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TOPOLOGICAL MOLINO’S THEORY
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Molino’s description of Riemannian foliations on compact manifolds is gen-
eralized to the setting of compact equicontinuous foliated spaces, in the
case where the leaves are dense. In particular, a structural local group is
associated to such a foliated space. As an application, we obtain a partial
generalization of results by Carrière and Breuillard–Gelander, relating the
structural local group to the growth of the leaves.
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1. Introduction

Riemannian foliations were introduced by Reinhart [1959] by requiring isometric
transverse dynamics. It was pointed out by Ghys in [Molino 1988, Appendix E]
(see also [Kellum 1993]) that equicontinuous foliated spaces should be considered
as the “topological Riemannian foliations,” and therefore many of the results about
Riemannian foliations should have versions for equicontinuous foliated spaces.
Some steps in this direction were given by Álvarez and Candel [2009; 2010],
showing that, under reasonable conditions, their leaf closures are minimal foliated
spaces, and their generic leaves are quasi-isometric to each other, like in the case of
Riemannian foliations. In the same direction, Matsumoto [2010] proved that any
minimal equicontinuous foliated space has a nontrivial transverse invariant measure,
which is unique up to scaling if the space is compact — observe that this unicity
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supported by the grant ERASMUS MUNDUS LOTE 20B, for the period 2010–2012.
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implies ergodicity. The magnitude of the generalization from Riemannian foliations
to equicontinuous foliated spaces was made precise by Álvarez and Candel [2010]
(see also [Tarquini 2004]), giving a topological description of Riemannian foliations
within the class of equicontinuous foliated spaces.

Most of the known properties of Riemannian foliations follow from a description
due to Molino [1982; 1988]. However, so far, there was no version of Molino’s
description for equicontinuous foliated spaces — the indicated properties of equicon-
tinuous foliated spaces were obtained by other means. The goal of our work is to
develop such a version of Molino’s theory, and use it to study the growth of their
leaves, following the study of the growth of Riemannian foliations by Carrière [1988]
and Breuillard and Gelander [2007]. To understand our results better, let us briefly
recall Molino’s theory.

1A. Molino’s theory for Riemannian foliations. The necessary basic concepts
from foliation theory can be seen in [Hector and Hirsch 1981; 1987; Candel and
Conlon 2000].

Let F be a (smooth) foliation of codimension q on a manifold M . Let T F⊂ TM
denote the vector subbundle of vectors tangent to the leaves, and NF= TM/T F

its normal bundle. Recall that there is a natural flat leafwise partial connection
on NF such that any local normal vector field is leafwise parallel if and only if it
is locally projectable by the distinguished submersions; terms like “leafwise flat,”
“leafwise parallel” and “leafwise horizontal” will refer to this partial connection. It
is said that F is
• Riemannian if NF has a leafwise parallel Riemannian structure;

• transitive if the group of its foliated diffeomorphisms acts transitively on M ;

• transversely parallelizable (TP) if there is a leafwise parallel global frame of
NF, called transverse parallelism; and a

• Lie foliation if moreover the transverse parallelism is a basis of a Lie algebra
with the operation induced by the vector field bracket.

These conditions are successively stronger. Molino’s theory describes Riemannian
foliations on compact manifolds in terms of minimal Lie foliations, and using TP
foliations as an intermediate step:

1st step: If F is Riemannian and M compact, then there is an O(q)-principal
bundle π̂ : M̂→ M , with an O(q)-invariant TP foliation F̂, such that π̂ is a
foliated map whose restrictions to the leaves are the holonomy covers of the
leaves of F.

2nd step: If F is TP and M compact, then there is a fiber bundle π : M→ W
whose fibers are the leaf closures of F, and the restriction of F to each fiber is
a Lie foliation.
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Since the structure of Lie foliation is unique in the minimal case, we end up with
a Lie algebra associated to F, called the structural Lie algebra. The proofs of
the above statements strongly use the differential structure of F. In the first step,
π̂ : M̂→ M is the O(q)-principal bundle of orthonormal frames for some leafwise
parallel metric on NF, and F̂ is given by the corresponding flat leafwise horizontal
distribution. Then F̂ is TP by a standard argument. In the second step, foliated
flows are used to produce the fiber bundle trivializations whose fibers are the leaf
closures; this works because there are foliated flows in any transverse direction
since F is TP.

When F is minimal (the leaves are dense), any leaf closure M̂0 of F̂ is a principal
subbundle of π̂ : M̂→ M , obtaining the following:

Minimal case: If F is minimal and Riemannian and M is compact, then, for
some closed subgroup H ⊂O(q), there is an H -principal bundle π̂0 : M̂0→M
with an H -invariant minimal Lie foliation F̂0, such that π̂0 is a foliated map
whose restrictions to the leaves are the holonomy covers of the leaves of F.

A useful description of Lie foliations was also given by Fedida [1971; 1978],
but it will not be considered here.

The differential structure cannot be used in our generalization; instead, we use
the holonomy pseudogroup. Thus let us briefly indicate the holonomy properties of
Riemannian foliations that will play an important role.

1B. Holonomy of Riemannian foliations. Recall that a pseudogroup is a maximal
collection of local transformations of a space, which contains the identity map, and
is closed under the operations of composition, inversion, restriction and combination.
It can be considered as a generalized dynamical system, and all basic dynamical
concepts have pseudogroup versions. They are relevant in foliation theory because
the holonomy pseudogroup of a foliation F describes the transverse dynamics of F.
Such a pseudogroup is well determined up to certain equivalence of pseudogroups
introduced by Haefliger [1985; 1988]. We may say that F is transversely modeled by
a class of local transformations of some space if its holonomy pseudogroup can be
generated by that type of local transformations. Riemannian, TP and Lie foliations
can be respectively characterized by being transversely modeled by local isometries
of some Riemannian manifold, by local parallelism preserving diffeomorphisms of
some parallelizable manifold, and by local left translations of a Lie group. In this
sense, Riemannian foliations are the transversely rigid ones, and TP foliations have
a stronger type of transverse rigidity.

When the ambient manifold M is compact, Haefliger [2002] has observed that
the holonomy pseudogroup H of F satisfies a property called compact generation.
If moreover F is Riemannian, then Haefliger [1988; 2002] has also strongly used
the following properties of H: completeness, quasianalyticity, and existence of a
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closure H, which is also complete and quasianalytic. Here, H is defined by taking
the closure of the set of 1-jets of maps in H in the space of 1-jets.

For a compactly generated pseudogroup H of local isometries of a Riemannian
manifold T , Salem has given a version of Molino’s theory [Salem 1988; Molino
1988, Appendix D] (see also [Álvarez and Masa 2008]). In particular, in the
minimal case, it turns out that there is a Lie group G, a compact subgroup K ⊂ G
and a dense finitely generated subgroup 0 ⊂ G such that H is equivalent to the
pseudogroup generated by the action of 0 on the homogeneous space G/K (this
was also observed by Haefliger [1988]).

1C. Growth of Riemannian foliations. Molino’s theory has many consequences
for a Riemannian foliation F on a compact manifold M : classification in particular
cases, growth, cohomology, tautness, tenseness and global analysis. In all of them,
Molino’s theory is used to reduce the study to the case of Lie foliations with dense
leaves, where it usually becomes a problem of Lie theory. We concentrate on the
consequences about growth of the leaves and their holonomy covers. This study was
begun by Carrière [1988], and recently continued by Breuillard and Gelander [2007],
as a consequence of their study of a topological Tits alternative. Their results state
the following, where g is the structural Lie algebra of F:

Carrière’s theorem. The holonomy covers of the leaves are Følner if and only if
g is solvable, and of polynomial growth if and only if g is nilpotent. In the second
case, the degree of polynomial growth is bounded by the nilpotence degree of g.

Breuillard and Gelander’s theorem. The growth of the holonomy covers of the
leaves is either polynomial or exponential.

1D. Equicontinuous foliated spaces. A foliated space X ≡ (X,F) is a topological
space X equipped with a partition F into connected manifolds (leaves), which can
be locally described as the fibers of topological submersions. It will be assumed
that X is locally compact and Polish. A foliated space should be considered as
a “topological foliation”. In this sense, all topological notions of foliations have
obvious versions for foliated spaces. In particular, the holonomy pseudogroup H

of X is defined on a locally compact Polish space T . Many basic results about
foliations also have straightforward generalizations; for example, H is compactly
generated if X is compact. Even leafwise differential concepts are easy to extend.
However this task may be difficult or impossible for transverse differential concepts.
For instance, the normal bundle of a foliated space does not make any sense in
general; it would be the tangent bundle of a topological space in the case of a space
foliated by points. Thus the concept of Riemannian foliation cannot be extended by
using the normal bundle. Instead, this can be done via the holonomy pseudogroup
as follows.
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The transverse rigidity of a Riemannian foliation can be translated to the foliated
space X by requiring equicontinuity of H. In fact, the equicontinuity condition is
not compatible with combinations of maps, and therefore it is indeed required for
some generating subset S⊂H which is closed by the operations of composition and
inversion. Such an S is called a pseudo∗group with the terminology of Matsumoto
[2010]. This gives rise to the concept of equicontinuous foliated space.

In the topological setting, the quasianalyticity of H does not follow from the
equicontinuity assumption. Thus it will be required as an additional assumption
when needed. Indeed, it does not work well enough when T is not locally con-
nected, so we use a property called strong quasianalyticity, which is stronger than
quasianalyticity only when T is not locally connected.

Álvarez and Candel [2009] have proved that, if H is compactly generated,
equicontinuous and strongly quasianalytic, then it is complete and has a closure H.
Here, H is the pseudogroup generated by the homeomorphisms on small enough
open subsets O of T that are limits in the compact-open topology of maps in H

defined on those sets O .
Transitive and Lie foliations have the following topological versions. It is said

that the foliated space X is

• homogeneous if its group of foliated transformations acts transitively on X ;

• a G-foliated space if it is transversely modeled by local left translations in
some locally compact Polish local group G (if X is minimal).

1E. Topological Molino’s theory. Our first main result is the following topological
version of the minimal case in Molino’s theory.

Theorem A. Let X ≡ (X,F) be a compact Polish foliated space, and H its ho-
lonomy pseudogroup. Suppose that X is minimal and equicontinuous, and H is
strongly quasianalytic. Then there is a compact Polish minimal foliated space
X̂0 ≡ (X̂0, F̂0), an open continuous foliated map π̂0 : X̂0 → X , and a locally
compact Polish local group G such that X̂0 is a G-foliated space, the fibers of π̂0

are homeomorphic to each other, and the restrictions of π̂0 to the leaves of F̂0 are
the holonomy covers of the leaves of F.

The proof of Theorem A is different from Molino’s proof in the Riemannian
foliation case because there may not be the normal bundle of F. To define X̂0, we
first construct what should be its holonomy pseudogroup, Ĥ0 on a space T̂0. To
some extent, this was achieved by Álvarez and Candel [2010], proving that, with
the assumptions of Theorem A, there is a locally compact Polish local group G, a
compact subgroup K ⊂ G and a dense finitely generated sub-local group 0 ⊂ G
such that H is equivalent to the pseudogroup generated by the local action of 0 on
G/K , like in the Riemannian foliation case. Hence Ĥ0 should be the pseudogroup
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generated by the local action of 0 on G. This may look like a big step towards
the proof, but the realization of compactly generated pseudogroups as holonomy
pseudogroups of compact foliated spaces is impossible in general, as shown by
Meigniez [Meigniez 2010]. This difficulty is overcome as follows.

Take a “good” cover of X by distinguished open sets {Ui }, with corresponding
distinguished submersions pi :Ui → Ti , and elementary holonomy transformations
hi j : Ti j → T j i , where Ti j = pi (Ui ∩U j ). Let H denote the corresponding repre-
sentative of the holonomy pseudogroup on T =

⊔
i Ti , generated by the maps hi j .

Then the construction of Ĥ0 must be associated to H in a natural way, so that it
becomes induced by some “good” cover by distinguished open sets of a compact
foliated space. In the Riemannian foliation case, the good choices of T̂0 and Ĥ0 are
the following:

• Let P be the bundle of orthonormal frames for any H-invariant metric on T .
Fix x0 ∈ T and x̂0 ∈ Px0 . Then, as a subspace of P ,

(1) T̂0 = {h∗(x̂0) | h ∈H, x0 ∈ dom h } = {g∗(x̂0) | g ∈H, x0 ∈ dom g }.

• Ĥ0 is generated by the differentials of the maps in H.

These differential concepts can be modified in the following way. In (1), each
g∗(x̂0) determines the germ γ (g, x0) of g at x0, by the strong quasianalyticity of H.
Therefore it also determines γ ( f, x), where f = g−1 and x = g(x0)— this little
change, using γ ( f, x) instead of γ (g, x0), is not really necessary, but it helps to
simplify the notation in some involved arguments. So

(2) T̂0 ≡ {γ ( f, x) | f ∈H, x ∈ dom f, f (x)= x0 }.

The projection π̂0 : T̂0→ T corresponds via (2) to the source map γ ( f, x) 7→ x .
The differentials of maps h ∈ H, acting on orthonormal references, correspond
via (2) to the maps ĥ defined by

ĥ(γ ( f, x))= γ ( f h−1, h(x)).

Let us describe the topology of T̂0 using (2). Let S be a pseudo∗group generating
H and satisfying the equicontinuity and strong quasianalyticity conditions. Endow
S with the compact-open topology on partial maps with open domains, as defined
by Abd-Allah and Brown [1980], and consider the subspace

S ∗ T = {( f, x) ∈ S | x ∈ dom f } ⊂ S× T .

Then the topology of T̂0 corresponds via (2) to the quotient topology by the germ
map γ : S∗T→ γ (S∗T )≡ T̂0, which is of course different from the sheaf topology
on germs. This point of view, replacing orthonormal frames by germs, can be
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readily translated to the foliated space setting, obtaining good choices of T̂0 and Ĥ0

under the conditions of Theorem A.
Now, consider triples (x, γ, i)with x ∈Ui , γ ∈ T̂i,0 := π̂

−1
0 (Ti ) and pi (x)= π̂0(γ ).

Declare (x, γ, i) equivalent to (y, δ, j) if x = y and ĥi j (γ )= δ. Then X̂0 is defined
as the corresponding quotient space. Let [x, γ, i] denote the equivalence class of
each triple (x, γ, i). The foliated structure F̂0 on X̂0 is determined by requiring that,
for each fixed index i , the elements of the type [x, γ, i] form a distinguished open
set Ûi,0, with distinguished submersion p̂i,0 : Ûi,0→ T̂i,0 given by p̂i,0([x, γ, i])=γ .
The projection π̂0 : X̂0→ X is defined by π̂0([x, γ, i])= x . The properties stated
in Theorem A are satisfied with these definitions.

It is also proved that, up to foliated homeomorphisms (respectively, local iso-
morphisms), X̂0 (respectively, G) is independent of the choices involved. Hence G
can be called the structural local group of F.

1F. Growth of equicontinuous foliated spaces. Our second main result is the fol-
lowing weak topological version of the above theorems of Carrière and Breuillard–
Gelander.

Theorem B. Let X be a foliated space satisfying the conditions of Theorem A, and
let G be its structural local group. Then one of the following properties holds:

• G can be approximated by nilpotent local Lie groups; or

• the holonomy covers of all leaves of X have exponential growth.

(The definition of approximation of a local group is given in Definition 2.25.) Like
in the case of Riemannian foliations, Theorem A reduces the proof of Theorem B
to the case of minimal G-foliated spaces, where it becomes a problem about local
groups. Then, since any locally compact Polish local group can be approximated
by local Lie groups in the above sense, the result follows by applying the same
arguments as Breuillard and Gelander.

The paper concludes by indicating some examples where Theorems A and B
may have interesting applications, and proposing some open problems.

2. Preliminaries on equicontinuous pseudogroups

2A. Compact-open topology on partial maps with open domains. (See [Abd-Allah
and Brown 1980].) Given spaces X and Y , let C(X, Y ) be the space of all continuous
maps X → Y ; the notation Cc-o(X, Y ) may be used to indicate that C(X, Y ) is
equipped with the compact-open topology. Let Y ∗=Y∪{ω}, where ω /∈Y , endowed
with the topology in which U ⊂ Y ∗ is open if and only if U = Y ∗ or U is open
in Y . A partial map X � Y is a continuous map of a subset of X to Y ; the set of
all partial maps X � Y is denoted by Par(X, Y ). A partial map X � Y with open
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domain is called a paro map, and the set of all paro maps X � Y is denoted by
Paro(X, Y ). There is a bijection µ : Paro(X, Y )→ C(X, Y ∗) defined by

µ( f )(x)=
{

f (x) if x ∈ dom f ,
ω if x /∈ dom f .

The topology on Paro(X, Y ) which makes µ : Paro(X, Y )→Cc-o(X, Y ∗) a homeo-
morphism is called the compact-open topology, and the notation Paroc-o(X, Y ) may
be used for the corresponding space. This topology has a subbasis of open sets of
the form

N(K , O)= {h ∈ Paro(X, Y ) | K ⊂ dom h, h(K )⊂ O },

where K ⊂ X is compact and O ⊂ Y is open.

Proposition 2.1. If X is second countable and locally compact, and Y is second
countable, then Paroc-o(X, Y ) is second countable.

Proof. By hypothesis, there are countable bases of open sets, V of X and W of Y ,
such that V is compact for all V ∈V. Then the sets N(V ,W ) (V ∈V and W ∈W)
form a countable subbasis of open sets of Paroc-o(X, Y ). �

The following result is elementary.

Proposition 2.2. For any open subset U ⊂ X , the restriction of the topology of
Paroc-o(X, Y ) to the subset C(U, Y ) is its usual compact-open topology.

Since paro maps are not globally defined, let us make precise the definition of
their composition. Given spaces X , Y and Z , the composition of two paro maps,
f ∈ Paro(X, Y ) and g ∈ Paro(Y, Z), is the paro map g f ∈ Paro(X, Z) defined as
the usual composition of the maps

f −1(dom g)
f

−−−→ dom g
g

−−−→ Z .

Proposition 2.3 [Abd-Allah and Brown 1980, Proposition 3]. The following prop-
erties hold:

(i) Let h : T � X and g : Y � Z be paro maps. Then the maps

g∗ : Paroc-o(X, Y )→ Paroc-o(X, Z), f 7→ g f,

h∗ : Paroc-o(X, Y )→ Paroc-o(T, Y ), f 7→ f h,

are continuous.

(ii) Let X ′ ⊂ X and Y ′ ⊂ Y be subspaces such that X ′ is open in X. Then the map

Paroc-o(X ′, Y ′)→ Paroc-o(X, Y ),

mapping a paro map X ′� Y ′ to the paro map X� Y with the same graph, is
an embedding.
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Proposition 2.4 [Abd-Allah and Brown 1980, Proposition 7]. If Y is locally com-
pact, then the evaluation partial map

ev : Paroc-o(Y, Z)× Y � Z , ( f, y) 7→ f (y),

is a paro map; in particular, its domain is open.

Proposition 2.5 [Abd-Allah and Brown 1980, Proposition 9]. If X and Y are locally
compact, then the composition mapping

Paroc-o(X, Y )×Paroc-o(Y, Z)→ Paroc-o(X, Y ), ( f, g) 7→ g f,

is continuous.

Let Loct(T ) be the family of all homeomorphisms between open subsets of a
space T , which are called local transformations. For h, h′ ∈ Loct(T ), the composi-
tion h′h ∈ Loct(T ) is the composition of maps

h−1(im h ∩ dom h′)
h

−−−→ im h ∩ dom h′
h′
−−−→ h′(im h ∩ dom h′).

Each h ∈ Loct(T ) can be identified with the paro map T � T with the same
graph. This gives rise to a canonical injection Loct(T )→ Paro(T, T ) compatible
with composition. The corresponding restriction of the compact-open topology
of Paro(T, T ) to Loct(T ) is also called compact-open topology, and the notation
Loctc-o(T )may be used for the corresponding space. The bi-compact-open topology
is the smallest topology on Loct(X) such that the identity and inversion maps

Loct(T )→ Loctc-o(T ), f 7→ f ±1,

are continuous, and the notation Loctb-c-o(T ) will be used for the corresponding
space. The following result is elementary.

Proposition 2.6 [Abd-Allah and Brown 1980, Proposition 10]. If T is locally
compact, then the composition and inversion maps,

Loctb-c-o(T )×Loctb-c-o(T )→ Loctb-c-o(T ), (g, f ) 7→ g f,

Loctb-c-o(T )→ Loctb-c-o(T ), f 7→ f −1,

are continuous.

2B. Pseudogroups.

Definition 2.7 [Sacksteder 1965; Haefliger 2002]. A pseudogroup on a space T is
a collection H⊂ Loct(T ) such that

• the identity map of T belongs to H (idT ∈H);

• if h, h′ ∈H, then the composite h′h is in H (H2
⊂H);

• h ∈H implies that h−1
∈H (H−1

⊂H);
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• if h ∈H and U is open in dom h, then the restriction h :U → h(U ) is in H;
and

• if a combination (union) of maps in H is defined and is a homeomorphism,
then it is in H.

Remark 1. The following properties hold:

• idU ∈H for every open subset U ⊂ T .

• A local transformation h ∈ Loct(T ) belongs to H if and only if it locally
belongs to H (any point x ∈ dom h has a neighborhood Vx ⊂ dom h such that
h|Vx ∈H).

• Any intersection of pseudogroups on T is a pseudogroup on T .

Example 2.8. Loct(T ) is the pseudogroup that contains every other pseudogroup
on T .

Definition 2.9. A subpseudogroup of a pseudogroup H on T is a pseudogroup on
T contained in H. The restriction of H to an open subset U ⊂ T is the pseudogroup

H|U = {h ∈H | dom h ∪ im h ⊂U }.

The pseudogroup generated by a set S ⊂ Loct(T ) is the intersection of all pseudo-
groups that contain S (the smallest pseudogroup on T containing S).

Definition 2.10. Let H be a pseudogroup on T . The orbit of each x ∈ T is the set

H(x)= {h(x) | h ∈H, x ∈ dom h }.

The orbits form a partition of T . The space of orbits, equipped with the quotient
topology, is denoted by T/H. It is said that H is

• (topologically) transitive if some orbit is dense; and

• minimal when all orbits are dense.

The following notion, less restrictive than the concept of pseudogroup, is useful
to study some properties of pseudogroups.

Definition 2.11 [Matsumoto 2010]. A pseudo∗group on a space T is a family
S ⊂ Loct(T ) that is closed by the operations of composition and inversion.

Remark 2. Any intersection of pseudo∗groups on T is a pseudo∗group.

Definition 2.12. Any pseudo∗group contained in another pseudo∗group is called
a subpseudo∗group. The pseudo∗group generated by a subset S0 of Loct(T ) is
the intersection of all pseudo∗groups containing S0 (the smallest pseudo∗group
containing S0).
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Remark 3. Let S be a pseudo∗group on T , and let S1 be the collection of restrictions
of all maps in S to all open subsets of their domains. Then S1 is also a pseudo∗group
on T , and S is a subpseudo∗group of S1.

Definition 2.13. In Remark 3, it will be said that S1 is the localization of S. If
S = S1, then the pseudo∗group S is called local.

Remark 4. Let S0 ⊂ Loct(T ). The pseudo∗group S generated by S0 consists of
all compositions of maps in S0 and their inverses. The pseudogroup H generated
by S0 consists of all h ∈ Loct(T ) that locally belong to the localization of S.

Remark 5. If two local pseudo∗groups, S1 and S2, generate the same pseudo-
group H, then S1 ∩ S2 is also a local pseudo∗group that generates H.

Let H and H′ be pseudogroups on respective spaces T and T ′.

Definition 2.14 [Haefliger 1985; 1988]. A morphism1 8 : H→H′ is a maximal
collection of homeomorphisms of open sets of T to open sets of T ′ such that

• if φ ∈8, h ∈H and h′ ∈H′, then h′φh ∈8 (H′8H⊂8);

• the family of the domains of maps in 8 cover T ; and

• if φ, φ′ ∈8, then φ′φ−1
∈H′ (88−1

⊂H′).

A morphism 8 is called an equivalence if the family 8−1
= {φ−1

| φ ∈8} is also
a morphism.

Remark 6. An equivalence 8 :H→H′ can be characterized as a maximal family
of homeomorphisms of open sets of T to open sets of T ′ such that H′8H⊂8, and
8−18 and 88−1 generate H′ and H′, respectively.

Remark 7. Any morphism 8 :H→H′ induces a map between the corresponding
orbit spaces, T/H→ T/H′. This map is a homeomorphism if 8 is an equivalence.

Definition 2.15. Let 80 be a family of homeomorphisms of open subsets of T to
open subsets of T ′ such that

• the union of domains of maps in 80 meet all H-orbits; and

• 80H8−1
0 ⊂H′.

Then there is a unique morphism 8 :H→H′ containing 80, which is said to be
generated by 80. If, moreover,

• the union of images of maps in 80 meet all H′-orbits; and

• 8−1
0 H80 ⊂H;

then 8 is an equivalence.
1This is usually called étale morphism. We simply call it morphism because no other type of

morphism will be considered here.
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Definition 2.16 [Haefliger 2002]. A pseudogroup H on a locally compact space T
is said to be compactly generated if

• there is a relatively compact open subset U ⊂ T meeting all H-orbits;

• there is a finite set S = {h1, . . . , hn} ⊂H|U that generates H|U ; and

• each hi is the restriction of some h̃i ∈H with dom hi ⊂ dom h̃i .

Remark 8. Compact generation is very subtle (see [Ghys 1985; Meigniez 1995]).
Haefliger asked when compact generation implies realizability as a holonomy
pseudogroup of a compact foliated space. The answer is not always affirmative
[Meigniez 2010].

Definition 2.17 [Haefliger 1985]. A pseudogroup H is called quasianalytic if every
h ∈H is the identity around some x ∈ dom h whenever h is the identity on some
open set whose closure contains x .

If a pseudogroup H on a space T is quasianalytic, then every h∈H with connected
domain is the identity on dom h if it is the identity on some nonempty open set.
Because of this, quasianalyticity is interesting when T is locally connected, but
local connectivity is too restrictive in our setting. Then, instead of requiring local
connectivity, the following stronger version of quasianalyticity will be used.

Definition 2.18 [Álvarez and Candel 2009]. A pseudogroup H on a space T is said
to be strongly quasianalytic if it is generated by some subpseudo∗group S ⊂ H

such that any transformation in S is the identity on its domain if it is the identity on
some nonempty open subset of its domain.

Remark 9. In [Álvarez and Candel 2009], the term used for the above property
is “quasieffective”. However the term “strongly quasianalytic” seems to be more
appropriate.

Remark 10. If the condition on H to be strongly quasianalytic is satisfied with a
subpseudo∗group S, it is also satisfied with the localization of S. It follows that this
property is hereditary by taking subpseudogroups and restrictions to open subsets.

Definition 2.19 [Haefliger 1985]. A pseudogroup H on a space T is said to be
complete if, for all x, y ∈ T , there are relatively compact open neighborhoods, Ux

of x and Vy of y, such that, for all h ∈H and z ∈Ux ∩ dom h with h(z) ∈ Vy , there
is some g ∈H such that dom g =Ux and with the same germ as h at z.

Since any pseudo∗group S on T is a subpseudo∗group of Loct(T ), it can be
endowed with the restriction of the (bi-)compact-open topology, also called the
(bi-)compact-open topology of S, and the notation S(b-)c-o may be used for the
corresponding space. In this way, according to Proposition 2.6, if T is locally
compact, then Sb-c-o becomes a topological pseudo∗group in the sense that the
composition and inversion maps of S are continuous. In particular, this applies to a
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pseudogroup H on T , obtaining H(b-)c-o; thus Hb-c-o is a topological pseudogroup
in the above sense if T is locally compact.

Remark 11. S(b-)c-o ↪→ S′(b-)c-o is continuous for pseudo∗groups S ⊂ S′.

The pseudogroups considered from now on will be assumed to act on locally
compact Polish2 spaces; i.e., locally compact, Hausdorff and second countable
spaces [Kechris 1991, Theorem 5.3].

2C. The groupoid of germs of a pseudogroup.

Definition 2.20. A groupoid G is a small category where every morphism is an
isomorphism. This means that G is a set (of morphisms) equipped with the structure
defined by an additional set T (of objects), and the following structural maps:

• the source and target maps s, t :G→ T ;

• the unit map T →G, x 7→ 1x ;

• the operation (or multiplication) map G×T G→G, (δ, γ ) 7→ δγ , where

G×T G= {(δ, γ ) ∈G×G | t (γ )= s(δ)} ⊂G×G;

• and the inversion map G→G, γ 7→ γ−1;

such that the following conditions are satisfied:

• s(δγ )= s(γ ) and t (δγ )= t (δ) for all (δ, γ ) ∈G×T G;

• for all γ, δ, ε ∈G with t (γ )= s(δ) and t (δ)= s(ε), we have ε(δγ )= (εδ)γ
(associativity);

• 1t (γ )γ = γ 1s(γ ) = γ (units or identity elements); and

• s(γ )= t (γ−1), t (γ )= s(γ−1), γ−1γ = 1s(γ ) and γ γ−1
= 1t (γ ) for all γ ∈G

(inverse elements).

If moreover G and T are equipped with topologies such that all of the above
structural maps are continuous, then G is called a topological groupoid.

Remark 12. For a groupoid G, observe that s(1x)= t (1x)= x for all x ∈ T , and
therefore the source and target maps s, t :G→ T are surjective, and the unit map
T → G is injective. If moreover G is a topological groupoid, then the unit map
T →G is a topological embedding, and therefore the topology of T is determined
by the topology of G; indeed, we can consider T as a subspace of G if desired.

Definition 2.21. A topological groupoid is called étale if the source and target
maps are local homeomorphisms.

2Recall that a space is called Polish if it is separable and completely metrizable.
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Let H be a pseudogroup on a space T . Note that the domain of the evaluation
partial map ev :H× T � T is

H ∗ T = {(h, x) ∈H× T | x ∈ dom h } ⊂H× T .

Define an equivalence relation on H ∗ T by setting (h, x)∼ (h′, x ′) if x = x ′ and
h= h′ on some neighborhood of x in dom h∩dom h′. The equivalence class of each
(h, x) ∈H ∗ T is called the germ of h at x , which will be denoted by γ (h, x). The
corresponding quotient set is denoted by G, and the quotient map, γ :H ∗ T →G,
is called the germ map. It is well known that G is a groupoid with set of units T ,
where the source and target maps s, t : G→ T are given by s(γ (h, x)) = x and
t (γ (h, x))= h(x), the unit map T →G is defined by 1x = γ (idT , x), the operation
map G×T G→ G is given by γ (g, h(x)) γ (h, x) = γ (gh, x), and the inversion
map is defined by γ (h, x)−1

= γ (h−1, h(x)).
For x, y∈T , let us use the notation Gx = s−1(x), Gy

= t−1(y) and G
y
x =Gx∩G

y ;
in particular, the group G

x
x will be called the germ group of H at x . Points in the

same H-orbit have isomorphic germ groups (if y ∈H(x), an isomorphism G
y
y→G

x
x

is given by conjugation with any element in G
y
x ); hence the germ groups of the orbits

make sense up to isomorphism. Under pseudogroup equivalences, corresponding
orbits have isomorphic germ groups. The set Gx will be called the germ cover
of the orbit H(x) with base point x . The target map restricts to a surjective map
Gx →H(x) whose fibers are bijective to G

x
x (if y ∈H(x), a bijection G

x
x →G

y
x is

given by left product with any element in G
y
x ); thus Gx is finite if and only if both

G
x
x and H(x) are finite. Moreover germ covers based on points in the same orbit are

also bijective (if y ∈H(x), a bijection Gy→Gx is given by right product with any
element in G

y
x ); therefore the germ covers of the orbits make sense up to bijections.

Definition 2.22. It is said that H is

• locally free if all of its germ groups are trivial; and

• strongly locally free if H is generated by a subpseudo∗group S ⊂H such that,
for all h ∈ S and x ∈ dom h, if h(x)= x then h = iddom h .

Remark 13. The condition of being (strongly) locally free is stronger than the
condition of being (strongly) quasianalytic. If H is locally free and satisfies the
condition of strong quasianalyticity with a subpseudo∗group S ⊂H generating H,
then H also satisfies the condition of being strongly locally free with S.

Remark 14. If H being strongly locally free is witnessed by a subpseudo∗group S,
then it is also witnessed by the localization of S. It follows that this property is
hereditary by taking subpseudogroups and restrictions to open subsets.

The sheaf topology on G has a basis consisting of the sets {γ (h, x) | x ∈ dom h}
for h ∈H. Equipped with the sheaf topology, G is an étale groupoid.
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Let us define another topology on G. Suppose that H is generated by some
subpseudo∗group S ⊂H. The set S ∗ T = (H∗ T )∩ (S× T ) is open in S(b-)c-o× T
by Proposition 2.4. It will be denoted by S(b-)c-o ∗ T when endowed with the
restriction of the topology of S(b-)c-o × T . The induced quotient topology on G,
via the germ map γ : S(b-)c-o ∗ T → G, will also be called the (bi-)compact-open
topology. The corresponding space will be denoted by G(b-)c-o, or by GS,(b-)c-o if
reference to S is needed. It follows from Proposition 2.6 that Gb-c-o is a topological
groupoid if T is locally compact. We get a commutative diagram

S(b-)c-o ∗ T
inclusion
−−−→ H(b-)c-o ∗ T

γ

y yγ

GS,(b-)c-o
identity
−−−→ GH,(b-)c-o

where the top map is an embedding and the vertical maps are identifications. Hence
the identity map GS,(b-)c-o→GH,(b-)c-o is continuous. Similarly, the identity map
GS,b-c-o→GS,c-o is continuous.

Question 2.23. When are GS,(b-)c-o =GH,(b-)c-o and GS,b-c-o =GS,c-o?

For the second equality, a partial answer will be given in Section 3B.

2D. Local groups and local actions. (See [Jacoby 1957].)

Definition 2.24. A local group is a quintuple G ≡ (G, e, ·, ′,D) satisfying the
following conditions:

(1) (G,D) is a topological space.

(2) · is a function from a subset of G×G to G.

(3) ′ is a function from a subset of G to G.

(4) There is a subset O of G such that
• O is an open neighborhood of e in G;
• O × O is a subset of the domain of ·;
• O is a subset of the domain of ′;
• for all a, b, c ∈ O , if a · b, b · c ∈ O , then (a · b) · c = a · (b · c);
• for all a ∈ O , we have a′ ∈ O , a · e = e · a = a and a′ · a = a · a′ = e;
• the map · : O × O→ G is continuous; and
• the map ′ : O→ G is continuous.

(5) The set {e} is closed in G.

Asserting that a local group satisfies some topological property usually means
that the property is satisfied on some open neighborhood of e.
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A local homomorphism of a local group G to a local group H is a continuous
partial map φ : G� H , whose domain is a neighborhood of e in G, which is com-
patible in the usual sense with the identity elements, the operations and inversions.
If moreover φ restricts to a homeomorphism between some neighborhoods of the
identities in G and H , then it is called a local isomorphism, and G and H are said
to be locally isomorphic. A local group locally isomorphic to a Lie group is called
a local Lie group.

The collection of all sets O satisfying (4) is denoted by 9G. This is a neighbor-
hood basis of e in G; all of these neighborhoods are symmetric with respect to the
inverse operation (3). Let 8(G, n) denote the collection of subsets A of G such
that the product of any collection of at most n elements of A is defined, and the set
An of such products is contained in some O ∈9G.

Let H ⊂G. It is said that H is a subgroup of G if H ∈8(G, 2), e ∈ H , H ′ = H
and H 2

= H ; and H is a sub-local group of G if H is itself a local group with
respect to the induced operations and topology.

Let ϒG denote the set of all pairs (H, V ) of subsets of G so that e∈ H , V ∈9G,
a ·b ∈ H for all a, b ∈ V ∩ H , and c′ ∈ H for all c ∈ V ∩ H . Then a subset H ⊂ G
is a sub-local group if and only if there exists some V such that (H, V ) ∈ ϒG
[Jacoby 1957, Theorem 26].

Let 5G denote the family of pairs (H, V ) of subsets of G such that

e ∈ H, V ∈9G ∩8(G, 6),

a · b ∈ H for all a, b ∈ V 6
∩ H ,

c′ ∈ H for all c ∈ V 6
∩ H ,

V 2
\ H is open.

Given (H, V ) ∈5G, there is a (completely regular, Hausdorff) space G/(V, H)
and a continuous open surjection T : V 2

→G/(V, H) such that T (a)= T (b) if and
only if a′ · b ∈ H (cf. [Jacoby 1957, Theorem 29]). For another pair in 5G of the
form (H,W ), the spaces G/(H, V ) and G/(H,W ) are locally homeomorphic at
the identity class. Thus the concept of coset space of H is well defined in this sense,
as “a germ of a topological space”. The notation G/H may be used in this sense.
It will be said that G/H has a certain topological property when some G/(H, V )
has that property around T (e).

Let 1G be the set of pairs (H,U ) such that (H,U )∈5G and b′ ·(a ·b)∈ H for
all a ∈ H∩U 4 and b ∈U 2. A subset H ⊂G is called a normal sub-local group of G
if there exists U such that (H,U ) ∈1G. If (H,U ) ∈1G then the quotient space
G/(H,U ) admits the structure of a local group (see [Jacoby 1957, Theorem 35] for
details) and the natural projection T :U 2

→G/(H,U ) is a local homomorphism. As
before, another such pair (H, V ) produces a locally isomorphic quotient local group.
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As usual, a · b and a′ will be denoted by ab and a−1.
Local groups were first studied by Jacoby [1957], giving local versions of

important theorems for topological groups. For instance, Jacoby characterized local
Lie groups as the locally compact local groups without small subgroups3 [Jacoby
1957, Theorem 96]. Also, any finite dimensional metrizable locally compact local
group is locally isomorphic to the direct product of a Lie group and a compact
zero-dimensional topological group [Jacoby 1957, Theorem 107]. In particular,
this property shows that any locally Euclidean local group is a local Lie group,
which is an affirmative answer to a local version of Hilbert’s 5th problem. However
the proof of Jacoby is incorrect because he did not realize that, in local groups,
associativity for three elements does not imply associativity for any finite sequence
of elements [Plaut 1993; Olver 1996]. Fortunately, a completely new proof of the
local Hilbert’s 5th problem was given by Goldbring [2010]. Moreover van den Dries
and Goldbring [2010; 2012] proved that any locally compact local group is locally
isomorphic to a topological group, and therefore all other theorems for local groups
of Jacoby hold as well because they are known for locally compact topological
groups [Montgomery and Zippin 1955].

Definition 2.25. It is said that a local group G can be approximated by a class C of
local groups if, for all W ∈9G ∩8(G, 2), there is some V ∈9G and a sequence
of compact normal subgroups Fn ⊂ V such that V ⊂W , Fn+1 ⊂ Fn ,

⋂
n Fn = {e},

(Fn, V ) ∈1G and G/(Fn, V ) ∈ C.

Theorem 2.26 [Jacoby 1957, Theorems 97–103; van den Dries and Goldbring 2010;
2012]. Any locally compact second countable local group G can be approximated
by local Lie groups.

Definition 2.27. A local action of a local group G on a space X is a paro map
G× X � X , (g, x) 7→ gx , defined on some open neighborhood of {e}× X , such
that ex = x for all x ∈ X , and g1(g2x)= (g1g2)x , provided both sides are defined.

Remark 15. The local transformations given by any local action of a local group
on a space generate a pseudogroup.

A local action of a local group G on a space X is called locally transitive at
some point x ∈ X if there is a neighborhood W of e in G such that the local action
is defined on W ×{x}, and W x := {gx | g ∈W } is a neighborhood of x in X . Given
another local action of G on a space Y , a paro map φ : X� Y is called equivariant
if φ(gx)= gφ(x) for all x ∈ X and g ∈ G, provided both sides are defined.

3A local group is said to have no small subgroups when some neighborhood of the identity element
contains no nontrivial subgroup.
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Example 2.28. Let H be a sub-local group of G. If (H, V ) ∈5G, and if the map
T : V 2

→ G/(H, V ) is the natural projection, then the map

V ×G/(H, V )→ G/(H, V ), (v, T (g)) 7→ T (vg)

defines a local action of G on G/(H, V ).

Remark 16. If G is a local group locally acting on X and the local action is locally
transitive at x ∈ X , then there is a sub-local group H of G such that (H, V ) ∈5G
for some V and the orbit paro map G� X , g 7→ gx , induces an equivariant paro
map G/(H, V )� X , which restricts to a homeomorphism between neighborhoods
of T (e) and x .

2E. Equicontinuous pseudogroups. Álvarez and Candel [2009] introduced the
following structure to define equicontinuity for pseudogroups. Let4 {Ti , di } be a
family of metric spaces such that {Ti } is a covering of a set T , each intersection
Ti ∩ T j is open in (Ti , di ) and (T j , d j ), and, for all ε > 0, there is some δ(ε) > 0
such that the following property holds: for all i , j and z ∈ Ti ∩ T j , there is some
open neighborhood Ui, j,z of z in Ti ∩ T j (with respect to the topology induced by
di and d j ) such that

di (x, y) < δ(ε)H⇒ d j (x, y) < ε

for all ε > 0 and all x, y ∈Ui, j,z . Such a family is called a cover of T by quasilocally
equal metric spaces. Two such families are quasilocally equal when their union is
also a cover of T by quasilocally equal metric spaces. This is an equivalence relation
whose equivalence classes are called quasilocal metrics on T . For each quasilocal
metric Q on T , the pair (T,Q) is called a quasilocal metric space. Such a Q induces
a topology5 on T so that, for each {Ti , di }i∈I ∈Q, the family of open balls of all
metric spaces (Ti , di ) form a basis of open sets. Any topological concept or property
of (T,Q) refers to this underlying topology. (T,Q) is locally compact and Polish if
and only if it is Hausdorff, paracompact and separable [Álvarez and Candel 2009].

Definition 2.29 [Álvarez and Candel 2009]. Let H be a pseudogroup on a quasilocal
metric space (T,Q). Then H is said to be (strongly6) equicontinuous if there exists
some {Ti , di }i∈I ∈Q and some subpseudo∗group S ⊂H generating H, such that,
for every ε > 0, there is some δ(ε) > 0 such that

di (x, y) < δ(ε)H⇒ d j (h(x), h(y)) < ε

for all h ∈ S, i, j ∈ I and x, y ∈ Ti ∩ h−1(T j ∩ im h).

4The notation will be simplified by using, for instance, {Ti , di } instead of {(Ti , di )}.
5In fact, it induces a uniformity. We could even use any uniformity to define equicontinuity, but

such generality will not be used here.
6This adverb, used in [Álvarez and Candel 2009], will be omitted for the sake of simplicity.
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A pseudogroup H acting on a space T will be called (strongly) equicontinuous
when it is equicontinuous with respect to some quasilocal metric inducing the
topology of T .

Remark 17. If the equicontinuity of H is witnessed by a subpseudo∗group S,
then it is also witnessed by the localization of S. It follows that equicontinuity is
hereditary by taking subpseudogroups and restrictions to open subsets.

Lemma 2.30 [Álvarez and Candel 2009, Lemma 8.8]. Let H and H′ be equivalent
pseudogroups on locally compact Polish spaces. Then H is equicontinuous if and
only if H′ is equicontinuous.

Proposition 2.31 [Álvarez and Candel 2009, Proposition 8.9]. Let H be a compactly
generated and equicontinuous pseudogroup on a locally compact Polish quasilocal
metric space (T,Q), and let U be any relatively compact open subset of (T,Q)
that meets every H-orbit. Suppose that {Ti , di }i∈I ∈ Q satisfies the condition of
equicontinuity. Let E be any system of compact generation of H on U , and let ḡ be
an extension of each g ∈ E with dom g⊂ dom ḡ. Also, let {T ′i }i∈I be any shrinking7

of {Ti }i∈I . Then there is a finite family V of open subsets of (T,Q) whose union
contains U and such that, for any V ∈V, x ∈U ∩V and h ∈H with x ∈ dom h and
h(x) ∈U , the domain of h̃ = ḡn · · · ḡ1 contains V for any composite h = gn · · · g1

defined around x with g1, . . . , gn ∈ E. Moreover, V ⊂ T ′i0
and h̃(V ) ⊂ T ′i1

for
some i0, i1 ∈ I .

Remark 18. The statement of Proposition 2.31 is stronger than the completeness
of H|U . Since we can choose U large enough to contain two arbitrarily given points
of T , it follows H is complete.

Proposition 2.32 [Álvarez and Candel 2009, Proposition 9.9]. Let H be a compactly
generated, equicontinuous and strongly quasianalytic pseudogroup on a locally
compact Polish space T . Suppose that the conditions of equicontinuity and strong
quasianalyticity are satisfied with a subpseudo∗group S ⊂ H generating H. Let
A, B be open subsets of T such that A is compact and contained in B. If x and y
are close enough points in T , then

f (x) ∈ A⇒ f (y) ∈ B

for all f ∈ S whose domain contains x and y.

Theorem 2.33 [Álvarez and Candel 2009, Theorem 11.11]. Let H be a compactly
generated and equicontinuous pseudogroup on a locally compact Polish space T . If
H is transitive, then H is minimal.

7Recall that a shrinking of an open cover {Ui } of a space X is an open cover {U ′i } of X , with the
same index set, such that U ′i ⊂Ui for all i . Similarly, if {Ui } is a cover of a subset A ⊂ X by open
subsets of X , a shrinking of {Ui }, as a cover of A by open subsets of X , is a cover {U ′i } of A by open
subsets of X , with the same index set, such that U ′i ⊂Ui for all i .



276 JESÚS A. ÁLVAREZ LÓPEZ AND MANUEL F. MOREIRA GALICIA

Theorem 2.33 can be restated by saying that the orbit closures form a partition
of the space. The following result states that indeed the orbit closures are orbits of
a pseudogroup if strong quasianalyticity is also assumed.

Theorem 2.34 [Álvarez and Candel 2009, Theorem 12.1]. Let H be a strongly
quasianalytic, compactly generated and equicontinuous pseudogroup on a locally
compact Polish space T . Let S ⊂H be a subpseudo∗group generating H such that
H satisfies the conditions of equicontinuity and strong quasianalyticity with S. Let
H̃ be the set of maps h between open subsets of T that satisfy the property that
for every x ∈ dom h, there exists a neighborhood Ox of x in dom h such that the
restriction h|Ox is in the closure of C(Ox , T )∩ S in Cc-o(Ox , T ). Then

(i) H̃ is closed by composition, combination and restriction to open sets;

(ii) any map in H̃ is a homeomorphism around every point of its domain;

(iii) H= H̃∩Loct(T ) is a pseudogroup that contains H;

(iv) H is equicontinuous;

(v) the orbits of H are equal to the closures of the orbits of H; and

(vi) H̃ and H are independent of the choice of S.

Remark 19. In Theorem 2.34, let S be the set of local transformations that are in
the union of the closures of C(O, T )∩ S in Cc-o(O, T ) with O running on the open
sets of T . According to the proof of [Álvarez and Candel 2009, Theorem 12.1],
S is a pseudo∗group that generates H. Moreover, if H satisfies the equicontinuity
condition with S and some representative {Ti , di } of a quasilocal metric, then H

satisfies the equicontinuity condition with S and {Ti , di }.

Remark 20. From the proof of [Álvarez and Candel 2009, Theorem 12.1], it also
follows that, with the notation of Remark 19, any x ∈U has a neighborhood O in
T such that the closure of

{h ∈ C(O, T )∩ S | h(O)∩U 6=∅}

in Cc-o(O, T ) is contained in Loct(T ), and therefore in S.

Example 2.35. Let G be a locally compact Polish local group with a left invariant
metric, let 0⊂G be a dense sub-local group, and let H be the minimal pseudogroup
generated by the local action of 0 by local left translations on G. The local left
and right translations in G by each g ∈ G will be denoted by Lg and Rg. The
restrictions of the local left translations Lγ (γ ∈0) to open subsets of their domains
form a subpseudo∗group S ⊂ H that generates H. Obviously, H satisfies with S
the condition of being strongly locally free, and therefore strongly quasianalytic.
Moreover H satisfies with S the condition of being equicontinuous (indeed isometric)
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by considering any left invariant metric on G. Observe that any local right translation
Rg (g ∈ G) generates an equivalence H→H.

Now, suppose that H is compactly generated. Then H is generated by the local
action of G on itself by local left translations. The subpseudo∗group S⊂H consists
of the restrictions of the local left translations Lg (g ∈ G) to open subsets of their
domains. Observe that H satisfies the condition of being strongly locally free, and
therefore strongly quasianalytic, with S.

Lemma 2.36. Let G and G ′ be locally compact Polish local groups with left in-
variant metrics, let 0 ⊂ G and 0′ ⊂ G ′ be dense sub-local groups, and let H and
H′ be the pseudogroups generated by the local actions of 0 and 0′ by local left
translations on G and G ′. Suppose that H and H′ are compactly generated. Then
H and H′ are equivalent if and only if G is locally isomorphic to G ′.

Proof. Consider the notation and observations of Example 2.35 for both G and G ′;
in particular, S⊂H and S′⊂H′ denote the subpseudo∗groups of restrictions of local
translations Lγ and Lγ ′ (γ ∈ 0 and γ ′ ∈ 0′) to open subsets of their domains. Let e
and e′ denote the identity elements of G and G ′. Let 8 :H→H′ be en equivalence.
Since H′ is minimal, after composing 8 with the equivalence generated by some
local right translation in G if necessary, we can assume that φ(e) = e′ for some
φ ∈8 with e ∈ domφ.

Let U be a relatively compact open symmetric neighborhood of e in G with
U ⊂ domφ. Let { f1, . . . , fn} be a symmetric system of compact generation of H

on U . Thus each fi has an extension f̃i ∈H such that dom fi ⊂ dom f̃i ⊂ domφ.

Claim 1. We can assume that f̃i ∈ S and φ f̃iφ
−1
∈ S′ for all i .

Each point in dom f̃i∩domφ has an open neighborhood O such that O⊂dom f̃i ,
f̃i |O ∈ S and φ f̃iφ

−1
|φ(O) ∈ S′. Take a finite covering {Oi j } ( j ∈ {1, . . . , ki }) of

the compact set dom fi by sets of this type. Let {Pi j } be a shrinking of {Oi j }, as
a cover of dom fi by open subsets of dom f̃i . Then the restrictions gi j = fi |Pi j∩U

(i ∈ {1, . . . , n} and j ∈ {1, . . . , ki }) generate H|U , each g̃i j = f̃i |Oi j is in S and
extends gi j , dom gi j ⊂ dom g̃i j , and φg̃i jφ

−1
∈ S′, showing Claim 1.

According to Claim 1, the maps f ′i = φ fiφ
−1 form a symmetric system of

compact generation of H′ on U ′ = φ(U ), which can be checked with the exten-
sions f̃ ′i = φ f̃iφ

−1. Let S0 ⊂ S and S′0 ⊂ S′ be the subpseudo∗groups consisting
of the restrictions of compositions of maps fi and f ′i to open subsets of their
domains, respectively. They generate H and H′. It follows from Claim 1 that
φ f φ−1

∈ S′ for all f ∈ S0. On the other hand, by Proposition 2.31, there is a
smaller open neighborhood of the identity, V ⊂ U , such that, for all h ∈ H and
all x ∈ V ∩ dom h with h(x) ∈U , there is some f ∈ S0 such that dom f = V and
γ ( f, x)= γ (h, x).
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Let W be another symmetric open neighborhood of the identity such that W 2
⊂

V . Let us show that φ : W → φ(W ) is a local isomorphism. Let γ ∈ W ∩ 0.
The restriction Lγ : W → γW is well defined and belongs to S. Hence there
is some f ∈ S0 such that dom f = V and γ ( f, e) = γ (Lγ , e). Since f is also
a restriction of a local left translation in G, it follows that f = Lγ on W . So
φLγφ−1

|φ(W ) ∈ S′; i.e., there is some γ ′ ∈ 0′ such that φLγφ−1
= Lγ ′ on φ(W ).

In fact,
φ(γ )= φLγ (e)= φLγφ−1(e′)= Lγ ′(e′)= γ ′.

Hence, for all γ, δ ∈ 0,

φ(γ δ)= φLγ (δ)= Lφ(γ )φ(δ)= φ(γ )φ(δ),

φ(γ )−1
= L−1

φ(γ )(e
′)= (φLγφ−1)−1(e′)

= φLγ−1φ−1(e′)= Lφ(γ−1)(e
′)= φ(γ−1).

Since φ and the product and inversion maps are continuous, it follows that, for
all g, h ∈W , we have φ(gh)= φ(g)φ(h) and φ(g−1)= φ(g)−1. �

Example 2.37. This generalizes Example 2.35. Let G be a locally compact Polish
local group with a left invariant metric, K ⊂ G a compact subgroup, and 0 ⊂ G a
dense sub-local group. Take some V such that (H, V ) ∈5(G). The left invariant
metric on G can be assumed to be also K -right invariant by the compactness of K ,
and therefore it defines a metric on G/(K , V ). Then the canonical local action of
0 on some neighborhood of the identity class in G/(K , V ) induces a transitive
equicontinuous pseudogroup H on a locally compact Polish space; in fact, this is a
pseudogroup of local isometries.

Assume that H is compactly generated. Then H is generated by the canonical
local action of G on some neighborhood of the identity class in G/(K , V ). Moreover
the subpseudo∗group S ⊂H consists of the local translations of the local action of
G on G/(K , V ).

Examples 2.35 and 2.37 are particular cases of pseudogroups induced by local
actions (Remark 15). The following result indicates their relevance.

Theorem 2.38 [Álvarez and Candel 2010, Theorem 5.2]. Let H be a transitive,
compactly generated and equicontinuous pseudogroup on a locally compact Polish
space, and suppose that H is strongly quasianalytic. Then H is equivalent to a
pseudogroup of the type described in Example 2.37.

Remark 21. From the proof of [Álvarez and Candel 2010, Theorems 3.3 and 5.2],
it also follows that, in Theorem 2.38, if moreover H is strongly locally free, then H

is equivalent to a pseudogroup of the type described in Example 2.35.
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3. Molino’s theory for equicontinuous pseudogroups

3A. Conditions on H. Let H be a pseudogroup of local transformations of a locally
compact Polish space T . Suppose that H is compactly generated, complete and
equicontinuous, and that H is also strongly quasianalytic.

Let U be a relatively compact open set in T that meets all the orbits of H. The
condition of compact generation is satisfied with U . Consider a representative
{Ti , di } of a quasilocal metric on T satisfying the condition of equicontinuity of H

with some subpseudo∗group S ⊂H that generates H. We can also suppose that the
condition of strong quasianalyticity of H is satisfied with S.

Remark 22. According to Theorem 2.34 and Remark 19, there is a mapping
ε 7→ δ(ε) > 0 (ε > 0) such that

di (x, y) < δ(ε)H⇒ d j (h(x), h(y)) < ε

for all indices i and j , every h ∈ S, and x, y ∈ Ti ∩ h−1(T j ∩ im h).

Remark 23. By Remark 20 and refining {Ti } if necessary, we can assume that U
is covered by a finite collection {Ti1, . . . , Tir } of the sets Ti , such that the closure of

{h ∈ C(Tik , T )∩ S | h(Tik )∩U 6=∅}

in Cc-o(Tik , T ) is contained in S for all k ∈ {1, . . . , r}.

Remark 24. By Proposition 2.31 and Remark 23, and refining {Ti } if necessary,
we can assume that, for all h ∈H and x ∈ Tik ∩U ∩ dom h with h(x) ∈U , there is
some h̃ ∈ S with dom h̃ = Tik and γ (h, x)= γ (h̃, x).

Remark 25. By Remarks 5, 10 and 17, and refining {Ti } if necessary, we can
assume that the strong quasianalyticity of H is satisfied with S.

3B. Coincidence of topologies.

Proposition 3.1. Sb-c-o = Sc-o.

Proof. (This is inspired by [Arens 1946].) For each g ∈ S, take any index i and
open sets V,W ⊂ T such that V ⊂W and W ⊂ im g. By Proposition 2.32, there is
some ε(i, V,W ) > 0 such that, for all x, y ∈ Ti , if di (x, y) < ε(i, V,W ), then

f (x) ∈ V H⇒ f (y) ∈W

for all f ∈ S with x, y ∈ dom f . Let K(g, i, V,W ) be the family of compact subsets
K ⊂ Ti ∩ dom g such that

K̊ 6=∅, diamdi (K ) < ε(i, V,W ), g(K )⊂ V,

where K̊ and diamdi (K ) denote the interior and di -diameter of K . Moreover let
K(g) denote the union of the families K(g, i, V,W ) as above. Then a subbasis
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N(g) of open neighborhoods of each g in Sc-o is given by the sets N(K , O)∩ S,
where K ∈ K(g) and O is an open neighborhood of g(K ) in T .

We have to prove the continuity of the inversion map Sc-o → Sc-o, h 7→ h−1.
Let h ∈ S and let N(K , O) ∈ N(h−1) with K ∈ K(h−1, i, V,W ), and fix any point
x ∈ K̊ . Then

V= N({h−1(x)}, K̊ )∩N(W \ O, T \ K )

is an open neighborhood of h in Hc-o. We have di ( f h−1(x), y) < ε(i, V,W ) for
all f ∈ V ∩ S and y ∈ K since f h−1(x) ∈ K̊ and diamdi (K ) < ε(i, V,W ). So
f −1(y)∈W by the definition of ε(i, V,W ) since f −1

∈ S and h−1(x)∈h−1(K )⊂V .
Thus, if f −1(y) 6∈ O , we get f −1(y) ∈ W \ O , obtaining y ∈ T \ K , which is a
contradiction. Hence f −1

∈ N(K , O) for all f ∈ V∩ S. �

Let G denote the groupoid of germs of H. The following direct consequence of
Proposition 3.1 gives a partial answer to Question 2.23.

Corollary 3.2. GS,b-c-o =GS,c-o; i.e., GS,c-o is a topological groupoid.

3C. The space T̂ . Recall that s, t :GS,c-o→ T denote the source and target pro-
jections. Let T̂ =GS,c-o, where the following subsets are open:

T̂U = s−1(U )∩ t−1(U ), T̂k,l = s−1(Tik ,il )∩ t−1(Tik ,il ), T̂U,k,l = T̂U ∩ T̂k,l .

Observe that T̂U is an open subspace of T̂ , and the family of sets T̂U,k,l form an
open covering of T̂U .

Let γ (h, x) ∈ T̂U,k,l . We can assume that h ∈ S and dom h = Tik according to
Remark 24. Since x ∈ Tik ∩U and h(x) ∈ Til ∩U , there are relatively compact
open neighborhoods, V of x and W of h(x), such that V ⊂ Tik ∩U , W ⊂ Til ∩U
and h(V )⊂W .

By Remark 24, for each f ∈ S with x ∈ dom f , there is some f̃ ∈ S with
dom f̃ = Tik and γ ( f̃ , x)= γ ( f, x).

Lemma 3.3. We have f = f̃ on V .

Proof. The composition f |V f̃ −1 is defined on f̃ (V ), belongs to S, and is the
identity on some neighborhood of f̃ (x) = f (x). So f |V f̃ −1 is the identity on
f̃ (V ) because H satisfies strong quasianalyticity with S. Hence f = f̃ on V . �

Let

S0 = { f ∈ S | V ⊂ dom f, f (V )⊂W },(3)

S1 = { f ∈ S | V ⊂ dom f, f (V )⊂W },(4)

equipped with the restriction of the compact-open topology. Notice that S0 is an
open neighborhood of h in Sc-o. Consider the compact-open topology on C(V ,W ).
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Lemma 3.4. The restriction map R : S1 → C(V ,W ), R( f ) = f |V , defines an
identification R : S1→R(S1).

Proof. The continuity of R is elementary.
Let G ⊂R(S1) such that R−1(G) is open in S1. For each g0 ∈ G, there is some

g′0 ∈R−1(G) such that R(g′0) = g0. Since R−1(G) is open in S1, there are finite
collections {K1, . . . , K p} of compact subsets and {O1, . . . , Op} of open subsets,
such that

g′0 ∈
{

f ∈ S1
∣∣ ⋃p

i=1 Ki ⊂ dom f and f (Ki )⊂ Oi for each i
}
⊂R−1(G).

Then

g0 ∈
{

g ∈ S1
∣∣ ⋃p

i=1 Ki ∩ V ⊂ dom g and g(Ki ∩ V )⊂ Oi ∩W for each i
}
⊂ G.

Since K1∩V , . . . , K p∩V are compact in V and O1∩W , . . . , Op∩W are open in
W , it follows that g0 is in the interior of G in R(S1). Hence G is open in R(S1). �

Lemma 3.5. R(S1) is closed in C(V ,W ).

Proof. Observe that C(V ,W ) is second countable because T is Polish. Take a
sequence gn in R(S1) converging to g in C(V ,W ). Then it easily follows that
gn|V converges to g|V in C(V, T ) with the compact-open topology. Thus g|V ∈ S
according to Remark 23. Let f = g̃|V . By Lemma 3.3, we have g= f |V . Therefore
f ∈ S1 and g =R( f ). �

Corollary 3.6. R(S1) is compact in C(V ,W ).

Proof. This follows by the Arzelà–Ascoli theorem and Lemma 3.5, because V and
W are compact, and R(S1) is equicontinuous since H satisfies the equicontinuity
condition with S and {Ti , di }. �

Let V0 be an open subset of T such that x ∈ V0 and V0 ⊂ V . Since V0 ⊂ dom f
for all f ∈ S1, we can consider the restriction S1× V0→ T̂ of the germ map.

Lemma 3.7. The image γ (S1× V0) is compact in T̂ .

Proof. For each g ∈ C(V ,W ) and y ∈ V , let γ (g, y) denote the germ of g at y,
defining a germ map

γ : C(V ,W )× V → γ (C(V ,W )× V ).

Since V0 ⊂ V , we get that γ (S1× V0)= γ (R(S1)× V0) and the diagram

(5)

S1× V0
R×id
−−−→ R(S1)× V0

γ

y yγ

γ (S1× V0) γ (R(S1)× V0)
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is commutative. Then

γ :R(S1)× V0→ γ (R(S1)× V0)

is continuous because

R× id : S1× V0→R(S1)× V0

is an identification by Lemma 3.4, and

γ : S1× V0→ γ (S1× V0)

is continuous. Hence γ (S1× V0) is compact by Corollary 3.6. �

Lemma 3.8. The image γ (S0× V0) is open in T̂ .

Proof. This holds because S0×V0 is open in Sc-o ∗ T and saturated by the fibers of
γ : Sc-o ∗ T → T̂ . �

Remark 26. Observe that the proof of Lemma 3.8 does not require V0 ⊂ V ; it
holds for any open V0 ⊂ V .

Corollary 3.9. T̂U is locally compact.

Proof. We have that γ (S1×V0) is compact by Lemma 3.7 and contains γ (S0×V0),
which is an open neighborhood of γ (h, x) by Lemma 3.8. Then the result follows
because γ (h, x) ∈ T̂U is arbitrary. �

Lemma 3.10. The map γ :R(S1)× V0→ T̂ is injective.

Proof. For f1, f2 ∈ S1 with γ (R( f1), y1)= γ (R( f2), y2), suppose

(R( f1), y1), (R( f2), y2) ∈R(S1)× V0,

Thus, y1 = y2 =: y and γ ( f1, y1)= γ ( f2, y2); i.e., f1 = f2 on some neighborhood
O of y in dom f1∩dom f2. Then f1(O)⊂dom( f2 f −1

1 ) and f2 f −1
1 = idT on f1(O).

Since f2 f −1
1 ∈ S, we get f2 f −1

1 = idT on dom( f2 f −1
1 ) = f1(dom f1 ∩ dom f2)

by the strong quasianalyticity of S. Since V ⊂ dom f1 ∩ dom f2, it follows that
f2 f −1

1 = idT on f1(V ), and therefore f1 = f2 on V ; i.e., R( f1)=R( f2). �

Let π̂ := (s, t) : T̂ → T × T , which is continuous.

Corollary 3.11. The restriction π̂ : T̂U →U ×U is proper.

Proof. Since U ×U can be covered by sets of the form V0×W , for V0 and W as
above, it is enough to prove that π̂−1(K1 × K2) is compact for all compact sets
K1 ⊂ V0 and K2 ⊂W . Then, with the above notation,

π̂−1(K1× K2)⊂ γ (S1× K1)⊂ γ (S1× V0),

and the result follows from Lemma 3.7. �

Corollary 3.12. The closure of T̂U in T̂ is compact.
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Proof. Take a relatively compact open subset U ′ ⊂ T containing U . By applying
Corollary 3.11 to U ′, it follows that π̂ : T̂U ′ → U ′ × U ′ is proper. Therefore
π̂−1(U ×U ) is compact and contains the closure of T̂U in T̂ . �

Lemma 3.13. T̂U is Hausdorff.

Proof. Let γ (h1, x1) 6= γ (h2, x2) in T̂U .
Suppose first that x1 6= x2. Since T is Hausdorff, there are disjoint open subsets V1

and V2 such that x1∈V1 and x2∈V2. Then V̂1= T̂U∩s−1(V1) and V̂2= T̂U∩s−1(V2)

are disjoint and open in T̂U , and γ (h1, x1) ∈ V̂1 and γ (h2, x2) ∈ V̂2.
Now, assume that x1 = x2 =: x but h1(x) 6= h2(x). Take disjoint open subsets

W1,W2 ⊂ U such that h1(x) ∈ W1 and h2(x) ∈ W2. Then Ŵ1 = T̂U ∩ t−1(W1)

and Ŵ2 = T̂U ∩ t−1(W2) are disjoint and open in T̂U , and γ (h1, x) ∈ Ŵ1 and
γ (h2, x) ∈ Ŵ2.

Finally, suppose that x1 = x2 =: x and h1(x) = h2(x) =: y. Then x ∈ Tik ∩U
and y ∈ Til ∩U for some indices k and l. Take open neighborhoods V of x and
W of y, such that V ⊂ Tik ∩U , W ⊂ Til ∩U and h1(V )∪ h2(V )⊂ W . Define S0

and S1 by using V and W like in (3) and (4), and take an open subset V0 ⊂ T such
that x ∈ V0 and V0 ⊂ V , as above. We can assume that h1, h2 ∈ S1. Then

γ (R(h1), x)= γ (h1, x1) 6= γ (h2, x2)= γ (R(h2), x),

and therefore R(h1) 6=R(h2) in R(S1) by Lemma 3.10. Since R(S1) is Hausdorff
(because it is a subspace of Cc-o(V ,W )), it follows that there are disjoint open
subsets N1,N2 ⊂R(S1) such that R(h1) ∈ N1 and R(h2) ∈ N2. So R−1(N1) and
R−1(N2) are disjoint open subsets of S1 with h1 ∈ R−1(N1) and h2 ∈ R−1(N2).
Hence M1 = R−1(N1)∩ S0 and M2 = R−1(N2)∩ S0 are disjoint and open in S0,
and therefore they are open in S. Moreover M1 × V0 and M2 × V0 are saturated
by the fibers of γ : S0 × V0 → γ (S0 × V0); in fact, if ( f, z) ∈ S0 × V0 satisfies
γ ( f, z)= γ ( f ′, z) for some f ′ ∈Ma (a ∈ {1, 2}), then

γ (R( f ), z)= γ ( f, z)= γ ( f ′, z)= γ (R( f ′), z),

giving R( f )=R( f ′) ∈ Na by Lemma 3.10. Therefore f ∈R−1(Na)∩ S0 =Ma .
It follows that γ (M1× V0) and γ (M2× V0) are open in γ (S0× V0), because the
map γ : S0× V0→ γ (S0× V0) is an identification as S0× V0 is open in Sc-o ∗ T
and saturated by the fibers of γ : Sc-o ∗ T → T̂ . Furthermore, by the commutativity
of the diagram (5),

γ (M1× V0)∩ γ (M2× V0)= γ (N1× V0)∩ γ (N2× V0)

= γ ((N1 ∩N1)× V0)=∅,

and γ (h1, x) ∈ γ (M1× V0) and γ (h2, x) ∈ γ (M2× V0). �
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Corollary 3.14. The map γ :R(S1)× V0→ γ (R(S1)× V0) is a homeomorphism.

Lemma 3.15. T̂U is second countable.

Proof. T̂U can be covered by a countable collection of open subsets of the type
γ (S0 × V0) as above. But γ (S0 × V0) is second countable because it is a sub-
space of γ (S1× V0)= γ (R(S1)× V0), which is homeomorphic to R(S1)× V0 by
Corollary 3.14, and this space is second countable as a subspace of the second
countable space C(V0,W0)× V0. �

Corollary 3.16. T̂U is Polish.

Proof. This follows from Corollary 3.9, Lemmas 3.13 and 3.15, and [Kechris 1991,
Theorem 5.3]. �

Proposition 3.17. T̂ is Polish and locally compact.

Proof. First, let us prove that T̂ is Hausdorff. Take different points γ (g, x) and
γ (g′, x ′) in T̂ . Let O , O ′, P and P ′ be relatively compact open neighborhoods
of x , x ′, g(x) and g(x ′), respectively. Then U1 = U ∪ O ∪ O ′ ∪ P ∪ P ′ is a
relatively compact open subset of T that meets all H-orbits. By Lemma 3.13, T̂U1

is a Hausdorff open subset of T̂ that contains γ (g, x) and γ (g′, x ′). Hence γ (g, x)
and γ (g′, x ′) can be separated in T̂U1 by disjoint open neighborhoods in T̂U1 , and
therefore also in T̂ .

Second, let us show that T̂ is locally compact. For γ (g, x) ∈ T̂ , let O and
P be relatively compact open neighborhoods of x and g(x), respectively. Then
U1 =U ∪ O ∪ P is a relatively compact open set of T that meets all H-orbits. By
Corollary 3.9, it follows that T̂U1 is a locally compact open neighborhood of γ (g, x)
in T̂ . Hence γ (g, x) has a compact neighborhood in T̂U1 , and therefore also in T̂ .

Finally, let us show that T̂ is second countable. Since T is second countable
(it is Polish) and locally compact, it can be covered by countably many relatively
compact open subsets On ⊂ T . Then each Un,m = On ∪ Om ∪U is a relatively
compact open set of T that meets all H-orbits. Hence, by Lemma 3.15, the sets
T̂Un,m are second countable and open in T̂ . Moreover these sets form a countable
cover of T̂ because, for any γ (g, x) ∈ T̂ , we have x ∈ On and g(x) ∈ Om for some
n and m, obtaining γ (g, x) ∈ T̂Un,m . So T̂ is second countable.

Now the result follows by [Kechris 1991, Theorem 5.3]. �

Proposition 3.18. The map π̂ : T̂ → T × T is proper.

Proof. Take any compact K ⊂ T × T and any relatively compact open U ′ ⊂ T
meeting all H-orbits and such that K ⊂U ′×U ′. By applying Corollary 3.11 to U ′,
we get that π̂−1(K ) is compact in T̂U ′ , and therefore in T̂ . �
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3D. The space T̂0. From now on, assume that H is minimal, and therefore H has
only one orbit, the whole of T . Fix a point x0 ∈U , and let8

T̂0 = t−1(x0)= {γ (g, x) ∈ T̂ | g(x)= x0 }, T̂0,U = T̂0 ∩ T̂U .

Observe that T̂0 is closed in T̂ , whereas T̂0,U is open in T̂0. Moreover, we have
π̂(T̂0) = T × {x0} ≡ T and π̂(T̂0,U ) = U × {x0} ≡ U because T is the unique
H-orbit; indeed, π̂(γ (h, x))= x for each x ∈ T and any h ∈ S with x ∈ dom h and
h(x)= x0. Let π̂0 := s : T̂0→ T , which is continuous and surjective.

The following two corollaries are direct consequences of Proposition 3.17 (see
[Kechris 1991, Theorem 3.11]) and Corollary 3.12.

Corollary 3.19. T̂0 is Polish and locally compact.

Corollary 3.20. The closure of T̂0,U in T̂0 is compact.

The following corollary is a direct consequence of Proposition 3.18 because
π̂0 : T̂0→ T can be identified with the restriction π̂ : T̂0→ T ×{x0} ≡ T .

Corollary 3.21. The map π̂0 : T̂0→ T is proper.

Proposition 3.22. The fibers of π̂0 : T̂0→ T are homeomorphic to each other.

Proof. For each x ∈ T , there is some f ∈ S with f (x) = x0. Then the mapping
γ (g, x) 7→ γ (g f −1, x0) defines a homeomorphism π̂−1

0 (x) → π̂−1
0 (x0) whose

inverse is given by γ (g0, x0) 7→ γ (g0 f, x). �

Question 3.23. When is π̂0 a fiber bundle?

3E. The pseudogroup Ĥ0. For h ∈ S, define

ĥ : π̂−1
0 (dom h)→ π̂−1

0 (im h), ĥ(γ (g, x))= γ (gh−1, h(x)),

for g ∈ S and x ∈ dom g ∩ dom h with g(x) = x0. The following two results are
elementary.

Lemma 3.24. For any h ∈ S, we have π̂0(dom ĥ) = dom h and π̂0(im ĥ) = im h,
and the following diagram is commutative:

dom ĥ
ĥ

−−−→ im ĥ

π̂0

y yπ̂0

dom h
h

−−−→ im h

Lemma 3.25. If O ⊂ T is open with idO ∈ S, then îdO = idπ̂−1
0 (O).

Lemma 3.26. For h, h′ ∈ S, we have ĥ′h = ĥ′ĥ.
8The definition T̂0 = s−1(x0) would be valid too, of course, but it seems that the proofs in

Sections 3D and 3E have a simpler notation with the choice T̂0 = t−1(x0).
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Proof. By Lemma 3.24, we have

dom(ĥ′ĥ)= ĥ−1(dom ĥ′ ∩ im ĥ)= ĥ−1(π̂−1
0 (dom h′ ∩ im h))

= π̂−1
0 (h−1(dom h′ ∩ im h))= π̂−1

0 (dom(h′h))= dom ĥ′h.

Now let γ (g, x) ∈ dom(ĥ′ĥ) = dom ĥ′h; therefore g ∈ S, x ∈ dom g ∩ dom h,
h(x) ∈ dom h′ and g(x)= x0. Then

ĥ′h(γ (g, x))= γ (g(h′h)−1, h′h(x))= γ (gh−1(h′)−1, h′h(x))

= ĥ′
(
γ (gh−1, h(x))

)
= ĥ′ĥ(γ (g, x)). �

The following is a direct consequence of Lemmas 3.25 and 3.26.

Corollary 3.27. For h ∈ S, the map ĥ is bijective with ĥ−1
= ĥ−1.

Lemma 3.28. The map ĥ is a homeomorphism for all h ∈ S.

Proof. By Corollary 3.27, it is enough to prove that ĥ is continuous, which holds
because it can be expressed as the composition of continuous maps

π̂−1
0 (dom h) (id,const,hπ̂0)

−−−−−−→ π̂−1
0 (dom h)×{h−1

}× im h
id× γ
−−−→ π̂−1

0 (dom h)× γ ({h−1
}× im h)

product
−−−→ π̂−1

0 (im h).

This can be checked on elements:

γ (g, x) 7→ (γ (g, x), h−1, h(x))

7→
(
γ (g, x), γ (h−1, h(x))

)
7→ γ (gh−1, h(x))= ĥ(γ (g, x)). �

Set Ŝ0 = {ĥ | h ∈ S}, and let Ĥ0 be the pseudogroup on T̂0 generated by Ŝ0.
Lemmas 3.26 and 3.28 and Corollary 3.27 give the following.

Corollary 3.29. Ŝ0 is a pseudo∗group on T̂0.

Lemma 3.30. T̂0,U meets all orbits of Ĥ0.

Proof. Let γ (g, x) ∈ T̂0 with g ∈ S; then x ∈ dom g and g(x)= x0. Since U meets
all orbits of H, there is some h ∈ S such that x ∈ dom h and h(x) ∈ U . Then
γ (g, x) ∈ dom ĥ and ĥ(γ (g, x))= γ (gh−1, h(x)) satisfies

π̂0
(
ĥ(γ (g, x))

)
= π̂0

(
γ (gh−1, h(x))

)
= h(x) ∈U.

Hence ĥ(γ (g, x)) ∈ T̂0,U as desired. �

Lemma 3.31. The map Sc-o→ Ŝ0,c-o, h 7→ ĥ, is a homeomorphism.



TOPOLOGICAL MOLINO’S THEORY 287

Proof. If ĥ1 = ĥ2 for some h1, h2 ∈ S, then h1 = h2 by Lemma 3.24. So the stated
map is injective, and therefore it is bijective by the definition of Ŝ0.

Take a subbasic open set of Sc-o, which is of the form S ∩N(K , O) for some
compact K and open O in T . The set π̂−1

0 (K ) is compact by Corollary 3.21, and
π̂−1

0 (O) is open. Then the map of the statement is open because

{ ĥ | h ∈ N(K , O)∩ S } = N̂
(
π̂−1

0 (K ), π̂−1
0 (O)

)
∩ Ŝ0

by Lemma 3.24, which is open in Ŝ0,c-o.
To prove its continuity, let us first show that its restriction to SU = S ∩H|U is

continuous. Fix h0 ∈ SU , and take relatively compact open subsets

V, V0,W, V ′, V ′0,W ′ ⊂U,

and indices k and k ′ such that

V0 ⊂ V, V ⊂ Tik ∩ dom h0,(6)

V ′0 ⊂ V ′, V ′ ⊂ Tik′
∩ im h0,(7)

W ⊂W ′, W ′ ⊂ Tik0
,(8)

h−1
0 (V ′)⊂ V,(9)

h0(V0)⊂ V ′.(10)

Let S0 and S1 (respectively, S′0 and S′1) be defined like in (3) and (4), by using
V and W (respectively, V ′ and W ′). Then K̂ = γ (S1 × V0) is compact in T̂ by
Lemma 3.7, and Ô = γ (S′0×V ′) is open in T̂ by Lemma 3.8 and Remark 26. Thus
K̂0 = K̂ ∩ T̂0 is compact and Ô0 = Ô ∩ T̂0 is open in T̂0. So N̂(K̂0, Ô0)∩ Ŝ0 is a
subbasic open set of Ŝ0,c-o.

Claim 1. ĥ0 ∈ N̂(K̂0, Ô0).

Let γ (g, x) ∈ K̂0; thus g ∈ S1, x ∈ V 0 ∩ dom g and g(x) = x0. The condition
g ∈ S1 means that g ∈ S, V ⊂ dom g and g(V ) ⊂ W . By (7)–(9), it follows that
V ′ ⊂ dom gh−1

0 and
gh−1

0 (V ′)⊂ g(V )⊂W ⊂W ′.

Hence gh−1
0 ∈ S′0, obtaining that

ĥ0(γ (g, x))= γ (gh−1
0 , h0(x)) ∈ Ô,

which completes the proof of Claim 1.

Claim 2. The sets N̂(K̂0, Ô0)∩ Ŝ0, constructed as above, form a local subbasis of
Ŝ0,c-o at ĥ0.
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This assertion follows by Claim 1 and because the sets of the type Ô0 form a
basis of the topology of im ĥ0, and any compact subset of dom ĥ0 is contained in a
finite union of sets of the type of K̂0.

The sets
N= N(V0, V ′)∩N(V ′, V )−1

∩ SU

are open neighborhoods of h0 by (9), (10), and Propositions 2.6 and 3.1.

Claim 3. We have ĥ ∈ N̂(K̂0, Ô0) for all h ∈ N.

Given h ∈ N, we have V ′ ⊂ im h and h−1(V ′) ⊂ V . Let γ (g, x) ∈ K̂0; thus
x ∈ V0 ∩ dom g, g(x) = x0, and we can assume that g ∈ S1, which means that
g ∈ S, V ⊂ dom g and g(V ) ⊂ W . Then V ′ ⊂ dom(gh−1), gh−1(V ′) ⊂ W ⊂ W ′

and h(x) ∈ h(V0)⊂ V ′. Therefore

ĥ(γ (g, x))= γ (gh−1, h(x)) ∈ γ (S′0× V ′)∩ T̂0 = Ô0,

proving Claim 3.

Claims 2 and 3 show that the map SU,c-o→ Ŝ0,c-o, h 7→ ĥ, is continuous at h0.
Now, let us prove that the whole map Sc-o→ Ŝ0,c-o, h 7→ ĥ, is continuous. Since
the sets N(K̂ , Ô) ∩ Ŝ0, for small enough compact subsets K̂ ⊂ T̂0 and small
enough open subsets Ô ⊂ T̂0, form a subbasis of Ŝ0,c-o, it is enough to prove that
the inverse image of these subbasic sets are open in Sc-o. We can assume that
K̂ , Ô ⊂ π̂−1

0 (U ′) for some relatively compact open subset U ′ ⊂ T that meets all
H-orbits. Consider the inclusion map ι : U ′ ↪→ T , and the paro map φ : T � U ′

with domφ =U ′, where it is the identity map. According to Proposition 2.3, we
get a continuous map φ∗ι∗ : Paroc-o(T, T )→ Paroc-o(U ′,U ′), which restricts to
a continuous map φ∗ι∗ : Sc-o → SU ′,c-o. Observe that φ∗ι∗(h) is the restriction
h :U ′ ∩ h−1(U ′)→ h(U ′)∩U ′ for each h ∈ S. Hence, since K̂ , Ô ⊂ π̂−1

0 (U ′), it
follows from Lemma 3.24 that N(K̂ , Ô)∩ Ŝ0 has the same inverse image by the
map Sc-o→ Ŝ0,c-o, h 7→ ĥ, and by the composition

Sc-o
φ∗ι
∗

−−−→ SU ′,c-o −−−→ Ŝ0,c-o,

where the second map is given by h 7→ ĥ. This composition is continuous by the
above case applied to U ′, and therefore the inverse image of N(K̂ , Ô) ∩ Ŝ0 by
Sc-o→ Ŝ0,c-o, h 7→ ĥ, is open in Sc-o. �

Since the compact generation of H is satisfied with the relatively compact open
set U , there is a symmetric finite set { f1, . . . , fm} generating H|U , which can be
chosen in S, such that each fa has an extension f̃a with dom fa ⊂ dom f̃a . We can
also assume that f̃a ∈ S. Let Ĥ0,U = Ĥ|T̂0,U

. Obviously, each ̂̃fa is an extension
of f̂a . Moreover,

dom f̂a = π̂
−1
0 (dom fa)⊂ π̂

−1
0 (dom fa)⊂ π̂

−1
0 (dom f̃a)= dom ̂̃fa.



TOPOLOGICAL MOLINO’S THEORY 289

Lemma 3.32. The maps f̂a (a ∈ {1, . . . ,m}) generate Ĥ0,U .

Proof. Ĥ0,U is generated by the maps of the form ĥ with h ∈ SU , and any such ĥ can
be written as a composition of maps f̂a around any γ (g, x) ∈ dom ĥ = π̂−1

0 (dom h)
by Lemma 3.26. �

Corollary 3.33. Ĥ0 is compactly generated.

Proof. We saw that T̂0,U is relatively compact in T̂0 (Corollary 3.20) and meets all
Ĥ0-orbits (Lemma 3.30), the maps f̂a generate Ĥ0,U (Lemma 3.32), and each ̂̃fa is
an extension of each f̂a with dom f̂a ⊂ dom ̂̃fa . �

Recall that the sets Tik form a finite covering of U by open sets of T . Fix some
index k0 such that x0 ∈ Tik0

. Let {Wk} be a shrinking of {Tik } as cover of U by open
subsets of T ; i.e., {Wk} is a cover of U by open subsets of T and Wk ⊂ Tik for all k.
By applying Proposition 2.32 several times, we get finite covers, {Va} and {V ′u},
of U by open subsets of T , and shrinkings, {W0,k} of {Wk} and {V0,a} of {Va}, as
covers of U by open subsets of T , such that the following properties hold:

• For all h ∈H and x ∈ dom h ∩U ∩ Va ∩W0,k with h(x) ∈ U ∩W0,l , there is
some h̃ ∈ S such that

Va ⊂ dom h̃ ∩Wk, γ (h̃, x)= γ (h, x), h̃(Va)⊂Wl .

• For all h ∈ H and x ∈ dom h ∩U ∩ V ′u ∩ V0,a with h(x) ∈ U ∩ V0,b, there is
some h̃ ∈ S such that

V ′u ⊂ dom h̃ ∩ Va, γ (h̃, x)= γ (h, x), h̃(V ′u)⊂ Vb.

By the definition of H and S, it follows that these properties also hold for all
h ∈H with h̃ ∈ S. Let {V ′0,u} be a shrinking of {V ′u} as a cover of U by open subsets
of T . We have x0 ∈W0,k0 ∩ V0,a0 ∩ V ′0,u0

for some indices k0, a0 and u0. For each
a, let S0,a, S1,a ⊂ S be defined like S0 and S1 in (3) and (4) by using Va and Wk0

instead of V and W . Take an index u such that V ′u⊂Va . The sets V0,a∩V ′0,u , defined
in this way, form a cover of U , so that the sets T̂a,u = γ (S0,a×(V0,a∩V ′0,u)) form a
cover of T̂U by open subsets of T̂ (Lemma 3.8), and thus the sets T̂0,a,u = T̂a,u ∩ T̂0

form a cover of T̂0,U by open subsets of T̂0. Let T̂0,U,a,u = T̂0,U ∩ T̂a,u . Like
in Section 3C, let γ denote the germ map defined on C(Va,Wk0)× Va , and let
Ra : S1,a→ C(Va,Wk0) be the restriction map f 7→ f |Va

. Then

(11) γ :Ra(S1,a)× V0,a ∩ V ′0,u→ γ
(
Ra(S1,a)× V0,a ∩ V ′0,u

)
is a homeomorphism by Corollary 3.14. Since Va is compact, the compact-open
topology on Ra(S1,a) equals the topology induced by the supremum metric da
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on C(Va,Wk0), defined with the metric dik0
on Tik0

. Take some index k such that
Va ⊂Wk . Then the topology of

Ra(S1,a)× V0,a ∩ V ′0,u

is induced by the metric da,u,k given by

da,u,k((g, y), (g′, y′))= dik (y, y′)+ da(g, g′)

(recall that Wk ⊂ Tik ). Let d̂a,u,k be the metric on γ (Ra(S1,a)× V0,a ∩ V ′0,u) that
corresponds to da,u,k by the homeomorphism (11); it induces the topology of
γ (Ra(S1,a)× V0,a ∩ V ′0,u). By the commutativity of (5),

γ
(
Ra(S1,a)× V0,a ∩ V ′0,u

)
= γ

(
Ra(S1,a)× V0,a ∩ V ′0,u

)
,

which is contained in T̂ . Then the restriction d̂0,a,u,k of d̂a,u,k to

γ
(
Ra(S1,a)× V0,a ∩ V ′0,u

)
∩ T̂0

induces the topology of this space. Moreover, by the proof of Corollary 3.9, we get

T̂a,u ⊂ γ
(
Ra(S1,a)× V0,a ∩ V ′0,u

)
,

and therefore
T̂0,a,u ⊂ γ

(
Ra(S1,a)× V0,a ∩ V ′0,u

)
∩ T̂0.

For any index v, define S′0,v and S′1,v like S0 and S1 in (3) and (4) by using V ′v
and Wk0 instead of V and W . Let R′v : S

′

1,v→ C(V ′v,Wk0) denote the restriction
map. Again, the compact-open topology on R′v(S

′

1,v) equals the topology induced
by the supremum metric d ′v on C(V ′v,Wk0), defined with the metric dik0

on Tik0

(recall that Wk0 ⊂ Tik0
). Take indices b and l such that V ′v ⊂ Vb and Vb ⊂Wl . Then

we can consider the restriction map

Rv
b : C(Vb,Wk0)→ C(V ′v,Wk0).

Its restriction Rv
b :Rb(S1,b)→R′v(S

′

1,v) is injective by Remark 25, and surjective by
Remark 24. So Rv

b :Rb(S1,b)→R′v(S
′

1,v) is a continuous bijection between compact
Hausdorff spaces, giving that it is a homeomorphism. Then, by compactness, it is a
uniform homeomorphism with respect to the supremum metrics db and d ′v . Since b
and v run in finite families of indices, there is a mapping ε 7→ δ1(ε) > 0 (ε > 0)
such that

(12) d ′v(R
v
bRb( f ),Rv

bRb( f ′)) < δ1(ε)H⇒ db(Rb( f ),Rb( f ′)) < ε

for all indices v and b, and maps f, f ′ ∈ S1,b.

Lemma 3.34. Ĥ0,U satisfies the equicontinuity condition with Ŝ0,U = Ŝ0 ∩ Ĥ0,U

and the quasilocal metric represented by the family {T̂0,U,a,u, d̂0,a,u,k}.
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Proof. Let h ∈ S, and

γ (g, y), γ (g′, y′) ∈ T̂0,U,a,u ∩ ĥ−1(T̂0,U,b,v),

where g, g′ ∈ S0,a and y, y′ ∈ V0,a∩V ′0,u with g(y)= g(y′)= x0. Take some indices
k and l such that Va ⊂ Wk and Vb ⊂ Wl (recall that Wk ⊂ Tik and Wl ⊂ Til ). By
Remark 24, we can assume that dom h = Tik . Then

ĥ(γ (g, y))= γ (gh−1, h(y)), ĥ(γ (g′, y′))= γ (g′h−1, h(y′))

both belong to T̂0,U,b,v, which means that h(y), h(y′) ∈ V0,b ∩ V ′0,v and there are
f, f ′ ∈ S0,b such that

(13) γ ( f, h(y))= γ (gh−1, h(y)), γ ( f ′, h(y′))= γ (g′h−1, h(y′)).

In particular, Vb ⊂ dom f ∩ dom f ′. In fact, we can assume dom f = dom f ′ = Til

by Remark 24. Observe that the image of h may not be included in Til , and the
images of f , f ′, g and g′ may not be included in Tik0

.

Claim 1. V ′v ⊂ im h and h−1(V ′v)⊂ Va .

By the assumptions on {V ′w}, since

h(y) ∈U ∩ V ′v ∩ V0,b ∩ dom h−1, h−1h(y)= y ∈U ∩ V ′u ∩ V0,a,

there is some h̃−1 ∈ S such that

V ′v ⊂ dom h̃−1 ∩ Vb, h̃−1(V ′v)⊂ Va, γ (h̃−1, h(y))= γ (h−1, h(y));

indeed, we can suppose that dom h̃−1 = Tik0
by Remark 24. Then

h̃−1(V ′v)⊂ Va ⊂ Tik = dom h,

obtaining V ′v ⊂ dom(hh̃−1). Moreover

γ (hh̃−1, h(y))= γ (idT , h(y)).

Therefore hh̃−1 = iddom(hh̃−1) because hh̃−1 ∈ S since h, h̃−1 ∈ S. So hh̃−1 = idT

on some neighborhood of V ′v , and therefore V ′v ⊂ im h and h−1
= h̃−1 on V ′v . Thus

h−1(V ′v)= h̃−1(V ′v)⊂ Va , which shows Claim 1.

By Claim 1 and since Va ⊂ dom g ∩ dom g′ because g, g′ ∈ S0,a , we get

(14) V ′v ⊂ dom(gh−1)∩ dom(g′h−1).

Since f, f ′ ∈ S0,b, we have Vb ⊂ dom f ∩ dom f ′ and f (Vb)∪ f ′(Vb)⊂Wk0 . On
the other hand, it follows from (13) that f h(y)= f ′h(y′)= x0 and

γ (gh−1 f −1, x0)= γ (g′h−1 f ′−1
, x0)= γ (idT , x0).
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Moreover,

f (V ′v)⊂ dom(gh−1 f −1), f ′(V ′v)⊂ dom(g′h−1 f ′−1
)

by (14). So, by Remark 25, gh−1 f −1
= idT on some neighborhood of f (V ′v), and

g′h−1 f ′−1
= idT on some neighborhood of f ′(V ′v). Thus gh−1

= f and g′h−1
= f ′

on some neighborhood of V ′v; in particular,

Rv
bRb( f )= gh−1

|V ′v
, Rv

bRb( f ′)= g′h−1
|V ′v
.

Consider the mappings ε 7→ δ(ε) > 0 and ε 7→ δ1(ε) > 0 satisfying Remark 22
and (12). Then, for each ε > 0, define

δ̂(ε)=min{δ(ε/2), δ1(ε/2)}.

Given any ε > 0, suppose that

d̂0,a,u,k(γ (g, y), γ (g′, y′)) < δ̂(ε).

This means that
da,u,k((Ra(g), y), (Ra(g′), y′)) < δ̂(ε),

or, equivalently,

dik (y, y′)+ sup
x∈Va

dik0
(g(x), g′(x)) < δ̂(ε).

Therefore

dik (y, y′) < δ(ε/2),(15)

sup
x∈Va

dik0
(g(x), g′(x)) < δ1(ε/2).(16)

From (15) and Remark 22, it follows that

(17) dil (h(y), h(y′)) < ε/2

since h ∈ S ⊂ S and y, y′ ∈ Tik ∩ h−1(Til ∩ im h). On the other hand, by Claim 1
and (16), we get

d ′v
(
Rv

bRb( f ),Rv
bRb( f ′)

)
= sup

z∈V ′v

dik0
(gh−1(z), g′h−1(z)) = sup

x∈h−1(V ′v)
dik0
(g(x), g′(x))

≤ sup
x∈Va

dik0
(g(x), g′(x))= da(Ra(g),Ra(g′)) < δ1(ε/2).

So, by (12),

(18) db(Rb( f ),Rb( f ′)) < ε/2.
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From (17) and (18), we get

d̂0,b,v,l
(
ĥ(γ (g, y)), ĥ(γ (g′, y′))

)
= d̂0,b,v,l

(
γ ( f, h(y)), γ ( f ′, h(y′))

)
= db,v,l

(
(Rb( f ), h(y)), (Rb( f ′), h(y′))

)
= dil (h(y), h(y′))+ db(Rb( f ),Rb( f ′)) < ε. �

Corollary 3.35. Ĥ0 is equicontinuous.

Proof. Ĥ0 is equivalent to Ĥ0,U by Lemma 3.30. Thus the result follows from
Lemma 3.34 because equicontinuity is preserved by equivalences. �

Lemma 3.36. Ĥ0 is minimal.

Proof. By Lemma 3.30, it is enough to prove that Ĥ0,U is minimal. Let the germs
γ (g, y), γ (g′, y′) be in T̂0,U with g, g′ ∈ S, y ∈ dom g ∩U , y′ ∈ dom g′ ∩U and
g(y)= g′(y′)= x0. Take indices k and k ′ such that y ∈ Tik and y′ ∈ Tik′

. We can
assume that dom g = Tik and dom g′ = Tik′

by Remark 24.
Let f = g−1g′ ∈ S. We have y′ ∈ dom f and f (y′)= y. By Remark 24, there

exists f̃ ∈ S with dom f̃ = Tik′
and γ ( f̃ , y′)=γ ( f, y′). By the definition of S, there

is a sequence fn in S with dom fn = Tik′
and fn → f in Cc-o(Tik , T ) as n→∞;

in particular, fn(y′)→ f (y′)= y. So we can assume that fn(y′) ∈ Tik for all n.
Take some relatively compact open neighborhood V of y′ such that

V ⊂ dom(g f̃ )∩ dom(g f )

and f̃ = f in some neighborhood of V . Since fn→ f̃ in Sc-o as n→∞, we get
g fn → g f̃ and f −1

n → f̃ −1 by Propositions 2.6 and 3.1. So V ⊂ dom(g fn) and
y ∈ dom f −1

n = im fn for n large enough, and f −1
n (y)→ f̃ −1(y)= y′. Moreover

g fn|V → g f̃ |V = g f |V = g′|V in Cc-o(V, T ). So γ (g fn, f −1
n (y)) → γ (g′, y′)

in T̂0,U by Proposition 2.2 and the definition of the topology of T̂ . Thus, with
hn = f −1

n ∈ S, we get

ĥn(γ (g, y))= γ (gh−1
n , hn(y))= γ (g fn, f −1

n (y))→ γ (g′, y′),

and therefore γ (g′, y′) is in the closure of the Ĥ0,U -orbit of γ (g, y). �

Remark 27. By Lemma 3.24, the map π̂0 : T̂0 → T generates a morphism of
pseudogroups Ĥ0→H in the sense of [Álvarez and Masa 2008] — this morphism
is not étale.

The following result is elementary.

Proposition 3.37. In Example 2.37, if H is compactly generated and H is strongly
quasianalytic, then Ĥ0 is equivalent to the pseudogroup generated by the local
action of 0 on G by local left translations, so that π̂0 : T̂0→ T corresponds to the
projection T : V 2

→ G/(K , V ).
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Corollary 3.38. The map π̂0 : T̂0→ T is open.

Proof. This follows from Theorem 2.38 and Proposition 3.37 since, in Example 2.37,
the projection T : V 2

→ G/(K , V ) is open. �

3F. The closure of Ĥ0. Let Ĥ0 be the pseudogroup on T̂0 defined like Ĥ by taking
the maps h in S instead of S; thus it is generated by Ŝ0 = { ĥ | h ∈ S }. Observe that
Ĥ0, S and Ŝ0 satisfy the obvious versions of Lemmas 3.24–3.26, 3.28, 3.30 and 3.31,
and Corollaries 3.27 and 3.29 (Section 3E). In particular, Ŝ0 is a pseudo∗group,
and T̂0,U meets all the orbits of Ĥ0. The restriction of Ĥ0 to T̂0,U will be denoted
by Ĥ0,U .

Lemma 3.39. Ĥ0 = Ĥ0.

Proof. By the version of Lemma 3.31 for S and Ŝ0, the set Ŝ0 is dense in Ŝ0,c-o.
Then the result follows easily by Proposition 2.2 and the definition of Ĥ0 (see
Theorem 2.34 and Remark 19). �

Lemma 3.40. Ĥ0 is strongly locally free.

Proof. Let ĥ ∈ Ŝ0 for h ∈ S, and γ (g, x) ∈ dom ĥ for g ∈ S and x ∈ dom g∩dom h
with g(x)= x0. Suppose that ĥ(γ (g, x))= γ (g, x). This means

γ (gh−1, h(x))= γ (g, x).

So h(x)= x and gh−1
= g on some neighborhood of x , and therefore h = idT on

some neighborhood of x . Then h = iddom h by the strong quasianalyticity condition
of H since h ∈ S. Hence ĥ = iddom ĥ by Lemma 3.25. �

Proposition 3.41. There is a locally compact Polish local group G and some
dense finitely generated sub-local group 0 ⊂ G such that Ĥ0 is equivalent to the
pseudogroup defined by the local action of 0 on G by local left translations.

Proof. This follows from Remark 21 (see also Theorem 2.38) since Ĥ0 is compactly
generated (Corollary 3.33) and equicontinuous (Corollary 3.35), and Ĥ0 is strongly
locally free (Lemma 3.40). �

3G. Independence of the choices involved. First, let us prove that T̂0 and Ĥ0 are
independent of the choice of the point x0 up to an equivalence generated by a
homeomorphism. Let x1 be another point of T , and let T̂1, π̂1, Ŝ1 and Ĥ1 be
constructed like T̂0, π̂0, Ŝ0 and Ĥ0 by using x1 instead of x0. Now, for each h ∈ S,
let us use the notation ĥ0 := ĥ ∈ Ŝ0, and let ĥ1 : π̂

−1
1 (dom h)→ π̂−1

1 (im h) be the
map in Ŝ1 defined like ĥ.

Proposition 3.42. There is a homeomorphism θ : T̂0→ T̂1 that generates an equiv-
alence 2 : Ĥ0→ Ĥ1 and such that π̂0 = π̂1θ .
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Proof. Since H is minimal, there is some f0 ∈ S such that x0 ∈ dom f0 and
f0(x0) = x1. Let θ : T̂0 → T̂1 be defined by θ(γ ( f, x)) = γ ( f0 f, x). This map
is continuous because θ(γ ( f, x)) = γ ( f0, x) γ ( f, x). So θ is a homeomorphism
because f −1

0 defines θ−1 in the same way. We also have π̂0= π̂1θ since θ preserves
the source of each germ. For each h ∈ S, we have dom ĥ1 = θ(dom ĥ0) because
π̂0 = π̂1θ , and ĥ1θ = θ since

ĥ1θ(γ ( f, x))= ĥ1(γ ( f0 f, x))= γ ( f0 f h−1, h(x))

= θ
(
γ ( f h−1, h(x))

)
= θ

(
ĥ0(γ ( f, x))

)
for all γ ( f, x) ∈ dom ĥ0. It follows easily that θ generates an étale morphism
2 : Ĥ0→ Ĥ1, which is an equivalence since θ−1 generates 2−1. �

Now, let us show that the topology of T̂ is independent of the choice of S.
Therefore the topology of T̂0 will be independent of the choice of S as well. Let
S′, S′′ ⊂H be two subpseudo∗groups generating H and satisfying the conditions
of Section 3A. With the notation of Section 3B, we have to prove the following.

Proposition 3.43. GS′,c-o =GS′′,c-o.

Proof. First, up to solving the case where S′ ⊂ S′′, we can assume that S′ and
S′′ are local by Remarks 10 and 17. Second, if S′ and S′′ are local, then the
subpseudo∗group S′ ∩ S′′ of H also generates H. Moreover S′ ∩ S′′ obviously
satisfies all other properties required in Section 3A; note that a refinement of {Ti }

may be necessary to get the properties stated in Remarks 22–25 with S′∩ S′′. Hence
the result follows from the special case where S′ ⊂ S′′. With this assumption, the
identity map GS′,c-o→GS′′,c-o is continuous because the diagram

S′c-o
inclusion
−−−→ S′′c-o

γ

y yγ

GS′,c-o
identity
−−−→ GS′′,c-o

is commutative, where the vertical maps are identifications and the top map is
continuous.

For any compact subset Q ⊂ T , let s−1(Q)S′,c-o and s−1(Q)S′′,c-o denote the
spaces obtained by endowing s−1(Q) with the restriction of the topologies of GS′,c-o
and GS′′,c-o, respectively. They are compact and Hausdorff by Propositions 3.17
and 3.18. It follows that s−1(Q)S′,c-o = s−1(Q)S′′,c-o because the identity map
s−1(Q)S′,c-o → s−1(Q)S′′,c-o is continuous. Hence, for any γ ( f, x) ∈ G and a
compact neighborhood Q of x in T , the set s−1(Q) is a neighborhood of γ ( f, x) in
GS′,c-o and GS′′,c-o with s−1(Q)S′,c-o= s−1(Q)S′′,c-o. This shows that the identity map
GS′,c-o→GS′′,c-o is a local homeomorphism, and therefore a homeomorphism. �
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Let T ′ be an open subset of T containing x0, which meets all orbits because H

is minimal. Then use T ′, H′ =H|T ′ and S′ = S ∩H′ to define T̂ ′0, π̂ ′0, Ŝ′0 and Ĥ
′

0
like T̂0, π̂0, Ŝ0 and Ĥ0. The proof of the following result is elementary.

Proposition 3.44. There is a canonical identity of topological spaces, T̂ ′0≡ π̂
−1
0 (T ′),

such that π̂ ′0 ≡ π̂0|T̂ ′0
and Ĥ

′

0 = Ĥ0|T̂ ′0
.

Corollary 3.45. Let H and H′ be minimal equicontinuous compactly generated
pseudogroups on locally compact Polish spaces such that H and H′ are strongly
quasianalytic. If H is equivalent to H′, then Ĥ0 is equivalent to Ĥ

′

0.

Proof. This is a direct consequence of Propositions 3.42–3.44. �

The following definition makes sense by Lemma 2.36, Propositions 3.42 and 3.43,
and Corollary 3.45.

Definition 3.46. In Proposition 3.41, it is said that (the local isomorphism class of)
G is the structural local group of (the equivalence class of) H.

4. Molino’s theory for equicontinuous foliated spaces

4A. Preliminaries on equicontinuous foliated spaces. (See [Moore and Schochet
1988; Candel and Conlon 2000, Chapter 11; Ghys 1999].)

Let X and Z be locally compact Polish spaces. A foliated chart in X of leaf
dimension n, transversely modeled on Z , is a pair (U, φ), where U ⊆ X is open and
φ :U → B× T is a homeomorphism for some open T ⊂ Z and some open ball B
in Rn . It is said that U is a distinguished open set. The sets Py = φ

−1(B × {y})
for y ∈ T are called plaques of this foliated chart. For every x ∈ B, the set
Sx = φ

−1({x}× T ) is called a transversal of the foliated chart. This local product
structure defines a local projection p : U → T , called distinguished submersion,
given as composition of φ with the second factor projection pr2 : B× T → T .

Let U= {Ui , φi } be a family of foliated charts in X of leaf dimension n modeled
transversally on Z and covering X . Assume further that the foliated charts are
coherently foliated in the sense that, if P and Q are plaques in different charts of
U, then P ∩ Q is open both in P and Q. Then U is called a foliated atlas on X of
leaf dimension n and transversely modeled on Z . A maximal foliated atlas F of
leaf dimension n and transversely modeled on Z is called a foliated structure on X
of leaf dimension n and transversely modeled on Z . Any foliated atlas U of this
type is contained in a unique foliated structure F; then it is said that U defines (or
is an atlas of) F. If Z = Rm , then X is a manifold of dimension n+m, and F is
traditionally called a foliation of dimension n and codimension m. The reference to
Z will be omitted.

For a foliated structure F on X of dimension n, the plaques form a basis of a
topology on X called the leaf topology. With the leaf topology, X becomes an
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n-manifold whose connected components are called leaves of F. F is determined
by its leaves.

A foliated atlas U= {Ui , φi } of F is called regular if

• each Ui is a compact subset of a foliated chart (Wi , ψi ) and φi = ψi |Ui ;

• the cover {Ui } is locally finite; and,

• if (Ui , φi ) and (U j , φ j ) are elements of U, then each plaque P of (Ui , φi )

meets at most one plaque of (U j , φ j ).

In this case, there are homeomorphisms hi j : Ti j → T j i such that hi j pi = p j on
Ui ∩U j , where pi :Ui→ Ti is the distinguished submersion defined by (Ui , φi ) and
Ti j = pi (Ui ∩U j ). Observe that the cocycle condition hik = h jkhi j is satisfied on
Ti jk = pi (Ui ∩U j ∩Uk). For this reason, {Ui , pi , hi j } is called a defining cocycle
of F with values in Z — we only consider defining cocycles induced by regular
foliated atlases. The equivalence class of the pseudogroup H generated by the
maps hi j on T =

⊔
i∈I Ti is called the holonomy pseudogroup of the foliated space

(X,F); H is the representative of the holonomy pseudogroup of (X,F) induced by
the defining cocycle {Ui , pi , hi j }. This T can be identified with a total (or complete)
transversal to the leaves in the sense that it meets all leaves and is locally given by
the transversals defined by foliated charts. All compositions of maps hi j form a
pseudo∗group S that generates H, called the holonomy pseudo∗group of F induced
by {Ui , pi , hi j }. There is a canonical identity between the space of leaves and the
space of H-orbits, X/F≡ T/H.

A foliated atlas (respectively, defining cocycle) contained in another one is called
a subfoliated atlas (respectively, subfoliated cocycle).

The holonomy group of each leaf L is defined as the germ group of the cor-
responding orbit. It can be considered as a quotient of π1(L) by taking “chains”
of sets Ui along loops in L; this representation of π1(L) is called the holonomy
representation. The kernel of the holonomy representation is equal to q∗π1(L̃) for
a regular covering space q : L̃→ L , which is called the holonomy cover of L . If F

admits a countable defining cocycle, then the leaves in some dense Gδ subset of M
have trivial holonomy groups [Hector and Hirsch 1981; 1987; Candel and Conlon
2000], and therefore they can be identified with their holonomy covers.

It is said that a foliated space is (topologically) transitive or minimal if any
representative of its holonomy pseudogroup is such. Transitivity (respectively,
minimality) of a foliated space means that some leaf is dense (respectively, all
leaves are dense).

Haefliger [2002] has observed that, if X is compact, then H is compactly gener-
ated, which can be seen as follows. There is some defining cocycle {U ′i , p′i , h′i j },
with p′i :U

′

i → T ′i , such that Ui ⊂U ′i , Ti ⊂ T ′i and p′i extends pi . Therefore each
h′i j is an extension of hi j so that dom hi j ⊂ dom h′i j . Moreover H is the restriction
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to T of the pseudogroup H′ on T ′ =
⊔

i T ′i generated by the maps h′i j , and T is a
relatively compact open subset of T ′ that meets all H′-orbits.

Definition 4.1. It is said that a foliated space is equicontinuous if any representative
of its holonomy pseudogroup is equicontinuous.

Remark 28. The above definition makes sense by Lemma 2.30.

Definition 4.2. Let G be a locally compact Polish local group. A minimal foliated
space is called a G-foliated space if its holonomy pseudogroup can be represented
by a pseudogroup given by Example 2.35 on a local group locally isomorphic to G.

4B. Molino’s theory for equicontinuous foliated spaces. Let (X,F) be a compact
minimal foliated space that is equicontinuous and such that the closure of its
holonomy pseudogroup is strongly quasianalytic. Let {Ui , pi , hi j } be a defining
cocycle of F induced by a regular foliated atlas, where pi :Ui → Ti . Let H denote
the corresponding representative of the holonomy pseudogroup on T =

⊔
i Ti , which

satisfies the conditions of Section 3A. Let S be the localization of the holonomy
pseudo∗group induced by {Ui , pi , hi j }. Fix an index i0 and a point x0 ∈Ui0 . Let
π̂0 : T̂0→ T and Ĥ0 be defined like in Sections 3D and 3E, by using T , H, the
point pi0(x0) ∈ Ti0 ⊂ T , and a local subpseudo∗group S ⊂H.

With the notation T̂i,0 = π̂
−1
0 (Ti )⊂ T̂0, let

qX0 =
⊔

i

Ui × T̂i,0 =
⋃

i

Ui × T̂i,0×{i},

equipped with the corresponding topological sum of the product topologies, and
consider its closed subspace

X̃0 = {(x, γ, i) ∈ qX0 | pi (x)= π̂0(γ )} ⊂ qX0.

For (x, γ, i), (y, δ, j) ∈ X̃0, write (x, γ, i) ∼ (y, δ, j) if x = y and γ = ĥ j i (δ).
Since hi j pi (x) = p j (x), h−1

j i = hi j and hik = h jkhi j , it follows that this defines
an equivalence relation ∼ on X̃0. Let X̂0 be the corresponding quotient space,
q : X̃0→ X̂0 the quotient map, and [x, γ, i] the equivalence class of each triple
(x, γ, i). For each i , let

qUi,0 =Ui × T̂i,0×{i}, Ũi,0 = qUi,0 ∩ X̃0, Ûi,0 = q(Ũi,0).

Lemma 4.3. Ûi,0 is open in X̂0.

Proof. We have to check that q−1(Ûi,0)∩ Ũ j,0 is open in Ũ j,0 for all j , which is
true because

q−1(Ûi,0)∩ Ũ j,0 = ((Ui ∩U j )× T̂ j,0×{ j})∩ X̃0. �

Lemma 4.4. The quotient map q : Ũi,0→ Ûi,0 is a homeomorphism.



TOPOLOGICAL MOLINO’S THEORY 299

Proof. This map is surjective by the definition of Ûi,0. On the other hand, two
equivalent triples in Ũi,0 are of the form (x, γ, i) and (x, δ, i) with γ = ĥi i (δ)= δ.
So q : Ũi,0→ Ûi,0 is also injective. Since q : Ũi,0→ Ûi,0 is continuous, it only
remains to prove that this map is open. A basis of the topology of Ũi,0 consists of
the sets of the form (V ×W ×{i})∩ X̃0, where V and W are open in Ui and T̂i,0,
respectively. These basic sets satisfy

Ũ j,0 ∩ q−1q
(
(V ×W ×{i})∩ X̃0

)
= Ũ j,0 ∩

(
V × ĥi j (W ∩ dom ĥi j )×{ j}

)
for all j , which is open in Ũ j,0. So q−1q((V ×W ×{i})∩ X̃0) is open in X̃0 and
therefore q((V ×W ×{i})∩ X̃0) is open in X̂0. �

Proposition 4.5. X̂0 is compact and Polish.

Proof. Let {U ′i , p′i , h′i j } be a shrinking of {Ui , pi , hi j }; i.e., it is a defining cocycle
of F such that U ′i ⊂Ui and p′i :U

′

i → T ′i is the restriction of pi for all i . Therefore
each h′i j is also a restriction of hi j and T ′i is a relatively compact open subset of Ti .
Then π̂−1

0 (T ′i ) is a compact subset of T̂i,0 by Corollary 3.21. Moreover X̂0 is the
union of the sets q(U ′i × π̂

−1
0 (T ′i )× {i}). So X̂0 is compact because it is a finite

union of compact sets.
On the other hand, since X̃0 is closed in qX0, and qUi,0 is Polish and locally compact

by Corollary 3.19, it follows that Ũi,0 is Polish and locally compact, and therefore
Ûi,0 is Polish and locally compact by Lemma 4.4. Then, by the compactness of X̂0,
Lemma 4.3 and [Kechris 1991, Theorem 5.3], it only remains to prove that X̂0 is
Hausdorff.

Let [x, γ, i] 6= [y, δ, j] in X̂0. So x ∈ Ui and y ∈ U j . If x = y, then we have
[y, δ, j] = [x, ĥ j i (δ), i] ∈ Ûi,0. Thus, in this case, [x, γ, i] and [y, δ, j] can be
separated by open subsets of Ûi,0 because Ûi,0 is Hausdorff.

Now suppose that x 6= y. Then take disjoint open neighborhoods, V of x in Ui

and W of y in U j . Let

qV = V × T̂i,0×{i} ⊂ qUi,0, qW = V × T̂ j,0×{ j} ⊂ qU j,0,

Ṽ = qV ∩ X̃0 ⊂ Ũi,0, W̃ = qW ∩ X̃0 ⊂ Ũ j,0,

V̂ = q(Ṽ )⊂ Ûi,0, Ŵ = q(W̃ )⊂ Û j,0.

The sets V̂ and Ŵ are open neighborhoods of [x, γ, i] and [y, δ, j] in X̂0. Suppose
that V̂ ∩ Ŵ 6=∅. Then there is a point (x ′, γ ′, i) ∈ Ṽ which is equivalent to some
point (y′, δ′, j) ∈ W̃ . This implies that x ′ = y′ ∈ V ∩W , which is a contradiction
because V ∩W =∅. Therefore V̂ ∩ Ŵ =∅. �

According to the above equivalence relation of triples, a map π̂0 : X̂0→ X is
defined by π̂0([x, γ, i])= x .
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Proposition 4.6. The map π̂0 : X̂0→ X is continuous and surjective, and its fibers
are homeomorphic to each other.

Proof. Since each map π̂0 : T̂i,0→ Ti is surjective, we have π̂0(Ûi,0)=Ui , obtaining
that π̂0 : X̂0→ X is surjective. Moreover the composition

Ũi,0
q

−−−→ Ûi,0
π̂0
−−−→ Ui

is the restriction of the first factor projection qUi,0→Ui , (x, γ, i) 7→ x . Therefore,
π̂0 : X̂0→ X is continuous by Lemmas 4.3 and 4.4.

For x ∈Ui , we have π̂−1
0 (x)⊂ Ûi,0 and

Ũi,0 ∩ q−1(π̂−1
0 (x))= {x}× π̂−1

0 (pi (x))×{i} ≡ π̂−1
0 (pi (x))⊂ T̂i,0.

So the last assertion follows from Lemma 4.4 and Proposition 3.22. �

Let p̃i,0 : Ũi,0 → T̂i,0 denote the restriction of the second factor projection
p̌i,0 : qUi,0 =Ui × T̂i,0×{i} → T̂i,0. By Lemma 4.4, p̃i,0 induces a continuous map
p̂i,0 : Ûi,0→ T̂i,0.

Proposition 4.7. {Û0.i , p̂i,0, ĥi j } is a defining cocycle of a foliated structure F̂0

on X̂0.

Proof. Let {Ui , φi } be a regular foliated atlas of F inducing the defining cocycle
{Ui , pi , hi j }, where φi :Ui → Bi × Ti is a homeomorphism and Bi is a ball in Rn

(n = dim F). Then we get a homeomorphism

φ̌i,0 = φi × id× id : qUi,0 =Ui × T̂i,0×{i} → Bi × Ti × T̂i,0×{i}.

Observe that φ̌i,0(Ũi,0) consists of the elements (y, z, γ, i) with π̂0(γ )= z. So φ̌i,0

restricts to a homeomorphism

φ̃i,0 : Ũi,0→ φ̌i,0(Ũi,0)≡ Bi × T̂i,0×{i} ≡ Bi × T̂i,0.

By Lemma 4.4, φ̃i,0 induces a homeomorphism φ̂i,0 : Ûi,0→ Bi × T̂i,0. Moreover,
p̌i,0 corresponds to the third factor projection via φ̌i,0, obtaining that p̃i,0 corresponds
to the second factor projection via φ̃i,0, and therefore p̂i,0 also corresponds to the
second factor projection via φ̂i,0. Observe that p̂i,0 = ĥ j i p̂ j,0 on Ûi,0 ∩ Û j,0 by the
definition of ∼. The regularity of the foliated atlas {Û0.i , φ̂i,0} follows easily from
the regularity of {Ui , φi }. �

According to Proposition 4.7, the holonomy pseudogroup of F̂0 is represented by
the pseudogroup on

⊔
i T̂i,0 generated by the maps ĥi j , which is the pseudogroup

Ĥ0 on T̂0.

Corollary 4.8. There is some locally compact Polish local group G such that
(X̂0, F̂0) is a minimal G-foliated space; in particular, it is equicontinuous.
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Proof. This follows from Propositions 4.7 and 3.41, and Lemma 3.36. �

Proposition 4.9. The map π̂0 : (X̂0, F̂0)→ (X,F) is foliated.

Proof. According to Proposition 4.7, this follows by checking the commutativity of
each diagram

Ûi,0
p̂i,0
−−−→ T̂i,0

π̂0

y yπ̂0

Ui
pi

−−−→ Ti

By Lemma 4.4, and the definition of p̂i,0 and π̂i,0, this commutativity follows from
the commutativity of

Ũi,0 −−−→ T̂i,0y yπ̂0

Ui
pi

−−−→ Ti

where the left vertical and the top horizontal arrows denote the restrictions of the
first and second factor projections of qUi,0 =Ui × T̂i,0×{i}. But the commutativity
of this diagram holds by the definition of X̃0 and Ũi,0. �

Proposition 4.10. The restrictions of π̂0 : X̂0→ X to the leaves are the holonomy
covers of the leaves of F.

Proof. With the notation of the proof of Proposition 4.7, the diagram

(19)

Ûi,0
φ̂i,0
−−−→ Bi × T̂i,0

π̂0

y yidBi ×π̂0

Ui
φi
−−−→ Bi × Ti

is commutative, and Ûi,0 = π̂
−1
0 (Ui ). Hence, for corresponding plaques in Ui

and Ûi,0, namely Pz = φ
−1
0 (Bi × {ẑ}) and P̂ẑ = φ̂

−1
0 (Bi × {z}) with z ∈ Ti and

ẑ ∈ π̂−1
0 (z) ⊂ T̂i,0, the restriction π̂0 : P̂ẑ → Pz is a homeomorphism. It follows

easily that π̂0 : X̂0→ X restricts to covering maps of the leaves of F̂0 to the leaves
of F. In fact, these are the holonomy covers, which can be seen as follows.

According to the proof of Proposition 4.6 and the definition of the equivalence
relation ∼ on X̃0, for each x in Ui ∩U j , we have homeomorphisms

π̂−1
0 (pi (x))

p̂i,0
←−−− π̂−1

0 (x)
p̂ j,0
−−−→ π̂−1

0 (p j (x))

satisfying p̂j,0 p̂−1
i,0 = ĥi j . This easily implies the following. Given x ∈ Ui and

x̂ ∈ π̂−1
0 (X), denoting by L and L̂ the leaves through x and x̂ , respectively, and

given a loop c in L based at x inducing a local holonomy transformation h ∈ S
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around pi (x) in Ti , the lift ĉ of c to L̂ with ĉ(0)= x̂ satisfies p̂i,0ĉ(1)= ĥ p̂i,0(x̂).
Writing p̂i,0(x̂)= γ ( f, pi (x)), we obtain

p̂i,0ĉ(1)= ĥ
(
γ ( f, pi (x))

)
= γ ( f h, pi (x)).

Thus ĉ is a loop if and only if γ ( f h, pi (x)) = γ ( f, pi (x)), which means that
γ (h, pi (x))= γ (idT , pi (x)). So L̂ is the holonomy cover of L . �

Proposition 4.11. The map π̂0 : X̂0→ X is open.

Proof. This follows from Corollary 3.38 and the commutativity of (19). �

Theorem A is the combination of the results of this section.

4C. Independence of the choices involved. Let x1 be another point of X , and let
X̂1, F̂1 and π̂1 : X̂1→ X be constructed like X̂0, F̂0 and π̂0 : X̂0→ X by using x1

instead of x0.

Proposition 4.12. There is a foliated homeomorphism θ̂ : (X̂0, F̂0)→ (X̂1, F̂1)

such that π̂1 F = π̂0.

Proof. Take an index i1 such that x1 ∈ Ui1 . Let Ŝ1, T̂1, Ĥ1 and π̂1 : T̂1 → T be
constructed like Ŝ0, T̂0, Ĥ0 and π̂0 : T̂0→ T by using pi1(x1) instead of pi0(x0), and
let T̂i,1 = π̂

−1
1 (Ti ). Then the construction of X̂1, F̂1 and π̂1 : X̂1→ X involves the

objects qX1, X̃1, qUi,1, Ũi,1, Ûi,1, p̌i,1, p̃i,1, p̂i,1, φ̌i,1, φ̃i,1 and φ̂i,1, defined like qX0,
X̃0, qUi,0, Ũi,0, Ûi,0, p̌i,0, p̃i,0, p̂i,0, φ̌i,0, φ̃i,0 and φ̂i,0, by using T̂i,1 and π̂1 : T̂i,1→ Ti

instead of T̂i,0 and π̂0 : T̂i,0→ Ti . Let θ : T̂0→ T̂1 be the homeomorphism given
by Proposition 3.42, which obviously restricts to homeomorphisms θi : T̂i,0→ T̂i,1.
Since π̂0 = π̂1θ , it follows that each homeomorphism

θ̌i = idUi ×θi × id : qUi,0 =Ui × T̂i,0×{i} → qUi,1 =Ui × T̂i,1×{i}

restricts to a homeomorphism θ̃i = Ũi,0→ Ũi,1. The combination of the homeo-
morphisms θ̃i is a homeomorphism θ̃ : X̃0→ X̃1.

For each h ∈ S, use the notation ĥ0 ∈ Ŝ0 and ĥ1 ∈ Ŝ1 for the map ĥ defined
with pi0(x0) and pi1(x1), respectively. From the proof of Proposition 3.42, we get
ĥ1θ = θ ĥ0 for all h ∈ S; in particular, this holds with h = hi j . So θ̃ : X̃0→ X̃1 is
compatible with the equivalence relations used to define X̂0 and X̂1, and therefore it
induces a homeomorphism θ̂ : X̂0→ X̂1. Note that θ̂ restricts to homeomorphisms
θ̂i : Ûi,0→ Ûi,1. Obviously, p̌i,1θ̌i = θi p̌i,1, yielding p̃i,1θ̃i = θi p̃i,1, and therefore
p̂i,1θ̂i = θi p̂i,1. It follows that θ̂ is a foliated map. �

Let {U ′a, p′a, h′ab} be another defining cocycle of F induced by a regular foliated
atlas. Then construct X̂ ′0, F̂′0 and π̂ ′0 : X̂0→ X like X̂0, F̂0 and π̂0 : X̂0→ X by
using {U ′a, p′a, h′ab} instead of {Ui , pi , hi j }.
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Proposition 4.13. There is a foliated homeomorphism F : (X̂0, F̂0)→ (X̂ ′0, F̂′0)

such that π̂ ′0 F = π̂0.

Proof. By using a common refinement of the open coverings {Ui } and {U ′a}, we
can assume that {U ′a} refines {Ui }. In this case, the union of the defining cocycles
{Ui , pi , hi j } and {U ′a, p′a, h′ab} is contained in another defining cocycle induced by
a regular foliated atlas. Thus the proof boils down to showing that a subdefining
cocycle9

{Uik , pik , hik il } of {Ui , pi , hi j } induces a foliated space homeomorphic
to (X̂0, F̂0). But the pseudogroup H′ induced by {Uik , pik , hik il } is the restriction
of H to an open subset T ′ ⊂ T , and the pseudo∗group induced by {Uik , pik , hik il }

is S′ = S ∩H′. Then, by using the canonical identity given by Proposition 3.44, it
easily follows that the foliated space (X̂ ′0, F̂′0) defined with {Uik , pik , hik il } can be
canonically identified with an open foliated subspace of (X̂0, F̂0), which indeed is
the whole of (X̂0, F̂0) because {Uik } covers X . �

The following definition makes sense by Propositions 4.12–4.13 and the results
used to justify Definition 3.46.

Definition 4.14. In Corollary 4.8, (the local isomorphism class of) G is called the
structural local group of (X,F).

5. Growth of equicontinuous pseudogroups and foliated spaces

5A. Coarse quasi-isometries and growth of metric spaces. A net in a metric space
M , with metric d, is a subset A ⊂ M that satisfies d(x, A) ≤ C for some C > 0
and all x ∈ M ; the term C-net is also used. A coarse quasi-isometry between M
and another metric space M ′ is a bi-Lipschitz bijection between nets of M and
M ′; in this case, M and M ′ are said to be coarsely quasi-isometric (in the sense of
Gromov) [Gromov 1993]. If such a bi-Lipschitz bijection, as well as its inverse, has
dilation ≤ λ, and it is defined between C-nets, then it will be said that the coarse
quasi-isometry has distortion (C, λ). A family of coarse quasi-isometries with a
common distortion will be called a family of equicoarse quasi-isometries, and the
corresponding metric spaces are called equicoarsely quasi-isometric.

The version of growth for metric spaces given here is taken from [Álvarez and
Candel 2015; Álvarez and Wolak 2013].

Recall that, given nondecreasing functions10 u, v : [0,∞)→ [0,∞), it is said
that u is dominated by v, written u 4 v, when there are a, b ≥ 1 and c ≥ 0 such
that u(r)≤ av(br) for all r ≥ c. If u 4 v 4 u, then it is said that u and v represent
the same growth type or have equivalent growth; this is an equivalence relation,
and 4 defines a partial order relation between growth types called domination. For

9A subdefining cocycle is a defining cocycle contained in another one.
10Usually, growth types are defined by using nondecreasing functions Z+→ [0,∞), but nonde-

creasing functions [0,∞)→ [0,∞) give rise to an equivalent concept.
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a family of pairs of nondecreasing functions [0,∞)→ [0,∞), equidomination
means that those pairs satisfy the above condition of domination with the same
constants a, b, c. A family of functions [0,∞)→ [0,∞) will be said to have
equiequivalent growth if they equidominate one another.

For a complete connected Riemannian manifold L , the growth type of each
mapping r 7→ vol B(x, r) is independent of x , and is called the growth type
of L . For metric spaces whose bounded sets are finite, a similar definition of
growth type can be given where the number of points is used in place of the
volume.

Let M be a metric space with metric d. A quasilattice 0 of M is a C-net of
M for some C ≥ 0 such that, for every r ≥ 0, there is some Kr ≥ 0 such that
card(0 ∩ B(x, r)) ≤ Kr for every x ∈ M . It is said that M is of coarse bounded
geometry if it has a quasilattice. In this case, the growth type of M can be defined
as the growth type of any quasilattice 0 of M ; i.e., it is the growth type of the
growth function r 7→ v0(x, r)= card(B(x, r)∩0) for any x ∈ 0. This definition is
independent of 0.

For a family of metric spaces, if they satisfy the above condition of coarse
bounded geometry with the same constants C and Kr , then they are said to have
equicoarse bounded geometry. If moreover the lattices involved in this condition
have growth functions with equiequivalent growth, then these metric spaces are
said to have equiequivalent growth.

The condition of coarse bounded geometry is satisfied by complete connected
Riemannian manifolds of bounded geometry, and also by discrete metric spaces
with a uniform upper bound on the number of points in all balls of each given radius
[Block and Weinberger 1997]. In those cases, the two given definitions of growth
type are equal.

Lemma 5.1 ([Álvarez and Candel 2009]; see also [Álvarez and Wolak 2013,
Lemma 2.1]). Two coarsely quasi-isometric metric spaces of coarse bounded
geometry have the same growth type. Moreover, if a family of metric spaces are
equicoarsely quasi-isometric to each other, then they have equiequivalent growth.

5B. Quasi-isometry and growth types of orbits. Let H be a pseudogroup on a
space T , and E a symmetric set of generators of H. Let G be the groupoid of germs
of maps in H.

For each h ∈H and x ∈ dom h, let |h|E,x be the length of the shortest expression
of γ (h, x) as a product of germs of maps in E (being 0 if γ (h, x) = γ (idT , x)).
For each x ∈ T , define metrics dE on H(x) and Gx by

dE(y, z)=min{|h|E,y | h ∈H, y ∈ dom h, h(y)= z },

dE(γ ( f, x), γ (g, x))= | f g−1
|E,g(x).
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Notice that
dE( f (x), g(x))≤ dE(γ ( f, x), γ (g, x)).

Moreover, on the germ covers, dE is right invariant in the sense that, if y ∈H(x),
the bijection Gy→Gx , given by right multiplication with any element in G

y
x , is

isometric; so the isometry types of the germ covers of the orbits make sense without
any reference to base points. In fact, the definition of dE on Gx is analogous to the
definition of the right invariant metric dS on a group 0 induced by a symmetric
set of generators S: dS(γ, δ)= |γ δ

−1
| for γ, δ ∈ 0, where |γ | is the length of the

shortest expression of γ as a product of elements of S (being 0 if γ = e).
Assume that H is compactly generated and T locally compact. Let U ⊂ T be a

relatively compact open subset that meets all H-orbits, let G=H|U , and let E be a
symmetric system of compact generation of H on U . With these conditions, the
quasi-isometry type of the G-orbits with dE may depend on E [Álvarez and Candel
2009, Section 6]. So the following additional condition on E is considered.

Definition 5.2 [Álvarez and Candel 2009, Definition 4.2]. With the above notation,
it is said that E is recurrent if, for any relatively compact open subset V ⊂U that
meets all G-orbits, there exists some R > 0 such that G(x)∩ V is an R-net in G(x)
with dE for all x ∈U .

The role played by V in Definition 5.2 can be played by any relatively compact
open subset meeting all orbits [Álvarez and Candel 2009, Lemma 4.3]. Furthermore
there exists a recurrent system of compact generation on U [Álvarez and Candel
2009, Corollary 4.5].

Theorem 5.3 [Álvarez and Candel 2009, Theorem 4.6]. Let H and H′ be compactly
generated pseudogroups on locally compact spaces T and T ′, let U and U ′ be
relatively compact open subsets of T and T ′ that meet all orbits of H and H′, let
G and G′ denote the restrictions of H and H′ to U and U ′, and let E and E ′ be
recurrent symmetric systems of compact generation of H and H′ on U and U ′,
respectively. Suppose that there exists an equivalence H→H′, and consider the
induced equivalence G→G′ and homeomorphism U/G→U ′/G′. Then the G-orbits
with dE are equicoarsely quasi-isometric to the corresponding G′-orbits with dE ′ .

An obvious modification of the arguments of the proof of [Álvarez and Candel
2009, Theorem 4.6] gives the following.

Theorem 5.4. With the notation and conditions of Theorem 5.3, the germ covers
of the G-orbits with dE are equicoarsely quasi-isometric to the germ covers of the
corresponding G′-orbits with dE ′ .

Corollary 5.5. With the notation and conditions of Theorem 5.3, the corresponding
orbits of G and G′, as well as their germ covers, have equiequivalent growth.
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Proof. This follows from Lemma 5.1 and Theorems 5.3 and 5.4. �

Example 5.6. Let G be a locally compact Polish local group with a left-invariant
metric, let 0 ⊂ G be a dense finitely generated sub-local group, and let H denote
the pseudogroup generated by the local action of 0 on G by local left translations.
Suppose that H is compactly generated, and let G=H|U for some relatively compact
open neighborhood U of the identity element e in G, which meets all H-orbits
because 0 is dense. For every γ ∈0 with γU ∩U 6=∅, let hγ denote the restriction
U ∩γ−1U→ γU ∩U of the local left translation by γ . There is a finite symmetric
set S = {s1, . . . , sk} ⊂ 0 such that E = {hs1, . . . , hsk } is a recurrent system of
compact generation of H on U ; in fact, by reducing 0 if necessary, we can assume
that S generates 0. The recurrence of E means that there is some N ∈N such that

(20) U =
⋃

h∈E N

h−1(V ∩ im h),

where E N is the family of compositions of at most N elements of E .
For each x ∈U , let

0U,x = {γ ∈ 0 | γ x ∈U }.

Let G denote the topological groupoid of germs of G. The map 0U,x → Gx ,
γ 7→ γ (hγ , x) is bijective. For γ ∈ 0U,x , let |γ |S,U,x := |hγ |E,x . Thus |e|S,U,x = 0,
and if γ 6= e, then |γ |S,U,x equals the minimum n ∈ N such that there are indices
i1, . . . , in ∈ {1, . . . , k} with γ = sin · · · si1 and sim · · · si1 · x ∈ U for all 1 ≤ m ≤ n.
Moreover dE on Gx corresponds to the metric dS,U,x on 0U,x given by

dS,U,x(γ, δ)= |δγ
−1
|S,U,γ (x).

Observe that, for all γ ∈ 0U,x and δ ∈ 0U,γ ·x ,

δγ ∈ 0U,x , |δγ |S,U,x ≤ |γ |S,U,x + |δ|S,U,γ ·x ,(21)

γ−1
∈ 0U,γ ·x , |γ |S,U,x = |γ

−1
|S,U,γ ·x .(22)

In this example, we will be interested on the growth type of the orbits of G

with dE , or, equivalently, the growth type of the metric spaces (0U,x , dS,U,x). The
following result was used by Breuillard and Gelander to study this growth type
when G is a Lie group.

Proposition 5.7 [Breuillard and Gelander 2007, Proposition 10.5]. Let G be a
nonnilpotent connected real Lie group and 0 a finitely generated dense subgroup.
For any finite set S = {s1, . . . , sk} of generators of 0, and any neighborhood B of e
in G, there are elements ti ∈ 0 ∩ si B (i ∈ {1, . . . , k}) which freely generate a free
semigroup. If G is not solvable, then we can choose the elements ti so that they
generate a free group.
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5C. Growth of equicontinuous pseudogroups. Let G be a locally compact Polish
local group with a left-invariant metric, let 0 ⊂ G be a dense finitely generated sub-
local group, and let H denote the pseudogroup generated by the local action of 0 on
G by local left translations. Suppose that H is compactly generated. Let G=H|U
for some relatively compact open neighborhood U of the identity element e in G,
which meets all H-orbits because 0 is dense. Let E be a recurrent symmetric system
of compact generation of H on U . Let G be the groupoid of germs of maps in G.

Theorem 5.8. With the above notation and conditions, one of the following proper-
ties hold:

• G can be approximated by nilpotent local Lie groups; or

• the germ covers of all G-orbits have exponential growth with dE .

Proof. By Theorem 2.26, there is some U0 ∈9G, contained in any given element of
9G ∩8(G, 2), and there exists a sequence of compact normal subgroups Fn ⊂U0

such that Fn+1 ⊂ Fn ,
⋂

n Fn = {e}, (Fn,U0) ∈1G, and G/(Fn,U0) is a local Lie
group. Let Tn :U 2

0 → G/(Fn,U0) denote the canonical projection. Take an open
neighborhood U1 of e such that U1 ⊂ U0. Then FnU1 ⊂ U0 for n large enough
by the properties of the sequence Fn . Let U2 = FnU1 for such an n. Thus U2

is saturated by the fibers of Tn , and U2 ⊂ U0. Then U ′ := Tn(U2) is a relatively
compact open neighborhood of the identity in the local Lie group G ′ :=G/(Fn,U0).
Let 0′ = Tn(0∩U 2

0 ), which is a dense sub-local group of G ′, and let H′ denote the
pseudogroup on G ′ generated by the local action of 0′ by local left translations.

For every γ ∈ 0 ∩U0 for which γU2 ∩U2 6= ∅, let hγ denote the restriction
U2 ∩ γ

−1U2 → γU2 ∩ U2 of the local left translation by γ . There is a finite
symmetric set S = {s1, . . . , sk} ⊂ 0 such that E2 = {hs1, . . . , hsk } is a recurrent
system of compact generation of H on U2. By reducing 0 if necessary, we can
suppose that S generates 0. For every δ ∈ 0′ with δU ′ ∩U ′ 6=∅, let h′δ denote the
restriction U ′∩δ−1U ′→ δU ′∩U ′ of the local left translation by δ. We can assume
that s1, . . . , sk are in U2, and therefore we can consider their images s ′1, . . . , s ′k
by Tn . Moreover each hsi induces via Tn the map h′si

, and E ′ = {h′s1
, . . . , h′sk

} is a
system of compact generation of H′ on U ′. By increasing E2 if necessary, we can
assume that E ′ is also recurrent. Fix any open set V ′ in G ′ with V ′ ⊂ U ′. Then
V = T−1

n (V ′) satisfies V ⊂U2.

Claim 1. For each finite subset F ⊂ 0 ∩U2, we have U2 ⊂
⋃
γ∈0\F γ V .

Since U2 and V are saturated by the fibers of Tn , Claim 1 follows by showing
that U ′ ⊂

⋃
γ∈0′\F ′ γ V ′, where F ′ = Tn(F). Suppose that this inclusion is false.

Then there is some finite symmetric subset F ⊂ 0 ∩U2 and some x ∈U ′ such that
((0′ \ F ′)x)∩V ′ =∅. By the recurrence of E ′, there is some N ∈N satisfying (20)
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with U ′ and E ′. Since 0′U ′,x is infinite because 0′ is dense in G ′, it follows that
there is some γ ∈ 0′U ′,x \ F ′ such that

(23) |γ |S′,U ′,x > N +max{|ε|S′,U ′,x | ε ∈ F ′ ∩0′U ′,x }.

By (20), there is some h ∈ E ′N such that γ x ∈ h−1(V ′ ∩ im h′). We have h = h′δ
for some δ ∈ 0′. Note that δ ∈ 0′U ′,γ ′x and |δ|S′,U ′,γ x ≤ N . Hence

|γ |S′,U ′,x ≤ |δγ |S′,U ′,x + |δ
−1
|S′,U ′,δγ x = |δγ |S′,U ′,x + |δ|S′,U ′,γ ′x ≤ |δγ |S′,U ′,x + N

by (21) and (22), obtaining that δγ 6∈ F ′ by (23). However, δγ x ∈ V ′, obtaining a
contradiction, which completes the proof of Claim 1.

Claim 2. For each finite subset F ⊂ 0 ∩U2, we have U2 ⊂
⋃
γ∈0\F γ V .

Take a relatively compact open subset O1⊂G such that U1⊂O1 and Fn O1⊂U0.
Let O2 = Fn O1 and K=H|O2 . Then Claim 2 follows by applying Claim 1 to O2.

According to Claim 2, by increasing S if necessary, we can suppose that

(24) U2 ⊂
⋃
i< j

(si · V ∩ s j · V )=
⋃
i< j

(s−1
i · V ∩ s−1

j · V ).

Suppose that G cannot be approximated by nilpotent local Lie groups. Then we
can assume that the local Lie group G ′ is not nilpotent. Moreover we can suppose
that G ′ is a sub-local Lie group of a simply connected Lie group L . Let 1 be the
dense subgroup of L whose intersection with G ′ is 0′. Then, by Proposition 5.7,
there are elements t ′1, . . . , t ′k in 1, as close as desired to s ′1, . . . , s ′k , which are free
generators of a free semigroup. If the elements t ′i are close enough to s ′i , then they
are in U ′. So there are elements ti ∈U2 such that Tn(ti )= t ′i . By the compactness
of U2, and because U2 and V are saturated by the fibers of Tn , if t ′1, . . . , t ′k are close
enough to s ′1, . . . , s ′k , then (24) gives

(25) U2 ⊂
⋃
i< j

(t−1
i V ∩ t−1

j V ).

Now, we adapt the argument of the proof of [Breuillard and Gelander 2007,
Lemma 10.6]. Let 0̂ ⊂ 0 be the sub-local group generated by t1, . . . , tk ; thus
Ŝ = {t±1

1 , . . . , t±1
k } is a symmetric set of generators of 0̂, and S ∪ Ŝ is a symmet-

ric set of generators of 0. With Ê = {h±1
t1 , . . . , h±1

tk }, observe that E2 ∪ Ê is a
recurrent system of compact generation of H on U2. Given x ∈ U2, let S(n) be
the sphere with center e and radius n ∈ N in 0̂U2,x with dŜ,U,x . By (25), for each
γ ∈ S(n), there are indices i < j such that γ x ∈ t−1

i V ∩ t−1
j V . So the points

tiγ x and t jγ x are in V , obtaining that tiγ, t jγ ∈ S(n+ 1). Moreover all elements
obtained in this way from elements of S(n) are pairwise distinct because t ′1, . . . , t ′k
freely generate a free semigroup. Hence card(S(n + 1)) ≥ 2 card(S(n)), giving
card(S(n))≥ 2n . So (0̂U2,x , dŜ,U2,x) has exponential growth. Since 0̂U2,x ⊂ 0U2,x
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and dS∪Ŝ,U2,x ≤ dŜ,U2,x on 0̂U2,x , it follows that (0U2,x , dS∪Ŝ,U2,x) also has expo-
nential growth. So (Gx , dE2∪Ê) has exponential growth, obtaining that (Gx , dE)

has exponential growth by Corollary 5.5. �

5D. Growth of equicontinuous foliated spaces. Let X ≡ (X,F) be a compact
Polish foliated space. Let {Ui , pi , hi j } be a defining cocycle of F, where pi :Ui→Ti

and hi j : Ti j → T j i , and let H be the induced representative of the holonomy
pseudogroup. As we saw in Section 4A, H can be considered as the restriction of
some compactly generated pseudogroup H′ to some relatively compact open subset,
and E = {hi j } is a system of compact generation on T . Moreover, Álvarez and
Candel [2009] observed that E is recurrent. According to Theorems 5.3 and 5.4, it
follows that the quasi-isometry type of the H-orbits and their germ covers with dE

are independent of the choice of {Ui , pi , hi j } under the above conditions; thus they
can be considered as quasi-isometry types of the corresponding leaves and their
holonomy covers.

This has the following interpretation when X is a smooth manifold. In this case,
given any Riemannian metric g on X , for each leaf L , the differentiable (and coarse)
quasi-isometry type of g|L is independent of the choice of g; they depend only
on F and L . In fact, it is coarsely quasi-isometric to the corresponding H-orbit,
and therefore they have the same growth type [Carrière 1988] (this is an easy
consequence of the existence of a uniform bound of the diameter of the plaques).
Similarly, the germ covers of the H-orbits are also quasi-isometric to the holonomy
covers of the corresponding leaves.

Theorem B follows from these observations and Theorem 5.8.

6. Examples and open problems

Theorems A and B may be relevant in the following examples; most of them are
taken from [Candel and Conlon 2000, Chapter 11].

Example 6.1. Any locally free action of a connected Lie group on a locally compact
Polish space, φ : H × X→ X , defines a foliated structure F on X whose leaves are
the orbits [Candel and Conlon 2000, Theorem 11.3.14; Palais 1961]. Moreover F

is equicontinuous if φ is equicontinuous.

Example 6.2. A matchbox manifold is a foliated continuum11 X ≡ (X,F) trans-
versely modeled on a totally disconnected space. The case of a single leaf is
discarded, and it is assumed that X is C1 in the sense that the changes of foli-
ated coordinates are C1 along the leaves, with transversely continuous leafwise
derivatives. An example of matchbox manifold is given by any inverse limit of
smooth proper covering maps of compact n-manifolds, called an n-dimensional

11Recall that a continuum is a nonempty compact connected metrizable space.
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solenoid; if moreover any composite of a finite number of bounding maps is a
normal covering, then it is called a McCord solenoid. A matchbox manifold X
is equicontinuous if and only if it is a solenoid [Clark and Hurder 2013, Theo-
rem 7.9]; and X is homogeneous if and only if it is a McCord solenoid [Clark and
Hurder 2013, Theorem 1.1]; this is the case where it is a G-foliated space. See
[Alcalde Cuesta et al. 2011] for a generalization using inverse limits of compact
branched manifolds.

Example 6.3. Let Cb(R) be the space of continuous bounded functions R→ R,
with the topology of uniform convergence. For a function f ∈ Cb(R) and t ∈ R, let
ft ∈ Cb(R) be defined by ft(r) = f (r + t). It is said that f is almost periodic if
{ ft | t ∈ R} is equicontinuous [Besicovitch 1955; Gottschalk 1946], which means
that M( f ) := { ft | t ∈ R} is compact in Cb(R). An equicontinuous flow

8 : R×M( f )→M( f )

is defined by 8t(g)= gt . If f is nonconstant, then 8 is nonsingular, defining an
equicontinuous foliated structure F on M( f ). If f is nonperiodic, then F does not
reduce to a single leaf. With more generality, we can consider an almost-periodic
nonperiodic continuous function f on any connected Lie group with values in a
Hilbert space.

Example 6.4. For each n ∈ Z+, let M∗(n) denote the set12 of isometry classes
[M, x] of pointed complete connected Riemannian n-manifolds (M, x). The C∞

convergence [Petersen 1998] defines a Polish topology on M∗(n) [Álvarez et al.
2016, Theorem 1.1]. The corresponding space is denoted by M∞

∗
(n), and its closure

operator by Cl∞. For any complete connected Riemannian manifold M ≡ (M, g), a
canonical continuous map ι : M→M∞

∗
(n) is defined by ι(x)= [M, x]. A concept

of weak aperiodicity of M was introduced in [Álvarez et al. 2016]. On the other
hand, M is called almost periodic if, for all m ∈ N, ε > 0 and x ∈ M , there is
a set H of diffeomorphisms of M such that sup |∇kh∗g| < ε for all h ∈ H and
k ≤ m, and {h(x) | h ∈ H} is a net in M . If M is weakly aperiodic and almost
periodic, then Cl∞(ι(M)) canonically becomes a compact minimal equicontinuous
foliated space of dimension n, as follows from [Álvarez et al. 2016, Theorem 1.2
and Lemma 12.5(ii); Lessa 2015, Lemma 7.2 and Theorem 4.1] (see also [Petersen
1998, Chapter 10, Theorem 3.3; Cheeger 1970]).

Problem 6.5. In the Examples 6.1–6.4, understand the specific application of
Theorems A and B.

Problem 6.6. Use Theorem A to classify particular classes of equicontinuous
foliated spaces.

12The logical problems of this definition can be avoided because any complete connected Rie-
mannian manifold is equipotent to some subset of R.
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Question 6.7. Is it possible to improve Theorem B for special types of structural
local groups?

Question 6.8. Is there any consequence of Theorems A and B in usual foliation
theory, assuming that the minimal sets are equicontinuous?

The following questions refer to extensions of known properties of Riemannian
foliations, where Theorem A could play an important role.

Question 6.9. For compact minimal equicontinuous foliated spaces, does the leaf-
wise heat flow of leafwise differential forms preserve transverse continuity at infinite
time?

Question 6.10. Is it possible to give useful extensions of tautness and tenseness to
equicontinuous foliated spaces, and relate them to some kind of basic cohomology?
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EQUIVARIANT PRINCIPAL BUNDLES
AND LOGARITHMIC CONNECTIONS

ON TORIC VARIETIES

INDRANIL BISWAS, ARIJIT DEY AND MAINAK PODDAR

Let M be a smooth complex projective toric variety equipped with an ac-
tion of a torus T , such that the complement D of the open T-orbit in M
is a simple normal crossing divisor. Let G be a complex reductive affine
algebraic group. We prove that an algebraic principal G-bundle EG → M
admits a T-equivariant structure if and only if EG admits a logarithmic con-
nection singular over D. If EH → M is a T-equivariant algebraic principal
H-bundle, where H is any complex affine algebraic group, then EH in fact
has a canonical integrable logarithmic connection singular over D.

1. Introduction

Our aim is to give characterizations of the equivariant principal bundles on smooth
complex projective toric varieties.

Let M be a smooth complex projective toric variety equipped with an action

ρ : T ×M→ M

of a torus T . For any point t ∈ T , define the automorphism

ρt : M→ M, x 7→ ρ(t, x).

We assume that the complement D of the open T-orbit in M is a simple normal
crossing divisor.

Let G be a complex reductive affine algebraic group, and let EG be an algebraic
principal G-bundle on M . In Proposition 4.1 we prove the following:

The principal G-bundle EG admits a T-equivariant structure if and only if the
pulled-back principal G-bundle ρ∗t EG is isomorphic to EG for every t ∈ T .

When G = GL(n,C), this result was proved by Klyachko [1989, p. 342, Propo-
sition 1.2.1].

Biswas is supported by a J. C. Bose Fellowship. Poddar is supported by a FAPA grant from
Universidad de los Andes.
MSC2010: primary 14L30, 14M27; secondary 14M17.
Keywords: smooth toric variety, logarithmic connection, equivariant principal bundle.
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Using the above characterization of T-equivariant principal G-bundles on M , we
prove the following (see Theorem 4.2):

The principal G-bundle EG admits a logarithmic connection singular over D if
and only if EG admits a T-equivariant structure.

The “if” part of Theorem 4.2 does not require G to be reductive. More precisely,
any T-equivariant principal H-bundle EH → M , where H is any complex affine
algebraic group, admits a canonical integrable logarithmic connection singular
over D (see Proposition 3.2).

2. Equivariant bundles

Let Gm = C \ {0} be the multiplicative group. Take a complex algebraic group T
which is isomorphic to a product of copies of Gm . Let M be a smooth irreducible
complex projective variety equipped with an algebraic action of T

(2-1) ρ : T ×M→ M

such that

• there is a Zariski open dense subset M0
⊂ M with ρ(T,M0)= M0,

• the action of T on M0 is free and transitive, and

• the complement M \M0 is a simple normal crossing divisor of M .

In particular, M is a smooth projective toric variety. Note that M0 is the unique
T-orbit in M with trivial isotropy.

Let G be a connected complex affine algebraic group. A T-equivariant principal
G-bundle on M is a pair (EG, ρ̃), where

p : EG→ M

is an algebraic principal G-bundle, and

ρ̃ : T × EG→ EG

is an algebraic action of T on the total space of EG , such that

• p ◦ ρ̃ = ρ ◦ (IdT ×p), where ρ is the action in (2-1), and

• the actions of T and G on EG commute.

Fix a point x0 ∈ M0
⊂ M . Let

(2-2) ι : ρ(T, x0)= M0 ↪→ M

be the inclusion map. Let M0
×G be the trivial principal G-bundle on M0. It has a

tautological integrable algebraic connection given by its trivialization.
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Let (EG, ρ̃) be a T-equivariant principal G-bundle on M . Fix a point z0 ∈ (EG)x0 .
Using z0, the action ρ̃ produces an isomorphism of principal G-bundles between
M0
×G and the restriction EG |M0 . This isomorphism of principal G-bundles is

uniquely determined by the following two conditions:

• this isomorphism is T-equivariant (the action of T on M0
×G is given by the

action of T on M0), and

• it takes the point z0 ∈ EG to (x0, e) ∈ M0
×G.

Using this trivialization of EG |M0 , the tautological integrable algebraic connection
on M0

×G produces an integrable algebraic connection D0 on EG |M0 . We note that
the connection D0 is independent of the choice of the points x0 and z0. Indeed, the
flat sections for D0 are precisely the orbits of T in EG |M0 . Note that this description
of D0 does not require choosing base points in M0 and EG |M0 .

In Proposition 3.2 it will be shown that D0 extends to a logarithmic connection
on EG over M singular over the simple normal crossing divisor M \M0.

3. Logarithmic connections

A canonical trivialization. The Lie algebra of T will be denoted by t. Let

(3-1) V := M × t→ M

be the trivial vector bundle with fiber t. The holomorphic tangent bundle of M
will be denoted by TM . Consider the action of T on M in (2-1). It produces a
homomorphism of OM -coherent sheaves

(3-2) β : V→ TM.

Let
D := M \M0

be the simple normal crossing divisor of M . Let

(3-3) TM(−log D)⊂ TM

be the corresponding logarithmic tangent bundle. Recall that TM(−log D) is char-
acterized as the maximal coherent subsheaf of TM that preserves OM(−D)⊂OM

for the derivation action of TM on OM .

Lemma 3.1.

(1) The image of β in (3-2) is contained in the subsheaf TM(−log D)⊂ TM.

(2) The resulting homomorphism β : V→ TM(−log D) is an isomorphism.

Proof. The divisor D is preserved by the action of T on M . Therefore, the action
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of T on OM , given by the action of T on M , preserves the subsheaf OM(−D). From
this it follows immediately that the subsheaf OM(−D)⊂ OM is preserved by the
derivation action of the subsheaf

β(V)⊂ TM.

Therefore, we conclude that β(V)⊂ TM(−log D).
It is known that the vector bundle TM(−log D) is holomorphically trivial. This

follows from Proposition 2 in [Fulton 1993, p. 87], which says that �1
M(log D) is

holomorphically trivial, together with the equality �1
M(log D)∗ = TM(−log D).

So, both V and TM(−log D) are trivial vector bundles, and β is a homomorphism
between them which is an isomorphism over the open subset M0. From this it
can be deduced that β is an isomorphism over entire M . To see this, consider the
homomorphism ∧r

β :
∧rV→

∧r TM(−log D)

induced by β, where r = dimC T = rank(V). So
∧r
β is a holomorphic section of the

line bundle
(∧rTM(−log D)

)
⊗
(∧rV

)∗. This line bundle is holomorphically trivial
because both V and TM(−log D) are holomorphically trivial. Fixing a trivialization
of
(∧rTM(−log D)

)
⊗
(∧rV

)∗, we consider
∧r
β as a holomorphic function on

M . This function is nowhere vanishing because it does not vanish on M0 and
holomorphic functions on M are constants. Since

∧r
β is nowhere vanishing, the

homomorphism β is an isomorphism. �

A canonical logarithmic connection on equivariant bundles. The Lie algebra
of G will be denoted by g.

Let p : EG→ M be an algebraic principal G-bundle. Consider the differential

(3-4) dp : TEG→ p∗TM,

where TEG is the algebraic tangent bundle of EG . The kernel of dp will be denoted
by TEG/M . Using the action of G on EG , the subbundle TEG/M ⊂ TEG is identified
with the trivial vector bundle over EG with fiber g.

The action of G on EG produces an action of G on TEG . So we get an action
of G on the quasicoherent sheaf p∗TEG on M . The invariant part

At(EG) := (p∗TEG)
G
⊂ p∗TEG

is a locally free coherent sheaf; its coherence property follows from the fact that
the action of G on the fibers of p is transitive, implying that a G-invariant section
of (TEG)|p−1(x), x ∈ M , is uniquely determined by its evaluation at just one point
of the fiber p−1(x). Also note that At(EG) = (TEG)/G. This At(EG) is known
as the Atiyah bundle for EG . Since TEG/M is identified with EG × g, the invariant
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direct image (p∗TEG/M)
G is identified with the adjoint vector bundle

ad(EG) := EG ×
G g→ M

associated to EG for the adjoint action of G on g. We note that ad(EG)= TEG/M/G.
Now the differential dp in (3-4) produces a short exact sequence of holomorphic
vector bundles on M

(3-5) 0→ ad(EG)→ At(EG)
φ
−→ TM→ 0,

which is known as the Atiyah exact sequence. A holomorphic connection on EG

over M is a holomorphic splitting

TM→ At(EG)

of (3-5) [Atiyah 1957].
As before, setting D = M \M0, define

At(EG)(−log D) := φ−1(TM(−log D))⊂ At(EG),

where φ is the projection in (3-5) and TM(−log D) is the subsheaf in (3-3). So
(3-5) gives the following short exact sequence of holomorphic vector bundles on M :

(3-6) 0→ ad(EG)→ At(EG)(−log D) φ
−→ TM(−log D)→ 0.

A logarithmic connection on EG , with singular locus D, is a holomorphic
homomorphism

δ : TM(−log D)→ At(EG)(−log D)

such that φ ◦ δ is the identity automorphism of TM(−log D), where φ is the
homomorphism in (3-6). Just like the curvature of a connection, the curvature
of a logarithmic connection δ on EG is the obstruction for the homomorphism δ

to preserve the Lie algebra structure of the sheaf of sections of TM(−log D) and
At(EG)(−log D) given by the Lie bracket of vector fields. In particular, δ is called
integrable (or flat) if it preserves the Lie algebra structure of the sheaf of sections
of TM(−log D) and At(EG)(−log D) given by the Lie bracket of vector fields.

Proposition 3.2. Let (EG, ρ̃) be a T-equivariant principal G-bundle on M. Then
EG admits an integrable logarithmic connection that restricts to the connection D0

on M0 constructed in Section 2.

Proof. Let
Ṽ := EG × t→ EG

be the trivial vector bundle over EG with fiber t. Note that p∗V = Ṽ , where V is
the vector bundle in (3-1), and p, as before, is the projection of EG to M .
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The action ρ̃ of T on EG produces a homomorphism

(3-7) β̃ : Ṽ→ TEG .

Since p−1(D) is preserved by the action of T on EG , the induced action of T
on OEG preserves the subsheaf OEG (−p−1(D)). Hence the image of β̃ lies inside
the subsheaf

TEG(−log p−1(D))⊂ TEG .

Note that p−1(D) is a simple normal crossing divisor on EG because D is a simple
normal crossing divisor on M .

In Lemma 3.1(2) we saw that β is an isomorphism. Consider

p∗β−1
: p∗(TM(−log D))→ p∗V = Ṽ.

Precomposing this with β̃ in (3-7), we have

β̃ ◦ (p∗β−1) : p∗(TM(−log D))→ TEG(−log p−1(D)).

We observe that the homomorphism β̃◦(p∗β−1) is G-equivariant for the trivial action
of G on p∗(TM(−log D)) and the action of G on TEG(−log p−1(D)) induced by
the action of G on EG . Therefore, taking the G-invariant parts of the direct images
by p, the above homomorphism β̃ ◦ (p∗β−1) produces a homomorphism

β ′ : TM(−log D)=
(

p∗ p∗(TM(−log D))
)G

→
(

p∗TEG(−log p−1(D))
)G
= At(EG)(−log D).

It is now straightforward to check that the homomorphism β ′ produces a holomor-
phic splitting of the exact sequence in (3-6). Therefore, β ′ defines a logarithmic
connection on EG singular on D. The restriction of this logarithmic connection
to M0 clearly coincides with the connection D0 constructed in Section 2. �

4. A criterion for equivariance

For each point t ∈ T , define the automorphism

ρt : M→ M, x 7→ ρ(t, x),

where ρ is the action in (2-1). If (EG, ρ̃) is a T-equivariant principal G-bundle
on M , then clearly the map

EG→ EG, z 7→ ρ̃(t, z)

is an isomorphism of the principal G-bundle ρ∗t EG with EG . The aim in this section
is to prove a converse of this statement.
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Take an algebraic principal G-bundle

p : EG→ M.

Let G be the set of all pairs of the form (t, f ), where t ∈ T and where

f : EG→ EG

is an algebraic automorphism of the variety EG satisfying the following conditions:

• p ◦ f = ρt ◦ p, and

• f intertwines the action of G on EG .

Note that the above two conditions imply that f is an algebraic isomorphism of the
principal G-bundle ρ∗t EG with EG .

We have the following composition on the set G:

(t1, f1) · (t2, f2) := (t1 ◦ t2, f1 ◦ f2).

The inverse of (t, f ) is (t−1, f −1). These operations make G a group. In fact, G has
the structure of an affine algebraic group defined over C. Let A denote the group
of all algebraic automorphisms of the principal G-bundle EG . So A is a subgroup
of G with the inclusion map being f 7→ (e, f ). We have a natural projection

h : G→ T, (t, f ) 7→ t

which fits in the following exact sequence of complex affine algebraic groups:

(4-1) 0→A→ G h
−→ T .

We note that there is a tautological action of G on EG ; the action of any (t, f ) ∈ G
on EG is given by the map defined by y 7→ f (y).

Now assume that EG satisfies the condition that, for every t ∈ T , the pulled-back
principal G-bundle ρ∗t EG is isomorphic to EG . This assumption is equivalent to the
statement that the homomorphism h in (4-1) is surjective.

In view of the above assumption, the sequence in (4-1) becomes the following
short exact sequence of complex affine algebraic groups:

(4-2) 0→A→ G h
−→ T → 0.

Let G0
⊂ G be the connected component containing the identity element. Since T

is connected and h is surjective, the restriction of h to G0 is also surjective. Therefore,
from (4-2) we have the short exact sequence of affine complex algebraic groups

(4-3) 0→A0 ιA
−→G0 h0

−→ T → 0,

where A0
:=A∩G0 and h0

:= h|G0 .
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Take a maximal torus TG ⊂ G0. From (4-3) it follows that the restriction

h′ := h0
|TG : TG→ T

is surjective. Define TA := A0
∩ TG ⊂ TG using the homomorphism ιA in (4-3).

Therefore, from (4-3) we have the short exact sequence of algebraic groups

(4-4) 0→ TA
ιA|TA
−−→ TG h′

−→ T → 0.

Recall that G has a tautological action on EG . Therefore, the subgroup TG has a
tautological action on EG which is the restriction of the tautological action of G.

Now we assume that the group G is reductive.
A parabolic subgroup of G is a connected Zariski closed subgroup P ⊂ G such

that the variety G/P is projective. For a parabolic subgroup P , its unipotent radical
will be denoted by Ru(P). A Levi subgroup of P is a connected reductive subgroup
L(P)⊂ P such that the composition

L(P) ↪→ P→ P/Ru(P)

is an isomorphism. Levi subgroups exist, and any two Levi subgroups of P differ by
conjugation by an element of Ru(P) [Humphreys 1975, p. 184–185, §30.2; Borel
1991, p. 158, 11.22 and 11.23].

Let Ad(EG) := EG ×
G G→ M be the adjoint bundle associated to EG for the

adjoint action of G on itself. The fibers of Ad(EG) are groups identified with G
up to an inner automorphism; the corresponding Lie algebra bundle is ad(EG). We
note that A in (4-2) is the space of all algebraic sections of Ad(EG).

Using the action of TA on EG , we have

• a Levi subgroup L(P) of a parabolic subgroup P of G, and

• an algebraic reduction of structure group EL(P) ⊂ EG of EG to L(P) which is
preserved by the tautological action of TG on EG ,

such that the image of TA in Ad(EG) (recall that the elements of A are sections
of Ad(EG)) lies in the connected component, containing the identity element, of
the center of each fiber of Ad(EL(P)) ⊂ Ad(EG) (see [Balaji et al. 2005; Biswas
and Parameswaran 2006] for the construction of EL(P)). The construction of EL(P)

requires fixing a point z0 of EG , where EL(P) contains z0. Using z0, the fiber
(EL(P))p(z0) is identified with L(P). Moreover, the evaluation, at p(z0), of the
sections of Ad(EG) corresponding to the elements of TA makes TA a subgroup of
the connected component, containing the identity element, of the center of EL(P); in
particular, this evaluation map on TA is injective (see the second paragraph in [Balaji
et al. 2005, p. 230, Section 3]). We briefly recall (from [Balaji et al. 2005; Biswas
and Parameswaran 2006]) the argument that the evaluation map on semisimple
elements of A is injective. Let ξ be a semisimple element of A= 0(M,Ad(EG)).



EQUIVARIANT BUNDLES AND LOGARITHMIC CONNECTIONS ON TORIC VARIETIES 323

Since ξ is semisimple, for each point x ∈ M , the evaluation ξ(x) is a semisimple
element of Ad(EG))x . The group Ad(EG))x is identified with G up to an inner
automorphism of G. All conjugacy classes of a semisimple element of G are
parametrized by TG/WTG , where TG is a maximal torus in G, and WTG = N (TG)/TG

is the Weyl group with N (TG) being the normalizer of TG in G. We note that
TG/WTG is an affine variety. Therefore, we get a morphism ξ ′ : M→ TG/WTG that
sends any x ∈ M to the conjugacy class of ξ(x). Since M is a projective variety and
TG/WTG is an affine variety, we conclude that ξ ′ is a constant map. So if ξ(x)= e
for some x ∈ M , then ξ = e identically.

Let Z0
L(P) ⊂ L(P) be the connected component, containing the identity element,

of the center. We note that Z0
L(P) is a product of copies of Gm . Therefore, the above

injective homomorphism TA→ Z0
L(P) extends to a homomorphism

η : TG→ Z0
L(P).

Define

(4-5) η′ := τ ◦ η,

where τ is the inversion homomorphism of Z0
L(P) defined by g 7→ g−1.

Consider the action of TG on EL(P); recall that EL(P) is preserved by the tautolog-
ical action of TG on EG . We can twist this action on EL(P) by η′ in (4-5), because
the actions of Z0

L(P) and L(P) on EL(P) commute. For this new action, the group TA
clearly acts trivially on EL(P).

Consider the above action of TG on EL(P) constructed using η′. Since TA acts
trivially on EL(P), the action of TG on EL(P) descends to an action of T on EL(P)

(see (4-4)). The principal G-bundle EG is the extension of the structure group of
EL(P) using the inclusion of L(P) in G. Therefore, the above action of T on EL(P)

produces an action of T on EG . More precisely, the total space of EG is the quotient
of EL(P)×G where two elements (z1, g1) and (z2, g2) of EL(P)×G are identified
if there is an element g ∈ L(P) such that z2 = z1g and g2 = g−1g1. Now the action
of T on EL(P)×G, given by the above action of T on EL(P) and the trivial action
of T on G, descends to an action of T on the quotient space EG . Consequently, EG

admits a T-equivariant structure.
Therefore, we have proved the following:

Proposition 4.1. Let G be reductive, and let EG → M be a principal G-bundle
such that, for every t ∈ T , the pulled-back principal G-bundle ρ∗t EG is isomorphic
to EG . Then EG admits a T-equivariant structure.

For vector bundles on M , Proposition 4.1 was proved by Klyachko [1989, p. 342,
Proposition 1.2.1].
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Equivariance property from a logarithmic connection.

Theorem 4.2. Let G be reductive, and let p : EG → M be a principal G-bundle
admitting a logarithmic connection whose singularity locus is contained in the
divisor D = M \M0. Then EG admits a T-equivariant structure.

Proof. Since EG admits a logarithmic connection, by definition, there is a homo-
morphism of coherent sheaves

δ : TM(−log D)→ At(EG)(−log D)

such that φ ◦ δ is the identity automorphism of TM(−log D), where φ is the
homomorphism in (3-6). Let

δ̂ : H 0(M, TM(−log D))→ H 0(M,At(EG)(−log D))

be the homomorphism of global sections given by δ. From Lemma 3.1(2) we know
that H 0(M, TM(−log D)) is the Lie algebra t of T .

We will now show that there is a natural injective homomorphism

(4-6) θ : H 0(M,At(EG)(−log D))→ Lie(G),

where Lie(G) is the Lie algebra of the group G in (4-1).
The elements of Lie(G) are all holomorphic sections s ∈ H 0(M,At(EG)) such

that the vector field φ(s), where φ is the projection in (3-5), is of the form β(s ′),
where s ′ ∈ t and where β is the homomorphism in (3-2). Now, if

s ∈ H 0(M,At(EG)(−log D))⊂ H 0(M,At(EG)),

then φ(s) is a holomorphic section of TM(−log D) (see (3-6)). From Lemma 3.1(2)
it now follows that φ(s) is of the form β(s ′), where s ′ ∈ t. This gives us the injective
homomorphism in (4-6).

Finally, consider the composition

θ ◦ δ̂ : t= H 0(M, TM(−log D))→ Lie(G).

From its construction it follows that

(dh) ◦ θ ◦ δ̂ = Idt,

where dh : Lie(G)→ t is the homomorphism of Lie algebras given by h in (4-1).
In particular, dh is surjective. Since T is connected, this immediately implies that
the homomorphism h is surjective. Now from Proposition 4.1 it follows that EG

admits a T-equivariant structure. �
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ON A SPECTRAL THEOREM IN
PARAORTHOGONALITY THEORY

KENIER CASTILLO, RUYMÁN CRUZ-BARROSO

AND FRANCISCO PERDOMO-PÍO

Motivated by the works of Delsarte and Genin (1988, 1991), who studied
paraorthogonal polynomials associated with positive definite Hermitian lin-
ear functionals and their corresponding recurrence relations, we provide
paraorthogonality theory, in the context of quasidefinite Hermitian linear
functionals, with a recurrence relation and the analogous result to the classi-
cal Favard’s theorem or spectral theorem. As an application of our results,
we prove that for any two monic polynomials whose zeros are simple and
strictly interlacing on the unit circle, with the possible exception of one of
them which could be common, there exists a sequence of paraorthogonal
polynomials such that these polynomials belong to it. Furthermore, an ap-
plication to the computation of Szegő quadrature formulas is also discussed.

1. Introduction

The paraorthogonal polynomials on the unit circle (POPUC), in the context of
quasidefinite (or regular) moment linear functionals, were introduced for the first
time by Jones, Njåstad and Thron in their excellent survey paper [Jones et al. 1989].
The main objective of the authors was to construct quadrature formulas for the
approximation of an integral with respect to a measure whose support is contained
in the unit circle, analogous to the generalized Gaussian rules and, as a consequence,
solve the trigonometric moment problem [Geronimus 1946]. In this respect, nodes
on the unit circle, positive weights and maximal domain of validity are required.
As a result, the so-called Szegő quadrature (SQ) formulas are introduced and
characterized: their nodes are zeros of a special class of POPUC, known as invariant
(or self-inverse). But moreover, [Jones et al. 1989] served to demand a deeper study
of the properties of this new family of polynomials since, contrary to orthogonal poly-
nomials on the unit circle (OPUC), the invariant POPUC with respect to a measure
supported on the unit circle have simple zeros on the unit circle with many additional
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327

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2016.280-2
http://dx.doi.org/10.2140/pjm.2016.280.327


328 KENIER CASTILLO, RUYMÁN CRUZ-BARROSO AND FRANCISCO PERDOMO-PÍO

properties [Cantero et al. 2002; Golinskii 2002; Simon 2005a; 2005b; 2007; 2011;
Wong 2007]. These polynomials play in the unit circle the same role as orthogonal
polynomials on the real line (OPRL) from the perspective of quadrature formulas.

The earliest reference to invariant POPUC is due to Geronimus [1946, Theo-
rem III]. However, in [Jones et al. 1989] they are defined in a more general setting
from their orthogonality conditions and characterized in terms of the corresponding
OPUC. The counterpart to the deficiency in the orthogonality conditions for POPUC,
which are not orthogonal to the constants, is the fact that for a given measure and a
fixed n, the POPUC of degree n is not unique, and basically depends on one unimodu-
lar free parameter. Equivalently, in quadrature terminology, we have a one-parameter
family of n-point SQ formulas, exact in a subspace of Laurent polynomials of dimen-
sion 2n−1, instead of 2n; see, e.g., [Cruz-Barroso et al. 2007; Peherstorfer 2011].

Beyond their essential role in the development of quadrature formulas, the theory
of invariant POPUC is significantly enriched from both theoretical and practical
points of view. The uses of their zeros instead of zeros of OPUC in frequency
analysis problems [Daruis et al. 2003] and their appearance as the minimizer of the
isometric Arnoldi minimization problem [Helsen et al. 2005] represent some of their
best applications. On the other hand, the works of Cantero, Moral and Velázquez
[Cantero et al. 2002], Golinskii [2002], Simon [2007], and Wong [2007] are essential
to understand the behavior of the zeros of POPUC. Recently in [Simanek 2015],
it was also proved that the zeros of invariant POPUC designate the location of a set
of particles that are in electrostatic equilibrium with respect to a particular external
field. Furthermore, after their formal introduction, POPUC were defined in the more
general context of orthogonal rational functions [Bultheel et al. 1999, Chapter 5].

One of the main algebraic properties in the study of orthogonal polynomials has
not been established yet for general POPUC in the context of quasidefinite linear
functionals: a recurrence relation and its corresponding Favard’s theorem or spectral
theorem. And this is precisely the starting point of this work, even though for the pos-
itive definite case it is very well known that POPUC satisfy a three-term recurrence,
which is the key for the tridiagonal approach developed by Delsarte and Genin
[1988; 1991a; 1991b] to solve the standard linear prediction problem. Similar results
can be also found in [Castillo et al. 2014] where the corresponding OPUC and the
nontrivial probability measure supported on the unit circle are deduced. The reader
whose interest concerns particularly the applications of POPUC to digital signal
processing can find a survey in [Delsarte and Genin 1990]. We recall that in [Delsarte
and Genin 1988; 1991a; 1991b], the authors considered POPUC associated with pos-
itive definite moment linear functionals [Delsarte and Genin 1988, (4.13)] and, partic-
ularly, in [loc. cit.] they say that presumably the quasidefinite case can be traced with
the help of the theory of pseudo-Carathéodory functions. Motivated by this last obser-
vation, in the present work, we study some properties of POPUC for the quasidefinite
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case using only standard techniques from the theory of OPRL and OPUC. We focus
our attention on the analogs of the spectral theorem and the Geronimus–Wendroff
theorem for POPUC, expecting them to be as useful as these results in the theory
of OPRL and OPUC. The importance of the previous results for OPRL and OPUC
is summarized in the survey [Marcellán and Álvarez-Nodarse 2001].

In Section 3, we prove that three consecutive POPUC are connected by a simple
relation which we can derive in a straightforward way. Moreover, the spectral
theorem is also proved. In Section 4, we present an example of the applicability
of the spectral theorem by proving the Geronimus–Wendroff theorem for POPUC.
Furthermore, an application to the computation of SQ formulas is considered.

In the next section, we fix the notation used in this work and present some
preliminaries, which will help to make our original results self-contained and
accessible to the reader not familiar with the theory of OPUC and POPUC.

2. Orthogonality and paraorthogonality

We denote by 3 := C[z, z−1
] the complex vector space of Laurent polynomials in

the variable z. Associated with every pair of integer numbers (p, q), with p ≤ q,
we define the vector subspace 3p,q of Laurent polynomials of the form

q∑
n=p

ςnzn, ςn ∈ C.

The vector subspace of complex polynomials will be denoted by P := C[z] and
we write Pq ≡30,q for the vector subspace of polynomials of degree (at most) q,
while P−1 ≡ {0} is the trivial subspace.

Let us introduce the moment linear functional µ on 3 such that

(2-1) cn := µ(zn)= µ(z−n)=: c̄−n, n ≥ 0,

i.e., µ is an Hermitian linear functional. The complex numbers {cn}
∞

n=−∞ are called
the moments associated with µ. In terms of µ, we consider a sesquilinear functional
〈 · , · 〉 on 3×3 defined by

〈 f, g〉 := µ( f (z)ḡ(z−1)), f, g ∈3.

The Gram matrix associated with the inner product 〈 · , · 〉 in terms of 1, z, z2, . . .

is the Toeplitz matrix

T = [〈zl, z j
〉]l, j≥0 =


c0 c1 · · · cn · · ·

c−1 c0 · · · cn−1 · · ·
...

...
. . .

...
c−n c−n+1 · · · c0 · · ·
...

...
...

. . .

 .
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Denote by Tn the (n+1)× (n+1) principal leading submatrix of T . If det(Tn) 6= 0
for every n ≥ 0, then µ is said to be quasidefinite and the existence of a sequence of
monic polynomials, orthogonal with respect to µ, is guaranteed. On the other hand,
by the Carathéodory–Toeplitz theorem [Simon 2005a, Section 1.3], if det(Tn) > 0
for every n ≥ 0, then (2-1) are the moments of a nontrivial (i.e., with infinitely
many points of increase) probability measure dσ supported on the unit circle ∂D,
that is, the boundary of the open unit disk D := {z ∈ C; |z|< 1} parametrized by
z = eiθ , θ ∈ [0, 2π), and the converse is also true. In mathematical terms, µ has
the integral representation

µ( f )=
∫

f dσ, f ∈3.

In this case, µ is called positive definite.
The application of the Gram–Schmidt process to 1, z, z2, . . . (a linearly inde-

pendent system in the Hilbert space L2(∂D, dσ) with the norm induced by our
inner product) yields the sequence of monic polynomials, {8n}n≥0, orthogonal with
respect to dσ (or equivalently with respect to µ) called the sequence of OPUC (see
[Simon 2005a; 2005b; 2011] for a recent account of the theory). In other words,
there exists a unique sequence of monic polynomials such that

(2-2) 〈8n, zm
〉 =

∫
8n(z)z−m dσ(z)= κnδn,m, κn > 0, 0≤ m ≤ n,

with 8n ∈ Pn \ Pn−1 and δn,m the Kronecker delta symbol. We recall that the
solution of the trigonometric moment problem is always unique [Geronimus 1946;
Jones et al. 1989]. The associated orthonormal polynomials are given by

(2-3) ϕn = κn8n, κn :=

n−1∏
j=0

ρ−1
j , ρ j := (1− |8 j+1(0)|2)1/2.

The monic OPUC satisfy the following recurrence relation (Szegő’s recurrence):

(2-4)
[
8n+1(z)
8∗n+1(z)

]
=

[
z −ᾱn

−αnz 1

] [
8n(z)
8∗n(z)

]
,

with initial condition80 :≡ 1. The numbers {αn}n≥0 ∈D∞ are known as Verblunsky
coefficients and, as usual, if f ∈Pn \Pn−1, then f ∗ denotes its reversed polynomial,
defined by f ∗(z) := zn f (1/z̄). By Szegő’s recurrence, we get αn = −8n+1(0)
since 8∗n(0)= 1; thus, we set α−1 :≡ −1. We recall that for the quasidefinite case
{αn}n≥0 /∈ ∂D∞.



ON A SPECTRAL THEOREM IN PARAORTHOGONALITY THEORY 331

The orthogonality conditions (2-2) can be weakened adequately in order to
overcome the apparent difference between OPRL and OPUC [Simon 2011, Theo-
rem 1.2.6 and Theorem 2.14.2]. In this way, the corresponding polynomials will be
the POPUC introduced by Jones, Njåstad and Thron [Jones et al. 1989].

Definition 2.1. A sequence of polynomials {8n( · , τn)}n≥0 is said to be a sequence
of POPUC if

(2-5)
〈8n( · , τn), 1〉 6= 0,

〈8n(z, τn), zm
〉 = 0, 1≤ m ≤ n− 1, 〈8n(z, τn), zn

〉 6= 0.

In general, we follow the notation from standard literature, as in [Simon 2005a;
2005b; 2011]. The presence of the parameter τn in Definition 2.1 will be fully
clarified in (2-6); see further. It is worth pointing out that in the applications (see
among others [Jones et al. 1989; Peherstorfer 2011]), it is useful to have a POPUC
such that the distribution of its zeros behaves as in the case of OPRL. This allows
us to introduce the concept of invariance.

Definition 2.2. A sequence of polynomials { fn}n≥0 is said to be invariant if there
exists χn ∈ ∂D such that f ∗n = χn fn .

By [Jones et al. 1989, Theorem 6.1(B)], if the polynomials {8n( · , τn)}n≥1 are
(monic) invariant POPUC, then

(2-6) 8n(z, τn)= z8n−1(z)− τ̄n8
∗

n−1(z),

with τn = −χn ∈ ∂D. Clearly, the converse is also true. Based on the previous
assertion,8n( · , τn) is completely determined by the parameter τn and the first n−1
Verblunsky coefficients associated with the corresponding sequence of OPUC.

For numbers on ∂D, we can define a cyclic order in terms of their arguments
[Simon 2007]. An ordered set of points (z1, . . . , zn)∈ ∂Dn is called cyclicly ordered
if (z j , z j+1)

n
j=1 and (zn, z1) contain no other z j . Two cyclicly ordered sets of points

on ∂D, (z1, . . . , zn) and (ζ1, . . . , ζm), are said to strictly interlace if after a cyclic
permutation of the ζ j , we have ζ j ∈ (z j , z j+1), j = 1, . . . ,m, and ζn ∈ (zn, z1) if
n=m. This definition can be naturally extended to two cyclicly ordered sets of zeros
with different numbers of elements. We recall here that the zeros of two consecutive
invariant POPUC, 8n+1( · , τn+1) and 8n( · , τn), associated with the measure dσ
(positive definite case) have at most one zero in common, namely ζ . In other words,
one of two following possibilities holds: the zeros of 8n+1(z, τn+1)/(z− ζ ) and
8n( · , τn), or the zeros of 8n+1( · , τn+1) and 8n( · , τn), strictly interlace on ∂D

(see [Simon 2007] and the references given there). We must once again urge
the reader to consult the monographs [Simon 2005a; 2005b; 2011] where all the
previous results can be found.
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3. Recurrence relation and spectral theorem

It is very well known that the OPRL (and also the OPUC for nonzero Verblunsky
coefficients) satisfy a linear recurrence relation [Chihara 1978; Szegő 1975] which
plays a crucial role in the subsequent behavior of their theory. Such a recurrence
relation does not hold for POPUC, but we can obtain a similar recurrence formula.
To do this, we follow an analogous procedure to one pointed out by Atkinson [1964]
and recovered by Simon [2005a, Theorem 1.5.2] to obtain Szegő’s recurrence.

Theorem 3.1. Given a quasidefinite moment functional µ, there always exist three
consecutive monic POPUC such that

(3-7) 8n+1(z, τn+1)= (z+βn)8n(z, τn)− γnz8n−1(z, τn−1),

where βn, γn ∈ C \ {0} are given by

(3-8) γn =
〈8n( · , τn), 1〉
〈8n−1( · , τn−1), 1〉

, βn = γn
〈8n−1(z, τn−1), zn−1

〉

〈8n(z, τn), zn〉
.

Proof. Our proof starts with the observation that

Qn+1(z) := (z+βn)8n(z, τn)− γnz8n−1(z, τn−1), βn, γn ∈ C,

is a monic polynomial of degree n+1 which is orthogonal to span{z2, z3, . . . , zn−1
}.

The important point to notice here is that for constants βn and γn given as in (3-8),
Qn+1(z) is orthogonal to span{z, z2, . . . , zn

}, which proves the theorem. �

In terms of the parameters {τn}n≥1, the previous theorem says that given two
numbers τn−1 and τn , a third number τn+1 can be found such that the corresponding
POPUC satisfies (3-7). We are now interested in the expression of the recurrence
coefficients (3-8) in terms of the parameters {τn}n≥1 ∈ ∂D∞ and the Verblunsky
coefficients.

Corollary 3.2. With reference to the recurrence formula (3-7) for the invariant
case, the following holds:

βn =
τn

τn+1
∈ ∂D, γn =

τn −αn−1

τn+1−αn−2
ρ2

n−2 ∈ C \ {0}.

Proof. From (2-6), we get

8∗n( · , τn)=−τn8n( · , τn),

which gives

(3-9) τn+18n+1(z, τn+1)= (1+ β̄nz)τn8n(z, τn)− γ̄nzτn−18n−1(z, τn−1),

when substituted in the reversed (3-7). The expression for βn follows from the
above equation comparing the leading coefficients.
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By inverting the Szegő recurrence (2-4) [Simon 2005a, Theorem 1.5.4], it is easy
to check that (2-6) in the monic case can be expressed by

8n(z, τn)=
1

1−ωnαn−1

(
8n(z)+ωn8

∗

n(z)
)
, ωn :=

ᾱn−1− τ̄n

1− τ̄nαn−1
.

Thus, γn follows from here as a consequence of Theorem 3.1, (2-3), the paraorthog-
onality conditions for8n( · , τn) and the orthogonality conditions for8n and8∗n . �

The following result will be useful in determining the relation between τn−1, τn ,
and τn+1 for the invariant case.

Lemma 3.3. Let {βn}n≥0 be an arbitrary sequence on ∂D and let {γn}n≥1 be an
arbitrary sequence on C \ {0}. Any sequence of polynomials {9n}n≥0 defined by

(3-10) 9n+1(z)= (z+βn)9n(z)− γnz9n−1(z),

with initial conditions 90 :≡ 1 and 91(z) := z + β0, is a sequence of invariant
polynomials if and only if the recurrence coefficients satisfy

(3-11)
γn

γ̄n
= βn−1βn.

Proof. As a direct consequence of Theorem 3.1, we get

9n(z)= det(Jn(z)), n ≥ 1,

where the matrix Jn(z) is given by

Jn(z)=



z+β0 −γ1 0 · · · 0 0
−z z+β1 −γ2 · · · 0 0
0 −z z+β2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · z+βn−1 −γn−1

0 0 0 · · · −z z+βn−1


.

For a polynomial f to be invariant, it is necessary and sufficient that | f | ≡ | f ∗|.
Let us define the matrices Dn := diag[β−1

0 , β−1
1 , . . . , β−1

n−1] and

J (0)n (z) :=



z+β0 β0 0 · · · 0 0
−γ̄1β1z z+β1 β1 · · · 0 0

0 −γ̄2β2z z+β2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · z+βn−2 βn−2

0 0 0 · · · γ̄n−1βn−1z z+βn−1


.
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Notice that z J H
n (1/z̄) = Dn J (0)n (z), where the H -operator denotes the conjugate

transpose. Hence,

(3-12) | det(Jn(z))| = | det(Dn)|| det(J (0)n (z))| = | det(z J H
n (1/z̄))|, n ≥ 1,

holds, if and only if (3-11) holds. �

Notice that under the hypothesis of Corollary 3.2, we get by Lemma 3.3 that

τn+1 =
γ̄n

γn
τn−1.

As a consequence, we can deduce the following (forward) recurrence relation for
the paraorthogonality parameters,

(3-13) τn+1 =
τn −αn−1

τ̄n − ᾱn−1

τ̄n−1− ᾱn−2

τn−1−αn−2
τn−1,

which is equivalent to the (backward) recurrence

(3-14) τn−1 =
τn+1αn−2(ᾱn−1− τ̄n)+αn−1− τn

τn+1(ᾱn−1− τ̄n)+ ᾱn−2(αn−1− τn)
.

We next point out the important converse of Theorem 3.1. In agreement with
classical literature, we refer to this result as Favard’s theorem (see, among others,
[Chihara 1978; Erdélyi et al. 1991; Favard 1935; Marcellán and Álvarez-Nodarse
2001; Szegő 1975]) or the spectral theorem [Ismail 2005], even though this result
is previously contained in the works of Stieltjes [1895; 1894] and Stone [1932].
In the positive definite case, an analog of Favard’s theorem for OPUC based on
the construction of a sequence of absolutely continuous measures whose limit is
the spectral measure is presented in [Erdélyi et al. 1991]. In this paper the authors
follow a method used previously by Delsarte, Genin and Kamp [Delsarte et al. 1978]
who consider the matrix-valued case. Some extensions to the quasidefinite case
have been analyzed in [Marcellán and Álvarez-Nodarse 2001]. Our proof follows a
standard scheme (constructive approach) which goes back at last to [Chihara 1978];
see also [Marcellán and Álvarez-Nodarse 2001].

Theorem 3.4 (spectral theorem). Let {βn}n≥0 be an arbitrary sequence on ∂D and
let {γn}n≥1 be an arbitrary sequence on C \ {0}. Set c0 ∈ R \ {0} and let {9n}n≥0

be a sequence of invariant polynomials satisfying a recurrence relation as (3-10),
with 90 :≡ 1 and 91(z) := z+β0. Then there exists a unique quasidefinite moment
functional µ such that µ(1) = c0 and {9n}n≥0 is the corresponding sequence of
POPUC. Moreover, if {9n}n≥0 is a sequence of polynomials with all its zeros on ∂D,
then there exists a unique measure dσ such that

∫
dσ = c0 > 0 and {9n}n≥0 is the

corresponding sequence of POPUC.
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Proof. We begin by constructing for n ≥ 2 the moment linear functional µ(n) on
3−(n−1),n−1 by

ck := µ
(n)(zk)= µ(n)(z−k)=: c̄−k, 0≤ k ≤ n− 1,

such that

(3-15) µ(n)(9`(z)z−1)= 0, 2≤ `≤ n.

So we proceed by induction on n. Notice that for n = 2,

µ(2)(92(z)z−1)= c1+β0β1c−1+ (β0+β1− γ1)c0,

which allows us to define c1= c̄−1 ∈C. More precisely, we let c1 := (1/2γ1−β0)c0,
which by Lemma 3.3 implies

µ(2)(92(z)z−1)= (1/2γ1+ 1/2γ̄1β0β1− γ1)c0 = 0.

In order to prove (3-15), write

9n(z)= zn
−

n−1∑
k=0

an,k9k(z),

where {an,k}
n−1
k=0 is uniquely determined. Let us now define µ(n) on 3−(n−1),n−1

as an extension of µ(n−1) such that cn−1 := (an,0+ an,1β0)c−1+ an,1c0. In other
words, we assume that for some n ≥ 3, c−(n−2), . . . , cn−2 have been determined
such that µ(n−1) defined on 3−(n−2),n−2 satisfies

cm = c̄−m, 0≤ m ≤ n− 2,

and

µ(n−1)(9`(z)z−1)= 0, 2≤ `≤ n− 1.

Hence, by our assumption,

µ(n)(9n(z)z−1)= 0.

This completes the induction. Therefore, it follows that µ defined on 3 by (2-1) is
an extension of µ(n) defined on 3−n,n , and consequently

(3-16) µ(9n(z)z−1)= 0, n ≥ 2.

According to the paraorthogonality conditions (2-5), it remains to check that

〈9n, 1〉 6= 0, 〈9n(z), zq
〉 = 0, 2≤ q ≤ n− 1, 〈9n(z), zn

〉 6= 0.
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From (3-7) and (3-16), we obtain

〈9n, 1〉 = γn〈9n−1, 1〉

= c0

n∏
k=1

γk =: b0 6= 0.

On the other hand, from (3-16) and the Hermitian character of the functional,

〈9n(z), z〉 = 〈9∗n (z), zn−1
〉 = 0,

which by the invariant hypothesis implies

(3-17) 〈9n(z), zn−1
〉 = 0.

Now, we define an appropriate statement (Ir ) by

(Ir ) 〈9n(z), zq
〉 = 0, 1≤ q ≤ r, n ≥ r + 1,

and prove by induction that the statement is valid for all r . Obviously, (I1) is (3-16).
Assuming (Ir ) holds for some r ≥ 2, we will prove (Ir+1), that is,

〈9n(z), zr+1
〉 = 0, n ≥ r + 2.

Since (Ir ) holds, (3-7) yields

〈9n+1(z), zr+1
〉 = βn〈9n(z), zr+1

〉.

Taking into account that (3-17) holds,

〈9r+2(z), zr+1
〉 = 0,

which yields 〈9r+3(z), zr+1
〉 = 0. Continuing in this manner, we conclude that

(Ir+1) is valid. Furthermore, it follows easily that

βn〈9n(z), zn
〉 = γn〈9n−1(z), zn−1

〉.

Hence,

〈9n(z), zn
〉 = c0

n∏
k=1

γk

βk
=: bn 6= 0.

If a sequence of POPUC associated with µ exists, it is uniquely determined by
b0 and bn . Therefore,

〈9n, 1〉 = b0, 〈9n, zk
〉 = 0, 1≤ k ≤ n− 1, 〈9n, zn

〉 = bn,

is a consistent system of n + 1 linear equations with n + 1 unknowns. Notice
that the coefficient matrix of this system is the moment matrix Tn . Then it has a
unique solution determined by b0 and bn so that det(Tn) 6= 0. Thus, there exists a
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quasidefinite moment functional µ such that {9n}n≥0 is the corresponding sequence
of POPUC. This proves the first part of the theorem.

Let us now assume that {9n}n≥0 is a sequence of polynomials with all its zeros
on ∂D. By Cohn’s theorem [Rahman and Schmeisser 2002], we know that a
polynomial with all its zeros on ∂D must be invariant. Furthermore, by Chen’s
theorem [1995, Theorem 1], we also know that a necessary and sufficient condition
for all the zeros of 9n to lie on ∂D is that there exists a polynomial πn−l ∈

Pn−l\Pn−l−1 with all its zeros in D or on ∂D such that

(3-18) 9n(z)= zlπn−l(z)− ζnπ
∗

n−l(z)

for some nonnegative integer l and ζn ∈ ∂D. By the first part of the theorem, {9n}n≥0

is a sequence of POPUC with respect to a quasidefinite functional µ. By [Jones et al.
1989, Theorem 6.1(B)], (3-18) holds for l ≡ 1, ζn = τ̄n and πn−1 =8n−1. We recall
that {8n}n≥0 is the sequence of OPUC associated with the POPUC {9n}n≥0 and
the functional µ. At this point, we only can guarantee that the zeros of 8n−1 lie on
C \ ∂D [Marcellán and Godoy 1991, Proposition 3.1]. If the zeros of 9n lie on ∂D,
then by Chen’s theorem the zeros of 8n−1 lie in D. Finally, by Geronimus’ theorem
[1946, Theorem I], under our hypothesis the functional µ is positive definite.

The uniqueness of µ is a consequence inherited from the associated OPUC. �

It is very well known that for any three contiguous hypergeometric functions there
is a linear contiguous relation. So if we are looking for a sequence of polynomials
satisfying (3-7), we can find examples if we consider hypergeometric polynomials
[Andrews et al. 1999, (2.5.16)]. Notice that from the previous theorem,

(3-19) (c+n) 2 F1(−n−1,b;c;1−z)

= ((b+n)z+c−b+n)2 F1(−n,b;c;1−z)−n z 2 F1(−n+1,b;c;1−z),

where b, c ∈ C and c 6= 0,−1,−2, . . . gives a set of hypergeometric POPUC.

Example 3.5 (Askey POPUC). An example of polynomials satisfying (3-10) are
the hypergeometric polynomials

(3-20)
(2a)n

(a+ bi)n
2 F1(−n, a+ bi; 2a; 1− z), a > 0, b ∈ R, n ≥ 1,

where (a)n denotes the Pochhammer symbol defined by (a)0 := 1 and (a)n :=
a(a+ 1) · · · (a+ n− 1), and the recurrence coefficients are particularly chosen as

(3-21) βn =
a+ n− bi
a+ n+ bi

∈ ∂D, γn =
n(2a+ n− 1)

(a+ bi + n− 1)(a+ bi + n)
∈ C \ {0}.

It is easy to check that the polynomials (3-20) have all their zeros on ∂D. Thus, in
accordance with Theorem 3.4, there exists a unique nontrivial probability measure
dσ supported on ∂D such that the polynomials (3-20) are the corresponding POPUC.
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These polynomials are a particular case of the so-called Askey POPUC; see [Castillo
2015; Castillo et al. 2014; Dimitrov and Sri Ranga 2013].

Now we can go a step further with respect to the above example in order to
obtain of some known results as a direct consequence of our study.

Example 3.6 (Delsarte–Genin POPUC). Let {bn}n≥0 be an arbitrary sequence of
nonzero real numbers, let {an}n≥1 be an arbitrary positive chain sequence [Chihara
1978], and let {ϕn}n≥0 be the sequence of polynomials recursively defined by

(3-22) ϕn+1(z)=
(
(1+ ibn)z+ (1− ibn)

)
ϕn(z)− 4anzϕn−1(z),

with initial conditions ϕ0 := 1 and ϕ1(z) := (1+ ib0)z+ (1− ib0). It is worth men-
tioning that (3-22) is the recurrence relation studied by Delsarte and Genin [1988;
1991a; 1991b; 1990], among others. The interlacing property on ∂D of the zeros of
{ϕn}n≥0 was recently proved in [Dimitrov and Sri Ranga 2013, Theorem 1.1]; see
also [Castillo et al. 2014], although it was first proved in [Delsarte and Genin 1988,
Section 5]. In any case, an easy computation shows that these polynomials satisfy the
conditions of Theorem 3.4 with all their zeros on ∂D. So, the interlacing property of
the zeros of {ϕn}n≥0 is also a direct consequence of the fact that from Theorem 3.4,
these polynomials are POPUC associated with some nontrivial probability measure
dσ supported on ∂D. Actually, we can say much more about the behavior of their
zeros using the known results for the zeros of POPUC; see, e.g., [Cantero et al.
2002; Golinskii 2002; Simon 2005a; 2005b; 2007; 2011; Wong 2007].

An interesting and nontrivial extension of the results of this section is the con-
nection with those obtained in [Lamblém et al. 2010] where a non-Hermitian
linear functional µ̃ on 3 satisfying cn = c−n ∈ C is considered (compare with
(2-1)) yielding the definition of Szegő-type polynomials. We recall that the case
cn = c−n ∈ R was previously considered in [Delsarte and Genin 1986].

4. Applications

The aim of this last section is to establish two applications of the results presented
in the previous section.

Analytic theory of polynomials. The major role of POPUC, as it was pointed out
in the Introduction is played by the zero behavior. The results in this direction
can be divided into two sets, depending on the methodology used by the authors.
The first one is composed by Cantero, Moral and Velázquez [Cantero et al. 2002],
Golinskii [2002], and Wong [2007], whose basic tool is the Christoffel–Darboux
formula. The second one is by Simon [2007] who used the theory of rank-one
perturbations of unitary matrices.
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Although many of the results of zeros of POPUC are well known, a natural
question is still open: are two polynomials with simple and strictly interlacing
zeros on ∂D, with the possible exception of one of them which could be common,
elements of a sequence of POPUC? After the previous section it is natural to
conjecture that the answer will be yes. The following result for OPRL goes back to
the work of Wendroff [1961]. We must emphasize that it was known by Geronimus
[1946, pp. 744] also for OPUC.

Theorem 4.1 (Geronimus–Wendroff theorem). Let 9n and 9n+1 be two monic
polynomials whose zeros are simple and strictly interlacing on ∂D. Then there exists
a measure dσ for which they are POPUC. All such measures have the same 9 j ,
0 ≤ j ≤ n+ 1. Moreover, if 9n and 9n+1 have at most one zero in common, the
statement of the theorem is also true.

Proof. Let us assume that the zeros of 9n and 9n+1 are strictly interlacing on ∂D.
The same idea can be used for the case that 9n and 9n+1 have one zero in common.
Let {eiθn,k }

n
k=1 be the zeros of 9n . Set

βn := −ei
∑n+1

k=1 θn+1,k e−i
∑n

k=1 θn,k ∈ ∂D.

Notice that the polynomial

n+1∏
k=1

(z− eiθn+1,k )− (z+βn)

n∏
k=1

(z− eiθn,k )

has a zero at z = 0. Then,

9n+1(z)− (z+βn)9n(z)=−γnzBr (z),

where Br is a monic polynomial of degree at most n− 1. Since eiθn+1,k − βn 6= 0
and 9n(eiθn+1,k ) 6= 0, we have that γn 6= 0 and Br (eiθn+1,k ) 6= 0. Furthermore,

9n+1(eiθn,k )=−γneiθn,k Br (eiθn,k ).(4-23)

It is known that an arbitrary polynomial with simple zeros on ∂D is a POPUC
with respect to some nontrivial probability measure supported on ∂D [Castillo et al.
2015]. Since 9n(βn) 6= 0 and 9n+1(βn) 6= 0, and we are interested in the zeros,
there is no loss of generality if we assume that

(z+βn)9n(z)= β̄Pn+1(z)−βP∗n+1(z), β ∈ C \ {0},

9n+1(z)= ᾱQn+1(z)−αQ∗n+1(z), α ∈ C \ {0},

where Pn+1(z) and Qn+1(z) are the OPUC associated with (z + βn)9n(z) and
9n+1(z), respectively. Hence,

−γnzBr (z)= (ᾱPn+1(z)− β̄Qn+1(z))+ (αP∗n+1(z)−βQ∗n+1(z)).
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Let us introduce two auxiliary functions

fn(θ) :=
9n(z)
i zn/2 , gr (θ) :=

zBr (z)
i z(n+1)/2 ,

where (reiθ )1/2 =
√

reiθ/2, r > 0, and θ ∈ (ω̃, ω̃+ 2π). Clearly, fn(θ) and gr (θ)

are real–valued C∞ functions defined on (ω̃, ω̃+ 2π) and, by definition they have
the same number of zeros on (ω̃, ω̃+ 2π) as 9n and Br on ∂D, respectively.

One denotes the zeros of fn by xn,k , k = 1, . . . , n. As a consequence of the
interlacing hypothesis, we have

fn+1(xn,k+1) fn+1(xn,k) < 0.
Therefore,

fn+1(xn,k+1) fn+1(xn,k)= |γn|
2gr (xn,k)gr (xn,k+1),

from which
gr (xn,k)gr (xn,k+1) < 0.

This implies that Br has n− 1 zeros strictly interlacing on ∂D with the zeros of 9n .
If we define the polynomial 9n−1 :≡ Br , we can construct, just repeating the above
procedure, a polynomial of degree n− 2 whose zeros interlace with those of 9n−1.
So we can find all the polynomials (uniquely determined) with degree less than n−1.
By the above construction, the polynomials 9 j , 0≤ j ≤ n− 1, are determined by
9n and 9n+1. Finally, applying Theorem 3.4, the result is proved. �

Computation of Szegő quadrature formulas. In some applications and theoretical
problems, it is of interest to compute 8n( · , τn) for some n ≥ 1 and a fixed τn ∈ ∂D.
A motivation to this problem can be given when the estimation of the integral

Iσ ( f ) :=
∫

f (z) dσ(z)

is considered by means of SQ formulas,

(4-24) In( f ) :=
n∑

j=1

λ j f (z j ), z j ∈∂D, j=1, . . . , n, z j 6= zk if j 6=k, n≥1.

Here, the nodes {z j }
n
j=1 and weights {λ j }

n
j=1 are determined so that In( f )= Iσ ( f )

for all functions f belonging to a subspace of 3 whose dimension is as large as
possible. The “optimal” subspace of exactness is3−(n−1),n−1 (of dimension 2n−1),
and this one-parameter family of optimal SQ formulas can be characterized as:

(i) The nodes are the zeros of an n-th POPUC associated with the measure dσ .

(ii) The weights can be computed by

(4-25) λ j =−
1

2z j

ϒn(z j , τn)

8
′

n(z j , τn)
> 0, j = 1, . . . , n,
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whereϒn( · , τn) represents the corresponding n-th second kind POPUC, which
can be obtained from (2-6) with the same τn and Verblunsky coefficients
{−αn}n≥0 (see [Wong 2007]).

The positive character of the weights is of importance for stability and conver-
gence reasons. If you fix one or two nodes in advance in (4-24) then you get an
extension of the classical Gauss–Radau and Gauss–Lobatto quadrature formulas
for measures supported on the real line. But the situation on the unit circle is
completely different. Because of the dependence of the parameter τn , Szegő–Radau
quadrature formulas can be always constructed by taking an appropriate selection
of the parameter τn: if we want ζ ∈ ∂D to be a node of the rule, then

8n(ζ, τn)= 0 ⇐⇒ ζ8n−1(ζ )− τ̄n8
∗

n−1(ζ )= 0 ⇐⇒ τn = ζ
n−28n−1(ζ )

8n−1(ζ )
,

and from Heine’s formula [Simon 2005a, Theorem 1.5.11(a)], it is expressed in
terms of ζ and the trigonometric moments of the measure dσ :

τn = ζ
n−21

1
, 1 := det


c0 c1 · · · cn−1

c−1 c0 · · · cn−2
...

...
...

c−n+2 c−n+3 · · · c1

1 ζ · · · ζ n−1

 .
The construction of Szegő–Lobatto quadrature formulas also requires the computa-
tion of an n-th POPUC with a specific value of the parameter τn; see [Cruz-Barroso
et al. 2015].

Another motivation to the same problem, concerning the construction of interpo-
latory quadrature formulas for the estimation of integrals with respect to measures
supported on intervals of the real line can be found in [Bultheel et al. 2005]. In that
paper, n-point positive interpolatory quadrature formulas on [−1, 1] are constructed
by taking as nodes the real part of some of the zeros of certain POPUC, and it is
also proved there that an appropriate selection of the paraorthogonality parameter
makes it always possible to obtain “optimal” rules, exact in a subspace of algebraic
polynomials of dimension n+ 1.

The results of Section 3 can be used to solve this problem in an alternative way,
by computing directly a sequence of POPUC, instead of the associated OPUC.
Indeed, let us consider first the initial conditions of the three-term recurrence for
POPUC. For arbitrary τ1 ∈ ∂D, set

8−1( · , τ−1) :≡ 0, 80( · , τ0) :≡ 1, 81(z, τ1)= z− τ̄1,

so if we define τ0 := −1, the formula for βn in Corollary 3.2 holds for n = 0. Set
now τ2 ∈ ∂D also arbitrary, and β1 = τ1τ̄2. From the combination of Theorem 3.1
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and (3-11) with n = 1, and (2-6) with n = 2, it follows that

82(z, τ2)= z2
+ (τ̄2α0− ᾱ0)z− τ̄2, γ1 = τ̄2(τ1−α0)− (τ̄1− ᾱ0).

So, with these initial conditions, we are able to use (3-7) for the computation of a
particular sequence of POPUC that depends on the free selection of τ1, τ2 ∈ ∂D:
for n ≥ 2, we compute τn+1 from (3-13), and hence βn and γn are obtained from
Corollary 3.2. Now, the key fact is that since the recurrence relation for the
paraorthogonality parameters is invertible (see (3-14)), and both depend only on the
measure dσ , the sequence {τk}

n+1
k=0 can be also obtained starting from a fixed τn+1

and an arbitrary τn , until we get τ2 (from the initial conditions, τ1 will not be needed
and notice that α−1 := −1 always implies τ0 =−1). The remaining parameters βn

and γn in the recurrence are thus directly obtained from Corollary 3.2 for n ≥ 2.
To end, let us illustrate the method. Despite what happens to OPRL, few measures

on the unit circle provide families of POPUC that are explicitly given. A known
family of measures of importance is the Jacobi-type weight functions

dσα,β(θ)= (1− cos θ)α+1/2(1+ cos θ)β+1/2dθ, α, β >−1, θ ∈ [0, 2π),

with Verblunsky coefficients

αn =
(−1)n(β + 1

2)−α−
1
2

n+α+β + 2
,

but for which only for the four Chebyshev-type weight functions α, β ∈ {±1/2} are
there explicit expressions for POPUC (see [Daruis et al. 2002]). For other selections
of α, β, we can compute 8n( · , τn) for dσα,β , n ≥ 2, and a prescribed τn from our
three-term recurrence. An example is given below.

Example 4.2. Notice that since dσα,β is a symmetric weight (αn ∈ R), the poly-
nomial 8n( · ,±1) will have real coefficients, and the nonreal zeros will appear in
complex conjugate pairs.

(i) Setting α = 0, β = 1 and τ1 = τ2 = 1, we obtain from the forward recurrence
(3-13) that τ15 = 1 and that 815(z, 1) =

∑7
j=0 a j (z j

− z15− j ) is given by
a0 = −a1 = −1, a2 = −a3 = −7/5, a4 = −a5 = −21/13 and a6 = −a7 =

−245/143.

(ii) Set α = β = 1/4:

(a) If τ10 = 1 and τ9 = i , we can make use of the backward recurrence (3-14)
to obtain τ2 = 1 and τ1 = i .

(b) For the choice τ14= (
√

2/2)(1+i), the corresponding POPUC and second
kind POPUC have been computed from the three-term recurrence. The
nodes and weights (obtained from (4-25)) of the 14-point SQ formula are
displayed in Table 1.
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nodes weights

0.953562637438023+ 0.405929829869375i 0.010335586974718
0.719435950626376+ 0.750717509685024i 0.022827404435354
0.366191713059248+ 0.974873401744596i 0.032048528041628
−0.047525423154063+ 1.041505278940548i 0.034116841058949
−0.454499431518169+ 0.939759403074777i 0.028200751436574
−0.789255597539979+ 0.686392494558016i 0.016744575125821
−1.000962132835750+ 0.324853472172218i 0.005014789370671

1.000962132835750− 0.324853472172218i 0.005014789370670
−0.953562637438025− 0.405929829869376i 0.010335586974718

0.789255597539980− 0.686392494558019i 0.016744575125820
−0.719435950626374− 0.750717509685023i 0.022827404435355

0.454499431518170− 0.939759403074778i 0.028200751436573
−0.366191713059248− 0.974873401744598i 0.032048528041627

0.047525423154063− 1.041505278940550i 0.034116841058948

Table 1. Nodes and weights of the 14-point SQ formula for dσα,β
with α = β = 1/4, computed from the three-term recurrence relation
for the corresponding POPUC and second kind POPUC.
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Figure 1. The relative errors in the estimation of Iσα,β ( f ) with α =
β = 1 and f (z) = cos2 θ , with z = eiθ , by SQ formulas obtained
from the three-term recursion for POPUC and second kind POPUC
by taking τ1 = τ2 = 1.

(iii) Setting α= β = 1, and f (z)= cos2 θ , with z= eiθ , the relative errors obtained
in the estimation of Iσα,β ( f ) by using SQ formulas computed via three-term
recursion for POPUC and second kind POPUC by taking τ1 = τ2 = 1 are
displayed in Figure 1.
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For numerical reasons, the computation of the zeros of POPUC is preferably
done from an eigenvalue problem of certain structured matrices (Hessenberg, CMV,
snake-shaped) in a very fast and accurate way. The computations of our method can
be arranged so that the nodal polynomial can be determined in only o(n) arithmetic
floating point operations. So, it should be said that this alternative procedure is
competitive with respect to other procedures already known in the literature, but it
is not really an improved algorithm. In any case, our work gives a new perspective
to be considered in more detail.
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SIGMA THEORY AND TWISTED CONJUGACY, II:
HOUGHTON GROUPS AND

PURE SYMMETRIC AUTOMORPHISM GROUPS

DACIBERG L. GONÇALVES AND PARAMESWARAN SANKARAN

Let φ : 0→ 0 be an automorphism of a group 0. We say that x, y ∈ 0 are
in the same φ-twisted conjugacy class and write x ∼φ y if there exists an
element γ ∈0 such that y= γ xφ(γ−1). This is an equivalence relation on 0
called the φ-twisted conjugacy. Let R(φ) denote the number of φ-twisted
conjugacy classes in 0. If R(φ) is infinite for all φ ∈ Aut(0), we say that
0 has the R∞-property.

The purpose of this note is to show that the symmetric group S∞, the
Houghton groups and the pure symmetric automorphism groups have the
R∞-property. We show, also, that the Richard Thompson group T has the
R∞-property. We obtain a general result establishing the R∞-property of
the finite direct product of finitely generated groups.

This is a sequel to an earlier work by Gonçalves and Kochloukova, in
which it was shown using the sigma theory of Bieri, Neumann and Strebel
that, for most of the groups 0 considered here, R(φ)=∞ where φ varies in
a finite index subgroup of the automorphisms of 0.

1. Introduction

Let 0 be a group and let φ : 0→ 0 be an endomorphism. Then φ determines an
action 8 of 0 on itself where, for γ ∈ 0 and x ∈ 0, we have 8γ (x) = γ xφ(γ−1).
The orbits of this action are called the φ-twisted conjugacy classes. We write x ∼φ y
if x and y are in the same φ-twisted conjugacy class. Note that when φ is the
identity automorphism, the orbits are the usual conjugacy classes of 0. We denote
by R(φ) the set of all φ-twisted conjugacy classes and by R(φ) the cardinality
#R(φ) of R(φ). We say that 0 has the R∞-property if R(φ)=∞, that is, if R(φ)
is infinite, for every automorphism φ of 0.

The problem of determining which groups have the R∞-property — more briefly
the R∞-problem — has attracted the attention of many researchers since it was
discovered that all nonelementary Gromov-hyperbolic groups have the R∞-property.

MSC2010: primary 20E45; secondary 20E36.
Keywords: twisted conjugacy, Reidemeister number, sigma theory, Houghton groups, infinite

symmetric group, pure symmetric automorphism groups.
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See [Levitt and Lustig 2000; Felshtyn 2001]. It is particularly interesting when
the group in question is finitely generated or countable. The notion of twisted
conjugacy arises naturally in fixed point theory, representation theory, algebraic
geometry and number theory. In recent years the R∞-problem has emerged as an
active research area.

Recall that Houghton introduced a family of groups Hn , n ≥ 2, defined as
follows: let Mn := {1, 2, . . . , n}×N. Then the group Hn consists of all bijections
f : Mn→ Mn for which there exist integers t1, . . . , tn such that f ( j, s)= ( j, s+ tj )
for all s ∈ N sufficiently large and all j ≤ n. Note that necessarily

∑
1≤ j≤n tj =

0. Let Z =
{
(t1, . . . , tn) |

∑
1≤ j≤n tj = 0

}
⊂ Zn ∼= Zn−1. One has a surjective

homomorphism τ : Hn→ Z ∼= Zn−1 sending f to its translation part (t1, . . . , tn)
(with notation as above). It is easily verified that τ is surjective with kernel the
group of all finitary permutations of Mn . K. S. Brown [1987a] showed that Hn is
finitely presented for n ≥ 3 and that it is FPn−1 but not FPn . Note that the above
definition of Hn makes sense even for n = 1 and that we have H1 ∼= S∞. However,
we treat the group S∞ separately and we shall always assume that n ≥ 2 while
considering the family Hn .

Next we recall the group Gn , the group of pure symmetric automorphisms of the
free group Fn of rank n≥2. Fix a basis xk, 1≤k≤n, of Fn . Denote by αi j ∈Aut(Fn),
1≤ i 6= j ≤n, the automorphism defined as xi 7→ xj xi x−1

j , xk→ xk , 1≤ k≤n, k 6= i .
The group Gn is the subgroup of Aut(Fn) generated by αi j , 1≤ i 6= j ≤ n. McCool
[1986] showed that Gn is finitely presented where the generating relations are:

(i) [αi j , αkl] = 1 whenever i , j , k, l are all different;

(ii) [αik, αjk] = 1 and [αi jαk j , αik] = 1 whenever i , j , k are all different.

It was shown by Gonçalves and Kochloukova [2010] that R(φ)=∞ for all φ in
a finite index subgroup of the group of all automorphisms of 0 where 0 = Hn,Gn .
Our main result is the following theorem. We give two proofs for the case of
Houghton groups, neither of which use 6-theory. However, we still need to use the
results of [Gonçalves and Kochloukova 2010] in the case of Gn .

Theorem 1.1. The following groups have the R∞-property:

(i) the group S∞ of finitary permutations of N,

(ii) the Houghton groups Hn , n ≥ 2, and

(iii) the group Gn , n ≥ 2, of pure symmetric automorphisms of a free group of
rank n.

Recall that Richard Thompson constructed three finitely presented infinite groups
F ⊂ T ⊂ V around 1965 and showed that T and V are simple. The groups F ,
T , and V arise as certain homeomorphism groups of the reals, the circle, and the
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Cantor set respectively. Since then these constructions have been generalized by
G. Higman [1974]. See also Brown [1987a], R. Bieri and R. Strebel [2014], and
M. Stein [1992]. For an introduction to the Thompson groups F , T , V see [Cannon
et al. 1996].

Theorem 1.2. The Richard Thompson group T has the R∞-property.

As the group T is simple, 6-theory yields no information about the R∞-property.
The above theorem was first proved by Burillo, Matucci, and Ventura [Burillo
et al. 2013]. Shortly thereafter, Gonçalves and Sankaran [2013] also independently
obtained the same result.

In Section 2 we make some preliminary observations concerning the R∞-property
which will be needed for our purposes. Theorem 1.1 will be established in Section 3.
The R∞-property of the group T will be proved in Section 4. In Section 5 we con-
sider the R∞-property of finite direct products of groups and obtain a strengthening
of a result of Gonçalves and Kochloukova [2010].

This is a sequel to the paper [Gonçalves and Kochloukova 2010]. We reassure
the reader that this paper can be read independently of it. Although results from
[Gonçalves and Kochloukova 2010] are used, we develop our own proof techniques
to go forward.

Note. Just after this paper was submitted, J. H. Jo, J. B. Lee, and S. R. Lee [Jo et al.
2015] have announced almost simultaneously a proof of the R∞-property for the
Houghton groups.

If f : X→Y is a map of sets, we shall always write the argument to the right of f ;
thus f (x) denotes the image of x ∈ X under f .

2. Preliminaries

We begin by recalling some general results concerning twisted conjugacy classes
of an automorphism of a group and that of its restriction to a normal subgroup.
We obtain a criterion for a periodic automorphism to have infinitely many twisted
conjugacy classes. We shall also briefly recall the notion of the Bieri–Neumann–
Strebel invariant and give its known description in the case of Houghton groups
and the pure symmetric automorphism groups.

2A. Addition formula. The following addition formula is found in [Gonçalves and
Wong 2003, Lemma 2.1]. This is a special case of a more general formula proved
in [Gonçalves and Wong 2005, §2]. For any element g ∈ G, we shall denote by ιg
the inner automorphism x 7→ gxg−1 of G. When N is a normal subgroup of G,
we shall abuse notation and denote by the same symbol ιg the automorphism of N
obtained by restriction of ιg to N .
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Lemma 2.1. Suppose that we have a commutative diagram of homomorphisms of
groups where the vertical arrows are isomorphisms and horizontal rows are short
exact sequences:

1 → N i
−→ G p

−→ G/N → 1
↓ θ ′ ↓ θ ↓ θ̄

1 → N i
−→ G p

−→ G/N → 1

Then:

(i) One has an exact sequence of (pointed) sets R(θ ′) i∗−→R(θ) p∗−→R(θ̄)→ {0}.
That is, p

∗
is surjective and Im(i∗) equals p−1

∗
({N }).

(ii) (Addition formula) Suppose R(θ̄) <∞ and Fix(ιαN ◦ θ̄ )= {N } for all α ∈ G.
Then R(θ) < ∞ if and only if R(ιαθ ′) < ∞ for all α ∈ G. Moreover, the
following addition formula holds if R(θ) <∞: R(θ)=

∑
[αN ]∈R(θ̄)R(ιαθ

′). �

We omit the proof. Part (i) is trivial. As mentioned above, the addition formula
is also a known result. In any case, it can be proved in a straightforward manner. It
can also be proved easily using the fixed point version of the following six-term
exact sequence of sets due to P. R. Heath [2015, equation (2), p. 4] (cf. [Heath
1985, Theorem 1.8]), where ᾱ denotes αN ∈ G/N :

1→ Fix(ιαθ ′)→ Fix(ιαθ ′)→ Fix(ιᾱ θ̄ )→R(ιαθ ′)→R(ιαθ)→R(ιᾱ θ̄ )→ 1.

Remark 2.2. Note that if G/N ∼= Zn , n <∞, and if 1 is not an eigenvalue of the
matrix of θ̄ with respect to a basis of G/N , then, for any α ∈ G, we know that
Fix(ιαN ◦ θ̄ ) = Fix(θ̄) consists only of the trivial element. So the lemma implies
that if R(θ ′)=∞, then R(θ)=∞.

2B. Periodic outer automorphisms. Let 0 be a group with infinitely many con-
jugacy classes. Then, for any automorphism φ : 0→ 0 and any g ∈ G, we have
R(φ)= R(ιg◦φ) where ιg denotes the inner automorphism x 7→ gxg−1. Indeed, it is
readily seen that the φ-twisted conjugacy classes are the same as the left translation
by g of the ιg◦φ-twisted conjugacy classes. Thus 0 has the R∞-property if and only
if R(φ)=∞ for a set of coset representatives of Out(0)=Aut(0)/ Inn(0). We have
the following lemma. Compare with [Gonçalves and Sankaran 2013, Lemma 3.4].

Lemma 2.3. Let θ ∈ Aut(0) and let n ≥ 1. Suppose that {xn
| x ∈ Fix(θ)} is not

contained in the union of finitely many θn-twisted conjugacy classes of 0. Then
R(θ)=∞.

Proof. Let x ∼θ y in 0 where x, y ∈ Fix(θ). Thus there exists a z ∈ 0 such that
y = z−1xθ(z). Applying θ i to both sides, we obtain y = θ i (z−1)xθ i+1(z), since
x, y ∈Fix(θ). Write φ := θn . Multiplying these equations successively for 0≤ i <n,
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we obtain

yn
=

∏
0≤i<n

θ i (z−1)xθ i+1(z)= z−1xnθn(z)= z−1xnφ(z).

That is, yn
∼φ xn . Our hypothesis says that there are infinitely many elements

xk ∈ Fix(θ), k ≥ 1, such that the xn
k are in pairwise distinct φ-twisted conjugacy

classes of 0. Hence we conclude that R(θ)=∞. �

Remark 2.4. When θn
= ιγ is an inner automorphism, we see from the above

lemma that R(θ) =∞ if {xnγ | x ∈ Fix(θ)} is not contained in a finite union of
conjugacy classes of 0. When θn

= id, we see that R(θ)=∞ if Fix(θ) contains
elements of order k for arbitrarily large values of k ∈ N.

2C. 6-theory of Hn and Gn. Bieri, Neumann, and Strebel [Bieri et al. 1987] intro-
duced, for any finitely generated group 0, an invariant 6(0) which is a certain open
subset — possibly empty — of the character sphere S(0) := Hom(0,R) \ {0}/R>0

where the action of the multiplicative group of positive reals is via scalar multipli-
cation. The automorphism group Aut(0) acts on S(0) where φ∗ : S(0)→ S(0)
is defined as [χ ] 7→ [χ ◦ φ], [χ ] ∈ S(0), for φ ∈ Aut(0). This action preserves
the subspace 6(0) and hence also its complement 6c(0). If the image of the
antihomomorphism η : Aut(0)→ Homeo(6c(0)) defined as φ 7→ φ∗ is a finite
group, then K = ker(η) is a finite index subgroup of Aut(0) which fixes every
character class in 6c(0). This happens, for example, if 6c(0) is a nonempty finite
set. If 6c(0) contains a discrete character class [χ ], that is, a class represented
by a character χ whose image χ(0) ⊂ R is infinite cyclic, then it was observed
by Gonçalves and Kochloukova [2010] that the character χ itself is fixed by the
action of K on Hom(0,R). That is, χ ◦ φ = χ for all φ ∈ K ⊂Aut(0). This easily
implies that R(φ)=∞ by Lemma 2.1(i), taking G = 0, N = kerχ , θ = φ in the
notation of that lemma, so that θ̄ = id.

When 0 is Gn , n ≥ 3, the group of pure symmetric automorphisms of Fn ,
L. Orlandi-Korner [2000] has determined 6c(0). When 0 is Hn , the Houghton
group, Brown [1987b] computed the set 6c(0). Using these results, Gonçalves
and Kochloukova [2010], showed that if 0 is any one of the groups Hn , n ≥ 2,
Gm , m ≥ 3, then the image of η : Aut(0)→ Homeo(6c(0)) is finite.

In the case of the Houghton group Hn , n≥2, it turns out that6c(Hn) is a finite set
of discrete character classes [χ j ], 1≤ j ≤ n. Explicitly, χ j : Hn→ Z may be taken
to be−πi ◦ τ where τ : Hn→ Z is the translation part (see Section 1) and πi : Z→Z

is the restriction to Z ⊂Zn of the i-th projection (see [Brown 1987b]). (Recall from
Section 1 that Z =

{
(t1, . . . , tn)∈Zn

|
∑

1≤ j≤n tj =0
}
.) Thus Homeo(6c(Hn))∼= Sn

is finite and so is the image of η :Aut(Hn)→Homeo(6c(Hn)). As already remarked,
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R(φ)=∞ for all φ ∈ ker(η). The lemma below will not be used in this paper but
is included here for illustrative purposes.

Lemma 2.5. Suppose η(φ) :6c(Hn)→6c(Hn) is not an n-cycle. Then R(φ)=∞.

Proof. Since η(φ) is not an n-cycle, the orbit of [χ1] under η(φ) consists of at
most n− 1 elements. Since χ1 is discrete, the orbit of χ1 ∈ Hom(Hn,R) consists
of discrete elements. In fact, the orbit of χ1 is a subset of {χ j | 1 ≤ j ≤ n}. Now
the orbit sum λ :=

∑
1≤ j≤kχ1φ

j is a nonzero character since any n− 1 elements
of χ j , 1 ≤ j ≤ n, form a basis of Hom(Hn,R). It follows, since φ∗(λ) = λ, that
R(φ)=∞. �

If φ∗ :6c(Hn)→6c(Hn) is an n-cycle, the orbit sum is zero and the above argu-
ment fails. In fact, it is easily seen that every possible permutation of6c(Hn)may be
realized as η(φ) for some φ∈Aut(Hn); that is, η :Aut(Hn)→Homeo(6c(Hn))∼= Sn

is surjective.

3. Proof of Theorem 1.1

Let X be an infinite set. We will only be concerned with the case when X is
countably infinite. We shall denote by S∞(X) the group of all finitary permutations
of X , that is, those permutations which fix all but finitely many elements of X .
The group of all permutations of X will be denoted by S(X). We shall denote
S(X) (resp. S∞(X)) simply by Sω (resp. S∞) when X is clear from the context.
If x = (xk)k∈Z is a doubly infinite sequence in X of pairwise distinct elements,
we regard it as an element of S(X) where x(xk) = xk+1 and x(a) = a if a 6= xk

for all k ∈Z. Two such sequences x = (xk) and y= (yk) define the same permutation
if and only if y is a shift of x , that is, there exists an n such that xk = yk+n for all
k ∈ Z. Thus, the sequence x = (xk)k∈Z is just the infinite cycle x ∈ S(X). Any
f ∈ S(X) is uniquely expressible as a product of disjoint cycles. Such an expression
of f is its cycle decomposition. The cycle type of an f ∈ S(X) is the function
c( f ) :N∪{∞}→Z≥0∪{∞} where c( f )(α) is the number of α-cycles in the cycle
decomposition of f if that number is finite; otherwise it is∞ for α ∈N∪ {∞}. As
in the case S∞(X), if f and g have the same cycle type, then they are conjugate
in S(X). We need a criterion for f and g to be conjugate by an element of S∞(X).

Lemma 3.1. Let x = (xk)k∈Z, y = (yk)k∈Z ∈ Sω(X) be two disjoint infinite cycles
and let (a, b) ∈ S∞.

(i) If a = x0, b = xk , k > 0, then (a, b)x = uv, where u = (uj )j∈Z ∈ Sω, v ∈ S∞
are disjoint cycles defined by

uj =

{
xj j < 0,
xj+k j ≥ 0,

and v = (x0, . . . , xk−1) ∈ S∞.
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(ii) If a = x0, b = y0, then (a, b)xy = uv, where u = (uj )j∈Z, v = (vj )j∈Z are
disjoint infinite cycles defined by

uj =

{
xj j < 0,
yj j ≥ 0,

and vj =

{
yj j < 0,
xj j ≥ 0.

�

If k ∈ N, we denote by N>k the set of all integers greater than k. Note that
S∞ =

⋃
k≥2 Sk where Sk is the subgroup consisting of permutations of N which fix

all n > k. In particular, the group S∞ is generated by transpositions (i, i+1), i ≥ 1.
The alternating group A∞ equals the commutator subgroup [S∞, S∞], has index 2
in S∞ and is simple. The conjugacy class of any element of S∞ is determined
by its cycle type, as in the case of finite symmetric groups. The group S∞ is a
normal subgroup of Sω = S(N). In particular, any bijection f : N→ N defines an
automorphism ιf ∈ Aut(S∞) by restricting the inner automorphism determined by
f ∈ Sω. Moreover ιf is the identity automorphism only if f equals the identity map.
The following result is well-known. See [Scott 1987, §11.4].

Theorem 3.2. The homomorphism ι : Sω→ Aut(S∞) is an isomorphism of groups.

The following corollary is a special case of a more general result established in
[Dixon and Mortimer 1996, Theorem 8.2A]. We include a proof, which is simpler
in our special case.

Corollary 3.3. Suppose that S∞ is a characteristic subgroup of a group H con-
tained in Sω. Then the automorphism group of H is isomorphic to the normalizer
N (H) of H in Sω. In particular, every automorphism of H is the restriction to H
of a unique inner automorphism of Sω.

Proof. We shall use the same symbol ιf to denote the conjugation by f ∈ Sω or its
restriction to any subgroup normalized by f .

It is evident that ι :N (H)→Aut(H) defined as f 7→ ιf defines an homomorphism.
(Here ιf (h)= f h f −1 for all h ∈ H .) This is a monomorphism since ιf is nontrivial
on S∞ ⊂ H if f is not the identity.

Let φ : H → H be any automorphism and let f ∈ Sω be the element such that
φ|S∞ = ιf . We claim that φ = ιf . Suppose that u := φ(h), ιf (h)= f h f −1

=: v for
some h ∈ H . We must show that u(i)= v(i) for all i ∈N. It suffices to show that
{u(i), u( j)}= {v(i), v( j)} for all i, j ∈N, i 6= j . Let i, j ∈N, i 6= j . Now consider
the transposition (a, b) ∈ S∞ such that ιf (a, b)= φ(a, b)= (i, j). We have

φ(h(a, b)h−1)= φ(h)φ(a, b)φ(h−1)= u(i, j)u−1
= (u(i), u( j)),

while

ιf (h(a, b)h−1)= ιf (h)ιf (a, b)ιf (h−1)= v(i, j)v−1
= (v(i), v( j)).
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Therefore (u(i), u( j))= (v(i), v( j))∈ S∞ since ιf and φ agree on S∞. This implies
that {u(i), u( j)} = {v(i), v( j)}, completing the proof. �

3A. S∞ has the R∞-property. Let θ ∈ Aut(S∞). In view of Theorem 3.2, θ = ιf
for some f ∈ Sω. Let x, y ∈ S∞ and suppose that y = zxθ(z−1)= zx f z−1 f −1 for
some z ∈ S∞. Then we have y f = z(x f )z−1 in Sω for some z ∈ S∞. For any cycle
(finite or infinite) u = (uj ), we have that zuz−1 is the cycle (z(uj )). Any z ∈ S∞
moves only finitely many elements of N. Hence when u is an infinite cycle we have
z(uj )= uj for all but finitely many j ∈ Z. For an arbitrary element u expressed as
a product of pairwise disjoint cycles, u(α) = (u(α)j ), the element zuz−1 being a
product of zu(α)z−1, we see that zu(α)z−1

= u(α) for all but a finitely many α,
and, moreover, if u(α)= (u(α)j )j∈Z) is an infinite cycle, then z(u(α)j )= u(α)j for
all but finitely many j ∈ Z.1

Lemma 3.4. If f ∈ Sω has an infinite cycle u, then there exist infinitely many
transpositions τk ∈ S∞ such that τj f 6= zτk f z−1 for any z ∈ S∞.

Proof. Fix an infinite cycle u = (uα)α∈Z that occurs in the cycle decomposition
of f . Let τα = (u0, uα), α≥ 1. Then we claim that τα f and τβ f are not conjugates
if α 6= β. To see this, we apply Lemma 3.1 to compute ταu, α ≥ 1. Note that the
cycles that occur in ταu also occur in the cycle decomposition of τα f . This is true
in particular of the infinite cycle, denoted v(α), that occurs in ταu.

Now v(α)p = v(β)p = up for all p < 0 and α, β ≥ 1, and, when α 6= β, we have
up+α = v(α)p 6= v(β)p = up+β , p≥ 0. This implies that the zv(β)z−1 cannot occur
in τα f for any z ∈ S∞ if α 6= β in its cycle decomposition, by the assertion made
in the paragraph above the statement of the lemma. Hence τα f 6= zτβ f z−1 for
any z ∈ S∞. �

We are now ready to prove part (i) of Theorem 1.1, restated below:

Theorem 3.5. The group S∞ has the R∞-property.

Proof. Let θ = ιf ∈ Aut(S∞) where f ∈ Sω. We need to show that there exist
pairwise distinct elements τj ∈ S∞, j ∈N, such that τj f 6= zτk f z−1 for any z ∈ S∞
if j 6= k. Since S∞ has infinitely many conjugacy classes, the assertion holds for
f ∈ S∞; thus we need only consider the case f /∈ S∞. In the cycle decomposition
of f , either (i) there exists an infinite cycle, or (ii) all the cycles are finite and there
are infinitely many of them.

Case (i). In this case the assertion has already been established in Lemma 3.4.

Case (ii). Suppose that f =
∏
α∈Nu(α) where the u(α) are all finite cycles having

length `(α) at least 2 for every α ∈ N. Let J := {α ∈ N | `(α)≥ 3}. We break up
the proof into two subcases depending on whether J is infinite or not.

1There is a mild abuse of notation here; u(α) is not to be confused with the value of u at α. We
will use Greek letters as labels in such situations.
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Subcase (a). J is infinite. Let Jk ⊂ J be the set consisting of the first k elements of J
(with respect to the usual ordering on J ⊂N). Write u(α)= (u(α)1, . . . , u(α)`(α))
and set U (α) := {u(α)i | 1≤ i ≤ `(α)}, α ∈N. Consider the collection of pairwise
disjoint transpositions λα = (u(α)1, u(α)2), α ∈ J , and let τk =

∏
α∈Jk

λα . Note that

λαu(α)= (u(α)1) · (u(α)2, . . . , u(α)`(α))= (u(α)2, . . . , u(α)`(α))

fixes only u(α)1 in the set U (α), as `(α) ≥ 3. Then τk ·
∏
α∈Jk

u(α) fixes only
u(α)1 ∈ N, α ∈ Jk , in the set

⋃
α∈Jk

U (α). Let F0 = Fix( f ). Then Fix(τk f ) =
F0 ∪ {u(α)1 | α ∈ Jk} =: Fk .

Suppose that τj f = zτk f z−1 with z ∈ S∞ and j 6= k. Then z defines a bijection
ζ : Fj → Fk between the fixed sets of τj f and τk f . Clearly this is a contradiction
if Fix( f )= F0 is finite. Assume that F0 ⊂ N is infinite. Since z is in S∞, it fixes
all but finitely many elements of F0. Let L := {m ∈ F0 | z(m) 6= m}. Note that
ζ restricts to the identity on F0 \ L . Therefore ζ restricts to a bijection between
L ∪{u(β)1 | β ∈ Jj } and L ∪{u(β)1 | β ∈ Jk}. Since j 6= k, we have that L is finite
and L ⊂ F0 is disjoint from {u(β)1 | β ∈ Jn}, n = j, k, which is a contradiction.

Subcase (b). The set J is finite; we set K = N \ J and define Kj , j ∈ N, to be the
set of first α elements of K . Again we set λα = (u(α)1), u(α)2) = u(α), α ∈ K .
Now, if α ∈ K , we have λαu(α)= id; that is, λαu( j) fixes both points of U (α). We
set τj :=

∏
α∈Kj

λα and Fj := Fix(τj f )= F0
⋃
α∈Kj

U (α). Arguing exactly as above,
for any z ∈ S∞, we see that τj f = zτk f z−1 implies j = k, completing the proof. �

3B. Houghton groups. As in the introduction, Hn , n ≥ 2, denotes the Houghton
group. We first describe the group of outer automorphisms of Hn . Recall from
Section 1 that one has an exact sequence

1→ S∞(Mn) ↪→ Hn
τ
−→ Z→ 1

where τ : Hn → Z sends f ∈ Hn to the translation part (t1, . . . , tn) ∈ Z of f .
The group S∞(Mn) is the commutator subgroup of Hn if n ≥ 3. When n = 2,
the commutator subgroup is the alternating group A∞(M2) which has index 2
in S∞(M2). In any case, S∞ = S∞(M) is characteristic in Hn as Hn/S∞ is the
maximal torsion-free abelian quotient of Hn .

Lemma 3.6. Let φ : Hn→ Hn , n ≥ 2, be an automorphism. Then φ is inner if and
only if φ̄ : Z→ Z is the identity automorphism.

Proof. It is trivial to see that any inner automorphism of Hn induces the identity
automorphism of Z . For the converse, suppose that φ : Hn → Hn induces the
identity automorphism of Z .

Let f ∈ S(Mn) be such that ιf (Hn)= Hn .
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Consider the element hp : Mn→ Mn , 1≤ p < n, in Hn defined as follows:2

hp(i, k)=


(p, k+ 1) if i = p, k ≥ 1,
(n, k− 1) if i = n, k > 1,
(p, 1) if i = n, k = 1,
(i, k) if i 6= p, n.

Thus hp permutes {p, n}×N in a single cycle,

hp = (. . . , (n, 2), (n, 1), (p, 1), (p, 2), . . . , (p, k), . . .),

and so f hp f −1 is the cycle

f hp f −1
= (. . . , f (n, 2), f (n, 1), f (p, 1), f (p, 2), . . . , f (p, k), . . .) ∈ Hn.

The only infinite cycles in Hn are those whose terms, except for a finite part of
the cycle, are consecutive numbers along two rays, say {in} ×N and {ip} ×N, in
the negative and positive directions respectively of the cycle f hp f −1. Therefore
we have τ( f hp f −1) = eip − ein . Moreover, there exist integers tn , tp such that
f (n, k) = (in, k + tn) and f (p, k) = (ip, k + tp) for sufficiently large k. Clearly
in and tn are independent of p. Since f is a bijection, the association p 7→ ip is a
permutation πf ∈ Sn , and consequently

∑
1≤q≤n tq = 0. Note that πf = id if and

only if f ∈ Hn .
Since S∞ is characteristic in Hn , by Corollary 3.3, φ= ιg for a unique g ∈ S(Mn).

We claim that g ∈ Hn . Since τ(ghg−1)= τ(φ(h))= τ(h) for all h ∈ Hn , we have
πg(q)= q for all q ≤ n and so we have g ∈ Hn . �

The group Sn acts on the set Mn = {1, . . . , n} ×N in the obvious manner, by
acting via the identity on N. This defines an action ψ of Sn on the group S(Mn)

defined as f 7→ σ ◦ f ◦ σ−1 which preserves the subgroup Hn . Thus we obtain
a homomorphism ψ : Sn→ Aut(Hn). It is readily seen that τ(ψσ (h)) = σ(τ(h))
for all h ∈ Hn , where σ acts on Z ⊂ Zn by permuting the standard basis elements
e1, . . . , en . In particular ψ is a monomorphism. Let ψ̄ : Sn → Out(Hn) be the
composition of ψ with the projection Aut(Hn)→ Out(Hn).

Proposition 3.7. The homomorphism ψ̄ : Sn→Out(Hn) is an isomorphism and so
Aut(Hn)= Inn(Hn)o Sn ∼= Hn o Sn .

Proof. Lemma 3.6 shows that ψ̄ is a monomorphism. We shall show that it is
surjective.

Let φ ∈ Aut(Hn). Write φ = ιf for a (unique) f ∈ S(Mn). With notation as in
the proof of Lemma 3.6, let π := πf ∈ Sn .

2The element (p, k) ∈ Mn should not be confused with the transposition in S(N).
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Consider the automorphism ψ−1
π φ =: θ . We have

τ(θ(hp))=π
−1(τ (φ(hp)))=π

−1(τ ( f hp f −1))=π−1(eπ(p)−eπ(n))=ep−en=τ(hp)

for 1≤ p < n. Since the group Z is generated by τ(hp), 1≤ p < n, it follows by
Lemma 3.6 that θ is inner. Hence ψ̄(π)= φ (mod Inn(Hn)).

Finally, note that Inn(Hn)∼= Hn since the center of Hn is trivial. �

The above description of Aut(Hn) has been obtained by Burillo, Cleary, Martino,
and Röver [Burillo et al. 2014, Theorem 2.2] and also by Cox [2014, §2.2]. All the
proofs make essential use of Theorem 3.2 and Corollary 3.3. The proof given by
Burillo et al. and our proof seem to be based on the same idea, although conceived
of independently.

Theorem 3.8. The Houghton group Hn has the R∞-property for any n ≥ 2.

We shall give two proofs for part (ii) of Theorem 1.1, restated above. The first
one uses the structure of the automorphism group of Hn and is more direct. The
second one uses the result of Theorem 3.5 and the addition formula (Lemma 2.1).

First proof. Observe that there are infinitely many conjugacy classes in Hn since
two elements in S∞ = S∞(Mn) ⊂ Hn are conjugates in Hn only if they have the
same cycle type. It follows that R(φ)=∞ for any inner automorphism φ of Hn .
Therefore, to show that R(φ)=∞ for an arbitrary φ ∈Aut(Hn), it suffices to show
that R(φ)=∞ for all φ in a set of coset representatives of elements of Out(Hn).
Thus we need only show that R(ψσ )=∞ for any σ ∈ Sn , where ψ : Sn→Aut(Hn)

is as defined in the paragraph above Proposition 3.7. We shall use Lemma 2.3 and
Remark 2.4 to achieve this.

For k ≥ 1, consider the element ξk which is defined as the product of k-cycles
((i, 1), . . . , (i, k)) ∈ Hn , 1≤ i ≤ n. Explicitly,

ξk(i, j)=


(i, j + 1) if 1≤ j < k,
(i, 1) if j = k,
(i, j) if j > k,

for all i ≤ n. Then ξk is fixed by ψσ for every σ ∈ Sn . Thus, {ξ n
k | k ≥ 1} contains

elements of arbitrarily large orders and so by Remark 2.4 it follows that R(ψσ )=∞
for all σ ∈ Sn , completing the proof. �

Second proof. Consider the exact sequence 1→ S∞(Mn)→ Hn → Z → 0. As
remarked already, S∞(Mn) is characteristic in Hn and we have Z ∼= Zn−1. Thus
any automorphism θ of Hn restricts to an automorphism θ ′ of S∞(Mn) and in-
duces an automorphism θ̄ of Z . If R(θ̄) = ∞ then, by Lemma 2.1(i), we have
R(θ) = R(θ̄) =∞. Now suppose that R(θ̄) <∞. Then Fix(θ̄) = 0. Since Z is
abelian and since R(θ ′)=∞ by Theorem 3.5, the addition formula (Lemma 2.1(ii))
yields R(θ)= R(θ ′)=∞, completing the proof. �
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3C. The group of pure symmetric automorphisms. Recall that Gn ⊂ Aut(Fn),
n ≥ 2, denotes the group of pure symmetric automorphisms of the free group Fn of
rank n. A presentation for Gn , obtained by McCool [1986], was recalled in Section 1.
It is immediate from this presentation that the abelianization Gab

n = Gn/[Gn,Gn]

is isomorphic to Zn2
−n with basis the images ᾱi j , 1 ≤ i 6= j ≤ n. We denote by

{χi j | 1≤ i 6= j ≤ n} the basis of Hom(Gab
n ,Z) dual to the basis {ᾱi j | 1≤ i 6= j ≤ n}.

We shall denote by the same symbol χi j the composition Gn→ Gab
n

χi j
−→Z ↪→ R.

We will assume that n ≥ 3, leaving out G2 which is isomorphic to a free group of
rank 2 and which is known to have the R∞-property.

We begin by recalling the explicit description of 6c(Gn) due to Orlandi-Korner
[2000].

Let Ai j :=Rχi j+Rχ j i and Bi jk :=R(χi j−χk j )+R(χ jk−χik)+R(χki−χ j i ), with
i , j , k pairwise distinct. Note that Ai j = Aj i and Bi jk = Bpqr if {i, j, k} = {p, q, r}.
Let S be the union of vector subspaces S =

⋃
Apq ∪

⋃
Bi jk ⊂ Hom(Gn,R) where

the unions are over all pairs of distinct numbers p, q ≤ n and all pairwise distinct
numbers i, j, k ≤ n. It was shown by Orlandi-Korner [2000] that 6c(Gn) is the
image of S \ {0} ⊂ Hom(Gn,R) \ {0}.

Let Sn denote the semidirect product Cn
2 o Sn where Sn acts on Cn

2 by permuting
the coordinates. Here C2 = {1,−1}. The group Sn acts effectively on Fn , the free
group with basis {x1, . . . , xn} where π ∈ Sn permutes the generators: we have the
equality π(xj )= xπ( j), 1≤ j ≤ n, and the action of the k-th factor of Cn

2 is given
by the automorphism tk(xk) = x−1

k , tk(xj ) = xj , j 6= k. Thus Sn is a subgroup
of Aut(Fn). It is readily verified that Sn normalizes Gn: tkαi, j t−1

k =α
−1
i, j if k= j and

equals αi, j otherwise; if π ∈ Sn , then παi, jπ
−1
=απ(i),π( j) for all i , j . In particular,

π∗(Ai j )= Aπ(i)π( j) and π∗(Bi jk)= Bπ(i)π( j)π(k) for all π ∈ Sn . Thus we have the
following lemma:

Lemma 3.9. Let n ≥ 3. The action of the group Sn ⊂Aut(Fn) on Hom(Gn,R) and
on 6c(Gn) is defined by π∗(χi, j ) = χπ(i),π( j), t∗(χi, j ) = ti tjχi, j , for all π ∈ Sn ,
t = (t1, . . . , tn) ∈ Cn

2 . �

The following proposition is a refinement of a statement in the proof of [Gonçalves
and Kochloukova 2010, Theorem 4.11].

Proposition 3.10. There exists a surjective homomorphism η : Aut(Gn)→ Sn such
that φ∗(χi, j )= εi, jχσ(i),σ ( j), 1≤ i 6= j ≤ n, where εi, j ∈ {1,−1} and σ = η(φ)∈ Sn .
In particular, Aut(Gn)∼= K o Sn where K = ker(η).

Proof. We see that φ∗ preserves the collections of subspaces A :={Ai j |1≤ i< j≤n}
and B := {Bi jk | 1< i < j < k≤ n}, since φ∗ is a linear isomorphism of Hom(Gn,R)

and since φ∗ :6c(Gn)→6c(Gn) is a homeomorphism. Note that B is nonempty
since n ≥ 3. In our notation Apq , Bpqr , it is not assumed that p < q < r .
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It is readily seen that (Apq + Ars)∩ Bi jk = 0 unless {p, q, r, s} = {i, j, k}. On
the other hand (Ai j + Aik)∩ Bi jk = R(χk,i −χ j,i ). It follows that φ∗ preserves the
collection of 1-dimensional spaces C := {R(χk,i −χ j,i ) | i, j, k pairwise distinct}.

Let φ∗(Ai j ) = Apq , φ∗(Aik) = Ars , where i , j , k are pairwise distinct. Then
{p, q} ∩ {r, s} is a singleton, say s = p — so that φ∗(Aik) = Apr — and we have
φ∗(Bi jk) = Bpqr . For, otherwise, (Ai j + Aik)∩ Bi jk is one-dimensional, whereas
φ∗((Ai j + Aik)∩ Bi jk)= (Apq + Apr )∩φ

∗(Bi jk)= 0.
In view of the fact that φ∗ stabilizes C, we have

φ∗(χk,i −χ j,i )= a(χr,p −χq,p). (∗)

On the other hand, we have χk,i ∈ Aik and so φ∗(χk,i ) ∈ φ
∗(Aik) = Apr and so

φ∗(χk,i ) = bχp,r + cχr,p for some b, c ∈ R; similarly, φ∗(χ j,i ) = b′χq,p + c′χp,q

for some b′, c′ ∈ R. Therefore,

φ∗(χk,i −χ j,i )= bχp,r + cχr,p − b′χq,p − c′χp,q . (∗∗)

Comparing (∗) and (∗∗) we see that b = 0 = c′, that is, φ∗(χk,i ) = cχr,p and
φ∗(χ j,i ) = b′χq,p. Since φ∗ : Hom(Gn;R)→ Hom(Gn,R) preserves the lattice
Hom(Gn,Z) and since χk,i , χ j,i are part of a Z-basis of Hom(Gn,Z), we see that
c, b′ =±1.

To complete the proof, we define the permutation σ ∈ Sn associated to φ∈Aut(Gn)

as σ(i)= p (with notation as above). Note that σ is indeed a bijection since φ∗ is an
isomorphism. We define η :Aut(Gn)→ Sn by η(φ)=σ . Then η is a homomorphism
of groups. It is surjective since its restriction to Sn⊂Sn is the identity by Lemma 3.9.
This also shows that η splits, completing the proof. �

Remark 3.11. It seems plausible that there exists a surjective homomorphism
τ : Aut(Gn)→ Sn that satisfies φ∗(χi, j ) = ti tjχσ(i),σ ( j), 1 ≤ i 6= j ≤ n, where
τ(φ)= (t1, . . . , tn)∈Cn

2 , σ = η(φ)∈ Sn . This would imply that Aut(Gn)∼= N oSn

for a suitable subgroup N ⊂ Aut(Gn).

The above proposition says that the matrix of φ∗, with respect to the basis
{χi, j | 1≤ i 6= j} (ordered by, say, the lexicographic ordering of the indices i , j ), is
of the form φ∗ = DP where D is a diagonal matrix with eigenvalues ±1 and P is
a permutation matrix.

Lemma 3.12. Let T = DP where D, P ∈ Mm(R) are such that D is a diagonal
matrix and P is a permutation matrix. If P = P1 · · · Pk is a cycle decomposition
then there exist eigenvectors v1, . . . , vk which are linearly independent.

Proof. The cycle decomposition allows us to express Rn as a direct sum V1⊕· · ·⊕Vk

where Vj is spanned by {ei | Pj (i) 6= i}. Specifically, if Pj = (i1, . . . , ik). Then
vj :=ei1+di1ei2+· · ·+di1 · · · dik−1eik , which is the sum of the vectors in the DP-orbit
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of ei1 , is an eigenvector of T with eigenvalue di1 · · · dik . Evidently v1, . . . , vk are
linearly independent. �

We will use the above lemma to construct two linearly independent eigenvectors
of φ∗ (with further properties that are relevant for our purposes). Let σ = η(φ) 6= id
and φ∗ = DP with D diagonal and P a permutation transformation (with respect
to the basis {χi, j }). Suppose that σ has a k-cycle in its cycle decomposition, where
k > 2. Choose any i that occurs in the k-cycle and let j := σ(i). Then χi, j and χ j,i

do not occur in the same orbit of DP and therefore vi, j :=
∑

0≤r<k(DP)r (χi, j )

and vj,i :=
∑

0≤ j<k(DP)rχ j,i are eigenvectors of the same eigenvalue ε ∈ {1,−1}.
Without loss of generality, we assume that i = 1, j = 2 and define v1,2 =: u,
v2,1 =: v. Suppose there is no such k-cycle in σ . Then σ is a product of disjoint
transpositions. Without loss of generality, suppose that the transposition (1, 3)
occurs in the decomposition. Since n > 2, either σ has a fixed point, say 2, or
n > 3 and, say, the transposition (2, 4) occurs in the decomposition. In the first
case, u := χ1,2+ d1,2χ3,2 and v := χ2,1+ d2,1χ2,3 are eigenvectors of P and in the
latter case, u := χ1,2+d1,2χ3,4 and v := χ2,1+d2,1χ4,3 are eigenvectors of P . Thus
in all cases, χ1,2 occurs in u and χ2,1 occurs in v where u, v are eigenvectors of φ∗.
If 1 is an eigenvalue of φ∗, then φ̄ has a nonzero fixed element and so R(φ)=∞.
Assume that φ∗(u)=−u, φ∗(v)=−v. Then there exist elements β, γ ∈ Gn such
that φ̄(β̄) = −β̄, φ̄(γ̄ ) = −γ̄ , where ᾱ1,2, ᾱ2,1 occur in β̄, γ̄ respectively, with
coefficient 1.

Denote by 02 := 02(Gn) the commutator subgroup of Gn and by 03 := 03(Gn)

the subgroup [Gn, 02] ⊂ 02. Thus Gn/03 is a two-step nilpotent group and we have
the following exact sequences:

1→ 03→ Gn→ Gn/03→ 1,

1→ 02/03→ Gn/03→ Gn/02→ 1.

Since 02 and 03 are characteristic in Gn , any automorphism of Gn restricts to
automorphisms of 02 and 03 and hence induces automorphisms of the quotients
G/03, 02/03 and Gn/02 = Gab

n .
Let θ ∈Aut(Gn/03) be the automorphism defined by φ and θ ′, the restriction of θ

to 02/03. With notation as above, [β, γ ]03∈02/03 satisfies θ ′([β, γ ]03)=[β, γ ]03.
By using the addition formula (Lemma 2.1), we conclude that R(θ)=∞, provided
[β, γ ]/03 is of infinite order. Granting this for the moment, by the first part of
the same lemma we conclude that R(φ)=∞ using the first exact sequence above.
Since φ ∈ Aut(Gn) was arbitrary, we conclude that Gn has the R∞-property. So all
that remains is to show that [β, γ ]03 is not a torsion element.

We use the fact that, under the surjection ψ : Gn → G2 that maps αi, j to αi, j

when {i, j} = {1, 2} and the remaining αi, j to 1, we have that 0k maps onto 0k(G2),
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k = 2, 3. Let β2, γ2 ∈ G2 be the images of β, γ respectively under ψ . Then
β̄2 = ᾱ1,2, γ̄2 = ᾱ2,1 ∈ Gab

2 . Therefore, [β2, γ2]03(G2)= [α1,2, α2,1]03(G2). Since
G2 is a free group with basis {α1,2, α2,1} we see that [α1,2, α2,1]03(G2) generates
an infinite cyclic group. Hence the same is true of [β, γ ]03. This completes the
proof of part (iii) of Theorem 1.1, which is restated below:

Theorem 3.13. The group Gn , n ≥ 2, has the R∞-property. �

4. The Thompson group T

Recall from Section 1 the description of the Richard Thompson group T as the group
of all orientation-preserving piecewise linear homeomorphisms of S = I/{0, 1}
with slopes in the multiplicative group generated by 2 ∈ R>0 and break points in
Z[1/2]. We regard the Thompson group F as the subgroup of T consisting of
elements which fix the element 1∈S1. In this section we prove the following result.

Theorem 4.1 [Burillo et al. 2013; Gonçalves and Sankaran 2013]. The Richard
Thompson group T has the R∞-property.

The fact that T has the R∞-property was proved first by Burillo, Matucci, and
Ventura [Burillo et al. 2013] (see also [Gonçalves and Sankaran 2013]). The crucial
point in the proofs of the result above is the same in both of these papers and
both the proofs rely on the description of the outer automorphism of T (recalled
in Theorem 4.2 below). However, since the approaches before getting to the main
point are slightly different, we provide our proof here which may contain some
features that are useful for other situations (such as in Remark 4.7 below).

It is readily seen that the reflection map r defined as r(x) = 1− x , x ∈ [0, 1],
induces an automorphism ρ : T → T defined as ρ( f )= r ◦ f ◦ r−1

= r ◦ f ◦ r . We
now state the following result of Brin.

Theorem 4.2 [Brin 1996]. The group of inner automorphisms of T is of index 2
in Aut(T ) and the quotient group Out(T ) is generated by ρ.

As observed in Section 2B, for any group 0 and any automorphism φ ∈ Aut(0),
and any g ∈ 0, it is true that R(φ)=∞ if and only if R(φ ◦ ιg)=∞. Therefore, to
establish the R∞-property for 0, it is enough to show that R(φ)=∞ for a set of
coset representatives of Out(0). In the case 0 = T , in view of Theorem 4.2 due
to Brin, we need only show that R(ρ)=∞ and R(id)=∞. The latter equality is
established in Proposition 4.5 as an easy consequence of Lemma 4.4 below. Since
ρ2
= id, we may apply Remark 2.4 to show that R(ρ)=∞. The main idea is to

make use of homeomorphisms in Fix(ρ), whose supports have an arbitrarily large
number of disjoint intervals in S1. (This was also the idea used in the proof by
Burillo, Matucci, and Ventura [Burillo et al. 2013].)
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Definition 4.3. Let X be a Hausdorff topological space.

(i) The support of f ∈Homeo(X) is the open set supp( f ) := {x ∈ X | f (x) 6= x}.

(ii) Let σ : Homeo(X)→ N∪ {∞} be defined as follows: σ(id) = 0, if f 6= id;
σ( f ) is the number of connected components of supp( f ), if that number is
finite; otherwise σ( f )=∞.

Lemma 4.4. Let 0 ⊂ Homeo(X) and let σ be as defined above. Suppose that
θ ∈ Homeo(X) normalizes 0. Then σ( f )= σ(θ f θ−1).

Proof. It is clear that the number of connected components of an open set U ⊂ X
remains unchanged under a homeomorphism of X . The lemma follows immediately
from the observation that supp(θ f θ−1)= θ(supp( f )). �

Proposition 4.5. The groups F and T have infinitely many conjugacy classes.

Proof. This follows from Lemma 4.4 on observing that F has elements f for which
σ( f ) is any prescribed positive integer. Since F ⊂ T , the same is true of T . �

Lemma 4.6. Suppose that h :R→R is an orientation-preserving homeomorphism.
Then supp(h)= supp(hk) for any nonzero integer k.

Proof. Since supp(h)= supp(h−1) we may assume that k> 0. Since h is orientation-
preserving, it is order-preserving. Suppose x ∈ supp(h) so that h(x) 6= x , and
suppose x < h(x). Then applying h to the inequality we obtain h(x)< h2(x) so that
x < h(x) < h2(x). Repeating this argument yields x < h(x) < · · ·< hk(x) and so
x ∈ supp(hk). The case when x > h(x) is analogous. Thus supp(h)⊂ supp(hk). On
the other hand, if x /∈ supp(h), then h(x)= x and so hk(x)= x for all k. Therefore,
equality should hold, completing the proof. �

Proof of Theorem 4.1. By Theorem 4.2, Out(T ) ∼= Z/2Z is generated by ρ. By
Proposition 4.5, R(id)=∞. It only remains to verify that R(ρ)=∞. We apply
Remark 2.4 with θ = ρ, n = 2, γ = 1. It remains to show that Fix(ρ) has infinitely
many elements h such that the h2 are pairwise nonconjugate.

Let k ≥ 1. Let fk ∈ F ⊂ T be such that supp( fk) is a subset of (0, 1/2) which
has exactly k components. Thus, σ( fk) = k. (It is easy to construct such an
element.) Then supp(ρ( fk))= supp(r fkr−1)= r(supp( fk))⊂ (1/2, 1) is disjoint
from supp( fk)⊂ (0, 1/2). In particular, we have fk · ρ( fk)= ρ( fk) · fk =: hk and
supp(hk) = supp( fk)∪ r(supp( fk)) and so σ(hk) = 2k. Moreover, since ρ2

= 1,
we see that hk ∈ Fix(ρ). By Lemma 4.6, we have σ(h2

k)= σ(hk)= 2k. It follows
that h2

k are pairwise nonconjugate in T , completing the proof. �

Remark 4.7. In the case of the generalized Thompson groups Tn,r , suppose that
θ ∈ Aut(Tn,r ) is a torsion element, say of order m. Then our method of proof of
Theorem 4.1 can be applied to show that R(θ)=∞. In fact, applying a theorem of
McCleary and Rubin [2005] to the group Tn,r , we obtain that the automorphism
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group of Tn,r equals its normalizer in the group of all homeomorphisms of the circle
S1
= [0, r ]/{0, r}. Let θ ∈ Aut(Tn,r ) and f ∈ S1 such that θ(x) = f x f −1 with

f ∈ Homeo(R/rZ). Suppose f m
= γ ∈ Tn,r so that θ represents a torsion element

of Out(Tn,r ). If γ = 1, our method of proof of Theorem 4.1 can be applied to show
that R(θ)=∞. See [Gonçalves and Sankaran 2013] for details. However, when
γ 6= 1, it is not clear to us how to find elements of Fix(θ) satisfying the hypotheses
of Lemma 2.3. Our approach yields no information about automorphisms which
represent nontorsion elements in the outer automorphism group. The study of the
R∞-property for the groups Tn,r is a work in progress.

5. Direct product of groups

It was shown in [Gonçalves and Kochloukova 2010, Theorem 4.8] that if we have
G = G1× · · ·×Gn , where each Gi is a finitely generated group with the property
that 6c(Gi ) is a finite set of discrete character classes, not all of them empty, then
there exists a finite index subgroup H of Aut(G) such that R(φ)=∞ for all φ ∈ H .
Further, when each Gi is a generalized Richard Thompson group Fni ,∞, ni ≥ 2,
then G itself has the R∞-property.

We shall strengthen the above result here. We make use (as did Gonçalves and
Kochloukova [2010]) of a result of Meinert, recalled below, that describes the
6-invariant of a direct product. (Meinert’s theorem describes the 6-invariant in the
more general setting of a graph product of groups.)

Let G = G1×· · ·×Gn and rj = rk(Gab
j ) so that S(Gj )∼=Srj−1. We assume that

r1 ≥ 1. Then S(G) =
∏

1≤ j≤n Hom(Gj ,R) \ {0}/ ∼∼= Sr−1 and so S(G) ∼= Sr−1,
where r :=

∑
1≤ j≤n rj . It is understood that S(Gj )=∅ if rj = 0. The sphere S(Gi )

is identified with the subspace of S(G) comprising the set of points with j-th
coordinate equal to zero for all j 6= i . Observe that S(Gi )∩ S(Gj )=∅ if i 6= j . In
order to emphasize this, we shall write S(Gi )t S(Gj ) to denote their union, where
S(Gi ) and S(Gj ) are thought of as subspaces of S(G).

Recall that 6c(G) denotes the complement of 61(G)⊂ S(G).

Theorem 5.1 [Meinert 1995]. Let G = G1× · · ·×Gn be finitely generated and let
r1 = rk(Gab

1 ) be positive. With the above notation, 6c(G)=
⊔

1≤ j≤n6
c(Gj ). �

We will exploit the fact that any φ ∈ Aut(G) induces a homeomorphism of
the character sphere S(G) which preserves its rational structure. Recall that an
element [χ ] ∈ S(G) is called discrete (or rational) if Im(χ)⊂ R is infinite cyclic;
equivalently, χ may be chosen to take values in Q ⊂ R. The set of rational
points in S(G) is denoted by SQ(G). We denote by DQ(G) the set of isolated
rational points in 6c(G). The set of all limit points of DQ(G) which are contained
in SQ(G) is denoted by LQ(G). Also, we denote by L(G) the set of all limit
points of 6c(G). Since 6c(G) is closed, LQ(G) and L(G) are subsets of 6c(G).
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Any homeomorphism of 6c(G) induced by an automorphism of G maps DQ(G),
LQ(G), L(G) respectively onto itself.

We are now ready to prove the following theorem. The proof is essentially the
same in spirit as that of [Gonçalves and Kochloukova 2010, Theorem 3.3]. See also
[Gonçalves and Kochloukova 2010, §4c].

Theorem 5.2. Suppose that G = G1× · · · ×Gn , n ≥ 1, is finitely generated and
that any one of the following holds:

(i) the set DQ(G1) is nonempty, finite, and contained in an open hemisphere and
DQ(Gj ) is finite (possibly empty) for 2≤ j ≤ n;

(ii) the set LQ(G1) is nonempty, finite, and contained in an open hemisphere and
LQ(Gj ) is finite (possibly empty) for 2≤ j ≤ n;

(iii) the set L(G1)∩ SQ(G1) is nonempty, finite, and contained in an open hemi-
sphere and L(Gj )∩ SQ(Gj ) is finite (possibly empty) for 2≤ j ≤ n.

Then G has the R∞-property.

Proof. Suppose φ ∈ Aut(G). We shall show that there exists a discrete character
λ ∈ Hom(G,R) such that λ ◦ φ = λ. By the discussion in Section 2C, it follows
that R(φ)=∞ and it follows that G has the R∞-property.

First we suppose that n = 1. The theorem, then, is essentially due to Gonçalves
and Kochloukova [2010]. Let φ∗ :6c(G)→6c(G) be the induced map, defined as
φ∗([χ ])=[χ ◦φ]. Since φ∗ is a homeomorphism, it maps isolated points to isolated
points. Moreover, φ∗ preserves the set of all rational points in 6c(G). It follows
that φ∗(W )=W , where W is one of the sets DQ(G), LQ(G) or L(G)∩ SQ(G).

In each of the cases (i)–(iii), we see that there is a nonempty finite set of rational
character classes W (G) ⊂ SQ(G) that is contained in an open hemisphere and
that is mapped to itself by φ∗. Suppose that [χ ] ∈W (G) and that the orbit of [χ ]
under φ∗, namely the set {(φ∗) j ([χ ] = [χ ◦ φ j

] | j ∈ N}, has k elements. Then
the orbit sum λ :=

∑
0≤ j<kχ ◦ φ

j
∈ Hom(G,R) is a nonzero discrete character

invariant under φ∗, as was to be shown.
Now let n=2. By Meinert’s theorem (Theorem 5.1) DQ(G)=DQ(G1)tDQ(G2),

LQ(G)= LQ(G1)t LQ(G2) and L(G)= L(G1)t L(G2).

Case (i). Suppose [χ ] ∈ DQ(G1), and consider the φ∗-orbit of [χ ], namely, the
set {(φk)∗([χ ]) = [χ ◦ φk

] | k ∈ Z}. This set is finite since it is contained in
DQ(G) = DQ(G1)t DQ(G2), which is finite. Suppose that [χ ◦ φ j

], 0 ≤ j < q,
are the distinct rational points in the orbit. Then we claim that the orbit sum
λ :=

∑
0≤ j<qχ ◦ φ

j is a nonzero character such that λ ◦ φ = λ. To see that
λ ∈ Hom(G,R) is nonzero, we note that its restriction to G1 is the character
λJ =

∑
j∈J χ ◦ φ

j where J := { j < q | [χ ◦ φ j
] ∈ DQ(G1)}. Since DQ(G1) is
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contained in an open hemisphere, the characters χ ◦ φ j , j ∈ J , are in an open half-
space of Hom(G1,R). Therefore the same is true of their sum, λ1, and we conclude
that λ 6= 0. It is clear that λ ◦ φ = λ since [λ ◦ φ] = [λ] and since λ is rational. As
observed in the first paragraph of Section 2C, this implies that R(φ)=∞.

Case (ii). The proof in this case is almost identical, starting with [χ ] ∈ LQ(G1). We
need only note that φ∗(LQ(G)) equals LQ(G) and that LQ(G)= LQ(G1)tLQ(G2)

is finite, as in case (i). The orbit sum λ :=
∑

0≤ j<qχ◦φ
j is again a nonzero character

which is discrete and satisfies λ ◦ φ = λ. Again we conclude that R(φ)=∞.

Case (iii). Again we start with χ ∈ L(G1)∩ SQ(G1) and proceed as in case (ii). We
leave the details to the reader.

Finally, let n ≥ 3 be arbitrary, and let H = G2× · · ·×Gn . Again by Meinert’s
theorem, we have DQ(H)=

⊔
2≤ j≤n DQ(Gj ); similar expressions hold for LQ(H)

and L(H) ∩ SQ(H). Our hypotheses on Gj imply that one of the sets DQ(H),
LQ(H), or L(G)∩ SQ(G) is finite depending on case (i), (ii), and (iii), respectively.
Since G = G1× H , we are now reduced to the situation where n = 2, which has
just been established. This completes the proof. �

We conclude the paper with the following examples.

Examples 5.3. (i) Examples of groups with DQ(G) nonempty, finite, and contained
in an open hemisphere are known. These include nonpolycyclic nilpotent-by-finite
groups of type FP∞, the generalized Richard Thompson groups Fn,∞, the double of
a knot group K with nonfinitely generated commutator subgroup (thus G∼=K ?Z2 K ).
For details see [Gonçalves and Kochloukova 2010, §4].

(ii) Examples of groups with DQ(G) and LQ(G) being finite sets are finite groups,
the Houghton groups [Brown 1987a], the pure symmetric automorphism groups
[Orlandi-Korner 2000], finitely generated infinite groups with finite abelianization
(which include the generalized Richard Thompson groups Tn,r ; see [Brown 1987a,
p. 64]), Zn , n≥ 1, and the free groups of rank n≥ 2. Another class of such groups is
provided by [Bieri et al. 1987, Theorem 8.1]. Consider a finitely generated group G
which is a subgroup of the group of all orientation-preserving PL-homeomorphisms
of the interval [0, 1]. The group G is said to be irreducible if there is no G fixed
point in (0, 1). The logarithms of the slopes near the end points 0, 1, define
characters χ0, χ1 : G → R respectively. We recall that two characters λ, χ are
independent if λ(ker(χ)) = λ(G) and χ(ker(λ)) = χ(G). It was shown in [Bieri
et al. 1987, Theorem 8.1] that 6c(G)= {[χ0], [χ1]} if G is irreducible and χ0, χ1

are independent. (These points may not be in SQ(G); see [Bieri et al. 1987, p. 470].)

(iii) Let G = G1×G2 where G1 is a finite product of groups (with G1 nontrivial)
as in example (i), and where G2 is a finite product of groups as in example (ii)
above. Then G has the R∞-property. Since there are continuously many pairwise
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nonisomorphic 2-generated infinite simple groups, taking G2 to be any one of them,
we obtain a continuous family of groups with R∞-property.
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THE SECOND CR YAMABE INVARIANT

PAK TUNG HO

Let .M; �/ be a compact strictly pseudoconvex CR manifold of real dimen-
sion 2n C 1 with a contact form � . Motivated by the work of Ammann and
Humbert, we define the second CR Yamabe invariant, which is a natural gen-
eralization of the CR Yamabe invariant, and study its properties in this paper.

1. Introduction

Let .M;g/ be an n-dimensional compact Riemannian manifold where n� 3. The
Yamabe problem is to find a Riemannian metric Qg conformal to g such that the
scalar curvature of Qg is constant. Yamabe [1960] claimed to solve it. However,
Trudinger [1968] realized that Yamabe’s proof was incomplete, and he was able to
solve the Yamabe problem when the scalar curvature of g is nonpositive. When the
scalar curvature of g is positive, Aubin [1976] solved the case when n� 6 and M

is not locally conformally flat, and Schoen [1984] solved the remaining cases by
using the positive mass theorem.

The method to solve the Yamabe problem was the following. If Qg D u
4

n�2 g,
where u 2 C1.M / and u> 0, then

(1-1) Lg.u/DR Qg u
nC2
n�2 ;

where

Lg D�
4.n� 1/

n� 2
�gCRg:

Here �g is the Laplacian of g, and Rg and R Qg are the scalar curvatures of g

and Qg. The Yamabe problem is to solve (1-1) with R Qg being constant. The Yamabe
invariant Y .M;g/ of .M;g/ is defined as

Y .M;g/D inf
u 6�0;u2C1.M /

E.u/;

where

E.u/D

R
M uLg.u/ dVg�R

M juj
2n

n�2 dVg

�n�2
n

:
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The key point of the resolution of the Yamabe problem is the following theorem
due to Aubin [1976].

Theorem 1.1. Let .M;g/ be a compact Riemannian manifold of dimension n� 3.
If Y .M;g/ < Y .Sn/, then there exists a positive smooth function u satisfying (1-1).
Here Y .Sn/ is the Yamabe invariant of the sphere Sn with respect to the standard
metric.

The strict inequality was used to show that a minimizing sequence does not
concentrate at any point. Aubin [1976] and Schoen [1984] proved the following:

Theorem 1.2. Let .M;g/ be a compact Riemannian manifold of dimension n� 3.
Then Y .M;g/ � Y .Sn/. Moreover, the equality holds if and only if .M;g/ is
conformally diffeomorphic to the sphere.

These theorems solve the Yamabe problem. See also [Brendle 2005; 2007a;
2007b; Chow 1992; Schwetlick and Struwe 2003; Ye 1994] for using the flow
approach to solve the Yamabe problem.

Ammann and Humbert [2006] defined the k-th Yamabe invariant as a general-
ization of the Yamabe invariant. More precisely, let

�1.g/ < �2.g/� �3.g/� � � � � �k.g/ � � � !1

be the eigenvalues of Lg appearing with multiplicities. Let Œg� be the conformal
class of g. For any positive integer k, the k-th Yamabe invariant Yk.M;g/ is
defined by

Yk.M;g/D inf
Qg2Œg�

�k. Qg/Vol.M; Qg/
2
n :

In particular, Y1.M;g/ D Y .M;g/ when the Yamabe invariant Y .M;g/ is
nonnegative.

One can consider the following CR analogue of the Yamabe problem, the CR
Yamabe problem. Suppose that .M; �/ is a compact strictly pseudoconvex CR
manifold of real dimension 2nC1 with a contact form � . The CR Yamabe problem
is to find a contact form Q� conformal to � such that the Webster scalar curvature of
Q� is constant. Jerison and Lee [1987; 1988; 1989] solved the CR Yamabe problem
when n� 2 and M is not locally CR equivalent to the sphere. The remaining cases,
namely when n D 1 or M is locally CR equivalent to the sphere, were studied
respectively by Gamara and Yacoub [2001] and by Gamara [2001]. See also the
recent work of Cheng, Chiu and Yang [Cheng et al. 2014] and Cheng, Malchiodi
and Yang [Cheng et al. 2013]. See also [Chang and Cheng 2002; Chang et al. 2010;
Ho 2012; Zhang 2009] for using the flow approach to solve the Yamabe problem.

Motivated by the result of Ammann and Humbert [2006], we study the k-th
CR Yamabe invariant in this paper. In Section 2, we define the k-th CR Yamabe
invariant and the generalized contact form. In Section 3, we give the variational
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characterization of Yk.M; �/. In Section 4, we derive the Euler–Lagrange equation
for Y2.M; �/. Sections 5 and 6 will be devoted to proving a lower bound and an
upper bound for Y2.M; �/ respectively. In Section 7, we study whether Y2.M; �/

is attained by some contact form or generalized contact form. Finally, in Section 8,
we study the properties of the k-th CR Yamabe invariant Yk.M; �/.

2. Definitions

Suppose that .M; �/ is a compact strongly pseudoconvex CR manifold of real
dimension 2nC 1 with a given contact form � . Let u 2 C1.M /, u > 0. Then
Q� D u

2
n � is a contact form conformal to � , and the Webster scalar curvature R Q�

of Q� is given by

(2-1) L� .u/DR Q�u1C 2
n :

Here

(2-2) L� D�
�
2C

2

n

�
�� CR� ;

where �� is the sub-Laplacian of � and R� is the Webster scalar curvature of � .
The CR Yamabe invariant is defined as

Y .M; �/D inf
u 6�0;u2C1.M /

E.u/;

where

E.u/D

R
M

�
2C 2

n

�
jr�uj2

�
CR�u2 dV��R

M juj
2C 2

n dV�
� n

nC1

:

It is well known that L� has discrete spectrum

Spec.L� /D f�1.�/; �2.�/; : : :g;

where the eigenvalues

�1.�/ < �2.�/� �3.�/� � � � � �k.�/ � � � !1

appear with multiplicities. The variational characterization of �1.�/ is given by

�1.�/D inf
u¤0;u2C1.M /

R
M

�
2C 2

n

�
jr�uj2

�
CR�u2 dV�R

M u2 dV�
:

Let Œ� � be the conformal class of � , i.e.,

Œ� �D f Q� D u
2
n � j u 2 C1.M /;u> 0g:

If Y .M; �/� 0, then it is easy to check that

(2-3) Y .M; �/D inf
Q�2Œ��

�1. Q�/Vol.M; Q�/
1

nC1 :
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Following the definition of the k-th Yamabe invariant in [Ammann and Humbert
2006], we have the following:

Definition. For any positive integer k, the k-th CR Yamabe invariant is defined by

(2-4) Yk.M; �/D inf
Q�2Œ��

�k. Q�/Vol.M; Q�/
1

nC1 :

Then it follows from (2-3) and Theorem 8.2 that

Y1.M; �/D

�
Y .M; �/ if Y .M; �/� 0;

�1 if Y .M; �/ < 0:

We write L2C 2
n

C .M /D fu 2L2C 2
n .M /ju� 0;u 6� 0g. For u 2L2C 2

n
C .M /, we

define Gru
k .C

1.M // to be the set of all k-dimensional subspaces of C1.M / such
that the restriction operator to M nu�1.0/ is injective. More precisely, we have

span.v1; : : : ;vk/2Gru
k .C

1.M //

() v1jMnu�1.0/; : : : ;vk jMnu�1.0/ are linearly independent

()u
1
n v1; : : : ;u

1
n vk are linearly independent:

Similarly, replacing C1.M / by S2
1
.M /, we obtain the definition of Gru

k .S
2
1
.M //.

Hereafter, S2
1
.M / denotes the Folland–Stein space, which is the completion of

C 1.M / with respect to the norm

kukS2
1
.M / D

�Z
M

.jr�uj2� Cu2/ dV�

�1
2

:

(For more properties about the Folland–Stein space, see [Folland and Stein 1974].)

Proposition 2.1. Suppose Q� is a contact form conformal to � . Then we have

(2-5) �k. Q�/D inf
V 2Gru

k
.S2

1
.M //

sup
v2V nf0g

R
M vL�v dV�R
M u

2
n v2 dV�

:

Proof. Let u 2 C1.M /, u> 0. For all f 2 C1.M /, f 6� 0, we set Q� D u
2
n � and

F 0.u; f /D

R
M fL Q�f dV Q�R

M f 2 dV Q�
:

The operator L� is conformally invariant in the following sense:

(2-6) u1C 2
n L Q� .u

�1f /DL� .f /;



THE SECOND CR YAMABE INVARIANT 375

because

u1C 2
n L Q� .u

�1f /D�
�
2C

2

n

�
u1C 2

n� Q� .u
�1f /CR Q�u1C 2

n .u�1f /

D�

�
2C

2

n

��
u�� .u

�1f /C 2hr�u;r� .u
�1f /i�

�
C

�
�

�
2C

2

n

�
��uCR�u

�
.u�1f /

D�

�
2C

2

n

�
��f CR�f DL� .f /;

where we have used (2-1) and (2-2). Combining (2-6) with the fact that

(2-7) dV Q� D u2C 2
n dV� ;

we get

(2-8) F 0.u; f /D

R
M fL Q�f dV Q�R

M f 2 dV Q�

D

R
M f u�.1C

2
n
/L� .uf /u

2C 2
n dV�R

M f 2u2C 2
n dV�

D

R
M .uf /L� .uf / dV�R

M u
2
n .uf /2 dV�

:

Using the min-max principle, we have

(2-9) �k. Q�/D inf
V 2Grk.S

2
1
.M //

sup
v2V nf0g

R
M vL Q�v dV Q�R

M v2 dV Q�
:

Since u > 0, we have Grk.S
2
1
.M // D Gru

k .S
2
1
.M //. Therefore, it follows from

(2-8) and (2-9) that

�k. Q�/D inf
V 2Grk.S

2
1
.M //

sup
f 2V nf0g

F 0.u; f /:

Now replacing uf by v, we obtain (2-5) by (2-8). �
Now we can define the generalized contact form:

Definition. The generalized contact form Q� is defined as Q� D u
2
n � , where u is no

longer necessarily positive or smooth, but u 2L2C 2
n

C .M /.

We enlarge the conformal class Œ� � of � by including all the generalized contact
forms conformal to � , as follows:

Œ� �D f Q� D u
2
n � j u 2L2C 2

n
C .M /g:

In view of Proposition 2.1, for a generalized contact form Q� D u
2
n � , u2L2C 2

n
C .M /,

conformal to � , we define

(2-10) �k. Q�/D inf
V 2Gru

k
.S2

1
.M //

sup
v2V nf0g

R
M vL�v dV�R
M u

2
n v2 dV�

:
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Using (2-10), we can generalize the definition of k-th CR Yamabe invariant to the
generalized contact form by using (2-4).

3. Variational characterization of Yk.M; �/

For all u 2L2C 2
n

C .M /, v 2 S2
1
.M / such that u

1
n v 6� 0, we set

F.u; v/D

R
M

�
2C 2

n

�
jr�vj

2
�
CR�v

2 dV�R
M u

2
n v2 dV�

�Z
M

u2C 2
n dV�

� 1
nC1

:

Proposition 3.1. If Œ� � contains all the contact forms conformal to � , then

(3-1) Yk.M; �/D inf
u2C1.M /

V 2Gru
k
.S2

1
.M //

sup
v2V nf0g

F.u; v/:

Similarly, if Œ� � contains all the generalized contact forms conformal to � , then

(3-2) Yk.M; �/D inf
u2L2C 2

n
C .M /

V 2Gru
k
.S2

1
.M //

sup
v2V nf0g

F.u; v/:

Proof. Using the definition of Yk.M; �/ and the fact that Vol.M; Q�/D
R

M u2C 2
n dV� ,

we obtain from (2-5) that

Yk.M; �/D inf
Q�2Œ��

�k. Q�/Vol.M; Q�/
1

nC1

D inf
u2C1.M /;u>0

�k. Q�/

�Z
M

u2C 2
n dV�

� 1
nC1

D inf
u2C1.M /;u>0

V 2Gru
k
.S2

1
.M //

sup
v2V nf0g

F.u; v/;

which proves (3-1). Similarly, we can prove (3-2) by using the same arguments
as above, except we need to replace C1.M / by L2C 2

n
C .M /. �

4. Generalized contact form and the Euler–Lagrange equation

We will need the following:

Lemma 4.1. Let u 2L2C 2
n .M / and v 2 S2

1
.M /. We assume that

(4-1) L�v D u
2
n v

holds in the sense of distributions. Then v 2L2C 2
n
C".M / for some " > 0.
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Proof. Without loss of generality, suppose v 6� 0. We define vC D sup.v; 0/. We
let q 2 .1; .nC 1/=n� be a fixed number and l > 0 be a large real number which
will tend to C1. We let ˇ D 2q� 1. We then define for x 2 R,

Gl.x/D

8<:
0 if x < 0;

xˇ if 0� x < l;

lq�1.qlq�1x� .q� 1/lq/ if x � l;

Fl.x/D

8<:
0 if x < 0;

xq if 0� x < l;

qlq�1x� .q� 1/lq if x � l:

It is easy to check that for all x 2 R,

.F 0l .x//
2
� qG0l.x/;(4-2)

.Fl.x//
2
� xGl.x/;(4-3)

xG0l.x/� ˇGl.x/:(4-4)

Since Fl and Gl are uniformly Lipschitz continuous functions, Fl.vC/ and Gl.vC/

belong to S2
1
.M /. Let x0 2 M . Denote by � a C 2 nonnegative function sup-

ported in B.x0; 2ı/, where ı > 0 is a small fixed number such that 0� �� 1 and
�.B.x0; ı//D f1g. Multiply (4-1) by �2Gl.vC/ and integrate over M . Since the
supports of vC and Gl.vC/ coincide, we get

(4-5)
�
2C

2

n

� Z
M

hr�vC;r��
2Gl.vC/i� dV� C

Z
M

R�vC�
2Gl.vC/ dV�

D

Z
M

u
2
n vC�

2Gl.vC/ dV� :

We are going to estimate the terms in (4-5). In the following, C will denote a
positive constant depending possibly on �, q, ˇ, ı, but not on l . Note that

(4-6)
Z

M

hr�vC;r��
2Gl.vC/i� dV�

D

Z
M

Gl.vC/hr�vC;r��
2
i� dV�C

Z
M

G0l.vC/�
2
jr�vCj

2
� dV�

D�

Z
M

Gl.vC/vC�� .�
2/dV��2

Z
M

vCG0l.vC/�hr�vC;r��i� dV�

C

Z
M

G0l.vC/�
2
jr�vCj

2
� dV�

��C

Z
M

vCGl.vC/dV��2

Z
M

v2
CG0l.vC/jr��j

2
� dV�

C
1

2

Z
M

G0l.vC/�
2
jr�vCj

2
� dV� ;
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where the last inequality follows from jhr�vC;r��i� j � jr��j2� C
1
4
jr�vCj

2
�
.

Hence, we have

(4-7)
Z

M

hr�vC;r��
2Gl.vC/i� dV�

��C

Z
M

vCGl.vC/dV��2

Z
M

v2
CG0l.vC/jr��j

2
� dV�

C
1

2

Z
M

G0l.vC/�
2
jr�vCj

2
� dV�

��C

Z
M

vCGl.vC/dV��2ˇ

Z
M

vCGl.vC/jr��j
2
� dV�

C
1

2

Z
M

G0l.vC/�
2
jr�vCj

2
� dV�

��C

Z
M

.Fl.vC//
2 dV�C

1

2q

Z
M

.F 0l .vC//
2�2
jr�vCj

2
� dV�

D�C

Z
M

.Fl.vC//
2 dV�C

1

2q

Z
M

�2
jr�Fl.vC/j

2
� dV�

��C

Z
M

.Fl.vC//
2 dV�C

1

4q

Z
M

jr� .�Fl.vC//j
2
� dV�

�
1

2q

Z
M

jr��j
2
� .Fl.vC//

2 dV�

��C

Z
M

.Fl.vC//
2 dV�C

1

4q

Z
M

jr� .�Fl.vC//j
2
� dV� ;

where the first inequality follows from (4-6), the second inequality follows from
(4-4), the third inequality follows from (4-2) and (4-3), and the fourth inequality
follows from

jr� .�Fl.vC//j
2
� D jFl.vC/r��C �r�Fl.vC/j

2
�

� 2�2
jr�Fl.vC/j

2
� C 2jr��j

2
� .Fl.vC//

2:

By the Folland–Stein embedding from S2
1
.M / into L2C 2

n .M /, there exists a
constant A> 0 depending only on .M; �/ such thatZ

M

jr� .�Fl.vC//j
2
� dV��A

�Z
M

.�Fl.vC//
2C 2

n dV�

� n
nC1

�

Z
M

.�Fl.vC//
2 dV� :

From this, together with (4-7), we obtain

(4-8)
Z

M

hr�vC;r��
2Gl.vC/i� dV�

� �C

Z
M

.Fl.vC//
2 dV� C

A

4q

�Z
M

.�Fl.vC//
2C 2

n dV�

� n
nC1

:
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Independently, we choose ı > 0 small enough such that

(4-9)
Z

B.x0;2ı/

u2C 2
n dV� �

��
2C

2

n

�
A

8q

�nC1
:

Then it follows from (4-3), (4-9) and Hölder’s inequality that

(4-10)
Z

M

u
2
n vC�

2Gl.vC/ dV�

�

Z
M

u
2
n�2.Fl.vC//

2 dV�

�

�Z
B.x0;2ı/

u2C 2
n dV�

� 1
nC1

�Z
M

.�Fl.vC//
2C 2

n dV�

� n
nC1

�

�
2C

2

n

�
A

8q

�Z
M

.�Fl.vC//
2C 2

n dV�

� n
nC1

:

On the other hand, it follows from (4-3) that

(4-11)
Z

M

R�vC�
2Gl.vC/ dV� � �.max

M
jR� j/

Z
M

vC�
2Gl.vC/ dV�

� �.max
M
jR� j/

Z
M

�2.Fl.vC//
2 dV�

� �C

Z
M

.Fl.vC//
2 dV� :

Substituting (4-8), (4-10), (4-11) into (4-5), we obtain

�
2C

2

n

�
A

8q

�Z
M

.�Fl.vC//
2C 2

n dV�

� n
nC1

� C

Z
M

.Fl.vC//
2 dV� :

Now, by the Folland–Stein embedding, vC 2L2C 2
n .M /. Since 2q � 2C 2

n
and C

does not depend on l , the right-hand side of the inequality is bounded when l!1,
and we obtain

lim sup
l!1

Z
M

.�Fl.vC//
2C 2

n dV� <1:

This proves that vC 2Lq.2C 2
n /.B.x0; ı//. Since x0 is arbitrary, we get that vC 2

Lq.2C 2
n /.M /. Doing the same with v� D sup.�v; 0/ instead of vC, we get that

v 2Lq.2C 2
n /.M /. This proves Lemma 4.1. �

Proposition 4.2. For any generalized contact form Q� D u
2
n � , u 2 L2C 2

n
C .M /,

conformal to � , there exist two functions v;w 2 S2
1
.M / with v � 0 such that in the
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sense of distributions

L�v D �1. Q�/u
2
n v;(4-12)

L�w D �2. Q�/u
2
nw:(4-13)

Moreover, we can normalize v and w such that

(4-14)
Z

M

u
2
n v2 dV� D

Z
M

u
2
nw2 dV� D 1 and

Z
M

u
2
n vw dV� D 0:

Proof. Let .vm/m be a minimizing sequence for �1. Q�/, i.e., a sequence vm 2S2
1
.M /

such that

lim
m!1

R
M

�
2C 2

n

�
jr�vmj

2
�
CR�v

2
m dV�R

M u
2
n v2

m dV�

D �1. Q�/:

It is well known that .jvmj/m is also a minimizing sequence. Hence we can
assume that vm � 0. If we normalize vm by

R
M u

2
n v2

m dV� D 1, then .vm/m is
bounded in S2

1
.M / and after passing to a subsequence, we may assume that there

exists v 2 S2
1
.M /, v � 0 such that vm ! v weakly in S2

1
.M / and strongly in

L2.M / almost everywhere. If u is smooth, then

(4-15)
Z

M

u
2
n v2 dV� D lim

m!1

Z
M

u
2
n v2

m dV� D 1;

and by standard arguments, v is nonnegative minimizer of the functional associated
to �1. Q�/.

We must show that (4-15) still holds if u 2L2C 2
n

C .M /. Let A> 0 be a large real
number and set uA D inf.u;A/. Then
(4-16)ˇ̌̌̌Z

M

u
2
n .v2

m� v
2/ dV�

ˇ̌̌̌
�

Z
M

u
2
n

A
jv2

m� v
2
j dV� C

Z
M

.u
2
n �u

2
n

A
/.jvmjC jvj/

2 dV�

�A
2
n

Z
M

jv2
m� v

2
j dV�

C

�Z
M

.u
2
n �u

2
n

A
/nC1 dV�

� 1
nC1

�Z
M

.jvmjC jvj/
2C 2

n dV�

� n
nC1

;

where we have used Hölder’s inequality in the last inequality. Since

ju
2
n �u

2
n

A
j
nC1
� u2C 2

n 2L1.M /;

by Lebesgue’s dominated convergence theorem we have

(4-17) lim
A!1

Z
M

.u
2
n �u

2
n

A
/nC1 dV� D

Z
M

lim
A!1

.u
2
n �u

2
n

A
/nC1 dV� D 0:
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Since .vm/m is bounded in S2
1
.M /, it is bounded in L2C 2

n .M /, and hence there
exists C > 0 such that

(4-18)
Z

M

.jvmjC jvj/
2C 2

n dV� � C:

By strong convergence in L2.M /,

(4-19) lim
m!1

Z
M

jv2
m� v

2
j dV� D 0:

Combining (4-16)–(4-19), we obtain (4-15). Therefore v is a nonnegative minimizer
of the functional associated to �1. Q�/. Writing the Euler–Lagrange equation of v,
we find that v satisfies (4-12).

Now we define

�01.
Q�/D inf

R
M

�
2C 2

n

�
jr�wj

2
�
CR�w

2 dV�R
M u

2
n jwj2 dV�

;

where the infimum is taken over smooth functions w such that u
1
nw 6� 0 and

such that Z
M

u
2
n vw dV� D 0:

With the same method, we find a minimizer w of this problem that satisfies (4-13)
with �0

2
. Q�/ instead of �2. Q�/. However, it is not difficult to see that �0

2
. Q�/D �2. Q�/

and Proposition 4.2 easily follows. �

Lemma 4.3. Let u 2 L2C 2
n

C .M / with
R

M u2C 2
n dV� D 1. Suppose that w1; w2 2

S2
1
.M / n f0g, w1; w2 � 0 satisfyZ

M

��
2C

2

n

�
jr�w1j

2
� CR�w

2
1

�
dV� � Y2.M; �/

Z
M

u
2
nw2

1 dV� ;(4-20) Z
M

��
2C

2

n

�
jr�w2j

2
� CR�w

2
2

�
dV� � Y2.M; �/

Z
M

u
2
nw2

2 dV� ;(4-21)

and suppose that .M nw�1
1
.0//\ .M nw�1

2
.0// has measure zero. Then u is a

linear combination of w1 and w2, and we have equality in (4-20) and (4-21).

Proof. We let NuD aw1C bw2, where a; b > 0 are chosen such that

b
2
n

R
M u

2
nw2

1
dV�

a
2
n

R
M u

2
nw2

2
dV�

D

R
M w

2C 2
n

1
dV�R

M w
2C 2

n

2
dV�

;(4-22)

Z
M

Nu2C 2
n dV� D a2C 2

n

Z
M

w
2C 2

n

1
dV� C b2C 2

n

Z
M

w
2C 2

n

2
dV� D 1:(4-23)
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Because of the variational characterization of Y2.M; �/ in Proposition 3.1, we have

(4-24) Y2.M; �/� sup
.�;�/2R2nf.0;0/g

F. Nu; �w1C�w2/:

By (4-20), (4-21), (4-23), and since .M nw�1
1
.0//\ .M nw�1

2
.0// has measure

zero, we obtain
(4-25)
F. Nu;�w1C�w2/

D

R
M

�
2C2

n

�
jr� .�w1C�w2/j

2
�
CR� .�w1C�w2/

2 dV�R
M Nu

2
n .�w1C�w2/2 dV�

D
�2
R

M

�
2C2

n

�
jr�w1j

2
�
CR�w

2
1

dV�C�
2
R

M

�
2C2

n

�
jr�w2j

2
�
CR�w

2
2

dV�

�2
R

M Nu
2
nw2

1
dV�C�

2
R

M Nu
2
nw2

2
dV�

�Y2.M;�/
�2
R

M u
2
nw2

1
dV�C�

2
R

M u
2
nw2

2
dV�

�2a
2
n

R
M w

2C 2
n

1
dV�C�

2b
2
n

R
M w

2C 2
n

2
dV�

:

By (4-22), the right-hand side of (4-25) does not depend on � and �. Hence we
can choose �D a and �D b on the right-hand side of (4-25) to get

(4-26) sup
.�;�/2R2nf.0;0/g

F. Nu; �w1C�w2/

� Y2.M; �/
a2
R

M u
2
nw2

1
dV� C b2

R
M u

2
nw2

2
dV�

a2C 2
n

R
M w

2C 2
n

1
dV� C b2C 2

n

R
M w

2C 2
n

2
dV�

D Y2.M; �/

Z
M

u
2
n .a2w2

1 C b2w2
2/ dV�

D Y2.M; �/

Z
M

u
2
n Nu2 dV�

� Y2.M; �/

�Z
M

u2C 2
n dV�

� 1
nC1

�Z
M

Nu2C 2
n dV�

� n
nC1

D Y2.M; �/;

where we have used (4-23) in the first equality, the assumption that .M nw�1
1
.0//\

.M nw�1
2
.0// has measure zero in the second equality, Hölder’s inequality in the sec-

ond inequality, and the assumption
R

M u2C 2
n dV�D1 and (4-23) in the last equality.

Combining (4-24) and (4-26), we have

sup
.�;�/2R2nf.0;0/g

F. Nu; �w1C�w2/D Y2.M; �/:
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This implies the equality in Holder’s inequality in (4-26), which implies that there
exists a constant c > 0 such that uD c Nu almost everywhere. Since

R
M u2C 2

n dV� DR
M Nu

2C 2
n dV� D 1 by (4-23), we have c D 1, i.e., u D Nu D aw1 C bw2. Also,

equality in (4-25) implies equality in (4-20) and (4-21). This proves the assertion. �

Theorem 4.4 (Euler–Lagrange equation). Assume Y2.M; �/¤0 and that Y2.M; �/

is attained by a generalized contact form Q� Du
2
n � with u2L2C 2

n
C .M /. Let v andw

be as in Proposition 4.2. Then uD jwj. In particular,

(4-27) L�w D Y2.M; �/jwj
2
nw:

Moreover, w has alternating sign and w 2 C 2;˛.M / for all ˛ 2
�
0; 2

n

�
.

Proof. Without loss of generality, we can assume that
R

M u2C 2
n dV� D 1. By

assumption and by Proposition 3.1, we have �2. Q�/D Y2.M; �/. Let v;w 2S2
1
.M /

be the functions satisfying (4-12), (4-13), and (4-14).

Step 1. We have �1. Q�/ < �2. Q�/.
We prove this by contradiction. Suppose that �1. Q�/ D �2. Q�/. After possibly

replacing w by a linear combination of v and w, we can assume that the function
u

1
nw changes sign. If we define w1 D sup.w; 0/ and w2 D sup.�w; 0/, then they

satisfy the assumption of Lemma 4.3 sincew satisfies (4-13) and �2. Q�/DY2.M; �/.
Applying Lemma 4.3, we find a; b > 0 such that u D aw1 C bw2. Now, by
Lemma 4.1, w2L2C 2

n
C".M /. By a standard bootstrap argument, (4-13) shows that

w2C 2;˛.M / for all ˛2 .0; 1/. Since uDaw1Cbw2Da sup.w; 0/Cb sup.�w; 0/,
we have u 2 C 0;˛.M / for all ˛ 2 .0; 1/.

Since �1. Q�/ D �2. Q�/ and by the definition of �1. Q�/, w is a minimizer of
the functional Nw 7! F.u; Nw/ among the functions in S2

1
.M / with u

1
n Nw 6� 0 by

Proposition 3.1. Since F.u; w/D F.u; jwj/, we have that jwj is a minimizer for
the functional associated to �1. Q�/, and jwj satisfies same equation as w. As a
consequence, jwj is C 2. By the maximum principle, we have jwj> 0 everywhere,
which is false since u

1
nw changes sign.

Step 2. The function w changes sign.
Assume w does not change sign. Then after possibly replacing w by �w, we can

assume that w � 0. Setting w1 D v and w2 Dw, we have (4-20) and (4-21). Using
(4-14), we can conclude that .M nw�1

1
.0// \ .M nw�1

2
.0// has measure zero.

Applying Lemma 4.3, we have equality in (4-20). On the other hand, Step 1 implies
that inequality (4-20) is strict since �1. Q�/ < �2. Q�/D Y2.M; �/. This contradiction
shows that w changes sign.

Step 3. There exist a; b > 0 such that uD a sup.w; 0/C b sup.�w; 0/. Moreover,
w 2 C 2;˛.M / and u 2 C 0;˛.M / for all ˛ 2 .0; 1/.
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As in the proof of Step 1, we apply Lemma 4.3 with w1 D sup.w; 0/ and
w2 D sup.�w; 0/. We get a; b > 0 such that uD aw1Cbw2. As in Step 1, we get
w 2 C 2;˛.M / and u 2 C 0;˛.M / for all ˛ 2 .0; 1/.

Step 4. Conclusion.
Let h 2 C1.M / such that supp.h/ �M n u�1.0/. For t close to 0, set ut D

juC thj. Since u> 0 on the support of h, and since u is continuous, we have for t

close to 0, ut D uC th. As span.v; w/ 2Gru
2 .S

2
1
.M //, by Proposition 3.1 we have

Y2.M; �/� sup
.�;�/2R2nf.0;0/g

F.ut ; �vC�w/:

Note that
(4-28)
F.ut ; �vC�w/

D

R
M

�
2C 2

n

�
jr� .�vC�w/j

2
�
CR� .�vC�w/

2 dV�R
M u

2
n

t .�vC�w/
2 dV�

�Z
M

u
2C 2

n

t dV�

� 1
nC1

D
�2�1. Q�/

R
M u

2
n v2 dV� C�

2�2. Q�/
R

M u
2
nw2 dV�

�2at C��bt C�2ct

�Z
M

u
2C 2

n

t dV�

� 1
nC1

D
�2�1. Q�/C�

2�2. Q�/

�2at C��bt C�2ct

�Z
M

u
2C 2

n

t dV�

� 1
nC1

;

where we have used (4-12), (4-13), and (4-14). Here

at D

Z
M

u
2
n

t v
2 dV� ; bt D 2

Z
M

u
2
n

t vw dV� and ct D

Z
M

u
2
n

t w
2 dV� :

Note also that the functions at , bt , and ct are smooth for t close to 0. Furthermore,
a0 D c0 D 1 and b0 D 0 by (4-14). Define f .t; ˛/ D F.ut ; sin.˛/vC cos.˛/w/,
which is smooth for small t . By (4-28), we have
(4-29)

f .t; ˛/D F.ut ; sin.˛/vC cos.˛/w/

D
sin2.˛/�1. Q�/C cos2.˛/�2. Q�/

sin2.˛/at C sin.˛/ cos.˛/bt C cos2.˛/ct

�Z
M

u
2C 2

n

t dV�

� 1
nC1

:

Hence, using �1. Q�/ < �2. Q�/, we can see that f
�
0;
�
nC 1

2

�
�
�

is minimum and
f .0; n�/ is maximum for any integer n. This implies that

@

@˛
f .0; ˛/D 0 if and only if ˛ 2 �

2
Z;

@2

@˛2
f .0; ˛/ < 0 if ˛ 2 �Z and @2

@˛2
f .0; ˛/ > 0 if ˛ 2 �ZC

�

2
:

Applying the implicit function theorem to @f=@˛ at the point .0; 0/, we see that
there exists a smooth function t 7! ˛.t/, defined on a neighborhood of 0 with
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˛.0/D 0 such that

f .t; ˛.t//D sup
˛2R

f .t; ˛/D sup
.�;�/2R2nf.0;0/g

F.ut ; �vC�w/;

where the last equality follows from the fact that

F.ut ; c�vC c�w/D F.ut ; �vC�w/

for any nonzero constant c by (4-28). Since ˛.0/D 0, we have

d

dt
sin2 ˛.t/

ˇ̌̌
tD0
D

d

dt
cos2 ˛.t/

ˇ̌̌
tD0
D

d

dt
.at sin2 ˛.t//

ˇ̌̌
tD0

D
d

dt
.bt sin˛.t/ cos˛.t//

ˇ̌̌
tD0
D 0:

Hence, by (4-29), we have
(4-30)

d

dt
f .t;˛.t//

ˇ̌̌̌
tD0

D
d

dt

 
sin2.˛.t//�1. Q�/Ccos2.˛.t//�2. Q�/

sin2.˛.t//atCsin.˛.t//cos.˛.t//btCcos2.˛.t//ct

�

�Z
M

u
2C 2

n

t dV�

� 1
nC1

!ˇ̌̌̌
tD0

D�2. Q�/

 �
�

d

dt
ct

ˇ̌̌̌
tD0

��Z
M

u2C 2
n dV�

� 1
nC1

C
d

dt

�Z
M

u
2C 2

n

t dV�

� 1
nC1

ˇ̌̌̌
tD0

!

D�2. Q�/
2

n

�
�

Z
M

u�1C 2
n hw2 dV�C

Z
M

u1C 2
n hdV�

�
:

By the definition of Y2.M; �/ and �2. Q�/ D Y2.M; �/, f admits a minimum at
t D 0 because

f .0; ˛.0//D f .0; 0/D F.u; w/

and w satisfies (4-13). Since �2. Q�/D Y2.M; �/¤ 0, it follows from (4-30) thatZ
M

u�1C 2
n hw2 dV� D

Z
M

u1C 2
n h dV� :

Since h is arbitrary (we just have to ensure that its support is contained in M nu�1.0/),
we get

u�1C 2
nw2
D u1C 2

n

and hence u D jwj on M n u�1.0/. Together with Step 3, we have u D jwj

everywhere. �
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5. Lower bound for Y2.M; �/

For any compact CR manifold .M; �/ of the real dimension 2nC1, by the definition
of the CR Yamabe invariant Y1.M; �/, we have

(5-1) Y1.M; �/D inf
u2S2

1
.M /nf0g

R
M

�
2C 2

n

�
jr�uj2

�
CR�u2 dV��R

M juj
2C 2

n dV�
� n

nC1

:

Theorem 5.1. We have

(5-2) Y2.M; �/� 2
1

nC1 Y1.M; �/:

Moreover, if M is connected and if Y2.M; �/ is attained by a generalized contact
form, then this inequality is strict.

Proof. The functional

F.u; v/D

R
M

�
2C 2

n

�
jr�vj

2
�
CR�v

2 dV�R
M u

2
n v2 dV�

�Z
M

u2C 2
n dV�

� 1
nC1

is continuous on L2C 2
n

C .M / � .S2
1
.M / n f0g/. As a consequence, I.u;V / WD

supv2V nf0g F.u; v/ depends continuously on u2L2C 2
n

C .M / and V 2Gru
2 .S

2
1
.M //.

To prove Theorem 5.1, it suffices to show that I.u;V / � 2
1

nC1 Y1.M; �/ for all
smooth u > 0 and V 2 Gru

2 .S
2
1
.M // thanks to Proposition 3.1. Without loss of

generality, we can assume that

(5-3)
Z

M

u2C 2
n dV� D 1:

The operator

v 7! P .v/ WD �
�
2C

2

n

�
u�

1
n�� .u

� 1
n v/CR�u�

2
n v

is self-adjoint with respect to the L2-scalar product and elliptic. Hence, P has
discrete spectrum �1 � �2 � � � � and the corresponding eigenfunctions '1; '2; : : :

are smooth. Setting vi D u�
1
n'i , we obtain

(5-4)
�
�

�
2C

2

n

�
�� CR�

�
.vi/D�

�
2C

2

n

�
�� .u

� 1
n'i/CR�u�

1
n'i

D u
1
n P .'i/D �iu

1
n'i D �iu

2
n vi

and Z
M

u
2
n vivj dV� D

Z
M

'i'j dV� D 0 if i ¤ j:

The maximum principle implies that an eigenfunction to the smallest eigenvalue �1

has no zeros. Hence, �1 < �2 and we can assume that v1 > 0.
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We define wC D aC sup.v2; 0/ and w� D a� sup.�v2; 0/, where aC; a� > 0

are chosen such that

(5-5)
Z

M

u
2
nw2
C dV� D

Z
M

u
2
nw2
� dV� D 1:

We let �� D fv2 < 0g and �C D fv2 � 0g. By Hölder’s inequality, we have

(5-6) 2D

Z
M

u
2
nw2
C dV� C

Z
M

u
2
nw2
� dV�

�

�Z
�C

u2C 2
n dV�

� 1
nC1

�Z
M

w
2C 2

n

C dV�

� n
nC1

C

�Z
��

u2C 2
n dV�

� 1
nC1

�Z
M

w2C 2
n

� dV�

� n
nC1

:

Using the inequality (5-1), we getZ
M

u
1
nwCP .u

1
nwC/ dV� � Y1.M; �/

�Z
M

w
2C 2

n

C dV�

� n
nC1

;

which implies that

(5-7)
�Z

�C

u2C 2
n dV�

� 1
nC1

�Z
M

u
1
nwCP .u

1
nwC/ dV�

�
� Y1.M; �/

�Z
M

w
2C 2

n

C dV�

� n
nC1

�Z
�C

u2C 2
n dV�

� 1
nC1

� Y1.M; �/

Z
M

u
2
nw2
C dV� D Y1.M; �/;

where we have used Hölder’s inequality in the last inequality, and (5-5) in the last
equality. Similarly, we have

(5-8)
�Z

��

u2C 2
n dV�

� 1
nC1

�Z
M

u
1
nw�P .u

1
nw�/ dV�

�
� Y1.M; �/:

Adding (5-7) and (5-8) together, we obtain

(5-9) 2Y1.M; �/�

�Z
�C

u2C 2
n dV�

� 1
nC1

�Z
M

u
1
nwCP .u

1
nwC/ dV�

�

C

�Z
��

u2C 2
n dV�

� 1
nC1

�Z
M

u
1
nw�P .u

1
nw�/ dV�

�
:
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Since w�, respectively wC, are multiples of v2 on ��, respectively �C, they
satisfy the same equation as v2. Hence, we obtain from (5-4) and (5-9) that

(5-10) 2Y1.M; �/�

�Z
�C

u2C 2
n dV�

� 1
nC1

�Z
M

�2u
2
nw2
C dV�

�
C

�Z
��

u2C 2
n dV�

� 1
nC1

�Z
M

�2u
2
nw2
� dV�

�

D �2

 �Z
�C

u2C 2
n dV�

� 1
nC1

C

�Z
��

u2C 2
n dV�

� 1
nC1

!
;

where the last equality follows from (5-5). Now, for any nonnegative numbers
a; b � 0, Hölder’s inequality yields

aC b � 2
n

nC1 .anC1
C bnC1/

1
nC1 :

Applying this inequality with

aD

�Z
�C

u2C 2
n dV�

� 1
nC1

and b D

�Z
��

u2C 2
n dV�

� 1
nC1

;

we derive from (5-10) that

2Y1.M; �/� �22
n

nC1

 �Z
�C

u2C 2
n dV�

�
C

�Z
��

u2C 2
n dV�

�! 1
nC1

D �22
n

nC1

�Z
M

u2C 2
n dV�

� 1
nC1

D �22
n

nC1 ;

where the last equality follows from (5-3). This implies that �2 � 2
1

nC1 Y1.M; �/.
Since �2D I.u; span.v1; v2//, this finishes the proof of the first part of Theorem 5.1.

Moreover, if M were connected and if Y2.M; �/ were attained by a generalized
contact form, then inequality (5-9) would be an equality and we would have that
wC or w� is a function for which equality in (5-1) is attained. By the maximum
principle, we would get that wC or w� is positive on M , which is impossible. �

6. Upper bound for Y2.M; �/

Hereafter, we denote Yk.S
2nC1/ the k-th Yamabe invariant of .S2nC1; �S2nC1/,

where �S2nC1 is the standard contact form on S2nC1 given by

�S2nC1 D
p
�1

nC1X
jD1

.zj d Nzj � Nzj dzj /;

where .z1; : : : ; znC1/ 2 S2nC1 � CnC1.
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Theorem 6.1. Suppose .M; �/ is a compact CR manifold of real dimension 2nC 1

with Y1.M; �/� 0. Then

(6-1) Y2.M; �/�
�
Y1.M; �/nC1

CY1.S
2nC1/nC1

� 1
nC1

when Y1.M; �/ > 0 and n� 3, or Y1.M; �/D 0 and n� 4. On the other hand, the
inequality in (6-1) is strict when

(i) Y1.M; �/ > 0, n� 7 and M is not locally CR equivalent to S2nC1, or

(ii) Y1.M; �/D 0, n� 4 and M is not locally CR equivalent to S2nC1.

To prove Theorem 5.4, we have the following:

Lemma 6.2. For any ˛ > 2, there exists a constant C > 0 such that

jaC bj˛ � a˛C b˛CC.a˛�1bC ab˛�1/

for all a; b > 0.

Proof. Dividing both sides by a, without loss of generality, we can assume that
aD 1. Then we set for x > 0,

f .x/D
j1Cxj˛ � .1Cx˛/

x˛�1Cx
:

By L’Hôpital’s rule, we have

lim
x!0C

f .x/D lim
x!0C

˛.1Cx/˛�1�˛x˛�1

.˛� 1/x˛�2C 1
D ˛;

lim
x!1

f .x/D lim
x!1

˛.1Cx/˛�1�˛x˛�1

.˛� 1/x˛�2C 1
D ˛:

Since f is continuous, f is bounded by a constant C on .0;1/. Clearly, this
constant is the desired C is the inequality of Lemma 6.2. �

Proof of Theorem 6.1. For u 2 S2
1
.M / n f0g, let

E.u/D

R
M

�
2C 2

n

�
jr�uj2

�
CR�u2 dV��R

M juj
2C 2

n dV�
� n

nC1

:

The solution of the CR Yamabe problem provides the existence of a smooth positive
minimizer v of E, and we can assume

(6-2)
Z

M

v2C 2
n dV� D 1:

Then v satisfies the CR Yamabe equation

(6-3) L� .v/D Y1.M; �/v1C 2
n :
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Let x0 2M be fixed and choose pseudohermitian normal coordinates .z; t/ near x0.
Let ı > 0 be a fixed number. If � is well chosen in the conformal class and if x0

is well chosen in M , it was proved by Jerison and Lee [1989, Theorem 4.1] that
when n� 3, there exists a function v" � 0 with supp.v"/� B.x0; 2ı/ such that

(6-4) E.v"/D Y1.S
2nC1/� c.M /"4

CO."5/;

where c.M /� 0 is a positive constant. In fact, c.M / is the square of the norm of
the Chern tensor at x0 up to a dimensional constant. Therefore, we can assume that
the constant c.M / in (6-4) satisfies

(6-5) c.M / > 0

if .M; �/ is not locally CR equivalent to S2nC1. It follows from (6-4) that

(6-6) lim
"!0

E.v"/D Y1.S
2nC1/:

More precisely, v" is given by (see [Jerison and Lee 1989, p. 326])

v" D C"�

�
"2

t2C .jzj2C "2/2

�n
2

;

where � is a smooth cut-off function such that

0� �� 1; �.x/D

�
1 if x 2 B.x0; ı/;

0 if x 62 B.x0; 2ı/;

and C" > 0 is a constant chosen such that

(6-7)
Z

M

v
2C 2

n
" dV� D 1:

It follows from [Jerison and Lee 1989, Proposition 4.2] that

(6-8) C" D c.n/CO."4/

for some positive constant c.n/ depending only on n. In the following, C will
denote a positive constant depending possibly on ı, n, but not on ". Let

ı".z; t/D ."z; "
2t/:

Note that

ı�"

�
1

t2C ."2Cjzj2/2

�
D "�4

�
1

t2C .1Cjzj2/2

�
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and ı�" dz dt D "2nC2 dz dt . Hence,

(6-9)
Z

M

jv"j
p dV� � C p

"

Z˚
4
p

t2Cjzj4�2ı
	 "np dz dt

.t2C ."2Cjzj2/2/
np
2

D C p
"

Z˚
4
p

t2Cjzj4�2ı="
	 "2nC2�np dz dt

.t2C .1Cjzj2/2/
np
2

� C p
" "

2nC2�np

Z
fjzj�2ı="g

�Z 1
�1

dt

1C t2

�
dz

.1Cjzj2/np�2

D C p
" �"

2nC2�np

Z
fjzj�2ı="g

dz

.1Cjzj2/np�2

D C "2nC2�np

Z 2ı="

0

r2n�1 dr

.1C r2/np�2
;

where we have used (6-8). Note that for "� 1,Z 2ı="

0

r2n�1 dr

.1C r2/np�2
�

Z 2ı="

0

r2nC3�2np dr �
C

"2nC4�2np

if p � 1C 3
2n

, andZ 2ı="

0

r2n�1 dr

.1C r2/np�2
�

Z 1

0

r2n�1 dr C

Z 2ı="

1

dr

r2np�2n�3

D

Z 1

0

r2n�1 dr C

Z 2ı="

1

dr

r
D

1

2n
C log "

if p D 1C 2
n

. Combining these with (6-9), we obtain

(6-10)
Z

M

jv"j
p dV� �

(
C "np�2 if p � 1C 3

2n
;

C "n log " if p D 1C 2
n
:

Similarly, for "� 1, we have

(6-11)
Z

M

jv"j
p dV� � C p

"

Z˚
4
p

t2Cjzj4�ı
	 "np dz dt

.t2C ."2Cjzj2/2/
np
2

D C p
"

Z˚
4
p

t2Cjzj4�ı="
	 "2nC2�np dz dt

.t2C .1Cjzj2/2/
np
2

� C p
" "

2nC2�np

Z
fjzj�ı=2"g

�Z ı=2"

�ı=2"

dt

1C t2

�
dz

.1Cjzj2/np

� 2C p
" tan�1.ı=2/"2nC2�np

Z
fjzj�ı=2"g

dz

.1Cjzj2/np

D C "2nC2�np

Z ı=2"

0

r2n�1 dr

.1C r2/np
;
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where we have used

t2
C .1Cjzj2/2 � .1C t2/.1Cjzj2/2

and

fjzj � ı=2"g\ fjt j � ı=2"g �
n

4

q
t2Cjzj4 � ı="

o
in the second inequality, and (6-8) in the last equality. Note that for "� 1,Z ı=2"

0

r2n�1 dr

.1C r2/np
�

Z 1

0

r2n�1 dr

2np
C

Z ı=2"

1

r2n�1 dr

.2r2/np
D C C

C

"2n�2np

if � 1� 1
2n

, andZ ı=2"

0

r2n�1 dr

.1Cr2/np
�

Z 1

0

r2n�1 dr

2np
C

Z ı=2"

1

r2n�1 dr

.2r2/np

�
1

2np

�Z 1

0

r2n�1 drC

Z ı=2"

1

dr

r2np�2nC1

�
DCCC "2np�2n

if p > 1. Combining these with (6-11), we obtain

(6-12)
Z

M

jv"j
p dV� �

(
C "npC2 if p � 1� 1

2n
;

C "2nC2�np if p > 1:

First we assume that Y1.M; �/ > 0. We set

u" DE.v"/
n
2 v"CY1.M; �/

n
2 v:

Let us find estimates for F.u"; �v"C�v/. Let .�; �/ 2 R2 n f.0; 0/g. Then
(6-13)
F.u"; �v"C�v/

D
�2
R

M v"L�v" dV� C�
2
R

M vL�v dV� C 2��
R

M v"L�v dV�R
M ju"j

2
n .�v"C�v/2 dV�

�U

D
�2E.v"/C�

2Y1.M; �/C 2��Y1.M; �/
R

M v1C 2
n v" dV�

�2
R

M ju"j
2
n v2
" dV� C�

2
R

M ju"j
2
n v2 dV� C 2��

R
M ju"j

2
n v"v dV�

�U;

where U D
�R

M u
2C2=n
" dV�

�1=.nC1/ and where we have used (6-2), (6-3) and
(6-7). Using the definition of u", we have

(6-14) u" �E.v"/
n
2 v" and u" � Y1.M; �/

n
2 v;
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which implies that

(6-15) �2

Z
M

ju"j
2
n v2
" dV� C�

2

Z
M

ju"j
2
n v2 dV� C 2��

Z
M

ju"j
2
n v"v dV�

� �2E.v"/

Z
M

v
2C 2

n
" dV� C�

2Y1.M; �/

Z
M

v2C 2
n dV�

C 2��

Z
M

ju"j
2
n v"v dV�

D �2E.v"/C�
2Y1.M; �/C 2��

Z
M

ju"j
2
n v"v dV� ;

where the last equality follows from (6-2) and (6-7).
If ��� 0, then we have

(6-16) 2��

Z
M

ju"j
2
n v"v dV� � 2��Y1.M; �/

Z
M

v1C 2
n v" dV�

by (6-14). Therefore, (6-15) and (6-16) imply that

�2E.v"/C�
2Y1.M; �/C 2��Y1.M; �/

R
M v1C 2

n v" dV�

�2
R

M ju"j
2
n v2
" dV� C�

2
R

M ju"j
2
n v2 dV� C 2��

R
M ju"j

2
n v"v dV�

� 1:

If �� < 0, then

ju"j
2
n �

�
E.v"/

n
2 v"CY1.M; �/

n
2 v
� 2

n �E.v"/v
2
n
" CY1.M; �/v

2
n

when n� 2. Combining this with (6-14) and (6-15), we get

�2

Z
M

ju"j
2
n v2
" dV� C�

2

Z
M

ju"j
2
n v2 dV� C 2��

Z
M

ju"j
2
n v"v dV�

� �2E.v"/C�
2Y1.M; �/�C

�Z
M

v
1C 2

n
" v dV� C

Z
M

v1C 2
n v" dV�

�
� �2E.v"/C�

2Y1.M; �/�C

�Z
M

v
1C 2

n
" dV� C

Z
M

v" dV�

�
;

where C > 0 is a positive real number independent of ". This, together with (6-10),
gives

�2

Z
M

ju"j
2
n v2
" dV� C�

2

Z
M

ju"j
2
n v2 dV� C 2��

Z
M

ju"j
2
n v"v dV�

� �2E.v"/C�
2Y1.M; �/�O."n log "/�O."n�2/:

This, together with the assumption that �� < 0, implies that

�2E.v"/C�
2Y1.M;�/C2��Y1.M;�/

R
M v1C 2

n v"dV�

�2
R

M ju"j
2
n v2
" dV�C�

2
R

M ju"j
2
n v2 dV�C2��

R
M ju"j

2
n v"vdV�

� 1CO."n�2/:
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In any case, we have

(6-17)

sup
.�;�/2R2nf.0;0/g

�2E.v"/C�
2Y1.M;�/C2��Y1.M;�/

R
M v1C 2

n v"dV�

�2
R

M ju"j
2
n v2
" dV�C�

2
R

M ju"j
2
n v2 dV�C2��

R
M ju"j

2
n v"vdV�

� 1CO."n�2/:

On the other hand,Z
M

u
2C 2

n
" dV� D

Z
M

.E.v"/
n
2 v"CY1.M;�/

n
2 v/2C

2
n dV�

�E.v"/
nC1

Z
M

v
2C 2

n
" dV�CY1.M;�/nC1

Z
M

v2C 2
n dV�

CC

�Z
M

v
1C 2

n
" vdV�C

Z
M

v1C 2
n v"dV�

�
DE.v"/

nC1
CY1.M;�/nC1

CC

�Z
M

v
1C 2

n
" vdV�C

Z
M

v1C 2
n v"dV�

�
;

where the first inequality follows from Lemma 6.2 with

aDE.v"/
n
2 v" and b D Y1.M; �/

n
2 v;

and the last equality follows from (6-2) and (6-7). This, together with (6-4) and
(6-10), implies that

(6-18)
�Z

M

u
2C 2

n
" dV�

� 1
nC1

� .Y1.S
2nC1/nC1

CY1.M; �/nC1/
1

nC1 � c.M /"4
C o."4/CO."n�2/:

If " > 0 is small enough, it follows from (6-13), (6-17), and (6-18) that

(6-19) Y2.M;�/

� sup
.�;�/2R2nf.0;0/g

F.u";�v"C�v/

�
�
Y1.S

2nC1/nC1
CY1.M;�/nC1

� 1
nC1�c.M /"4

Co."4/CO."n�2/:

Since n� 3, (6-1) follows from (6-19) by letting " go to zero. On the other hand, if
.M; �/ is not locally CR equivalent to S2nC1, then (6-5) holds. Hence, if n � 7,
the strict inequality in (6-1) follows from (6-19) by letting " go to zero.
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Now we assume that Y1.M; �/ D 0. We set u" D v". Then we obtain for
.�; �/ 2 R2 n f.0; 0/g,

(6-20) F.u"; �v"C�v/

D
�2E.v"/

�R
M v

2C 2
n

" dV�
� 1

nC1

�2
R

M jv"j
2
n v2
" dV� C�

2
R

M v
2
n
" v

2 dV� C 2��
R

M jv"j
2
n v"v dV�

D
�2E.v"/

�2C�2
R

M v
2
n
" v

2 dV� C 2��
R

M v
1C 2

n
" v dV�

by (6-7) and (6-13). Let �", �" such that �2
" C�

2
" D 1 and

F.u"; �"v"C�"v/D sup
.�;�/2R2nf.0;0/g

F.u"; �v"C�v/:

If �" D 0, we obtain that F.u"; �"v"C�"v/D 0 and the theorem would be proved.
Then we assume that �" ¤ 0 and we can write

F.u"; �"v"C�"v/D
E.v"/

1C 2x"b"Cx2
" a"

;

where x" D �"=�" and

C "n
� b" D

Z
M

v
1C 2

n
" v dV� � C "n�1 log " as "! 0;

a" D

Z
M

v
2
n
" v

2 dV� � C "4 as "! 0

by (6-10) and (6-12). Maximizing this expression in x" and using (6-4), we obtain
(6-21)

F.u";�"v"C�"v/�
Y1.S

2nC1/�c.M /"4Co."4/

1�b2
" =a"

D
Y1.S

2nC1/�c.M /"4Co."4/

1�C "2n�6 log2 "
;

since " log "! 0 as "! 0. For n� 4, it follows from (6-21) that

F.u"; �"v"C�"v/� Y1.S
2nC1/;

which proves (6-1) for the case Y1.M; �/D 0. On the other hand, if .M; �/ is not
locally CR equivalent to S2nC1, then (6-5) holds. Hence, the strictly inequality in
(6-1) follows from (6-21) by letting " go to zero. This proves Theorem 6.1. �

7. Some properties of Y2.M; �/

We have the following questions:

(1) Is Y2.M; �/ attained by a contact form?

(2) Is Y2.M; �/ attained by a generalized contact form?
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For question 1, we have the following:

Proposition 7.1. Let S2nC1 [ S2nC1 be the disjoint union of two copies of the
sphere equipped with the standard contact form induced from �S2nC1 . Then
Y2.S

2nC1[S2nC1/D 2
1

nC1 Y1.S
2nC1/ and it is attained by the standard contact

form.

Proof. Let Q� be an arbitrary smooth contact form on S2nC1 [S2nC1. We write
S2nC1

1
for the first S2nC1 and S2nC1

2
for the second S2nC1. Then we have

(7-1) �2.S
2nC1
[S2nC1; Q�/

Dmin
n
�2.S

2nC1
1

; Q�/;�2.S
2nC1
2

; Q�/;maxf�1.S
2nC1
1

; Q�/;�1.S
2nC1
2

; Q�/g
o
:

Therefore,

(7-2) Y2.S
2nC1

[S2nC1/� �2.S
2nC1

[S2nC1/Vol.S2nC1
[S2nC1/

1
nC1

D �2.S
2nC1

[S2nC1/.2 Vol.S2nC1//
1

nC1

D 2
1

nC1�1.S
2nC1/ Vol.S2nC1/

1
nC1

D 2
1

nC1 Y1.S
2nC1/;

where we have used (7-1) in the second equality.
On the other hand, we have

(7-3)
�2.S

2nC1
1

; Q�/Vol.S2nC1
[S2nC1; Q�/

1
nC1 � �2.S

2nC1
1

; Q�/Vol.S2nC1
1

; Q�/
1

nC1

� Y2.S
2nC1
1

/

D 2
1

nC1 Y1.S
2nC1/;

where the last equality follows from Corollary 7.3. Similarly, we have

(7-4) �2.S
2nC1
2

; Q�/Vol.S2nC1
[S2nC1; Q�/

1
nC1 � 2

1
nC1 Y1.S

2nC1/:

By the definition of Y1.S
2nC1/, we have

�1.S
2nC1
i ; Q�/Vol.S2nC1; Q�/

1
nC1 � Y1.S

2nC1/ for i D 1; 2;

which implies

2Y1.S
2nC1/nC1

�

2X
iD1

�1.S
2nC1
i ; Q�/nC1 Vol.S2nC1

i ; Q�/

�maxf�1.S
2nC1
1

; Q�/nC1; �1.S
2nC1
2

; Q�/nC1
g

2X
iD1

Vol.S2nC1
i ; Q�/

Dmaxf�1.S
2nC1
1

; Q�/nC1; �1.S
2nC1
2

; Q�/nC1
gVol.S2nC1

[S2nC1; Q�/;
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which gives

(7-5) 2
1

nC1 Y1.S
2nC1/

�maxf�1.S
2nC1
1

; Q�/; �1.S
2nC1
2

; Q�/gVol.S2nC1
[S2nC1; Q�/

1
nC1 :

Combining (7-3), (7-4), and (7-5), we can derive from (7-1) that

2
1

nC1 Y1.S
2nC1/� �2.S

2nC1
[ S2nC1; Q�/Vol.S2nC1

[S2nC1; Q�/
1

nC1 :

Since Q� is an arbitrary smooth contact form on S2nC1[S2nC1, we have

(7-6) 2
1

nC1 Y1.S
2nC1/� Y2.S

2nC1
[S2nC1/:

Now Proposition 7.1 follows from combining (7-2) and (7-6). �
On the other hand, we have the following:

Proposition 7.2. If M is connected, then Y2.M; �/ cannot be attained by a contact
form.

Proof. Otherwise, if Y2.M; �/ were attained by a contact form Q� D u
2
n � , then by

Theorem 4.4, we would have uD jwj, and hence u cannot be positive since w has
alternating sign. �

For question 2, we have the following:

Corollary 7.3. We have

Y2.S
2nC1/D 2

1
nC1 Y1.S

2nC1/:

Proof. This follows from (6-1) and Theorem 5.1. �
Corollary 7.4. Y2.S

2nC1/ is not attained by a generalized contact form.

Proof. This follows from Theorem 5.1 and Corollary 7.3. �

8. The k-th CR Yamabe invariant Yk.M; �/

In view of Corollary 7.3, it is natural to conjecture that

Yk.S
2nC1/D k

1
nC1 Y1.S

2nC1/

for all k. However, the following result shows that it is false.

Proposition 8.1. For n� 3, we have

Y2nC3.S
2nC1/ < .2nC 3/

1
nC1 Y1.S

2nC1/:

Proof. Consider S2nC1�CnC1. Let zi , where iD1; 2; : : : ; nC1, be the coordinates
of CnC1. Since ���

S2nC1
zi D

n
2
zi and ���

S2nC1
Nzi D

n
2
Nzi ,

L�
S2nC1

.zi/D
.nC 2/.nC 1/

2
zi and L�

S2nC1
.Nzi/D

.nC 2/.nC 1/

2
Nzi
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for i D 1; 2; : : : ; nC 1, and hence

�2nC3.S
2nC1; �S2nC1/�

.nC 2/.nC 1/

2
:

This shows by the definition of Y2nC3 that

(8-1) Y2nC3.S
2nC1/� �2nC3.S

2nC1; �S2nC1/Vol.S2nC1; �S2nC1/
1

nC1

�
.nC 2/.nC 1/

2
Vol.S2nC1; �S2nC1/

1
nC1 :

Since

.nC 2/.nC 1/

2
Vol.S2nC1; �S2nC1/

1
nC1

< .2nC 3/
1

nC1
n.nC 1/

2
Vol.S2nC1; �S2nC1/

1
nC1

D .2nC 3/
1

nC1 Y1.S
2nC1/

when n� 3, Proposition 8.1 follows from (8-1) . �

For the case when the k-th CR Yamabe invariant is negative, we have this:

Theorem 8.2. Let k be an positive integer. Assume that Yk.M; �/ < 0. Then
Yk.M; �/D�1.

Proof. After a possible change of contact form in the conformal class, we can
assume that �k.�/ < 0. This implies that we can find smooth functions v1; : : : ; vk

satisfying
L� .vi/D �i.�/vi for all i D 1; 2; : : : ; k

and such thatZ
M

vivj dV� D 0 for all i; j D 1; 2; : : : ; k and i ¤ j:

Let vk be defined as in the proof of Theorem 6.1. We define u" D v"C ". We set
V D spanfv1; : : : ; vkg. For v 2 V , we haveZ

M

u
2
n
" v

2 dV� � "
2
n

Z
M

v2 dV�C

Z
M

v
2
n
" v

2 dV�

�C "
2
nCC

Z
M

v
2
n
" dV�

�

8̂̂̂<̂
ˆ̂:

C "
2
nCC

�Z
M

v
3
n
" dV�

�2
3

Vol.M;�/
1
3 DC "

2
nCC "

2
3 if n� 2;

C "2CC

�Z
M

v
5
2
" dV�

�1
5

Vol.M;�/
4
5 DC "2

CC "
1

10 if nD 1
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by (6-10) and Hölder’s inequality. From this, we have

lim
"!0

Z
M

u
2
n
" v

2 dV� D 0

uniformly in v 2 V . Since �k.�/ < 0, it is then easy to see that

sup
v2V

F.u"; v/D�1:

Together with the variational characterization of Yk.M; �/ in Proposition 3.1, we
get that Yk.M; �/D�1. �
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NO HYPERBOLIC PANTS
FOR THE 4-BODY PROBLEM WITH STRONG POTENTIAL

CONNOR JACKMAN AND RICHARD MONTGOMERY

The N-body problem with a 1/r2 potential has, in addition to translation
and rotational symmetry, an effective scale symmetry which allows its zero
energy flow to be reduced to a geodesic flow on complex projective (N − 2)-
space, minus a hyperplane arrangement. When N = 3 we get a geodesic
flow on the 2-sphere minus three points. If, in addition we assume that the
three masses are equal, then it was proved in a previous paper that the cor-
responding metric is hyperbolic: its Gaussian curvature is negative except
at two points. Does the negative curvature property persist for N = 4, that
is, in the equal mass 1/r2 potential 4-body problem? Here we prove that
it does not by computing that the corresponding Riemannian metric in this
N= 4 case has positive sectional curvature at some 2-planes. This curvature
computation underlines an essential difference between the 3- and 4-body
problem, a difference whose consequences remain to be explored.

1. Introduction

In [Montgomery 2005] it was shown that the reduced Jacobi–Maupertuis metric for
a certain 3-body problem had negative Gaussian curvature (except at two points
where it is zero). This hyperbolicity led to deep dynamical consequences. Does
hyperbolicity, i.e., curvature negativity, persist for the analogous N -body problem
with N > 3? No. We show that the analogous reduced 4-body problem with its
metric has 2-planes at which the sectional curvature is positive.

The N -body problem in question has equal masses and the inverse cube law
attractive force between bodies.

2. Setup

Identify the complex numbers C with the Euclidean plane R2. Then the planar
N -body problem has configuration space CN

\1. Here 1 is the “fat diagonal”

MSC2010: 37N05, 70F10, 70G45.
Keywords: N -body problems, dynamical systems, differential geometry, hyperbolic flows.
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consisting of all collisions:

1= {q = (q1, q2, . . . , qN ) ∈ CN
: qi = q j for some pair i 6= j}.

The quotient of CN
\ 1 by translations and rotations is the “reduced N -body

configuration space”:

CN = YN ×R+, YN = CPN−2
\P1,

where CPN−2 is the projectivization of the center of mass subspace

CN−1
=
{
q ∈ CN

:
∑

mi qi = 0
}

and P1⊂ CPN−2 is the projectivization of 1∩CN−1. The R+ factor records the
overall scale of the planar N -gon and is coordinatized by

√
I with I =6mi |qi |

2

being the total moment of inertia about the center of mass. YN is the moduli space of
oriented similarity classes of noncollision N -gons and will be called “shape space”.

The following considerations reduce the zero angular momentum, zero energy
N -body problem to a geodesic flow on shape space YN , provided the potential V
is homogeneous of degree −2. If V is homogeneous of degree −α then the virial
identity, also known as the Lagrange–Jacobi identity, asserts that along solutions of
energy H we have Ï = 4H − (4− 2α)V , which implies that the only case in which
we can generally guarantee that Ï = 0 is when α = 2 and H = 0. If in addition
İ = 0 then solutions lie on constant levels of I .

Now we recall the Jacobi–Maupertuis (JM) reformulation of mechanics, which
asserts that the solutions to Newton’s equations at energy H are, after a time
reparametrization, precisely the geodesic equations for the Jacobi–Maupertuis
metric

ds2
JM = 2(H − V ) ds2

on the Hill region {H−V ≥ 0}⊂CN
\1 with ds2 the mass metric. We are interested

in the case H = 0, −V > 0 with V homogeneous of degree −2, in which case the
Hill region is all of CN

\1 and

ds2
JM =U ds2, U =−V .

The case of prime interest to us is

(1) U =−V =
∑
i 6= j

mi m j/r2
i j .

This U , and hence the JM metric, is invariant under rotations and translations.
Quotienting first by translations, we take representatives in the totally geodesic
center-of-mass-zero subspace CN−1, which reduces the dynamics to geodesics of the
metric ds2

JM|CN−1 on CN−1. Moreover, ds2
JM|CN−1 is also invariant under scaling since
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the homogeneities of U and the Euclidean mass metric ds2 on CN−1 cancel. Thus the
JM metric admits the group G = C∗ of rotations and scalings as an isometry group.

Now YN is the quotient space: YN = (C
N−1
\1)/G = CPN−2

\1. (By abuse
of notation, we continue to use the symbol 1 to denote the image of the collision
locus 1 under projectivization and intersection.) Insisting that the quotient map
π : CN−1

\1→ YN is a Riemannian submersion induces a metric on YN . Recall
that this means that we can define the metric on YN by isometrically identifying
the tangent space to YN at a point p with the orthogonal complement (relative to
ds2

JM or ds2, and at any point lying over p in CN−1) to the G-orbit that corresponds
to that point. These orthogonality conditions are equivalent to the conditions that
the linear momentum, angular momentum, and “scale momentum” İ are all zero.
To summarize, by using the JM metric and forming the Riemannian quotient, the
zero angular momentum, zero energy 1/r2 potential N -body problem becomes
equivalent to the problem of finding geodesics for the metric defined by Riemannian
submersion on YN .

Remark. The metric quotient procedure just described realizes the Marsden–
Weinstein symplectic reduced space of T ∗(CN

\1) by the action of translations,
rotations and scalings, CoC∗, at momentum values 0, together with the N -body
reduced Hamiltonian flow, but valid only at zero energy.

Remark. This metric on YN can be expressed as U ds2
FS where ds2

FS is the usual
Fubini–Study metric on CPN−2.

Remark. For the standard 1/r2 potential of (1), this metric on YN is complete,
with infinite volume.

The collinear N -body problem defines a totally geodesic submanifold

RPN−2
\1⊂ CPN−2

\1.

We obtain this submanifold by placing the N -masses anywhere along the real
axis R ⊂ C, arranged so their center of mass is zero and so that there are no
collisions, and then taking the quotient. In other words, RPN−2

\1 is the quotient
of RN−1

⊂ CN−1 by dilations and real reflections.

3. Main result

In case N = 3, with the potential (1) above, Y3 is a pair of pants — a sphere minus
three points. The point of [Montgomery 2005] was to show that the metric on Y3

just described is hyperbolic provided m1=m2=m3. Specifically, in this equal mass
case the Gaussian curvature of the metric on the surface Y3 is negative everywhere
except at two points (these being the “Lagrange points” corresponding to equilateral
triangles.) What about Y4?
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center

of mass

2 4 3 1

Figure 1. The collinear configurations p which we consider.

Theorem 1. Consider the Jacobi–Maupertuis metric on Y4 induced as above for
the case of 4 equal masses under the strong force 1/r2 potential (1). Then there
are 2-planes σ tangent to Y4 at which the Riemannian sectional curvature K(σ )
is positive.

Remark. The 2-planes σ of the theorem pass through special points p∈RP2
⊂CP2

which represent certain special collinear configurations. See Figure 1. The 2-plane
σ at p will be the orthogonal complement to TpRP2, the normal 2-plane, and is
realized as σ = iTpRP2, using the standard complex structure on CP2.

Remark (negative curvatures). The RP2 of the previous remark is a totally geodesic
surface fixed by an isometric involution. There are other such totally geodesic
surfaces defined as fixed loci of symmetries, and computer experiments suggest that
these all have negative Gaussian curvature everywhere while their normal 2-planes
can have positive sectional curvature at some points, like our special case RP2.
Computer experiments also indicate that in the direction of the normal plane there
is positive sectional curvature over all collinear configurations of RP2 and not just
the special configurations verified in the theorem. An analytic proof of these claims
beyond our special case, however, looks frightening.

Remark (uniqueness of free homotopy classes). The work in [Montgomery 2005]
was chiefly meant as a route for proving the uniqueness (mod symmetries) of the
N = 3 strong force figure-eight solution. For N = 4, hyperbolicity fails and we
have no direct “hyperbolic” path for establishing uniqueness of various 4-body
choreographies or free homotopy class representatives.

Open Question. A geodesic flow can still be hyperbolic as a flow, without the
underlying metric having all sectional curvatures negative. Is geodesic flow on Y4

hyperbolic as a flow? Is it even partially hyperbolic?

4. Proof of the theorem

We take the case N = 4 in the above considerations. When all the masses are equal
to 1, the mass metric, used to compute the kinetic energy and moment of inertia,
is the standard Hermitian metric in coordinates (q1, q2, q3, q4) ∈ C4, where the qi

represent the positions of the i-th body. We reduce by translations by going to
the center-of-mass-zero space, which is a 3-dimensional subspace C3

⊂ C4 having
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Jacobi coordinates as Hermitian orthonormal coordinates:

C3 L
−→ C4 given by the matrix


1
2

1
√

2
0

1
2 −

1
√

2
0

−
1
2 0 1

√
2

−
1
2 0 − 1

√
2

 in standard bases.

As is well-known, if we start tangent to the center-of-mass-zero subspace L(C3),
we stay tangent to it. Hence we can restrict the dynamics, potential, metric, etc.
to the center-of-mass-zero subspace. We denote the potential restricted to the
center-of-mass-zero subspace in Jacobi coordinates as UL =U ◦ L and still write
ds2

JM = ULds2 for the restricted JM metric on C3
\1 where ds2 is the standard

metric on C3.
Continuing along the outline above, we now quotient by scaling and rotation

isometries C∗ of ds2
JM to obtain the “shape space” Y4 and we label the quotient map

π : C3
\1→ Y4, which takes a configuration q to its orbit C∗q. We denote the

vertical and horizontal distributions as

Vp = ker dpπ = Cp and Hp = V⊥p
dπ
∼= Tπ(p)Y4.

Requiring dπ |H,ds2
JM|H

to be an isometry defines our induced metric on Y4 whose
geodesics correspond to N -body motions in “shape space”. Under this induced
metric on Y4 we denote sectional curvature through the plane σ ∈ Tπ(p)Y4 by K(σ ).

Suppressing the notation of evaluating at a representative p ∈ π(q), our main
tool in the computation of K(σ ), the ds2

JM curvature, is the equation

(2) U 3
LK(σ )

=
3
4

(
(∂1UL)

2
+ (∂2UL)

2)
−

∥∥∥∇U
2

∥∥∥2
−

UL

2
(∂2

1 UL + ∂
2
2 UL)+3

U 2
L

‖p‖2
(v1· iv2)

2

Here ∂a f denotes d f (va) where f ∈ C∞(C3) and where a = 1, 2 with v1, v2 ∈H
being ds2-orthonormal vectors whose pushforwards dπva span σ . The · , ‖ ‖, and ∇
refer to the norm, metric, and Levi-Civita connection for the Euclidean metric ds2.
For the derivation of (2) see the Appendix.

The collinear configurations form a totally geodesic projective plane RP2
⊂CP2,

the image under π of the real 2-sphere in C3, which we parametrize by

p = (cosφ cos θ, cosφ sin θ, sinφ).

We evaluate (2) and find positive sectional curvature over the configurations with
θ = π/2 (see Figure 1) in the direction of the iT RP2 plane. This plane is spanned
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by the pushforwards of

v1 =−i ∂p
∂φ
= i(sinφ cos θ, sinφ sin θ,− cosφ),

v2 =
i

cosφ
∂p
∂θ
= i(− sin θ, cos θ, 0).

Terms 1. Over RP2 in the iT RP2 direction, the last and first summands on the
second line of (2) vanish:

v1 · iv2 = 0, ∂aUL = 0.

Proof. That v1 · iv2 = 0 is clear: i rotates v2 into purely real coordinates. To
evaluate the first partials, note that Lp has purely real coordinates and ∇U has k-th
component

∑
j 6=k(q j − qk)/r4

jk , so ∇|LpU has purely real coordinates. Now since
Lva has purely complex coordinates,

∂aUL =∇|LpU · Lva = 0. �

Terms 2. With the notation Lp = (q1, q2, q3, q4), Lva = i(v1
a, v

2
a, v

3
a, v

4
a), and

ρ jk = 1/(q j − qk), α jk = (v
j
1 − v

k
1)

2
+ (v

j
2 − v

k
2)

2
∈ R,

the sum of second partials in (2) is given by

∂2
1 UL + ∂

2
2 UL =−2

∑
j>k

α jkρ
4
jk .

Proof. We write our standard coordinates on C4 as q j = x j + iy j . Then since Lva

is purely imaginary, we have

∂2
a UL =∇|Lp(∇U · Lva) · Lva =

(
∇|Lp

∂U
∂yk

vk
a

)
· Lva =

∂2U
∂y j∂yk

∣∣∣∣
Lp
vk

av
j
a .

Next we compute ∂2U
∂y j∂yk

∣∣∣
Lp
= 2ρ4

jk for j 6= k and ∂
2U
∂y2

k

∣∣∣
Lp
=−2

∑
j 6=k

ρ4
jk , so now

∂2
a UL =−2

∑
j 6=k

ρ4
jk
(
(vk

a)
2
− v j

av
k
a
)

=−2
∑
j>k

ρ4
jk
(
(vk

a)
2
− 2vk

av
j
a + (v

j
a )

2)
=−2

∑
j>k

ρ4
jk(v

k
a − v

j
a )

2. �

Result. Over the circle θ = π/2, K(iT RP2) is positive.
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Now, substituting Terms 1 and 2 into formula (2), we see that

(3)

0< K⇐⇒ 0<U 3
LK =−‖∇U/2‖2+UL

∑
j>k

α jkρ
4
jk

⇐⇒

∑
k

(∑
j 6=k

ρ3
jk

)2

<

(∑
j>k

ρ2
jk

)(∑
j>k

α jkρ
4
jk

)
.

Taking θ = π/2 and with the notation introduced in Terms 2, we find the relations

ρ12 =
1

√
2 cosφ

, ρ34 =
1

√
2 sinφ

α12 =
1
ρ2

34
, α34 =

1
ρ2

12

ρ13 =

√
2

cosφ−sinφ
=−ρ24 α13 =

1
ρ2

14
+ 1= α24

ρ14 =

√
2

cosφ+sinφ
=−ρ23 α14 =

1
ρ2

13
+ 1= α23.

Now the left side of (3) works out to

2((ρ3
12+ ρ

3
13+ ρ

3
14)

2
+ (ρ3

13− ρ
3
14− ρ

3
34)

2)

= 2
(∑

k> j

ρ6
jk + 2ρ3

12(ρ
3
13+ ρ

3
14)+ 2ρ3

34(ρ
3
14− ρ

3
13)

)
= 2

∑
k> j

ρ6
jk − 96 1

sin2 2φ cos2 2φ
= 2

∑
k> j

ρ6
jk + negative term,

and the right side of (3) works out to

(
ρ2

12+ ρ
2
34+ 2(ρ2

13+ ρ
2
14)
)(ρ4

12

ρ2
34
+
ρ4

34

ρ2
12
+ 2

(
ρ4

13+ ρ
4
14+

ρ4
13

ρ2
14
+
ρ4

14

ρ2
13

))
=

( 2
sin2 2φ

+
8

cos2 2φ

)(
sin2 2φ(ρ6

12+ ρ
6
34)

+
cos2 2φ

2
(ρ6

13+ ρ
6
14)+ 2(ρ4

13+ ρ
4
14)
)

= 2
∑
k> j

ρ6
jk + cot2 2φ(ρ6

13+ ρ
6
14)+ 8 tan2 2φ(ρ6

12+ ρ
6
34)

+ (ρ4
13+ ρ

4
14)
( 4

sin2 2φ
+

16
cos2 2φ

)
= 2

∑
k> j

ρ6
jk + positive term.

Therefore the inequality (3) holds! �
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Appendix: Derivation of (2)

Take a ds2-orthonormal basis {va} for C3 with v1, v2 ∈Hp.
The Kulkarni–Nomizu product formula for conformal curvatures [Sakai 1996,

p. 51] reads:

Rabcd −UL Rabcd =−
{
ds2

JM∧©
(
∇du− du⊗ du+ 1

2‖du‖2ds2)}
abcd

where u := 1
2 log UL , the overbars denote curvature with respect to the ds2

JM-metric,
and all other quantities (without overbars) are with respect to the ds2-metric. Then
Rabcd = 0 since ds2 is the flat Euclidean metric of C3

= R6. Taking cd = ab, we
have

U 2
L K ab = Rabab =−UL

(
∇dubb+∇duaa − dub⊗ dub− dua ⊗ dua +‖du‖2

)
=−UL

(
∂2

a u+ ∂2
b u− (∂au)2− (∂bu)2+‖∇u‖2

)
.

Next, O’Neill’s formula [1983, p. 213] gives

K(dπv1, dπv2)= K 12+
3
4

∣∣[V1, V2]
V ∣∣2

ds2
JM
,

where Va = va/
√

UL(p) and XV denotes ds2
JM projection of X onto V .

We then compute

∂au = ∂aUL
2UL

=
∇|LpU ·Lva

2UL(p)

and

∂2
a u = ∂

2
a UL
2UL

−
(∂aUL)

2

2U 2
L

=
∇|Lp(∇U ·Lva)·Lva

2UL(p)
−
(∂aUL)

2

2UL(p)2
.

Note that ∇U ∈
{
q ∈ C4

:
∑

q j = 0
}

and Lva is a ds2 orthonormal basis for this
center-of-mass-zero subspace, hence

‖∇U‖2 =
∑
(∇U · Lva)

2

=
∑
(∂aUL)

2
= 4U 2

L‖∇u‖2.

Substitution into the Kulkarni–Nomizu formula gives

(4) K 12 =−
1

U 3
L

(
UL
2
(∂2

1 UL + ∂
2
2 UL)−

3
4
(∂1U 2

L + ∂2U 2
L)+

∥∥∥∇U
2

∥∥∥2
)
.

To compute O’Neill’s Lie bracket term we write our standard coordinates on C3

as (x1
+ i x2, . . . , x5

+ i x6).
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Let H1 = X j∂x j , H2 = Y j∂x j ∈H be any horizontal vector fields. The vertical
vector fields are spanned by the Euler vector field E = x j∂x j and i E . Then
H j · E = H j · i E = 0 and

[H1, H2] · E =
∑

k

X j xk∂x j Y k
− Y j xk∂x j X k

=

∑
k

X j (∂x j (xkY k)− δk
j Y

k)− Y j (∂x j (xk X k)− δk
j X k)

=

∑
k

X kY k
− Y k X k

= 0,

and likewise,

[H1, H2] · i E =
∑
k odd

(Y j∂x j X k
− X j∂x j Y k)xk+1

+ (X j∂x j Y k+1
− Y j∂x j X k+1)xk

= 2
∑
k odd

−X kY k+1
+ X k+1Y k

= 2H1 · i H2.

Then∣∣[V1, V2]
Vp
∣∣2 = ds2

JM

(
[V1, V2],

Ep

|p|
√

UL(p)

)2

+ ds2
JM

(
[V1, V2],

i Ep

|p|
√

UL(p)

)2

=
U 2

L
|p|2UL

(
([V1, V2] · E)2+ ([V1, V2] · i E)2

)
=

4UL(p)(V1·iV2)
2

|p|2
=

4
UL(p)|p|2

(v1 · iv2)
2.

Now substitution of this Lie bracket expression and (4) into O’Neill’s formula and
multiplying by U 3

L yields (2). �
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UNIONS OF LEBESGUE SPACES AND A1 MAJORANTS

GREG KNESE, JOHN E. MCCARTHY AND KABE MOEN

We study two questions. When does a function belong to the union of
Lebesgue spaces, and when does a function have an A1 majorant? We
provide a systematic study of these questions and show that they are fun-
damentally related. We show that the union of L p

w(Rn) spaces with w ∈ Ap

is equal to the union of all Banach function spaces for which the Hardy–
Littlewood maximal function is bounded on the space itself and its associate
space.

1. Introduction and statement of the main results

While the L p spaces are considered fundamental spaces of interest in analysis,
the weighted L p spaces and the related study of Ap weights are perhaps part of
a more specialized area of analysis. It is the goal of this article to show that the
L p spaces considered in aggregate are intimately linked to these latter topics and
to the notion of an A1 majorant. By recent developments our results indicate that
weighted Lebesgue spaces with Ap weights may be good candidates for ambient
spaces for operators in harmonic analysis.

We begin with the following question.

Question 1.1. When does a function belong to the union of L p spaces?

Question 1.1 is vaguely stated on purpose. By union, we mean either the union of
L p as p varies or the union of L p

w as w varies with p fixed. The union of L p spaces
often arises when considering a general domain to define operators in harmonic
analysis. Several such operators are bounded on L p for all 1< p <∞, and hence
take functions from

⋃
p>1 L p into itself.

It turns out Question 1.1 is closely related to the theory of weighted Lebesgue
spaces and the action of the Hardy–Littlewood maximal operator on these spaces.
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For our purposes, a weight is a positive locally integrable function. An A1 weight
is one that satisfies

Mw ≤ Cw a.e.

Here M denotes the Hardy–Littlewood maximal operator

M f (x)= sup
Q3x

1
|Q|

∫
Q
| f | dx .

We exclude the weight w ≡ 0 from belonging to A1, and in this case we see that if
w ∈ A1 then w > 0 a.e. The A1 class of weights characterizes when M maps L1

w

into L1,∞
w . When 1< p <∞, M is bounded on L p

w exactly when w ∈ Ap:(
1
|Q|

∫
Q
w dx

)(
1
|Q|

∫
Q
w−1/(p−1) dx

)p−1

≤ C

for all cubes Q. At the other endpoint the A∞ class is defined to be the union of all
Ap for p ≥ 1. We now come to our second question.

Question 1.2. Given a measurable function f , when does there exist an A1 weight
w such that

(1) | f | ≤ w?

We call a weight satisfying (1) an A1 majorant of f and write MA1 for the set of
measurable functions possessing an A1 majorant. As stated, Question 1.2 does not
seem to have been considered before. As far as we can tell, the first notion of an
A1 majorant appeared in an article by Rutsky [2011]. In Rutsky’s paper, however,
a different definition of an A1 majorant is given — one which requires the function
and the weight to a priori belong to a more restrictive class of functions.

If we examine weights locally, say on the interval [0, 1], then our problem has a
remarkably simple answer which reveals a close connection between traditional L p

spaces, weighted L p spaces, and A1 majorants:

(2) MA1([0, 1])=
⋃
p>1

L p([0, 1]) =
⋃
w∈A2

L2
w([0, 1]).

The proof of (2) is a synthesis of known important results for Muckenhoupt weights.
This equivalence reinforces the saying attributed to Antonio Córdoba, “There are
no L p spaces, only weighted L2 spaces.”

The local theory has several extensions including an application to Hardy spaces
on the unit disk. In [McCarthy 1990], while studying the range of Toeplitz operators,
the second author showed that the Smirnov class, N+, can be realized as a union of
weighted Hardy spaces:

N+ =
⋃
w∈W

H 2
w
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where W is the Szegő class of weights (see Section 2 for relevant definitions). The
class A∞(T) is a proper subset of W (as

⋃
p>0 H p is a proper subspace of N+).

Using our techniques we are able to give a characterization of
⋃

p>0 H p in terms
of weighted H 2 spaces:

(3)
⋃
p>0

H p
=

⋃
w∈A∞

H 2
w.

We refer the reader to Section 4 for more on the local case.
For functions on Rn , the theory is not as nice. In the local case the L p([0, 1])

spaces are nested in p, whereas the L p(Rn) spaces are not. We are not able to
obtain equality of

⋃
p>1 L p(Rn) and MA1(R

n). Remarkably, even the much larger
union over weak-L p(Rn) spaces is not equal to MA1(R

n). As a consequence of our
results, if p0 is any exponent satisfying 1< p0 <∞ then

(4)
⋃
p>1

L p,∞(Rn)$
⋃
w∈Ap0

L p0
w (R

n)$ MA1(R
n).

The class MA1(R
n) can be thought of as a generalization of L∞(Rn)— i.e., func-

tions that are majorized by constants, which are A1 weights — while
⋃
w∈A1

L1
w(R

n)

is a generalization of L1(Rn). With this in mind we obtain the following theorem.

Theorem 1.3. Suppose 1< p <∞. Then⋃
w∈Ap

L p
w(R

n)=MA1(R
n)∩

( ⋃
w∈A1

L1
w(R

n)

)
.

Considering the basic fact

L1(Rn)∩ L∞(Rn) ⊂
⋂

1<p<∞

L p(Rn),

Theorem 1.3 shows that if we enlarge both L∞(Rn) to MA1(R
n) and L1(Rn) to⋃

w∈A1
L1
w(R

n) and intersect the two, then we pick up an even bigger class of
functions, one that by (4) properly contains the union of all L p(Rn) for p > 1. As
a consequence to Theorem 1.3, we see that for all 1< p, q <∞,⋃

w∈Ap

L p
w(R

n) =
⋃

u∈Aq

Lq
u(R

n).

The proof of Theorem 1.3 uses the extrapolation theory of Rubio de Francia [1984;
1987] (see also the book [Cruz-Uribe et al. 2011]).

The union
⋃

p>1 L p is a good candidate for a natural collection of functions on
which to iterate the Hardy–Littlewood maximal function. Rutsky [2014, Theorem 1]
showed that Banach function spaces X on Rn (see Section 2) for which the Hardy–
Littlewood maximal function is bounded on both the space X and the associate
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space X′ act as a natural domain for the set of all Calderón–Zygmund operators.
We end the introduction with our main result which says a function belongs to a
function space X for which the Hardy–Littlewood maximal function is bounded on
X and X′ if and only if f ∈ L p

w(R
n) for some p > 1 and w ∈ Ap(R

n).

Theorem 1.4. Suppose 1< p <∞. Then⋃
w∈Ap

L p
w(R

n)=
⋃
{X : M ∈B(X)∩B(X′)},

where the second union is over all Banach function spaces such that the Hardy–
Littlewood maximal operator is bounded on X and X′.

Banach function spaces for which M ∈ B(X) ∩B(X′) are also related to the
Fefferman–Stein inequality. Define the sharp maximal function M# by

M# f (x)= sup
Q3x

1
|Q|

∫
Q
| f − fQ | dx,

where fQ =
1
|Q|

∫
Q f dx . Lerner [2010] proved that if M ∈ B(X), then the

Fefferman–Stein inequality

(5) ‖ f ‖X ≤ c‖M# f ‖X

holds for all nice functions in X if and only if M ∈B(X′). In particular, Theorem 1.4
shows that if f belongs to a Banach function space for which M ∈B(X) and the
Fefferman–Stein inequality (5) holds on X, then for any 1< p <∞, there exists
w ∈ Ap for which f ∈ L p

w(R
n).

The outline of this paper is as follows. In Section 2 we state preliminary results
that are necessary for the rest of the paper. In Section 3 we study the classes of
functions with A1 and Ap majorants. In Section 4 we give a treatise of local theory
with applications to Hardy spaces on the unit disk. Section 5 is devoted to the
theory on Rn , in particular the proofs of Theorems 1.3 and 1.4. We finish the article
with some open questions in Section 6.

2. Preliminaries

In this section, � denotes either Rn or a cube Q with sides parallel to the coordinate
planes in Rn . For 0< p <∞, L p(�) is the set of measurable functions such that

‖ f ‖p
L p =

∫
�

| f |p dx <∞.

Given p with 1 ≤ p ≤∞, we use p′ to denote the dual exponent defined by the
equation 1/p + 1/p′ = 1. A weight defined on a cube Q is a positive function
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in L1(Q). A weight on Rn is a positive function in L1
loc(R

n). Given a weight, w,
define L p

w(�) to be the collection of functions satisfying

‖ f ‖p
L p
w
=

∫
�

| f |pw dx <∞.

We define L∞w (�) to be the space of functions for which f/w ∈ L∞(�). This space
is normed by

‖ f ‖L∞w = ‖ f/w‖∞ = ess sup
x∈�

| f (x)|
w(x)

.

If T is the unit circle in the complex plane, then L p(T) and L p
w(T) are identified

as the space of 2π periodic functions that belong to L p([0, 2π ]) and L p
w([0, 2π ]),

respectively.
We also examine the “complex analyst’s Hardy space”, as opposed to the real

analyst’s Hardy space defined in terms of maximal functions. Let D denote the unit
disk in the plane with boundary T. Given p with 0< p <∞, let H p

= H p(D) be
the space of analytic functions “normed” by

‖ f ‖H p = sup
0<r<1

(∫ 2π

0
| f (reiθ )|p

dθ
2π

)1/p

.

“Norm” is in quotes since this is not a norm for 0< p< 1, but we use norm notation
‖ · ‖ nonetheless. The Nevanlinna class, denoted N , is the collection of analytic
functions on D such that

‖ f ‖N = sup
0<r<1

∫ 2π

0
log+ | f (reiθ )|

dθ
2π

<∞.

Functions in N have nontangential limits almost everywhere on the boundary, so
we may treat them as functions on the disk or the circle. The Smirnov class N+

consists of functions f ∈ N such that

lim
r→1

∫ 2π

0
log+ | f (reiθ )|

dθ
2π
=

∫ 2π

0
log+ | f (eiθ )|

dθ
2π
.

It is well known that ⋃
p>0

H p $ N+ $ N

(see, e.g., the books by Duren [1970] or Rudin [1964]). The Smirnov class is often
considered a natural limit of H p as p→ 0.

The weighted Hardy space H p
w = H p

w(D) is the closure of analytic polynomials
in L p

w(T). While there are real variable definitions of weighted Hardy spaces, this
classical definition has an intuitive appeal.
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Let M� be the Hardy–Littlewood maximal operator restricted to �, i.e.,

M� f (x)= sup
Q⊂�
x∈Q

1
|Q|

∫
Q
| f | dy.

When �= Rn we write MRn f = M f .
We define A1(�) to be the class of all weights on � such that M�w(x)≤Cw(x)

a.e. x ∈�. For p > 1, Ap(�) is the class of all weights on � such that

sup
Q⊂�

(
1
|Q|

∫
Q
w dx

)(
1
|Q|

∫
Q
w1−p′ dx

)p−1

<∞.

Given an Ap weight w we refer to the weight σ = w1−p′ as the dual weight. For
the endpoint, p =∞, we use the definition

A∞(�)=
⋃
p≥1

Ap(�).

There are several other definitions of A∞, e.g., weights satisfying a reverse Jensen
inequality, a reverse Hölder inequality, or a fairness condition with respect to
Lebesgue measure [Duoandikoetxea 2001; Grafakos 2008].

A weight on the torus is a positive function in L1(T). The classes A1(T), Ap(T),
and A∞(T) are defined analogously on T. The Szegő class of weights, denoted W,
are weights on T satisfying ∫

T

logw dθ >−∞.

We notice that if w ∈ A∞(T), then we have(∫
T

w
dθ
2π

)
exp

(
−

∫
T

logw dθ
2π

)
<∞.

In particular, A∞(T)⊂W.

Example 2.1. Let x0 ∈�, 1≤ p≤∞, and wx0(x)= |x− x0|
α . Then wx0 ∈ Ap(�)

if and only if −n < α < n(p− 1).

We will need some elementary properties of Ap weights, most of which follow
from the definition (see [Duoandikoetxea 2001, Proposition 7.2]).

Theorem 2.2. The following hold:

(i) A1 ⊂ Ap ⊂ Aq ⊂ A∞ if 1< p < q <∞.

(ii) For 1< p <∞, w ∈ Ap if and only if σ = w1−p′
∈ Ap′ .

(iii) If 0< s ≤ 1 and w ∈ Ap, then ws
∈ Ap.

(iv) If u, v ∈ A1, then uv1−p
∈ Ap.
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It is interesting to note that the converse of (iv) also holds, but the proof is
much more intricate. This was shown by Jones [1980] and later by Rubio de
Francia [1982]. We emphasize that we do not need this converse statement, only
the statement (iv).

We also need the following deeper property of A∞ weights known as the reverse
Hölder inequality. See [Hytönen et al. 2012] for a simple proof with nice constants.

Theorem 2.3. If w ∈ A∞(�), then there exists s > 1 such that for every cube
Q ⊂�,

1
|Q|

∫
Q
ws dx ≤

(
2
|Q|

∫
Q
w dx

)s

.

As a corollary to Theorem 2.3 we have the following openness properties of Ap

classes.

Theorem 2.4. Let 1≤ p ≤∞. The following hold:

(i) If p > 1 then Ap(�)=
⋃

1≤q<p Aq(�).

(ii) If w ∈ Ap(�) then ws
∈ Ap(�) for some s > 1.

For the results on Rn we need the notion of a Banach function space. We refer
the reader to the book by Bennett and Sharpley [1988, Chapter 1] for an excellent
reference on the subject. A mapping ρ, defined on the set of nonnegative Rn-
measurable functions and taking values in [0,∞], is said to be a Banach function
norm if it satisfies the following properties:

(i) ρ( f )= 0⇔ f = 0 a.e., ρ(a f )= aρ( f ) for a > 0, ρ( f + g)≤ ρ( f )+ ρ(g);

(ii) if 0≤ f ≤ g a.e., then ρ(g)≤ ρ( f );

(iii) if fn ↑ f a.e., then ρ( fn) ↑ ρ( f );

(iv) if B ⊂ Rn is bounded, then ρ(χB) <∞;

(v) if B ⊂ Rn is bounded, then∫
B

f dx ≤ CBρ( f )

for some constant CB with 0< CB <∞.

We note that our definition of a Banach function space is slightly different from
that found in [Bennett and Sharpley 1988]. In particular, in the axioms (iv) and (v)
we assume that the set B is a bounded set, whereas it is sometimes assumed that B
merely satisfy |B|<∞. We do this so that the spaces L p

w(R
n) with w ∈ Ap satisfy

items (iv) and (v). (See also the discussion at the beginning of Chapter 1 on page 2
of [Bennett and Sharpley 1988].)
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Given Banach function norm ρ, X= X(Rn, ρ) is the collection of measurable
functions such that ρ(| f |) <∞. In this case we may equip X with the norm

‖ f ‖X = ρ(| f |).

The associate space X′ is the set of all measurable functions g such that f g∈ L1(Rn)

for all f ∈ X. This space is normed by

(6) ‖g‖X′ = sup
{∫

Rn
| f g| dx : ‖ f ‖X ≤ 1

}
.

Equipped with this norm X′ is also a Banach function space and∫
Rn
| f g| dx ≤ ‖ f ‖X‖g‖X′ .

Typical examples of Banach function spaces are L p(Rn) for 1 ≤ p ≤∞, whose
associate spaces are L p′(Rn). Other Banach spaces include weak type spaces
L p,∞(Rn), the Lorentz space L p,q(Rn), and Orlicz spaces L8(Rn) defined for a
Young function8 (see [Bennett and Sharpley 1988; Cruz-Uribe et al. 2011]). When
w ∈ Ap(R

n) and 1≤ p ≤∞, the spaces L p
w(R

n) are also Banach function spaces
with respect to Lebesgue measure. To see this, it suffices to check property (v).
Suppose f ≥ 0, 1< p <∞, and B is bounded. Then B ⊂ Q for some cube Q so
σ(B) <∞, and Hölder’s inequality implies∫

B
f dx =

∫
B

fw1/pw−1/p dx ≤ σ(B)1/p′
(∫

B
f pw dx

)1/p

≤ σ(B)1/p′
‖ f ‖L p

w
.

To see that L1
w(R

n) is a Banach function space when w ∈ A1(R
n), note that

(7)
∫

B
f dx =

∫
B

fww−1 dx ≤ (inf
B
w)−1
‖ f ‖L1

w
.

Finally, if f ∈ L∞w , then∫
B

f dx =
∫

B
( f/w)w dx ≤ w(B)‖ f ‖L∞w ,

showing L∞w is a Banach function space.
When 1 < p <∞ and w ∈ Ap, the associate space of L p

w(R
n) defined by the

pairing in (6) is given not by L p′
w (R

n) but by L p′
σ (R

n) for σ = w1−p′ . When p = 1
and w ∈ A1, the associate space of L1

w is given by L∞w (R
n). We are particularly

interested in Banach function spaces X for which

‖M f ‖X ≤ C‖ f ‖X,

in which case we write M ∈B(X).
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We end this section with the classical result of Coifman and Rochberg [1980]
(see also [García-Cuerva and Rubio de Francia 1985, Theorem 3.4, p. 158]). This
result requires a definition.

Definition 2.5. We say that a function f (x) belongs to MF (�) if

M� f (x) <∞ for a.e. x ∈�.

If f belongs to a Banach function space for which M ∈B(X), then f ∈MF .

Theorem 2.6. If f ∈MF (�) and 0< δ < 1, then (M� f )δ ∈ A1(�).

We leave the reader with a table of the notation used throughout the article.

� Domain of interest, either Rn or a cube Q ⊂ R;
M� Hardy–Littlewood maximal operator restricted to �;

Ap(�) class of Ap weights on �;
Mr

Ap
(�) functions on � with | f |r majorized by an Ap weight;

MF (�) functions on � such that M� f <∞ a.e.;
AF

p (�) Ap(�)∩MF (�);
MAF

p
(�) functions majorized by AF

p (�) weights.

3. The classes Mr
A p

Let us now define a general class of functions majorized by Ap weights and establish
some properties of such classes. We remind the reader that a domain � will denote
throughout either all of Rn or a cube Q in Rn .

Definition 3.1. Let r and p satisfy 0< r <∞ and 1≤ p ≤∞. Define Mr
Ap
(�) to

be the collection of all measurable functions f on � such that

| f (x)|r ≤ w(x) for a.e. x ∈�

for some w ∈ Ap(�). When r = 1 we simply write MAp(�).

Theorem 2.4 implies the following general facts about the Mr
Ap

classes.

Theorem 3.2. Suppose r and p satisfy 0< r <∞ and 1≤ p ≤∞. Then

(8) Mr
Ap
(�)=

⋃
s>r

Ms
Ap
(�)

and if p > 1,

(9) Mr
Ap
(�) =

⋃
1≤q<p

Mr
Aq
(�).
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Proof. We first prove (8). It is clear from (iii) of Theorem 2.2 that the union⋃
r<s Ms

Ap
(�)⊂Mr

Ap
(�). On the other hand, if f ∈Mr

Ap
(�) then | f |r ≤ w ∈ Ap.

By (ii) of Theorem 2.4, there exists t > 1 such that wt
∈ Ap(�). But then, taking

s = r t > r and u = wt , we have | f |s ≤ u ∈ Ap, so f ∈
⋃

r<s Ms
Ap
(�). The proof

of equality (9) follows directly from (i) of Theorem 2.4. �

Our next theorem shows that for a function to have an A1 majorant it is equivalent
for its maximal function to have an A1 majorant.

Theorem 3.3. We have f ∈MA1(�) if and only if M� f ∈MA1(�).

Proof. If f ∈MA1(�), then M� f ≤ M�w ≤ Cw since w ∈ A1(�), which is to say
M� f ∈MA1(�). The converse statement follows from the fact that | f | ≤ M� f . �

Using the exact same reasoning it is easy to prove that f ∈Mr
A1
(�) if and only

if M�(| f |r ) ∈MA1(�). However, there is a better result when r ≥ 1.

Theorem 3.4. If r ≥ 1 then the following are equivalent:

(i) f ∈Mr
A1
(�).

(ii) M�(| f |r ) ∈MA1(�).

(iii) M� f ∈Mr
A1
(�).

Proof. The equivalence (i)⇔ (ii) follows from Theorem 3.3. We will prove (ii)⇒
(iii) and (iii)⇒ (i).

Suppose that w ∈ A1(�) and M�(| f |r ) ≤ w. Since r ≥ 1, we know that
(M� f )r ≤ M�(| f |r )≤ w, which is to say that M� f ∈Mr

A1
.

On the other hand if (M� f )r ≤ w ∈ A1(�), then M� f <∞ a.e., and hence f
is locally integrable on �. By the Lebesgue differentiation theorem we have

| f |r ≤ (M� f )r ≤ w. �

In the case 0<r <1, we still have f ∈Mr
A1
(�) if and only if M�(| f |r )∈MA1(�).

However, it is not true that this is equivalent to (M� f )r ∈MA1(�). Consider the
following simple example.

Example 3.5. Let f (x)= |x |−n on Q = [−1, 1]n . If 0< r < 1, then f ∈ Mr
A1
(Q)

but MQ f ≡∞.

Of course, if 0< r < 1 and M� f <∞ a.e., then (M� f )r ∈ A1(�) (and hence
M� f ∈Mr

A1
(�)) automatically by Theorem 2.6.

We now study the class MAp . Since the Ap classes are nested, we have

MA1 ⊂MAp ⊂MAq ⊂MA∞

for 1≤ p ≤ q ≤∞. In the local case we have the following characterization.
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Theorem 3.6. If Q is a cube in Rn then

MA1(Q)=MA∞(Q).

Proof. It suffices to show MA∞(Q)⊂MA1(Q). Suppose that f ∈MA∞(Q), so that
there exists w ∈ A∞(Q) with

| f | ≤ w.

Since w ∈ A∞(Q), the reverse Hölder inequality implies that there exists s > 1
such that

(MQw
s)1/s ≤ 2MQw ≤ 2(MQw

s)1/s .

Moreover, since w ∈ L1(Q), we have MQw <∞ a.e. By Theorem 2.6, MQw is
bounded above and below by an A1(Q) weight, and hence is in A1(Q) itself. �

In the global case we have MA1(R
n)( MAp(R

n) for any p > 1, as the following
example indicates.

Example 3.7. Let p > 1 and 0 < α < n(p − 1). Now consider the function
f (x) = |x |α. Then f ∈ Ap(R

n) ⊂ MAp(R
n), but f /∈ MF (R

n) so in particular,
f /∈MA1(R

n). To see this, notice that for every x ∈ Rn and r > |x |,

M f (x)≥ c
rn

∫
|x |≤r
|x |α dx ' rα

so M f ≡∞.

To obtain positive results on Rn for the classes MAp(R
n) and MA∞(R

n) similar
to Theorem 3.6, we must restrict to Ap majorants whose maximal function is finite.
Given w ∈ A∞, a simple way to create a weight in AF

∞
is to take a truncation: let

wλ =min(w, λ) for λ > 0. Then wλ ∈ A∞ ∩ L∞ ⊂ AF
∞

. We end our study of the
class MA1 with the following characterizations.

Theorem 3.8. MA1(R
n)=MAF

∞
(Rn).

Proof. Since A1(R
n) ⊂ A∞(Rn) and A1(R

n) ⊂ MF (R
n), we have the inclusion

MA1(R
n) ⊂ MAF

∞
(Rn). On the other hand, if f is dominated by a weight w in

AF
∞
(Rn)= A∞(Rn)∩MF (R

n), then by Theorem 2.3 we have

M(ws)1/s ≤ 2Mw <∞ a.e.

for some s > 1. So in particular, | f | ≤ M(| f |s)1/s ≤ M(ws)1/s ∈ A1(R
n). �

Theorem 3.9. A function f belongs to MA1(R
n) if and only if there is an s > 1 such

that | f |s ∈MF (R
n).
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Remark 3.10. Given r > 0, if one defines Mr
F (R

n) to be the class of functions
such that M(| f |r ) <∞ a.e. (equivalently | f |r ∈MF (R

n)), then Theorem 3.9 can
be stated as

MA1(R
n)=

⋃
r>1

Mr
F (R

n).

Proof of Theorem 3.9. Let w be an A1(R
n) majorant of f . Since w ∈ A1(R

n),
ws
∈ A1(R

n) for some s > 1, which implies | f |s ∈ MA1(R
n). By Theorem 3.4

we have M(| f |s) ∈MA1(R
n)⊂ L1

loc(R
n). On the other hand, if there exists s > 1

such that M(| f |s) < ∞ a.e., then M(| f |s)1/s ∈ A1(R
n) by Theorem 2.6, and

| f | ≤ M(| f |s)1/s . �

4. The local case

For this section Q will be a fixed cube in Rn . We begin with the following extension
of the equivalences in (2).

Theorem 4.1. Let Q be a cube in Rn and r, p0 satisfy 0< r < p0 <∞. Then

Mr
A1
(Q)=

⋃
p>r

L p(Q) =
⋃
w∈Ap0/r

L p0
w (Q).

Proof. We will prove the chain of containments⋃
w∈Ap0/r

L p0
w (Q)⊂

⋃
p>r

L p(Q)⊂Mr
A1
(Q) ⊂

⋃
w∈Ap0/r

L p0
w (Q).

•

(⋃
w∈Ap0/r

L p0
w (Q)⊂

⋃
p>r L p(Q)

)
: Suppose we have f ∈ L p0

w (Q) for some
w ∈ Ap0/r (Q). Set q0 = p0/r . By (ii) of Theorem 2.2, σ = w1−q ′0 ∈ Aq ′0(Q).
By Theorem 2.3, σ satisfies a reverse Hölder inequality:(

1
|Q′|

∫
Q′
σ s dx

)1/s

≤
2
|Q′|

∫
Q′
σ dx

for some s > 1 and all Q′ ⊆ Q. This implies that σ ∈ Ls(Q). Define
1
q =

1
q0
+

1
sq ′0

so that q > 1, and let p = rq > r . Then

(∫
Q
| f |p dx

)1/p

=

(∫
Q
| f |rqwq/q0w−q/q0 dx

)1/p

≤

(∫
Q
| f |p0w dx

)1/p0
(∫

Q
σ s dx

)1/(sq ′0)

.

•

(⋃
p>r L p(Q)⊂Mr

A1
(Q)

)
: If f ∈ L p(Q) for some p > r , then Theorem 2.6

implies | f |r ≤ MQ(| f |p)r/p
∈ A1(�).



UNIONS OF LEBESGUE SPACES AND A1 MAJORANTS 423

•

(
Mr

A1
(Q) ⊂

⋃
w∈Ap0/r

L p0
w (Q)

)
: Set q0 = p0/r > 1 and suppose we have

g = | f |r ≤ w ∈ A1(Q). Then w1−q0 ∈ Aq0(Q) by (iv) of Theorem 2.2 and∫
Q
| f |p0w1−q0 dx =

∫
Q

gq0w1−q0 dx ≤
∫

Q
w dx <∞. �

Next, we extend Theorem 4.1 to A∞ weights.

Theorem 4.2. Let Q be a cube in Rn and p0 be an exponent with 0 < p0 <∞.
Then ⋃

r>0

Mr
A1
(Q)=

⋃
p>0

L p(Q) =
⋃
w∈A∞

L p0
w (Q).

Proof. We first prove ⋃
r>0

Mr
A1
(Q)=

⋃
p>0

L p(Q).

• (⊂): If f ∈ Mr
A1
(Q) for some r > 0, and w ∈ A1(Q) is such that | f |r ≤ w,

then f ∈ Lr (Q)⊂
⋃

p>0 L p(Q).

• (⊃): If f ∈ L p(Q) for some p > 0, let r be such that 0 < r < p. Then
| f |r ≤ MQ(| f |p)r/p

∈ A1(Q).

Next we show ⋃
p>0

L p(Q) =
⋃
w∈A∞

L p0
w (Q).

• (⊂): Suppose f ∈ L p(Q) for some 0 < p <∞. Then if r < min(p, p0) we
have

f ∈ L p(Q)⊂
⋃
r<p

L p(Q) =
⋃
w∈Ap0/r

L p0
w (Q) ⊂

⋃
w∈A∞

L p0
w (Q).

• (⊃): Suppose f ∈ L p0
w (Q) for some w ∈ A∞. Then w ∈ Aq for some q > 1.

Set p = p0/q and notice that p < p0. Then∫
Q
| f |p dx =

∫
Q
| f |pw1/qw−1/q dx ≤

(∫
Q
| f |p0w dx

)1/q(∫
Q
w1−q ′ dx

)1/q ′

. �

Example 4.3. The function

(10) f (x)= x−1(log x)−2χ(0,1/2)(x)

does not belong to MA1([0, 1]). This follows from Theorem 4.1 since it can be
readily checked that

f ∈ L1([0, 1])\
(⋃

p>1

L p([0, 1])
)
.

However, f ∈MF ([0, 1]) since f ∈ L1([0, 1]).
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Remark 4.4. Suppose 0< p <∞. Then

L p(Q) =
⋃
w∈A1

L p
w(Q).

The proof of the equality in Remark 4.4 follows from the fact that 1 ∈ A1 and
from inequality (7) with B = Q.

We define HA1(T) as the set of functions in N+ whose boundary function is
majorized by an A1(T) weight. Since we may identify the torus T with Q= [0, 2π ],
it is obvious that Theorems 4.1 and 4.2 hold for L p(T) and L p

w(T) spaces. We have
the following analogs for Hardy spaces.

Theorem 4.5. If p0 is an exponent satisfying 1< p0 <∞, then

HA1(T)=
⋃
p>1

H p
=

⋃
w∈Ap0

H p0
w .

Theorem 4.6. If p0 is an exponent satisfying 0< p0 <∞, then⋃
p>0

H p
=

⋃
w∈A∞

H p0
w .

Proof of Theorems 4.5 and 4.6. Since N+ ∩ L p(T)= H p for p > 0 [Duren 1970,
Theorem 2.11], we see that

HA1(T)= N+ ∩MA1(T)= N+ ∩
⋃
p>1

L p(T)=
⋃
p>1

H p.

This is the first part of Theorem 4.5.
To go from equality of the analogous L p spaces to the Hardy spaces is a matter

of using two facts for 0< p0 <∞:

(a)
∫

T
logw dθ > −∞ and w ∈ L1(T) implies that w = |h|p0 for some outer

function h ∈ H p0 .

(b) If h ∈ H p0 is outer, then the set hC[z] = ∨{z j h : j ≥ 0} is dense in H p0 .

Item (a) comes from the standard construction of an outer function [Duren 1970,
Section 2.5]. As for item (b), when 1≤ p0 <∞ this is a standard generalization of
Beurling’s theorem [Duren 1970, Theorem 7.4]. When 0< p0 < 1, this is a less
well known result that can be found in Gamelin [1966, Theorem 4].

For Theorem 4.5 we must show for 1< p0 <∞ that⋃
p>1

H p
=

⋃
w∈Ap0

H p0
w .

Now, for f ∈ H p
⊂ L p, we know there exists w ∈ Ap0(T) such that f ∈ L p0

w (T)

by (2). Factor w = |h|p0 with outer h ∈ H p0 . Then, f h ∈ N+ ∩ L p0(T) = H p0
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while hC[z] is dense in H p0 so that there exist polynomials Qn satisfying∫
| f h− Qnh|p0 dθ =

∫
| f − Qn|

p0w dθ→ 0

as n→∞. This shows f ∈ H p0
w (since it is initially defined as the closure of the

analytic polynomials in L p0
w (T)).

Conversely, we have seen that if f ∈ H p0
w , then f ∈ L p(T) for some p> 1. Factor

w= |h|p0 as before. Then, f h ∈ H p0 and 1/h is outer, so that f = f h(1/h) ∈ N+.
Since f ∈ L p(T), we can then conclude that f ∈ H p.

The proof of Theorem 4.6, which claims for 0< p0 <∞ that⋃
p>0

H p
=

⋃
w∈A∞

H p0
w ,

is similar once we know the corresponding fact for L p(T) spaces. Indeed, take
f ∈ H p for some p> 0. There exists w∈ A∞ such that f ∈ L p0

w (T) by Theorem 4.2.
Factor w = |h|p0 with outer h ∈ H p0 . Then, f ∈ H p0

w as above using Gamelin’s
result. The converse is similar to the previous proof. �

5. The global case

In this section we address the case when our functions are defined on all of Rn . Let
us first prove Theorem 1.3, which states that for any 1< p <∞,⋃

w∈Ap

L p
w(R

n)=MA1(R
n) ∩

⋃
w∈A1

L1
w(R

n).

Proof of Theorem 1.3. First we show

MA1(R
n) ∩

⋃
w∈A1

L1
w(R

n) ⊂
⋃
w∈Ap

L p
w(R

n).

Suppose w is an A1 majorant of f and f ∈ L1
u(R

n) for some u ∈ A1(R
n). By

Theorem 2.2, uw1−p
∈ Ap(R

n) and∫
Rn
| f |pw1−pu dx ≤

∫
Rn
| f |u dx .

To see the reverse containment suppose that f 6≡ 0 belongs to L p
w(R

n) for some
w ∈ Ap(R

n). We will use the fact that w ∈ Ap(R
n) implies M ∈B(L p

w) to apply
the Rubio de Francia algorithm:

R f =
∞∑

k=0

Mk f
2k‖M‖k

B(L p
w)

.

Then R f is an A1 majorant of f so f ∈MA1(R
n). Also let g be any function in

L p′
σ (R

n) where σ =w1−p′ satisfying ‖g‖
L p′
σ (Rn)
= 1. Again, since σ ∈ Ap′(R

n), we
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apply the Rubio de Francia algorithm

Rg =
∞∑

k=0

Mk g
2k‖M‖k

B(L p′
σ )

,

so that Rg is in A1(R
n) and ‖Rg‖

L p′
σ (Rn)

≤ 2. Hence∫
Rn
| f |Rg dx =

∫
Rn
| f |w1/p Rgw−1/p dx ≤ ‖ f ‖L p

w(Rn)‖Rg‖
L p′
σ (Rn)

≤ 2‖ f ‖L p
w(Rn),

showing that f ∈
⋃
w∈A1

L1
w(R

n) as well. �

Before moving on, we remark that the intersection of MA1(R
n) and

⋃
w∈A1

L1
w(R

n)

is necessary for the result on Rn . We did not encounter this phenomenon in the
local case since for a fixed cube, MA1(Q) ⊂ L1(Q). To see that the intersection
is necessary, notice that the function in Example 4.3 viewed as a function on R

belongs to L1(R) ⊂
⋃
w∈A1

L1
w(R), but does not belong to L p

w(R) for any p > 1
and w ∈ Ap(R) since it is not in L p

loc(R) for any p > 1. Theorem 1.3 shows that
for 1< p <∞, ⋃

w∈Ap

L p
w(R

n)⊂MA1(R
n).

Below we will show this containment is proper (see Example 5.2).
We now prove Theorem 1.4.

Proof of Theorem 1.4. By Theorem 1.3 it suffices to show

(11)
⋃
w∈Ap

L p
w(R

n)⊂
⋃
{X : M ∈B(X)∩B(X′)}

and

(12)
⋃
{X : M ∈B(X)∩B(X′)} ⊂MA1(R

n) ∩
⋃
w∈A1

L1
w(R

n).

However, the containment (11) is immediate, since

M ∈B(L p
w(R

n))⇔ w ∈ Ap(R
n)⇔ σ ∈ Ap′(R

n)⇔ M ∈B(L p′
σ (R

n)).

On the other hand, for containment (12), if f 6≡ 0, then f ∈ X for some Banach
function space X such that M ∈ B(X)∩B(X′). Then we may use the Rubio de
Francia algorithm to construct an A1(R

n) majorant:

R f =
∞∑

k=0

Mk f
2k‖M‖kB(X)

.
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Then R f ∈ A1 and | f | ≤ R f , so f ∈MA1(R
n). Given g ∈ X′ let

Rg =
∞∑

k=0

Mk g
2k‖M‖kB(X′)

,

so that Rg ∈ A1(R
n)∩X′ and ‖Rg‖X′ ≤ 2‖g‖X′ . Then∫
Rn
| f |Rg dx ≤ ‖ f ‖X‖Rg‖X′ ≤ 2‖ f ‖X‖g‖X′,

which yields f ∈
⋃
w∈A1

L1
w(R

n). �

When p > 1, L p,∞(Rn) is a Banach function space on which M is bounded (see
[Grafakos 2008]), and likewise, its associate (L p,∞(Rn))′ = L p′,1(Rn), the Lorentz
space with exponents p′ and 1, is also a Banach function space on which M is
bounded (see [Ariño and Muckenhoupt 1990]).

Corollary 5.1. Suppose 1< p0 <∞. Then⋃
p>1

L p,∞(Rn) ⊂
⋃
w∈Ap0

L p0
w (R

n).

From Corollary 5.1 we see that the analogous version of the equivalences in (2)
are not true on Rn . This follows since⋃

p>1

L p(Rn)$
⋃
p>1

L p,∞(Rn).

For example, f (x)= |x |−n/2
∈ L2,∞(Rn) but f /∈

⋃
p>0 L p(Rn).

We also remark that the techniques required for Rn are completely different than
the local case. For example, to prove the containment⋃

p>1

L p,∞(Rn)⊂MA1(R
n)

it is not enough to simply dominate | f | by M(| f |p)1/p. However, for f ∈ L p,∞(Rn),
M(| f |p) may not be finite (take f (x) = |x |−n/p, in which case M(| f |p) ≡ ∞).
Instead we must refine our construction of an A1 majorant using the techniques of
Rubio de Francia [1984].

We now provide examples to show that the inclusions in (4) are proper. We first
show that the second inclusion is proper, i.e.,⋃

w∈Ap

L p
w(R

n)$ MA1(R
n).

Since ⋃
w∈Ap

L p
w(R

n)=MA1(R
n) ∩

⋃
w∈A1

L1
w(R

n),

it suffices to find a function in MA1(R
n) \

(⋃
w∈A1

L1
w(R

n)
)
.
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Example 5.2. The function f (x) = 1 belongs to MA1(R
n) \

⋃
w∈A1

L1
w(R

n). To
prove this we need the fact that if w ∈ A∞ then w /∈ L1(Rn). One way to see this
(pointed out by the referee) is to notice that A∞ weights are doubling, and doubling
measures have infinite total mass. We can also give an ad hoc argument using the
reverse Hölder inequality. If w satisfies(

1
|Q|

∫
Q
ws dx

)1/s

≤
2
|Q|

∫
Q
w dx

for some s > 1 and all cubes Q, then by taking QN = [−N , N ]n , we have(
1
|QN |

∫
Q1

ws dx
)1/s

≤

(
1
|QN |

∫
QN

ws dx
)1/s

≤
2
|QN |

∫
QN

w dx ≤ 2
|QN |
‖w‖L1(Rn).

Letting N →∞ we arrive at a contradiction. Finally, to see 1 /∈
⋃
w∈A1

L1
w(R

n),
notice that 1 ∈ L1

w(R
n) if and only if w ∈ L1(Rn).

Next we show that ⋃
p>1

L p,∞(Rn) $
⋃
w∈Ap

L p
w(R

n).

For this example we need the following lemma.

Lemma 5.3. Suppose u, v ∈ A1(R
n). Then

max(u, v) ∈ A1(R
n) and min(u, v) ∈ A1(R

n).

Proof. To see that max(u, v) is in A1(R
n) note that max(u, v)≤u+v≤2 max(u, v),

and hence

M(max(u, v))≤ Mu+Mv ≤ C(u+ v)≤ 2C max(u, v).

To prove min(u, v) ∈ A1(R
n) we use the equivalent definition of A1(R

n):

w ∈ A1(R
n)⇔

1
|Q|

∫
Q
w dx ≤ C inf

Q
w ∀Q ⊂ Rn

where the infimum is the essential infimum ofw over the cube Q. Setw=min(u, v)
and let Q be a cube. Notice that infQ u > infQ v implies infQ w= infQ v and hence

1
|Q|

∫
Q
w dx ≤ 1

|Q|

∫
Q
v dx ≤ C inf

Q
v = C inf

Q
w.

On the other hand, if infQ u ≤ infQ v then infQ w = infQ u and so

1
|Q|

∫
Q
w dx ≤ 1

|Q|

∫
Q

u dx ≤ C inf
Q

u = C inf
Q
w.

So w ∈ A1(R
n). �
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Example 5.4. Consider f (x) = max(|x |−αn, |x |−βn). If 0 < α < β < 1 then
f /∈

⋃
p>0 L p,∞(Rn). However,

| f (x)| ≤ w(x)

where w(x)=max(|x |−βn, 1), and f ∈ L1
u(R

n) where u(x)=min(|x |−γ n, 1) when
1−α < γ < 1. By Lemma 5.3, both u and w belong to A1(R

n). Thus

f ∈MA1(R
n) ∩

⋃
w∈A1

L1
w(R

n) =
⋃
w∈Ap

L p
w(R

n).

Finally, we end with brief descriptions of
⋃
w∈A1

L1
w(R

n) and MA1(R
n) in terms

of Banach function spaces.

Theorem 5.5.
⋃
w∈A1

L1
w(R

n)=
⋃
{X : M ∈B(X′)} =

⋃
{X : X′ ∩ A1(R

n) 6=∅}.

Proof. It is clear that ⋃
w∈A1

L1
w(R

n)⊂
⋃
{X : M ∈B(X′)},

since the associate space of L1
w(R

n) is

L∞w (R
n)= { f : f/w ∈ L∞}

with norm ‖ f ‖L∞w = ‖ f/w‖L∞ . For any cube Q,

1
|Q|

∫
Q
| f | dx ≤ ‖ f/w‖L∞

1
|Q|

∫
Q
w dx .

Hence if w ∈ A1, then

M f ≤ ‖ f ‖L∞w Mw ≤ C‖ f ‖L∞w w,

and dividing through by w we obtain M ∈B(L∞w ).
The associate space is always a closed subspace of the dual space [Bennett and

Sharpley 1988; Rubio de Francia 1987]. Suppose X is such that M ∈B(X′). Given
g ∈X′ with g 6≡ 0 (notice Banach function spaces always contain nonzero functions
by property (iv) of Banach function norms), let

w =

∞∑
k=1

Mk g
2k‖M‖kB(X′)

so that w ∈ A1(R
n) and ‖w‖X′ ≤ ‖g‖X′ . Thus w ∈ X′ ∩ A1(R

n), showing that

M ∈B(X′)⇒ X∩ A1(R
n) 6=∅.
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Finally, suppose f ∈ X for some X such that X′ contains an A1 weight. Let
w ∈ X′ ∩ A1(R

n). Then ∫
Rn
| f |w dx ≤ ‖ f ‖X‖w‖X′,

so that f ∈ L1
w(R

n). �

Finally we refer to a result of Chu [2013] which gives the final characterization
of MA1(R

n).

Theorem 5.6 [Chu 2013]. MA1(R
n)=

⋃
{X : M ∈B(X)}.

6. Questions

We leave the reader with some open questions.

1. Let A∗p =
⋂

q>p Aq . Is there a characterization of the union⋃
w∈A∗p

L p
w?

In general Ap $ A∗p. For example w(x) = max((log |x |−1)−1, 1) belongs to
A∗1 but not A1. Moreover,

{w : w, 1/w ∈ A∗1} = closBMOL∞

(see [García-Cuerva and Rubio de Francia 1985; Johnson and Neugebauer
1987]). In the local case we have⋃

w∈A∗p

L p
w(Q)⊂

⋂
s<p

⋃
r>s

Lr (Q)= lim sup
r→p−

Lr (Q).

Are these two sets equal?

2. It is well known that

L1
∩ L∞ ⊂

⋂
1<p<∞

L p
⊂

⋃
1<p<∞

L p
⊂ L1

+ L∞.

When can we write a function as the sum of a function in MA1 and
⋃
w∈A1

L1
w?

That is, what conditions on a function guarantee it belongs to MA1+
⋃
w∈A1

L1
w?

3. What can one say about ⋃
w∈Ap

L p,∞
w ?

If w ∈ A1 and p > 1 then M ∈B(L p,∞
w ), so for p > 1,⋃

w∈A1

L p,∞
w ⊂MA1 .
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4. Do these results transfer to more general domains? It is possible to consider
a general open set � as our domain of interest. We may define the Ap(�)

classes, MA1(�), and the Hardy–Littlewood maximal operator M� exactly as
before. However, the openness results, Theorems 2.3 and 2.4, may not hold for
�, even if it is bounded [Cruz-Uribe et al. 2011]. In the local case we assume
that weights belong to L1(�). What happens if we only assume L1

loc(�)?
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COMPLEX HYPERBOLIC (3, 3, n) TRIANGLE GROUPS

JOHN R. PARKER, JIEYAN WANG AND BAOHUA XIE

Let p, q, r be positive integers. Complex hyperbolic ( p, q, r) triangle groups
are representations of the hyperbolic ( p, q, r) reflection triangle group to
the holomorphic isometry group of complex hyperbolic space H2

C, where the
generators fix complex lines. In this paper, we obtain all the discrete and
faithful complex hyperbolic (3, 3, n) triangle groups for n ≥ 4. Our result
solves a conjecture of Schwartz in the case when p= q = 3.

1. Introduction

An abstract (p, q, r) reflection triangle group for positive integers p, q , r is the group

1p,q,r =
〈
σ1, σ2, σ3

∣∣ σ 2
1 = σ

2
2 = σ

2
3 = (σ2σ3)

p
= (σ3σ1)

q
= (σ1σ2)

r
= id

〉
.

We sometimes take (at least) one of p, q , r to be∞, in which case the corresponding
relation does not appear.

It is interesting to seek geometrical representations of 1p,q,r . An extremely
well-known fact is that 1p,q,r may be realised geometrically as the reflections in
the side of a geodesic triangle with internal angles π/p, π/q, π/r . Furthermore,
if 1/p+ 1/q + 1/r > 1, = 1 or < 1 then this triangle is spherical, Euclidean or
hyperbolic respectively. Moreover, up to isometries (or similarities in the Euclidean
case) there is a unique such triangle and the representation is rigid. In the case
where (at least) one of p, q , r is∞, we omit the relevant term from 1/p+1/q+1/r
and we insist that the sides of the triangle are asymptotic. Thus the (∞,∞,∞)
triangle is a triangle in the hyperbolic plane with all three vertices on the boundary.

In contrast, if we choose a geometrical representation of 1p,q,r in a space of
nonconstant curvature then more interesting things can happen; see, for example,
[Brehm 1990]. In this paper, we consider representations of 1p,q,r to SU(2, 1),
which is (a triple cover of) the group of holomorphic isometries of complex hy-
perbolic space H2

C
. A convenient model of H2

C
is the unit ball in C2 with the

Wang and Xie were supported by NSFC (grant numbers 11071059 and 11371126). Xie was also
supported by NSFC (grant number 11201134) and the Young Teachers Support program of Hunan
University.
MSC2010: primary 20H10; secondary 22E40, 51M10.
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Bergman metric, having constant holomorphic sectional curvature and 1/4-pinched
real sectional curvatures.

A complex hyperbolic triangle group will be a representation of 1p,q,r to
SU(2, 1) where the generators fix complex lines. Note we could have made other
choices. For example, we could choose the generators to be antiholomorphic
isometries, or we could choose reflections in three complex lines but with higher
order. These choices lead to interesting results, but we will not consider them here.
A crucial observation is that when min{p, q, r}≥ 3, there is a one (real) dimensional
representation space of complex hyperbolic triangle groups with 1/p+1/q+1/r <1
(either make a simple dimension count or see [Brehm 1990] for example). This
means that the representation is determined up to conjugacy by p, q, r and one
extra variable. This variable is determined by certain traces; see, for example,
[Pratoussevitch 2005].

In order to state our main results, we need a little terminology. Elements of
SU(2, 1) act on complex hyperbolic space H2

C
and its boundary (see below). An

element A ∈ SU(2, 1) is called loxodromic if it fixes two points, both of which lie
on ∂H2

C
; parabolic if it fixes exactly one point, and this point lies on ∂H2

C
; elliptic

if it fixes at least one point of H2
C

. Discrete groups cannot contain elliptic elements
of infinite order. Therefore in a representation of an abstract group to SU(2, 1),
if an element of infinite order in the abstract group is represented by an elliptic
map then the representation is not discrete or not faithful (or both); compare with
[Goldman and Parker 1992].

Complex hyperbolic triangle groups have a rich history; see Schwartz’s ICM
survey [2002] for an overview. In particular, he presented the following conjectural
picture:

Conjecture 1.1 [Schwartz 2002]. Let 1p,q,r be a triangle group with p ≤ q ≤ r .
Then any complex hyperbolic representation 0 of 1p,q,r is discrete and faithful if
and only if WA = I1 I3 I2 I3 and WB = I1 I2 I3 are not elliptic. Furthermore:

(i) If p < 10 then 0 is discrete and faithful if and only if WA = I1 I3 I2 I3 is
nonelliptic.

(ii) If p>13 then 0 is discrete and faithful if and only if WB = I1 I2 I3 is nonelliptic.

The initial step towards solving this conjecture is the following result of Grossi.

Proposition 1.2 [Grossi 2007]. Let 1p,q,r be a triangle group with p ≤ q ≤ r . De-
fine WA = I1 I3 I2 I3 and WB = I1 I2 I3. Then for complex hyperbolic representations
of 1p,q,r :

(i) If p < 10 and WA = I1 I3 I2 I3 is nonelliptic then WB is nonelliptic.

(ii) If p > 13 and WB = I1 I2 I3 is nonelliptic then WA is nonelliptic.
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A motivating example, initially considered by Goldman and Parker [1992] and
completed by Schwartz [2001b; 2005], concerns complex hyperbolic ideal triangle
groups, that is, representations of 1∞,∞,∞. This result may be summarised as
follows:

Theorem 1.3 [Goldman and Parker 1992; Schwartz 2001b; 2005]. Let0=〈I1,I2,I3〉

be a complex hyperbolic (∞,∞,∞) triangle group. Then 0 is a discrete and
faithful representation of 1∞,∞,∞ if and only if I1 I2 I3 is nonelliptic.

Note that this gives a complete solution to Schwartz’s conjecture in the case
p = q = r =∞. Furthermore, Schwartz [2001a] gives an elegant description of the
group where I1 I2 I3 is parabolic.

Theorem 1.4 [Schwartz 2001a]. Let 0 = 〈I1, I2, I3〉 be the (∞,∞,∞) complex
hyperbolic triangle group for which I1 I2 I3 is parabolic. Let 02 = 〈I1 I2, I1 I3〉

be the index-2 subgroup of 0 with no complex reflections. Then H2
C
/02 is a

complex hyperbolic orbifold whose boundary is a triple cover of the Whitehead link
complement.

Schwartz [2007] proves his conjecture for min{p, q, r} sufficiently large (but
unfortunately with no effective bound on this minimum).

Theorem 1.5 [Schwartz 2007]. Let 0 = 〈I1, I2, I3〉 be a complex hyperbolic
(p, q, r) triangle group with p ≤ q ≤ r . If p is sufficiently large, then 0 is a
discrete and faithful representation of 1p,q,r if and only if I1 I2 I3 is nonelliptic.

Our main result solves Schwartz’s conjecture in the case when p = q = 3.

Theorem 1.6. Let n be an integer at least 4. Let 0 = 〈I1, I2, I3〉 be a complex
hyperbolic (3, 3, n) triangle group. Then 0 is a discrete and faithful representation
of 13,3,n if and only if I1 I3 I2 I3 is nonelliptic.

Note that the “only if” part is a consequence of our observation about elliptic
elements above. The “if” part will follow from Corollary 4.4 below.

For the representation where I1 I3 I2 I3 is parabolic, when n= 4 and 5 we have the
following description of the quotient orbifold from the census of Falbel, Koseleff
and Rouillier [Falbel et al. 2015]. The case n = 4 combines work of Deraux, Falbel
and Wang [Deraux and Falbel 2015; Falbel and Wang 2014]. The cleanest statement
may be found in [Deraux 2015, Theorem 4.2], which also treats the case n = 5.

Theorem 1.7 [Deraux 2015, Theorem 4.2]. (i) Let 0 = 〈I1, I2, I3〉 be the complex
hyperbolic (3, 3, 4) triangle group for which I1 I3 I2 I3 is parabolic. Let 02 =

〈I1 I2, I1 I3〉 be the index-2 subgroup of 0 with no complex reflections. Then 02 is
conjugate to both ρ1−1(π1(M4)) and ρ4−1(π1(M4)) from [Falbel et al. 2015]. In
particular, H2

C
/02 is a complex hyperbolic orbifold whose boundary is the figure

eight knot complement.
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(ii) Let 0 = 〈I1, I2, I3〉 be the complex hyperbolic (3, 3, 5) triangle group for which
I1 I3 I2 I3 is parabolic. Let 02 = 〈I1 I2, I1 I3〉 be the index-2 subgroup of 0 with no
complex reflections. Then 02 is conjugate to both ρ4−3(π1(M9)) and ρ3−3(π1(M15))

from [Falbel et al. 2015].

It should be possible to give a similar description of the other complex hyperbolic
(3, 3, n) triangle groups for which I1 I3 I2 I3 is parabolic.

Note that Theorem 1.6 holds in the case n =∞. This follows from recent work
of Parker and Will [2015b] (see also [Parker and Will 2015a]). Furthermore, if as
above 02 = 〈I1 I2, I1 I3〉 is the index-2 subgroup of representation of the (3, 3,∞)
triangle group for which I1 I3 I2 I3 is parabolic, then H2

C
/02 is a complex hyperbolic

orbifold whose boundary is the Whitehead link complement. This is one of the
representations in [Falbel et al. 2015].

Finally, we note some further interesting groups in this family.

Theorem 1.8 [Thompson 2010]. The complex hyperbolic (3, 3, 4) triangle group
with I1 I3 I2 I3 of order 7 and the complex hyperbolic (3, 3, 5) triangle group with
I1 I3 I2 I3 of order 5 are both lattices.

Our method of proof will be to construct a Dirichlet domain based at the fixed
point of the order-n elliptic map I1 I2. Since this point has nontrivial stabiliser,
this domain is not a fundamental domain for 0, but it is a fundamental domain
for the coset space of the stabiliser of this point in 0. Of course, in order to
prove directly that this is a Dirichlet domain, we would have to check infinitely
many inequalities. Instead, we construct a candidate Dirichlet domain and then
use the Poincaré polyhedron theorem for coset decompositions (see [Mostow 1980,
Theorem 6.3.2] or [Deraux et al. 2015, Theorem 3.2], for example).

In the case of a Fuchsian (3, 3, n) triangle group acting on the hyperbolic plane, a
fundamental domain is a hyperbolic triangle with internal angles π/3, π/3 and π/n.
The Dirichlet domain with centre the fixed point of an order-n elliptic map is a
regular hyperbolic 2n-gon with internal angles 2π/3. This 2n-gon is made up of
2n copies of the triangular fundamental domain for the (3, 3, n) group; see Figure 1.
The stabiliser of the order-n fixed point, which is a dihedral group of order 2n, fixes
the 2n-gon and permutes the triangles.

For the complex hyperbolic (3, 3, n) triangle groups, we will see that the com-
binatorial structure of the Dirichlet domain D is the same as that in the Fuchsian
case. Namely, D has 2n sides, each of which is contained in a bisector. Each side
meets exactly two other sides (in the case where I1 I3 I2 I3 is parabolic, there are
some additional tangencies between sides on the ideal boundary). The sides are
permuted by the dihedral group 〈I1, I2〉.

In Section 2 we give the necessary background on complex hyperbolic geometry
and the Poincaré polyhedron theorem. In Section 3 we normalise the generators
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of 0 and discus the parameters this involves. Finally, in Section 4 we consider the
bisectors and their intersection properties. This is the heart of the paper.

2. Background

Complex hyperbolic space. Let C2,1 be the three-dimensional complex vector
space equipped with a Hermitian form H of signature (2, 1). In this paper we
consider the diagonal Hermitian form H = diag(1, 1,−1). Thus if u= (u1, u2, u3)

t

and v = (v1, v2, v3)
t then the Hermitian form is given by

〈u, v〉 = v∗H u = u1v̄1+ u2v̄2− u3v̄3.

Define

V− = {v ∈ C2,1
: 〈v, v〉< 0}, V0 = {v ∈ C2,1

−{0} : 〈v, v〉 = 0}.

There is a natural projection map P from C2,1
−{0} to CP2 that identifies all nonzero

(complex) scalar multiples of a vector in C2,1. Complex hyperbolic space is defined
to be H2

C
=PV− and its boundary is ∂H2

C
=PV0. Clearly, if v lies in V− or V0 then

v3 6= 0 and so H2
C
∪ ∂H2

C
is contained in the affine chart of CP2 with v3 6= 0. We

canonically identify this chart with C2 by setting z = v1/v3 and w = v2/v3. Thus
a vector (z, w) ∈ C2 corresponds to [z : w : 1]t in CP2. Evaluating the Hermitian
form at this point gives |z|2+ |w|2− 1= (|v1|

2
+ |v2|

2
− |v3|

2)/|v3|
2. Therefore

H2
C = {(z, w) ∈ C2

: |z|2+ |w|2 < 1}, ∂H2
C = {(z, w) ∈ C2

: |z|2+ |w|2 = 1}.

In other words, H2
C

is the unit ball in C2 and its boundary is the unit sphere S3.
The Bergman metric on H2

C
is given in terms of the Hermitian form. Let u and v

be points in H2
C

and let u and v be vectors in V− so that Pu = u and Pv = v. The
Bergman metric is given as a Riemannian metric ds2 or a distance function ρ(u, v)
by the formulae

ds2
=
−4
〈u, u〉2

det
(
〈u, u〉 〈du, u〉
〈u, du〉 〈du, du〉

)
, cosh2

(
ρ(u, v)

2

)
=
〈u, v〉〈v, u〉
〈u, u〉〈v, v〉

.

The formulae for the Bergman metric are homogeneous and so the ambiguity in the
choice of u and v does not matter.

Let SU(2, 1) be the group of unimodular matrices preserving the Hermitian
form H . An element A of SU(2, 1) acts on H2

C
as A(u)= P(Au), where u is any

vector in V− with Pu= u. It is clear that scalar multiples of the identity act trivially.
Since the determinant of A is 1, such a scalar multiple must be a cube root of unity.
Therefore, we define PU(2, 1)= SU(2, 1)/{ωI :ω3

= 1}. Since the Bergman metric
is given in terms of the Hermitian form, it is clear that elements of SU(2, 1) or
PU(2, 1), act as isometries of H2

C
. Indeed, PU(2, 1) is the full group of holomorphic

isometries of H2
C

. In what follows, we choose to work with matrices in SU(2, 1).
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There are two kinds of totally geodesic two-dimensional submanifolds in H2
C

:
complex lines and totally real totally geodesic subspaces. Let c ∈ C2,1 be a vector
with 〈c, c〉> 0. Then a complex line is the projection of the set {z ∈C2,1

: 〈z, c〉= 0}.
The vector c is then called a polar vector of the complex line. The complex reflection
with polar vector c is defined to be

Ic(z)=−z+
2〈z, c〉
〈c, c〉

c.

Bisectors and Dirichlet domains. We will consider subgroups of SU(2, 1) acting
on H2

C
and we want to show they are discrete. We will do this by constructing a

fundamental polyhedron and using the Poincaré polyhedron theorem. There are
no totally geodesic real hypersurfaces in H2

C
and so we must choose hypersurfaces

for the sides of our polyhedra. We choose to work with bisectors. A bisector in
H2

C
is the locus of points equidistant (with respect to the Bergman metric) from

a given pair of points in H2
C

. Suppose that these points are u and v. Choose lifts
u = (u1, u2, u3)

t and v = (v1, v2, v3)
t to V− so that 〈u, u〉 = 〈v, v〉. Then the

bisector equidistant from u and v is

B = B(u, v)= {(z, w) ∈ H2
C : ρ((z, w), u)= ρ((z, w), v)}

= {(z, w) ∈ H2
C : |zū1+wū2− ū3| = |zv̄1+wv̄2− v̄3|}.

Suppose that we are given three points u, v1 and v2 in H2
C

. If the three corre-
sponding vectors u, v1 and v2 in V− form a basis for C2,1 then the intersection
B(u, v1)∩B(u, v2) is called a Giraud disc. This is a particularly nice type of bisector
intersection (see [Deraux et al. 2015, Section 2.5]).

Suppose that 0 is a discrete subgroup of PU(2, 1). Let u be a point of H2
C

and
write0u for the stabiliser of u in0 (that is, the subgroup of0 comprising all elements
fixing u). Then the Dirichlet domain Du(0) for 0 with centre u is defined to be

Du(0)= {v ∈ H2
C : ρ(v, u) < ρ(v, A(u)) for all A ∈ 0−0u}.

Dirichlet domains for certain cyclic groups are particularly simple.

Proposition 2.1. Let A be a regular elliptic element of PU(2, 1) of order 3. Then for
any point u not fixed by A, the Dirichlet domain Du(〈A〉) for the cyclic group 〈A〉
with centre u has exactly two sides.

Proof. Since there are only two nontrivial elements in 〈A〉, neither of which fix u,
the Dirichlet domain Du(〈A〉) is

Du(〈A〉)= {v ∈ H2
C : ρ(v, u) < ρ(v, A(u)), ρ(v, u) < ρ(v, A−1(u))}.
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Its images under A and A−1 are

A(Du(〈A〉))= {v : ρ(v, A(u)) < ρ(v, u), ρ(v, A(u)) < ρ(v, A−1(u))},

A−1(Du(〈A〉))= {v : ρ(v, A−1(u)) < ρ(v, u), ρ(v, A−1(u)) < ρ(v, A(u))}.

By considering the minimum of ρ(v, u), ρ(v, A(u)), ρ(v, A−1(u)) as v varies over
H2

C
, it is clear these three domains are disjoint and their closures cover H2

C
. �

Proposition 2.2 [Phillips 1992]. Let A∈SU(2, 1) have real trace which is at least 3.
Then for any u ∈ H2

C
, the bisectors B(u, A(u)) and B(u, A−1(u)) are disjoint. Thus,

the Dirichlet domain Du(〈A〉) has exactly two sides.

The Poincaré polyhedron theorem. Our goal is to construct the Dirichlet domain
for a complex hyperbolic representation 0 of the (3, 3, n) triangle group with centre
the fixed point of an order-n elliptic map. If we use the definition of Dirichlet
domain, then we need to check infinitely many inequalities. Thus, we need to use
another method. This method is to construct a candidate Dirichlet domain and then
use the Poincaré polyhedron theorem.

The main tool we use to show discreteness is the Poincaré polyhedron theorem.
The version of this theorem that we use is for polyhedra D with a finite stabiliser;
see [Mostow 1980, Theorem 6.3.2] or [Deraux et al. 2015, Theorem 3.2]. Rather
than give a general statement of this theorem, we will state it in the particular case
we are interested in, namely Dirichlet polyhedra for reflection groups.

Let u be a point in H2
C

and let ϒ be a finite subgroup of PU(2, 1) fixing u. Let
A1, . . . , An be a finite collection of involutions in PU(2, 1) (so A2

i is the identity
for each i). Suppose that no Ai fixes u. Suppose that the group ϒ preserves this
collection of involutions under conjugation. That is, for each Ai with 1≤ i ≤ n and
each P ∈ϒ , we suppose that PAi P−1

= A j for some 1≤ j≤n. Let Bi=B(u, Ai (u))
be the bisector equidistant from u and Ai (u). If P ∈ϒ satisfies PAi P−1

= A j then
PAi (u)= A j (u) (since P(u)= u) and so P maps Bi to B j . We define D to be the
component of H2

C
−
⋃n

i=1 Bi containing u, and we suppose that there are points
from each of the Bi on the boundary of D (that is, the Bi are not nested). This
construction makes D open. Note that, by construction, ϒ maps D to itself.

For each 1≤ i ≤n, let si =Bi∩D. We call si a side of D. Such a side can be given
a cell structure based on how it intersects other sides. We suppose that the involutions
Ai for 1≤ i ≤ n satisfy the following conditions, and so form a side pairing of D:

(1) For each 1 ≤ i ≤ n, the involution Ai sends si to itself, preserving the cell
structure. The relation A2

i = id is called a reflection relation.

(2) For each 1≤ i ≤ n, we have D ∩ Ai (D)= si and D ∩ A(D)=∅.

(3) If v is a point in si and in no other side (that is, v lies in the relative interior
of si ) then there is an open neighbourhood Uv of v lying in D ∪ Ai (D).
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Note that, unlike the case of reflection groups in constant curvature, Ai does not
fix si pointwise. Therefore, we could have subdivided si into two sets (each of
dimension 3) that are interchanged by Ai . In practice this would cause unnecessary
complication.

Suppose that si and s j are two sides with nonempty intersection. Their intersec-
tion r = si ∩ s j is called a ridge of D. Since Ai preserves the cell structure of si ,
we see that Ai (r)= si ∩ sk is another ridge of D. Applying Ak gives another ridge
in sk . Continuing in this way gives a ridge cycle

(r1, si0, si1)
Ai1−−→ (r2, si1, si2)

Ai2−−→ (r3, si2, si3) · · · .

Here (r j , si j−1, si j ) is an ordered triple with r j = si j−1 ∩ si j . Since there are finitely
many ϒ orbits of r1, eventually we find a ridge rm+1 = sim ∩ sim+1 so that the
corresponding ordered triple satisfies

(rm+1, sim , sim+1)
P
−→ (r1, si0, si1)

for some P ∈ ϒ . We call T1 = PAim · · · Ai1 the cycle transformation associated
to r1. It means that the ridge cycle starts at (r1, si0, si1) and ends to itself by T1.
Clearly T1 maps r1 to itself. Of course, T1 may not act as the identity on r1 and
even if it does, it may not act as the identity on H2

C
. Nevertheless, we suppose T1

has finite order `. The relation T `
i = id is called a cycle relation.

In the example we are interested in, the ridge cycle is

(r1, si0, si1)
Ai1−−→ (r2, si1, si2)

P
−→ (r1, si0, si1)

and, in fact, si2 = si0 and so r2 = r1. Moreover, P is an involution with P(r1)= r1

and P(si1)= si0 . Hence the cycle transformation is T1 = PAi1 , which happens to
have order 3. Thus, the cycle relation is T 3

1 = (PAi1)
3
= id.

We suppose that D satisfies the cycle condition which means that copies of D
tessellate a neighbourhood for each ridge r . Furthermore, the relevant copies of D
are its preimages under suffix subwords of T `. The full statement is explained in [De-
raux et al. 2015]. For brevity, we state this condition only in the special case we are
interested in. Let r be a ridge and let T = PAi be its cycle transformation with cycle
relation (PAi )

3
= id. Let C={id, PAi , (PAi )

2
}. Then the cycle condition states that

(1) r =
⋂
C∈C

C−1(D).

(2) If C1,C2 ∈ C with C1 6= C2 then C−1
1 (D)∩C−1

2 (D)=∅.

(3) If v is a point in r and in no other ridge (that is, v lies in the relative interior
of r ) then there is an open neighbourhood Uv of v with

Uv ⊂

⋃
C∈C

C−1(D).
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It means that there are exactly three copies of D along each ridge r , which are D,
T (D) and T 2(D). Observe that the stabiliser of r is generated by Ai and P . Hence
it is a dihedral group of order 6. Since Ai , P and PAi P−1 preserve one of the three
copies and interchange the other two, the stabiliser preserves the three copies of D.

Finally, if two sides of D are asymptotic at a point v of ∂H2
C

then there is a
horoball Hv so that Hv intersects D only in facets of D containing v and Hv is
preserved by the stabiliser of v in 0. We say that Hv is a consistent horoball at v.
In particular, if v is a fixed point of a parabolic element of 0 then there exists a
consistent horoball at v.

The Poincaré polyhedron theorem states:

Theorem 2.3 [Mostow 1980, Theorem 6.3.2; Deraux et al. 2015, Theorem 3.2].
Suppose that D is a polyhedron on H2

C
with sides contained in bisectors together

with a side pairing. Let ϒ < PU(2, 1) be a discrete group of automorphisms of D.
Let 0 be the group generated by ϒ and the side pairing maps. Suppose that the
cycle condition holds at all ridges of D and that there is a consistent horoball at all
points (if any) where sides of D are asymptotic. Then:

(1) 0 is discrete.

(2) The images of D under the cosets of ϒ in 0 tessellate H2
C

.

(3) A fundamental domain for 0 may be obtained by intersecting D with a funda-
mental domain for ϒ .

(4) A presentation for 0 is given as follows. The generators are a generating set
for ϒ together with all side pairing maps. The relations are generated by all
relations in ϒ , all reflection relations and all cycle relations.

3. The generators

Consider complex reflections I1 and I2 in SU(2, 1) so that I1 I2 has order n and
fixes the origin o. Writing c = cos(π/n) and s = sin(π/n), we may choose I1

and I2 to be

(3-1) I1 =

−c s 0
s c 0
0 0 −1

 , I2 =

−c −s 0
−s c 0

0 0 −1

 .
Note that polar vectors of I1 and I2 are

n1 =

 s
1+ c

0

 , n2 =

 −s
1+ c

0

 .
We want to find I3 so that I1 I3 and I2 I3 both have order 3. Conjugating by a

diagonal map diag(eiψ , eiψ , e−2iψ) if necessary, we may suppose that the polar
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Figure 1. The 2n-gon in the hyperbolic plane made up of 2n copies
of a (3, 3, n) triangle.

vector of I3 is

n3 =

 a
beiθ

d − 1

 ,
where a, b, d are nonnegative real numbers satisfying a2

+b2
−(d−1)2= 2(d−1),

that is, a2
+b2
−d2
=−1. Furthermore, complex conjugating if necessary, we may

always assume θ ∈ [0, π]. Then

(3-2) I3 =

−1+ a2/(d − 1) abe−iθ/(d − 1) −a
abeiθ/(d − 1) −1+ b2/(d − 1) −beiθ

a be−iθ
−d

 .
It is easy to check that I3 lies in SU(2, 1), has order 2 and polar vector n3.

Lemma 3.1. Let I1, I2 and I3 be given by (3-1) and (3-2). If I1 I3 and I2 I3 have
order 3 then θ = π/2 and

(3-3) c(a2
− b2)= d(d − 1).

Proof. The condition that I1 I3 and I2 I3 have order 3 is equivalent to tr(I1 I3) =

tr(I2 I3)= 0. That is,

−c(a2
− b2)+ 2sab cos θ

d − 1
+ d =

−c(a2
− b2)− 2sab cos θ

d − 1
+ d = 0.

The result follows directly. �
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From now on, we write θ = π/2 in (3-2). Since we know a2
+ b2
= d2
− 1 and

a2
− b2
= d(d − 1)/c, we immediately have

(3-4) a2
= (d − 1)(1+ d + d/c)/2, b2

= (d − 1)(1+ d − d/c)/2.

Corollary 3.2. Let

ι :

z1

z2

z3

 7−→
 z̄1

−z̄2

z̄3

 .
Then ι has order 2 and

ιI1ι= I2, ιI2ι= I1, ιI3ι= I3.

Proof. It is easy to see that ι2 is the identity. A simple calculation shows ι(n1)= n2

and ι(n3)= n3, using eiθ
= i . �

Lemma 3.3. The group 〈I1, I2, I3〉 is determined up to conjugacy by the variable d ,
which lies in the interval 1< d ≤ c/(1− c). Moreover, 〈I1, I2, I3〉 lies in SO(2, 1)
when d = c/(1− c).

Proof. We have conjugated so that I1 and I2 have the form (3-1), and I3 has the
form (3-2) with θ = π/2. After this conjugation, the only remaining parameters
are the nonnegative real numbers a, b and d. Using (3-4) these are completely
determined by d . Moreover, again using (3-4) we see that a2 and b2 are nonnegative
if and only if d ≥ 1 and d ≤ c/(1− c). We cannot have d = 1 or else n3 is the zero
vector. Thus 1< d ≤ c/(1− c). Finally, when d = c/(1− c), we have b = 0 and
the entries of I3 are all real. �

Lemma 3.4. Let I1, I2 and I3 be given by (3-1) and (3-2). Suppose I1 I3 and I2 I3

have order 3. Then I1 I3 I2 I3 is elliptic if and only if d < 3/(4s2).

Proof. Calculating directly, we see that

tr(I1 I3 I2 I3)=
c2(a2

− b2)2

(d − 1)2
+

2(c2
− s2)(d − 1− a2

− b2)

d − 1
− 2c(a2

− b2)+ d2

= 4s2d.

(We could have derived this using the formulae in [Pratoussevitch 2005].) The
condition that I1 I3 I2 I3 is elliptic is equivalent to 3> tr(I1 I3 I2 I3)= 4s2d. �

Thus, our parameter space for 〈I1, I2, I3〉 with I1 I3 I2 I3 nonelliptic is given by

(3-5)
3

4s2 ≤ d ≤
c

1− c
.

Note that the condition n > 3 implies both 3/(4s2) > 1 and c/(1− c) > 1. For
example, when n = 4 we have c = s = 1/

√
2 and our range becomes

3/2≤ d ≤
√

2+ 1.
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4. The bisectors

We define a polyhedron D bounded by sides contained in 2n bisectors.

Definition 4.1. For k ∈ Z, define the involution Ak ∈ 〈I1, I2, I3〉 as follows:

(1) If k = 2m is an even integer then Ak = (I2 I1)
k/2 I3(I1 I2)

k/2.

(2) If k = 2m+ 1 is an odd integer then Ak = (I2 I1)
(k−1)/2 I2 I3 I2(I1 I2)

(k−1)/2.

Let o be the fixed point of I1 I2 in H2
C

. For all integers k, the bisector Bk is defined
to be the bisector equidistant from o and Ak(o). Note that in both cases Ak+2n = Ak

and so Bk+2n = Bk . This gives 2n bisectors B−n+1 to Bn and we may take the index
k mod 2n.

The following lemma follows immediately from the definition.

Lemma 4.2. Let B−n+1 to Bn be as defined in Definition 4.1. Then for each k
mod 2n and each m mod n:

(1) The map (I2 I1)
m sends Bk to B2m+k .

(2) The map (I2 I1)
m I2 sends Bk to B2m+1−k . In particular, the map (I2 I1)

k I2

sends Bk to Bk+1.

(3) The antiholomorphic involution ι defined in Corollary 3.2 sends Bk to B−k . In
particular, the map (I2 I1)

m I2ι sends Bk to B2m+1+k .

The main result of this section is that the combinatorial configuration of the
bisectors does not change as d decreases from c/(1−c) to 3/(4s2). More precisely:

Theorem 4.3. Let B−n+1 to Bn be as defined in Definition 4.1. Suppose that
3/(4s2)≤ d ≤ c/(1− c). Then, taking the indices mod 2n, for each k:

(1) The bisector Bk intersects Bk±1 in a Giraud disc. This Giraud disc is preserved
by Ak Ak±1, which has order 3.

(2) The intersection of Bk with Bk±2 is contained in the halfspace bounded by Bk±1

not containing o.

(3) The bisector Bk does not intersect Bk±` for 3≤`≤n. Moreover, the boundaries
of these bisectors are disjoint except for when `= 3 and d = 3/(4s2), in which
case the boundaries intersect in a single point, which is a parabolic fixed point.

As a corollary to this theorem, we can use the Poincaré polyhedron theorem to
prove the “if” part of Theorem 1.6.

Corollary 4.4. Let A−n+1 to An and B−n+1 to Bn be as in Theorem 4.3. Suppose
that 3/(4s2) ≤ d ≤ c/(1− c). Let D be the polyhedron in H2

C
containing o and

bounded by B−n+1 to Bn . Then the maps A−n+1 to An form a side paring for D
that satisfies the conditions of the Poincaré polyhedron theorem, Theorem 2.3. In
particular, 〈I1, I2, I3〉 is a discrete and faithful representation of 13,3,n .
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Proof. Since Ak is an involution, it is clear that the {Ak} form a side pairing for D.
Now consider the ridge rk = Bk ∩Bk+1. Applying either of the side pairing maps
Ak or Ak+1 sends this ridge to itself. We then apply Pk = (I2 I1)

k I2 to obtain the
cycle transformation Pk Ak . When k is even,

Pk Ak = (I2 I1)
k I2(I2 I1)

k/2 I3(I1 I2)
k/2
= (I2 I1)

k/2 I2 I3(I1 I2)
k/2,

and when k is odd,

Pk Ak = (I2 I1)
k I2(I2 I1)

(k−1)/2 I2 I3 I2(I1 I2)
(k−1)/2

= (I2 I1)
(k+1)/2 I3 I1(I1 I2)

(k+1)/2.

In both cases, Pk Ak is equal to Ak Ak+1, which has order 3. There is a neighbour-
hood Uk of the ridge rk for which the intersection of Uk with D is the same as
its intersection with the Dirichlet domain for 〈Pk Ak〉. Therefore, we have local
tessellation around all the ridges of D using the argument of Proposition 2.1.

All the other sides of D are disjoint, apart from when d = 3/(4s2), in which
case Bk and Bk±3 are asymptotic at a point of ∂H2

C
. This point is a parabolic fixed

point, as required.
Finally, each side yields the reflection relation A2

k , which is conjugate to I 2
3 .

The cycle relations give (Pk Ak)
3, which are conjugate to (I2 I3)

3 when k is even
and (I3 I1)

3 when k is odd. In addition we have the relations from ϒ = 〈I1, I2〉,
which are I 2

1 , I 2
2 and (I1 I2)

n . From the Poincaré theorem, all other relations may
be deduced from these. Thus 〈I1, I2, I3〉 is a faithful representation of 13,3,n . �

Write ck = cos(kπ/n) and sk = sin(kπ/n). Then

(I2 I1)
m
=

c2m −s2m 0
s2m c2m 0
0 0 1

 , (I2 I1)
m I2

−c2m+1 −s2m+1 0
−s2m+1 c2m+1 0

0 0 −1

 .
We have

(I2 I1)
m I3(o)=

−c2ma+ s2mbi
−s2ma− c2mbi

−d

 , (I1 I2)
m I3(o)=

−c2ma− s2mbi
s2ma− c2mbi
−d

 .
Also

(I2 I1)
m I2 I3(o)=

c2m+1a+s2m+1bi
s2m+1a−c2m+1bi

d

 , (I1 I2)
m I1 I3(o)=

 c2m+1a−s2m+1bi
−s2m+1a−c2m+1bi

d

.
We begin by proving Theorem 4.3(1).

Proposition 4.5. For each −n+1≤ k ≤ n, the bisectors Bk and Bk±1 (with indices
taken mod 2n) intersect in H2

C
in a Giraud disc. This Giraud disc is preserved by

(I2 I1)
k/2(I2 I3)(I1 I2)

k/2 when k is even and (I2 I1)
(k+1)/2(I3 I1)(I1 I2)

(k+1)/2 when k
is odd.
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Proof. Using Lemma 4.2 we need only consider k = 0 and k = 1. The bisectors
B0 and B1 are equidistant from o and from I3(o) = I3 I2(o) and from I2 I3(o)
respectively. Observe that I2 I3 does not fix o. Since the map I2 I3 has order 3,
the Dirichlet domain with centre o for the cyclic group 〈I2 I3〉 only contains faces
contained in these two bisectors. The intersection is a Giraud disc invariant under
powers of I2 I3 by construction. �

Next we prove Theorem 4.3(3) in the case where `= 2m+ 1 is odd.

Proposition 4.6. Suppose that 3/(4s2)≤ d ≤ c/(1− c). For each −n+ 1≤ k ≤ n
and 1≤m ≤ (n−1)/2, the bisectors Bk and Bk±(2m+1) (with indices taken mod 2n)
do not intersect in H2

C
. Moreover, their closures intersect on ∂H2

C
if and only if

d = 3/(4s2) and m = 1. In the latter case, the closures intersect in a unique point,
which is a parabolic fixed point.

Proof. Using Lemma 4.2 we need only consider B0 and B2m+1. These bisectors are
equidistant from o and I3(o)= I3 I2(I1 I2)

m(o) and from (I2 I1)
m I2 I3(o) respectively.

Consider the Dirichlet domain with centre o for the cyclic group 〈(I2 I1)
m I2 I3〉. We

claim that this Dirichlet domain has exactly two sides and these sides are disjoint.
To do so, we use Phillips’ theorem, Proposition 2.2.

A brief calculation shows that

tr
(
(I2 I1)

m I2 I3
)
=−c2m+1

a2
− b2

d − 1
+ d =

d(c− c2m+1)

c
=

2dsm+1sm

c
.

When 1≤ m ≤ (n− 1)/2, we have

smsm+1 ≥ ss2 = 2s2c

with equality if and only if m = 1. Therefore,

tr
(
(I2 I1)

m I2 I3
)
= 2dsm+1sm/c ≥ 4ds2

with equality if and only if m = 1. Hence, when 4ds2
≥ 3, we have (I2 I1)

m I2 I3 is
nonelliptic with real trace, and is loxodromic unless m = 1 and d = 3/(4s2). By
Phillips’ theorem we see that any Dirichlet domain for 〈(I2 I1)

m I2 I3〉 has two faces
and these faces do not intersect in H2

C
.

In fact, when d = 3/(4s2) and m = 1, the bisectors B0 and B3 are asymptotic on
the boundary of H2

C
at the (parabolic) fixed point of I2 I1 I2 I3. �

Proposition 4.7. (i) Suppose p = [z, w, 1]t lies on B2` ∩ B−2`. Then for some
angles θ , φ, we have

z =
s2`a(cos θeiφ

+ d)− c2`b sin θeiφ

c2`s2`(a2− b2)
,

w =
−s2`bi(cos θeiφ

+ d)+ c2`ai sin θeiφ

c2`s2`(a2− b2)
.



COMPLEX HYPERBOLIC (3, 3, n) TRIANGLE GROUPS 447

(ii) Suppose p = [z, w, 1]t lies on B2`+1 ∩B−2`−1. Then for some angles θ , φ, we
have

z =
s2`+1a(cos θeiφ

+ d)− c2`+1b sin θeiφ

c2`+1s2`+1(a2− b2)
,

w =
s2`+1bi(cos θeiφ

+ d)− c2`+1ai sin θeiφ

c2`+1s2`+1(a2− b2)
.

Proof. First consider the bisector intersection from (i). Then z and w satisfy

1=
∣∣z(−c2`a+ s2`bi)+w(s2`a+ c2`bi)+ d

∣∣,
1=

∣∣z(−c2`a− s2`bi)+w(−s2`a+ c2`bi)+ d
∣∣.

Expanding out, adding and subtracting yields

1=
∣∣zc2`a−wc2`bi − d

∣∣2+ ∣∣zs2`bi +ws2`a
∣∣2,

0= 2 Re
(
(zc2`a−wc2`bi − d)(−z̄s2`bi + w̄s2`a)

)
.

Thus we can write

zc2`a−wc2`bi − d = cos θeiφ,

zs2`bi +ws2`a = i sin θeiφ.

Inverting these equations yields

z =
s2`a(cos θeiφ

+ d)− c2`b sin θeiφ

c2`s2`(a2− b2)
,

w =
−s2`bi(cos θeiφ

+ d)+ c2`ai sin θeiφ

c2`s2`(a2− b2)
.

For the second bisector intersection, we have

1=
∣∣z(c2`+1a+ s2`+1bi)+w(−s2`+1a+ c2`+1bi)− d

∣∣2,
1=

∣∣z(c2`+1a− s2`+1bi)+w(s2`+1a+ c2`+1bi)− d
∣∣2.

Expanding out, adding and subtracting yields

1=
∣∣zc2`+1a+wc2`+1bi − d

∣∣2+ ∣∣−zs2`+1bi +ws2`+1a
∣∣2,

0= 2 Re
(
(zc2`+1a+wc2`+1bi − d)(z̄s2`+1bi + w̄s2`+1a)

)
.

So once again we have

zc2`+1a+wc2`+1bi − d = cos θeiφ,

−zs2`+1bi +ws2`+1a =−i sin θeiφ.
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Thus,

z =
s2`+1a(cos θeiφ

+ d)− c2`+1b sin θeiφ

c2`+1s2`+1(a2− b2)
,

w =
s2`+1bi(cos θeiφ

+ d)− c2`+1ai sin θeiφ

c2`+1s2`+1(a2− b2)
. �

We can now prove Theorem 4.3(3) in the case where `= 2m is even.

Proposition 4.8. Suppose that 3/(4s2)≤ d ≤ c/(1− c). For each −n+ 1≤ k ≤ n
and 2≤ m ≤ n/2, the bisectors Bk and Bk±2m (with indices taken mod 2n) do not
intersect in complex hyperbolic space.

Proof. Using Lemma 4.2, we need only consider Bm and B−m where 2≤ m ≤ n/2.
Using Proposition 4.7 we see that an intersection point p = [z, w, 1]t of Bm

and B−m must satisfy

z =
sma(cos θeiφ

+ d)− cmb sin θeiφ

cmsm(a2− b2)
,

w =±
−smbi(cos θeiφ

+ d)+ cmai sin θeiφ

cmsm(a2− b2)
.

We claim that |z|2+ |w|2 ≥ 1 and so such a point does not lie in H2
C

. We have

c2
ms2

m(a
2
− b2)2(|z|2+ |w|2− 1)

=
∣∣sma(cos θeiφ

+ d)− cmb sin θeiφ
∣∣2

+
∣∣−smbi(cos θeiφ

+ d)+ cmai sin θeiφ
∣∣2− c2

ms2
m(a

2
− b2)2

= s2
m(a

2
+ b2)(cos2 θ + 2d cos θ cosφ+ d2)

− 2cmsmab(2 cos θ sin θ + 2d sin θ cosφ)

+ c2
m(a

2
+ b2) sin2 θ − c2

ms2
m(a

2
+ b2)2+ 4c2

ms2
ma2b2

= s2
m(d

2
− 1)(cos2 θ + 2d cos θ cosφ+ d2)

− 4cmsmab(cos θ sin θ + d sin θ cosφ)

+ c2
m(d

2
− 1) sin2 θ − c2

ms2
m(d

2
− 1)2+ 4c2

ms2
ma2b2

=
(
cos θ sin θ + d sin θ cosφ− 2cmsmab

)2
+ d2 sin2 θ sin2 φ

+ (s2
m(d

2
− 1)− sin2 θ)

(
cos2 θ + 2d cos θ cosφ+ d2

− c2
m(d

2
− 1)

)
≥ (s2

m(d
2
− 1)− sin2 θ)

(
cos2 θ + 2d cos θ cosφ+ d2

− c2
m(d

2
− 1)

)
.

Therefore, it is sufficient to prove

0< s2
m(d

2
− 1)− sin2 θ,(4-1)

0< cos2 θ + 2d cos θ cosφ+ d2
− c2

m(d
2
− 1).(4-2)
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In order to prove these inequalities, we need to use the lower bound on d . Using
m ≥ 2 and d ≥ 3/(4s2), we have

(4-3) (1− cm)d ≥ (1− c2)d = 2s2d ≥ 3/2.

We also use s2
m = 1− c2

m = (1− cm)(1+ cm) and cm ≥ 0 (the latter uses m ≤ n/2).
First, we consider (4-1):

s2
m(d

2
− 1)− sin2 θ =

1+ cm

1− cm
((1− cm)d)2− 2+ c2

m + cos2 θ

≥ ((1− cm)d)2− 2

≥ 1/4,

where the last inequality follows from (4-3). This proves (4-1).
Now consider (4-2):

cos2 θ+2d cosθ cosφ+d2
−c2

m(d
2
−1)=

(d(1−cm)+cosθ cosφ)2+cos2 θ sin2φ

1−cm

+
cm

1−cm

(
(d(1−cm))

2
−cos2 θ

)
+c2

m

≥
cm

1−cm
(9/4−cos2 θ)

> 0.

Again we used (4-3). This proves (4-2) and so establishes the result. �

Propositions 4.6 and 4.8 complete the proof of Theorem 4.3(3). It remains to
prove Theorem 4.3(2). That is, we must consider the intersection of Bk and Bk±2.

Consider B1 ∩ B−1. We claim that the fixed point of I3 I1 I2 I3 (that is I3(o))
lies on B1 ∩ B−1. The bisector B1 consists of all points equidistant from o and
A1(o)= I2 I3 I2(o)= I2 I3(o). We have

ρ
(
I3(o), I2 I3(o)

)
= ρ

(
o, I3 I2 I3(o)

)
= ρ

(
o, I2 I3(o)

)
.

The first equality follows since I3 is an isometry and the second since I3 I2 I3= I2 I3 I2

and I2(o)= o. Thus I3(o) lies on B1. A similar argument shows

ρ
(
I3(o), I1 I3(o)

)
= ρ

(
o, I1 I3(o)

)
.

and so I3(o) lies on B−1 as well. Thus B1 ∩B−1 is nonempty, which can be seen
in Figure 1. By symmetry, this comment also applies to the intersection of Bk

and Bk±2. We must show that this intersection never contributes a ridge of D.

Proposition 4.9. Suppose that 3/(4s2)≤ d ≤ c/(1− c). For each −n+ 1≤ k ≤ n,
all points of Bk ∩Bk±2 lie in the halfspace bounded by Bk±1 not containing o.
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Proof. Using Lemma 4.2 as before, it suffices to consider B1 and B−1. We need to
show that all points of B1 ∩B−1 lie in the halfspace closer to I3(o) than to o.

Suppose that p = [z, w, 1]t lies on B1 ∩ B−1. Using Proposition 4.7(ii) with
m = 0, and using (3-3) to write c(a2

− b2)= d(d − 1), we find

z =
sa(cos θeiφ

+ d)− cb sin θeiφ

sd(d − 1)
,(4-4)

w =
sbi(cos θeiφ

+ d)− cai sin θeiφ

sd(d − 1)
.(4-5)

Note that we used (3-3) to simplify the denominator.
The point p = [z, w, 1]t lies in the halfspace closer to I3(o) than to o if and

only if 1> |za−wbi − d|. We want to give this inequality in terms of θ , φ and d .
Suppose z and w satisfy (4-4) and (4-5) and consider za−wbi − d:

za−wbi − d =
sa2(cos θeiφ

+ d)− cab sin θeiφ

sd(d − 1)

+
sb2(cos θeiφ

+ d)− cab sin θeiφ

sd(d − 1)
− d

=
s(a2
+ b2) cos θeiφ

sd(d − 1)
−

2cab sin θeiφ

sd(d − 1)
+

s(a2
+ b2)d

sd(d − 1)
− d

=
s(d2
− 1) cos θeiφ

sd(d − 1)
−

2cab sin θeiφ

sd(d − 1)
+

s(d2
− 1)d

sd(d − 1)
− d

=
(d + 1) cos θeiφ

d
−

√
c2(d + 1)2− d2 sin θeiφ

sd
+ 1.

Therefore,

|za−wbi−d|2−1=
(d+1)2 cos2 θ

d2 +
c2(d+1)2 sin2 θ

s2d2 −
sin2 θ

s2

−
2(d+1)

√
c2(d+1)2−d2 cosθ sinθ

sd2

+
2(d+1)cosθ cosφ

d
−

2
√

c2(d+1)2−d2 sinθ cosφ
sd

.

Arguing as in the proof of Proposition 4.8, we have

|z|2+ |w|2− 1

=

∣∣∣∣sa(cos θeiφ
+ d)− cb sin θeiφ

sd(d − 1)

∣∣∣∣2+ ∣∣∣∣sbi(cos θeiφ
+ d)− cai sin θeiφ

sd(d − 1)

∣∣∣∣2− 1
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=
s2(a2

+ b2)| cos θeiφ
+ d|2

s2d2(d − 1)2
+

c2(a2
+ b2) sin2 θ

s2d2(d − 1)2
− 1

+
isc(2abi)(2 cos θ sin θ + 2d sin θ cosφ)

s2d2(d − 1)2

=
(d + 1) cos2 θ

d2(d − 1)
+

2(d + 1) cos θ cosφ
d(d − 1)

+
d + 1
d − 1

+
c2(d + 1) sin2 θ

s2d2(d − 1)
− 1

−
2
√

c2(d + 1)2− d2 cos θ sin θ
sd2(d − 1)

−
2
√

c2(d + 1)2− d2 sin θ cosφ
sd(d − 1)

=
2

d − 1
+
(d + 1) cos2 θ

d2(d − 1)
+

c2(d + 1) sin2 θ

s2d2(d − 1)
−

2
√

c2(d + 1)2− d2 cos θ sin θ
sd2(d − 1)

+
2(d + 1) cos θ cosφ

d(d − 1)
−

2
√

c2(d + 1)2− d2 sin θ cosφ
sd(d − 1)

.

Now we eliminate cosφ using the equation for |za−wbi − d|2 derived above:

|z|2+|w|2−1=
1

d−1
(|za−wbi−d|2−1)+

2cos2 θ

d−1
+

2sin2 θ

d−1

+
(d+1)cos2 θ

d2(d−1)
+

c2(d+1)sin2 θ

s2d2(d−1)
−

2
√

c2(d+1)2−d2 cosθ sinθ
sd2(d−1)

−
(d+1)2 cos2 θ

d2(d−1)
−

c2(d+1)2 sin2 θ

s2d2(d−1)
+

sin2 θ

s2(d−1)

+
2(d+1)

√
c2(d+1)2−d2 cosθ sinθ

sd2(d−1)

=
1

d−1
(|za−wbi−d|2−1)

+
1
d

(
cosθ+

√
c2(d+1)2−d2 sinθ

s(d−1)

)2

+
(4s2d−3)sin2 θ

s2(d−1)2
.

Since the last two terms are nonnegative, all points p=[z, w, 1]t with z andw given
by (4-4) and (4-5) and that satisfy |z|2+|w|2<1 must also satisfy |za−wbi−d|<1.
Geometrically, this means that all points in H2

C
that are on B1 ∩ B−1 are in the

halfspace closer to I3(o) than to o. This proves the result. �

This completes the proof of Theorem 4.3.
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TOPOLOGICAL ASPECTS OF HOLOMORPHIC MAPPINGS
OF HYPERQUADRICS FROM C2 TO C3

MICHAEL REITER

In this article we deduce some topological results concerning holomorphic
mappings of hyperquadrics under biholomorphic equivalence. We study the
class F of so-called nondegenerate and transversal holomorphic mappings
locally sending the sphere in C2 to a Levi-nondegenerate hyperquadric in C3,
which contains the most interesting mappings. We show that from a topo-
logical point of view there is a major difference when the target is the sphere
or the hyperquadric with signature (2, 1). In the first case, F modulo the
group of automorphisms is discrete, in contrast to the second case, where
this property fails to hold. Furthermore, we study some basic properties
such as freeness and properness of the action on F of automorphisms fix-
ing a given point to obtain a structural result for a particularly interesting
subset of F .

1. Introduction and results

We study holomorphic mappings between the sphere S2
⊂C2 and the hyperquadric

S3
ε ⊂ C3, which for ε =±1 is given by

S3
±
:=
{
(z1, z2, z3) ∈ C3

| |z1|
2
+ |z2|

2
± |z3|

2
= 1

}
,

so that S3
+
=S3 is the sphere in C3. Faran [1982] classified holomorphic mappings

between spheres in C2 and C3 and Lebl [2011] classified mappings sending S2 to
S3
−

. In [Reiter 2015] we give a new CR-geometric approach to reprove Faran’s
and Lebl’s results in a unified manner. Let us introduce the following equivalence
relation. For k = 1, 2 let Hk :Uk→ C3 be a holomorphic mapping where Uk is an
open and connected neighborhood of pk ∈ S2 and Hk(Uk ∩S2)⊂ S3

ε . We say H1

is equivalent to H2 if there exist automorphisms φ of S2 and φ′ of S3
ε such that

H2 = φ
′
◦ H1 ◦φ

−1.
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Theorem 1.1 [Reiter 2015, Theorem 1.3]. Given p ∈ S2, let U ⊂ C2 be an open
and connected neighborhood of p and H : U → C3 a nonconstant holomorphic
mapping satisfying H(U ∩S2) ⊂ S3

ε . Then H is equivalent to exactly one of the
following maps:

(i) H ε
1(z, w)= (z, w, 0),

(ii) H ε
2(z, w)=

(
z2,

(1−ε+z(1+ε))w
√

2
, w2

)
,

(iii) H ε
3(z, w)=

(
z, (1−ε+z2(1+ε))w

2z
,
(1−ε+z(1+ε))w2

2z

)
,

(iv) H ε
4(z, w)=

(
4z3, (3(1−ε)+(1+3ε)w2)w,

√
3(1−ε+2(1+ε)w+(1−ε)w2)z

)
1+3ε+3(1−ε)w2 .

Additionally, for ε =−1, we have

(v) H5(z, w)=
(
(2+
√

2z)z
1+
√

2z+w
,w,

(1+
√

2z−w)z
1+
√

2z+w

)
,

(vi) H6(z, w)=
(
(1−w)z, 1+w−w2, (1+w)z

)
1−w−w2 ,

(vii) H7(z, w)=
(
1, h(z, w), h(z, w)

)
for some nonconstant holomorphic function

h :U → C.

In fact, we study holomorphic mappings between the Heisenberg hypersurface
H2
⊂ C2 and H3

ε , where H3
+
= H3 is the Heisenberg hypersurface in C3. The

hypersurfaces H2 and H3
ε are biholomorphic to S2 and S3

ε respectively, except one
point, and are given by

H2
=
{
(z, w) ∈ C2

| Imw = |z|2
}
,

H3
ε =

{
(z′1, z′2, w

′) ∈ C3
| Imw′ = |z′1|

2
+ ε|z′2|

2}.
We denote by F the class of germs of 2-nondegenerate transversal mappings sending
a small piece of H2 to H3

ε . F is introduced in more detail in Definition 2.5 below.
This is, in some sense, the most natural and interesting class of mappings when
studying holomorphic mappings between H2 to H3

ε . From [Reiter 2015] we know
that F consists of mappings belonging to the orbits of the maps listed in (ii)–(vi) of
Theorem 1.1 with respect to the equivalence relation of automorphisms introduced
above, after composing with an appropriate Cayley transform.

For a germ of a real-analytic CR-submanifold (M, p) of CN, we write Autp(M, p)
for germs of real-analytic CR-diffeomorphisms fixing p, which we refer to as
isotropies of (M, p). Let us denote by G0 := Aut0(H2, 0)×Aut0(H3

ε, 0) the direct
product of the groups of isotropies of (H2, 0) and (H3

ε, 0), which we introduce in
Definition 2.3 below in more detail.

After showing that π :F→F /G0 is continuous, we obtain the following results.
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Theorem 1.2. The quotient topology τQ on F /G0 coincides with the induced
topology τJ of F , which carries the topology induced by the jet space J 3

0 (H
2,H3

ε).

In the next theorem we equip F with the topology τJ induced by the jet space
J 3

0 (H
2,H3

ε), the automorphism groups carry the topology of the 2-jet group (see
[Baouendi et al. 1997] for more details), and the quotient space X of F with respect
to the equivalence relation of Theorem 1.1 carries the quotient topology. For more
details on the different topologies we use, we refer to Section 2 below.

Theorem 1.3. The quotient space X of F with respect to the equivalence relation of
automorphisms of H2 and H3

ε is discrete for ε =+1 and not Hausdorff for ε =−1.

The above result was not known before and shows one major difference between
holomorphic mappings from the sphere in C2 to the sphere in C3 and to the hyper-
quadric with signature (2, 1) in C3. Furthermore, we study the action of G0 on F
given by G0×F→ F, (φ, φ′, H) 7→ φ′ ◦ H ◦φ−1. The action is called proper if
the associated map (φ, φ′, H) 7→ (H, φ′ ◦ H ◦φ−1) is a proper map, such that the
following result holds:

Theorem 1.4. The mapping N :G0×F→F given by N (φ, φ′, H) := φ′◦H ◦φ−1

is a proper action.

We write F⊂ F for the set of maps which have trivial stabilizers given below in
Lemma 3.1. Based on the above result we obtain the following theorem concerning
the real-analytic structure of F, where 5 : F→N denotes the normalization map
induced by the mapping N , and N denotes a particular set of representatives of the
quotient F /G0 defined in Lemma 3.1 below.

Theorem 1.5. If ε = +1 then 5 : F→ F /G0 is a real-analytic principal fiber
bundle with structure group G0. If ε =−1 then F is locally mapped to G0×N via
local real-analytic diffeomorphisms. In particular, F is not a smooth manifold.

Note that the second part of Theorem 1.5 stands in contrast to the case of maps
in Autp(M, p). Assuming some nondegeneracy conditions for certain germs of
real-analytic CR-submanifolds (M, p), such as Levi-nondegeneracy, it is known
that Autp(M, p) admits a manifold structure (see [Baouendi et al. 1997; 1999;
2004; Kowalski 2005; Kim and Zaitsev 2005; Lamel and Mir 2007; Lamel et al.
2008; Juhlin and Lamel 2013]). To prove Theorem 1.5 we use a real-analytic
version of the so-called local slice theorem for free and proper actions. For proper
smooth actions of noncompact Lie groups the first proof of the local slice theorem
was given in [Palais 1961, 2.2.2 Proposition]. In the real-analytic setting a global
slice theorem was proved by [Heinzner et al. 1996, Section VI] and [Illman and
Kankaanrinta 2000, Theorem 0.6].

We organize this paper as follows. We introduce the necessary notations, tools
and results in Section 2. In the following sections we study properties of the action
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of the group of isotropies on F and in Section 5 we investigate the connectedness
of F and discreteness of the quotient space. Using these results, in Section 7 we
obtain some structural and topological information of F and F /G0. Finally, in
Section 8 we study different normal forms with respect to isotropies. This article
is based on the author’s thesis [Reiter 2014] at the University of Vienna. Some
computations are carried out with Mathematica 7.0.1.0 [Wolfram 2008].

2. Preliminaries

Definition 2.1. We fix coordinates (z, w) = (z1, . . . , zn, w) ∈ Cn+1. For a germ
h : (Cn+1, 0)→ (C, 0) of a holomorphic function h(z, w)=

∑
α,β aαβzαwβ , we write

h̄(z̄, w) := h(z, w)=
∑

α,β āαβ z̄αwβ for the complex conjugate of h. Derivatives
of h with respect to z or w are denoted by

hzαwβ (0) :=
∂ |α|+|β|h
∂zα∂wβ

(0).

For n ≥ 1 and a germ of a map H : (Cn+1, 0) → (Cn′+1, 0) with components
H =

(
f1, . . . , fn′, g

)
, we write Hzαwβ (0)=

(
f1zαwβ (0), . . . , fn′zαwβ (0), gzαwβ (0)

)
.

Classes of maps, automorphisms and equivalence relations.

Definition 2.2. We write H(p; p′) := {H :(CN , p)→ (CN ′, p′) | H holomorphic}
for the set of germs of holomorphic mappings from (CN , p) to (CN ′, p′). For germs
of real-analytic hypersurfaces (M, p)⊂ CN and (M ′, p′)⊂ CN ′ , we denote by

H(M, p;M ′, p′) := {H ∈H(p; p′) | H(M∩U )⊂M ′, for U a neighborhood of p},

the set of germs of holomorphic mappings from (M, p) to (M ′, p′).

Definition 2.3. (i) We denote the collection of germs of locally real-analytic CR-
diffeomorphisms of (M, p) by

Aut(M, p) :=
{
H : (CN, p)→CN

| H holomorphic, H(M)⊂M, det(H ′(p)) 6= 0
}

and the group of isotropies of (M, p) fixing p by

Autp(M, p) := {H ∈ Aut(M, p) | H(p)= p}.

We write G0 :=Aut0(H2, 0)×Aut0(H3
ε, 0) and refer to elements of G0 as isotropies

of (H2, 0) and (H3
ε, 0).

(ii) We write R+ := {x ∈ R | x > 0} for the positive real numbers, denote the unit
circle in C by S1 := {eit

| 0≤ t < 2π} and set 0 :=R+×R×S1
×C. For an element

σγ ∈ Aut0(H2, 0) we denote γ = (λ, r, u, c) ∈ 0 and write

(2-1) σγ (z, w) :=
(λu(z+cw), λ2w)

1−2ic̄z+(r−i|c|2)w
.
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(iii) We define, for θ =±1 if ε =−1 and θ =+1 if ε =+1,

S2
ε,θ :=

{
a′ = (a′1, a′2) ∈ C2

| |a′1|
2
+ ε|a′2|

2
= θ

}
,(2-2)

and let

(2-3) U ′ :=
( u′a′1 −εu

′a′2
ā′2 ā′1

)
, u′ ∈ S1, a′ = (a′1, a′2) ∈ S

2
ε,θ .

We set 0′ := R+ ×R×S1
×S2

ε,θ ×C2 to denote elements σ ′γ ′ ∈ Aut0(H3
ε, 0) via

γ ′ = (λ′, r ′, u′, a′, c′) ∈ 0′, where c′ = (c′1, c′2):

σ ′γ ′(z
′, w′) :=

(λ′U ′ t(z′+c′w′), θλ′2w′)
1−2i(c̄′1z′1+εc̄

′

2z′2)+
(
r ′−i(|c′1|

2+ε|c′2|
2)
)
w′
.(2-4)

(iv) We call elements of 0×0′ standard parameters. If the standard parameters
(γ, γ ′) ∈ 0×0′ are chosen such that (σγ , σ ′γ ′)= (idC2, idC3), we say the standard
parameters are trivial.

Definition 2.4. For G, H ∈H(M, p;M ′, p′), we define an equivalence relation

G ∼ H :⇔ ∃(φ, φ′) ∈ Autp(M, p)×Autp′(M ′, p′) : G = φ′ ◦ H ◦φ−1.

The equivalence classes in H(M, p;M ′, p′)/∼ are denoted by

[F] := {G ∈H(M, p;M ′, p′) | G ∼ F}.

In the case where (p, p′) = (0, 0) and (M,M ′) = (H2,H3
ε), we call the above

relation isotropic equivalence and write O0(H) for the orbit of a map H , called the
isotropic orbit of H.

The class F , the normal form N and its classification. In [Reiter 2015] we intro-
duced the following class of mappings, which are 2-nondegenerate and transversal.
These mappings represent the immersive maps, which are not equivalent to the
linear embedding (see [Reiter 2015, Proposition 2.16]).

Definition 2.5. For a neighborhood U ⊂ C2 of 0, define F(U ) to be the set of
holomorphic mappings H = ( f1, f2, g), with H(U ∩ H2) ⊂ H3

ε , which satisfy
H(0)= 0, f1z(0) f2z2(0)− f2z(0) f1z2(0) 6= 0 and gw(0) > 0. Define F to be the set
of germs H , such that H ∈ F(U ) for some neighborhood U ⊂ C2 of 0.

Proposition 2.6 [Reiter 2015, Proposition 3.1]. Let H ∈ F . Then there exist
isotropies (σ, σ ′) ∈ G0 such that Ĥ := σ ′ ◦ H ◦ σ−1 satisfies Ĥ(0) = 0 and the
following conditions:

(i) Ĥz(0)= (1, 0, 0), (iii) f̂2z2(0)= 2, (vi) Re
(
ĝw2(0)

)
= 0,

(ii) Ĥw(0)= (0, 0, 1), (iv) f̂2zw(0)= 0, (vii) Re
(

f̂2z2w(0)
)
= 0.

(v) f̂1w2(0)= | f̂1w2(0)| ≥ 0,
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A holomorphic mapping of F satisfying the above conditions is called a normalized
mapping. The set of normalized mappings is denoted by N .

Remark 2.7. A mapping H ∈N necessarily satisfies the following conditions (see
[Reiter 2015, Remark 3.4]):

(i) H(0)= (0, 0, 0), (v) Hzw(0)=
( iε

2 , 0, 0
)
,

(ii) Hz(0)= (1, 0, 0), (vi) Hw2(0)= (| f1w2(0)|, f2w2(0), 0),

(iii) Hw(0)= (0, 0, 1), (vii) Hz2w(0)=
(
4i| f1w2(0)|, i Im( f2z2w(0)), 0

)
.

(iv) Hz2(0)= (0, 2, 0),

We classify all mappings belonging to N ' F /G0 in [Reiter 2015].

Theorem 2.8 [Reiter 2015, Theorem 4.1]. The set N consists of the following
mappings, where s ≥ 0:

Gε
1(z, w) :=

(
2z(2+ iεw), 4z2, 4w

)
/(4−w2),

Gε
2,s(z, w) :=

(
4z− 4εsz2

+ i(ε− s2)zw+ sw2,

4z2
+ s2w2, w(4− 4εsz− i(ε+ s2)w)

)
/
(
4− 4εsz− i(ε+ s2)w− 2iszw− εs2w2),

Gε
3,s(z, w) :=

(
256εz+ 96izw+ 64εsw2

+ 64z3
+ 64iεsz2w

− 3(3ε− 16s2)zw2
+ 4isw3,

256εz2
− 16w2

+ 256sz3
+ 16iz2w− 16εszw2

− iεw3,

w(256ε− 32iw+ 64z2
− 64iεszw− (ε+ 16s2)w2)

)
/
(
256ε− 32iw+ 64z2

− 192iεszw− (17ε+ 144s2)w2

+ 32iεz2w+ 24szw2
+ iw3).

Each mapping in N is not isotropically equivalent to any different mapping in N .

For ε=±1, Figure 1 depicts N in the parameter space according to Theorem 2.8
(see [Reiter 2015, §4] for more details).

Associated topologies. We deal with the following topologies (see, e.g., [Baouendi
et al. 1997]).

Definition 2.9. For K ⊂ CN a compact neighborhood of p ∈ CN , we denote by
HK (p; p′) the space of holomorphic mappings, defined in a neighborhood of K ,
which map p ∈ CN to p′ ∈ CN ′ equipped with the uniform norm on K . We equip
H(p; p′) with the inductive limit topology with respect to HK (p; p′), where K is
some compact neighborhood of p in CN . Then for H, Hn ∈H(p; p′), we say that
Hn converges to H if there exists K ⊂ CN a compact neighborhood of p such that
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G−2,0
G−

2, 1
2

G−2,1

G−3,0

G−1

G+2,0 G+3,0

G+1

Figure 1. N for ε =±1 in the parameter space.

each Hn is holomorphic in a neighborhood of K and Hn converges uniformly to
H on K . For H(M, p;M ′, p′)⊂H(p; p′), we consider the induced topology of
H(p; p′) denoted by τC .

Definition 2.10. Let Z ∈ CN be coordinates in CN , H : CN
→ CN ′ a holomorphic

mapping defined at p ∈ CN and α ∈ NN . We denote by j k
p H the k-jet of H at p

defined as

j k
p H :=

(
∂ |α|H
∂Zα

(p) : |α| ≤ k
)
,

and by J k
p,p′ the collection of all k-jets at p of germs of mappings from (CN, p) to

(CN ′, p′). We set J k
p := J k

p,p and denote the topology for J k
p,p′ by τJ , which we refer

to as the topology of the jet space. Let (M, p)⊂ (CN, p) and (M ′, p′)⊂ (CN ′, p′)
be germs of submanifolds. For k ∈N we denote by J k

q (M, p;M ′, p′) the space of
k-jets of H(M, p;M ′, p′) at q. We also define J k

q (M, p) := J k
q (M, p;M, p) and

J k
0 (M;M ′) := J k

0 (M, 0;M ′, 0). We denote by Gk
p(M, p)⊂ J k

p(M, p) the space of
k-jets of Autp(M, p) at p.

Note that J k
p(M, p;M ′, p′)⊂ J k

p,p′ . We identify J k
p,p′ with the space of germs

of holomorphic polynomial mappings, up to degree k, from CN to CN ′, which map
p∈CN to p′∈CN ′. Thus J k

p,p′ can be identified with some CK , where K :=N ′
(N+k

N

)
,

such that the topology τJ for J k
p,p′ is induced by the natural topology of CK .

Definition 2.11. We say K ⊂H(M, p;M ′, p′) admits a jet parametrization for K
of order k if there exists a mapping 9 : CN

×CK
⊃U → CN ′ , with K = N ′

(N+k
N

)
,

from above and U an open neighborhood of {p} × J k
p(M, p;M ′, p′), which is

holomorphic in the first N variables and real-analytic in the remaining K variables,
such that F(Z)=9(Z , j k

p F) for all F ∈ K.

If K ⊂ H(M, p;M ′, p′) admits a jet parametrization of some order k, then
τC = τJ , which follows from the real-analyticity in the last K variables. We need
the following jet determination result which is an immediate consequence of the
normalization and classification of maps in F .
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Corollary 2.12 [Reiter 2015, Corollary 4.8]. Let U ⊂ C2 be a neighborhood of
0 and H : U → C3 a holomorphic mapping. We denote the components of H by
H = ( f, g)= ( f1, f2, g) and write j0(H) := { j2

0 (H), fz2w(0)}. If for H1, H2 ∈ F
the coefficients belonging to j0(H1) and j0(H2) coincide, then we have H1 ≡ H2.

Remark 2.13. Based on [Lamel 2001, Proposition 25, Corollary 26–27] we obtain
a jet parametrization of order 4 for K = F in [Reiter 2015, Lemma 4.3], and by
Corollary 2.12 we have that K =K0 :=15. Using Theorem 2.8 and the notation from
Corollary 2.12, we identify F with a subset J⊂CK0 given by J := { j0(H) | H ∈F},
and the topology we use in the sequel for F is τJ .

Definition 2.14. Let X be a topological space, Y a set and q : X→ Y a surjective
mapping. We call the topology on Y induced by q the quotient topology τQ on Y ,
where a set U ⊂ Y is open in Y if q−1(U ) is open in X .

3. The isotropic stabilizer and freeness of the group action on F

Lemma 3.1. Set N :=N \{Gε
1,Gε

2,0,Gε
3,0} and F :=

⋃
H∈N O0(H). The isotropic

stabilizer stab0(H) := {(φ, φ′) ∈ G0 | φ
′
◦ H ◦φ−1

= H} of H is trivial for H ∈N.
Furthermore, we have that stab0(Gε

1) = stab0(Gε
2,0) is homeomorphic to S1 and

stab0(Gε
3,0) is homeomorphic to Z2.

Proof. Let H = ( f, g) = ( f1, f2, g) ∈ N satisfy the conditions in Remark 2.7.
We write s := 2| f1w2(0)| ≥ 0, x := f2w2(0) ∈ C and y := Im( f2z2w(0)) ∈ R. By
Corollary 2.12 we only need to consider coefficients in j0(H). We let (σ, σ ′) ∈ G0

with the notation from (2-1), (2-3) and (2-4), and consider the equation

σ ′ ◦ H ◦ σ−1
= H,(3-1)

where we parametrize σ−1 as in (2-1). The coefficients of order 1, which are fz(0)
and Hw(0), are given by

U ′ t(uλλ′, 0)= (1, 0) and (U ′ t(uc+ λc′1, λc′2), θλλ
′)= (0, 0, 1).

These equations imply θ =+1, λ′= 1/λ, a′2= c′2= 0, a′1= 1/(uu′) and c′1=−uc/λ.
Assuming these standard parameters we consider the coefficients of order 2, which
are fz2(0), Hzw(0) and Hw2(0), given by (

0, 2u′u3λ
)
= (0, 2),(3-2) (

−r − λ2r ′+ iελ2/2, 2u′u3λc, 0
)
= (iε/2, 0, 0),(3-3) (

λ2(λs+ iεuc)/u, uu′λ(λ2x + 2u2c2),−2(r + λ2r ′)
)
= (s, x, 0).(3-4)
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The second component of (3-3) implies c = 0. If we assume this value for c we
obtain for the third order terms fz2w(0) the equation(

2iuλ3s, u′u3λ(−4r − 2λ2r ′+ iλ2 y)
)
= (4is, iy).(3-5)

The second component of (3-2) shows λ = 1. Furthermore we obtain from the
third component of (3-4) that r ′ = −r and since from the second component of
(3-2) we get u′u3

= 1, which uniquely determines u′, we obtain from the second
component of (3-5) that r = 0. The remaining equation from the first component of
(3-4), which comes from the coefficient f1w2(0), is s/u = s. If s > 0 we obtain that
u = 1 and hence all standard parameters are trivial, which proves the first claim of
the lemma.

If s=0, then H ∈{Gε
1,Gε

2,0,Gε
3,0}, since these maps are precisely those satisfying

f1w2(0) = 0 in the list of mappings from Theorem 2.8. It is easy to check that
the isotropic stabilizers of the maps Gε

1 and Gε
2,0 are generated by the isotropies

(σ (z, w), σ ′(z′1, z′2, w
′)) = (uz, w, z′1/u, z′2/u

2, w′) with |u| = 1. If we consider
Gε

3,0 in (3-1), then we obtain that (σ (z, w), σ ′(z′1, z′2, w
′)) = (δz, w, δz′1, z′2, w

′),
where δ =±1, are the only elements of stab0(Gε

3,0), which proves the last claim of
the lemma. �

Proposition 3.2. The map N : G0×F→ F given by N (φ, φ′, H) := φ′ ◦ H ◦φ−1

is a free action.

Proof. Lemma 3.1 shows that N restricted to N is a free action. We assume the
general case H ∈ F and consider the equation φ′ ◦ H ◦φ−1

= H for (φ, φ′) ∈ G0.
We write H = φ̂′ ◦ Ĥ ◦ φ̂−1, where Ĥ ∈N and (φ̂, φ̂′) ∈ G0 are unique according
to Lemma 3.1. After setting (ψ,ψ ′) = (φ̂−1

◦ φ ◦ φ̂, φ̂′
−1
◦ φ′ ◦ φ̂′), we rewrite

φ′ ◦ H ◦ φ−1
= H as ψ ′ ◦ Ĥ ◦ψ−1

= Ĥ . Since each map in N admits a trivial
stabilizer, we obtain that (ψ,ψ ′)= (idC2, idC3) and the freeness of the action. �

4. Continuity of the normalization map

Remark 4.1. For F : (C2, 0)→ (C3, 0) a germ of a holomorphic mapping, for
which we assume that F ∈F and the jet j0(F)⊂ j3

0 F is of the form as in Remark 2.7,
we write F = ( f 1, f 2, f 3) for the components and denote derivatives of F at 0 by
f k
`m := f k

z`wm (0). We set 1(F) := f 1
10 f 2

20− f 1
20 f 2

10.

Lemma 4.2. For n ∈ N, we let (φn, φ
′
n) ∈ G0 and Hn, H ∈ F be such that

φ′n ◦ Hn ◦φ
−1
n → H as n → ∞, where F is equipped with the topology τJ . If

we assume Hn, H ∈ N , then Hn → H , and if we assume Hn, H ∈ N, then
(φn, φ

′
n)→ (idC2, idC3) as n→∞.

Proof. We assume that Hn = (h1
n, h2

n, h3
n) and H = (h1, h2, h3) are given as in

Remark 4.1, where the coefficients of Hn depend on n ∈N. Let sn := 2|h1
n02| ≥ 0,
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xn := h2
n02 ∈C and yn := Im

(
h2

n21

)
. To each (φn, φ

′
n)∈G0 we associate the standard

parameters (γn, γ
′
n) ∈ 0×0

′, where we use the notation for the parametrization
of G0 from (2-1) and (2-4). According to Theorem 2.8, Hn depends on sn ≥ 0.
Let us denote 4 := 0 × 0′ × R+0 and write ξn = (γn, γ

′
n, sn) ∈ 4. We define

9n := φ
′
n ◦ Hn ◦φ

−1
n , which depends on ξn ∈4. For components of 9n , we write

9n= (ψ
1
n , ψ

2
n , ψ

3
n ) and ψn= (ψ

1
n , ψ

2
n ). Limits are always considered when n→∞.

We start with the first order terms of 9n . We let U ′n be the 2× 2-matrix from
(2-3) with entries u′n , a′1n and a′2n instead of u′, a′1 and a′2, so that we have

ψnz(0)= λnλ
′

nU ′n
t(un, 0),(4-1)

9nw(0)= λnλ
′

n
(
U ′n

t(uncn + λnc′1n, λnc′2n), θnλnλ
′

n
)
.(4-2)

Since ψ3
nw(0)→ 1 we obtain θn =+1, λnλ

′
n→ 1. This implies that unu′na′1n→ 1

and a′2n→ 0, considering ψnz(0)→ (1, 0) in (4-1). Because a′n = (a
′

1n, a′2n) ∈ S
2
ε,θ

from (2-2), we have |a′1n| → 1. If we consider the first two components in (4-2),
we obtain from ψnw(0)→ (0, 0) and (|a′1n|, |a

′

2n|)→ (1, 0) that uncn+λnc′1n→ 0
and c′2n→ 0.

Next we consider the second order terms of 9n to obtain

(4-3) ψnz2(0)= 2unλnλ
′

nU ′n
t(2i(c̄n + unλn c̄′1n), unλn

)
,

where the left-hand side of (4-3), ψnz2(0), must converge to (0, 2). After applying
U ′n
−1 we rewrite the second component of (4-3) as

(4-4) 2u2
nλ

2
nλ
′

n = a′1n
(
−ā′2nψ

1
nz2(0)/(u′na′1n)+ψ

2
nz2(0)

)
.

Since (|a′1n|, |a
′

2n|) → (1, 0), the absolute value of the right-hand side of (4-4)
converges to 2. Taking the absolute value of the left-hand side of (4-4) implies
λn→ 1, which together with λnλ

′
n→ 1 shows λ′n→ 1. Next we consider

ψnzw(0)= i
2λnλ

′

nU ′n
t(T1(γn, γ

′

n), 4λn(c′2n(c̄n + unλn c̄′1n)− iu2
ncn)

)
,(4-5)

where the real-analytic function T1 : 0 × 0
′
→ C does not depend on a′n ∈ S2

ε,θ

and u′n . The left-hand side of (4-5) has to converge to (iε/2, 0) and we rewrite the
second component of (4-5) as

(4-6) 4λn
(
c′2n(c̄n + unλn c̄′1n)− iu2

ncn
)

=−2i
(
−ā′2nψ

1
nzw(0)+ u′na′1nψ

2
nzw(0)

)
/(λnλ

′

nu′n).

Taking the limit, we know, since (|a′1n|, |a
′

2n|)→ (1, 0) and (λn, λ
′
n)→ (1, 1), that

the right-hand side of (4-6) converges to 0 and if we also use uncn+λnc′1n→ 0 we
obtain that cn→ 0, such that c′1n→ 0.
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Next we compute

(4-7) ψ3
nw2(0)

= 2λ2
nλ
′2
n
(
−(rn + λ

2
nr ′n)+ i

(
|cn|

2
+ ελ2

n|c
′

2n|
2
+ λn c̄′1n(2uncn + λnc′1n)

))
.

We take all of the previously obtained limits as n →∞ of the sequences c′n =
(c′1n, c′2n)∈C2, cn and λn, λ

′
n . Then since ψ3

nw2(0)→ 0, we have that rn+λ
2
nr ′n→ 0.

Next we compute

ψnw2(0)= λnλ
′

nU ′n
t(λ3

nsn + T2(γn, γ
′

n), λ
3
nxn + T3(γn, γ

′

n)
)
,(4-8)

where T2, T3 : 0×0
′
→ C are real-analytic functions and T2 is given by

T2(γn, γ
′

n)= 2(uncn + c′1nλn)
(
i|cn|

2
− rn − λ

2
nr ′n
)

+2iλn c̄′1n(uncn + λnc′1n)(2uncn + λnc′1n)

+iελ2
n
(
uncn(1+ 2|c′2n|

2)+ 2λnc′1n|c
′

2n|
)
,

so that T2(γn, γ
′
n)→ 0. Then the first component of (4-8) becomes

λ3
nsn + T2(γn, γ

′

n)=
(
ā′1nψ

1
nw2(0)+ εu′na′2nψ

2
nw2(0)

)
/(λnλ

′

nu′n).(4-9)

Since
(
ψ1

nw2(0), ψ2
nw2(0)

)
→
(
2|h1

02|, h2
02

)
∈R+×C, we obtain sn→ 2|h1

02|, and if
|h1

02| 6= 0 we have ā′1n/u
′
n→ 1. Then unu′na′1n→ 1 implies that un→ 1 and further

inspection of (4-4) gives u2
n/a
′

1n→ 1, which shows a′1n→ 1 and u′n→ 1. Note that
if |h1

02| = 0 we have that a′1n, un, u′n ∈ S1 for all n ∈N. Observe that the following
considerations are independent of the value of h1

02:

(4-10) ψnz2w(0)

=λnλ
′

nU ′n

(
−4iu2

nλ
3
nsn + T4(γn, γ

′
n)

−2εu2
nλn(2rn + λ

2
nr ′n)+ iεu2

nλ
3
n yn + 6u3

nλ
2
ncnsn + T5(γn, γ

′
n)

)
,

where T4, T5 : 0×0
′
→ C are real-analytic functions and T5 is given by

T5(γn, γ
′

n)= 2iελn
(
4ic̄nc′2n(c̄n + 2unλn c̄′1n)+ 2cnu2

n(5c̄n + 3unλn c̄′1n)

+ u2
nλ

2
n
(
|c′1n|

2
+ 3ε|c′2n|

2
+ 4ic̄′1nc′2n

))
,

hence T5(γn, γ
′
n)→ 0. Since

(
ψ1

nz2w
(0), ψ2

nz2w
(0)
)
→

(
2i|h1

02|, ih2
21

)
∈ iR× iR,

considering the real part of the second component of (4-10) we obtain 2rn+r ′n→ 0,
which together with rn + λ

2
nr ′n→ 0 shows (rn, r ′n)→ (0, 0). To sum up, we obtain

that Hn → H , and moreover, if |h1
02| 6= 0, we conclude (φn, φ

′
n)→ (idC2, idC3),

which completes the proof. �

Proposition 4.3. The map π :F→N given by π(H) :=φ′◦H◦φ−1 for (φ, φ′)∈G0,
according to Proposition 2.6, is continuous with respect to τJ .
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Proof. Let (Hn)n∈N be a sequence of mappings in F and H ∈F , such that Hn→ H .
Assuming without loss of generality that H ∈N , we need to show H̃n :=π(Hn)→H .
We have H̃n = φ

′
n ◦Hn ◦φ

−1
n ∈N , where (φn, φ

′
n) ∈G0 are the isotropies according

to Proposition 2.6. Since Hn = φ
′−1
n ◦ H̃n ◦φn→ H , we conclude by Lemma 4.2

that H̃n→ H . �

Using Proposition 4.3 we are able to prove Theorem 1.2.

Proof of Theorem 1.2. We show that π : F → N is a surjective, continuous and
closed mapping with respect to τJ . Surjectivity is clear from Proposition 2.6 and
Theorem 2.8 and continuity we have shown in Proposition 4.3. It remains to prove
that π is closed with respect to τJ . Let C ⊂ F be a closed subset. We need to show
that π(C) ⊂ N is a closed subset. To prove this statement we let Hn ∈ π(C) for
n ∈ N, forming a sequence of mappings in N such that Hn→ H0, where H0 ∈N .
To show that π(C) is closed we need to conclude that H0 ∈ π(C). By Theorem 2.8
we can write Hn = Gε

kn,sn
and H0 = Gε

k0,s0
for kn, k0 ∈ {2, 3}. Note that since

Hn→ H0 in N we have sn→ s0. This implies that for any convergent sequence
Gn ∈ π

−1(Hn) the map G0 := limn→∞ Gn belongs to π−1(H0). Since C is closed,
an arbitrary convergent sequence Fn ∈ π

−1(Hn)∩C with Fn→ F0 thus satisfies
F0 ∈ π

−1(H0)∩C , which implies H0 = π(F0) ∈ π(C). �

5. A topological property of the quotient space of F

Lemma 5.1. The class F consists of 5+ε
2 connected components.

Proof. According to Proposition 2.6 and Proposition 4.3, we denote by π : F→N
the normalization map, which is continuous with respect to τJ . By Theorem 1.2, we
equip F and N with τJ . For k ∈{2, 3}, we set Ck := {Gε

k,s | s≥0} and N ∗ :=C2∪C3.
The space of standard parameters 0 × 0′ is path-connected, since as defined in
Definition 2.5 for maps H = ( f1, f2, g) ∈ F , we assumed gw(0) > 0, which
implies that for isotropies as in (2-4) we require θ =+1 for ε =±1. Thus for any
H ∈N the isotropic orbit O0(H) is path-connected. First we treat the case ε =−1.
We observe that F∗ :=

⋃
H∈N ∗ O0(H) is path-connected. If F were connected

then π(F) = N would be connected, which is not possible, since N consists
of 2 connected components G−1 and N ∗. Thus F has 2 connected components
O0(G−1 ) and F∗. For ε = +1 we note that the set O0(Ck) :=

⋃
H∈Ck

O0(H) for
k ∈ {2, 3} is path-connected and N consists of 3 connected components. Thus F
admits at most 3 connected components. F is not connected since then π(F)=N
would be connected. If F consists of 2 connected components F1,F2 such that
F =F1 ∪F2, we need to distinguish several cases. Either F1= O0(G+1 )∪O0(Ck),
and F2 = O0(C`), where k 6= ` and k, ` ∈ {2, 3}, or F1 = O0(C2)∪ O0(C3) and
F2= O0(G+1 ). In all cases we have, by the continuity of π , that π(F1) is connected,
which is not possible. �
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Proof of Theorem 1.3. The quotient space X consists of elements denoted by [F] for
F ∈ F . We equip X with the quotient topology such that the canonical projection
p : F → X is continuous. For ε = +1 we have X = {G+1 ,G+2,0,G+3,0} by our
classification. By Lemma 5.1 we obtain that p−1(H) for H ∈ X is a connected
component of F , hence open. Thus X carries the discrete topology. To prove
the statement for ε = −1 we write H0 := G−2,1/2 ∈ N and H1 := G−3,0 ∈ N . For
k ∈ {0, 1}, let Uk ∈ X be an open neighborhood of [Hk]. Then Vk := p−1(Uk) is an
open neighborhood of the orbit of Hk in F . According to our classification there
exists a sequence (Gn)n∈N of mappings in F , where each Gn ∈ [H1] and Gn→ H0

in F as n→∞. Thus there exists N ∈ N such that Gn ∈ V0 ∩ V1 for all n ≥ N ,
which shows [H1] ∈U0 ∩U1 and completes the proof. �

6. Properness of the group action

Proof of Theorem 1.4. For n ∈N we let Gn = (g1
n, g2

n, g3
n), H ′n = (h

′1
n, h′2n, h′3n) ∈F

with Gn = ϕ
′
n ◦ H ′n ◦ϕ

−1
n , where (ϕn, ϕ

′
n) ∈ G0. Equipping J 3

0 with a suitable norm
‖ · ‖, we need to show that if we let N > 1 such that ‖ j0(Gn)‖, ‖ j0(H ′n)‖ ≤ N
and |g3

n01|, |h
′3
n01| ≥ 1/N as well as |1(Gn)|, |1(H ′n)| ≥ 1/N , then we have that

{(ϕn, ϕ
′
n) | n ∈ N} is relatively compact in G0. For a simplification, we write

H ′n = φ
′
n ◦ Hn ◦φ

−1
n , where Hn ∈N and (φn, φ

′
n)∈G0 according to Proposition 2.6.

Since we have shown in Proposition 4.3 that the map π :F→N is continuous, it fol-
lows that the sequence Hn is relatively compact, and we assume that each Hn satisfies
all conditions we assumed for H ′n . Further we assume that Hn is given as described
in Remark 2.7, where we set sn := 2|h1

n02| ≥ 0, xn := h2
n02 ∈ C and yn := Im

(
h2

n21

)
.

In the proof of Proposition 2.6 given in [Reiter 2015, Proposition 3.1], we give
explicit formulas for (φn, φ

′
n), which shows that {(φn, φ

′
n) | n ∈N} is bounded, since

the sequence H ′n is relatively compact. We set ψn := ϕn ◦ φn and ψ ′n := ϕ
′
n ◦ φ

′
n .

Hence we need to prove that {(ψn, ψ
′
n) | n ∈ N} is bounded in G0. If we use the

parametrization of (ψn, ψ
′
n) from (2-1) and (2-4), we show that {(γn, γ

′
n) | n ∈ N}

is bounded in 0× 0′. More precisely, we need to show the boundedness of the
sequences λn, cn, rn, a′1n, a′2n, λ

′
n, c′n, r

′
n in 0×0′. We use the equations from the

proof of Lemma 4.2, where 9n plays the role of Gn . We start considering the third
component of (4-2), which gives 1/

√
N ≤ λnλ

′
n ≤
√

N . Then we rewrite (4-1) to
obtain, for k = 1, 2, that |a′kn| = |g

k
n10|/(λnλ

′
n) ≤ N

√
N . After rewriting the first

two components of (4-2) we obtain that |uncn+λnc′1n|, |λnc′2n| ≤ 2N 3. Then, using
(4-2) and (4-3), we compute

1(Gn)=

∣∣∣∣λnλ
′

nU ′n

(
un 4iun(c̄n + unλn c̄′1n)

0 unλn

)∣∣∣∣= u2
nλ

3
nλ
′2
n ,

such that the boundedness of 1(Gn) from below implies that 1/N 2
≤ λn ≤ N 2.

This gives 1/(
√

N N 2)≤ λ′n ≤
√

N N 2, and from (4-2) we derive boundedness of
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the sequence |c′2n|. Then from (4-5) we obtain that the sequence |cn| is bounded,
such that (4-2) shows the boundedness of |c′1n|.

Finally, using all the previous bounds, we get from (4-7) and the second compo-
nent of (4-10) that the sequences |rn+λ

2
nr ′n| and |2rn+λ

2
nr ′n| are both bounded, which

implies that |rn| and |r ′n| are bounded from above. Thus the sequence (ψn, ψ
′
n) is

relatively compact. Since (φn, φ
′
n) is relatively compact, this implies that (ϕn, ϕ

′
n)

is also relatively compact, completing the proof. �

7. On the real-analytic structure of F

Lemma 7.1. Let5 :F→N be given by5(H) := φ′◦H ◦φ−1, where (φ, φ′)∈G0

are the unique isotropies according to Proposition 2.6 and Lemma 3.1. For k = 2, 3
we write Mk,ε := {5

−1(Gε
k,s) | s> 0}. Then Mk,ε is a real-analytic real submanifold

of F of real dimension 16.

Proof. For fixed k ∈ {2, 3}, s> 0 and δ > 0, we write Gδ,s := {Gε
k,t | t ∈ Bδ(s)∩R+},

where Bδ(s) := {t ∈ R+ | |t − s| < δ}. To prove the lemma we show that for
every s0 ∈ R+ and sufficiently small δ0 > 0, there exists a locally real-analytic
parametrization for M :=5−1(Gδ0,s0). As noted in Remark 2.13, we identify F
with the set J⊂ CK0 .

Theorem 2.8 implies that for each H ∈ M there exist (φ, φ′) ∈ G0, k ∈ {2, 3}
and s1 ∈ Bδ0(s0)∩R+, such that H = φ′ ◦Gε

k,s1
◦φ−1. This fact is used to describe

M locally via parametrizations as follows. For s > 0 sufficiently near s0, let Fs be
a mapping as in Remark 4.1, which depends real-analytically on s := 2| f 1

02|. For
the remaining coefficients in j0(Fs) we write x := f 2

02 and y := Im
(

f 2
21

)
, where we

suppress the dependence on s notationally. We use the real version of the notation
for the parametrization of G0 as in (2-1) and (2-4). Here we denote the set of real
parameters of G0 by 0×0′. Let us write 4 :=0×0′×R+⊂RN0 , where N0 := 16.
For ξ = (γ, γ ′, s) ∈4, we define the mapping

(7-1) 9 :4→ J, 9(ξ) := j0(φ′γ ′ ◦ Fs ◦φ
−1
γ ),

where we use the notation as in (2-1) and (2-4) for φγ and φ′γ ′ respectively and
suppress the dependence on ε.

We set 9̌(z, w) := (φ′γ ′ ◦Fs◦φ
−1
γ )(z, w) with components 9̌= (ψ̌1, ψ̌2, ψ̌3) and

ψ̌ :=
(
ψ̌1, ψ̌2

)
. The holomorphic mapping 9̌ is defined in a small neighborhood

U ⊂ C2 of 0 and satisfies 9̌(H2
∩U )⊂ H3

ε . By Theorem 2.8 and the real-analytic
dependence of the isotropies on the standard parameters, which can be observed by
inspecting the proof of Proposition 2.6 in [Reiter 2015, Proposition 3.1], we note that
9 and 9̌ are real-analytic in ξ ∈4. We assume without loss of generality that ξ0 is
chosen in such a way that (φγ , φ′γ ′)= (idC2, idC3). Consequently we write O(2) for
terms involving standard parameters of the isotropies which vanish to second order
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at ξ0, and we consider a′1 ∈ C near 1 such that we substitute ā′1 = (1− ε|a
′

2|
2)/a′1

and take θ =+1 in 9, which is then given by the following expressions:

ψ̌z(0)=
(
uu′λλ′a′1, uλλ′ā′2

)
,

9̌w(0)=
(
u′λλ′a′1(uc+ λc′1), λ

2λ′c′2/a
′

1, λ
2λ′2

)
+ O(2),

ψ̌z2(0)=
(
2iuu′λλ′(iεuλa′2+ 2(c̄+ uλc̄′1)a

′

1), 2u2λ2λ′/a′1
)
+ O(2),

9̌zw(0)=
(
−

1
2

uu′λλ′a′1(2(r + λ
2r ′)− iελ2),

uλ2λ′
( iε

2
λā′2+

2uc
a′1

)
, 2iλ2λ′2(c̄+ uλc̄′1)

)
+ O(2),

9̌w2(0)=
(
u′λ3λ′

(
a′1(iεuc+ λs)− ελa′2x

)
,

λ4λ′
(
x/a′1+ ā′2s

)
,−2λ2λ′2(r + λ2r ′)

)
+ O(2),

ψ̌z2w(0)=
(
−uu′λ3λ′

(
4a′1

(
−iuλs+ ε(c̄+ uλc̄′1)

)
+ iεuλa′2 y

)
,

u2λ2λ′
((
−2(2r + λ2r ′)+ 6εuλcs+ iλ2 y

)
/a′1+ 2iλ2ā′2s

))
+ O(2).

As a first step we show that for given ξ0 ∈4 the Jacobian of 9 with respect to ξ
evaluated at ξ0, denoted by 9ξ (ξ0), is of full rank N0. Instead of considering the
real equations of 9, however, we conjugate 9 and compute the Jacobian of the
system 8 := (9,9) ∈ C2K0 with respect to

ξ = (u, λ, c, r, u′, a′1, a′2, λ
′, c′1, c′2, r

′, s; c̄, ā′2, c̄′1, c̄′2) ∈ CN0

and evaluate at

ξ0 = (1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, s0; 0, 0, 0, 0) ∈ RN0,(7-2)

denoted by 8ξ (ξ0). We bring the transpose of 8ξ (ξ0) into echelon form, denoting
the resulting matrix by ϕ = (ϕ1, . . . , ϕN0), where ϕ j

= (ϕ
j
1 , . . . , ϕ

j
2K0
) ∈ C2K0 for

1 ≤ j ≤ N0, such that rank
(
8ξ (ξ0)

)
= rank(ϕ). In the following we suppress the

evaluation of 8 at ξ0 notationally and perform elementary row operations. The
matrix given by

(ϕ1, . . . , ϕ11) :=
(
8u,8ā′2,8c′1,8c′2,8λ,8c̄,8a′1,8r ′,8c,8a′2,8s

)
−

(
0, 0, 0,8u,8u, 0,8u, 0,8c′1,

iε
2
8c̄, 0

)
,

is in row echelon form, with constant nonzero entries on the main diagonal. Each 0
above represents 0 ∈ C2K0 . Next we define

ϕ12
:=8λ′ +

1
3
8u −8λ−

1
3
8a′1 −

iε
8
8r ′ +

10s0
3
8s,

ϕ13
:=8u′ −

1
3
8u −

2
3
8a′1 −

2
3
8s,
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which are of the following form, where we denote by h′ derivatives of a function h
depending on s with respect to s:

ϕ12
= (0, . . . , 0, ϕ12

12, . . . , ϕ
12
2K0
)

=

(
0, . . . , 0,−2(4x−5s0x ′)

3
, 2iε, 8is0

3
,
2i(3ε−3y+5s0 y′)

3
,−

1
3
, ϕ12

17, . . . , ϕ
12
2K0

)
ϕ13
= (0, . . . , 0, ϕ13

12, . . . , ϕ
13
2K0
)

=

(
0, . . . , 0, 2x−s0x ′

3
, 0,−8is0

3
,−

is0 y′

3
,−

2
3
, ϕ13

17, . . . , ϕ
13
2K0

)
.

Then we define ϕ14 :=8r−8r ′ , ϕ15 :=8c̄′2 and ϕ16 :=8c̄′1 , from which we compute
ϕ14
=−2(e15 + e2K0), ϕ

15
= e19 and ϕ16

= −2e24 + iεe26 − 12εse2K0 , where for
j ∈ N we denote by e j the j-th unit vector in R2K0 .

We have to consider several cases. First, in case ϕ12
12 6= 0, then we consider

ϕ̃13 := ϕ13
− ϕ13

12ϕ
12/ϕ12

12 , such that ϕ̃13
13 is a multiple of −2x + s0x ′. If ϕ̃13

13 6= 0,
then ϕ = (ϕ1, . . . , ϕ12, ϕ̃13, ϕ14, ϕ15, ϕ16) is in echelon form. If ϕ̃13

13 = 0, then
x = Cs2, where C ∈ C \ {0} and we have ϕ̃13

14 6= 0, which again implies that
ϕ = (ϕ1, . . . , ϕ12, ϕ̃13, ϕ14, ϕ15, ϕ16) is in echelon form.

Next we treat the case ϕ12
12 = 0. First we consider the trivial case. If x = 0, then

since s0 > 0, we have x ′ = 0 and so ϕ = (ϕ1, . . . , ϕ16) is in echelon form. Now we
assume x 6= 0, which implies x ′ 6= 0, and solve ϕ12

12 = 0. The solution is given by
x = Cs4/5, where C ∈ C \ {0} and ϕ = (ϕ1, . . . , ϕ11, ϕ13, ϕ12, ϕ14, ϕ15, ϕ16) is in
echelon form.

To sum up, we conclude that in all cases the Jacobian 8ξ (ξ0) of the system 8

evaluated at ξ0 is of full rank N0, and hence that 9 from (7-1) is a real-analytic
locally regular mapping if we choose δ0 > 0 sufficiently small in M . For 9 to be
a local parametrization of M it remains to show that for each sufficiently small
neighborhood U ⊂ 4 ⊂ RN0 of ξ0, there exists a neighborhood W ⊂ CK0 of
9(ξ0)= Fs0 , such that 9(U )=W ∩M . We have

9(U )= { j0(H) | ∃ξ = (γ, γ ′, t) ∈U : H = φ′−1
γ ′ ◦ Ft ◦φγ }

and with the notation from the beginning of this proof for δ > 0 we have

M =5−1(Fδ,s0)

= {H ∈ F | ∃(γ, γ ′, s) ∈ 0×0′× Bδ(s0)∩R+ : φ′γ ′ ◦ H ◦φ−1
γ = Fs}.

Remark 2.13, together with the fact that for each H ∈ M we can write H =
φ′
−1
γ ′ ◦Fs◦φγ , shows9(U )⊂M . We assume that there exists a neighborhood U ⊂4

of ξ0, such that for any neighborhood W of 9(ξ0)= Fs0 we have 9(U ) 6=W ∩M .
We choose open, connected neighborhoods (Wn)n∈N of Fs0 with

⋂
n Wn ={Fs0} and

9(U ) 6=Wn ∩M for all n ∈ N. There exists a sequence of mappings (Hn)n∈N ∈ F
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such that Hn ∈ Wn ∩ M and Hn 6∈ 9(U ). We write Hn = φ
′−1
γ ′n
◦ Fsn ◦ φγn and

conclude by Lemma 4.2 that (γn, γ
′
n, sn)→ ξ0 in 4. Thus eventually Hn ∈9(U )

for large enough n ∈ N, which completes the proof of the lemma. �

We need the following theorem concerning free and proper group actions on
manifolds.

Theorem 7.2 [Duistermaat and Kolk 2000, Theorem 1.11.4]. Let k ∈ N∪ {∞, ω}

be nonzero and M a Ck manifold equipped with a Ck action G×M→ M , where
G is a Ck Lie group. Assume that the action is free and proper. Then M/G has
the unique structure of a Ck manifold of real dimension dimR M − dimR G and the
topology of M/G is the quotient topology τQ . We denote by ϕ : M → M/G the
canonical projection given by ϕ(m)=G ·m := {g ·m | g ∈G} for m ∈ M. For every
s ∈ M/G there is an open neighborhood S ⊂ M/G of s and a Ck diffeomorphism
ψ : ϕ−1(S)→ G× S, ψ : m 7→ (ψ1(m), ψ2(m)), such that for m ∈ ϕ−1(S), g ∈ G
we have ϕ(m) = ψ2(m) and ψ(g · m) = (g · ψ1(m), ψ2(m)). We say the triple
(ϕ,M,M/G) is a Ck principal fiber bundle with structure group G.

Proof of Theorem 1.5. By [Baouendi et al. 1997, Corollary 1.2] the group G0 is a
totally real, closed, real-analytic submanifold of

G2
0(H

2, 0)×G2
0(H

3
ε, 0)⊂ J 2

0 (H
2, 0)× J 2

0 (H
3
ε, 0).

Hence G0 is a real-analytic real Lie group. With the notation of Lemma 7.1 we define
for (γ, γ ′)∈0×0′ the map Nγ,γ ′ :Mk,ε→Mk,ε, Nγ,γ ′(H) :=φ′γ ′ ◦H ◦φ−1

γ , where
(φγ , φ

′

γ ′)∈G0 according to (2-1) and (2-4). We would like to conclude that for each
fixed (γ, γ ′) ∈ 0×0′, the map Nγ,γ ′ is real-analytic. By Remark 2.13, instead of
Nγ,γ ′ it suffices to consider N ′γ,γ ′ : Jk,ε→ Jk,ε, where Jk,ε := { j0(H) | H ∈ Mk,ε},
and N ′γ,γ ′( j0(H)) := j0(φ′γ ′ ◦ H ◦ φ−1

γ ) is a restriction of Nγ,γ ′ . By considering
the components of N ′γ,γ ′( j0(H)) for H ∈ Mk,ε, we obtain that N ′γ,γ ′( j0(H)) is a
polynomial in j0(H), thus by [Bochner and Montgomery 1945, Theorem 4] the
action of G0 on Mk,ε is real-analytic.

By Proposition 3.2 and Theorem 1.4 the map N : F×G0 → F defined by
N (φ, φ′, H)= φ′ ◦ H ◦φ−1 is a free and proper action. For ε =+1 we note that
by Lemma 5.1 and Lemma 7.1 the set F is a real-analytic manifold, thus from
Theorem 7.2 the conclusion for ε =+1 follows.

Next we show the claim for ε = −1. According to Lemma 7.1, for k = 1, 2
we set Nk := {G−k+1,s | s > 0} and N0 := N1 ∩ N2 = {G−2,1/2}. The corresponding
preimages are denoted by Mk :=5

−1(Nk)⊂ F, so that M0 :=M1∩M2=5
−1(N0).

Now set M := M1 ∪ M2. By Lemma 7.1 for k = 1, 2 we have that Mk is a
real-analytic submanifold of F. We obtain by Theorem 7.2 that locally Mk is
real-analytically diffeomorphic to G0 × Sk , where Sk is a real submanifold with
dimR(Sk) = dimR(Mk)− dimR(G0) = 1, by Lemma 7.1. By Proposition 2.6 it
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is possible to normalize any element in Sk with unique isotropies which depend
real-analytically on elements of Sk . Thus, since dimR(Nk)= 1, we map Sk to Nk

via real-analytic diffeomorphisms. We obtain that for k = 1, 2 there exists an open
neighborhood Uk ⊂ F of N0 and a real-analytic diffeomorphism φk : Uk → Vk

such that φk(Uk ∩ Mk) = (G0 × Nk) ∩ Vk , where Vk is an open neighborhood
of N ′0 := {id} × N0 ⊂ G0 × M , with id = (idC2, idC3). Moreover, we have that
φk(Uk∩Nk)= ({id}×Nk)∩Vk and φk satisfies the properties given in Theorem 7.2.
We define φ : U0 → V0, φ(x) := φk(x) for x ∈ U0 ∩ Uk , where k = 1, 2 and
V0 = V1 ∪ V2 is an open neighborhood of N ′0. Write Ũ :=U1 ∩U2 ∩U0 ⊂ F for an
open neighborhood of N0. Then we have φ|Ũ = φ1|Ũ = φ2|Ũ , which implies that φ
is a real-analytic diffeomorphism. Furthermore, since

image(φ1|Ũ∩M)= image(φ2|Ũ∩M)= (G0× N0)∩ Ṽ ,

where Ṽ is an open neighborhood of N ′0 ⊂ G0×M , the mapping φ locally maps
M0 real-analytic diffeomorphically to G0× N0.

Finally the last statement follows from Theorem 7.2, since if F were a smooth
manifold, then by the smooth version of Theorem 7.2, the quotient N would have
to be a smooth manifold, which is not the case. �

8. Homeomorphic variations of normal forms

In the following we use the notation from Definition 2.4.

Definition 8.1. Let H be a subset of H(M, p;M ′, p′). A proper subset K (H
is called a normal form for H if for each [F] ∈ H/∼, there exists a unique rep-
resentative G ∈ K ∩ [F]. We denote the mapping which assigns to each H ∈ H
the representative G ∈ K∩ [H ] as π :H→ K. A normal form K for H is called
admissible if π :H→ K is continuous.

The uniqueness of the representative F ∈ K ∩ [F] in Definition 8.1 is not a
restriction. Assume we have another representative F 6= G ∈ K in the class [F],
then G is equivalent to F , hence it suffices to choose exactly one element from the
set of all representatives which belong to K ∩ [F]. If there exists an admissible
normal form K for H we observe that in each orbit of any not necessarily admissible
normal form K′ for H, there exists an element of K.

Theorem 8.2. Let N ′ be an admissible normal form for F . Then N ′ is homeomor-
phic to N , where we equip N ′ and N with τJ .

Proof. Let us denote by π ′ : F→N ′ the continuous mapping as in Definition 8.1.
We note that the class N introduced in Proposition 2.6 is an admissible normal form
for F as in Definition 2.5. If we equip F with τJ , we obtain by Proposition 4.3 that
the mapping π : F→N , H 7→ σ ′ ◦ H ◦ σ−1 is continuous.
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F

N ′ N

π ′

incl′
π

incl

ψ

Figure 2. Diagram for admissible normal forms.

In Figure 2, the mapping incl′ : N ′ → F is the inclusion mapping, which is
given by incl′(H) := H for all H ∈N ′, and similarly for incl :N → F . The map
ψ :N ′→N is given by ψ(H) := F for H ∈N ′ and F ∈N ∩[H ]. Since N ′ and
N are normal forms, we obtain that ψ is a bijective mapping. Furthermore, since
ψ = π ◦ incl′ and ψ−1

= π ′ ◦ incl are compositions of continuous mappings, we
obtain that ψ is a homeomorphism. �

Example 8.3. Beginning with N , we can construct different admissible normal
forms N ′ as follows. We fix a pair of isotropies (φ0, φ

′

0) ∈ G0 and consider the
isotropies (φ̃, φ̃′) ∈ G0 from Proposition 2.6, such that π : F → N is given by
π(H) := φ̃′ ◦ H ◦ φ̃−1, denoted by Ĥ . We define φ := φ0 ◦ φ̃ and φ′ := φ′0 ◦ φ̃

′, to
obtain for F ∈ F that

φ′ ◦ F ◦φ−1
= φ′0 ◦ φ̃

′
◦ F ◦ φ̃−1

◦φ−1
0 = φ

′

0 ◦ F̂ ◦φ−1
0 ,

where F̂ ∈ N . We define N ′ := {φ′0 ◦ F̂ ◦ φ−1
0 | F̂ ∈ N }. As observed above π

induces an admissible normal form, which implies that the mapping π ′ : F→N ′

given by π ′(F) := φ′ ◦ F ◦φ−1 is continuous and N ′ is an admissible normal form.
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2-BLOCKS WITH MINIMAL NONABELIAN DEFECT GROUPS
III

BENJAMIN SAMBALE

We prove that two 2-blocks of (possibly different) finite groups with a com-
mon minimal nonabelian defect group and the same fusion system are iso-
typic (and therefore perfectly isometric) in the sense of Broué. This contin-
ues former work by Cabanes and Picaronny (J. Fac. Sci. Univ. Tokyo Sect.
IA Math. 39:1 (1992), 141–161), Sambale (J. Algebra 337 (2011), 261–284)
and Eaton et al. (J. Group Theory 15:3 (2012), 311–321).

1. Introduction

Since its appearance in 1990, Broué’s abelian defect conjecture gained much
attention among representation theorists. On the level of characters it predicts the
existence of a perfect isometry between a block with abelian defect group and its
Brauer correspondent. These blocks have a common defect group and the same
fusion system. Although Broué’s conjecture is false for nonabelian defect groups
(see [Cliff 2000]), one can still ask if perfect isometries or even isotypies exist.
We affirmatively answer this question for p = 2 and minimal nonabelian defect
groups (see Theorem 9 below). These are the nonabelian defect groups such that
any proper subgroup is abelian. Doing so, we verify the character-theoretic version
of Rouquier’s conjecture [2001, A.2] in this special case (see Corollary 10 below).
At the same time we provide a new infinite family of defect groups supporting a
blockwise Z∗-Theorem.

By Rédei’s classification of minimal nonabelian p-groups, one has to consider
three distinct families of defect groups. For two of these families the result already
appeared in the literature (see [Cabanes and Picaronny 1992; Sambale 2011; Eaton
et al. 2012]). Hence, it suffices to handle the remaining family which we will do in
the next section. The proof of the main result is an application of [Horimoto and
Watanabe 2012, Theorem 2]. The last section of the present paper also contains a
related result for the nonabelian defect group of order 27 and exponent 9.

Our notation is fairly standard. We consider blocks B of finite groups with
respect to a p-modular system (K ,O, F) where O is a complete discrete valuation

MSC2010: 20C15, 20C20.
Keywords: minimal nonabelian defect groups, perfect isometries, isotypies.
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ring with quotient field K of characteristic 0 and field of fractions F of characteristic
p. As usual, we assume that K is “large” enough and F is algebraically closed.
The number of irreducible ordinary characters (resp. Brauer characters) of B is
denoted by k(B) (resp. l(B)). Moreover, ki (B) is the number of those irreducible
characters of B which have height i ≥ 0. For other results on block invariants and
fusion systems we often refer to [Sambale 2014]. Moreover, for the definition and
construction of perfect isometries we follow [Broué and Puig 1980a; Cabanes and
Picaronny 1992]. A cyclic group of order n ∈ N is denoted by Cn .

2. A class of minimal nonabelian defect groups

Let B be a non-nilpotent 2-block of a finite group G with defect group

(1) D = 〈x, y | x2r
= y2
= [x, y]2 = [x, x, y] = [y, x, y] = 1〉 ∼= C2

2 oC2r

where r ≥ 2, [x, y] := xyx−1 y−1 and [x, x, y] := [x, [x, y]].
We have already investigated some properties of B in [Sambale 2011], and later

gave simplified proofs in [Sambale 2014, Chapter 12]. For the convenience of the
reader we restate some of these results.

Lemma 1 [Sambale 2014, Lemma 12.3]. Let z := [x, y]. Then:

(i) 8(D)= Z(D)= 〈x2, z〉 ∼= C2r−1 ×C2.

(ii) D′ = 〈z〉 ∼= C2.

(iii) |Irr(D)| = 5 · 2r−1.

Recall that a (saturated) fusion system F on a p-group P determines the following
subgroups:

Z(F) := {x ∈ P : x is fixed by every morphism in F},
foc(F) := 〈 f (x)x−1

: x ∈ Q ≤ P, f ∈ AutF (Q)〉,

hyp(F) := 〈 f (x)x−1
: x ∈ Q ≤ P, f ∈ Op(AutF (Q))〉.

Lemma 2. The fusion system F of B is the constrained fusion system of the finite
group A4 oC2r where C2r acts as a transposition in Aut(A4)∼= S4. In particular,
B has inertial index 1 and Q := 〈x2, y, z〉 ∼= C2r−1 × C2

2 is the only F-essential
subgroup of D. Moreover, AutF (Q)∼= S3. Without loss of generality, Z(F)= 〈x2

〉

and hyp(B)= foc(B)= foc(F)= 〈y, z〉.

Proof. We have seen in [Sambale 2014, Proposition 12.7] that F is constrained and
coincides with the fusion system of A4 oC2r . The construction of the semidirect
product A4 oC2r is slightly different in [Sambale 2014], but it is easy to see that
both constructions give isomorphic groups. The remaining claims follow from the
proof of [Sambale 2014, Proposition 12.7]. �
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By a result of Watanabe [2014, Theorem 3 and Lemma 3], the hyperfocal
subgroup of a 2-block is trivial or noncyclic. Hence, our situation with a Klein-four
(hyper)focal subgroup represents the first nontrivial example in some sense. Recall
that a B-subsection is a pair (u, bu) such that u ∈ D and bu is a Brauer correspondent
of B in CG(u).

Lemma 3. The set R := Z(D)∪ {x i y j
: i, j ∈ Z, i odd} is a set of representatives

for the F-conjugacy classes of D with |R| = 2r+1. For u ∈ R let (u, bu) be a
B-subsection. Then bu has defect group CD(u). Moreover, l(bu) = 1 whenever
u ∈R \ 〈x2

〉.

Proof. By Lemma 2, it is easy to see that R is in fact a set of representatives for the
F-conjugacy classes of D. Observe that 〈u〉 is fully F-normalized for all u ∈R.
Hence, by [Sambale 2014, Lemma 1.34], bu has defect group CD(u) and fusion
system CF (〈u〉). It is easy to see that CF (〈u〉) is trivial unless u ∈ Z(F) = 〈x2

〉.
This shows l(bu)= 1 for u ∈R \ 〈x2

〉. �

Theorem 4 [Sambale 2014, Theorem 12.4]. We have k(B)= 5·2r−1, k0(B)= 2r+1,
k1(B)= 2r−1 and l(B)= 2.

Proof. By Lemma 2, we have |D : foc(B)| = 2r . In particular, 2r
| k0(B) by

[Robinson 2008, Theorem 1]. Moreover, [Kessar et al. 2015, Theorem 1.1] implies
2r+1
≤ k0(B). By Lemma 3 we have l(bx)= 1. Thus, we obtain k0(B)= 2r+1 by

a result of Robinson (see [Sambale 2014, Theorem 4.12]). In order to determine
l(B), we use induction on r . Let u := x2. Then bu dominates a block bu of
CG(u)/〈u〉 with defect group D := D/〈u〉 ∼= D8 and fusion system F := F/〈u〉.
By [Linckelmann 2007, Theorem 6.3], 〈x2, y, z〉/〈u〉 ∼= C2

2 is the only F-essential
subgroup of D. Therefore, a result of Brauer (see [Sambale 2014, Theorem 8.1])
shows that l(bu) = l(bu) = 2. By Lemma 3 and [Sambale 2014, Theorem 1.35]
it follows that k(B) > k0(B). Since |Z(D) : Z(D) ∩ foc(B)| = 2r−1, we have
2r−1
| ki (B) for i ≥ 1 by [Robinson 2008, Theorem 2]. Thus, by [Robinson 1991,

Theorem 3.4] we obtain

2r+2
≤ k0(B)+ 4(k(B)− k0(B))≤

∞∑
i=0

ki (B)22i
≤ |D| = 2r+2.

This gives k1(B) = 2r−1 and k(B) = k0(B)+ k1(B) = 5 · 2r−1. In case r = 2,
[Sambale 2014, Theorem 1.35] implies

l(B)= k(B)−
∑

16=u∈R

l(bu)= 10− 8= 2.

Now let r ≥ 3 and 1 6= 〈u〉< 〈x2
〉. Then bu as above has the same type of defect

group as B except that r is smaller. Hence, induction gives l(bu)= l(bu)= 2. Now
the claim l(B)= 2 follows again by [Sambale 2014, Theorem 1.35]. �
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In the following results we denote the set of irreducible characters of B of height i
by Irri (B).

Proposition 5 [Sambale 2014, Proposition 12.9]. The set Irr0(B) contains four
2-rational characters and two families of 2-conjugate characters of size 2i for every
i = 1, . . . , r −1. The characters of height 1 split into two 2-rational characters and
one family of 2-conjugate characters of size 2i for every i = 2, . . . , r − 2.

Proposition 6. There are 2-rational characters χi ∈ Irr(B) for i = 1, 2, 3 such that

Irr0(B)= {χi ∗ λ : i = 1, 2, λ ∈ Irr(D/foc(B))},

Irr1(B)= {χ3 ∗ λ : λ ∈ Irr(Z(D)foc(B)/foc(B))}.

In particular, the characters of height 1 have the same degree and

|{χ(1) : χ ∈ Irr0(B)}| ≤ 2.

Proof. We have already seen in the proof of Theorem 4 that the action of D/foc(B) on
Irr0(B) via the ∗-construction has two orbits, and the action of Z(D)foc(B)/foc(B)
on Irr1(B) is regular. By Proposition 5 we can choose 2-rational representatives for
these orbits, having identified the sets Irr(D/foc(B)) and Irr(Z(D)foc(B)/foc(B))
with subsets of Irr(D) in an obvious manner. �

In the situation of Proposition 6 it is conjectured that χ1(1) 6= χ2(1) (see [Malle
and Navarro 2011]).

Proposition 7 [Sambale 2014, Proposition 12.8]. The Cartan matrix of B is given
by

2r−1
(

3 1
1 3

)
up to basic sets.

Observe that Proposition 7 also gives the Cartan matrix for the defect group D8

and the corresponding fusion system (this would be the case r = 1).
Now we are in a position to obtain the generalized decomposition matrix of B.

This completes partial results in [Sambale 2011, Section 3.3].

Proposition 8. Let R and χi be as in Lemma 3 and Proposition 6 respectively. Then
there are basic sets for bu (u ∈R) and signs ε, σ ∈ {±1} such that the generalized
decomposition numbers of B have the following form:

u x2i x2i z x2i+1 x2i+1 y

du
χ1ϕ

(1, 0) 1 1 1
du
χ2ϕ

(0, ε) ε ε −ε

du
χ3ϕ

(σ, σ ) −2σ 0 0
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Proof. Since the Galois group of Q(e2π i/2r
) over Q acts on the columns of the

generalized decomposition matrix (see Proposition 5), we only need to determine
the numbers du

χiϕ
for u ∈ {x, xy, x2 j

, x2 j
z} (i = 1, 2, 3, j = 1, . . . , r). First let

u = x . Then the orthogonality relations show that

2r
|dx
χ1ϕ
|
2
+ 2r
|dx
χ2ϕ
|
2
+ 2r−1

|dx
χ3ϕ
|
2
= 2r+1.

Since χ1 and χ2 have height 0, we have dx
χ1ϕ
6= 0 6= dx

χ2ϕ
(see [Sambale 2014,

Proposition 1.36]). It follows that dx
χiϕ
=±1 for i = 1, 2 and dx

χ3ϕ
= 0, because χi

is 2-rational. By replacing ϕ with −ϕ if necessary (i.e., changing the basic set for
bx ), we may assume that dx

χ1ϕ
= 1. We set dx

χ2ϕ
=: ε0. Similarly, we obtain dxy

χ1ϕ = 1,
dxy
χ2ϕ = ±1 and dxy

χ3ϕ = 0. Now since the columns dx and dxy of the generalized
decomposition matrix are orthogonal, we obtain dxy

χ2ϕ =−ε0.
Now let u := x2 j

for some j ∈ {1, . . . , r}. Let IBr(bu)= {ϕ1, ϕ2} (see the proof
of Theorem 4). Then by Proposition 7 we get

2r
|du
χ1ϕ1
|
2
+ 2r
|du
χ2ϕ1
|
2
+ 2r−1

|du
χ3ϕ1
|
2
= 3 · 2r−1,

2r
|du
χ1ϕ2
|
2
+ 2r
|du
χ2ϕ2
|
2
+ 2r−1

|du
χ3ϕ2
|
2
= 3 · 2r−1,

2r du
χ1ϕ1

du
χ1ϕ2
+ 2r du

χ2ϕ1
du
χ2ϕ2
+ 2r−1du

χ3ϕ1
du
χ3ϕ2
= 2r−1.

Obviously, du
χ1ϕ1

du
χ2ϕ1
= 0 and we may assume that (du

χ1ϕ1
, du
χ1ϕ2

) = (1, 0) and
(du
χ2ϕ1

, du
χ2ϕ2

)= (0, ε j ) for a sign ε j ∈ {±1}. Moreover, du
χ3ϕ1
= du

χ3ϕ2
=: σ j ∈ {±1}.

Now let u := x2 j
z. Then we have

2r
|du
χ1ϕ
|
2
+ 2r
|du
χ2ϕ
|
2
+ 2r−1

|du
χ3ϕ
|
2
= 2r+2.

It is known that 2 |du
χ3ϕ
6=0, since bu is major (see [Sambale 2014, Proposition 1.36]).

This gives du
χ1ϕ
= 1, du

χ2ϕ
= ±1 and du

χ3ϕ
= ±2. By the orthogonality to dx2 j

we
obtain that du

χ3ϕ
=−2σ j and du

χ2ϕ
= ε j .

It remains to show that the signs ε j and σ j do not depend on j . For this we
consider characters λ,ψ ∈ Irr(D) whose values are given as follows:

x2 j
x2 j

z x xy

λ 1 1 1 −1
ψ 2 −2 0 0

Observe that ψ is the inflation of the irreducible character of D/〈x2
〉 ∼= D8 of

degree 2. It is easy to see that (λ+ ψ)(x2k y) = −1 = 1− 2 = (λ+ ψ)(x2kz)
for every k ∈ Z. It follows that λ+ψ is F-stable, i.e., (λ+ψ)(u) = (λ+ψ)(v)
whenever u and v are F-conjugate. By [Broué and Puig 1980a], χ1 ∗ (λ+ψ) is
a generalized character of B. In particular, the scalar product (χ1 ∗ (λ+ψ), χ3)G

is an integer. This number can be computed by using the so-called contribution
numbers mu

χ1χ3
:= du

χ1
C−1

u du
χ3

T where Cu is the Cartan matrix of bu and du
χi

is the
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row of the generalized decomposition matrix corresponding to (u, bu) and χi . For
u = x2 j

we have

C−1
u = 2−r−2

(
3 −1
−1 3

)
by Proposition 7. This gives mu

χ1χ3
= 2−r−1σ j . Similarly, mu

χ1χ3
=−2−r−1σ j for

u = x2 j
z. Thus, we obtain

(χ1 ∗ (λ+ψ), χ3)G =
∑
u∈R

(λ+ψ)(u)mu
χ1χ3
=

∑
u∈Z(D)

(λ+ψ)(u)mu
χ1χ3

= (3+ 1)
(

2−r−1σr + 2−r−1
r−1∑
j=1

σ j 2r− j−1
)

= 2−r+1σr +

r−1∑
j=1

σ j 2− j .

If σ1 = σ j for some j 6= 1, then it follows immediately that σ1 = · · · = σr (other-
wise the scalar product above is not an integer). Now suppose that −σ1 = σ2 =

· · · = σr . In this case we replace χ3 by the 2-rational character χ3 ∗ τ where
τ ∈ Irr(Z(D)foc(B)/foc(B)) such that τ(x2)=−1. This changes σ1, but does not
affect σ j for j > 1.

A similar argument with the scalar product (χ2 ∗ (λ+ ψ), χ3)G implies that
ε1 = · · · = εr . In case ε0 =−ε1, we replace χ2 by χ2 ∗ τ where τ ∈ Irr(D/foc(B))
such that τ(x) = −1. Observe again that this changes ε0, but keeps ε j for j > 0.
This completes the proof. �

3. The main result

Theorem 9. Let B and B̃ be 2-blocks of (possibly different) finite groups with a
common minimal nonabelian defect group and the same fusion system. Then B and
B̃ are isotypic (and therefore perfectly isometric).

Proof. We may assume that B is not nilpotent by [Broué and Puig 1980b]. Let D
be a defect group of B and B̃. If |D| = 8, then the claim follows from [Cabanes and
Picaronny 1992]. Now suppose that D is given as in (1). We will attach a tilde to
everything associated with B̃. By Proposition 8 and [Horimoto and Watanabe 2012,
Theorem 2] there is a perfect isometry I :CF(G, B)→CF(G̃, B̃) where CF(G, B)
denotes the space of class functions with basis Irr(B) over K . It remains to show
that I is also an isotypy. In order to do so, we follow [Cabanes and Picaronny 1992,
Section V.2]. For each u ∈ D let CF(CG(u)2′, bu) be the space of class functions
on CG(u) which vanish on the p-singular classes and are spanned by IBr(bu). The
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decomposition map du
G : CF(G, B)→ CF(CG(u)2′, bu) is defined by

du
G(χ)(s) := χ(ebu us)=

∑
ϕ∈IBr(bu)

du
χϕϕ(s)

for χ ∈ Irr(B) and s ∈ CG(u)2′ where ebu is the block idempotent of bu over O.
Then I determines isometries

I u
: CF(CG(u)2′, bu)→ CF(CG̃(u)2′, b̃u)

by the equation du
G̃
◦ I = I u

◦ du
G . Note that I 1 is the restriction of I . We need

to show that I u can be extended to a perfect isometry Î u : CF(CG(u), bu) →

CF(CG̃(u), b̃u). Suppose first that bu is nilpotent. Then by Proposition 8, du
G(χ1)=

εϕ and du
G̃
(I (χ1)) = ε̃ϕ̃ where IBr(bu) = {ϕ} and IBr(b̃u) = {ϕ̃} for some signs

ε, ε̃ ∈ {±1}. It follows that I u(ϕ) = εε̃ϕ̃. Let ψ ∈ Irr0(bu) and ψ̃ ∈ Irr0(b̃u) be
2-rational characters. Then it is well known that ϕ = d1

CG(u)(ψ) and Irr(bu) =

{ψ ∗λ : λ ∈ Irr(D)} (see [Broué and Puig 1980b]). Therefore, we may define Î u by
Î u(ψ ∗ λ) := εε̃ψ̃ ∗ λ for λ ∈ Irr(D). Then Î u is a perfect isometry and

Î u(ϕ)= Î u(d1
CG(u)(ψ))= d1

CG̃(u)
( Î u(ψ))= εε̃d1

CG̃(u)
(ψ̃)= εε̃ϕ̃ = I u(ϕ).

Hence, Î u extends I u . Moreover, Î u does not depend on the generator of 〈u〉, since
the signs ε and ε̃ were defined by means of 2-rational characters.

Assume next that bu is non-nilpotent. Then u ∈ 〈x2
〉 and bu has defect group

D. By Proposition 8, we can choose basic sets ϕ1, ϕ2 (resp. ϕ̃1, ϕ̃2) for bu (resp.
b̃u) such that ϕi = du

G(χi ) and ϕ̃i = du
G̃
(I (χi )) for i = 1, 2. Then I u(ϕi ) = ϕ̃i for

i = 1, 2. Since the Cartan matrix of bu with respect to the basic set ϕ1, ϕ2 is already
fixed (and given by Proposition 7), we find 2-rational characters ψi ∈ Irr0(bu) such
that d1

CG(u)(ψi )= εiϕi with εi ∈ {±1} for i = 1, 2 (see the proof of Proposition 8).
Similarly, one has ψ̃i ∈ Irr0(b̃u) such that d1

CG̃(u)
(ψ̃i ) = ε̃i ϕ̃i . Then, by what we

have already shown, there exists a perfect isometry

Î u : CF(CG(u), bu)→ CF(CG̃(u), b̃u)

sending ψi to εi ε̃i ψ̃i for i = 1, 2. We have

Î u(ϕi )= εi Î u(d1
CG(u)(ψi ))= εi d1

CG̃(u)
( Î u(ψi ))= ε̃i d1

CG̃(u)
(ψ̃i )= ϕ̃i = I u(ϕi )

for i = 1, 2. This shows that Î u extends I u . Moreover, it is easy to see that Î u does
not depend on the generator of 〈u〉.

Altogether we have proved the theorem if D is given as in (1). By [Sambale
2014, Theorem 12.4] it remains to handle the case

D ∼= 〈x, y | x2r
= y2r

= [x, y]2 = [x, x, y] = [y, x, y] = 1〉
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where r ≥ 2. Here B and B̃ are Morita equivalent and therefore perfectly isometric.
However, a Morita equivalence does not automatically provide an isotypy. Nev-
ertheless, in this special case the Morita equivalence is a composition of various
“natural” equivalences (namely Fong reductions, Külshammer–Puig reduction and
Külshammer’s reduction for blocks with normal defect groups, see [Eaton et al.
2012, proof of Theorem 1]). In particular, the generalized decomposition matrices
of B and B̃ coincide up to signs (see [Watanabe 1985]). Now we can use the same
methods as above in order to construct an isotypy. In fact, for every B-subsection
(u, bu) one has that bu is nilpotent or u = [x, y] and bu is Morita equivalent to B
(see the proof of [Sambale 2011, Proposition 4.3]). We omit the details. �

Corollary 10. Let B be a 2-block of a finite group G with minimal nonabelian
defect group D 6∼= D8. Then B is isotypic to a Brauer correspondent in NG(hyp(B)).

Proof. Let bD be a Brauer correspondent of B in D CG(D). Since D CG(D) ⊆
NG(hyp(B)), the Brauer correspondent b := bNG(hyp(B))

D of B has defect group
D. By Theorem 9, it suffices to show that B and b have the same fusion system.
Observe that NG(D, bD) ⊆ NG(hyp(B)). In particular, B and b have the same
inertial quotient. If there is only the trivial fusion system on D, then we are done
(this applies if D is metacyclic of order at least 16). In case D ∼= Q8, B is a
controlled block (see, e.g., [Cabanes and Picaronny 1992]). Since B and b have the
same inertial quotient, it follows that these blocks also have the same fusion system.
It remains to consider the two other families of defect groups (see [Sambale 2014,
Theorem 12.4]). For one of these families the fusion system is again controlled (see
[Sambale 2014, Proposition 12.7]). Finally, if D is given as in (1), then the fusion
system is constrained and the automorphisms of the essential subgroup (if it exists)
also act on hyp(B). Hence, B is nilpotent if and only if b is nilpotent. Again the
claim follows from Theorem 9. �

We remark that Corollary 10 would be false in case D ∼= D8. The principal
2-block of GL(3, 2) gives a counterexample. If B is a block of a finite group G
with defect group as given in (1), then B is also isotypic to a Brauer correspondent
in CG(u) where u ∈ Z(F). This resembles Glauberman’s Z∗-theorem.

In the situation of Theorem 9 (or Corollary 10) it is desirable to extend the
isotypies to Morita equivalences (as we did in [Eaton et al. 2012]). This is not
always possible if |D|=8, since for example the principal 2-blocks of the symmetric
groups S4 and S5 are not Morita equivalent. Nevertheless, the possible Morita
equivalence classes in case |D| = 8 are known by Erdmann’s classification of tame
algebra [Erdmann 1990] (at least over F , see [Holm 2001]). In view of [Eaton
et al. 2012] one may still ask if two non-nilpotent 2-blocks with isomorphic defect
groups as in Section 2 are Morita equivalent. We will see that the answer is again
negative.
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Consider the groups G1 := A4oC2r and G2 := A5oC2r constructed similarly as
in Lemma 2. Then G1/Z(G1)∼= S4 and G2/Z(G2)∼= S5. Let Bi be the principal
2-block of Gi , and let Bi be the principal 2-block of Gi/Z(Gi ) for i = 1, 2. Then
the Cartan matrix of Bi is just the Cartan matrix of Bi multiplied by |Z(Gi )| = 2r−1.
It is known that the Cartan matrices of B1 and B2 do not coincide (regardless of the
labeling of the simple modules). Therefore, B1 and B2 are not Morita equivalent.

Nevertheless, the structure of a finite group G with a minimal nonabelian Sylow
2-subgroup P as given in (1) is fairly restricted. More precisely, Glauberman’s
Z∗-theorem implies x2

∈ Z∗(G), and the structure of G/Z∗(G) follows from the
Gorenstein–Walter theorem [1965]. In particular, G has at most one nonabelian
composition factor by Feit–Thompson.

We use the opportunity to present a related result for p = 3 which extends
[Sambale 2014, Theorem 8.15].

Theorem 11. Let B and B̃ be non-nilpotent blocks of (possibly different) finite
groups both with defect group C9 oC3. Then B and B̃ are isotypic.

Proof. As in the proof of Theorem 9, we will make use of [Horimoto and Watanabe
2012, Theorem 2]. Let

D := 〈x, y | x9
= y3
= 1, yxy−1

= x4
〉

be a defect group of B, and let F be the fusion system of B. By [Stancu 2006], B is
controlled with inertial index 2, and we may assume that x and x−1 are F-conjugate
(see the proof of [Sambale 2014, Theorem 8.8]). Then R :={1, x, x3, y, y2, xy, xy2

}

is a set of representatives for the F-conjugacy classes of D (see the proof of [Sambale
2014, Theorem 8.15]). It suffices to show that the generalized decomposition
numbers of B are essentially unique (up to basic sets and signs and permutations
of rows). Since the Galois group of Q(e2π i/9) over Q acts on the columns of the
generalized decomposition matrix, we only need to determine the numbers du

χϕ

for u ∈ {x, x3, y, xy}. By [Sambale 2014, Theorem 8.15] there are four 3-rational
characters χi ∈ Irr(B) (i = 1, . . . , 4) such that χ1, χ2 and χ3 have height 0 and χ4

has height 1. Since foc(B)= 〈x〉, we see that

Irr(B)= {χi ∗ λ : i = 1, 2, 3, λ ∈ Irr(D/foc(B))} ∪ {χ4}.

Let u := x3. Then IBr(bu)= {ϕ} and du
χiϕ

are nonzero (rational) integers. Moreover,
du
χ4ϕ
≡ 0 (mod 3). After permuting χ1, χ2 and χ3 and changing the basic set for bu

if necessary, we may assume that du
χ1ϕ
= 2, du

χ2ϕ
=: ε1 ∈ {±1}, du

χ3ϕ
=: ε2 ∈ {±1}

and du
χ4ϕ
= 3ε3 ∈ {±3}. Now let u := x . Then du

χiϕ
=±1 for i = 1, 2, 3 and du

χ4ϕ
= 0.

We may choose a basic set for bu such that du
χ1ϕ
= 1. Then by the orthogonality

relations, du
χ2ϕ
=−ε1 and du

χ3ϕ
=−ε2. Next let u := y. Then bu dominates a block

of CG(u)/〈u〉 with cyclic defect group CD(u)/〈u〉 ∼= C3 and inertial index 2. This
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yields IBr(bu)= {ϕ1, ϕ2} and the Cartan matrix of bu is given by

3
(

2 1
1 2

)
(not only up to basic sets, but this is not important here). We can choose a basic set
such that (du

χ1ϕ1
, du
χ1ϕ2

) = (1, 1), (du
χ2ϕ1

, du
χ2ϕ2

) = (σ1, 0), (du
χ3ϕ1

, du
χ3ϕ2

) = (0, σ2)

and (du
χ4ϕ1

, du
χ4ϕ2

) = (0, 0) for some signs σ1, σ2 ∈ {±1}. Finally for u := xy we
obtain du

χ1ϕ
= 1, du

χiϕ
=−σi−1 for i = 2, 3 and du

χ4ϕ
= 0 after changing the basic

set if necessary. The following table summarizes the results:

u x3 x y xy

du
χ1ϕ

2 1 (1, 1) 1
du
χ2ϕ

ε1 −ε1 (σ1, 0) −σ1

du
χ3ϕ

ε2 −ε2 (0, σ2) −σ2

du
χ4ϕ

3ε3 0 (0, 0) 0

It suffices to show that εi = σi for i = 1, 2 (observe that we do not need the
ordinary decomposition numbers in order to apply [Horimoto and Watanabe 2012,
Theorem 2]). For this, let λ ∈ Irr(D/〈x3

〉) such that λ(x) = e2π i/3 and λ(y) = 1.
Then the generalized character ψ := λ+ λ− 2 · 1D of D is constant on 〈x〉 \ 〈x3

〉

and thus F-stable. By [Broué and Puig 1980a], χ1 ∗ψ is a generalized character of
B and (χ1 ∗ψ, χ2)G ∈ Z. As in the proof of Theorem 9, we compute

(χ1 ∗ψ, χ2)G =
∑
u∈R

ψ(u)mu
χ1χ2
= ψ(x)mx

χ1χ2
+ψ(xy)mxy

χ1χ2
+ψ(xy2)mxy2

χ1χ2

=
1
3ε1+

2
3σ1.

This shows ε1= σ1. Similarly, one gets ε2= σ2 by computing (χ1∗ψ, χ3)G . Hence,
[Horimoto and Watanabe 2012, Theorem 2] gives a perfect isometry I :CF(G, B)→
CF(G̃, B̃). In order to show that I is also an isotypy, we make use of the notation
introduced in the proof of Theorem 9. Let u ∈ D such that bu is nilpotent. Then by
the table above, we have IBr(bu)= {±du

G(χ2)}. Thus, one can extend I u just as in
Theorem 9. Now suppose that bu is non-nilpotent and thus u = y (up to inversion).
We choose a basic set ϕ1, ϕ2 for bu as above such that du

G(χi )= ϕi−1 for i = 2, 3.
Now we have to determine the ordinary decomposition numbers of bu with respect
to ϕ1, ϕ2. The defect group of bu is CD(y)= 〈x3, y〉 ∼=C3×C3 and foc(bu)= 〈x3

〉.
By [Kiyota 1984], k(bu)= 9. Therefore, there are 3-rational characters ψi ∈ Irr(bu)

such that

Irr(bu)= {ψi ∗ λ : i = 1, 2, 3, λ ∈ Irr(〈x3, y〉/〈x3
〉)}.

By the Cartan matrix of bu given above (with respect to ϕ1, ϕ2), it follows immedi-
ately that d1

CG(u)(ψi )= εiϕi with εi ∈{±1} for i =1, 2 after a suitable permutation of
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ψ1, ψ2, ψ3. Similarly, d1
CG̃(u)

(ψ̃i )= ε̃i ϕ̃i . By a result of Usami [1988], there is a per-
fect isometry CF(CG(u), bu)→ CF(CG̃(u), b̃u). However, we need the additional
information that ψi is mapped to ±ψ̃i . In order to show this, we use [Horimoto and
Watanabe 2012, Theorem 2] again. Observe that du

CG(u)(ψi )= ζi d1
CG(u)(ψi )= ζiεiϕi

for a cube root of unity ζi . But since du
ψiϕi

is rational, we have ζi = 1. Now an
elementary application of the orthogonality relations shows that the generalized
decomposition matrix of bu (in CG(u)) is determined by

v 1 y x3 x3 y

dvψ1ϕ
(ε1, 0) (ε1, 0) ε1 ε1

dvψ2ϕ
(0, ε2) (0, ε2) ε2 ε2

dvψ3ϕ
(ε3, ε3) (ε3, ε3) −ε3 −ε3

It follows that there is a perfect isometry Î u : CF(CG(u), bu)→ CF(CG̃(u), b̃u)

such that Î u(ψi )= εi ε̃i ψ̃i for i = 1, 2. Therefore Î u extends I u . As in the proof of
Theorem 9, it is also clear that Î u is independent of the choice of the generator of
〈u〉. This finishes the proof. �

The proof method of Theorem 11 also works for other defect groups. In fact,
Watanabe [2015] showed independently (using more complicated methods) that
two p-blocks (p > 2) with a common metacyclic, minimal nonabelian defect
group and the same fusion system are perfectly isometric. Again, this gives evi-
dence for the character-theoretic version of Rouquier’s conjecture (see [Watanabe
2014, Theorem 2]). As another remark, Holloway, Koshitani and Kunugi [2010,
Example 4.3] constructed a perfect isometry between the principal 3-block of
G := Aut(SL(2, 8))∼= 2G2(3) and its Brauer correspondent. Since G has a Sylow
3-subgroup isomorphic to C9 oC3, this is a special case of Theorem 11. Note that
in the introduction of [Ruengrot 2011] it is erroneously stated that these blocks are
not perfectly isometric.
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NUMBER OF SINGULARITIES OF
STABLE MAPS ON SURFACES

TAKAHIRO YAMAMOTO

Let N denote the plane R2 or the 2-sphere S2. In this paper, we determine
the 5-tuples of integers (g, d, i, c, n) such that there exists a degree d stable
map 6g → N whose singular point set consists of i connected components,
c cusps, and n nodes, where 6g is the standard genus g surface.

1. Introduction

Throughout this paper, all surfaces and manifolds are connected and of class C∞

(i.e., smooth), and all maps are of class C∞. Let M be a closed surface and N be a
surface. For a C∞ map ϕ : M→ N , denote by S(ϕ) the set of singular points of ϕ.
Call ϕ(S(ϕ)) the apparent contour (contour for short), and denote it by γ (ϕ). In
this paper, all C∞ maps M→ N have nonempty singular point sets.

A C∞ map ϕ : M → N is said to be stable if it satisfies the following two
properties.

(1) For each p ∈ M , the map germ of ϕ at p is C∞ right-left equivalent to one of
the map germs at 0 ∈ R2 as follows:

(a, x) 7→


(a, x), p is a regular point,
(a, x2), p is a fold point,
(a, x3

+ ax), p is a cusp point.

Hence, S(ϕ) is a disjoint union of finitely many circles.

(2) For each q ∈γ (ϕ), the map germ (ϕ|S(ϕ), ϕ
−1(q)∩S(ϕ)) is right-left equivalent

to one of the three multigerms as depicted in Figure 1.

Fold NodeCusp

q qq

Figure 1. The multigerms of ϕ|S(ϕ).

MSC2010: primary 57R45; secondary 57M20, 58K15.
Keywords: stable map, cusp, node.
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According to a classical result of Whitney [1955], stable maps form an open
dense subset of the space of all C∞ maps M→ N with respect to the Whitney C∞

topology.
For a stable map ϕ : M → N , denote by c(ϕ), n(ϕ) and i(ϕ) the numbers of

cusps, nodes and connected components of S(ϕ), respectively.
For a nonnegative integer g, the closed and oriented surface of genus g, which

is the connected sum of g copies of the 2-dimensional torus T 2, is denoted by 6g.
The 2-dimensional sphere and the plane are denoted by S2 and R2, respectively.

For any stable map f : M→ S2 (or R2) of a closed and oriented surface M , one
can associate the 5-tuple of integers (g, d( f ), i( f ), c( f ), n( f )), where g is the
genus of M and d( f ) is the mapping degree of f . This paper studies the following
question: which 5-tuples (g, d, i, c, n) can occur in this way?

Some necessary conditions have been obtained by Pignoni [1993], Kamenosono
and Yamamoto [2009] (see also Proposition 3.4), Eliashberg [1970], and Quine
[1978] (see also Theorem 3.11 of the present paper). M. Yamamoto [2009] studied
the numbers i( f ) of fold maps f :6g→6h .

András Szűcs posed the following question at the International Workshop on Real
and Complex Singularities, held in São Carlos in 2012: whether these conditions
form a complete set of restrictions.

The answer is No. There is a geometrical condition for the number of nodes.
More precisely, there is the minimal number of nodes for a given 4-tuple (g, d, i, c).
The main results of this paper are the following two theorems.

Let v1 = (2, 1) and v2 = (0, 2) be vectors in R2. For given integers k, ` ≥ 0,
denote by Lk,` the affine lattice {µ1v1+µ2v2+ (2, 0) |µ1, µ2 ∈ Z} if k ≡ ` mod 2,
and the lattice {µ1v1+µ2v2 | µ1, µ2 ∈ Z} otherwise. For given integers k, `≥ 0,
set δk,` = 2 if k ≡ ` mod 2, and δk,` = 0 otherwise.

Theorem 1.1. Let g ≥ 0 and i ≥ 1. If f :6g→ R2 is a stable map whose singular
point set consists of i components, then the pair (c( f ), n( f )) is in L i,g∩D, where D
denotes the subset of R2 (expressed by coordinates (x, y)) defined by the following:

D=


{
(x, y)

∣∣ x ≥ δi,g, y ≥ 0, y ≥− 1
2 x + g− i + 3, y ≥ 1

2 x − g− i + 1
}

if 1≤ i ≤ g{
(x, y)

∣∣ x ≥ δi,g, y ≥ 0, y ≥ 1
2 x − g− i + 1

}
if i > g.

Furthermore, for any pair (c, n) in L i,g ∩ D, there is a stable map f : 6g → R2

with S( f ) consisting of i components, c cusps, and n nodes.

Theorem 1.2. Let g, d ≥ 0 and i ≥ 1. If f : 6g → S2 is a degree d stable map
whose singular point set consists of i components, then the pair (c( f ), n( f )) is in
L i,g+d ∩ D, where D denotes the subset of R2 (expressed by coordinates (x, y))
defined by the following:
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g = 0:

D =
{
{(x, y) | x ≥ 2(d + 1− i), y ≥ 0} if 1≤ i ≤ d,
{(x, y) | x ≥ δi,d , y ≥ 0} if i ≥ d.

g ≥ 1:

D =



(1) {(x, y) | x ≥ δi,g, y ≥ 0, y ≥− 1
2 x+g+3−i}

if d = 0 and 1≤ i ≤ g,

(2) {(x, y) | x ≥ δi,g, y ≥ 0} if d = 0 and i > g,

(3) {(x, y) | x ≥ 2(d+1−g− i), y ≥ 0, y ≥− 1
2 x+d+g+3− i}

∪ {(x, y) | x ≥ 2(d+g+1− i), y ≥ 0}
if d ≥ 1 and 1≤ i ≤ d−g+1,

(4) {(x, y) | x ≥ δi,g+d , y ≥ 0, y ≥− 1
2 x+d+g+3− i}

∪ {(x, y) | x ≥ 2(d+g+1− i), y ≥ 0}
if d ≥ 1 and d−g+1≤ i ≤ d+g−1,

(5) {(x, y) | x ≥ δi,g+d , y ≥ 0} if d ≥ 1 and i ≥ d+g.

Furthermore, for any pair (c, n) in L i,g+d ∩ D, there is a degree d stable map
f :6g→ S2 with S( f ) consisting of i components, c cusps and n nodes.

In Theorems 1.1 and 1.2, generators v1 and v2 correspond to two modifications
for stable maps between surfaces: v1 is passing through the swallow-tail singularity
(Figure 2), while v2 is passing through the tangency singularity (Figure 3).

In order to prove Theorems 1.1 and 1.2, we will construct maps for any 5-tuples
in the list. The constructions go as follows. There are ten modifications that can
apply to any map in order to obtain a map with a new 5-tuple.

Swallow-tail

Figure 2. Swallow-tail singularity.

Tangency

Figure 3. Tangency singularity.
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(1) Passing through the swallow-tail singularity (Figure 2):

(g, d, i, c, n)→ (g, d, i, c+ 2, n+ 1),

(2) Passing through the tangency singularity of the singular curve (Figure 3):

(g, d, i, c, n)→ (g, d, i, c, n+ 2),

(3) Attaching two spheres (Figure 4):

(g, d, i, c, n)→ (g, d, i, c+ 4, n),

(4) Attaching a handle vertically (Figure 5, left):

(g, d, i, c, n)→ (g+ 1, d, i + 1, c, n),

M

M #S2#S2

f

f 0


 .f /


 .f 0/

Figure 4. Attaching two spheres: by attaching two maps idS2 and
− idS2 to f : M→ S2, we obtain a stable map M→ S2, where idS2

denotes the identity map on S2 and − idS2 the C∞ map of S2 into
S2 defined by x 7→ −x .

Attach a handleAttach a handle

vertically horizontally

Figure 5. Left: attaching a handle vertically. Right: attaching a
handle horizontally. The map is obtained when one projects these
surfaces to the horizontal plane.
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Figure 6. Attaching a pair of handles: attaching a handle vertically
and then attaching a handle horizontally.

f f 0

� S.f 0/

Figure 7. Attaching a balloon.

(5) Attaching a handle horizontally (Figure 5, right):

(g, d, i, c, n)→ (g+ 1, d, i, c+ 2, n),

(6) Attaching a pair of handles. More precisely, attaching a handle vertically and
then attaching a handle horizontally (Figure 6):

(g, d, i, c, n)→ (g+ 2, d, i, c, n+ 2),

(7) Attaching a balloon (Figure 7):

(g, d, i, c, n)→ (g, d, i + 2, c, n),

(8) Making a wrinkle (Figure 8):

(g, d, i, c, n)→ (g, d, i + 1, c+ 2, n),

(9) Attaching a sphere horizontally (Figure 9):

(g, d, i, c, n)→ (g, d + 1, i, c+ 2, n),

(10) Attaching a sphere vertically (Figure 10):

(g, d, i, c, n)→ (g, d + 1, i + 1, c, n).
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Figure 8. Making a wrinkle.

M M #S2

f
f 0


 .f /


 .f 0/

Figure 9. Attaching a sphere horizontally.

M � � M


 .f / 
 .f 0/

� S.f 0/

Figure 10. Attaching a sphere vertically.

(11) Attaching a pair of a sphere and a handle. More precisely, attaching a sphere
vertically and then, attaching a handle horizontally (Figure 11):

(g, d, i, c, n)→ (g+ 1, d + 1, i, c, n+ 2),

We remark that we can apply all modifications (i) with 1≤ i ≤ 11 to stable maps
of surfaces into the sphere. But we can apply modifications (1) and (2), (4), (5),
(6), (7), (8) to stable maps of surfaces into the plane.
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Figure 11. Attaching a pair of a sphere and a handle: attaching a
sphere vertically and then, attaching a handle horizontally.

These modifications never decrease the number of 5-tuple (g, d, i, c, n), but
they increase some of them. Hence it is enough to construct maps providing the
minimal 5-tuples. These constructions can be found in [Demoto 2005; Fukuda and
Yamamoto 2011; Kamenosono and Yamamoto 2009; Yamamoto 2009; Yamamoto
2010]. We will sketch their descriptions in Section 2.

Remark 1.3. Theorems 1.1 and 1.2 together with the previous results [Fukuda and
Yamamoto 2011; Kamenosono and Yamamoto 2009; Pignoni 1993; Yamamoto
2009; 2010] make the very first step toward classifying generic C∞ maps of closed
surfaces into the plane or the sphere up to right-left equivalence.

Remark 1.4. Let M be a closed surface and N a surface. Let A be an element, an
ordered pair, or triple consisting of some elements in {c, i, n, c+ n}. For a stable
map ϕ : M→ N , denote by A(ϕ) the element, the ordered pair, or triple consisting
of the corresponding elements in {c(ϕ), i(ϕ), n(ϕ), c(ϕ)+ n(ϕ)}. For a C∞ map
ϕ0 : M→ N , we say that a stable map ϕ : M→ N has an A-minimal contour for ϕ0

if A(ϕ) is minimal with respect to the lexicographic order among those stable maps
which are homotopic to ϕ0.

Let A = (i, c, n). The (i, c, n)-minimal contours were studied in [Demoto 2005;
Kamenosono and Yamamoto 2009; Pignoni 1993]. The (i, c, n)-minimal contours
of a C∞ map 6g → S2 of degree d correspond to the bottom left corner of the
lattice L1,g+d ∩ D. Note that for a C∞ map M → N , there is a stable map with
S( f ) consisting of one component.

This paper is organized as follows. In Section 2, we prepare some stable maps
M→ R2 and M→ S2 which we employ in the following section. In Section 3, we
prove Theorems 1.1 and 1.2. In Section 4, we pose two problems which concern
the apparent contours of stable maps between surfaces. In the Appendix, we study
i-(c, n)-minimal contours and i-(n, c)-minimal contours of stable maps 6g→ S2.

2. Stable maps 6g → N (for N = R2 or N = S2)

In this section, we show that there exist stable maps 6g → R2 and 6g → S2

whose triples (i, c, n) are in the lists of Theorems 1.1 and 1.2, respectively. For two
integers k and `, set δk,` = 2 if k ≡ `, and δk,` = 0 otherwise.
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2A. Stable maps 6g → R2. Let pS2 : S2
→ R2 be the standard projection defined

by (x, y, z) 7→ (x, y). Then, the contour γ (pS2) is an embedded circle in R2, namely,
the triple (i, c, n) is equal to (1, 0, 0). Then, by applying modifications (1) and (2)
to pS2 inductively, for each (c, n) in

L1,0 ∩
{
(x, y)

∣∣ x ≥ 0, y ≥ 1
2 x
}
,

we obtain a stable map f : S2
→R2 with S( f ) consisting of one component, c cusps,

and n nodes. Furthermore, for a given integer i ≥ 1, by applying modifications (7)
and (8) i − 1 times to stable maps S2

→ R2 whose pairs (c, n) are in

L1,0 ∩
{
(x, y)

∣∣ x ≥ 0, y ≥ 1
2 x
}
,

for each (c, n) in

L i,0 ∩
{
(x, y)

∣∣ x ≥ δi,0, y ≥ 0, y ≥ 1
2 x − i + 1

}
,

we obtain a stable map f : S2
→R2 with S( f ) consisting of i components, c cusps,

and n nodes.
Then, for given integers g ≥ 1 and i ≥ 1, with i > g, let k and ` be nonnegative

integers satisfying k+`= g. By applying modifications (4) k times and (5) ` times
to stable maps S2

→ R2 whose pairs (c, n) are in

L i,0 ∩
{
(x, y)

∣∣ x ≥ δi,0, y ≥ 0, y ≥ 1
2 x − i + 1

}
,

for each (c, n) in

L i,g ∩
{
(x, y)

∣∣ x ≥ δi,g, y ≥ 0, y ≥ 1
2 x − g− i + 1

}
,

we obtain a stable map f :6g→R2 with S( f ) consisting of i components, c cusps,
and n nodes.

Thus, we obtain stable maps 6g → R2 whose pairs (c, n) are in the list of
Theorem 1.1 with i > g.

Proposition 2.1. Let g ≥ 1. For each pair (c, n) in

L1,g ∩
{
(x, y)

∣∣ y =− 1
2 x + g+ 2, y ≥ 1

}
,

there is a stable map 6g → R2 with S( f ) consisting of one component, c cusps,
and n nodes.

Proof. There exist stable maps T 2
→R2 whose triples (i, c, n) are equal to (1, 2, 2)

and (1, 4, 1). There also exist stable maps 62→R2 whose triples (i, c, n) are equal
to (1, 0, 4) and (1, 2, 3). See [Pignoni 1993; Yamamoto 2010] for the details.

By applying modifications (5) and (6) to the above four stable maps T 2
→ R2,

62→R2 inductively, we obtain the desired stable maps 6g→R2. For example, let
us consider the case g = 2. By applying modification (5) to stable maps T 2

→ R2
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whose triples (i, c, n) are equal to (1, 2, 2) and (1, 4, 1), we obtain stable maps
62 → R2 whose triples (i, c, n) are equal to (1, 4, 2) and (1, 6, 1), respectively.
Furthermore, let us consider the case g = 3. By applying modification (6) to stable
maps T 2

→ R2 whose triples (i, c, n) are equal to (1, 2, 2) and (1, 4, 1), we obtain
stable maps 63 → R2 whose triples (i, c, n) are equal to (1, 2, 4) and (1, 4, 3),
respectively. By applying modification (5) to stable maps 62→ R2 whose triples
(i, c, n) are equal to (1, 4, 2) and (1, 6, 1), we obtain stable maps 63→ R2 whose
triples (i, c, n) are equal to (1, 6, 2) and (1, 8, 1), respectively. �

Then, by applying modifications (1) and (2) inductively to stable maps in
Proposition 2.1, for each (c, n) in

L1,g ∩
{
(c, n)

∣∣ x ≥ δ1,g, y ≥ 1, y ≥− 1
2 x + g+ 2, y ≥ 1

2 x − g− 2
}
,

we obtain a stable map 6g→ R2 with S( f ) consisting of one component, c cusps,
and n nodes.

For given integers g ≥ 1 and i ≥ 1 with 1≤ i ≤ g, by applying modification (4)
i − 1 times to stable maps 6g−i+1→ R2 whose pairs (c, n) are in

L1,g−i+1 ∩
{
(c, n)

∣∣ x ≥ δ1,g−i+1, y ≥ 1, y ≥− 1
2 x + (g− i + 1)+ 2,

y ≥ 1
2 x − (g− i + 1)− 2

}
,

for each (c, n) in

L i,g ∩
{
(c, n)

∣∣ x ≥ δi,g, y ≥ 1, y ≥− 1
2 x + g+ 2, y ≥ 1

2 x − g− 2
}
,

we obtain a stable map 6g→ R2 with S( f ) consisting of i components, c cusps,
and n nodes.

Thus, we obtain all stable maps 6g→R2 whose triples (i, c, n) are in the list of
Theorem 1.1.

2B. Stable maps 6g → S2. Note that stable maps6g→R2 obtained in Section 2A
induce degree zero stable maps 6g→ S2.

Let us consider stable maps S2
→ S2. Denote by f S2,S2

(1,2,0) a degree one stable map
S2
→ S2 whose contour is shown in Figure 12.
Let d ≥ 1 and i ≥ 1 be integers with i ≤ d. By applying modifications (1), (2),

and (3) inductively to a degree d stable map S2
→ S2 whose triple (i, c, n) is equal

to (1, 2d, 0), for each (c, n) in

L1,d ∩ {(x, y) | x ≥ 2d, y ≥ 0},

we obtain a degree d stable map f : S2
→ S2 with S( f ) consisting of one component,

c cusps, and n nodes. Then, by applying modification (10) i − 1 times inductively
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S2

f
S2;S2

.1;2;0/

Figure 12. Stable map f S2,S2

(1,2,0) : S
2
→ S2.

to these degree d − i + 1 stable maps S2
→ S2 whose pairs (c, n) are in

L1,d−i+1 ∩ {(x, y) | x ≥ 2(d + 1− i), y ≥ 0},

for each (c, n) in

L i,d ∩ {(x, y) | x ≥ 2(d + 1− i), y ≥ 0},

we obtain a degree d stable map f : S2
→ S2 with S( f ) consisting of i components,

c cusps, and n nodes.
Let d ≥ 0 and i ≥ 1 be integers with i ≥ d . By applying modification (10) d times

and d − 1 times inductively to degree zero stable maps S2
→ S2 and degree one

stable maps S2
→ S2 whose pairs (c, n) are in

L i,0 ∩ {(x, y) | x ≥ δi,0, y ≥ 0} and L i,1 ∩ {(x, y) | x ≥ δi,1, y ≥ 0}

respectively, for each (c, n) in

L i,d ∩ {(x, y) | x ≥ δi,d , y ≥ 0},

we obtain a degree d stable map S2
→ S2 with S( f ) consisting of i components,

c cusps and n nodes.
Thus, we obtain all stable maps S2

→ S2 whose pairs (c, n) are in the lists of
Theorem 1.2 with g = 0.

In the following, assume g≥ 1. Let us consider degree zero stable maps6g→ S2

which are not induced from stable maps 6g→ R2.

Proposition 2.2. Let g ≥ 1 and i ≥ 1 with i ≤ g. For each pair (c, n) in

L i,g ∩
{
(x, y)

∣∣ x ≥ δi,g, y ≥ 0, y =− 1
2 x + g+ 3− i

}
,

there is a degree zero stable map 6g→ S2 with S( f ) consisting of i components,
c cusps, and n nodes.
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Proof. For each (c, n) in

L i,g ∩
{
(x, y)

∣∣ x ≥ δi,g, y ≥ 1, y =− 1
2 x + g+ 3− i

}
,

we already obtained a degree zero stable map f :6g→ S2 with S( f ) consisting of
i components, c cusps and n nodes in Section 2A.

By attaching a sphere which is mapped by orientation reversely to f S2,S2

(1,2,0), we
obtain a degree zero stable map S2

→ S2 whose triple (i, c, n) is equal to (1, 4, 0).
Then, for each integers g ≥ 1 and i ≥ 1 with i ≤ g, by applying modifications (4)
i − 1 times and (5) g − i + 1 times to this degree zero stable map S2

→ S2, we
obtain a degree zero stable map f :6g→ S2 with S( f ) consisting of i components,
2(g+ 3− i) cusps, and no nodes. �

Let g ≥ 1 and i ≥ 1 with i ≤ g. By applying modifications (1), (2), and (3) to
stable maps obtained in the above subsection and in Proposition 2.2, for each pair
(c, n) in

L i,g ∩
{
(x, y)

∣∣ x ≥ δi,g, y ≥ 0, y ≥− 1
2 x + g+ 3− i

}
,

we obtain a stable map 6g→ S2 with S( f ) consisting of i components, c cusps,
and n nodes.

Let g ≥ 1 and i ≥ 1 with i > g. By applying modifications (1), (2), and (3)
inductively to a degree zero stable map 6g→ S2 whose triple (i, c, n) is equal to
(i, δi,g, 0), for each (c, n) in

L i,g ∩ {(x, y) | x ≥ δi,g, y ≥ 0},

we obtain a degree zero stable map f :6g→ S2 with S( f ) consisting of i compo-
nents, c cusps and n nodes.

Thus, we obtain degree zero stable maps 6g→ S2 in the lists of Theorem 1.2
(1) and (2).

In the following, assume g ≥ 1 and d ≥ 1.

Proposition 2.3. (1) If g ≤ d, then for each (c, n) in

L1,g+d ∩
{
(x, y)

∣∣ x ≥ 2(d − g), y =− 1
2 x + g+ d + 2

}
,

there is a degree d stable map 6g→ S2 with S( f ) consisting one component,
c cusps, and n nodes.

(2) If d ≤ g, then for each (c, n) in

L1,g+d ∩
{
(x, y)

∣∣ y =− 1
2 x + g+ d + 2, y ≥ 3

}
,

there is a degree d stable map 6g→ S2 with S( f ) consisting one component,
c cusps, and n nodes.
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Proof. Stable maps 6g→ R2 and 6g→ S2 whose triples (i, c, n) are one of the
following lists (1) and (2) were obtained in [Kamenosono and Yamamoto 2009;
Yamamoto 2010] respectively:

(1) Stable maps f :6g→ R2 whose triples (i, c, n) are

(i, c, n)=


(1, 0, 0) if g = 0,
(1, 2, g+ 1) if g is odd,
(1, 0, g+ 2) otherwise.

Degree d ≥ 0 stable maps f :6g→ S2 whose triples (i, c, n) are

(i, c, n)=


(1, 2d, 0) if g = 0,
(1, 2(d − g), 2g+ 2) if d ≥ g ≥ 1,
(1, 0, d + g+ 2) if d ≤ g and d ≡ g,
(1, 2, d + g+ 1) if d < g and d 6≡ g.

(2) Stable maps f :6g→ R2 whose triples (i, c, n) are

(i, c, n)=
{
(1, 0, 0) if g = 0,
(1, 2g+ 2, 1) otherwise.

Degree d ≥ 0 stable maps f :6g→ S2 whose triples (i, c, n) are

(i, c, n)=


(1, 2d, 0) if g = 0,
(1, 2(g+ 2), 0) if d = 0 and g ≥ 1,
(1, 2(d + g), 0) otherwise.

On the other hand, there exists a degree one stable map T 2
→ S2 whose triple

(i, c, n) is equal to (1, 2, 3); see [Kamenosono and Yamamoto 2009] for the details.
By applying modification (5) or (6), (9), (11) for stable maps 6g → R2 and

6g→ S2 in these lists, and a stable map T 2
→ S2 whose triple (i, c, n) is equal to

(1, 2, 3), we obtain the desired stable maps 6g→ S2. �

Then, by applying modifications (1) and (2), (3), (10) inductively to stable maps
6g → S2 in Proposition 2.3, we obtain each stable map 6g → S2 in the list of
Theorem 1.2(3) and (4).

Let i ≥ 1 with i ≥ g+d . By applying modifications (1) and (2), (3), (10) to degree
zero stable maps 6g→ S2 whose triples (i, c, n) are (g+ 1, 0, 0) and (g+ 2, 2, 0),
we obtain each stable map 6g→ S2 in the list of Theorem 1.2(5).

Thus, we obtain all stable maps 6g→ S2 whose triples (i, c, n) are in the lists
of Theorem 1.2.
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3. Proof of Theorems 1.1 and 1.2

3A. Preparation. In this subsection, some notions concerning the apparent contour
of a stable map M→ S2 of a closed surface are introduced, where M is a closed
surface and S2 is oriented.

Let ϕ : M → S2 be a stable map whose contour is nonempty. Let S(ϕ) =
S1 ∪ · · · ∪ S` be the decomposition of S(ϕ) into the connected components and set
γi = ϕ(Si ) (i = 1, . . . , `). Note that γ (ϕ)= γ1∪· · ·∪γ`. Let m(ϕ) be the smallest
number of elements in the set ϕ−1(y), where y ∈ S2 runs over all regular values
of ϕ. Fix a regular value∞ such that ϕ−1(∞) consists of m(ϕ) points. For each γi ,
denote by Ui the component of S2

\ γi which contains∞. Note that ∂Ui ⊂ γi .
Orient γi so that at each fold point image, the surface is “folded to the left hand

side.” More precisely, for a point y ∈ γi which is not a cusp or a node, choose a
normal vector v of γi at y such that ϕ−1(y′) contains more elements than ϕ−1(y),
where y′ is a regular value of ϕ close to y in the direction of v. Let τ be a tangent
vector of γi at y such that the ordered pair (τ, v) is compatible with the given
orientation of S2. It is easy to see that τ gives a well-defined orientation for γi .

Definition 3.1. A point y ∈ ∂Ui \{cusps, nodes} is said to be positive if the normal
orientation v at y points toward Ui . Otherwise, it is said to be negative.

A component γi is said to be positive if all points of ∂Ui \ {cusps, nodes} are
positive; otherwise, γi is said to be negative. The number of positive and negative
components is denoted by i+ and i−, respectively. Note that there is at least one
negative component unless S( f )=∅.

Definition 3.2. A point y ∈ ∂Ui \ {cusps, nodes} is called an admissible starting
point if y is a positive point of a positive component γi (or a negative point of a
negative component). Note that for each i , there always exists an admissible starting
point on γi .

Definition 3.3. Suppose that y ∈ γi is an admissible starting point and Q ∈ γi is
a node. Let α : [0, 1] → γi be a parametrization consistent with the orientation,
singular only when the image is a cusp such that α−1(y)= {0, 1}. Then, there are
two numbers 0< t1 < t2 < 1 satisfying α(t1)= α(t2)= Q.

We say that Q is positive if the orientation of S2 at Q defined by the ordered
pair (α′(t1), α′(t2)) coincides with that of S2 at Q; negative, otherwise.

The number of positive nodes on γi is denoted by N+i (and negative nodes by
N−i ). The definition of a positive or negative node on γi depends on the choice of
an admissible starting point y. However, it is known that the difference N+i − N−i
does not depend on the choice of y; see [Whitney 1941] for details. Thus, the
number N+ − N− =

∑k
i=1(N

+

i − N−i ) is well defined. Note that nodes arising
from γi ∩ γ j (i 6= j) play no role in the computation.
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Then, we obtain the following as an easy application of Pignoni’s formula.

Proposition 3.4 [Kamenosono and Yamamoto 2009; Pignoni 1993]. For a stable
map ϕ : M→ S2 of a closed surface of genus g, we have

(3-1) g = ε(M)
(
(N+− N−)+ 1

2 c(ϕ)+ (1+ i+− i−)−m(ϕ)
)
,

where ε(M) is equal to 1 if M is orientable, and 2 otherwise.

Note that even if a 5-tuple (N+, N−, c, i+, i−) satisfies formula (3-1), there may
not be a stable map f : M → S2 with S( f ) consisting of i+ + i− components,
c cusps, and N++ N− nodes.

In the following of this section, we assume that γi ∩ γ j =∅ if i 6= j because we
study the minimal number of nodes. Denote by U∞ ⊂ S2

\ γ (ϕ) the component
which contains∞. Denote by γ1 the component of γ (ϕ) which contains ∂U∞. Note
that γ1 is a negative component of ϕ. Then, the following lemmas and corollary
were obtained by Fukuda and Yamamoto.

Lemma 3.5 [Yamamoto 2010]. If γ1 has a node, then it has a negative node.

Lemma 3.6 [Yamamoto 2010]. If a positive component γi has a node, then it has a
positive node.

Corollary 3.7 [Fukuda and Yamamoto 2011]. If the number of negative components
of γ (ϕ) is equal to one and γ (ϕ) has a node, then it has a negative node.

Corollary 3.7 implies the following corollary.

Corollary 3.8. If the number of negative components of γ (ϕ) is equal to one and
γ1 has no node, then it has no node.

Formula (3-1) and Lemma 3.6 imply the following lemma.

Lemma 3.9. Suppose that g≥ 1 and f :6g→R2 is a stable map with 2≤ i( f )≤ g.
If γ1 has no node, then γ ( f ) has at least two negative components.

Proof. Assume that γ ( f ) has only one negative component. Then, Lemma 3.6 and
the assumption imply that γ ( f ) has no node. Then, by the geometrical condition
for a cusp, γ ( f ) has no cusps. Thus, the formula (3-1) implies the contradiction

0≤ g− i( f )=−1. �

By formula (3-1) and the three modifications (1), (2), and (3), in order to prove
Theorem 1.1, for a given triple (g, i, c), we only have to study the minimal number
of nodes among stable maps f :6g→R2 with S( f ) consisting of i components and
c cusps. Analogously, in order to prove Theorem 1.2, for a given 4-tuple (g, d, i, c),
we only have to study the minimal number of nodes among degree d stable maps
f :6g→ S2 with S( f ) consisting of i components and c cusps.
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Note that for a fixed pair (i+, i−), if we increase the number of negative node
by one, there are two ways to satisfy (3-1). One way is to increase the number of
cusps by two. This corresponds to modification (1). The other way is to increase
the number of positive node by one. This corresponds to modification (2).

Lemma 3.10. Let g ≥ 0 and d ≥ 0. If a degree d stable map f :6g→ S2 satisfies

1
2 c( f )≡ g+ d + i( f ) mod 2,

then f has at least one node.

Proof. If f has no node, then (3-1) implies that

g+m( f )+ 2i− = 1
2 c( f )+ 1+ i( f ). �

In particular, Lemma 3.10 implies that if a stable map f : 6g → R2 satisfies
1
2 c( f )≡ g+ i( f ) mod 2, then f has at least one node.

We recall a formula obtained by Eliasberg and Quine.

Theorem 3.11 [Eliashberg 1970; Quine 1978]. For a stable map f : M → N
between closed connected oriented surfaces, we have

(3-2) χ(M)− 2χ(M−)+
∑

qk is a cusp

sign(qk)= (deg f )χ(N )

where χ denotes the Euler characteristic, deg f denotes the mapping degree of f ,
M− is the closure of the set of regular points whose neighborhoods are mapped
by f in an orientation reversing way, and sign(qk) = ±1 is the sign of a cusp qk

defined as the local mapping degree.

Then, Theorem 3.11 implies the following lemma.

Lemma 3.12. Let g ≥ 0, d ≥ 0, and f :6g→ S2 be a degree d stable maps. Then,
γ ( f ) has at least 2(d + 1− g− i) cusps.

Proof. Formula (3-2) implies that∑
qk is a cusp

sign(qk)= 2(d + g− 1+χ((6g)−).

On the other hand, we have χ(6g)− i ≤ χ((6g)−)≤ i . �

In particular, for a stable map f :6g→ R2, γ ( f ) has at least 2(g+1− i) cusps.
Theorem 3.11 also implies the following lemma.

Lemma 3.13 [Fukuda and Yamamoto 2011]. Let d ≥ 0 and f : 6g → S2 be a
degree d stable map. If i( f )≡ d + g mod 2, then γ ( f ) has at least two cusps.

In particular, for a stable map f : M→ R2, if i( f )≡ g mod 2, then γ ( f ) has at
least two cusps.

Furthermore, if the contour has no nodes, then we have the following lemma.
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Lemma 3.14. (1) Let g ≥ 0 and f :6g→ R2 be a stable map with 2≤ i( f )≤ g.
If γ ( f ) has no nodes, then c( f )≥ 2(g+ 3− i).

(2) Let g ≥ 0 and d ≥ 0, f :6g→ S2 be a degree d stable map with 2≤ i( f )≤ g.
If γ ( f ) has no nodes, then c( f )≥ 2(g+ d + 1− i).

Proof. Let us consider (1). Then, formula (3-1) implies that

g+ 2i−− 1− i( f )= 1
2 c( f ).

Then, Lemma 3.9 yields the conclusion.
The case (2) is also proved in a similar way. �

3B. Proof of Theorem 1.1.

Lemma 3.15. Let g ≥ 1 and f : 6g→ R2 be a stable map with 1 ≤ i( f ) ≤ g. If
c( f )≤ 2(g+ 2− i( f )), then n( f )≥− 1

2 c( f )+ g+ 3− i( f ).

Proof. Assume i( f )= 1. In this case, for a stable map f :6g→ R2 with i( f )= 1,
formula (3-1) implies that

(3-3) g− 1
2 c( f )= (N+− N−).

Then, Lemma 3.5 implies that

n( f )= N++ N− =− 1
2 c( f )+ g+ 2N− ≥− 1

2 c( f )+ g+ 2.

Assume i( f )≥ 2. If the negative component γ1 has a node, then formula (3-1)
and Lemma 3.5 imply that

n( f )= N++ N− ≥− 1
2 c( f )+ g+ 3− i( f ).

If the negative component γ1 has no node, then formula (3-1) and Lemma 3.9 also
imply that n( f )≥− 1

2 c( f )+ g+ 3− i( f ). �

Lemma 3.16. Let g ≥ 0 and f :6g→ R2 be a stable map. If c( f )≥ 2(g+ i( f )),
then N− ≥ 1

2 c( f )− g− i( f )+ 1.

Proof. Formula (3-1) and the inequality i+− i− ≥−i( f ) imply that

g ≥ (N+− N−)+ 1
2 c( f )+ (1− i( f )). �

Lemmas 3.10, 3.12, 3.13, 3.14(1), 3.15, and 3.16 prove Theorem 1.1 with
1≤ i ≤ g. Lemmas 3.12, 3.13, 3.14(1) and 3.16 prove Theorem 1.1 with i > g.

This complete the proof of Theorem 1.1.
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3C. Proof of Theorem 1.2. Lemmas 3.12 and 3.13 prove Theorem 1.2 with g = 0.
Lemma 3.13 proves Theorem 1.2(2) and (5).

Lemma 3.17. Let g≥ 1. For a degree zero stable map f :6g→ S2, if S( f ) consists
of one component and γ ( f ) has no nodes, then m( f )≥ 2.

Proof. Under the assumption, formula (3-1) implies that

g = 1
2 c( f )−m( f ).

By the geometrical condition for a cusp, if n( f )= 0 and m( f )= 0, then f has no
cusps. Then, we have g = 0, which is a contradiction. �

Lemma 3.17 and formula (3-1) imply the following lemma.

Lemma 3.18. Let g ≥ 1 and f : 6g → S2 be a degree zero stable map with
1≤ i( f )≤ g. If c( f )≤ 2(g+ 3− i( f )), then n( f )≥− 1

2 c( f )+ g+ 3− i( f ).

Proof. Formula (3-1) implies that

n( f )= N++ N− = g+ 2i−− i( f )− 1
2 c( f )− 1+ 2N−.

Consider the case that i( f )= 1. Then, by Lemma 3.5, n( f )≥−1
2 c( f )+ g+ 2.

Note that there is no degree zero stable map f :6g→ S2 with S( f ) consisting of
one component and no nodes unless g = 0.

Now consider the case that 2 ≤ i( f ) ≤ g. If γ1 has a node, then Lemma 3.5
implies that

n( f )≥− 1
2 c( f )+ g+ 3− i( f ).

If γ1 has no node, then Lemma 3.9 also implies the same inequality. �

Let f :6g→ S2 be a degree zero stable map with no nodes and 2≤ i( f )≤ g.
If m( f )= 0, then f induces a stable map 6g→R2 whose triple (i, c, n) is equal

to that of f . Then, Lemma 3.9 and formula (3-1) imply that

g+ 4≤ g+ 2i− = 1
2 c( f )+ (1+ i( f )).

This inequality shows that c( f )≥ 2(g+ 3− i( f )).
If m( f ) 6= 0, then Lemma 3.5 and formula (3-1) imply that

g+ 4≤ g+m( f )+ 2i− = 1
2 c( f )+ (1+ i( f )).

This inequality also shows that c( f )≥ 2(g+ 3− i( f )).
Thus, Lemma 3.10 and Lemmas 3.12, 3.18 prove Theorem 1.2(1).
Lemma 3.17 and formula (3-1) imply the following lemma.

Lemma 3.19. Let g ≥ 1 and d ≥ 1, f : 6g → S2 be a degree d stable map with
1≤ i( f )≤ g+d−1. If c( f )≤ 2(g+d−i), then n( f )≥−1

2 c( f )+g+d+3−i( f ).
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Proof. Let us consider the case i( f )= 1. In this case, the formula (3-1) implies that

n( f )= N++ N− ≥− 1
2 c( f )+ g+ d + 2N−

Then, Lemma 3.5 yields the conclusion.
Let us consider the case 2≤ i( f )≤ g+ d − 1. If i− = 1, then the formula (3-1)

implies that

n( f )= N++ N− ≥− 1
2 c( f )+ g+ d + 1− i( f )+ 2N−.

Thus, Lemma 3.5 and Corollary 3.8 yield the conclusion. If i− ≥ 2, then the
formula (3-1) implies that

n( f )= N++ N− ≥− 1
2 c( f )+ g+ d + 3− i( f )+ 2N−. �

Thus, Lemma 3.10 and Lemmas 3.12, 3.19 prove Theorem 1.2(3) and (4). It
completes the proof of Theorem 1.2.

4. Problems

In this section, we pose some problems which concern the number of the singularities
of stable maps between surfaces.

Problem 4.1. Study the triples (i, c, n) of stable maps M→ N (N =R2 or N = S2)
of closed and nonorientable surfaces.

Pignoni [1993] (see also [Kamenosono and Yamamoto 2009]) observed that
there are differences between (i, c + n)-minimal contours and (i, c, n)-minimal
contours — see Remark 1.4 for the definitions — of C∞ maps of the real projective
plane into R2 and S2.

Figure 13 shows that the contours of stable maps S2
→R2 whose triples (i, c, n)

are equal to (2, 2, 2). Figure 14 also shows that the contours of stable maps T 2
→R2

whose triples (i, c, n) are equal to (2, 0, 4).

Problem 4.2. Introduce notions which distinguish two contours in Figure 13 (or 14).
Then, study contours of stable maps between surfaces under the notions.

Figure 13. Contours of stable maps S2
→R2 whose triples (i, c, n)

are (2, 2, 2).
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Figure 14. Contours of stable maps T 2
→R2 whose triples (i, c, n)

are (2, 0, 4).

Problem 4.2 makes the second step toward classifying generic C∞ maps of
closed surfaces into R2 or S2 up to right-left equivalence.

Appendix

In this section, we introduce the notions of an i-(c, n)-minimal contour and an
i-(n, c)-minimal contour for a C∞ map M→ N between surfaces. We study such
minimal contours.

Taishi Fukuda and the author [Fukuda and Yamamoto 2011] studied (c+ n)-
minimal contours among stable maps f :6g→ S2 homotopic to a given C∞ map
6g → S2 such that i( f ) = i , for each integer i ≥ 2. Let us call such a minimal
contour an i -(c+ n)-minimal contour. Note that the case g = 2 of [Fukuda and
Yamamoto 2011, Theorem 1.2] has one error. The correct table of i-(c+n)-minimal
contours for degree d ≥ 0 stable maps 62→ S2 is the following:

(c, n)=



(2(d − i − 1), 6) if 1≤ i ≤ d − 1,

(2, 4) or (6, 0) if i = d,

(0, 4) or (4, 0) if i = d + 1,

(2, 2) if (d, i)= (0, 2),

(2, 0) if i ≥ d + 2, i ≡ d mod 2, except (d, i)= (0, 2),

(0, 0) if i ≥ d + 2, i 6≡ d mod 2,

For a nonnegative integer i , let us consider (c, n)-minimal contours among stable
maps f :6g→ S2 homotopic to a given C∞ map 6g→ S2 such that i( f )= i . Let
us call such a minimal contour an i -(c, n)-minimal contour. Then, Theorems 1.1
and 1.2 imply the following proposition.

Proposition A.1. (1) The contour γ ( f ) of a stable map f :6g→ R2 is i -(c, n)-
minimal if and only if the pair (c, n) is one of the following:
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(c, n)=


(2, g+ 2− i) if g ≥ i and g ≡ i mod 2,
(0, g+ 3− i) if g ≥ i and g 6≡ i mod 2,
(2, 0) if g < i and g ≡ i mod 2,
(0, 0) if g < i and g 6≡ i mod 2.

(2) Let f : 6g → S2 be a degree d ≥ 0 stable map such that S( f ) consists of
i components. Then, the contour γ ( f ) is i-(c, n)-minimal if and only if the
pair (c, n) for γ ( f ) is one of the following:

g = 0:

(c, n)=


(2(d−i+1), 0) if 1≤ i ≤ d + 1,

(2, 0) if i ≥ d + 2, i ≡ d mod 2,

(0, 0) if i ≥ d + 2, i 6≡ d mod 2,

g ≥ 1:

(c, n)=



(2(d−g−i+1), 2+2g) if 1≤ i ≤ d − g+ 1,

(2, d + g− i + 2) if d − g+ 2≤ i < d + g− 1,
and i ≡ d + g mod 2,

(0, d + g− i + 3) if d − g+ 2≤ i ≤ d + g− 1,
and i 6≡ d + g mod 2,

(2, 2) if (d, i)= (0, g),

(2, 0) if i ≥ d + g, i ≡ d + g mod 2,
except (d, i)= (0, g),

(0, 0) if i ≥ d + g, i 6≡ d + g mod 2.

Let us study (n, c)-minimal contours among stable maps f :6g→ S2 homotopic
to a given C∞ map 6g→ S2 such that i( f )= i , for each integer i ≥ 1. Let us call
such a minimal contour an i -(n, c)-minimal contour. Then, Theorems 1.1 and 1.2
also imply the following proposition.

Proposition A.2. (1) The contour γ ( f ) of a stable map f :6g→ R2 is i -(n, c)-
minimal if and only if the pair (c, n) is one of the following:

i = 1:

(c, n)=
{
(0, 0) if g = 0,
(2g+ 2, 1) otherwise,

i ≥ 2:

(c, n)=


(2(g+ 3− i), 0) if g ≥ i,
(2, 0) if g < i and g ≡ i mod 2,
(0, 0) otherwise.
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(2) Let f : 6g → S2 be a degree d ≥ 0 stable map such that S( f ) consists of
i components. Then, the contour γ ( f ) is i-(n, c)-minimal if and only if the
pair (c, n) for γ ( f ) is one of the items below:

(c, n)=


(2(g+ 3− i), 0) if d = 0 and 1≤ i ≤ g,

(2(d + g+ 1− i), 0) if d 6= 0 and 1≤ i ≤ d + g− 1,

(2, 0) if i ≥ d + g and i ≡ d + g mod 2,

(0, 0) if i > d + g and i 6≡ d + g mod 2.
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