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EQUIVARIANT PRINCIPAL BUNDLES
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Let M be a smooth complex projective toric variety equipped with an ac-
tion of a torus T , such that the complement D of the open T-orbit in M
is a simple normal crossing divisor. Let G be a complex reductive affine
algebraic group. We prove that an algebraic principal G-bundle EG → M
admits a T-equivariant structure if and only if EG admits a logarithmic con-
nection singular over D. If EH → M is a T-equivariant algebraic principal
H-bundle, where H is any complex affine algebraic group, then EH in fact
has a canonical integrable logarithmic connection singular over D.

1. Introduction

Our aim is to give characterizations of the equivariant principal bundles on smooth
complex projective toric varieties.

Let M be a smooth complex projective toric variety equipped with an action

ρ : T ×M→ M

of a torus T . For any point t ∈ T , define the automorphism

ρt : M→ M, x 7→ ρ(t, x).

We assume that the complement D of the open T-orbit in M is a simple normal
crossing divisor.

Let G be a complex reductive affine algebraic group, and let EG be an algebraic
principal G-bundle on M . In Proposition 4.1 we prove the following:

The principal G-bundle EG admits a T-equivariant structure if and only if the
pulled-back principal G-bundle ρ∗t EG is isomorphic to EG for every t ∈ T .

When G = GL(n,C), this result was proved by Klyachko [1989, p. 342, Propo-
sition 1.2.1].
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Using the above characterization of T-equivariant principal G-bundles on M , we
prove the following (see Theorem 4.2):

The principal G-bundle EG admits a logarithmic connection singular over D if
and only if EG admits a T-equivariant structure.

The “if” part of Theorem 4.2 does not require G to be reductive. More precisely,
any T-equivariant principal H-bundle EH → M , where H is any complex affine
algebraic group, admits a canonical integrable logarithmic connection singular
over D (see Proposition 3.2).

2. Equivariant bundles

Let Gm = C \ {0} be the multiplicative group. Take a complex algebraic group T
which is isomorphic to a product of copies of Gm . Let M be a smooth irreducible
complex projective variety equipped with an algebraic action of T

(2-1) ρ : T ×M→ M

such that

• there is a Zariski open dense subset M0
⊂ M with ρ(T,M0)= M0,

• the action of T on M0 is free and transitive, and

• the complement M \M0 is a simple normal crossing divisor of M .

In particular, M is a smooth projective toric variety. Note that M0 is the unique
T-orbit in M with trivial isotropy.

Let G be a connected complex affine algebraic group. A T-equivariant principal
G-bundle on M is a pair (EG, ρ̃), where

p : EG→ M

is an algebraic principal G-bundle, and

ρ̃ : T × EG→ EG

is an algebraic action of T on the total space of EG , such that

• p ◦ ρ̃ = ρ ◦ (IdT ×p), where ρ is the action in (2-1), and

• the actions of T and G on EG commute.

Fix a point x0 ∈ M0
⊂ M . Let

(2-2) ι : ρ(T, x0)= M0 ↪→ M

be the inclusion map. Let M0
×G be the trivial principal G-bundle on M0. It has a

tautological integrable algebraic connection given by its trivialization.
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Let (EG, ρ̃) be a T-equivariant principal G-bundle on M . Fix a point z0 ∈ (EG)x0 .
Using z0, the action ρ̃ produces an isomorphism of principal G-bundles between
M0
×G and the restriction EG |M0 . This isomorphism of principal G-bundles is

uniquely determined by the following two conditions:

• this isomorphism is T-equivariant (the action of T on M0
×G is given by the

action of T on M0), and

• it takes the point z0 ∈ EG to (x0, e) ∈ M0
×G.

Using this trivialization of EG |M0 , the tautological integrable algebraic connection
on M0

×G produces an integrable algebraic connection D0 on EG |M0 . We note that
the connection D0 is independent of the choice of the points x0 and z0. Indeed, the
flat sections for D0 are precisely the orbits of T in EG |M0 . Note that this description
of D0 does not require choosing base points in M0 and EG |M0 .

In Proposition 3.2 it will be shown that D0 extends to a logarithmic connection
on EG over M singular over the simple normal crossing divisor M \M0.

3. Logarithmic connections

A canonical trivialization. The Lie algebra of T will be denoted by t. Let

(3-1) V := M × t→ M

be the trivial vector bundle with fiber t. The holomorphic tangent bundle of M
will be denoted by TM . Consider the action of T on M in (2-1). It produces a
homomorphism of OM -coherent sheaves

(3-2) β : V→ TM.

Let
D := M \M0

be the simple normal crossing divisor of M . Let

(3-3) TM(−log D)⊂ TM

be the corresponding logarithmic tangent bundle. Recall that TM(−log D) is char-
acterized as the maximal coherent subsheaf of TM that preserves OM(−D)⊂OM

for the derivation action of TM on OM .

Lemma 3.1.

(1) The image of β in (3-2) is contained in the subsheaf TM(−log D)⊂ TM.

(2) The resulting homomorphism β : V→ TM(−log D) is an isomorphism.

Proof. The divisor D is preserved by the action of T on M . Therefore, the action
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of T on OM , given by the action of T on M , preserves the subsheaf OM(−D). From
this it follows immediately that the subsheaf OM(−D)⊂ OM is preserved by the
derivation action of the subsheaf

β(V)⊂ TM.

Therefore, we conclude that β(V)⊂ TM(−log D).
It is known that the vector bundle TM(−log D) is holomorphically trivial. This

follows from Proposition 2 in [Fulton 1993, p. 87], which says that �1
M(log D) is

holomorphically trivial, together with the equality �1
M(log D)∗ = TM(−log D).

So, both V and TM(−log D) are trivial vector bundles, and β is a homomorphism
between them which is an isomorphism over the open subset M0. From this it
can be deduced that β is an isomorphism over entire M . To see this, consider the
homomorphism ∧r

β :
∧rV→

∧r TM(−log D)

induced by β, where r = dimC T = rank(V). So
∧r
β is a holomorphic section of the

line bundle
(∧rTM(−log D)

)
⊗
(∧rV

)∗. This line bundle is holomorphically trivial
because both V and TM(−log D) are holomorphically trivial. Fixing a trivialization
of
(∧rTM(−log D)

)
⊗
(∧rV

)∗, we consider
∧r
β as a holomorphic function on

M . This function is nowhere vanishing because it does not vanish on M0 and
holomorphic functions on M are constants. Since

∧r
β is nowhere vanishing, the

homomorphism β is an isomorphism. �

A canonical logarithmic connection on equivariant bundles. The Lie algebra
of G will be denoted by g.

Let p : EG→ M be an algebraic principal G-bundle. Consider the differential

(3-4) dp : TEG→ p∗TM,

where TEG is the algebraic tangent bundle of EG . The kernel of dp will be denoted
by TEG/M . Using the action of G on EG , the subbundle TEG/M ⊂ TEG is identified
with the trivial vector bundle over EG with fiber g.

The action of G on EG produces an action of G on TEG . So we get an action
of G on the quasicoherent sheaf p∗TEG on M . The invariant part

At(EG) := (p∗TEG)
G
⊂ p∗TEG

is a locally free coherent sheaf; its coherence property follows from the fact that
the action of G on the fibers of p is transitive, implying that a G-invariant section
of (TEG)|p−1(x), x ∈ M , is uniquely determined by its evaluation at just one point
of the fiber p−1(x). Also note that At(EG) = (TEG)/G. This At(EG) is known
as the Atiyah bundle for EG . Since TEG/M is identified with EG × g, the invariant
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direct image (p∗TEG/M)
G is identified with the adjoint vector bundle

ad(EG) := EG ×
G g→ M

associated to EG for the adjoint action of G on g. We note that ad(EG)= TEG/M/G.
Now the differential dp in (3-4) produces a short exact sequence of holomorphic
vector bundles on M

(3-5) 0→ ad(EG)→ At(EG)
φ
−→ TM→ 0,

which is known as the Atiyah exact sequence. A holomorphic connection on EG

over M is a holomorphic splitting

TM→ At(EG)

of (3-5) [Atiyah 1957].
As before, setting D = M \M0, define

At(EG)(−log D) := φ−1(TM(−log D))⊂ At(EG),

where φ is the projection in (3-5) and TM(−log D) is the subsheaf in (3-3). So
(3-5) gives the following short exact sequence of holomorphic vector bundles on M :

(3-6) 0→ ad(EG)→ At(EG)(−log D) φ
−→ TM(−log D)→ 0.

A logarithmic connection on EG , with singular locus D, is a holomorphic
homomorphism

δ : TM(−log D)→ At(EG)(−log D)

such that φ ◦ δ is the identity automorphism of TM(−log D), where φ is the
homomorphism in (3-6). Just like the curvature of a connection, the curvature
of a logarithmic connection δ on EG is the obstruction for the homomorphism δ

to preserve the Lie algebra structure of the sheaf of sections of TM(−log D) and
At(EG)(−log D) given by the Lie bracket of vector fields. In particular, δ is called
integrable (or flat) if it preserves the Lie algebra structure of the sheaf of sections
of TM(−log D) and At(EG)(−log D) given by the Lie bracket of vector fields.

Proposition 3.2. Let (EG, ρ̃) be a T-equivariant principal G-bundle on M. Then
EG admits an integrable logarithmic connection that restricts to the connection D0

on M0 constructed in Section 2.

Proof. Let
Ṽ := EG × t→ EG

be the trivial vector bundle over EG with fiber t. Note that p∗V = Ṽ , where V is
the vector bundle in (3-1), and p, as before, is the projection of EG to M .
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The action ρ̃ of T on EG produces a homomorphism

(3-7) β̃ : Ṽ→ TEG .

Since p−1(D) is preserved by the action of T on EG , the induced action of T
on OEG preserves the subsheaf OEG (−p−1(D)). Hence the image of β̃ lies inside
the subsheaf

TEG(−log p−1(D))⊂ TEG .

Note that p−1(D) is a simple normal crossing divisor on EG because D is a simple
normal crossing divisor on M .

In Lemma 3.1(2) we saw that β is an isomorphism. Consider

p∗β−1
: p∗(TM(−log D))→ p∗V = Ṽ.

Precomposing this with β̃ in (3-7), we have

β̃ ◦ (p∗β−1) : p∗(TM(−log D))→ TEG(−log p−1(D)).

We observe that the homomorphism β̃◦(p∗β−1) is G-equivariant for the trivial action
of G on p∗(TM(−log D)) and the action of G on TEG(−log p−1(D)) induced by
the action of G on EG . Therefore, taking the G-invariant parts of the direct images
by p, the above homomorphism β̃ ◦ (p∗β−1) produces a homomorphism

β ′ : TM(−log D)=
(

p∗ p∗(TM(−log D))
)G

→
(

p∗TEG(−log p−1(D))
)G
= At(EG)(−log D).

It is now straightforward to check that the homomorphism β ′ produces a holomor-
phic splitting of the exact sequence in (3-6). Therefore, β ′ defines a logarithmic
connection on EG singular on D. The restriction of this logarithmic connection
to M0 clearly coincides with the connection D0 constructed in Section 2. �

4. A criterion for equivariance

For each point t ∈ T , define the automorphism

ρt : M→ M, x 7→ ρ(t, x),

where ρ is the action in (2-1). If (EG, ρ̃) is a T-equivariant principal G-bundle
on M , then clearly the map

EG→ EG, z 7→ ρ̃(t, z)

is an isomorphism of the principal G-bundle ρ∗t EG with EG . The aim in this section
is to prove a converse of this statement.
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Take an algebraic principal G-bundle

p : EG→ M.

Let G be the set of all pairs of the form (t, f ), where t ∈ T and where

f : EG→ EG

is an algebraic automorphism of the variety EG satisfying the following conditions:

• p ◦ f = ρt ◦ p, and

• f intertwines the action of G on EG .

Note that the above two conditions imply that f is an algebraic isomorphism of the
principal G-bundle ρ∗t EG with EG .

We have the following composition on the set G:

(t1, f1) · (t2, f2) := (t1 ◦ t2, f1 ◦ f2).

The inverse of (t, f ) is (t−1, f −1). These operations make G a group. In fact, G has
the structure of an affine algebraic group defined over C. Let A denote the group
of all algebraic automorphisms of the principal G-bundle EG . So A is a subgroup
of G with the inclusion map being f 7→ (e, f ). We have a natural projection

h : G→ T, (t, f ) 7→ t

which fits in the following exact sequence of complex affine algebraic groups:

(4-1) 0→A→ G h
−→ T .

We note that there is a tautological action of G on EG ; the action of any (t, f ) ∈ G
on EG is given by the map defined by y 7→ f (y).

Now assume that EG satisfies the condition that, for every t ∈ T , the pulled-back
principal G-bundle ρ∗t EG is isomorphic to EG . This assumption is equivalent to the
statement that the homomorphism h in (4-1) is surjective.

In view of the above assumption, the sequence in (4-1) becomes the following
short exact sequence of complex affine algebraic groups:

(4-2) 0→A→ G h
−→ T → 0.

Let G0
⊂ G be the connected component containing the identity element. Since T

is connected and h is surjective, the restriction of h to G0 is also surjective. Therefore,
from (4-2) we have the short exact sequence of affine complex algebraic groups

(4-3) 0→A0 ιA
−→G0 h0

−→ T → 0,

where A0
:=A∩G0 and h0

:= h|G0 .
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Take a maximal torus TG ⊂ G0. From (4-3) it follows that the restriction

h′ := h0
|TG : TG→ T

is surjective. Define TA := A0
∩ TG ⊂ TG using the homomorphism ιA in (4-3).

Therefore, from (4-3) we have the short exact sequence of algebraic groups

(4-4) 0→ TA
ιA|TA
−−→ TG h′

−→ T → 0.

Recall that G has a tautological action on EG . Therefore, the subgroup TG has a
tautological action on EG which is the restriction of the tautological action of G.

Now we assume that the group G is reductive.
A parabolic subgroup of G is a connected Zariski closed subgroup P ⊂ G such

that the variety G/P is projective. For a parabolic subgroup P , its unipotent radical
will be denoted by Ru(P). A Levi subgroup of P is a connected reductive subgroup
L(P)⊂ P such that the composition

L(P) ↪→ P→ P/Ru(P)

is an isomorphism. Levi subgroups exist, and any two Levi subgroups of P differ by
conjugation by an element of Ru(P) [Humphreys 1975, p. 184–185, §30.2; Borel
1991, p. 158, 11.22 and 11.23].

Let Ad(EG) := EG ×
G G→ M be the adjoint bundle associated to EG for the

adjoint action of G on itself. The fibers of Ad(EG) are groups identified with G
up to an inner automorphism; the corresponding Lie algebra bundle is ad(EG). We
note that A in (4-2) is the space of all algebraic sections of Ad(EG).

Using the action of TA on EG , we have

• a Levi subgroup L(P) of a parabolic subgroup P of G, and

• an algebraic reduction of structure group EL(P) ⊂ EG of EG to L(P) which is
preserved by the tautological action of TG on EG ,

such that the image of TA in Ad(EG) (recall that the elements of A are sections
of Ad(EG)) lies in the connected component, containing the identity element, of
the center of each fiber of Ad(EL(P)) ⊂ Ad(EG) (see [Balaji et al. 2005; Biswas
and Parameswaran 2006] for the construction of EL(P)). The construction of EL(P)

requires fixing a point z0 of EG , where EL(P) contains z0. Using z0, the fiber
(EL(P))p(z0) is identified with L(P). Moreover, the evaluation, at p(z0), of the
sections of Ad(EG) corresponding to the elements of TA makes TA a subgroup of
the connected component, containing the identity element, of the center of EL(P); in
particular, this evaluation map on TA is injective (see the second paragraph in [Balaji
et al. 2005, p. 230, Section 3]). We briefly recall (from [Balaji et al. 2005; Biswas
and Parameswaran 2006]) the argument that the evaluation map on semisimple
elements of A is injective. Let ξ be a semisimple element of A= 0(M,Ad(EG)).
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Since ξ is semisimple, for each point x ∈ M , the evaluation ξ(x) is a semisimple
element of Ad(EG))x . The group Ad(EG))x is identified with G up to an inner
automorphism of G. All conjugacy classes of a semisimple element of G are
parametrized by TG/WTG , where TG is a maximal torus in G, and WTG = N (TG)/TG

is the Weyl group with N (TG) being the normalizer of TG in G. We note that
TG/WTG is an affine variety. Therefore, we get a morphism ξ ′ : M→ TG/WTG that
sends any x ∈ M to the conjugacy class of ξ(x). Since M is a projective variety and
TG/WTG is an affine variety, we conclude that ξ ′ is a constant map. So if ξ(x)= e
for some x ∈ M , then ξ = e identically.

Let Z0
L(P) ⊂ L(P) be the connected component, containing the identity element,

of the center. We note that Z0
L(P) is a product of copies of Gm . Therefore, the above

injective homomorphism TA→ Z0
L(P) extends to a homomorphism

η : TG→ Z0
L(P).

Define

(4-5) η′ := τ ◦ η,

where τ is the inversion homomorphism of Z0
L(P) defined by g 7→ g−1.

Consider the action of TG on EL(P); recall that EL(P) is preserved by the tautolog-
ical action of TG on EG . We can twist this action on EL(P) by η′ in (4-5), because
the actions of Z0

L(P) and L(P) on EL(P) commute. For this new action, the group TA
clearly acts trivially on EL(P).

Consider the above action of TG on EL(P) constructed using η′. Since TA acts
trivially on EL(P), the action of TG on EL(P) descends to an action of T on EL(P)

(see (4-4)). The principal G-bundle EG is the extension of the structure group of
EL(P) using the inclusion of L(P) in G. Therefore, the above action of T on EL(P)

produces an action of T on EG . More precisely, the total space of EG is the quotient
of EL(P)×G where two elements (z1, g1) and (z2, g2) of EL(P)×G are identified
if there is an element g ∈ L(P) such that z2 = z1g and g2 = g−1g1. Now the action
of T on EL(P)×G, given by the above action of T on EL(P) and the trivial action
of T on G, descends to an action of T on the quotient space EG . Consequently, EG

admits a T-equivariant structure.
Therefore, we have proved the following:

Proposition 4.1. Let G be reductive, and let EG → M be a principal G-bundle
such that, for every t ∈ T , the pulled-back principal G-bundle ρ∗t EG is isomorphic
to EG . Then EG admits a T-equivariant structure.

For vector bundles on M , Proposition 4.1 was proved by Klyachko [1989, p. 342,
Proposition 1.2.1].
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Equivariance property from a logarithmic connection.

Theorem 4.2. Let G be reductive, and let p : EG → M be a principal G-bundle
admitting a logarithmic connection whose singularity locus is contained in the
divisor D = M \M0. Then EG admits a T-equivariant structure.

Proof. Since EG admits a logarithmic connection, by definition, there is a homo-
morphism of coherent sheaves

δ : TM(−log D)→ At(EG)(−log D)

such that φ ◦ δ is the identity automorphism of TM(−log D), where φ is the
homomorphism in (3-6). Let

δ̂ : H 0(M, TM(−log D))→ H 0(M,At(EG)(−log D))

be the homomorphism of global sections given by δ. From Lemma 3.1(2) we know
that H 0(M, TM(−log D)) is the Lie algebra t of T .

We will now show that there is a natural injective homomorphism

(4-6) θ : H 0(M,At(EG)(−log D))→ Lie(G),

where Lie(G) is the Lie algebra of the group G in (4-1).
The elements of Lie(G) are all holomorphic sections s ∈ H 0(M,At(EG)) such

that the vector field φ(s), where φ is the projection in (3-5), is of the form β(s ′),
where s ′ ∈ t and where β is the homomorphism in (3-2). Now, if

s ∈ H 0(M,At(EG)(−log D))⊂ H 0(M,At(EG)),

then φ(s) is a holomorphic section of TM(−log D) (see (3-6)). From Lemma 3.1(2)
it now follows that φ(s) is of the form β(s ′), where s ′ ∈ t. This gives us the injective
homomorphism in (4-6).

Finally, consider the composition

θ ◦ δ̂ : t= H 0(M, TM(−log D))→ Lie(G).

From its construction it follows that

(dh) ◦ θ ◦ δ̂ = Idt,

where dh : Lie(G)→ t is the homomorphism of Lie algebras given by h in (4-1).
In particular, dh is surjective. Since T is connected, this immediately implies that
the homomorphism h is surjective. Now from Proposition 4.1 it follows that EG

admits a T-equivariant structure. �
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