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FOR THE SUPERCRITICAL HENON EQUATION

ZHONGYUAN LIU AND SHUANGIJIE PENG

This paper is concerned with the Hénon equation

—Au = |y|®u?*®, u>0, in B;(0),
u=0 on dB1(0),

where B (0) is the unit ball in RY (N > 4), p = (N +2)/(N —2) is the critical
Sobolev exponent, « > 0 and & > 0. We show that if ¢ is small enough, this
problem has a positive peak solution which presents a new phenomenon:
the number of its peaks varies with the parameter & at the order ¢~1/V-1
when & — 0%. Moreover, all peaks of the solutions approach the boundary
of B1(0) as & goes to 0.

1. Introduction and main results

We study the existence of positive solutions to a type of nonlinear elliptic problem
whose typical form is the supercritical problem

—Au=|y|%u?*t, u>0, in B1(0),
u=>0 on 0B1(0),

where p = (N +2)/(N —2), a >0, ¢ > 0 and B;(0) is the unit ball in RY (N > 4).
It is well known that the problem

—Au=|y|*u?, u>0, in B;(0),
u=~0 on dB;(0),

was proposed by M. Hénon [1973] when he studied rotating stellar structures and
is hence called the Hénon equation, and it has attracted a lot of interest in recent
years. Ni [1982] first considered (1-2) and proved that it possesses a positive
radial solution when g € (1, (N + 2+ 2a)/(N —2)). Due to the appearance of the
weighted term |y|%, the classical moving plane method in [Gidas et al. 1979] cannot
be applied to problem (1-2). It is natural to ask whether problem (1-2) has nonradial
solutions. The existence of a nonradial solution for 1 < g < p was obtained by

(1-1)

(1-2) {
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Smets, Willem and Su [2002] provided « is large enough. When ¢ = p — ¢, Cao
and Peng [2003] showed that the ground state solution is nonradial and blows up
near the boundary of B1(0) as ¢ — 0. Later on, Peng [2006] constructed multiple
boundary peak solutions for problem (1-2). When g = p, Serra [2005] proved that
problem (1-2) has a nonradial solution provided « is large enough. More recently,
Wei and Yan [2013] showed that there are infinitely many nonradial solutions for
problem (1-2) with o > 0. For other results related to Hénon type problems, see
[Byeon and Wang 2006; 2005; Cao et al. 2009; Hirano 2009; Pistoia and Serra
2007] and the references therein.

On the other hand, using the Pohozaev identity [1965], we know that for g >
% there are no solutions to problem (1-2) in star-shaped domains with respect
to the origin. So it seems more interesting to consider whether there are solutions
for g in the range (323, 42222) However, much less is known about that case.

When g = % ﬁ 82, Glgdiilli and Grossi [2012] showed that there exists one
solution concentrating at y = 0 provided 0 < o < 1. By the results in [Gladiali et al.
2013], the same results still hold when « is not an even integer. In [Li and Peng
2009], the asymptotic behavior of the radial solutions obtained by Ni [1982] was
analyzed as ¢ — 07.

The purpose of this paper is to study the supercritical problem (1-1) and try to
construct solutions whose number of peaks varies with ¢ as ¢ — 0T. In fact, we

will consider the more general problem

(1-3)

—Au=K(lyDu*®, u>0, in B(0),
u=~0 on dB;(0),

where K (r) € C'[0, 1] and K (1) > 0.
Without loss of generality, we can assume that

K1) =1.
The main result of this paper is as follows.

Theorem 1.1. Assume that N > 4. If K (r) satisfies K (1) > 0 and K'(1) > 0, then
there exists ey > 0 such that for € € (0, &g), problem (1-3) has a solution u, whose
number of local maximal points is of the order e ~V/N =V a5 ¢ — 0F. In particular,
problem (1-1) has solutions with a large number of peaks for small & > 0.

Remark 1.2. For the case o = 0, the well-known Pohozaev identity [1965] implies
that (1-1) has no solutions for ¢ > 0. It was also shown in [Ben Ayed et al. 2003]
that problem (1-1) has no single-peak solutions for ¢ small enough. Our results
mean that the weight |y|* has a great influence on the existence of peak solutions
for problem (1-1).



SOLUTIONS FOR THE SUPERCRITICAL HENON EQUATION 117

Let us outline the main idea in the proof of Theorem 1.1. We introduce some
notation first. For x € RN and A > 0, set

A

(N=2)/2
) G

Uea(y) = CN(

It’s well known that Uy A (y) are the only solutions of

—Au=uWNTD/N=2 0, inRV.

Let
k= [8—1/(N—1)]’

where [a] denotes the integer part of a real number a. By the transformation
u(y) > g2/G+W=2)y(1/IN=2)yy and setting B, = B.-1,w-2, we see that (1-3)
becomes

(1-4) {—Au = K("/N D yurte, u >0, in B.(0),

u=~0 on d B, (0).
We denote by PU, 4, the projection of Uy ,, the solution of the problem

APU; pn =AU, n in B,(0),
PU, =0 on 0B, (0).

Sety = (y',y"), y" € RV=2. Define

(1-5)

Hy = {u:u € Hy (B.(0)), uiseveniny,, h=2,3,...,N,

2] 2
u(rCOSG,rsiné,y”):u(rcos<9+%)’rsin(9+ 7]:]>’y//)}.
Let i1 i
xj:(rcos (J; )n,rsin (J; M,O), j=1,...k,

where 0 is the zero vector in RY 2, and let
k
Wra(y) =Y PUy .

j=l1

In what follows, we always assume that

re [8_1/(N_2)(1 _ rogl/(N—l))’ 8_1/(N_2)(1 _ I’]Sl/(N_l))]
for some constants r; > rg > 0, and that
Lo<A=<L

for some constants L > Ly > 0.
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We will prove Theorem 1.1 by verifying the following result.

Theorem 1.3. Under the same assumptions as Theorem 1.1, there exists g9 > 0
such that for € € (0, &g), problem (1-4) has a solution u. of the form

Ug = Wrg,Ag + ¢,

where ¢¢ € Hs, ||pellz> — 0ase — 0T, Lo < A, < Ly and

re € [871/(N72)(1 _ rogl/(Nfl))’ 8*1/(1\’*2)(1 _ rlgl/(N*U)]‘

Remark 1.4. In our result, the number of peaks k of the solution u, varies with the
parameter ¢ at the order e ~'/¥~=1 when & — 0%. This is a new phenomenon for
the Hénon equation and is in contrast to the subcritical or critical case. For example,
in [Peng 2006], where ¢ < 0, it was proved that for any prescribed integer k > 0,
there exists g > 0 such that for any ¢ € (—¢g, 0), problem (1-4) has a solution
which has exactly k peaks.

Remark 1.5. The results of this paper can be considered as a perturbation of those
in [Wei and Yan 2013]. In fact the number of bubbles & can be taken to be

k — [5—1/(1\/—2)]

for any |e] < § < 1. When ¢ = 0, we recover Wei and Yan’s result.

We use a reduction argument to prove Theorem 1.3. More precisely, we follow
the method in [Wei and Yan 2010b; 2013] to construct peak solutions for problem
(1-4). In those papers, where no parameter appears in the considered problem,
Wei and Yan used k, the number of peaks of the solutions, as the parameter to
construct infinitely many positive peak solutions. This idea is very novel and
effective for obtaining infinitely many solutions to several types of problems; see
[Peng and Wang 2013; Wei and Yan 2010a; 2011]. Unlike the situation in [Wei
and Yan 2010b; 2013], here we deal with the supercritical case; we cannot use
the variational argument. Instead, we will use the Fredholm theory of compact
operators in a suitable Banach space and will employ a direct technique to eliminate
the Lagrange multipliers caused from the reduction procedure. Another aspect that
differs from [Wei and Yan 2010b; 2013] is that, as we mentioned before, in our
proof, we use ¢ as the parameter in the construction of peak solutions, but in this
paper the number of peaks depends on the parameter €. As a final remark, we point
out that for « = 0, del Pino, Felmer and Musso [2003] have constructed two-peaked
solutions for problem (1-1) in a special domain. Hence, we believe that the effect of
the weight |y|* on the existence of solutions is something like that of the domain.

This paper has the following structure. In Section 2, we carry out the finite-
dimensional reduction procedure. The main results will be proved in Section 3.
We put the energy expansion and some basic estimates used in Sections 2 and 3 in
Appendices A and B.
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2. Finite-dimensional reduction

In this section, we perform a finite-dimensional reduction. Let

k 1 -1
(2-1) lull« = sup ( ) lu(y)l

yeB. O\ = (1+y — x;[)2 (V=T
and
k | .
@2 o= sup ( ) .
yeB. O\ (1+]y _xl.|)%(N+2)+f

where 7 = (N —2)/(N —1). We denote by L3° and LS the function spaces defined

*
on B,(0) with finite [|-||. and |||+« norm, respectively.
Let
_9PU,A
]

_3PUya

i1 i,2
oA

First, we consider the linear problem

| B 2 k _ )
—Ap—(p+e)K (V2 Y)W o =h+ Y ¢; > UL Z j in B.(0),
(2-3) i =
beH, (X ULNZig)=0, I=1.2

i=1

for some numbers c;, where

(u, v) = / uv.
B.(0)

Lemma 2.1. Assume there is a sequence ¢ = &, — 0 such that ¢, solves (2-3) for
h =he. If ||he |+« goes to zero as € goes to zero, so does ||¢e|| +-

Proof. The proof of this lemma is very similar to the proof of Lemma 2.1 in [Wei
and Yan 2013].

We argue by contradiction. Suppose that there are ¢ — 0, h = h,, A, € [Lo, L]
and r, € [e7 VW= (1 — ppe/N=Dy o=/ WN=2) (1 — p e1/(N=D)] such that ¢, solves
2-3)forh=h,, A = A, r =r, with ||h|l+x — 0 and ||¢. ||+ = ¢ > 0. Without
loss of generality, we may assume that ||¢.| . = 1.

Now rewrite (2-3) in the following integral form:

¢:(y) = (p+¢) / Ge(y. K (e /N2y WP T ()6 (2) dz
B,(0)

2 k
[ Goa(h@+ Loy 20Ul o) d
B, (0)

j=1 "=l
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By Lemma B.3, we find

‘(pm f Ge(y, DK (VN2 hyW! M ()¢ (2) dz
B.(0)

1 _ _ _
<(pte) | ——5KE VDWW @) ¢ (2] dz
B0 |y —zl
k

1 —14
< Cllgell f —— W’
o) ly—zN-2 A Z

j=1
1
< Cligell. Z

P 1(1+|Z_x |)2(N—2)+‘L’+17'

1
1 dZ
(1+ |z —x;[)2V-2+r

It follows from Lemma B.2 that

1
/ Ge(y, 2he(2) dz 5/ — v lhe(DNdz
B.(0) B0 |y —2l
k 1
< Clihellan Y ;
o (1 + |Z _xj|)§(N—2)+t

and

1

(14 |z — x|Vt

k
f Ge(y,2) ) Zi,z(z)U,f;;\l(z) dz
B.(0)

j=1

Next, we estimate ¢;, £ = 1, 2. Multiplying (2-3) by Z; ; and integrating, we obtain
that ¢, satisfies

2k
@4) Y S NU N Ziv. Zi e

(=1 i=1
— — —1
=(—Ap: — (p+&)K (VD |y)WW T e, Z14) = (he, Z1,0).

It follows from Lemma B.1 that

1
hg,Z <C h
I{ 1,6)] [ ||**/ 1+ 1|)N ) E

T [z VEDET
< Cllhe -
On the other hand, using Lemma B.3, we obtain
(~Age = (p+ KNP yDW T e, 21)

=(~AZ1 — (p+KE/N DWWz, ¢0)
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_ -1
=(—AZy—pk (""" 2)|}’|)WfA Zie, de)
_ —1 -1
+p(KE N2y W =W TTZ 0, ¢e)
— -1
—e(K@E NP |y)WWETT) 214, pe)
= o([lpe1+)-

However, there is a constant ¢/ > 0 such that

>~

Z (UL N Zis, Z1g) = (¢ +0(1)bye.

Hence we find from (2-4) that

ce = 0(lPells) + O (gl s).-

Therefore,
k 1
El (14 Iy —x; 2 V24047
(2-5) [Bells < o(1) 4 [172¢ flx + —
1
Z

LA+ ]y —x; rN-DT
Noting that ||¢. |« = 1, we obtain from (2-5) that there is R > 0 such that

(2-6) P D)l Lo (Brx;)) = a >0  for some i.

Furthermore, for this particular i, the translated version ¢, (y) = ¢, (y—x;) converges
uniformly on any compact set to a solution u of

(2-7) —Au —pUpA u=0 inR"Y

for some A € [Lg, L1]. Since u is perpendicular to the kernel of (2-7), we have
u = 0, which contradicts ||u(y)|lz=Bg ) = a > 0. ([

The following proposition is a direct consequence of combining Proposition 4.1
in [del Pino et al. 2003] with Lemma 2.1.

Proposition 2.2. There exists g9 > 0 and a constant C > 0 such that for all ¢ < &g

and all hy € LS, problem (2-3) has a unique solution ¢, = L (h,) € LY°. Moreover,

(2-8) ILe(he)lls = Cllhellsn,  lcel < Clihg [l
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In order to prove the main theorem, we will prove that problem (1-4) admits
a solution of the form u = W, 5 4+ ¢, where W, , = Zl;zl PUy; A and ¢ € H; is
small and satisfies (U! "\ Ziy, ¢) =0,i =1,2,....k, [ =1,2.

We consider the perturbation problem

Ul A Zi in B.(0),
1

) 2
AW, A+¢) = K (V2 |y)(Wra+@)P T+ ¢ .
(2_9) =1 i

k
ver, (X UllZig)=0. e=12
i=1

k

Proposition 2.3. There is ey > 0 such that for any ¢ < gy, any A € [Lg, L], and
_ 1 1 1 e
relem 2 (1 —roe¥1), e N2 (1 —revT))],
problem (2-9) has a unique solution ¢ = ¢, 5 satisfying
ol < CeGHO/IN=2 101 < CeGFo)/(N=-2),

where o > 0 is a small constant.

Let

Ne(@) = K (72 [y ) (Wyoa + )7 = W)L = (p+ )WL 09,

k
le=K(em=2|y) W/ =>"Ul 4.
j=1

Then problem (2-9) can be written as

1 —
—~Ap— (p+eK (T YW

2 k
210 = Ne(@)+ 1L+ Y ce XU\ Ziy  in B,(0),
(2-10) PILDIS

k
peHs, (X UINZing)=0 t=12
i=1
We will use the contraction mapping theorem to prove that problem (2-9) is

uniquely solvable under the condition that ||¢ ||, is small enough. So we need to
estimate N, (¢) and [,.

Lemma 2.4. If N > 4, then
[ Ne (@) |4 < Cllgp|mintr+e2),

Proof. We have
Clg|P*, N =7,

N, < _
'(@'{aWQ”&+WWﬂ,N=¢ia



SOLUTIONS FOR THE SUPERCRITICAL HENON EQUATION 123

Firstly, we consider N > 7. By the Holder inequality, we have

k 1 p+te
INe(p)| < CII¢>IIP+€( )
£ * ; a +|y_xj|)%(N—2)+r

£ 1
< CII¢II£+8(Z T )

st (1 + |y _xj|)2(N+2)+t

( k 1 p+e 1
(X2 — o)
o (1+|y_xj|)m(z(N—2)+T)—m(§(N+2)+T)

k

1
scncbnf“(z ; )

o (L y—x Ve

Thus, the result follows.
Suppose that N =4, 5, 6. Using the fact that N —2 > %(N —2)+ 1, we get

) 2k: p—2+e Xk: 1 2
|Ns(¢)|§C||¢||*< > ( TN- )
=~ (T j

- (1+|y—xj|)2(N 2)+t

k 1
+cn¢||§+5<2 T )

o (1+]y _xj|)2(N+2)+r

< Clol2 (é 1 )W

(L4 ]y = x; IVt

k
1
C pte
+ ||¢”* (2_: +|y—x |)2(N+2)+r>

§C||¢||i<2k: 1 T )

A +ly - xj|)2(N+2)Jrr

So we have proved that for N > 4,

[N () 14 < Cllgp||intPHe2), O

Lemma 2.5. Assume thatr € [S_ﬁ(l — roeﬁ), e‘ﬁ(l — rleﬁ)]. If N > 4,
then
e ] s <Cs( +0)/(N=2)

Proof. Define

" / xj T
Qi=1y:y=0"y") € Bo-1/w-2(0), - > COs — ¢.
| | |x;] k
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We have
k

o= K&/ WSL = W)+ KOy (wh - 3 PUY L)
j=1

k
+K @2 PUl, Z A)+Z G (K@ 2n - 1)

j=1
= Jo+ 1+ o+ /3.

Estimate of Jy.

[Jol < CeW/5 [In W, 5|
k

1 P&
SC€<;<1+|y—x,-|)fv—2) "L - x|)N2

_4

1
e el
ch N-2_ N=2
= A+ ly =2 D2V (1 4y ) PR

k

1
SCE,‘
— (1+|y X; |)2(N+2)+t

Estimate of Ji. From the symmetry, we can assume that y € €2;. Then,
ly—xjl>ly—xil, yeQi, j#L

Firstly, we claim

1 C
(2-11) < . yeQ, j#L
L+ 1y —x;| = |xj —x1]

In fact, if [y — x1] < 5lx1 —x;1, then [y — x;| = 3 |x; —xi]. If [y — x1| = 51x; — xi,
then [y —x;[ > [y — x| > %Ixj —xq/.
It’s easy to verify that

k

k
1 1 1 P
|1l <C E —l—C( E ) .
Dy =D & Ay —x DV 2 T\ Aty =DV

Using (2-11), taking 1 < o < N — 2, we obtain for y € 1,

1 1 1 1
<C ,
I+ ly—xD* A+ 1y —x;DV=2 7~ (L4 |y —x DVF2e |x; — xq e

J#L
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Take o > max{%(N -1, l} satisfying N +2 — o > %(N+2) + 7. Then

< kel/(N=2)ye
(I+]y —xiD? ]2:; (I+y—x;DN=2— (1+|y—x1|)N+2*Q( )

_ ¢ g0/ (N-DN-2) _ ¢ p(40)/(N=2).
(L+ |y —x PN+ o (1+ |y —x;|) 2 V+D+7

By the Holder inequality, we find

(; (1+|y—xj|>N—2)

4
1 k

> : )"
L Ly —x e (, = (1 ly— ) (5 43)

M»

. N+2(N-2 N-2 N—-1.
>
Noticing that N 2( 5 TN 2) > if N > 4, we deduce that

k

1 p
(;(Hly—le)’v‘z)
k I
1 N-2 1
SC(Z N+2(N ) Z
j=2 |-xj_x1| 2

2 Ty -V

k
N+2 1
< CkeV/N-2y 353 (%2~
;(Hly—x Ve

k
< CeF/ N 3
j=1

1
(1 + |y —X; |)2(N+2)+t

Hence, we conclude that if N > 4,

[ [l < CeGFOV/N=D),

Estimate of J,. Let H(y, x) be the regular part of the Green function for —A in
B1(0) with the zero boundary condition. Let )Ej be the reflection point of x; with
respect to d B1(0). Then

Ce C
|y INZ_(1+|y xjPN=2

eH(y,x /)
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By direct calculation, we have

k
Ce
hl<C —  _HG,X;
FAE ,221 G o)

k
C
= ————(eH (), X))’
;(1+|)’—xj|)4+(1 YIN=-2) j

k
C
y/(N=1)
=Ce Z (1+y _xj|)4+(l—y)(N—2)

< Celbor/i- 2)2 c_ ,
= (1+|y Xj|)7(N+2)+T

where y > 0 satisfies y (N —2)/(N —1) > L and 4+ (1 —y)(N =2) = S(N+2) + 1.

Estimate of J3. For y € Qp and j > 1, using (2-11), we find

c 1

(1 |y —x )2 VFDFT |, ) [T NHD =T

UP

x,A

Thus, we have

k k
1
K ("N 2y = 1)U] 4
Z:;( ) (1+|y x1|)2(N+2)+rJ2:;|xJ xl|2(N+2)r
C (ksl/(N—2))%(N+2)—r

<
T (I ly—xy e

< ¢ (3 F0)/(N=2)
T (L ly —xg VD

If y e 2 and ‘|y| — 8‘1/(N_2)| > 86~ 1V/(N=2) wwhere § > 0 is a fixed constant, then

Iyl = lxtl] = |1yl = e V2] = ||x)| —e VN2 | > L5e=l/ V=D,
So, we obtain
UL A (KNP =1)] < ¢ BWV42)—1)/(N=2)

T A+ |y —xg 2NV
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If y € Qand ||y| —e VN2 | <8671/ N=2), then

K ("M y)) 1] < C[e/ M2y 1]
= Ce N2 |yl = x|+ || — eV V))
< CeV/ N ||yl = x|+ CeV/ND
< CS]/(N—2)||y| _ IX1|| +C8(%+o)/(N—2)’

and
lyl = 21| < [yl | ==YV 4 [xy] — e~ VN2 | < 286~ 1/N=2)
Since
1
- 3+
e/ WN=D 1y — |xq]| < Colbto N -2) Nyl = ]2
(1+|y—X1|)N+2 o (1+|y_x1|)1\l+2
Ce(G+0)/(N-2) Ce3+0)/(N=2)
S 3 S 1 )
A+ ly—xiPVT270 (A 4|y —x )2 N2+
we get

Ce(3+o)/(N=2)

Ul A(K@EN 2y —1)| < :
Ol o )|‘(1+|y—x1|>%<N+2>+f

As a result, we deduce
(13l < Ce(%JFJ)/(N—z)' -

Proof of Proposition 2.3. Recall that
k=[N, N>4.
Let

E = {u €HsNLY : lulls < g1/CIN=2) 4 q
fB*(O)U)Z,_AIZi,ZM =0,i=1,....k £=1,2}.

Then, (2-10) is equivalent to
¢ = Ae(@) = L (Ne (@) + Le(le),

where L, is defined in Proposition 2.2. We will prove that A, is a contraction map
from E to E. First, A,(E) C E because

[Ae (@)l < CINe (@) llsx + Cllle [l

< C|lp|I™PHe2) 4 ||l [l < CeztO/ (V=D < g1/QN-D)
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Next we write
|Ac(P1) — Ac(P2) I« = [|Le(Ne (1)) — Le(Ne(@2))[l5 < ClINe (1) — Ne(2) [l

If N > 7, then
INL(t)| < Cle]P~ 1.

Thus, we have

[Ng(@1) — Ne(d2)]
< C(p1 1P + | |P 714 1 — o

k 1 p+e
<CUG I + 12l ) 191 — ¢all ( )
1l 2 [l 1 2 1l % ;(1+|y_x |)2(N 2)+t

1
1+ |y_x |)2(N+2)+1’

k
< C(lgallZ™"* + l1gallZ~ ) 1 — halls Z

As a consequence,

||As(¢l) - As(¢2)”* < C”Na(d)l) - N£(¢2)”**
<CIt 127 + 112127 g1 — doll« < 511 — 2l

For N =4,5, 6,
INJ(D)| < CWP e+ Cle P e,

So we have

|Ne($1) — Ne(¢)]
< C>11 1771 F + 1627101 — ol + CUpt | + 12D W/ 11 — o]

—l+4e —l+e - 1 rre
< CUpiZ* + lgall? )”“i"_¢2"*<§(1+|y_xj|);<N2>+f>
prte [ 1 ’
+CIg1l+ 20101161 — dall W/ (; iy _le)i(N_z)H)
1

< Cp1ll + 1621l lp1 — ol Z

p= ( —|—|y—xj|)%(N+2)+f'

In either case, we see that A, is a contraction map. By the contraction mapping
theorem, there is a unique ¢ € E such that

¢ =Ac(P).
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Moreover, it follows from Proposition 2.2 that

I$1lx < Clilellss + ClINe (@) llss < Cllle s + C || minPFE2

which implies

o]l < Cet/N=D 0| < Celato)/ (V=D .

3. Proof of the main results

In this section, we will choose (r, A) such that W, 5 + ¢, A is a solution of (1-4),
where ¢, A is the map obtained in Proposition 2.3.

Lemma 3.1. If (r, A) satisfies

(3-1)
W, . oW,
f (V(Wr,A G n)V—2 — K (e /Ny (W p +¢r,A)P+€—A) =0,
B.(0) ar or
(3-2)
aw, _ AW,
/ (V(W”A )V = K N2y ) (W +¢,,A>P+8—’A> =0,
B.(0) oA oA

then Wy 5 + ¢, A is a solution of (1-4).
Proof. It follows from Proposition 2.3 that if (3-1) and (3-2) hold, then by symmetry,

_10PU;; o OW, A _10PU A OW, 5
3-3 Ul 2t i = 0= (U] Lt 02,
G e < WA e gy C\TATHA 0 TaA
which implies that c; = ¢, = 0. Hence W, 5 + ¢, 4 is a solution of (1-4). O

In the rest of this section, we need to solve (3-1) and (3-2).

Proposition 3.2. Equations (3-1) and (3-2) are equivalent to

- = k - -
H G, ) G, X1) (140)/(N-2)
i=2
and
- - k _ _
Bye 9H (X1, x1) Bye 3G(X;, X1) B
(3_5) AN-2 od +B3K/(1)+ZAN_2 9d +0(80/(N 2)):0,
i=2

respectively, where d =1 —eV/WN=2y "B\, B, and B3 are the same positive constants
as in Proposition A.1 and o > 0 is a small constant.

Proof. Here we prove only the first one. The second can be proved similarly by
noting that 3/dd = —s~"/ V=25 /3r.
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First, we see that

AW, AW
/ V(W +¢ra)V it =/ VW, AVt
B.(0) A B.(0) A

and
ow,
/ K (/N D1y))(Wyp + ¢ p)P e 20
B.(0) 8A
— avvr,A
= [ KR pypw e
B, (0) 8A

8WFA

¢rA

B.(0) "

F(pte) / K(eVN-2 P
B.(0) '

On the other hand, noticing that ¢, » € E, we have

aWI’A

_ —1
/ K /W2yt ea
B.(0)

k
_ — 8”rA laU
— K 81/(N 2) “7[) 1+e s Up s
/B (0) ( |y|) r,A aA ]_1 Xj, A aA ¢ A

+Z/ (K™D yp —1)ur )

B,.(0)

_ 14 OWr A _10Ux; A
—k K 81/(N 2) wP 1+¢ LA U’ i
/Ql ( [y rA IA < AT A Or A

+k/ (K21 - yr )} g
o IA

IA YA A

k
B e OWia U A
K(Sl/(N 2)|y|)(WfAl+8—f_ZUP. 1 X ¢F,A
Q) i
j=1

< [ (00— P +U; gzm+z ) ieal
Q)

_ oW, A
0 W nw, W
+ (8 /;21 rA nwea A ¢r,A

< Cel/V-D(0)
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and

/(K(e”w Ay = UL =2 a
Q)

- K (/N2 — 1\UP A g
q /||y|_gm~z>|§gw<~z»( (&Pl — UL g

+ K (gV/(N=2) —1Nu?* .
‘/||y|_g1/<N2>|281/(2<N2»( ( D = 1)Uz A A Or.a

< Cel/N=2)(1+0)

So, we have proved

Lo
B..(0)

oWy A OWy A
=f (vwr,Av — KRy W s

_ W,
A K@ Ny (Wya +¢r,A>P+€a—[’\'A>

) + O(kg(]—Hf)/(N—Z))’

and the result follows from Proposition A.1. O

Proof of Theorem 1.3. Note (see [Wei and Yan 2013]) that

H(xy, x1) = (1+0(d))

2N—2dN—2

aop d 1 d
_]_+0 m _kN ZG(XJ,X1)<J—+0 ]N N2

and

where a; > ag > 0. Hence, we find that there is a constant B4 > 0 such that

B, 1
ZG(xj,xl)_kN 2<|x = 2+0(kN l)+0(d)> = B4k 2+ O (KN 2d).
j=2

Consequently, (3-4) and (3-5) are equivalent to

A AxkN =2
@-0) B AN_11;N—2 j\N—l © 4+ 0/ ND) =
and
Aze o/(N=2)
(3—7) —ANTdN_l+A4+O(8 )=0,

respectively, for positive constants A;, i = 1,2, 3, 4. Recall thatd =1 — ¢!/ =2y,
Define n = dk. Thus, (3-6) and (3-7) read

Aq Ay

— /(N=2)
(3-8) AvTva o HoE” ) =
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and
(3-9) —L-i-A +0( o/(N—Z))_O
AN-ZyN—T T4 & -
Let
A A
SHiln, A) = TAN-TyN-2 T AN
and

A3
f2(777 A) = _AN_ZnN_l +A4

It is easy to check that f; =0 and f, = 0 have a unique solution

1 1

(A1>N2 A ( Aj )NZ

Nn=\—— s 0= .
Az Agnd ™!

On the other hand, we have

af1(no, Ao) _0 df2(no, Ao) -

9 0’
A on
and
af1(no, Ao) df2(no, Ao)
- >0, —>0.
an A

Hence the linear operator of f; =0 and f, = 0 at (19, Ap) is invertible. Therefore,
(3-8) and (3-9) have a solution near (19, Ag). U

Appendix A: Energy expansion

Here and in Appendix B, we assume that

2(j—1 2(j—1
xj:<rcos (Jk )n,rsin (]k )ﬂ,0>, j=1,...,k,

1 [ U I 1 . . _
where r € [8 N2(1—rpe¥-1),e" 2(1—rigV-1 )] and 0 is the zero vector in RV ~2.
Let |
)Ej = 8mxj'.

Let G (x, y) be the Green function of —A in B (0) with the Dirichlet boundary and
let H(x, y) be the regular part of the Green function.
Recall that
1

k= [e_ﬁ]

and

k
Wea(y) = PUga(),
j=1
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where PU, , is the solution of (1-5). Moreover,

eH(%;, ) gN/(N=2)
(A-1) Gx; A (0) =Ux; a(y) = PUx; A (y) = W +0 v )

where d =1 — |%;| =1 —e/N=D|x;].

Proposition A.1. We have

aw, aw,
/ (VWr,Av L K(e”<N—2>|y|>W,”X€—’*A>
B..(0) JIA ’ 0A

_ _ k - _
— kB, <_8H(x1, x1) . Z eG(x;, x1) n 0(8(1+o)/(N—2)))’

ANfl ANfl
i=2
and
oW, ow,
/ (vwr,Av ”A—K(e”<N—2>|y|>W,”X€—”A>
B..(0) ar ’ ar

— BgK’(l)gl/(N_z)

k _
—I—Z Bje 8G(X[,X1)+0(8(1+a)/(N2))>’

—k Bze 8H()21,)21)
\ANZ gy

N—2
P A ar

where By, By and B3 are some positive constants.

Proof. The proof is quite standard now. Here we only prove the first equation. The
other one can be obtained similarly.

Using symmetry, we find

aA oA

oPU aw,
_ p—1 x,A _ 1/(N=2) p+e r,A
k( Zf*(o) Ul a3 PUs.a /sle(g DW= )

aw, aw,
I:= f (vwr,Av ol —K(s‘/<N—2>|y|)Wf,’X€—“A)
B..(0)

It is easy to check that for y € Q,
d ad d
P = Ut b (p+ 1)8—<PU” A Z PUs.n)

AN "N T A
1
(p+1) 2(p+D
+0<U;1§’\ (ijUx,.,A)2 .
1=
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Thus, we have

8WF,A
oA
p+1

ow
:/ K(Sl/(N—Z)lyDa;I’\A_{_O(g/ W,{’jlan,,A>
Q Q)

a
_ 1/(N=2) p+l1
_/QIK(S |y|)8APU’“"A

(p+1) / K (/D Wy
Q)

_ el k
+(p+ D) | K@EVV 2)IyI)M(I’UfI,A > PUx;,A)
Q] l=2

1 k 3(p+1)
+ 0(/ U2 (L Ua) ) + o(s/ w? ! In W,,A).
Q) i=2 Q)

Note that for y € Q1, |y — x;| > |y — x1]. Using (2-11), we see that for t € (1, N —2),

k k 1

C
U, A < .
2 Usn= (14 [y —x N2+ 2 x; — x1 !

i=2 i=2

If we take ¢ close to N — 2, then

k 1
/ U%(p+1)( S U, A>2(”+‘) — O((ke"/N-DYNI/(N-D)) _ 0 (o(140)/(N-2)y
Q

X1, A
i=2
Moreover, it is easy to show that
s/ WP W, , = 0e).
Q

As a result, we obtain

OPUy A

I=k(- [ KE/V2yppPUP
(/Ql (¢ YDPUy A=

oPU,,
=Y 1/(V-2) p PUxn
/;ZK(S |y|)Ple’A A
PUy, A

_ 0
+p2/§2(1—K(81/(N 21yD)PUL AT PUy

_10PU
1 x1,A (140)/(N=2)
+p§ / PUP ——=22PU, A+ O(e )).
Joner Mt aA ’
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On the other hand,

_ OPU, A
| ke -2yppup B
Q)

AN

IPU, A B IPU, A
_ [ pur $+/ Ke/N-210n ) py?  2PUsa
/Ql xl,A aA Ql( (8 |y|) ) XI,A aA
IPU
:/ PUL A= "
Q

oPU
+/ (K(|x:1)) = 1)PUL A—XW\+0(8(1+0)/(N—2))
Q 1 aA
APU,, A

0 (140)/(N-2)
an T OC )

9PU
:f PU? A—X“A—K/(l)df PU! ,
Q 0A Q ’

0Py, A AUy, A _
_ _ p XA p X1, (1+0)/(N=2)
- Llle,A IA p\/S21UXI’A IA ¢x1,A+0(8 7 )

BieH (xy, x1)
T AN

and

OPU, A
K 81/(N72) PUp Xis
/Ql ( hPUL P
dPU,, o

dPUy A _
=/ PU! \——1= +/Q(K(51/(N yh-1)PUL , oA
1

i a(lb)c-A —
= Uu? A P A L g/ (N=D)
/Ql A /Q naTgp T OC :

B1eG(x;, x1) _
— _TJI + 0 e/ (N-2)).

Other terms can be estimated similarly. Thus, the result follows. ([

Appendix B: Basic estimates

In this section, we will give some basic estimates used in the reduction procedure.
We will use the same constant C > 0 to denote the different constants.

Lemma B.1. Ler g;; = 1/((1 + |y —x;D¥(1 + |y —xj|)’3)f0r each fixed i and j,
i # j,wherea > 1and B > 1 are two constants. Then for any 0 < o < min(«, 8),
there is a constant C > 0 such that

1 1
. < + .
S0 = <<1 Ty —xD (A —xj|>a+ﬂ—ff)
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Lemma B.2. For any constant 0 < o < N — 2, there is a constant C > 0 such that

1 1
/ dz < .
RV [y —z|N 72 (14 [z (L4 |y
The proofs of the above two lemmas can be found in [Wei and Yan 2010b].

Lemma B.3. Suppose that ¢ > 0 and N > 4. Then there is a small % > 0 such that

1 1

p 1+4¢
— 3 (2) dz
/[RN ly —zIN- 2V JX; (14 |z —x;])2 V-2t

oy
o (1 lz— xRNty

Proof. This is similar to the proof of Lemma B.3 in [Wei and Yan 2010b]. So we
just sketch it. Note that

k
1
Wea(x) <C Y RN
j=1

As in [Wei and Yan 2010b], for y € ©2; we have W,
where 0 < 71 < %(N —2). Thus,

C
<
A8 = T

C

—1+
W}f/\ E(Z) = 47y .
(1 + |Z _x1|)4—m+(N—2—T1)8

By virtue of Lemma B.1, for y € 2] we get

1
P 14+¢
(2)
Zl (1+ |z—x |)2(N 2)+1
C
S 1
(I+1z—x1])?2
B ¢ 1
4t T -
j=2 (1+]z —x1|)4—Nf'z+(N—2—n)s (1+|z _le)z(N D+t
C
S 4t
(I+1z —X1|)%(N+6)+I_N7,12+(N—2—rl)a
k
- ¢ !
(14 |z — xp ) N HO+T=FHm (V2= e = lxj — X"
C
=

(14 |z — x; )2 NFOFT—FHu+(V-2-)e "
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Thus, we can obtain

1 1
p 1+e
[, it >Z e

1 C
</ N+2 dz
o [y =2V (1 4 |z = xy ) 2N FOFT—FE (N =2—m)e

C
(1+z—x |)2(N+2)+1—Mt1+(N 2—1)e

<

As a result, for 7y satisfying 2 — (N +2)/(N —2)7; > 0, we find that

1 1
p 1+e
/RN PEELMC Z T

1
_ p I+e
Z/ |N W ()Z (N— 2)+rdZ

j=1 (1+|Z—X |)2

1 _N+2
o1 (1 |Z _xl|)2(N+2)+T ‘[1+(N 2— ‘L’])S

k 1
O
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