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UNIQUENESS RESULT ON NONNEGATIVE SOLUTIONS
OF A LARGE CLASS OF DIFFERENTIAL INEQUALITIES

ON RIEMANNIAN MANIFOLDS

YUHUA SUN

We consider a large class of differential inequalities on complete connected
Riemannian manifolds and provide a sufficient condition in terms of vol-
ume growth for the uniqueness of nonnegative solutions to the differential
inequalities.

1. Introduction

The purpose of this paper is to give a sufficient condition for the uniqueness of
nonnegative solutions to a large class of the differential inequalities

(1-1) Lu+ V (x)uσ ≤ 0

on a connected geodesically complete noncompact N-dimensional Riemannian
manifold MN with N ≥ 2. Here the operator L is defined by

(1-2) Lu = div(A(x, u,∇u)),

where A(x, η, ξ) = (Ai (x, η, ξ)) is a vector field on MN , and for i = 1, . . . , N
the Ai (x, η, ξ) are Carathéodorian functions defined on MN

×[0,∞)× TMN , and
TMN is the tangent bundle of MN . The function V is positive, measurable, and
locally integrable on MN .

Let m ≥ 1 be an arbitrary given number. We say that the operator L belongs to
the class A(m) if there exists a positive constant C such that, for almost all x ∈ MN ,
all η ∈ [0,∞), and all ξ, ζ ∈ Tx MN , the following conditions hold:

(1-3)
{
(A(x, η, ξ), ξ)≥ 0,
|(A(x, η, ξ), ζ )| ≤ C(A(x, η, ξ), ξ)

m−1
m |ζ |,

where ( · , · ) is the inner product given by the Riemannian metric, and |ζ | is the
norm of ζ in Tx MN .
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The definition of such a class operator A(m) was first introduced by Mı̄klyukov
[1979; 1980]. Actually, the operators of such a class are quite common. Let us
mention some examples:

(1) m-Laplacian operator:

(1-4) L1u = div(|∇u|m−2
∇u), m > 1.

(2) Mean curvature type operators:

(1-5) L2u = div
(
|∇u|m−2

∇u
√

1+ |∇u|m

)
, m > 1.

and

(1-6) L3u = div
(
|∇u|m−2

∇u√
1+ |∇u|2

)
, m > 1.

(3) Nonlinear operator:

(1-7) L4u = div(a(x, u,∇u)|∇u|m−2
∇u), m > 1.

The definition of L in (1-3) is less restrictive than the one defined by

(1-8) |A(x, η, ξ)| ≤ C1|ξ |
m−1, |(A(x, η, ξ), ξ)| ≥ C2|ξ |

m,

for some positive constants C1, C2. For example, by choosing a(x, η, ξ) of (1-7)
appropriately, the operator L4 belongs to A(m) but does not necessarily satisfy (1-8).

Generally speaking, the operator Lu defined by (1-3) may meanwhile belong
to several classes denoted by A(m1), . . . , A(mk), where m1 ≤ m2 ≤ · · · ≤ mk . For
example, the operators of L2, L3 belong to both A(m− 1) and A(m). Throughout
the paper, when we say that L belongs to the class of A(m), we always mean m is
the largest value mk .

The purpose of this paper is to provide a very simple geometric condition of
volume growth on MN to suffice that the only nonnegative solution u of (1-1)
is identically zero. Let us emphasize that there is no curvature assumption on
manifolds throughout the paper.

First, let us give our setting on manifolds. Let MN be a connected geodesically
complete noncompact Riemannian manifold. Denote by µ the Riemannian measure,
and by B(x, r) the geodesic ball on MN of radius r centered at x ∈ MN . Given
that d( · , · ) is the geodesic distance and that x0 is a reference point on M , define
Br := B(x0, r) for simplicity, where r = d(x, x0). Assume also throughout the
paper that V (x) ∈ L∞loc(M

N ).
The problem of investigating the uniqueness of nonnegative solutions has attracted

a lot of attention, especially in the Euclidean space. For example, if MN
=RN with

N ≥ 2, in the case of V (x)≡ 1, the problem (1-1) was systematically investigated by
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Kurta [1999]. By using the nonlinear capacity arguments, he obtained nonexistence
results concerning different differential inequalities. For a specific operator L ,
let us recommend a series of papers of Mitidieri and Pokhozhaev [1998; 1999;
2001] for a more comprehensive description. Related problems have also been
studied in massive literatures; see [Caristi et al. 2008; Caristi and Mitidieri 1997;
D’Ambrosio 2009; D’Ambrosio and Mitidieri 2010; Ni and Serrin 1985; 1986] and
the references therein.

Let us turn to the results in the Riemannian manifolds setting. The celebrated
idea of studying the uniqueness of nonnegative solutions in terms of the volume of
the geodesic ball was due to Cheng and Yau [1975]. They obtained the following
marvelous result: if the volume estimate

µ(Br )≤ Cr2

holds for all large enough r , then any positive solution to 1u ≤ 0 is identically
constant.

The amazing point of Cheng and Yau’s result is that there is no assumption
on either curvature or the behavior of the solution near infinity, only in terms of
volume growth.

Very recently, this idea was used and developed in [Grigor’yan and Kondratiev
2010; Grigor’yan and Sun 2014; Sun 2014] to investigate the differential inequality
of the form

(1-9) div(A(x)∇u)+ V (x)uσ ≤ 0,

where σ > 1. Particularly, when A(x)= Id and V (x)= 1, (1-9) becomes

(1-10) 1u+ uσ ≤ 0.

In [Grigor’yan and Sun 2014] it is proved that if

µ(Br )≤ Cr
2σ
σ−1 ln

1
σ−1 r

holds for all large enough r , then the only nonnegative solution of (1-10) is identi-
cally zero. Moreover, the exponents 2σ/(σ −1) and 1/(σ −1) are sharp and cannot
be relaxed.

Let us define the weak nonnegative solution of (1-1). For convenience, we
introduce the notation

(1-11) Au = (A(x, u,∇u),∇u)

and

(1-12) W 1,m
loc (M

N ) := { f | f ∈ Lm
loc(M

N ), ∇ f ∈ Lm
loc(M

N )},
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and denote by W 1,m
c (MN ) the subspace of W 1,m

loc (M
N ) of functions with compact

support.

Definition 1.1. A function u on MN is called a weak nonnegative solution of
(1-1) if u ∈ W 1,m

loc (M
N ) and Au ∈ L1

loc(M
N ) and if, for any nonnegative function

ψ ∈W 1,m
c (MN ), the following inequality holds:

(1-13) −

∫
MN
(A(x, u,∇u),∇ψ) dµ+

∫
MN

V (x)uσψ dµ≤ 0,

where ( · , · ) is the inner product in Tx(MN ) given by a Riemannian metric.

Remark 1.2. If u is a weak nonnegative solution of (1-1), and the operator L
belongs to the class A(m), we know∫

MN
(A(x, u,∇u),∇ψ) dµ≤ C

∫
MN
|∇ψ |A

m−1
m

u dµ

≤ C
(∫

MN
|∇ψ |m dµ

)1
m
(∫

supp(ψ)
Au dµ

)m−1
m

<∞.

Hence, by the definition of the solution, we know the second integral in (1-13) is
bounded.

Define

(1-14) p =
mσ

σ −m+ 1
, q =

m− 1
σ −m+ 1

,

and introduce a new measure ν defined by

(1-15) dν = V−
m−1

σ−m+1 dµ.

Assume that V satisfies the following condition: for some nonnegative constants
δ1, δ2, the estimate

(V) cr−δ1 ≤ V (x)≤ Cr δ2

holds for all large enough r .

Theorem 1.3. Assume that operator L in (1-1) belongs to the class of A(m) with
1< m < σ + 1. Assume also that (V) holds with δ1, δ2 ≥ 0. If the inequality

(1-16) ν(Br \ B1)≤ Cr p lnq r

holds for all large enough r , then the only nonnegative solution of (1-1) is identically
zero.

Remark 1.4. It is not clear that the sharpness of exponents p and q in (1-16) holds
for all the operators of the class A(m). However, in many specific cases, the expo-
nents p, q are sharp; one can refer to [Grigor’yan and Sun 2014; Sun 2014; 2015].
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Notation. The letters C,C ′,C0,C1, . . . denote positive constants whose values are
unimportant and may vary at different occurrences.

In Section 2, we show the proof of Theorem 1.3. In Section 3, we present two
examples to show that our result is very inclusive.

2. Proof of Theorem 1.3

Let u be a nonnegative solution of (1-1). Fix some ball BR , where R > 0 is to be
chosen later. Take a Lipschitz function ϕ on MN with compact support, such that
0 ≤ ϕ ≤ 1 and ϕ ≡ 1 in a neighborhood of BR . Particularly, ϕ ∈ W 1,m

c (MN ). We
use the following test function for (1-13):

(2-1) ψρ(x)= ϕ(x)s(u+ ρ)−t ,

where ρ > 0 is a parameter near zero, and s will be chosen to be a large enough
fixed constant, and t will take arbitrarily small positive values near zero.

Since 1/(u+ρ) is bounded, ψρ has compact support and is bounded. The identity

∇ψρ =−tϕs(u+ ρ)−t−1
∇u+ sϕs−1(u+ ρ)−t

∇ϕ

implies that ∇ψρ ∈ Lm(MN ), hence, ψρ ∈W 1,m
c (MN ). We obtain from (1-13) that

(2-2) t
∫

MN
ϕs(u+ ρ)−t−1 Au dµ+

∫
MN
ϕs V uσ (u+ ρ)−t dµ

≤ s
∫

MN
ϕs−1(u+ ρ)−t(A(x, u,∇u),∇ϕ) dµ.

Estimate the right-hand side of (2-2) by the Young inequality

(2-3)
∫

MN
f g dµ≤ ε

∫
MN
| f |p0 dµ+Cε

∫
MN
|g|p

′

0 dµ,

where 1/p0+ 1/p′0 = 1. Letting p0 = m/(m− 1), and using (1-3), we obtain

s
∫

MN
ϕs−1(u+ ρ)−t(A(x, u,∇u),∇ϕ) dµ

≤ Cs
∫

MN
ϕs−1(u+ ρ)−t A

m−1
m

u |∇ϕ| dµ

= C
∫

MN

[
t

1
p0 ϕ

s
p0 (u+ ρ)−

t+1
p0 A

m−1
m

u

][ s
t p0
ϕ

s
p′0
−1
(u+ ρ)

1− t+1
p′0 |∇ϕ|

]
dµ

≤
t
2

∫
MN
ϕs(u+ ρ)−t−1 Au dµ+C

sm

tm−1

∫
MN
ϕs−m(u+ ρ)m−t−1

|∇ϕ|m dµ.
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Substituting the above into (2-2), and canceling out half of the first term in (2-2),
we obtain

(2-4)
t
2

∫
MN
ϕs(u+ ρ)−t−1 Au dµ+

∫
MN
ϕs V uσ (u+ ρ)−t dµ

≤ C
sm

tm−1

∫
MN
ϕs−m(u+ ρ)m−t−1

|∇ϕ|m dµ.

Using the Young inequality again in the right-hand side of (2-4) with

p1 =
σ − t

m− t − 1
, p′1 =

σ − t
σ −m+ 1

,

we obtain

(2-5)
sm

tm−1

∫
MN
ϕs−m(u+ ρ)m−t−1

|∇ϕ|m dµ

=

∫
MN

[
ϕ

s
p1 V

1
p1 (u+ ρ)

σ−t
p1

][ sm

tm−1ϕ
s

p′1
−m

V−
1
p1 |∇ϕ|m

]
dµ

≤
1
2

∫
MN
ϕs V (u+ ρ)σ−t dµ

+C
(

sm

tm−1

) σ−t
σ−m+1

∫
MN
ϕs− m(σ−t)

σ−m+1 V−
m−t−1
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1 dµ.

Using in the right-hand side of (2-5) the simple inequality(
sm

tm−1

) σ−t
σ−m+1

≤

(
sm

tm−1

) σ
σ−m+1

and combining (2-5) with (2-4), we obtain that

(2-6)
t
2

∫
MN
ϕs(u+ ρ)−t−1 Au dµ+

∫
MN
ϕs V uσ (u+ ρ)−t dµ

≤
1
2

∫
MN
ϕs V (u+ ρ)σ−t dµ

+Ct−
σ(m−1)
σ−m+1

∫
MN
ϕs− m(σ−t)

σ−m+1 V−
m−t−1
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1 dµ,

where the value of s is absorbed into the constant C .
It is easy to obtain from the definition of the solution the boundedness of the term∫

MN
ϕs V uσ (u+ ρ)−t dµ.

Then the boundedness of
∫

MN ϕ
s V (u+ ρ)σ−t dµ follows by the boundedness of∫

MN
ϕs V uσ (u+ ρ)−t dµ,



UNIQUENESS RESULT ON NONNEGATIVE SOLUTIONS 247

and by the fact that V ∈ L1
loc(M

N ).
By the dominated convergence theorem, we know

lim
ρ↓0

∫
MN
ϕs V (u+ ρ)σ−t dµ=

∫
MN
ϕs V uσ−t dµ.

Letting ρ ↓ 0 in (2-6) and applying the monotone convergence theorem, we have

t
2

∫
MN
ϕsu−t−1 Au dµ+

∫
MN
ϕs V uσ−t dµ

≤
1
2

∫
MN
ϕs V uσ−t dµ+Ct−

σ(m−1)
σ−m+1

∫
MN
ϕs− m(σ−t)

σ−m+1 V−
m−t−1
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1 dµ,

which is

(2-7)
t
2

∫
MN
ϕsu−t−1 Au dµ+

1
2

∫
MN
ϕs V uσ−t dµ

≤ Ct−
σ(m−1)
σ−m+1

∫
MN
ϕs− m(σ−t)

σ−m+1 V−
m−t−1
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1 dµ.

Applying (1-13) once more, using another test function ψ = ϕs , we obtain

(2-8)
∫

MN
ϕs V uσ dµ

≤ s
∫

MN
ϕs−1(A(x, u,∇u),∇ϕ) dµ

≤ Cs
∫

MN
ϕs−1 A

m−1
m

u |∇ϕ| dµ

≤ Cs
(∫

MN
ϕsu−t−1 Au dµ

)m−1
m
(∫

MN
ϕs−mu(t+1)(m−1)

|∇ϕ|m dµ
)1

m

.

From (2-7), we obtain∫
MN
ϕsu−t−1 Au dµ≤ Ct−1− σ(m−1)

σ−m+1

∫
MN
ϕs− m(σ−t)

σ−m+1 V−
m−t−1
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1 dµ.

Substituting into (2-8) yields

(2-9)
∫

MN
ϕs V uσ dµ≤ C

[
t−1− σ(m−1)

σ−m+1

∫
MN
ϕs− m(σ−t)

σ−m+1 V−
m−t−1
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1 dµ

]m−1
m

×

[∫
MN
ϕs−mu(t+1)(m−1)

|∇ϕ|m dµ
] 1

m

.

Recalling that ∇ϕ = 0 on BR and applying the Hölder inequality to the last term of
(2-9) with the Hölder couple

p2 =
σ

(t + 1)(m− 1)
, p′2 =

σ

σ − (t + 1)(m− 1)
,



248 YUHUA SUN

we obtain

(2-10)
∫

MN
ϕs−mu(t+1)(m−1)

|∇ϕ|m dµ

=

∫
MN \BR

(
ϕ

s
p2 V

1
p2 u(t+1)(m−1))(ϕ s

p′2
−m

V−
1
p2 |∇ϕ|m

)
dµ

≤

(∫
MN \BR

ϕs V uσ dµ
)(t+1)(m−1)

σ

×

(∫
MN \BR

ϕ
s− mσ

σ−(t+1)(m−1) V−
(t+1)(m−1)

σ−(t+1)(m−1) |∇ϕ|
mσ

σ−(t+1)(m−1) dµ
)σ−(t+1)(m−1)

σ

.

Substituting (2-10) into (2-9), choosing s large enough, and noting that ϕ ≤ 1, we
obtain

(2-11)
∫

MN
ϕs V uσ dµ≤ Ct−

m−1
m −

σ(m−1)2
m(σ−m+1)

(∫
MN

V−
m−1−t
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1 dµ

)m−1
m

×

(∫
MN

V−
(t+1)(m−1)

σ−(t+1)(m−1) |∇ϕ|
mσ

σ−(t+1)(m−1) dµ
)σ−(t+1)(m−1)

mσ

×

(∫
MN \BR

ϕs V uσ dµ
)(t+1)(m−1)

mσ

.

From the definition of the solution, we know
∫

MNϕ
s V uσ dµ is finite. It follows

from (2-11) that

(2-12)
(∫

MN
ϕs V uσ dµ

)1− (t+1)(m−1)
mσ

≤ Ct−
m−1

m −
σ(m−1)2

m(σ−m+1)

(∫
MN

V−
m−1−t
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1 dµ

)m−1
m

×

(∫
MN

V−
(t+1)(m−1)

σ−(t+1)(m−1) |∇ϕ|
mσ

σ−(t+1)(m−1) dµ
)σ−(t+1)(m−1)

mσ

.

Note that the first integral in the right-hand side of (2-12) has the estimate

(2-13)
∫

MN
V−

m−1−t
σ−m+1 |∇ϕ|

m(σ−t)
σ−m+1 dµ≤

∫
MN
|∇ϕ|

m(σ−t)
σ−m+1 V

t
σ−m+1 dν,

where we have used that dν = V−
m−1

σ−m+1 dµ. Similarly, the second integral in the
right-hand side of (2-12) can be estimated as follows:

(2-14)
∫

MN
V−

(t+1)(m−1)
σ−(t+1)(m−1) |∇ϕ|

mσ
σ−(t+1)(m−1) dµ

≤

∫
MN
|∇ϕ|

mσ
σ−(t+1)(m−1) V−

tσ(m−1)
[σ−(t+1)(m−1)](σ−m+1) dν.
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Substituting (2-13) and (2-14) into (2-11), we have

(2-15)
∫

MN
ϕs V uσ dµ

≤ Ct−
m−1

m −
σ(m−1)2

m(σ−m+1)

(∫
MN
|∇ϕ|

m(σ−t)
σ−m+1 V

t
σ−m+1 dν

)m−1
m

×

(∫
MN
|∇ϕ|

mσ
σ−(t+1)(m−1) V−

tσ(m−1)
[σ−(t+1)(m−1)](σ−m+1) dν

)σ−(t+1)(m−1)
mσ

×

(∫
MN \BR

ϕs V uσ dµ
)(t+1)(m−1)

mσ

.

Substituting (2-13) and (2-14) into (2-12), we obtain

(2-16)
(∫

MN
ϕs V uσ dµ

)1− (t+1)(m−1)
mσ

≤ Ct−
m−1

m −
σ(m−1)2

m(σ−m+1)

(∫
MN
|∇ϕ|

m(σ−t)
σ−m+1 V

t
σ−m+1 dν

)m−1
m

×

(∫
MN
|∇ϕ|

mσ
σ−(t+1)(m−1) V−

tσ(m−1)
[σ−(t+1)(m−1)](σ−m+1) dν

)σ−(t+1)(m−1)
mσ

.

Let {ϕ̃k}k∈N be a sequence for which each ϕ̃k is a Lipschitz function such that
supp(ϕ̃k)⊂ B2k , and ϕ̃k = 1 in a neighborhood of B2k−1 , and

(2-17) |∇ϕ̃k |

{
≤

C
2k−1 for x ∈ B2k \ B2k−1,

= 0 otherwise,

where C does not depend on k.
Fix some n ∈ N and set

(2-18) t =
1
n

and

(2-19) ϕn =

∑2n
k=n+1 ϕ̃k

n
.

Note that ϕn = 1 on B2n , and ϕn = 0 outside B22n , and 0 ≤ ϕn ≤ 1 on MN . Note
that, for any a ≥ 1, using that supp(∇ϕ̃k) are disjoint, we have

(2-20) |∇ϕn|
a
=

∑2n
k=n+1 |∇ϕ̃k |

a

na .

It is easy to see that
ϕn ∈W 1,m

loc (M
N ).
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Consider the integral

(2-21) Jn(a, b)=
∫

MN
|∇ϕn|

a V b dµ,

where a, b are taking values from

(2-22) (a, b)=

{( m(σ−t)
σ−m+1 ,

t
σ−m+1

)
,( mσ

σ−(t+1)(m−1) ,−
tσ(m−1)

[σ−(t+1)(m−1)](σ−m+1)

)
.

We write a in the form

(2-23) a = p+ lt,

with the corresponding two values of l,

(2-24) l1 =−
m

σ −m+ 1
, l2 =

mσ(m− 1)
[σ − (t + 1)(m− 1)](σ −m+ 1)

,

where p = mσ/(σ −m+ 1).
For b ≥ 0, we know

(2-25) Jn(a, b)=
∫

MN
|∇ϕn|

a V b dν

=

∫
MN

∑2n
k=n+1 |∇ϕ̃k |

a

na V b dν

≤

2n∑
k=n+1

∫
B2k \B2k−1

|∇ϕ̃k |
a

na V b dν

≤ C
2n∑

k=n+1

∫
B2k \B2k−1

(
21−k

n

)a

r δ2b dν

≤ C
2n∑

k=n+1

(
21−k

n

)a

(2k)δ2bν(B2k \ B1)

Note that a = p+ lt , and n+ 1≤ k ≤ 2n, and

(2-26)
(

21−k

n

)a

(2k)δ2b
=

(
2−k

n

)p(2−k

n

)lt

(2k)δ2b

≤

(
2−k

n

)p

(2k)δ2b sup
n+1≤k≤2n

(
2−k

n

)lt

≤ C
(

2−k

n

)p

(2k)δ2b.
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Substituting (2-26) into (2-25), and using the volume growth (1-16), we obtain

(2-27) Jn(a, b)≤ C
2n∑

k=n+1

(
2−k

n

)p

(2k)δ2bν(B2k \ B1)

≤ C
2n∑

k=n+1

(
2−k

n

)p

(2k)δ2b(2k)p lnq(2k)

≤ C
1

n p

2n∑
k=n+1

kq2kδ2b
≤ Cnq+1−p22nδ2b

≤ Cn−
σ(m−1)
σ−m+1 22nδ2b.

Similarly, for the case of b ≤ 0, we obtain

(2-28) Jn(a, b)≤ Cn−
σ(m−1)
σ−m+1 2−2nδ1b.

Taking the sequence {ϕn} in (2-16), we obtain

(2-29)(∫
MN
ϕs

nV uσ dµ
)1− (t+1)(m−1)

mσ

≤ Ct−
m−1

m −
σ(m−1)2

m(σ−m+1)

(
Jn

(
m(σ − t)
σ −m+ 1

,
t

σ −m+ 1

))m−1
m

×

(
Jn

(
mσ

σ − (t + 1)(m− 1)
,

−tσ(m− 1)
[σ − (t + 1)(m− 1)](σ −m+ 1)

))σ−(t+1)(m−1)
mσ

.

Substituting (2-27) and (2-28) and noting that t = 1/n, we obtain

(2-30)
(∫

MN
ϕs

nV uσ dµ
)1− (

1
n +1)(m−1)

mσ

≤ Cn
m−1

m +
σ(m−1)2

m(σ−m+1)

(
n−

σ(m−1)
σ−m+1 22nδ2

1
n

σ−m+1

)m−1
m

×

(
n−

σ(m−1)
σ−m+1 2

2nδ1
1
n σ(m−1)

[σ−( 1
n +1)(m−1)](σ−m+1)

)σ−( 1
n +1)(m−1)

mσ

≤ Cn
(m−1)2

n(σ−m+1) 2
2(δ1+δ2)(m−1)

m(σ−m+1) .

Noting that ϕn = 1 on B2n and taking the lim sup of both sides in (2-30) as n→∞,
we obtain

(2-31)
∫

MN
V uσ dµ≤ C <∞.
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Applying similar arguments to (2-15), we obtain that

(2-32)
∫

MN
ϕs

nV uσ dµ≤ C
(∫

MN \B2n

ϕs
nV uσ dµ

)( 1
n +1)(m−1)

mσ

.

Since ϕn = 1 on B2n , we have

(2-33)
∫

B2n

V uσ dµ≤ C
(∫

MN \B2n

ϕs
nV uσ dµ

)( 1
n +1)(m−1)

mσ

.

Combining this with (2-31) and letting n→∞, we obtain that∫
MN

V uσ dµ= 0,

since V > 0 for almost all x ∈ MN . Thus u ≡ 0. �

3. Examples

Our result can cover many known results in the case of MN
= RN . Let us mention

two of these examples.

Example 1. Let us investigate the inequality

(3-1) div(|∇u|m−2
∇u)+ V (x)uσ ≤ 0, in RN ,

where V (x)= 1/|x |γ for |x | ≥ 1, and N > m >max{1, γ }, and σ > m− 1.
By [Filippucci 2009, Corollary 1.5], we know if

(3-2) σ ≤
(N − γ )(m− 1)

N −m
,

then (3-1) has no positive solutions in some natural class. Compared to our result
of Theorem 1.3, we know for large r

(3-3) ν(Br \ B1)=

∫
Br\B1

V−
m−1

σ−m+1 dµ= ωN

∫ r

1
s
γ (m−1)
σ−m+1 s N−1 ds ≈ Cr N+ γ (m−1)

σ−m+1 ,

where ωN is the surface area of the unit ball in RN , and µ is the Lebesgue measure,
and the sign ≈ means that both the inequalities ≤ and ≥ are satisfied but with
different values of different constants c, C .

By (3-3), it follows that the condition (1-16) is equivalent to

(3-4) N +
γ (m− 1)
σ −m+ 1

≤ p =
mσ

σ −m+ 1
,

which in turn is equivalent to (3-2).
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Example 2. Consider the differential inequality

(3-5) div
(

∇u√
1+ |∇u|2

)
+ uσ ≤ 0, in RN ,

where N > 2, σ > 1. This problem was investigated in [Mitidieri and Pokhozhaev
1999]. They obtained that if

(3-6) σ ≤
N

N − 2
,

then (3-5) has no positive solutions. Note that the operator in (3-5) belongs to the
class of A(2), and that ν(Br \B1)=µ(Br \B1)≈Cr N . By Theorem 1.3, we know if

(3-7) N ≤
2σ
σ − 1

,

then (3-5) has no positive solution. It is easy to check that (3-6) and (3-7) are
equivalent.
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