by

S3
ε ×T 1 Ck,

where Ck is the complex 1-dimensional T 1-representation space by k-times rotation
for some k ∈ Z. Let S3

ε ×T 1 R be the trivial real line bundle over S2. Take the unit
sphere bundle of the following Whitney sum of three vector bundles for a, b ∈ Z:

S3
ε ×T 1 (Ca ⊕Cb⊕R).

Then, we obtain the S4-bundle over S2 denoted by

M(ε, a, b)= S3
ε ×S1 S(Ca ⊕Cb⊕R),
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for ε =±1, a, b ∈ Z. Namely, we can identify elements in M(ε, a, b) by

[(w, z), (x, y, r)] = [(t−1w, tεz), (tax, tb y, r)]

for any t ∈ T 1 such that |w|2+|z|2= 1 and |x |2+|y|2+r2
= 1. Define a T 3-action

on M(ε, a, b) by

[(w, z), (x, y, r)] 7→ [(t1w, z), (t2x, t3 y, r)],

where (t1, t2, t3) ∈ T 3. Fix an omniorientation on M(ε, a, b) by the induced ori-
entations from S3

ε × S4
⊂ C2

× (C⊕ C⊕ R). Then, considering the tangential
representations around each fixed point, it is easy to check that the induced torus
graph is (0S,Aε,a,b

e1,e2,e3
), where e1, e2, e3 are the standard basis of tZ'Z3. Therefore,

by taking the appropriate automorphism of T 3, we can construct each torus graph
(0S,AS) in Figure 2 from M(ε, a, b). Note that if ε = −1 and a = b, then this
is nothing but one of the torus manifolds which appeared in the classifications of
torus manifolds with codimension-1 extended actions in [Kuroki 2011].

By the argument above and Corollary 3.5, we have the following lemma.

Lemma 4.2. Let (M,O) be an omnioriented 6-dimensional simply connected torus
manifold with H odd(M) = 0. If its induced torus graph has four vertices, then
(M, T ) is equivariantly diffeomorphic to one of the following:

(1) CP3 with the standard T 3-action up to automorphism of T 3;

(2) M(ε, a, b) for some ε =±1 and a, b ∈ Z.

4C. 6-dimensional quasitoric manifolds. Assume that there are no multiple edges
in a 3-valent torus graph (0,A), i.e., there are no two edges that are incident to the
same two vertices. A graph 0 is called simple if 0 does not have both multiple
edges and loops. In this section and in Section 5, we study simple torus graphs
which can be realized as the one-skeleton of a manifold with faces homeomorphic
to D3.

The typical example of such torus manifolds whose torus graphs are simple is
a quasitoric manifold (introduced by Davis and Januszkiewicz [1991]; see also
[Buchstaber and Panov 2002]). A quasitoric manifold is defined by a torus manifold
whose orbit space is a simple convex polytope, i.e., a convex polytope admitting the
structure of a manifold with faces. For example, the complex projective space CPn

with the standard T n-action is the quasitoric manifold whose orbit space is the
n-dimensional simplex. Figure 3 shows the torus graph induced from (CP3,OC),
i.e., the omniorientation OC induced from the standard complex structure on CP3

and the standard T -action on CP3.
We next characterize when torus graphs are induced from simple convex poly-

topes, i.e., induced from quasitoric manifolds. The Steinitz theorem (see [Ziegler
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Figure 3. The torus graph induced from (CP3,OC).

1995, Chapter 4]) tells us that a graph 0 is the one-skeleton of a 3-dimensional
convex polytope if and only if 0 is a simple, planar and 3-connected graph, where 0
is called a 3-connected graph if it remains connected whenever fewer than three
vertices are removed. It easily follows from the Steinitz theorem that we have the
following lemma.

Lemma 4.3. Let Q be a manifold with faces and 0 be its graph. Assume that Q is
homeomorphic to the 3-disk D3 and there are no multiple edges. Then, the following
statements are equivalent:

(1) Q is combinatorially equivalent to a 3-dimensional simple convex polytope P.

(2) 0 is a 3-connected graph.

Combining this result with Corollary 3.5, we have the following fact.

Lemma 4.4. Let (M,O) be an omnioriented 6-dimensional simply connected torus
manifold with H odd(M)= 0. Then, the following statements are equivalent:

(1) (M, T ) is equivariantly diffeomorphic to a quasitoric manifold.

(2) Its induced torus graph 0 is a 3-connected graph with no multiple edges.

5. Connected sum of torus graphs and other 6-dimensional torus manifolds

By the arguments in Section 4, only the following case remains: the simply con-
nected 6-dimensional torus manifolds with H odd(M) = 0 whose induced torus
graphs are simple but not 3-connected. Such torus manifolds can be constructed
using the connected sum of “oriented” torus graphs. The purpose of this section is
to introduce oriented torus graphs and their connected sum (see also [Darby 2015]).

We first recall the equivariant connected sum of torus manifolds. Let M1, M2

be 2n-dimensional torus manifolds and p ∈ MT
1 , q ∈ MT

2 be fixed points. Using
the slice theorem, we may take T -invariant open neighborhoods U1 ⊂ M1 of p
and U2 ⊂ M2 of q . Assume that U1 and U2 are equivariantly diffeomorphic. Then,
U1\{p} and U2\{q} are equivariantly diffeomorphic to S2n−1

× I , where S2n−1
⊂Cn

with some effective T n-action and I = (−ε, ε) with the trivial T n-action for some
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ε > 0. We glue these two neighborhoods by ϕ defined by the identity on S2n−1 and
the map r 7→ −r on I for r ∈ I . Namely, we can glue M1 \ {p} and M2 \ {q} by
the identification

(5-1) M1 \{p} ⊃U1 \{p}
'
−→ S2n−1

× I
ϕ
−→ S2n−1

× I
'
−→U2 \{q} ⊂ M2 \{q}.

The T n-manifold obtained in this way is denoted by M1 # M2 or M1 #(p,q) M2 (if
we emphasize fixed points p ∈ MT

1 and q ∈ MT
2 ). Because each torus manifold

has more than two fixed points, M1 # M2 is again a torus manifold. We call this
operation the equivariant connected sum.

Lemma 5.1. If two torus manifolds M1 and M2 are simply connected and H odd(M1)

= H odd(M2)= 0, then M1 # M2 is also simply connected and H odd(M1 # M2)= 0.

Proof. It is easy to check the statement using van Kampen’s theorem and the
Mayer–Vietoris exact sequence. �

Assume that (M1,O1) and (M2,O2) are 6-dimensional omnioriented simply
connected torus manifolds with H odd(M1) = H odd(M2) = 0. Let (01,A1) and
(02,A2) be their induced 3-valent torus graphs. Assume that we can glue p ∈ MT

1
and q ∈ MT

2 by the connected sum. Then, by considering the restriction of ϕ in
(5-1) onto S2n−1

⊂ Cn , i.e., the identity map, the axial functions around p ∈ V (01)

and q ∈ V (02) must satisfy

(5-2) {A1(e) | e ∈ E p(01)} = {A2(e) | e ∈ Eq(02)}.

However, at this stage, the torus graphs (01,A1) and (02,A2) do not contain
information about the orientations of M1 and M2. To do the connected sum, we
need the orientations around p ∈ MT

1 and q ∈ MT
2 . To encode the orientations

around fixed points, we need the following notion.

Definition 5.2. Let (0,A) be a torus graph. We call a triple (0,A, σ ) with a map
σ : V (0)→{+1,−1} an oriented torus graph if σ satisfies the following condition
for all e ∈ E(0):

σ(πV (e))A(e)=−σ(πV (ē))A(ē),

where πV (e) ∈ V (0) is the initial vertex of e ∈ E(0), i.e., for e = pq, πV (e)= p
and πV (ē)= q. We call such a map σ an orientation of (0,A).

Remark 5.3. Let (M,O) be an omnioriented torus manifold. The oriented torus
graph (0,A, σ ) of (M,O) is defined as follows. Let p ∈ MT . Then, there ex-
ist exactly n characteristic submanifolds M1, . . . ,Mn such that p is a connected
component of

⋂n
i=1 Mi . Now the fixed orientations of M1, . . . ,Mn determine the

decomposition of the tangential representation; i.e.,ψp :Tp M
'
→V (α1)⊕· · ·⊕V (αn)

is determined by fixing the orientations of M1, . . . ,Mn . On the other hand, the
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orientation of M determines the orientation of Tp M . So, we define the map
σ : V (0)= MT

→ {+1,−1} by

σ(p)=
{
+1 if ψp preserves the orientations,
−1 if ψp reverses the orientations.

Let (01,A1, σ1) and (02,A2, σ2) be the induced oriented torus graphs from
(M1,O1) and (M2,O2). If we can glue p ∈ MT

1 and q ∈ MT
2 by the connected sum,

then both (5-2) and

(5-3) σ1(p) 6= σ2(q)

hold ((5-3) corresponds to the fact that the orientations on Tp M1 and Tq M2 are
different). The induced (oriented) torus graph by M1 #(p,q) M2 is nothing but the
one-skeleton of the connected sum Q1 #(p,q) Q2 of manifolds with faces, where Qi

is the orbit space of Mi , i = 1, 2 (see [Izmest′ev 2001, Definition 3; Kuroki
2010, Section 3.1] for details about the connected sum of polytopes). Therefore,
conversely, if p ∈ V (01) and q ∈ V (02) satisfy (5-2) and (5-3), then we can do the
connected sum of (oriented) torus graphs between (01,A1, σ1) and (02,A2, σ2),
say (0,A, σ ) = (01,A1, σ1) # (02,A2, σ2) or (01,A1, σ1) #(p,q) (02,A2, σ2) (if
we emphasize the vertices p ∈ V (01) and q ∈ V (02)). More precisely, (0,A, σ )=

(01,A1, σ1) # (02,A2, σ2) is defined as follows (see Figure 4).

(1) V (0)= V (01) \ {p} t V (02) \ {q}.

(2) E(0) is given by

(E(01) \ {pp1, pp2, pp3})t (E(02) \ {qq1, qq2, qq3})t {p1q1, p2q2, p3q3},

where A1(ppi )=A2(qqi ) for i = 1, 2, 3.

(3) A : E(0)→ (t3Z)
∗ is defined by A(e) = A1(e) and A( f ) = A2( f ) for e in

E(01) \ {pp1, pp2, pp3} and f in E(02) \ {qq1, qq2, qq3}, and A(pi qi ) =

A1(pi p) and A(qi pi )=A2(qi q).

(4) σ : V (0)→ {+1,−1} is defined by σ(r) = σ1(r) for r ∈ V (01) \ {p} and
σ(r ′)= σ2(r ′) for r ′ ∈ V (02) \ {q}.

a α a αa′α a′α

c′γ
c′γ

b′β b′βb β b ββ β
α α

γ γ
c γ

c γ

p q

Figure 4. The local figure of the connected sum #(p,q) of a
torus manifold (left to right) and its inverse #−1

(p,q) (right to left),
where σ1(p) 6= σ2(q). Here, α, β, γ are a Z-basis of (t3Z)

∗ and
a, a′, b, b′, c, c′ =±1.
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Figure 5. The torus graph (with appropriate orientations, e.g,
σ(p) = +1, σ(q) = −1, σ(r) = +1, σ(s) = −1) induced from
CP3 # (S2

× S4) # CP3.

Then, we can easily check that (0,A, σ ) is an oriented torus graph. Using
Corollary 3.5 and the arguments above, we have the following lemma.

Lemma 5.4. Let M1 and M2 be 6-dimensional simply connected torus mani-
folds with H odd(M1) = H odd(M2) = 0, and let (01,A1, σ1) and (02,A2, σ2) be
their respective induced oriented torus graphs from some omniorientations. If
(0,A, σ ) = (01,A1, σ1) #(p,q) (02,A2, σ2), then (0,A, σ ) is the oriented torus
graph induced from M = M1 #(p,q) M2 with some omniorientation.

Using the connected sum, we can construct the torus manifolds which do not
appear in Section 4. One such example is

CP3 # (S2
× S4) # CP3,

where CP3 is the reversed orientation of CP3. Figure 5 shows the torus graph
induced from CP3 # (S2

× S4)# CP3 (see the axial functions in Figures 2 and 3 for
details). We can easily check that this graph is 3-valent, simple and planar but not
3-connected; therefore, by Lemma 4.4, this manifold is not a quasitoric manifold.

6. Some combinatorial lemmas

To prove the main theorem (Theorem 7.1), we need the following two lemmas.
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1

1
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FF

Γ

Figure 6. The figure explained in the proof of Lemma 6.1. The
facet F has a self-intersection on the edge p1 p.

Lemma 6.1. Let Q be a 3-dimensional manifold with faces which is homeomorphic
to D3 and 0 be its graph. Then, 0 \ {p} is connected for all vertices p ∈ V (0).

Proof. Because Q is homeomorphic to the 3-disk D3, 0 may be regarded as a
planar graph by the stereographic projection of ∂Q = S2. Assume 0 \ {p} is not
connected. Because Q is a 3-dimensional manifold with faces, there are exactly
three outgoing edges from p, say pp1, pp2 and pp3. Therefore, we may assume
that there exists a connected component 01 in 0 \ {p} such that p1 ∈ V (01) but
p2, p3 6∈ V (01) (see Figure 6). Since 01 is also a planar 3-valent graph except on
the vertex p1 (because p 6∈ V (01)), there is a 2-valent subgraph in 01, say ∂01,
such that ∂01 splits ∂Q = S2 into two connected components H+ and H−, where
01\∂01⊂ H+\∂01 but 01 6⊂ H−. This implies that there is a facet F in Q such that
∂F contains ∂01 and p1 p. However, in this case, p1 p must be a self-intersection
edge of F (see Figure 6). This contradicts that Q is a manifold with faces. �

By Lemma 6.1, if 0 is not 3-connected, then there are two vertices p, q ∈ V (0)
such that 0 \ {p, q} is not connected but both 0 \ {p} and 0 \ {q} are connected.
More precisely, we have the following lemma.

Lemma 6.2. Let Q be a 3-dimensional manifold with faces which is homeomorphic
to D3 and 0 be its graph. Assume that there are two vertices p, q ∈ V (0) such that
{p, q} 6⊂ V (F) for any facets F , i.e, p and q are not on the same facet F. Then,
0 \ {p, q} is connected.

Proof. Assume that p and q are not on the same facet of Q. Because Q is a
manifold with faces, there are mutually distinct facets F1, . . . , F6 such that {p} is a
component of F1∩F2∩F3 and {q} is a component of F4∩F5∩F6, and we can take
vertices p1, p2, p3 and q1, q2, q3 such that ppi and qqi are all outgoing edges from
p and q for i = 1, 2, 3. Take two vertices r and s from 0 \ {p, q}. By Lemma 6.1,
0 \ {q} is connected. So there is a path γ from r to s in 0 \ {q}. If γ does not go
through p, then r and s are connected in 0 \ {p, q}. Assume that this path γ goes
through p. Then γ goes through exactly two vertices pi , p j (we may assume p1

and p2). Moreover, one of the facets F1, F2, F3, say F1, contains both p1 and p2.
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Note that F1 corresponds to the 2-valent subgraph in 0. Therefore, we can take the
path γp connecting p1 and p2 on F1 which is not the path p1 pp2. Because p and q
are not on the same facet, in particular q 6∈ V (F1), the path γp does not contain q.
Hence, the connected subgraph γ ∪ γp contains both r and s but does not contain
both p and q. Thus, we can take the path γ ′ from r to s in γ ∪ γp ⊂ 0 \ {p, q}.
This establishes that 0 \ {p, q} is connected. �

In summary, by Lemmas 6.1 and 6.2, we have the following fact.

Corollary 6.3. Let 0 be a one-skeleton of a 3-dimensional manifold with faces Q.
Then, for all p ∈ V (0), 0 \ {p} is connected. Furthermore, if 0 \ {p, q} is not
connected, then p and q are on the same facet.

7. Proof of main theorem

The main theorem of this paper can be stated as follows:

Theorem 7.1. Let M be a simply connected 6-dimensional torus manifold with
H odd(M)= 0. Then, either M is equivariantly diffeomorphic to

(1) S6
⊂ C3

⊕R with a torus action induced from a (faithful) representation of T 3

on C3,

(2) a 6-dimensional quasitoric manifold X , or

(3) an S4-bundle over S2 which is equivariantly diffeomorphic to M(ε, a, b) for
some ε =±1, a, b ∈ Z;

or else there are some 6-dimensional quasitoric manifolds Xh for some h= 1, . . . , k,
and some S4-bundles over S2, say Si = M(εi , ai , bi ) (for some εi =±1, ai , bi ∈ Z

and i = 1, . . . , `), such that M is equivariantly diffeomorphic to( k

#
h=1

Xh

)
#
(

`

#
i=1

Si

)
,

where # represents the equivariant connected sum around fixed points, k+`≥ 2 for
k ≥ 0, `≥ 1, and the case k = 0 means that there is no Xh factor.

In this final section, we prove Theorem 7.1.
Let M be a simply connected 6-dimensional torus manifold with H odd(M)= 0,

Q be its orbit space which is homeomorphic to D3 and (0M ,AM) be its induced
oriented torus graph (we omit the orientation).

Because 0M is a one-skeleton of a manifold with faces which is homeomorphic
to D3, it is easy to check that |V (0M)| 6= 1, 3. If |V (0M)| = 2, by Lemma 4.1, we
have that M is equivariantly diffeomorphic to S6, i.e., statement (1). If |V (0M)|= 4,
it follows from Lemma 4.2 that M is equivariantly diffeomorphic to a quasitoric
manifold CP3 or M(ε, a, b) for some ε = ±1, a, b ∈ Z, i.e., statement (2) or (3)
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occurs. So we need only prove the case when |V (0M)| ≥ 5.
We first establish the following lemma.

Lemma 7.2. Assume that |V (0M)| ≥ 5 and there is a multiple edge in 0M . Then,
(0M ,AM) can be decomposed as

(0M ,AM)= (0X ,AX ) # (0S1,AS1) # · · · # (0S`′ ,AS`′ )

or
(0M ,AM)= (0S1,AS1) # · · · # (0S`′ ,AS`′ ),

where (0X ,AX ) is a torus graph without multiple edges and Si = M(εi , ai , bi ) for
i = 1, . . . , `′.

Proof. Assume two vertices p and q are connected by a multiple edge, i.e., two
edges (see the bottom graph in Figure 7). Then, by the connection of the torus
graph (see Proposition 3.1), it is easy to check that the axial functions around the

β β + a α
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β + a′ α γ + b′ α
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ε α

ε α

ε′ α
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ε αα
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β + a′ α γ + b′ α
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γ + b α

p

q

β

β

α

α

γ

γ

p

q

r

r

#

Figure 7. We may regard α, β, γ as any generators in (t3Z)
∗ and

a, a′, b, b′ ∈ Z and ε, ε′ = ±1. The bottom graph is (0M ,AM),
the upper-left graph is (0S1,AS1) and the upper-right graph is
(0M ′,AM ′). If we fix the orientation of (0M ,AM) then the orien-
tations of (0S1,AS1) and (0M ′,AM ′) are automatically determined.
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vertex r of the bottom graph in Figure 7 satisfy the axial functions expressed in that
figure, where we can take α, β, γ as a Z-basis of (t3Z)

∗. In this case, we can do an
(inverse) connected sum such as the one expressed in Figure 7 (from the bottom to
the top). Then, the induced torus graph (0M ,AM) is decomposed into two induced
torus graphs (0S1,AS1) and (0M ′,AM ′), where M ′ is some simply connected 6-
dimensional torus manifold with H odd(M ′)= 0 by Lemma 5.1. Namely, we have

(0M ,AM)= (0M ′,AM ′) # (0S1,AS1).

If there are no multiple edges in 0M ′ , then we may put 0M ′ = 0X . Assume that
there is a multiple edge in 0M ′ . If there are only four vertices in 0M ′ , then we
may put M ′ as S2 = M(ε2, a2, b2) by Lemma 4.2. When there are more than four
vertices in 0M ′ , we iterate the above argument, establishing the lemma. �

Therefore, to prove Theorem 7.1, it is enough to prove the following lemma.

Lemma 7.3. Assume that |V (0M)| ≥ 5 and there are no multiple edges in 0M .
Then, (0M ,AM) can be decomposed as

(0M ,AM)= (0X1,AX1) # · · · # (0Xk ,AXk ) # (0S1,AS1) # · · · # (0S`′′ ,AS`′′ ),

where (0Xh ,AXh ) for h = 1, . . . , k is the torus graph induced from a quasitoric
manifold Xh , and Si = M(εi , ai , bi ) for i = 1, . . . , `′′.

Proof. If 0M (= 0) is 3-connected, then it follows from Lemma 4.4 that the
statement holds, i.e., k= 1, `′′= 0. Therefore, we may assume 0 is not 3-connected.
In this case, by Corollary 6.3, there is a 2-valent torus subgraph F ⊂ 0 such that
0 \ {p, q} is not connected for some p, q ∈ V (F).

If F is a triangle (i.e., |V (F)| = 3), using a method similar to that demonstrated
in the proof of Lemma 6.1, we have that there is a face in Q which has a self-
intersection edge. This contradicts that Q is a manifold with faces. Therefore, we
may assume |V (F)| ≥ 4. We first assume that pq is an edge of F . Then, there are
two graphs 01 and 02 which are the connected components of 0 \ {p, q} expressed
in Figure 8. If we remove the two vertices r and q from 0 instead of p and q,
where r ∈ V (02) such that pr is an edge, then 0 \ {r, q} is also not connected (see
Figure 8). Therefore, we may assume that

1

p q

r

F

Γ

2Γ

Figure 8. If we remove r and q from 0 instead of p and q, the
graph is also disconnected.
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(1) p, q ∈ V (0) are such that 0 \ {p, q} is not connected,

(2) pq 6∈ E(0),

(3) there is a 2-valent torus subgraph (facet) F with |V (F)| ≥ 4 in 0 such that
p, q ∈ V (F).

We call such a facet F a singular facet.
Let F be a singular facet. Assume |V (F)| ≥ 6. In this case, by an argument

similar to the one just before, we may take p and q to be in the position of Figure 9,
i.e., p and q are on two separated edges r p and sq which are common edges of
two facets F and F ′ in Figure 9 (note that r and s might be connected by an edge).
Moreover, by considering the omnioriented characteristic functions of the facets F
and F ′, we may take the axial functions around the facet F to be as in Figure 9.

By taking an appropriate orientation, we can do the connected sum as in Figure 10;
here we denote the (oriented) torus graph containing 01 by (0̃1, Ã1) and that
containing 02 by (0̃′2, Ã′2). The torus graph obtained by this connected sum is
nothing but the torus graph (0,A) in Figure 9. Note that 0̃1 is simple and planar,
while 0̃′2 is just planar. With a method similar to that demonstrated in Figure 7,
(0̃′2, Ã′2) can be obtained from the connected sum of (0S,AS) and the simple,
planar graph (0̃2, Ã2) (containing 02), where (0S,AS) is one of the torus graphs
(by taking the appropriate axial functions) in Figure 2. Namely, the torus graph in
Figure 9 can be obtained from the connected sum

(0,A)= (0̃1, Ã1) # (0S,AS) # (0̃2, Ã2).

Here, it is easy to check that 0̃i consists of 0i and the other two facets, say F̃(i)
and F̃ ′(i) (induced from F and F ′ in 0). Because of Figure 10, the number of

F

1

F'

p q

r s

ε α ε'' α

α ε' α

β + a α

Γ

2Γ

β β + c α

γ + b α

γ γ + d α

γ + f α
β + e α

Figure 9. The axial functions around F when |V (F)| ≥ 6, where
ε, ε′, ε′′ = ±1 and a, b, c, d, e, f ∈ Z. Here, F ′ is a facet which
intersects F on pr and qs.
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1

p q

r

s
#

ε α

ε α

β + a α

Γ

2Γ

γ + b α

γ + b α

β + a α

Figure 10. The torus graph (0,A) in Figure 9 splits into two
torus graphs (0̃1, Ã1) (upper) and (0̃′2, Ã′2) (lower). Here, we omit
the axial functions around the vertices p, q, r, s because they are
exactly the same as those in Figure 9.

vertices of F̃(i) and F̃ ′(i) is reduced; in particular, the number of vertices of the
facet F̃(i) induced from the singular facet F is strictly less than 6. If both (0̃1, Ã1)

and (0̃2, Ã2) are 3-connected, then these torus graphs are induced from quasitoric
manifolds, i.e, the statements of Lemma 7.3 hold. Assume that (0̃1, Ã1) is not
3-connected. Then, by the above arguments, there is a singular facet F in (0̃1, Ã1).
If |V (F)| ≥ 6, then (0̃1, Ã1) also decomposes as

(0̃1, Ã1)= (0̃3, Ã3) # (0S′,AS′) # (0̃4, Ã4),

using arguments similar to those Figure 10. Iterating, we may reduce all singular
facets with |V (F)| ≥ 6. More precisely, we may decompose (0,A) in Figure 9 as

(0,A)=
`

#
i=1
{(0i ,Ai ) # (0Si ,ASi ) # (0i+`,Ai+`)},

where (0Si ,ASi ) for i = 1, . . . , ` is a torus graph in Figure 2 and (0h,Ah) for
h = 1, . . . , 2` is a 3-valent simple and planar torus graph such that either

• (0h,Ah) is 3-connected (in this case, induced from a quasitoric manifold), or

• all singular facets F satisfy |V (F)| = 4 or 5.

Assume that the number of vertices in every singular facet of the torus graph
(0,A) is less than or equal to 5. Then, such a torus graph is one of the torus graphs
expressed in Figure 11. However, because 0 is the one-skeleton of a manifold with
faces and is not 3-connected, it is easy to check that there exists a singular facet F ′

such that F ′ ∩ F = {pr, qs} and |V (F ′)| ≥ 6. This gives a contradiction. Hence,
this case does not occur. This establishes Lemma 7.3. �
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1

s

q

p

r

F'

Γ

2Γ

1

s

q

p

r

F'

Γ

2Γ

Figure 11. The singular facets F with |V (F)| = 5 or 4. Here, F ′

is a facet which intersects F on pr and qs.

Consequently, by Lemmas 5.4, 7.2 and 7.3, we have the statement of Theorem 7.1.
Finally, by Theorem 7.1 and the Mayer–Vietoris exact sequence, we also have

the following well-known result.

Corollary 7.4. Let M be a simply connected 6-dimensional torus manifold whose
cohomology ring is generated by the second-degree cohomology. Then, M is a
quasitoric manifold.
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