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THE SECOND CR YAMABE INVARIANT

PAK TUNG HO

Let .M; �/ be a compact strictly pseudoconvex CR manifold of real dimen-
sion 2n C 1 with a contact form � . Motivated by the work of Ammann and
Humbert, we define the second CR Yamabe invariant, which is a natural gen-
eralization of the CR Yamabe invariant, and study its properties in this paper.

1. Introduction

Let .M;g/ be an n-dimensional compact Riemannian manifold where n� 3. The
Yamabe problem is to find a Riemannian metric Qg conformal to g such that the
scalar curvature of Qg is constant. Yamabe [1960] claimed to solve it. However,
Trudinger [1968] realized that Yamabe’s proof was incomplete, and he was able to
solve the Yamabe problem when the scalar curvature of g is nonpositive. When the
scalar curvature of g is positive, Aubin [1976] solved the case when n� 6 and M

is not locally conformally flat, and Schoen [1984] solved the remaining cases by
using the positive mass theorem.

The method to solve the Yamabe problem was the following. If Qg D u
4

n�2 g,
where u 2 C1.M / and u> 0, then

(1-1) Lg.u/DR Qg u
nC2
n�2 ;

where

Lg D�
4.n� 1/

n� 2
�gCRg:

Here �g is the Laplacian of g, and Rg and R Qg are the scalar curvatures of g

and Qg. The Yamabe problem is to solve (1-1) with R Qg being constant. The Yamabe
invariant Y .M;g/ of .M;g/ is defined as

Y .M;g/D inf
u 6�0;u2C1.M /

E.u/;

where

E.u/D

R
M uLg.u/ dVg�R

M juj
2n

n�2 dVg

�n�2
n

:
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The key point of the resolution of the Yamabe problem is the following theorem
due to Aubin [1976].

Theorem 1.1. Let .M;g/ be a compact Riemannian manifold of dimension n� 3.
If Y .M;g/ < Y .Sn/, then there exists a positive smooth function u satisfying (1-1).
Here Y .Sn/ is the Yamabe invariant of the sphere Sn with respect to the standard
metric.

The strict inequality was used to show that a minimizing sequence does not
concentrate at any point. Aubin [1976] and Schoen [1984] proved the following:

Theorem 1.2. Let .M;g/ be a compact Riemannian manifold of dimension n� 3.
Then Y .M;g/ � Y .Sn/. Moreover, the equality holds if and only if .M;g/ is
conformally diffeomorphic to the sphere.

These theorems solve the Yamabe problem. See also [Brendle 2005; 2007a;
2007b; Chow 1992; Schwetlick and Struwe 2003; Ye 1994] for using the flow
approach to solve the Yamabe problem.

Ammann and Humbert [2006] defined the k-th Yamabe invariant as a general-
ization of the Yamabe invariant. More precisely, let

�1.g/ < �2.g/� �3.g/� � � � � �k.g/ � � � !1

be the eigenvalues of Lg appearing with multiplicities. Let Œg� be the conformal
class of g. For any positive integer k, the k-th Yamabe invariant Yk.M;g/ is
defined by

Yk.M;g/D inf
Qg2Œg�

�k. Qg/Vol.M; Qg/
2
n :

In particular, Y1.M;g/ D Y .M;g/ when the Yamabe invariant Y .M;g/ is
nonnegative.

One can consider the following CR analogue of the Yamabe problem, the CR
Yamabe problem. Suppose that .M; �/ is a compact strictly pseudoconvex CR
manifold of real dimension 2nC1 with a contact form � . The CR Yamabe problem
is to find a contact form Q� conformal to � such that the Webster scalar curvature of
Q� is constant. Jerison and Lee [1987; 1988; 1989] solved the CR Yamabe problem
when n� 2 and M is not locally CR equivalent to the sphere. The remaining cases,
namely when n D 1 or M is locally CR equivalent to the sphere, were studied
respectively by Gamara and Yacoub [2001] and by Gamara [2001]. See also the
recent work of Cheng, Chiu and Yang [Cheng et al. 2014] and Cheng, Malchiodi
and Yang [Cheng et al. 2013]. See also [Chang and Cheng 2002; Chang et al. 2010;
Ho 2012; Zhang 2009] for using the flow approach to solve the Yamabe problem.

Motivated by the result of Ammann and Humbert [2006], we study the k-th
CR Yamabe invariant in this paper. In Section 2, we define the k-th CR Yamabe
invariant and the generalized contact form. In Section 3, we give the variational
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characterization of Yk.M; �/. In Section 4, we derive the Euler–Lagrange equation
for Y2.M; �/. Sections 5 and 6 will be devoted to proving a lower bound and an
upper bound for Y2.M; �/ respectively. In Section 7, we study whether Y2.M; �/

is attained by some contact form or generalized contact form. Finally, in Section 8,
we study the properties of the k-th CR Yamabe invariant Yk.M; �/.

2. Definitions

Suppose that .M; �/ is a compact strongly pseudoconvex CR manifold of real
dimension 2nC 1 with a given contact form � . Let u 2 C1.M /, u > 0. Then
Q� D u

2
n � is a contact form conformal to � , and the Webster scalar curvature R Q�

of Q� is given by

(2-1) L� .u/DR Q�u1C 2
n :

Here

(2-2) L� D�
�
2C

2

n

�
�� CR� ;

where �� is the sub-Laplacian of � and R� is the Webster scalar curvature of � .
The CR Yamabe invariant is defined as

Y .M; �/D inf
u 6�0;u2C1.M /

E.u/;

where

E.u/D

R
M

�
2C 2

n

�
jr�uj2

�
CR�u2 dV��R

M juj
2C 2

n dV�
� n

nC1

:

It is well known that L� has discrete spectrum

Spec.L� /D f�1.�/; �2.�/; : : :g;

where the eigenvalues

�1.�/ < �2.�/� �3.�/� � � � � �k.�/ � � � !1

appear with multiplicities. The variational characterization of �1.�/ is given by

�1.�/D inf
u¤0;u2C1.M /

R
M

�
2C 2

n

�
jr�uj2

�
CR�u2 dV�R

M u2 dV�
:

Let Œ� � be the conformal class of � , i.e.,

Œ� �D f Q� D u
2
n � j u 2 C1.M /;u> 0g:

If Y .M; �/� 0, then it is easy to check that

(2-3) Y .M; �/D inf
Q�2Œ��

�1. Q�/Vol.M; Q�/
1

nC1 :
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Following the definition of the k-th Yamabe invariant in [Ammann and Humbert
2006], we have the following:

Definition. For any positive integer k, the k-th CR Yamabe invariant is defined by

(2-4) Yk.M; �/D inf
Q�2Œ��

�k. Q�/Vol.M; Q�/
1

nC1 :

Then it follows from (2-3) and Theorem 8.2 that

Y1.M; �/D

�
Y .M; �/ if Y .M; �/� 0;

�1 if Y .M; �/ < 0:

We write L2C 2
n

C .M /D fu 2L2C 2
n .M /ju� 0;u 6� 0g. For u 2L2C 2

n
C .M /, we

define Gru
k .C

1.M // to be the set of all k-dimensional subspaces of C1.M / such
that the restriction operator to M nu�1.0/ is injective. More precisely, we have

span.v1; : : : ;vk/2Gru
k .C

1.M //

() v1jMnu�1.0/; : : : ;vk jMnu�1.0/ are linearly independent

()u
1
n v1; : : : ;u

1
n vk are linearly independent:

Similarly, replacing C1.M / by S2
1
.M /, we obtain the definition of Gru

k .S
2
1
.M //.

Hereafter, S2
1
.M / denotes the Folland–Stein space, which is the completion of

C 1.M / with respect to the norm

kukS2
1
.M / D

�Z
M

.jr�uj2� Cu2/ dV�

�1
2

:

(For more properties about the Folland–Stein space, see [Folland and Stein 1974].)

Proposition 2.1. Suppose Q� is a contact form conformal to � . Then we have

(2-5) �k. Q�/D inf
V 2Gru

k
.S2

1
.M //

sup
v2V nf0g

R
M vL�v dV�R
M u

2
n v2 dV�

:

Proof. Let u 2 C1.M /, u> 0. For all f 2 C1.M /, f 6� 0, we set Q� D u
2
n � and

F 0.u; f /D

R
M fL Q�f dV Q�R

M f 2 dV Q�
:

The operator L� is conformally invariant in the following sense:

(2-6) u1C 2
n L Q� .u

�1f /DL� .f /;
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because

u1C 2
n L Q� .u

�1f /D�
�
2C

2

n

�
u1C 2

n� Q� .u
�1f /CR Q�u1C 2

n .u�1f /

D�

�
2C

2

n

��
u�� .u

�1f /C 2hr�u;r� .u
�1f /i�

�
C

�
�

�
2C

2

n

�
��uCR�u

�
.u�1f /

D�

�
2C

2

n

�
��f CR�f DL� .f /;

where we have used (2-1) and (2-2). Combining (2-6) with the fact that

(2-7) dV Q� D u2C 2
n dV� ;

we get

(2-8) F 0.u; f /D

R
M fL Q�f dV Q�R

M f 2 dV Q�

D

R
M f u�.1C

2
n
/L� .uf /u

2C 2
n dV�R

M f 2u2C 2
n dV�

D

R
M .uf /L� .uf / dV�R

M u
2
n .uf /2 dV�

:

Using the min-max principle, we have

(2-9) �k. Q�/D inf
V 2Grk.S

2
1
.M //

sup
v2V nf0g

R
M vL Q�v dV Q�R

M v2 dV Q�
:

Since u > 0, we have Grk.S
2
1
.M // D Gru

k .S
2
1
.M //. Therefore, it follows from

(2-8) and (2-9) that

�k. Q�/D inf
V 2Grk.S

2
1
.M //

sup
f 2V nf0g

F 0.u; f /:

Now replacing uf by v, we obtain (2-5) by (2-8). �
Now we can define the generalized contact form:

Definition. The generalized contact form Q� is defined as Q� D u
2
n � , where u is no

longer necessarily positive or smooth, but u 2L2C 2
n

C .M /.

We enlarge the conformal class Œ� � of � by including all the generalized contact
forms conformal to � , as follows:

Œ� �D f Q� D u
2
n � j u 2L2C 2

n
C .M /g:

In view of Proposition 2.1, for a generalized contact form Q� D u
2
n � , u2L2C 2

n
C .M /,

conformal to � , we define

(2-10) �k. Q�/D inf
V 2Gru

k
.S2

1
.M //

sup
v2V nf0g

R
M vL�v dV�R
M u

2
n v2 dV�

:
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Using (2-10), we can generalize the definition of k-th CR Yamabe invariant to the
generalized contact form by using (2-4).

3. Variational characterization of Yk.M; �/

For all u 2L2C 2
n

C .M /, v 2 S2
1
.M / such that u

1
n v 6� 0, we set

F.u; v/D

R
M

�
2C 2

n

�
jr�vj

2
�
CR�v

2 dV�R
M u

2
n v2 dV�

�Z
M

u2C 2
n dV�

� 1
nC1

:

Proposition 3.1. If Œ� � contains all the contact forms conformal to � , then

(3-1) Yk.M; �/D inf
u2C1.M /

V 2Gru
k
.S2

1
.M //

sup
v2V nf0g

F.u; v/:

Similarly, if Œ� � contains all the generalized contact forms conformal to � , then

(3-2) Yk.M; �/D inf
u2L2C 2

n
C .M /

V 2Gru
k
.S2

1
.M //

sup
v2V nf0g

F.u; v/:

Proof. Using the definition of Yk.M; �/ and the fact that Vol.M; Q�/D
R

M u2C 2
n dV� ,

we obtain from (2-5) that

Yk.M; �/D inf
Q�2Œ��

�k. Q�/Vol.M; Q�/
1

nC1

D inf
u2C1.M /;u>0

�k. Q�/

�Z
M

u2C 2
n dV�

� 1
nC1

D inf
u2C1.M /;u>0

V 2Gru
k
.S2

1
.M //

sup
v2V nf0g

F.u; v/;

which proves (3-1). Similarly, we can prove (3-2) by using the same arguments
as above, except we need to replace C1.M / by L2C 2

n
C .M /. �

4. Generalized contact form and the Euler–Lagrange equation

We will need the following:

Lemma 4.1. Let u 2L2C 2
n .M / and v 2 S2

1
.M /. We assume that

(4-1) L�v D u
2
n v

holds in the sense of distributions. Then v 2L2C 2
n
C".M / for some " > 0.
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Proof. Without loss of generality, suppose v 6� 0. We define vC D sup.v; 0/. We
let q 2 .1; .nC 1/=n� be a fixed number and l > 0 be a large real number which
will tend to C1. We let ˇ D 2q� 1. We then define for x 2 R,

Gl.x/D

8<:
0 if x < 0;

xˇ if 0� x < l;

lq�1.qlq�1x� .q� 1/lq/ if x � l;

Fl.x/D

8<:
0 if x < 0;

xq if 0� x < l;

qlq�1x� .q� 1/lq if x � l:

It is easy to check that for all x 2 R,

.F 0l .x//
2
� qG0l.x/;(4-2)

.Fl.x//
2
� xGl.x/;(4-3)

xG0l.x/� ˇGl.x/:(4-4)

Since Fl and Gl are uniformly Lipschitz continuous functions, Fl.vC/ and Gl.vC/

belong to S2
1
.M /. Let x0 2 M . Denote by � a C 2 nonnegative function sup-

ported in B.x0; 2ı/, where ı > 0 is a small fixed number such that 0� �� 1 and
�.B.x0; ı//D f1g. Multiply (4-1) by �2Gl.vC/ and integrate over M . Since the
supports of vC and Gl.vC/ coincide, we get

(4-5)
�
2C

2

n

� Z
M

hr�vC;r��
2Gl.vC/i� dV� C

Z
M

R�vC�
2Gl.vC/ dV�

D

Z
M

u
2
n vC�

2Gl.vC/ dV� :

We are going to estimate the terms in (4-5). In the following, C will denote a
positive constant depending possibly on �, q, ˇ, ı, but not on l . Note that

(4-6)
Z

M

hr�vC;r��
2Gl.vC/i� dV�

D

Z
M

Gl.vC/hr�vC;r��
2
i� dV�C

Z
M

G0l.vC/�
2
jr�vCj

2
� dV�

D�

Z
M

Gl.vC/vC�� .�
2/dV��2

Z
M

vCG0l.vC/�hr�vC;r��i� dV�

C

Z
M

G0l.vC/�
2
jr�vCj

2
� dV�

��C

Z
M

vCGl.vC/dV��2

Z
M

v2
CG0l.vC/jr��j

2
� dV�

C
1

2

Z
M

G0l.vC/�
2
jr�vCj

2
� dV� ;
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where the last inequality follows from jhr�vC;r��i� j � jr��j2� C
1
4
jr�vCj

2
�
.

Hence, we have

(4-7)
Z

M

hr�vC;r��
2Gl.vC/i� dV�

��C

Z
M

vCGl.vC/dV��2

Z
M

v2
CG0l.vC/jr��j

2
� dV�

C
1

2

Z
M

G0l.vC/�
2
jr�vCj

2
� dV�

��C

Z
M

vCGl.vC/dV��2ˇ

Z
M

vCGl.vC/jr��j
2
� dV�

C
1

2

Z
M

G0l.vC/�
2
jr�vCj

2
� dV�

��C

Z
M

.Fl.vC//
2 dV�C

1

2q

Z
M

.F 0l .vC//
2�2
jr�vCj

2
� dV�

D�C

Z
M

.Fl.vC//
2 dV�C

1

2q

Z
M

�2
jr�Fl.vC/j

2
� dV�

��C

Z
M

.Fl.vC//
2 dV�C

1

4q

Z
M

jr� .�Fl.vC//j
2
� dV�

�
1

2q

Z
M

jr��j
2
� .Fl.vC//

2 dV�

��C

Z
M

.Fl.vC//
2 dV�C

1

4q

Z
M

jr� .�Fl.vC//j
2
� dV� ;

where the first inequality follows from (4-6), the second inequality follows from
(4-4), the third inequality follows from (4-2) and (4-3), and the fourth inequality
follows from

jr� .�Fl.vC//j
2
� D jFl.vC/r��C �r�Fl.vC/j

2
�

� 2�2
jr�Fl.vC/j

2
� C 2jr��j

2
� .Fl.vC//

2:

By the Folland–Stein embedding from S2
1
.M / into L2C 2

n .M /, there exists a
constant A> 0 depending only on .M; �/ such thatZ

M

jr� .�Fl.vC//j
2
� dV��A

�Z
M

.�Fl.vC//
2C 2

n dV�

� n
nC1

�

Z
M

.�Fl.vC//
2 dV� :

From this, together with (4-7), we obtain

(4-8)
Z

M

hr�vC;r��
2Gl.vC/i� dV�

� �C

Z
M

.Fl.vC//
2 dV� C

A

4q

�Z
M

.�Fl.vC//
2C 2

n dV�

� n
nC1

:
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Independently, we choose ı > 0 small enough such that

(4-9)
Z

B.x0;2ı/

u2C 2
n dV� �

��
2C

2

n

�
A

8q

�nC1
:

Then it follows from (4-3), (4-9) and Hölder’s inequality that

(4-10)
Z

M

u
2
n vC�

2Gl.vC/ dV�

�

Z
M

u
2
n�2.Fl.vC//

2 dV�

�

�Z
B.x0;2ı/

u2C 2
n dV�

� 1
nC1

�Z
M

.�Fl.vC//
2C 2

n dV�

� n
nC1

�

�
2C

2

n

�
A

8q

�Z
M

.�Fl.vC//
2C 2

n dV�

� n
nC1

:

On the other hand, it follows from (4-3) that

(4-11)
Z

M

R�vC�
2Gl.vC/ dV� � �.max

M
jR� j/

Z
M

vC�
2Gl.vC/ dV�

� �.max
M
jR� j/

Z
M

�2.Fl.vC//
2 dV�

� �C

Z
M

.Fl.vC//
2 dV� :

Substituting (4-8), (4-10), (4-11) into (4-5), we obtain

�
2C

2

n

�
A

8q

�Z
M

.�Fl.vC//
2C 2

n dV�

� n
nC1

� C

Z
M

.Fl.vC//
2 dV� :

Now, by the Folland–Stein embedding, vC 2L2C 2
n .M /. Since 2q � 2C 2

n
and C

does not depend on l , the right-hand side of the inequality is bounded when l!1,
and we obtain

lim sup
l!1

Z
M

.�Fl.vC//
2C 2

n dV� <1:

This proves that vC 2Lq.2C 2
n /.B.x0; ı//. Since x0 is arbitrary, we get that vC 2

Lq.2C 2
n /.M /. Doing the same with v� D sup.�v; 0/ instead of vC, we get that

v 2Lq.2C 2
n /.M /. This proves Lemma 4.1. �

Proposition 4.2. For any generalized contact form Q� D u
2
n � , u 2 L2C 2

n
C .M /,

conformal to � , there exist two functions v;w 2 S2
1
.M / with v � 0 such that in the
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sense of distributions

L�v D �1. Q�/u
2
n v;(4-12)

L�w D �2. Q�/u
2
nw:(4-13)

Moreover, we can normalize v and w such that

(4-14)
Z

M

u
2
n v2 dV� D

Z
M

u
2
nw2 dV� D 1 and

Z
M

u
2
n vw dV� D 0:

Proof. Let .vm/m be a minimizing sequence for �1. Q�/, i.e., a sequence vm 2S2
1
.M /

such that

lim
m!1

R
M

�
2C 2

n

�
jr�vmj

2
�
CR�v

2
m dV�R

M u
2
n v2

m dV�

D �1. Q�/:

It is well known that .jvmj/m is also a minimizing sequence. Hence we can
assume that vm � 0. If we normalize vm by

R
M u

2
n v2

m dV� D 1, then .vm/m is
bounded in S2

1
.M / and after passing to a subsequence, we may assume that there

exists v 2 S2
1
.M /, v � 0 such that vm ! v weakly in S2

1
.M / and strongly in

L2.M / almost everywhere. If u is smooth, then

(4-15)
Z

M

u
2
n v2 dV� D lim

m!1

Z
M

u
2
n v2

m dV� D 1;

and by standard arguments, v is nonnegative minimizer of the functional associated
to �1. Q�/.

We must show that (4-15) still holds if u 2L2C 2
n

C .M /. Let A> 0 be a large real
number and set uA D inf.u;A/. Then
(4-16)ˇ̌̌̌Z

M

u
2
n .v2

m� v
2/ dV�

ˇ̌̌̌
�

Z
M

u
2
n

A
jv2

m� v
2
j dV� C

Z
M

.u
2
n �u

2
n

A
/.jvmjC jvj/

2 dV�

�A
2
n

Z
M

jv2
m� v

2
j dV�

C

�Z
M

.u
2
n �u

2
n

A
/nC1 dV�

� 1
nC1

�Z
M

.jvmjC jvj/
2C 2

n dV�

� n
nC1

;

where we have used Hölder’s inequality in the last inequality. Since

ju
2
n �u

2
n

A
j
nC1
� u2C 2

n 2L1.M /;

by Lebesgue’s dominated convergence theorem we have

(4-17) lim
A!1

Z
M

.u
2
n �u

2
n

A
/nC1 dV� D

Z
M

lim
A!1

.u
2
n �u

2
n

A
/nC1 dV� D 0:
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Since .vm/m is bounded in S2
1
.M /, it is bounded in L2C 2

n .M /, and hence there
exists C > 0 such that

(4-18)
Z

M

.jvmjC jvj/
2C 2

n dV� � C:

By strong convergence in L2.M /,

(4-19) lim
m!1

Z
M

jv2
m� v

2
j dV� D 0:

Combining (4-16)–(4-19), we obtain (4-15). Therefore v is a nonnegative minimizer
of the functional associated to �1. Q�/. Writing the Euler–Lagrange equation of v,
we find that v satisfies (4-12).

Now we define

�01.
Q�/D inf

R
M

�
2C 2

n

�
jr�wj

2
�
CR�w

2 dV�R
M u

2
n jwj2 dV�

;

where the infimum is taken over smooth functions w such that u
1
nw 6� 0 and

such that Z
M

u
2
n vw dV� D 0:

With the same method, we find a minimizer w of this problem that satisfies (4-13)
with �0

2
. Q�/ instead of �2. Q�/. However, it is not difficult to see that �0

2
. Q�/D �2. Q�/

and Proposition 4.2 easily follows. �

Lemma 4.3. Let u 2 L2C 2
n

C .M / with
R

M u2C 2
n dV� D 1. Suppose that w1; w2 2

S2
1
.M / n f0g, w1; w2 � 0 satisfyZ

M

��
2C

2

n

�
jr�w1j

2
� CR�w

2
1

�
dV� � Y2.M; �/

Z
M

u
2
nw2

1 dV� ;(4-20) Z
M

��
2C

2

n

�
jr�w2j

2
� CR�w

2
2

�
dV� � Y2.M; �/

Z
M

u
2
nw2

2 dV� ;(4-21)

and suppose that .M nw�1
1
.0//\ .M nw�1

2
.0// has measure zero. Then u is a

linear combination of w1 and w2, and we have equality in (4-20) and (4-21).

Proof. We let NuD aw1C bw2, where a; b > 0 are chosen such that

b
2
n

R
M u

2
nw2

1
dV�

a
2
n

R
M u

2
nw2

2
dV�

D

R
M w

2C 2
n

1
dV�R

M w
2C 2

n

2
dV�

;(4-22)

Z
M

Nu2C 2
n dV� D a2C 2

n

Z
M

w
2C 2

n

1
dV� C b2C 2

n

Z
M

w
2C 2

n

2
dV� D 1:(4-23)
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Because of the variational characterization of Y2.M; �/ in Proposition 3.1, we have

(4-24) Y2.M; �/� sup
.�;�/2R2nf.0;0/g

F. Nu; �w1C�w2/:

By (4-20), (4-21), (4-23), and since .M nw�1
1
.0//\ .M nw�1

2
.0// has measure

zero, we obtain
(4-25)
F. Nu;�w1C�w2/

D

R
M

�
2C2

n

�
jr� .�w1C�w2/j

2
�
CR� .�w1C�w2/

2 dV�R
M Nu

2
n .�w1C�w2/2 dV�

D
�2
R

M

�
2C2

n

�
jr�w1j

2
�
CR�w

2
1

dV�C�
2
R

M

�
2C2

n

�
jr�w2j

2
�
CR�w

2
2

dV�

�2
R

M Nu
2
nw2

1
dV�C�

2
R

M Nu
2
nw2

2
dV�

�Y2.M;�/
�2
R

M u
2
nw2

1
dV�C�

2
R

M u
2
nw2

2
dV�

�2a
2
n

R
M w

2C 2
n

1
dV�C�

2b
2
n

R
M w

2C 2
n

2
dV�

:

By (4-22), the right-hand side of (4-25) does not depend on � and �. Hence we
can choose �D a and �D b on the right-hand side of (4-25) to get

(4-26) sup
.�;�/2R2nf.0;0/g

F. Nu; �w1C�w2/

� Y2.M; �/
a2
R

M u
2
nw2

1
dV� C b2

R
M u

2
nw2

2
dV�

a2C 2
n

R
M w

2C 2
n

1
dV� C b2C 2

n

R
M w

2C 2
n

2
dV�

D Y2.M; �/

Z
M

u
2
n .a2w2

1 C b2w2
2/ dV�

D Y2.M; �/

Z
M

u
2
n Nu2 dV�

� Y2.M; �/

�Z
M

u2C 2
n dV�

� 1
nC1

�Z
M

Nu2C 2
n dV�

� n
nC1

D Y2.M; �/;

where we have used (4-23) in the first equality, the assumption that .M nw�1
1
.0//\

.M nw�1
2
.0// has measure zero in the second equality, Hölder’s inequality in the sec-

ond inequality, and the assumption
R

M u2C 2
n dV�D1 and (4-23) in the last equality.

Combining (4-24) and (4-26), we have

sup
.�;�/2R2nf.0;0/g

F. Nu; �w1C�w2/D Y2.M; �/:
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This implies the equality in Holder’s inequality in (4-26), which implies that there
exists a constant c > 0 such that uD c Nu almost everywhere. Since

R
M u2C 2

n dV� DR
M Nu

2C 2
n dV� D 1 by (4-23), we have c D 1, i.e., u D Nu D aw1 C bw2. Also,

equality in (4-25) implies equality in (4-20) and (4-21). This proves the assertion. �

Theorem 4.4 (Euler–Lagrange equation). Assume Y2.M; �/¤0 and that Y2.M; �/

is attained by a generalized contact form Q� Du
2
n � with u2L2C 2

n
C .M /. Let v andw

be as in Proposition 4.2. Then uD jwj. In particular,

(4-27) L�w D Y2.M; �/jwj
2
nw:

Moreover, w has alternating sign and w 2 C 2;˛.M / for all ˛ 2
�
0; 2

n

�
.

Proof. Without loss of generality, we can assume that
R

M u2C 2
n dV� D 1. By

assumption and by Proposition 3.1, we have �2. Q�/D Y2.M; �/. Let v;w 2S2
1
.M /

be the functions satisfying (4-12), (4-13), and (4-14).

Step 1. We have �1. Q�/ < �2. Q�/.
We prove this by contradiction. Suppose that �1. Q�/ D �2. Q�/. After possibly

replacing w by a linear combination of v and w, we can assume that the function
u

1
nw changes sign. If we define w1 D sup.w; 0/ and w2 D sup.�w; 0/, then they

satisfy the assumption of Lemma 4.3 sincew satisfies (4-13) and �2. Q�/DY2.M; �/.
Applying Lemma 4.3, we find a; b > 0 such that u D aw1 C bw2. Now, by
Lemma 4.1, w2L2C 2

n
C".M /. By a standard bootstrap argument, (4-13) shows that

w2C 2;˛.M / for all ˛2 .0; 1/. Since uDaw1Cbw2Da sup.w; 0/Cb sup.�w; 0/,
we have u 2 C 0;˛.M / for all ˛ 2 .0; 1/.

Since �1. Q�/ D �2. Q�/ and by the definition of �1. Q�/, w is a minimizer of
the functional Nw 7! F.u; Nw/ among the functions in S2

1
.M / with u

1
n Nw 6� 0 by

Proposition 3.1. Since F.u; w/D F.u; jwj/, we have that jwj is a minimizer for
the functional associated to �1. Q�/, and jwj satisfies same equation as w. As a
consequence, jwj is C 2. By the maximum principle, we have jwj> 0 everywhere,
which is false since u

1
nw changes sign.

Step 2. The function w changes sign.
Assume w does not change sign. Then after possibly replacing w by �w, we can

assume that w � 0. Setting w1 D v and w2 Dw, we have (4-20) and (4-21). Using
(4-14), we can conclude that .M nw�1

1
.0// \ .M nw�1

2
.0// has measure zero.

Applying Lemma 4.3, we have equality in (4-20). On the other hand, Step 1 implies
that inequality (4-20) is strict since �1. Q�/ < �2. Q�/D Y2.M; �/. This contradiction
shows that w changes sign.

Step 3. There exist a; b > 0 such that uD a sup.w; 0/C b sup.�w; 0/. Moreover,
w 2 C 2;˛.M / and u 2 C 0;˛.M / for all ˛ 2 .0; 1/.
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As in the proof of Step 1, we apply Lemma 4.3 with w1 D sup.w; 0/ and
w2 D sup.�w; 0/. We get a; b > 0 such that uD aw1Cbw2. As in Step 1, we get
w 2 C 2;˛.M / and u 2 C 0;˛.M / for all ˛ 2 .0; 1/.

Step 4. Conclusion.
Let h 2 C1.M / such that supp.h/ �M n u�1.0/. For t close to 0, set ut D

juC thj. Since u> 0 on the support of h, and since u is continuous, we have for t

close to 0, ut D uC th. As span.v; w/ 2Gru
2 .S

2
1
.M //, by Proposition 3.1 we have

Y2.M; �/� sup
.�;�/2R2nf.0;0/g

F.ut ; �vC�w/:

Note that
(4-28)
F.ut ; �vC�w/

D

R
M

�
2C 2

n

�
jr� .�vC�w/j

2
�
CR� .�vC�w/

2 dV�R
M u

2
n

t .�vC�w/
2 dV�

�Z
M

u
2C 2

n

t dV�

� 1
nC1

D
�2�1. Q�/

R
M u

2
n v2 dV� C�

2�2. Q�/
R

M u
2
nw2 dV�

�2at C��bt C�2ct

�Z
M

u
2C 2

n

t dV�

� 1
nC1

D
�2�1. Q�/C�

2�2. Q�/

�2at C��bt C�2ct

�Z
M

u
2C 2

n

t dV�

� 1
nC1

;

where we have used (4-12), (4-13), and (4-14). Here

at D

Z
M

u
2
n

t v
2 dV� ; bt D 2

Z
M

u
2
n

t vw dV� and ct D

Z
M

u
2
n

t w
2 dV� :

Note also that the functions at , bt , and ct are smooth for t close to 0. Furthermore,
a0 D c0 D 1 and b0 D 0 by (4-14). Define f .t; ˛/ D F.ut ; sin.˛/vC cos.˛/w/,
which is smooth for small t . By (4-28), we have
(4-29)

f .t; ˛/D F.ut ; sin.˛/vC cos.˛/w/

D
sin2.˛/�1. Q�/C cos2.˛/�2. Q�/

sin2.˛/at C sin.˛/ cos.˛/bt C cos2.˛/ct

�Z
M

u
2C 2

n

t dV�

� 1
nC1

:

Hence, using �1. Q�/ < �2. Q�/, we can see that f
�
0;
�
nC 1

2

�
�
�

is minimum and
f .0; n�/ is maximum for any integer n. This implies that

@

@˛
f .0; ˛/D 0 if and only if ˛ 2 �

2
Z;

@2

@˛2
f .0; ˛/ < 0 if ˛ 2 �Z and @2

@˛2
f .0; ˛/ > 0 if ˛ 2 �ZC

�

2
:

Applying the implicit function theorem to @f=@˛ at the point .0; 0/, we see that
there exists a smooth function t 7! ˛.t/, defined on a neighborhood of 0 with
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˛.0/D 0 such that

f .t; ˛.t//D sup
˛2R

f .t; ˛/D sup
.�;�/2R2nf.0;0/g

F.ut ; �vC�w/;

where the last equality follows from the fact that

F.ut ; c�vC c�w/D F.ut ; �vC�w/

for any nonzero constant c by (4-28). Since ˛.0/D 0, we have

d

dt
sin2 ˛.t/

ˇ̌̌
tD0
D

d

dt
cos2 ˛.t/

ˇ̌̌
tD0
D

d

dt
.at sin2 ˛.t//

ˇ̌̌
tD0

D
d

dt
.bt sin˛.t/ cos˛.t//

ˇ̌̌
tD0
D 0:

Hence, by (4-29), we have
(4-30)

d

dt
f .t;˛.t//

ˇ̌̌̌
tD0

D
d

dt

 
sin2.˛.t//�1. Q�/Ccos2.˛.t//�2. Q�/

sin2.˛.t//atCsin.˛.t//cos.˛.t//btCcos2.˛.t//ct

�

�Z
M

u
2C 2

n

t dV�

� 1
nC1

!ˇ̌̌̌
tD0

D�2. Q�/

 �
�

d

dt
ct

ˇ̌̌̌
tD0

��Z
M

u2C 2
n dV�

� 1
nC1

C
d

dt

�Z
M

u
2C 2

n

t dV�

� 1
nC1

ˇ̌̌̌
tD0

!

D�2. Q�/
2

n

�
�

Z
M

u�1C 2
n hw2 dV�C

Z
M

u1C 2
n hdV�

�
:

By the definition of Y2.M; �/ and �2. Q�/ D Y2.M; �/, f admits a minimum at
t D 0 because

f .0; ˛.0//D f .0; 0/D F.u; w/

and w satisfies (4-13). Since �2. Q�/D Y2.M; �/¤ 0, it follows from (4-30) thatZ
M

u�1C 2
n hw2 dV� D

Z
M

u1C 2
n h dV� :

Since h is arbitrary (we just have to ensure that its support is contained in M nu�1.0/),
we get

u�1C 2
nw2
D u1C 2

n

and hence u D jwj on M n u�1.0/. Together with Step 3, we have u D jwj

everywhere. �



386 PAK TUNG HO

5. Lower bound for Y2.M; �/

For any compact CR manifold .M; �/ of the real dimension 2nC1, by the definition
of the CR Yamabe invariant Y1.M; �/, we have

(5-1) Y1.M; �/D inf
u2S2

1
.M /nf0g

R
M

�
2C 2

n

�
jr�uj2

�
CR�u2 dV��R

M juj
2C 2

n dV�
� n

nC1

:

Theorem 5.1. We have

(5-2) Y2.M; �/� 2
1

nC1 Y1.M; �/:

Moreover, if M is connected and if Y2.M; �/ is attained by a generalized contact
form, then this inequality is strict.

Proof. The functional

F.u; v/D

R
M

�
2C 2

n

�
jr�vj

2
�
CR�v

2 dV�R
M u

2
n v2 dV�

�Z
M

u2C 2
n dV�

� 1
nC1

is continuous on L2C 2
n

C .M / � .S2
1
.M / n f0g/. As a consequence, I.u;V / WD

supv2V nf0g F.u; v/ depends continuously on u2L2C 2
n

C .M / and V 2Gru
2 .S

2
1
.M //.

To prove Theorem 5.1, it suffices to show that I.u;V / � 2
1

nC1 Y1.M; �/ for all
smooth u > 0 and V 2 Gru

2 .S
2
1
.M // thanks to Proposition 3.1. Without loss of

generality, we can assume that

(5-3)
Z

M

u2C 2
n dV� D 1:

The operator

v 7! P .v/ WD �
�
2C

2

n

�
u�

1
n�� .u

� 1
n v/CR�u�

2
n v

is self-adjoint with respect to the L2-scalar product and elliptic. Hence, P has
discrete spectrum �1 � �2 � � � � and the corresponding eigenfunctions '1; '2; : : :

are smooth. Setting vi D u�
1
n'i , we obtain

(5-4)
�
�

�
2C

2

n

�
�� CR�

�
.vi/D�

�
2C

2

n

�
�� .u

� 1
n'i/CR�u�

1
n'i

D u
1
n P .'i/D �iu

1
n'i D �iu

2
n vi

and Z
M

u
2
n vivj dV� D

Z
M

'i'j dV� D 0 if i ¤ j:

The maximum principle implies that an eigenfunction to the smallest eigenvalue �1

has no zeros. Hence, �1 < �2 and we can assume that v1 > 0.
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We define wC D aC sup.v2; 0/ and w� D a� sup.�v2; 0/, where aC; a� > 0

are chosen such that

(5-5)
Z

M

u
2
nw2
C dV� D

Z
M

u
2
nw2
� dV� D 1:

We let �� D fv2 < 0g and �C D fv2 � 0g. By Hölder’s inequality, we have

(5-6) 2D

Z
M

u
2
nw2
C dV� C

Z
M

u
2
nw2
� dV�

�

�Z
�C

u2C 2
n dV�

� 1
nC1

�Z
M

w
2C 2

n

C dV�

� n
nC1

C

�Z
��

u2C 2
n dV�

� 1
nC1

�Z
M

w2C 2
n

� dV�

� n
nC1

:

Using the inequality (5-1), we getZ
M

u
1
nwCP .u

1
nwC/ dV� � Y1.M; �/

�Z
M

w
2C 2

n

C dV�

� n
nC1

;

which implies that

(5-7)
�Z

�C

u2C 2
n dV�

� 1
nC1

�Z
M

u
1
nwCP .u

1
nwC/ dV�

�
� Y1.M; �/

�Z
M

w
2C 2

n

C dV�

� n
nC1

�Z
�C

u2C 2
n dV�

� 1
nC1

� Y1.M; �/

Z
M

u
2
nw2
C dV� D Y1.M; �/;

where we have used Hölder’s inequality in the last inequality, and (5-5) in the last
equality. Similarly, we have

(5-8)
�Z

��

u2C 2
n dV�

� 1
nC1

�Z
M

u
1
nw�P .u

1
nw�/ dV�

�
� Y1.M; �/:

Adding (5-7) and (5-8) together, we obtain

(5-9) 2Y1.M; �/�

�Z
�C

u2C 2
n dV�

� 1
nC1

�Z
M

u
1
nwCP .u

1
nwC/ dV�

�

C

�Z
��

u2C 2
n dV�

� 1
nC1

�Z
M

u
1
nw�P .u

1
nw�/ dV�

�
:
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Since w�, respectively wC, are multiples of v2 on ��, respectively �C, they
satisfy the same equation as v2. Hence, we obtain from (5-4) and (5-9) that

(5-10) 2Y1.M; �/�

�Z
�C

u2C 2
n dV�

� 1
nC1

�Z
M

�2u
2
nw2
C dV�

�
C

�Z
��

u2C 2
n dV�

� 1
nC1

�Z
M

�2u
2
nw2
� dV�

�

D �2

 �Z
�C

u2C 2
n dV�

� 1
nC1

C

�Z
��

u2C 2
n dV�

� 1
nC1

!
;

where the last equality follows from (5-5). Now, for any nonnegative numbers
a; b � 0, Hölder’s inequality yields

aC b � 2
n

nC1 .anC1
C bnC1/

1
nC1 :

Applying this inequality with

aD

�Z
�C

u2C 2
n dV�

� 1
nC1

and b D

�Z
��

u2C 2
n dV�

� 1
nC1

;

we derive from (5-10) that

2Y1.M; �/� �22
n

nC1

 �Z
�C

u2C 2
n dV�

�
C

�Z
��

u2C 2
n dV�

�! 1
nC1

D �22
n

nC1

�Z
M

u2C 2
n dV�

� 1
nC1

D �22
n

nC1 ;

where the last equality follows from (5-3). This implies that �2 � 2
1

nC1 Y1.M; �/.
Since �2D I.u; span.v1; v2//, this finishes the proof of the first part of Theorem 5.1.

Moreover, if M were connected and if Y2.M; �/ were attained by a generalized
contact form, then inequality (5-9) would be an equality and we would have that
wC or w� is a function for which equality in (5-1) is attained. By the maximum
principle, we would get that wC or w� is positive on M , which is impossible. �

6. Upper bound for Y2.M; �/

Hereafter, we denote Yk.S
2nC1/ the k-th Yamabe invariant of .S2nC1; �S2nC1/,

where �S2nC1 is the standard contact form on S2nC1 given by

�S2nC1 D
p
�1

nC1X
jD1

.zj d Nzj � Nzj dzj /;

where .z1; : : : ; znC1/ 2 S2nC1 � CnC1.
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Theorem 6.1. Suppose .M; �/ is a compact CR manifold of real dimension 2nC 1

with Y1.M; �/� 0. Then

(6-1) Y2.M; �/�
�
Y1.M; �/nC1

CY1.S
2nC1/nC1

� 1
nC1

when Y1.M; �/ > 0 and n� 3, or Y1.M; �/D 0 and n� 4. On the other hand, the
inequality in (6-1) is strict when

(i) Y1.M; �/ > 0, n� 7 and M is not locally CR equivalent to S2nC1, or

(ii) Y1.M; �/D 0, n� 4 and M is not locally CR equivalent to S2nC1.

To prove Theorem 5.4, we have the following:

Lemma 6.2. For any ˛ > 2, there exists a constant C > 0 such that

jaC bj˛ � a˛C b˛CC.a˛�1bC ab˛�1/

for all a; b > 0.

Proof. Dividing both sides by a, without loss of generality, we can assume that
aD 1. Then we set for x > 0,

f .x/D
j1Cxj˛ � .1Cx˛/

x˛�1Cx
:

By L’Hôpital’s rule, we have

lim
x!0C

f .x/D lim
x!0C

˛.1Cx/˛�1�˛x˛�1

.˛� 1/x˛�2C 1
D ˛;

lim
x!1

f .x/D lim
x!1

˛.1Cx/˛�1�˛x˛�1

.˛� 1/x˛�2C 1
D ˛:

Since f is continuous, f is bounded by a constant C on .0;1/. Clearly, this
constant is the desired C is the inequality of Lemma 6.2. �

Proof of Theorem 6.1. For u 2 S2
1
.M / n f0g, let

E.u/D

R
M

�
2C 2

n

�
jr�uj2

�
CR�u2 dV��R

M juj
2C 2

n dV�
� n

nC1

:

The solution of the CR Yamabe problem provides the existence of a smooth positive
minimizer v of E, and we can assume

(6-2)
Z

M

v2C 2
n dV� D 1:

Then v satisfies the CR Yamabe equation

(6-3) L� .v/D Y1.M; �/v1C 2
n :
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Let x0 2M be fixed and choose pseudohermitian normal coordinates .z; t/ near x0.
Let ı > 0 be a fixed number. If � is well chosen in the conformal class and if x0

is well chosen in M , it was proved by Jerison and Lee [1989, Theorem 4.1] that
when n� 3, there exists a function v" � 0 with supp.v"/� B.x0; 2ı/ such that

(6-4) E.v"/D Y1.S
2nC1/� c.M /"4

CO."5/;

where c.M /� 0 is a positive constant. In fact, c.M / is the square of the norm of
the Chern tensor at x0 up to a dimensional constant. Therefore, we can assume that
the constant c.M / in (6-4) satisfies

(6-5) c.M / > 0

if .M; �/ is not locally CR equivalent to S2nC1. It follows from (6-4) that

(6-6) lim
"!0

E.v"/D Y1.S
2nC1/:

More precisely, v" is given by (see [Jerison and Lee 1989, p. 326])

v" D C"�

�
"2

t2C .jzj2C "2/2

�n
2

;

where � is a smooth cut-off function such that

0� �� 1; �.x/D

�
1 if x 2 B.x0; ı/;

0 if x 62 B.x0; 2ı/;

and C" > 0 is a constant chosen such that

(6-7)
Z

M

v
2C 2

n
" dV� D 1:

It follows from [Jerison and Lee 1989, Proposition 4.2] that

(6-8) C" D c.n/CO."4/

for some positive constant c.n/ depending only on n. In the following, C will
denote a positive constant depending possibly on ı, n, but not on ". Let

ı".z; t/D ."z; "
2t/:

Note that

ı�"

�
1

t2C ."2Cjzj2/2

�
D "�4

�
1

t2C .1Cjzj2/2

�
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and ı�" dz dt D "2nC2 dz dt . Hence,

(6-9)
Z

M

jv"j
p dV� � C p

"

Z˚
4
p

t2Cjzj4�2ı
	 "np dz dt

.t2C ."2Cjzj2/2/
np
2

D C p
"

Z˚
4
p

t2Cjzj4�2ı="
	 "2nC2�np dz dt

.t2C .1Cjzj2/2/
np
2

� C p
" "

2nC2�np

Z
fjzj�2ı="g

�Z 1
�1

dt

1C t2

�
dz

.1Cjzj2/np�2

D C p
" �"

2nC2�np

Z
fjzj�2ı="g

dz

.1Cjzj2/np�2

D C "2nC2�np

Z 2ı="

0

r2n�1 dr

.1C r2/np�2
;

where we have used (6-8). Note that for "� 1,Z 2ı="

0

r2n�1 dr

.1C r2/np�2
�

Z 2ı="

0

r2nC3�2np dr �
C

"2nC4�2np

if p � 1C 3
2n

, andZ 2ı="

0

r2n�1 dr

.1C r2/np�2
�

Z 1

0

r2n�1 dr C

Z 2ı="

1

dr

r2np�2n�3

D

Z 1

0

r2n�1 dr C

Z 2ı="

1

dr

r
D

1

2n
C log "

if p D 1C 2
n

. Combining these with (6-9), we obtain

(6-10)
Z

M

jv"j
p dV� �

(
C "np�2 if p � 1C 3

2n
;

C "n log " if p D 1C 2
n
:

Similarly, for "� 1, we have

(6-11)
Z

M

jv"j
p dV� � C p

"

Z˚
4
p

t2Cjzj4�ı
	 "np dz dt

.t2C ."2Cjzj2/2/
np
2

D C p
"

Z˚
4
p

t2Cjzj4�ı="
	 "2nC2�np dz dt

.t2C .1Cjzj2/2/
np
2

� C p
" "

2nC2�np

Z
fjzj�ı=2"g

�Z ı=2"

�ı=2"

dt

1C t2

�
dz

.1Cjzj2/np

� 2C p
" tan�1.ı=2/"2nC2�np

Z
fjzj�ı=2"g

dz

.1Cjzj2/np

D C "2nC2�np

Z ı=2"

0

r2n�1 dr

.1C r2/np
;
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where we have used

t2
C .1Cjzj2/2 � .1C t2/.1Cjzj2/2

and

fjzj � ı=2"g\ fjt j � ı=2"g �
n

4

q
t2Cjzj4 � ı="

o
in the second inequality, and (6-8) in the last equality. Note that for "� 1,Z ı=2"

0

r2n�1 dr

.1C r2/np
�

Z 1

0

r2n�1 dr

2np
C

Z ı=2"

1

r2n�1 dr

.2r2/np
D C C

C

"2n�2np

if � 1� 1
2n

, andZ ı=2"

0

r2n�1 dr

.1Cr2/np
�

Z 1

0

r2n�1 dr

2np
C

Z ı=2"

1

r2n�1 dr

.2r2/np

�
1

2np

�Z 1

0

r2n�1 drC

Z ı=2"

1

dr

r2np�2nC1

�
DCCC "2np�2n

if p > 1. Combining these with (6-11), we obtain

(6-12)
Z

M

jv"j
p dV� �

(
C "npC2 if p � 1� 1

2n
;

C "2nC2�np if p > 1:

First we assume that Y1.M; �/ > 0. We set

u" DE.v"/
n
2 v"CY1.M; �/

n
2 v:

Let us find estimates for F.u"; �v"C�v/. Let .�; �/ 2 R2 n f.0; 0/g. Then
(6-13)
F.u"; �v"C�v/

D
�2
R

M v"L�v" dV� C�
2
R

M vL�v dV� C 2��
R

M v"L�v dV�R
M ju"j

2
n .�v"C�v/2 dV�

�U

D
�2E.v"/C�

2Y1.M; �/C 2��Y1.M; �/
R

M v1C 2
n v" dV�

�2
R

M ju"j
2
n v2
" dV� C�

2
R

M ju"j
2
n v2 dV� C 2��

R
M ju"j

2
n v"v dV�

�U;

where U D
�R

M u
2C2=n
" dV�

�1=.nC1/ and where we have used (6-2), (6-3) and
(6-7). Using the definition of u", we have

(6-14) u" �E.v"/
n
2 v" and u" � Y1.M; �/

n
2 v;
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which implies that

(6-15) �2

Z
M

ju"j
2
n v2
" dV� C�

2

Z
M

ju"j
2
n v2 dV� C 2��

Z
M

ju"j
2
n v"v dV�

� �2E.v"/

Z
M

v
2C 2

n
" dV� C�

2Y1.M; �/

Z
M

v2C 2
n dV�

C 2��

Z
M

ju"j
2
n v"v dV�

D �2E.v"/C�
2Y1.M; �/C 2��

Z
M

ju"j
2
n v"v dV� ;

where the last equality follows from (6-2) and (6-7).
If ��� 0, then we have

(6-16) 2��

Z
M

ju"j
2
n v"v dV� � 2��Y1.M; �/

Z
M

v1C 2
n v" dV�

by (6-14). Therefore, (6-15) and (6-16) imply that

�2E.v"/C�
2Y1.M; �/C 2��Y1.M; �/

R
M v1C 2

n v" dV�

�2
R

M ju"j
2
n v2
" dV� C�

2
R

M ju"j
2
n v2 dV� C 2��

R
M ju"j

2
n v"v dV�

� 1:

If �� < 0, then

ju"j
2
n �

�
E.v"/

n
2 v"CY1.M; �/

n
2 v
� 2

n �E.v"/v
2
n
" CY1.M; �/v

2
n

when n� 2. Combining this with (6-14) and (6-15), we get

�2

Z
M

ju"j
2
n v2
" dV� C�

2

Z
M

ju"j
2
n v2 dV� C 2��

Z
M

ju"j
2
n v"v dV�

� �2E.v"/C�
2Y1.M; �/�C

�Z
M

v
1C 2

n
" v dV� C

Z
M

v1C 2
n v" dV�

�
� �2E.v"/C�

2Y1.M; �/�C

�Z
M

v
1C 2

n
" dV� C

Z
M

v" dV�

�
;

where C > 0 is a positive real number independent of ". This, together with (6-10),
gives

�2

Z
M

ju"j
2
n v2
" dV� C�

2

Z
M

ju"j
2
n v2 dV� C 2��

Z
M

ju"j
2
n v"v dV�

� �2E.v"/C�
2Y1.M; �/�O."n log "/�O."n�2/:

This, together with the assumption that �� < 0, implies that

�2E.v"/C�
2Y1.M;�/C2��Y1.M;�/

R
M v1C 2

n v"dV�

�2
R

M ju"j
2
n v2
" dV�C�

2
R

M ju"j
2
n v2 dV�C2��

R
M ju"j

2
n v"vdV�

� 1CO."n�2/:
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In any case, we have

(6-17)

sup
.�;�/2R2nf.0;0/g

�2E.v"/C�
2Y1.M;�/C2��Y1.M;�/

R
M v1C 2

n v"dV�

�2
R

M ju"j
2
n v2
" dV�C�

2
R

M ju"j
2
n v2 dV�C2��

R
M ju"j

2
n v"vdV�

� 1CO."n�2/:

On the other hand,Z
M

u
2C 2

n
" dV� D

Z
M

.E.v"/
n
2 v"CY1.M;�/

n
2 v/2C

2
n dV�

�E.v"/
nC1

Z
M

v
2C 2

n
" dV�CY1.M;�/nC1

Z
M

v2C 2
n dV�

CC

�Z
M

v
1C 2

n
" vdV�C

Z
M

v1C 2
n v"dV�

�
DE.v"/

nC1
CY1.M;�/nC1

CC

�Z
M

v
1C 2

n
" vdV�C

Z
M

v1C 2
n v"dV�

�
;

where the first inequality follows from Lemma 6.2 with

aDE.v"/
n
2 v" and b D Y1.M; �/

n
2 v;

and the last equality follows from (6-2) and (6-7). This, together with (6-4) and
(6-10), implies that

(6-18)
�Z

M

u
2C 2

n
" dV�

� 1
nC1

� .Y1.S
2nC1/nC1

CY1.M; �/nC1/
1

nC1 � c.M /"4
C o."4/CO."n�2/:

If " > 0 is small enough, it follows from (6-13), (6-17), and (6-18) that

(6-19) Y2.M;�/

� sup
.�;�/2R2nf.0;0/g

F.u";�v"C�v/

�
�
Y1.S

2nC1/nC1
CY1.M;�/nC1

� 1
nC1�c.M /"4

Co."4/CO."n�2/:

Since n� 3, (6-1) follows from (6-19) by letting " go to zero. On the other hand, if
.M; �/ is not locally CR equivalent to S2nC1, then (6-5) holds. Hence, if n � 7,
the strict inequality in (6-1) follows from (6-19) by letting " go to zero.
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Now we assume that Y1.M; �/ D 0. We set u" D v". Then we obtain for
.�; �/ 2 R2 n f.0; 0/g,

(6-20) F.u"; �v"C�v/

D
�2E.v"/

�R
M v

2C 2
n

" dV�
� 1

nC1

�2
R

M jv"j
2
n v2
" dV� C�

2
R

M v
2
n
" v

2 dV� C 2��
R

M jv"j
2
n v"v dV�

D
�2E.v"/

�2C�2
R

M v
2
n
" v

2 dV� C 2��
R

M v
1C 2

n
" v dV�

by (6-7) and (6-13). Let �", �" such that �2
" C�

2
" D 1 and

F.u"; �"v"C�"v/D sup
.�;�/2R2nf.0;0/g

F.u"; �v"C�v/:

If �" D 0, we obtain that F.u"; �"v"C�"v/D 0 and the theorem would be proved.
Then we assume that �" ¤ 0 and we can write

F.u"; �"v"C�"v/D
E.v"/

1C 2x"b"Cx2
" a"

;

where x" D �"=�" and

C "n
� b" D

Z
M

v
1C 2

n
" v dV� � C "n�1 log " as "! 0;

a" D

Z
M

v
2
n
" v

2 dV� � C "4 as "! 0

by (6-10) and (6-12). Maximizing this expression in x" and using (6-4), we obtain
(6-21)

F.u";�"v"C�"v/�
Y1.S

2nC1/�c.M /"4Co."4/

1�b2
" =a"

D
Y1.S

2nC1/�c.M /"4Co."4/

1�C "2n�6 log2 "
;

since " log "! 0 as "! 0. For n� 4, it follows from (6-21) that

F.u"; �"v"C�"v/� Y1.S
2nC1/;

which proves (6-1) for the case Y1.M; �/D 0. On the other hand, if .M; �/ is not
locally CR equivalent to S2nC1, then (6-5) holds. Hence, the strictly inequality in
(6-1) follows from (6-21) by letting " go to zero. This proves Theorem 6.1. �

7. Some properties of Y2.M; �/

We have the following questions:

(1) Is Y2.M; �/ attained by a contact form?

(2) Is Y2.M; �/ attained by a generalized contact form?
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For question 1, we have the following:

Proposition 7.1. Let S2nC1 [ S2nC1 be the disjoint union of two copies of the
sphere equipped with the standard contact form induced from �S2nC1 . Then
Y2.S

2nC1[S2nC1/D 2
1

nC1 Y1.S
2nC1/ and it is attained by the standard contact

form.

Proof. Let Q� be an arbitrary smooth contact form on S2nC1 [S2nC1. We write
S2nC1

1
for the first S2nC1 and S2nC1

2
for the second S2nC1. Then we have

(7-1) �2.S
2nC1
[S2nC1; Q�/

Dmin
n
�2.S

2nC1
1

; Q�/;�2.S
2nC1
2

; Q�/;maxf�1.S
2nC1
1

; Q�/;�1.S
2nC1
2

; Q�/g
o
:

Therefore,

(7-2) Y2.S
2nC1

[S2nC1/� �2.S
2nC1

[S2nC1/Vol.S2nC1
[S2nC1/

1
nC1

D �2.S
2nC1

[S2nC1/.2 Vol.S2nC1//
1

nC1

D 2
1

nC1�1.S
2nC1/ Vol.S2nC1/

1
nC1

D 2
1

nC1 Y1.S
2nC1/;

where we have used (7-1) in the second equality.
On the other hand, we have

(7-3)
�2.S

2nC1
1

; Q�/Vol.S2nC1
[S2nC1; Q�/

1
nC1 � �2.S

2nC1
1

; Q�/Vol.S2nC1
1

; Q�/
1

nC1

� Y2.S
2nC1
1

/

D 2
1

nC1 Y1.S
2nC1/;

where the last equality follows from Corollary 7.3. Similarly, we have

(7-4) �2.S
2nC1
2

; Q�/Vol.S2nC1
[S2nC1; Q�/

1
nC1 � 2

1
nC1 Y1.S

2nC1/:

By the definition of Y1.S
2nC1/, we have

�1.S
2nC1
i ; Q�/Vol.S2nC1; Q�/

1
nC1 � Y1.S

2nC1/ for i D 1; 2;

which implies

2Y1.S
2nC1/nC1

�

2X
iD1

�1.S
2nC1
i ; Q�/nC1 Vol.S2nC1

i ; Q�/

�maxf�1.S
2nC1
1

; Q�/nC1; �1.S
2nC1
2

; Q�/nC1
g

2X
iD1

Vol.S2nC1
i ; Q�/

Dmaxf�1.S
2nC1
1

; Q�/nC1; �1.S
2nC1
2

; Q�/nC1
gVol.S2nC1

[S2nC1; Q�/;
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which gives

(7-5) 2
1

nC1 Y1.S
2nC1/

�maxf�1.S
2nC1
1

; Q�/; �1.S
2nC1
2

; Q�/gVol.S2nC1
[S2nC1; Q�/

1
nC1 :

Combining (7-3), (7-4), and (7-5), we can derive from (7-1) that

2
1

nC1 Y1.S
2nC1/� �2.S

2nC1
[ S2nC1; Q�/Vol.S2nC1

[S2nC1; Q�/
1

nC1 :

Since Q� is an arbitrary smooth contact form on S2nC1[S2nC1, we have

(7-6) 2
1

nC1 Y1.S
2nC1/� Y2.S

2nC1
[S2nC1/:

Now Proposition 7.1 follows from combining (7-2) and (7-6). �
On the other hand, we have the following:

Proposition 7.2. If M is connected, then Y2.M; �/ cannot be attained by a contact
form.

Proof. Otherwise, if Y2.M; �/ were attained by a contact form Q� D u
2
n � , then by

Theorem 4.4, we would have uD jwj, and hence u cannot be positive since w has
alternating sign. �

For question 2, we have the following:

Corollary 7.3. We have

Y2.S
2nC1/D 2

1
nC1 Y1.S

2nC1/:

Proof. This follows from (6-1) and Theorem 5.1. �
Corollary 7.4. Y2.S

2nC1/ is not attained by a generalized contact form.

Proof. This follows from Theorem 5.1 and Corollary 7.3. �

8. The k-th CR Yamabe invariant Yk.M; �/

In view of Corollary 7.3, it is natural to conjecture that

Yk.S
2nC1/D k

1
nC1 Y1.S

2nC1/

for all k. However, the following result shows that it is false.

Proposition 8.1. For n� 3, we have

Y2nC3.S
2nC1/ < .2nC 3/

1
nC1 Y1.S

2nC1/:

Proof. Consider S2nC1�CnC1. Let zi , where iD1; 2; : : : ; nC1, be the coordinates
of CnC1. Since ���

S2nC1
zi D

n
2
zi and ���

S2nC1
Nzi D

n
2
Nzi ,

L�
S2nC1

.zi/D
.nC 2/.nC 1/

2
zi and L�

S2nC1
.Nzi/D

.nC 2/.nC 1/

2
Nzi
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for i D 1; 2; : : : ; nC 1, and hence

�2nC3.S
2nC1; �S2nC1/�

.nC 2/.nC 1/

2
:

This shows by the definition of Y2nC3 that

(8-1) Y2nC3.S
2nC1/� �2nC3.S

2nC1; �S2nC1/Vol.S2nC1; �S2nC1/
1

nC1

�
.nC 2/.nC 1/

2
Vol.S2nC1; �S2nC1/

1
nC1 :

Since

.nC 2/.nC 1/

2
Vol.S2nC1; �S2nC1/

1
nC1

< .2nC 3/
1

nC1
n.nC 1/

2
Vol.S2nC1; �S2nC1/

1
nC1

D .2nC 3/
1

nC1 Y1.S
2nC1/

when n� 3, Proposition 8.1 follows from (8-1) . �

For the case when the k-th CR Yamabe invariant is negative, we have this:

Theorem 8.2. Let k be an positive integer. Assume that Yk.M; �/ < 0. Then
Yk.M; �/D�1.

Proof. After a possible change of contact form in the conformal class, we can
assume that �k.�/ < 0. This implies that we can find smooth functions v1; : : : ; vk

satisfying
L� .vi/D �i.�/vi for all i D 1; 2; : : : ; k

and such thatZ
M

vivj dV� D 0 for all i; j D 1; 2; : : : ; k and i ¤ j:

Let vk be defined as in the proof of Theorem 6.1. We define u" D v"C ". We set
V D spanfv1; : : : ; vkg. For v 2 V , we haveZ

M

u
2
n
" v

2 dV� � "
2
n

Z
M

v2 dV�C

Z
M

v
2
n
" v

2 dV�

�C "
2
nCC

Z
M

v
2
n
" dV�

�

8̂̂̂<̂
ˆ̂:

C "
2
nCC

�Z
M

v
3
n
" dV�

�2
3

Vol.M;�/
1
3 DC "

2
nCC "

2
3 if n� 2;

C "2CC

�Z
M

v
5
2
" dV�

�1
5

Vol.M;�/
4
5 DC "2

CC "
1

10 if nD 1
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by (6-10) and Hölder’s inequality. From this, we have

lim
"!0

Z
M

u
2
n
" v

2 dV� D 0

uniformly in v 2 V . Since �k.�/ < 0, it is then easy to see that

sup
v2V

F.u"; v/D�1:

Together with the variational characterization of Yk.M; �/ in Proposition 3.1, we
get that Yk.M; �/D�1. �
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