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Scharlemann and Thompson define a numerical complexity for a 3-manifold
using handle decompositions of the manifold. We show that for compact
hyperbolic 3-manifolds, this is linearly related to a definition of metric com-
plexity in terms of the areas of level sets of Morse functions.
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1. Introduction

Let M be a closed Riemannian 3-manifold, and let f WM !R be a Morse function;
i.e., f is a smooth function, all of whose critical points are nondegenerate, and for
which distinct critical points have distinct images in R. We define the area of f to be
the maximum area of any level set Ft Df

�1.t/ over all points x 2R. We define the
Morse area of M to be the infimum of the area of all Morse functions f WM ! R.

For hyperbolic 3-manifolds, the hyperbolic metric is a topological invariant by
Mostow rigidity, and the critical points of a Morse function determine a handle
decomposition of the manifold, so one might hope that Morse area is related to a
topological measure of complexity defined in terms of handle decompositions of the
manifold. We show that Morse area is linearly related to a definition of topological
complexity we call Scharlemann–Thompson width or linear width, and which we
now describe.

For a closed (possibly disconnected) surface S , we define the complexity, or
genus, of S to be the sums of the genera of each connected component. For a
compact (possibly disconnected) surface with boundary, we define the genus of S
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to be the genus of the surface obtained by capping off all boundary curves with
discs. We shall write j@S j for the number of boundary components of S .

A handlebody is a compact 3-manifold with boundary, homeomorphic to the
regular neighborhood of a graph in R3. Up to homeomorphism, a handlebody is
determined by the genus g of its boundary surface. Every 3-manifold M has a
Heegaard splitting, which is a decomposition of the manifold into two handlebodies.
This immediately gives a notion of complexity for a 3-manifold, called the Heegaard
genus, which is the smallest genus of any Heegaard splitting of the 3-manifold.

There is a refinement of this, due to Scharlemann and Thompson [1994], which we
now describe. Let S be a closed surface, which need not be connected. A compres-
sion body C is a compact 3-manifold with boundary, constructed by attaching some
number of 2-handles to one side S � f0g of S � I . We do not require compression
bodies to be connected. We shall refer to S � f1g as the top boundary @CC of
the compression body, and the other boundary components of C as the lower
boundary @�C . The lower boundary may be disconnected, even if C is connected,
and any 2-sphere components are capped off with 3-balls. In particular, if a maximal
number of nonparallel 2-handles are attached, then the resulting compression body is
a handlebody, so a handlebody is a special case of a compression body. A generalized
Heegaard splitting, which we shall call a linear splitting, is a decomposition of
a closed 3-manifold M into a linearly ordered sequence of compression bodies
C1; : : :C2n, which need not be connected, such that the upper boundary of an odd
numbered compression body C2iC1 is equal to the top boundary of the compression
body C2iC2, and the lower boundary of C2iC1 is equal to the lower boundary of the
previous compression body C2i . For the even numbered compression bodies C2i ,
the top boundary is equal to the upper boundary of C2i�1, and the lower boundary is
equal to the lower boundary of C2iC1. In the case of the first and last compression
bodies C1 and C2n, the lower boundaries are empty. Let Hi be the sequence of sur-
faces consisting of the upper boundaries of the compression bodies C2i�1 and C2i ;
these are often referred to as the odd surfaces, and the surfaces corresponding to
the lower boundaries as the even surfaces. A linear splitting has a natural height
function, i.e., a Morse function onto R, in which each odd or even surface, which
may not be connected, is the pre-image of a single point, and the compression
bodies are the pre-images of the closed intervals determined by these points.

The complexity c.Hi/ of the surface Hi is the genus of Hi , i.e., the sum of the
genera of each connected component, and the width of the linear splitting is the
maximum value of c.Hi/ over all upper boundaries. The Scharlemann–Thompson
width, which we shall also refer to as the linear width, of a 3-manifold M is the
minimum width over all possible linear splittings. As a Heegaard splitting is a
special case of a linear splitting, the Heegaard genus of M is an upper bound for
the linear width of M .
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There is a refinement of linear width known as thin position, which we discuss
when we use it in Section 3.

Results. In order to bound Morse area in terms of linear width, we shall assume
the following result announced by Pitts and Rubinstein [1986] (see also [Rubinstein
2005]).

Theorem 1.1 [Pitts and Rubinstein 1986; Rubinstein 2005]. Let M be a Riemann-
ian 3-manifold with a strongly irreducible Heegaard splitting. Then the Heegaard
surface is isotopic to a minimal surface, or to the boundary of a regular neighbor-
hood of a nonorientable minimal surface with a small tube attached vertically in
the I-bundle structure.

A full proof of this result has not yet appeared in the literature, though recent
progress has been made by Colding and De Lellis [2003], De Lellis and Pellandrini
[2010], and Ketover [2013].

We shall show this:

Theorem 1.2. There is a constant K > 0 such that for any closed hyperbolic
3-manifold,

(1) K.linear width.M //6Morse area.M /6 4�.linear width.M //;

where the right-hand bound holds assuming Theorem 1.1.

Our methods are effective, and the constant K may be estimated using a bound
on the Margulis constant for H3, though we omit the details of this calculation, as
our methods seem unlikely to give an optimal constant.

Outline. In Section 2, we show how to bound linear width in terms of Morse area. A
bound on the Morse area of M gives a Morse function f WM!R with bounded area
level sets, but with no a priori bound on the topological complexity of the level sets.

We use a Voronoi decomposition of M to give a polyhedral approximation of
the Morse function, which we now describe in a simple case. Let V be a Voronoi
decomposition of M in which every Voronoi cell Vi is a topological ball, and has size
bounded above and below; i.e., there is an �>0 such that B.xi ; �=2/�Vi�B.xi ; �/,
where xi is the center of the Voronoi cell. Let Mt be the sublevel set of the Morse
function, i.e., MtDf

�1..�1; t �/. The sublevel sets are a monotonically increasing
collection of subsets of M , which start off empty, and eventually contain all of M ;
so, in particular, for each Voronoi cell Vi , there is a ti such that the volume of
Mt \B.xi ; �=2/ is exactly half the volume of B.xi ; �=2/, and we shall call ti the
cell splitter for the Voronoi cell Vi . Furthermore, we may assume that the ti are
distinct for distinct Voronoi cells. This gives a linear order to the Voronoi cells, and
we wish to show that constructing the manifold by adding the Voronoi cells in this
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order gives a bounded linear-width handle decomposition for M . Let Pt be the
union of the Voronoi cells whose cell splitters ti are at most t . Each Voronoi cell
is a ball, with a bounded number of faces, so adding a Voronoi cell corresponds to
adding a bounded number of handles. It remains to show that the boundary of each
Pt has genus bounded in terms of the area of the level set Ft D f

�1.t/. Let Vi

and Vj be two adjacent Voronoi cells, with Vi contained in Pt and Vj outside Pt ,
so their common face is a subset of @Pt . Consider the sequence of balls B.x; �=2/,
as x runs along the geodesic from xi to xj . At least half the volume of B.xi ; �=2/

is contained in Mt , and at most half the volume of B.xj ; �=2/ is contained in Mt ;
so there is an x such that exactly half the volume of B.x; �=2/ is contained in Mt ,
and so there is a lower bound on the area of Ft \B.x; �=2/. Therefore, a bound
on the area of Ft gives a bound on the number of faces of @Pt . As each face has
a bounded number of edges, this gives a bound on the genus of @Pt , and hence a
bound on the linear width of M , though this bound depends on �.

In order to produce a bound which works for any compact hyperbolic mani-
fold M , we use the Margulis lemma and the thick-thin decomposition for hyperbolic
manifolds. There is constant �, called a Margulis constant, such that any compact
hyperbolic manifold may be decomposed into a thick part X�, where each point has
injectivity radius greater than �, and a thin part, where each point has injectivity
radius at most �, and which is a disjoint union of solid tori. If we choose �
sufficiently small, then we may choose a Voronoi decomposition of the thick part in
which each Voronoi cell has size bounded above and below, and run the argument
in the previous paragraph to control the genus of @Pt inside the thick part. We do
not control the complexity of @Pt in the thin part, but as each component of the thin
part is a solid torus, we may cap off @Pt \X� with surfaces parallel to Pt \ @X�,
while still obtaining bounds on the genus. In order to bound the number of handles
corresponding to adding a Voronoi cell, we use a result of Kobayashi and Rieck
[2011] which gives bounds on the topological complexity of the intersection of a
Voronoi cell with the thin part.

The key problem for the upper bound is that the techniques of Pitts and Rubinstein
use sweepouts, so although their minimax construction produces a sweepout of
bounded area, we do not know how to directly replace a bounded area sweepout
with a bounded area foliation. However, the upper bound is obtained in recent work
of Colding and Gabai [2015], using work of Colding and Minicozzi [2015] on the
mean curvature flow, and we describe their results in Section 3.

2. Morse area bounds Scharlemann–Thompson width

In this section we show that we can bound the Scharlemann–Thompson width of a
hyperbolic manifold in terms of its Morse area. We will approximate level sets by
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surfaces which are unions of faces of Voronoi cells, and we start by describing the
properties of the Voronoi decompositions that we will use.

Voronoi cells. We will approximate the level sets of f by surfaces consisting of
faces of Voronoi cells. We now describe in detail the Voronoi cell decompositions
we shall use, and their properties.

A polygon in H3 is a compact convex subset of a hyperbolic plane whose
boundary consists of a finite number of geodesic segments. A polyhedron in H3 is
a convex topological 3-ball in H3 whose boundary consists of a finite collection of
polygons. A polyhedral cell decomposition of H3 is a cell decomposition in which
every 3-cell is a polyhedron, each 2-cell is a polygon, and the edges are all geodesic
segments. We say a cell decomposition of a hyperbolic manifold M is polyhedral
if its preimage in the universal cover gives a polyhedral cell decomposition of H3.

Let X D fxig be a discrete collection of points in 3-dimensional hyperbolic
space H3. The Voronoi cell Vi determined by xi 2X consists of all points of M

which are closer to xi than any other xj 2X , i.e.,

Vi D fx 2 H3
j d.x;xi/6 d.x;xj / for all xj 2X g:

We shall call xi the center of the Voronoi cell Vi , and we shall write VDfVig for the
collection of Voronoi cells determined by X . Voronoi cells are convex sets in H3,
and hence topological balls. The set of points equidistant from both xi and xj is a
totally geodesic hyperbolic plane in H3. A face F of the Voronoi decomposition
consists of all points which lie in two distinct Voronoi cells Vi and Vj , so F is
contained in a geodesic plane. An edge e of the Voronoi decomposition consists
of all points which lie in three distinct Voronoi cells Vi ;Vj and Vk , which is a
geodesic segment, and a vertex v is a point lying in four distinct Voronoi cells
Vi ;Vj ;Vk and Vl . By general position, we may assume that all edges of the Voronoi
decomposition are contained in exactly three distinct faces, the collection of vertices
is a discrete set, and there are no points which lie in more than four distinct Voronoi
cells. We shall call such a Voronoi decomposition a regular Voronoi decomposition,
and it is a polyhedral decomposition of H3 if every cell is compact. As each edge
is 3-valent, and each vertex is 4-valent, this implies that the dual cell structure is
a simplicial triangulation of H3, which we shall refer to as the dual triangulation.
The dual triangulation may be realised in H3 by choosing the vertices to be the
centers xi of the Voronoi cells and the edges to be geodesic segments connecting
the vertices, and we shall always assume that we have done this. In this case, the
triangles and tetrahedra are geodesic triangles and geodesic tetrahedra in H3.

Given a collection of points X D fxig in a hyperbolic 3-manifold M , let zX be
the pre-image of X in the universal cover of M , which is isometric to H3. We say a
subset of H3 is equivariant if it is preserved by the covering translations determined
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by the quotient M . As zX is equivariant, the k-skeleton of the corresponding
Voronoi cell decomposition V of H3 is also equivariant for 0 6 k 6 3, as are the
k-skeletons of the dual triangulation.

We now show that the interior of each Voronoi cell V is mapped down homeo-
morphically by the covering projection. Suppose y is a point in the interior of a
Voronoi cell V with center x, so d.x;y/ < d.x0;y/ for any other x0 2X . Let g be
a covering translation, which is an isometry, so d.x;y/D d.gx;gy/. As covering
translations act freely, this implies that gy lies in the interior of the Voronoi cell
corresponding to gx 6D x. Therefore interior.V / has disjoint translates under the
group of covering translations, and so is mapped down homeomorphically into M ,
though the covering projection may identify distinct faces of a Voronoi cell under
projection into M .

By abuse of notation, we shall refer to the resulting polyhedral decomposition
of M as the Voronoi decomposition V of M . By general position, we may assume
that V is regular. The dual triangulation also projects down to a triangulation of M ,
which we will also refer to as the dual triangulation, though this triangulation may
no longer be simplicial.

We say a collection X D fxig of points in M is �-separated if the distance
between any pair of points is at least �, i.e., d.xi ;xj /> � for all i 6D j .

Definition 2.1. Let M be a compact hyperbolic 3-manifold. We say a Voronoi
decomposition V is �-regular if it is regular and it arises from a maximal collection
of �-separated points.

We shall write B.x; r/ for the closed metric ball of radius r about x in M ,

B.x; r/D fy 2M j d.x;y/6 rg;

which need not be a topological ball. As the cells of an �-regular Voronoi decom-
position are determined by a maximal collection of �-separated points in M , each
Voronoi cell is contained in a metric ball of radius � about its center. Furthermore,
as the points xi are distance at least � apart, each Voronoi cell contains a metric
ball of radius �=2 about its center, i.e.,

B.xi ; �=2/� Vi � B.xi ; �/:

One useful property of �-regular Voronoi decompositions is that the boundary of
any union of Voronoi cells is an embedded surface, in fact an embedded normal
surface in the dual triangulation, as we now describe.

A simple arc in the boundary of a tetrahedron is a properly embedded arc in a
face of the tetrahedron with endpoints in distinct edges. A triangle in a tetrahedron
is a properly embedded disc whose boundary is a union of three simple arcs, and
a quadrilateral is a properly embedded disc whose boundary is the union of four
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simple arcs. A normal surface in a triangulated 3-manifold is a surface that intersects
each tetrahedron in a union of normal triangles and quadrilaterals.

Proposition 2.2. Let M be a compact hyperbolic manifold, and let V be an
�-regular Voronoi decomposition. Let P be a union of Voronoi cells in V , and
let S be the boundary of P . Then S is an embedded surface in M .

Proof. The collection of Voronoi cells P intersects a tetrahedron T in the dual
triangulation in a regular neighborhood of the vertices of T . If a tetrahedron T has
one or three vertices corresponding to Voronoi cells in P , then S intersects T in a
single normal triangle. If T has exactly two vertices corresponding to Voronoi cells
in P , then S intersects T in a single normal quadrilateral. Therefore S consists
of at most one triangle or quadrilateral in each tetrahedron, and so is an embedded
normal surface. �

We shall write injM .x/ for the injectivity radius of M at x, i.e., the radius of the
largest embedded ball in M centered at x. We shall write inj.M / for the injectivity
radius of M , which is defined to be

inj.M /D inf
x2M

injM .x/:

We shall say a Voronoi cell Vi with center xi is a deep Voronoi cell if the
injectivity radius at xi is at least 4�, i.e., injM .xi/ > 4�, and, in particular, this
implies that the metric ball B.xi ; 3�/ is a topological ball. We shall also call centers,
faces, edges and vertices of deep Voronoi cells deep. We shall write W for the
subset of V consisting of deep Voronoi cells. The fact that a deep Voronoi cell Vi has
injectivity radius at least 4� at its center xi guarantees that every adjacent Voronoi
cell is also a topological ball.

We now show that there are bounds, which only depend on �, on the number
of faces of a deep Voronoi cell, and the number of edges and faces of a deep
Voronoi cell.

Proposition 2.3. Let M be a compact hyperbolic 3-manifold with an �-regular
Voronoi decomposition V , and let W be the collection of deep Voronoi cells. Then
there is a number J , which only depends on �, such that each deep Voronoi cell
Wi 2W has at most J faces, edges and vertices.

Proof. Let W be a deep Voronoi cell with center x, and with faces F1; : : : ;Fn. Let
xi be the center of the Voronoi cell Wi adjacent to the face Fi . As W is deep, the
Voronoi cell Wi is also a topological ball.

If two Voronoi cells share a common face, then the distance between their centers
is at most 2�. Therefore all of the centers of the Voronoi cells corresponding to the
faces of W are contained in the metric ball B.x; 2�/. This implies that the balls
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of radius �=2 around the xi are contained in the metric ball B.x; 5�=2/. As the
B.xi ; �=2/ are all disjoint, this implies that the number of faces is at most

J1 D
volH3.B.x; 5�=2//

volH3.B.x; �=2//
:

Note that J1 is also an upper bound for the maximum number of edges in any face
of a Voronoi cell because every edge of that face is contained in another face in
that cell. So the total number of edges is at most J 2

1
, and by the formula for Euler

characteristic, the number of vertices is at most J 2
1
CC . Therefore we may choose J

to be J 2
1
C 2. �

A similar volume bound argument to the one above proves the following:

Proposition 2.4. Let M be a compact hyperbolic 3-manifold with an �-regular
Voronoi decomposition V . Then there is a number L, which depends only on �, such
that for any deep Voronoi center xi , the number of Voronoi centers contained in
B.xi ; 3�/ is at most L.

Polyhedral surfaces. We may choose a Morse function f WM ! R such that the
complexity of f is within some small ı > 0 of the infimum, i.e.,

area.Ft /6Morse area.M /C ı

for all t 2 R. We now describe how to use the Morse function f to give a linear
ordering to the Voronoi cells in V .

Definition 2.5. Let M be a compact hyperbolic 3-manifold, and let f WM ! R be
a Morse function. Given t 2 R, define the sublevel set of M at t , which we shall
denote Mt , to be the subset of M consisting of the union of all level sets Ft with
t 2 .�1; t �, i.e.,

Mt D f
�1..�1; t �/:

For t sufficiently small, Mt is the empty set, and for t sufficiently large, Mt is
equal to all of M . The region Mt varies continuously in t and is monotonically
increasing in t .

Definition 2.6. Let M be a compact hyperbolic 3-manifold with an �-regular
Voronoi decomposition V . Let f WM ! R be a Morse function. For each Voronoi
cell Vi with center xi , there is a unique ti 2 R such that the surface Fti

divides the
metric ball B.xi ; �=2/ exactly in half by volume, i.e.,

vol.Mt \B.xi ; �=2//D
1
2

vol.B.xi ; �=2//:

We call this ti the cell splitter of Vi .



MORSE AREA AND SCHARLEMANN–THOMPSON WIDTH 91

R

f
Ft t

St

Pt

Figure 1. A polyhedral surface St determined by a level set Ft .

Definition 2.7. We say that a Morse function f WM!R is generic with respect to a
Voronoi decomposition V if the cell splitters for distinct Voronoi cells Vi correspond
to distinct points ti 2 R, and no cell splitter is also a critical point for the Morse
function. We say a point t 2 R is generic if it is not a critical point for the Morse
function, and is not a cell splitter.

We may assume that f is generic by an arbitrarily small perturbation of f , and
we shall always assume that f is generic from now on.

Definition 2.8. Let M be a compact hyperbolic 3-manifold with an �-regular
Voronoi decomposition V , and let f WM !R be a generic Morse function. Let V be
the Voronoi decomposition ordered by the order inherited from the cell splitters ti .
Given t 2 R, Let Mt be the sublevel set of M at t . We define Pt , the polyhedral
approximation to Mt , to be the union of the Voronoi cells Vi with ti 6 t , and call
St D @Pt the polyhedral surface determined by t 2 R.

The polyhedral surface St is a union of faces of the Voronoi cells, and so is a
normal surface in the dual triangulation. We shall write kStk for the number of
Voronoi faces the polyhedral surface St contains. We shall write kSt \Wk for the
number of faces in the polyhedral surface St \W , which may have boundary. A
schematic picture of a polyhedral surface is given in Figure 1.

In this section, we will show the following bound on the complexity of the
polyhedral surface in the deep part W .

Proposition 2.9. Let M be a compact hyperbolic 3-manifold, with an �-regular
Voronoi decomposition V , deep part W , and a generic Morse function f WM ! R.
For t 2R, let St be the polyhedral surface associated to t . Then there is a constant K,
which only depends on �, such that

j@.St \W/j6K area.Ft /;

genus.St \W/6K area.Ft /:
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In particular, this bounds the genus of St\W as a constant times the Morse width
of M , where the constant depends only on �. We start by showing that the area of the
level sets bounds the number of faces of the polyhedral surface in the deep part W .

Proposition 2.10. Let M be a compact hyperbolic 3-manifold, with an �-regular
Voronoi decomposition V , deep part W , and a generic Morse function f WM ! R.
For t 2R, let St be the polyhedral surface associated to t . Then there is a constant K,
which only depends on �, such that

kSt \Wk6K area.Ft /:

Proof. Let Pt be the polyhedral approximation to Mt . Let C be a face of St \W ,
and let Wi and Wj be the two adjacent Voronoi cells in V . Up to relabeling, we may
assume that Wi is contained in Pt , and Wj is not. Let  be a geodesic connecting
xi to xj , and consider B.s; �=2/ for s 2  . As Wi and Wj are deep, the metric
balls B.xi ; �=2/, B.xj ; �=2/ and B.s; �=2/ are all topological balls, isometric to
the ball B.x; �=2/ in H3. At least half of the volume of B.xi ; �=2/ is contained
in Pt , and strictly less than half of the volume of B.xj ; �=2/ is contained in Pt ,
so there is some s 2  such that exactly half the volume of B.s; �=2/ is contained
in Pt . There is a constant A, depending only on �, such that any surface dividing a
ball in hyperbolic space into regions of equal volume has area at least A. In fact,
we may take A to be the area of the equatorial disc, which is 2�.cosh.�=2/� 1/;
see, for example, [Bachman et al. 2004].

Recall that the Voronoi decomposition has a dual triangulation in which each edge
is a geodesic segment, and we shall write � for the geodesic graph in M formed
by the 1-skeleton of the dual triangulation. We shall write �d for the subset of �
consisting of vertices corresponding to deep Voronoi cells, and edges connecting
two deep Voronoi cells, and we shall refer to this as the deep graph. Each geodesic
edge between two deep Voronoi cells has length strictly less than 2�. Therefore the
choice of geodesic is unique for the Voronoi cells in W , as its length is smaller than
the injectivity radius at each deep Voronoi cell center xi . By Proposition 2.3, the
geodesic dual graph �d has valence at most J .

Claim 2.11. Consider a collection of points fsig such that each point si lies in a
distinct edge i of the deep graph �d . Then any ball B.si ; �=2/ intersects at most
L other balls B.sj ; �=2/, where L is the constant from Proposition 2.4.

Proof of Claim 2.11. If two balls B.si ; �=2/ and B.sj ; �=2/ intersect, then the
distance between their corresponding edges i and j is at most �, and so there is a
pair of vertices, xk 2 i and xl 2 j with d.xk ;xl/6 3�. By Proposition 2.4, there
are at most L other vertices within distance 3� of a given vertex. Therefore the total
number of balls intersecting B.si ; �=2/ is at most L, which only depends on �. �
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If there are N faces in St then there are at least N=L disjoint balls B.si ; �=2/,
each containing a part of Ft of area at least A. Therefore, the total number of faces
is at most

(2) kSt \Wk6 L

A
area.Ft /;

where the constants only depend on �, as required. �
We now show that the bound on the number of faces of St in the deep part W

gives a bound on the genus of St \W .

Proposition 2.12. Let M be a compact hyperbolic 3-manifold, with an �-regular
Voronoi decomposition V , deep part W , and a generic Morse function f WM ! R.
For t 2R, let St be the polyhedral surface associated to t . Then there is a constant J ,
which only depends on �, such that

j@.St \W/j6 JkSt \Wk;
genus.St \W/6 JkSt \Wk;

where J is the constant from Proposition 2.3.

Proof. We shall write S for St to simplify notation. The first bound follows as each
boundary component must contain at least one edge, so the number of boundary
components is at most the number of edges in S \W , which is at most JkS \Wk
by Proposition 2.3.

We shall write yS for the surface S\W with all boundary curves capped off with
discs. Recall that the genus of a disconnected surface is the sum of the genera of
each component, and this in turn is equal to the number of connected components
minus half the Euler characteristic, i.e.,

genus. yS/D j yS j � 1
2
�. yS/;

where j yS j is the number of connected components of yS .
As capping off with discs does not change the number of connected components,

this is at most the number of connected components of S \W , which is at most the
number of faces kS \Wk. Furthermore, capping off boundary components with
discs may only increase the Euler characteristic, so

genus. yS/6 kS \Wk� 1
2
�.S \W/:

Therefore
genus. yS/6 kS \Wk� 1

2
.V �ECF /;

where V;E and F are the numbers of vertices, edges and faces of S \W . As each
face of a deep Voronoi cell has at most J edges, this implies

genus. yS/6 .1CJ=2/kS \Wk:

As we may assume that J is at least 2, this gives the second inequality. �
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Proposition 2.9 now follows immediately from Propositions 2.10 and 2.12.

Capped surfaces. We have constructed surfaces with bounded complexity in the
deep part. The complement of the deep part is contained in a union of solid tori by
the Margulis lemma, and we now explain how to cap off the surfaces in the deep
part with surfaces in the solid tori to produce bounded genus surfaces.

We will use the Margulis lemma and the thick-thin decomposition for finite
volume hyperbolic 3-manifolds, which we now review. Given a number � > 0, let
X� DMŒ�;1/ be the thick part of M , i.e., the union of all points x of M with
injM .x/> �. We shall refer to the closure of the complement of the thick part as
the thin part and denote it by T� DM nX�.

The Margulis lemma states that there is a constant �0 > 0, such that for any
compact hyperbolic 3-manifold, the thin part is a disjoint union of solid tori, and
each of these solid tori is a regular metric neighborhood of an embedded closed
geodesic of length less than �0. We shall call a number �0 for which this result
holds a Margulis constant for H3. If �0 is a Margulis constant for H3, then so is �
for any 0 < � < �0, and furthermore, given � and �0, there is a number ı > 0

such that Nı.T�/� T�0
. For the remainder of this section, we shall fix a pair of

numbers .�; �/ such that there are Margulis constants 0<�1<�<�2, a number ı
such that Nı.T�/� T�2

nT�1
, and �D 1

4
minf�1; ıg. We shall call .�; �/ a choice

of MV -constants for H3. This choice of constants ensures that the deep part W
is nonempty.

Let .�; �/ be a choice of MV -constants, and consider an �-regular Voronoi decom-
position of M . The fact that Nı.T�/�T�2

nT�1
means that we adjust the boundary

of T� by an arbitrarily small isotopy so that it is transverse to the Voronoi cells, and
we will assume that we have done this for the remainder of this section. Our choice
of � implies that the thick part X� is contained in the Voronoi cells in the deep part,
i.e., X� �

S
Wi2W Wi , so, in particular, @X� D @T� is contained in the deep part.

Furthermore, as � < ı, each deep Voronoi cell hits at most one component of T�.
Each boundary component of the surface St\X� is contained in T�, so St\X�

is a properly embedded surface in X�. We now bound the number of boundary
components of St \X� in terms of the number of polyhedral faces in the deep part,
kSt \Wk.

Proposition 2.13. Let .�; �/ be MV -constants, and let M be a compact hyperbolic
3-manifold with thin part T�, an �-regular Voronoi decomposition V with deep
part W , and a generic Morse function f . Let St be a polyhedral surface in M .
Then there is a constant J , depending only on �, such that

genus.St \X�/6 JkSt \Wk;
j@.St \X�/j6 2JkSt \Wk:
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Proof. The properly embedded surface St \X� is obtained from St \W by cutting
St \W along simple closed curves and discarding some connected components.
This does not increase the genus, which gives the first bound, using Proposition 2.12.

Each face C of a Voronoi cell is a totally geodesic convex polygon, and a
component of T� lifts to a convex set in the universal cover H3, so C \ T� is a
convex subset of C . Therefore C \ @T� consists either of a simple closed curve,
or a collection of properly embedded arcs which have at most two endpoints in
each edge of C , so there are at most as many arcs as the number of edges of C .
Therefore, the number of components of C \ @T� has at most (number of faces of
St \W) plus (number of edges of St \W) components, and this gives the second
bound, again using Proposition 2.12. �

We now wish to cap off the properly embedded surfaces St \X� with properly
embedded surfaces in T� to form closed surfaces. For each torus Ti in @T�, let Ui

be the subsurface consisting of @Ti \Mt . Let SCt D .S \X�/[
S

i Ui , and we
shall call the resulting closed surface the T -capped surface SCt . We now bound
the genus of the resulting T -capped surfaces.

Proposition 2.14. Let .�; �/ be MV -constants, and let M be a compact hyperbolic
3-manifold with thin part T�, an �-regular Voronoi decomposition V with deep
part W , and a generic Morse function f . Let St be a polyhedral surface in M ,
and let SCt be the corresponding T -capped surface. Then there is a constant K,
depending only on �, such that

genus.SCt /6K area.Ft /:

Furthermore, for any finite collection of generic points fuig in R, the corresponding
T -capped surfaces fSCui

g may be isotoped to be disjoint.

Proof. By Proposition 2.10, it suffices to bound the genus of the T -capped surface
in terms of the number of polyhedral faces of the surface in the deep part. We will
show

genus.SCt /6 .5J C 1/kSt \Wk;

where J is the constant from Proposition 2.3, which only depends on �.
Each surface Ui is a subsurface of a torus, and so consists of a union of planar

surfaces, together with at most one surface which is a torus with (possibly many)
boundary components.

Capping off components of St \X� with planar surfaces cannot increase the
genus by more than twice the number of boundary components, and capping off with
punctured tori increases the genus by at most the number of boundary components,
plus the number of punctured tori. As each Voronoi cell hits at most one component
of T�, there are at most kSt \Wk components of the Ui surfaces which may be
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punctured tori. This implies

genus.SCt /6 genus.St \X�/C 2j@.St \X�/jC kSt \Wk:

Using the bounds from Proposition 2.13, we obtain

genus.SCt /6 .5J C 1/kSt \Wk;

as required.
Finally, we show that for any finite collection of generic points fuig in R, we may

isotope the corresponding T -capped surfaces to be disjoint. To simplify notation,
given a generic point ui 2 R, we will write Mi and Si for the corresponding
polyhedral approximation and polyhedral surface determined by ui .

For any two distinct points ui < uj in R, the polyhedral approximation Mi is a
strict subset of Mj , so Si and Sj are disjoint normal surfaces. Let T be a single
solid torus component of T�. Take a small product neighborhood @T � Œ0; 1�, and
choose the parameterization such that @T � f0g is equal to @T , and the product
neighborhood is contained in T . Let Ui be the subsurface of @T given by @T \Mi .
Let UCi be the properly embedded surface in the product @T � Œ0; 1� given by
placing Ui at depth i=n, together with a product neighborhood of the boundary @Ui

connecting Ui to the boundary of Si , i.e.,

UCi D .Ui � fi=ng/[ .@Ui � Œ0; i=n�/:

As the submanifolds Mi are strictly nested, the subsurfaces Ui are also strictly
nested, i.e., Ui �Uj for i < j , and so the resulting surfaces Si[UCi are disjoint. �

Bounded handles. We now bound the number of handles between a pair of T-capped
surfaces SCi and SCj whose corresponding points in ui and uj in R bound an interval
containing a single cell splitter.

Proposition 2.15. Let .�; �/ be MV -constants and M be a hyperbolic 3-manifold
with an �-regular Voronoi decomposition V and a generic Morse function f WM !R.
Let u1<u2 be a pair of points in R, which bound an interval containing a single cell
splitter t . Let SC

1
and SC

2
be T -capped surfaces corresponding to the level sets for

u1 and u2, bounding regions P1 and P2, with P1 � P2. Then P2 is homeomorphic
to a manifold obtained from P1 by adding at most 60J 2 maxfkSi \Wkg handles,
where J is the constant from Proposition 2.3, which depend only on �.

We start by observing that attaching a compression body P to a 3-manifold Q

by a subsurface S of the upper boundary component of P , requires a number of
handles which is bounded in terms of the Heegaard genus of P , and the number of
boundary components of the attaching surface.

Proposition 2.16. Let Q be a compact 3-manifold with boundary and let RDQ[P ,
where P is a compression body of genus g, attached to Q by a homeomorphism
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along a (possibly disconnected) subsurface S contained in the upper boundary
component of P of genus g. Then R is homeomorphic to a 3-manifold obtained
from Q by the addition of at most .4 genus.P /C 2j@S j/ 1-and 2-handles, where
j@S j is the number of boundary components of S .

Proof. Recall that the genus of a disconnected surface with boundary is the sum
of the genus of each closed component obtained by capping off all boundary
components with discs. Therefore, the genus of S is at most the genus of P .
For a connected surface of genus g with b boundary components, cutting along
a nonseparating arc with endpoints in the same boundary component produces a
surface of genus g � 1 with bC 1 boundary components. A planar surface with
b boundary components may be cut into at most b discs by b � 1 nonseparating
arcs. Therefore we may choose at most 2gC b arcs which cut the surface S into at
most gCb discs. We can add a 1-handle to Q for each arc, and then a 2-handle for
each disc, to produce a manifold QC which is homeomorphic to Q union a regular
neighborhood of @P . We may then form R by adding at most g 2-handles. The
total number of 1- and 2-handles required is at most 4gC 2b. �

Proof of Proposition 2.15. Let V be the Voronoi cell corresponding to the single cell
splitter t contained in the interval Œu1;u2�. The surfaces SC

1
and SC

2
are parallel

everywhere, except in a regular neighborhood of V . If the Voronoi cell V is disjoint
from T�, then it is a ball, and is attached to P1 along a subsurface consisting
of a union of faces of V . Therefore the number of boundary components of the
attaching surface is at most J , where J is the constant from Proposition 2.3, so by
Proposition 2.16, P2 is obtained from P1 by attaching at most 2J handles.

If the Voronoi cell V intersects T�, then P2 is obtained from P1 by adding regions
of V n T�, which we shall refer to as the complementary regions, together with
regions of T�\.P2nP1/. The complementary regions may not be topological balls,
but Kobayashi and Rieck [2011] show that they are handlebodies of bounded genus.

Proposition 2.17 [Kobayashi and Rieck 2011]. Let � be a Margulis constant
for H3 and M be a finite volume hyperbolic 3-manifold; let 0 < � < �, and let
V be a regular Voronoi decomposition of M arising from a maximal collection of
�-separated points. Then there is a number G, depending only on � and �, such
that for any Voronoi cell Vi , there are at most G connected components of Vi \X�,
each of which is a handlebody of genus at most G, attached to T� by a surface with
at most G boundary components.

We state a simplified version of their result which suffices for our purposes. Their
stated result involves extra parameters d and R, but if d is chosen close to 0, then R

is close to �, and we obtain the result above. Their proof involves showing that in
the universal cover, for any point p in T�\Vi , projection to @T� along geodesic rays
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based at p gives a topological product structure to Vi\X� as .Vi\@T�/�I . An ex-
amination of their proof shows that we may choose GD 3J , where J is the constant
from Proposition 2.3. Then Proposition 2.16 implies that adding the complementary
regions of a Voronoi cell which intersects @T� requires at most 6G2D54J 2 handles.

However, if the Voronoi cell intersects a solid torus component T of T�, then
the surfaces SC

1
and SC

2
need not be parallel inside T , and so we now bound

the number of handles needed to add the region corresponding to .P2 nP1/\T .
If U2 is equal to all of @T , then the additional region is a solid torus attached
along @T n U1, so adding this region requires at most 4C 2j@U1j handles, by
Proposition 2.15. If U2 is not equal to all of @T , then this region is homeomorphic
to .U2 � Œ0; 1�/ n

�
U1 �

�
0; 1

2

��
, and so is homeomorphic to U2 � I , which is a

handlebody of genus at most j@U2j. The region is attached along U2, so adding
this region requires at most 4j@U2jC 2j@U1j handles, and so in either case, at most
4JkS2\WkC 2JkS1\Wk are required.

Therefore P2 may be constructed from P1 by adding at most

54J 2
C 4JkS2\WkC 2JkS1\Wk6 60J 2 maxfkSi \Wkg

handles, as required. �
The manifold M may be constructed by adding the Voronoi cells in the order

arising from the cell splitters ti in R. Choose a finite collection of generic points
fuig, so that each pair of adjacent cell splitters is separated by one of the ui , and
let fSCi g be the corresponding collection of T -capped surfaces. The linear width is
at most the largest genus of any surface in the collection fSCi g, plus the maximum
number of handles added by attaching a single Voronoi cell. Therefore the bounds
from Propositions 2.14 and 2.15 imply

linear width.M /6 .5J C 1/K.Morse area.M //C 60J 2K.Morse area.M //:

As J is at least 1, this gives

linear width.M /6 .66J 2K/Morse width.M /:

The constants J and K only depend on the choice of MV -constants, which may
be chosen independently of the hyperbolic 3-manifold M , and so this completes
the proof of the left-hand bound of Theorem 1.2.

3. Scharlemann–Thompson width bounds Morse area

We will show linear bounds for Morse area in terms of Scharlemann–Thompson
width, assuming the Pitts and Rubinstein result, Theorem 1.1; i.e., we will show the
right-hand bound of Theorem 1.2. This result is due to Gabai and Colding [2015,
Appendix A], using recent work of Colding and Minicozzi [2015], but we give a brief
description for the convenience of the reader, as they do not state this result explicitly.
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We will use properties of a refinement of linear width, known as thin position,
which we now describe. Let fHig be the collection of upper boundaries of compres-
sion bodies in the linear splitting, and let c.Hi/ be the complexity of the surface Hi ,
i.e., the sum of the genera of its connected components. We say that the complexity
of the linear splitting is the collection of integers fc.Hi/g, arranged in decreasing
order. A linear splitting which gives the minimum complexity of all possible linear
splittings in the lexicographic ordering on sets of integers is called a thin position
linear splitting. Scharlemann and Thompson [1994] showed that thin position linear
splittings have the following property.

Theorem 3.1 [Scharlemann and Thompson 1994]. Let H be a linear splitting that
is in thin position. Then every even surface is incompressible in M and the odd
surfaces form strongly irreducible Heegaard surfaces for the components of M cut
along the even surfaces.

If follows from [Freedman et al. 1983] that the incompressible surfaces may be
chosen to be disjoint least area minimal surfaces, and in fact the odd surfaces may
also be chosen to be disjoint minimal surfaces, possibly up to compression; see, for
example, [Lackenby 2006] or [Renard 2014] for a detailed statement of the result
in this case. In a hyperbolic manifold, the intrinsic curvature of a minimal surface
is at most �1, so the Gauss–Bonnet formula gives an upper bound for the area of
the minimal surface. Therefore the area of a minimal surface of genus g is at most
�2��.S/6 4�g.

We say that a hyperbolic 3-manifold M has least area boundary if its boundary
components are (possibly empty) least area minimal surfaces, and we say that a
Heegaard splitting H for M is minimal if it is isotopic to an unstable minimal
surface. The right-hand bound of Theorem 1.2 is a consequence of the following
result of Colding and Gabai [2015], which constructs bounded area foliations for a
pair of compression bodies with least area lower boundaries, sharing a common
minimal Heegaard splitting surface.

Theorem 3.2 [Colding and Gabai 2015]. Let M be a hyperbolic manifold, with
(possibly empty) least area boundary, with a minimal Heegaard splitting H of
genus g. Then, assuming Theorem 1.1, the manifold M has a (possibly singular)
foliation by compact leaves, containing the boundary surfaces as leaves, such that
each leaf has area at most 4�g.

As they do not state this explicitly in their paper, we give a brief outline for the
convenience of the reader.

Definition 3.3. A mean convex foliation on a Riemannian 3-manifold with boundary
is a smooth codimension-1 foliation, possibly with singularities of standard type,
such that each leaf is mean convex.
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In a 3-manifold, a foliation with singularities of “standard type” means that almost
all leaves are completely smooth (i.e., without any singularities). In particular, any
connected subset of the singular set is completely contained in a leaf. Furthermore,
the entire singular set is contained in finitely many (compact) embedded Lips-
chitz curves with cylinder singularities together with a countable set of spherical
singularities.

The following result is shown by Colding and Gabai [2015].

Theorem 3.4 [Colding and Gabai 2015, Appendix A]. Let † be an unstable min-
imal surface in a hyperbolic manifold M . Then there is a regular neighborhood
of † with a smooth mean convex product foliation †t , t 2 Œ��; ��, with nonminimal
boundary leaves †�� and †�.

In particular, each leaf in the foliation has area at most 4�g. As the boundary
leaves †�� and †� are nonminimal mean convex surfaces, we may apply the mean
curvature flow results of Colding and Minicozzi [2015], which show that the mean
curvature flow gives rise to a mean convex foliation with standard singularities. As
the mean curvature flow gives a foliation by surfaces of decreasing area, the only
possible singularities which may arise are disc compressions, 2-spheres collapsing
to a point or tori collapsing to circles. In particular, each nonsingular leaf bounds a
compression body in the interior of the compression body it is contained in.

If all leaves eventually collapse, then the compression body has empty lower
boundary, i.e., it is a handlebody, and this gives a mean convex foliation, and hence
area-decreasing foliation, of the handlebody. Otherwise, the mean curvature flow
limits to a stable minimal surface � whose components bound compression bodies
together with the lower boundary of the original compression body.

If the stable minimal surface � is not equal to the stable boundary of the com-
pression body, then it bounds a subcompression body with stable boundary, whose
standard Heegaard splitting is strongly irreducible, so we may apply the argument
again. Anderson [1985] and White [1987] showed that there are only finitely many
minimal surfaces of bounded genus in a compact Riemannian manifold, and so this
process may occur only finitely many times, resulting in a foliation of the entire
compression body. This completes the proof of Theorem 3.2.

Finally we deduce the right-hand bound of Theorem 1.2 from Theorem 3.2.

Proof of right-hand bound of Theorem 1.2. By Theorem 1.1, the irreducible Hee-
gaard surface for a hyperbolic 3-manifold M with stable boundary is either isotopic
to an unstable minimal surface †, to which we may apply Theorem 3.2 directly,
or isotopic to a regular neighborhood of a one-sided stable minimal surface union
a small tube parallel to one of the normal fibers. In the latter case, the Heegaard
surface bounds a handlebody on at least one side, and cutting along the stable one-
sided surface leaves a compression body homeomorphic to the Heegaard surface
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cut along the disc corresponding to the tube, where all boundary components are
stable minimal surfaces. As the standard Heegaard splitting of a compression body
is strongly irreducible, we may now apply Theorem 3.2 in this case as well. �
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