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RICCI TENSOR OF REAL HYPERSURFACES

MAYUKO KON

Let M be a real hypersurface of a complex space form Mn(c), c 6= 0, and
suppose that the structure vector field ξ is an eigen vector field of the Ricci
tensor S, which satisfies Sξ = βξ where β is a function. We show that if
(∇X S)Y is proportional to ξ for any vector fields X and Y orthogonal to ξ ,
then M is a Hopf hypersurface, and if it is perpendicular to ξ , then M is a
ruled real hypersurface.

1. Introduction

Takagi [1973] gave a classification of the homogeneous real hypersurface (see also
[Takagi 1975a; 1975b]). As a consequence of this result, the structure vector ξ
of any homogeneous real hypersurface in CPn is principal. If ξ satisfies this
property, then M is said to be a Hopf hypersurface. When the ambient manifold is
a complex hyperbolic space, Lohnherr [1998] (see also [Lohnherr and Reckziegel
1999]) discovered a homogeneous ruled real hypersurface in CH n that is not a Hopf
hypersurface, and further examples were given (see [Berndt and Brück 2001]). The
classification theorem for homogeneous real hypersurfaces in CH n , n ≥ 2, was
given by Berndt and Tamaru [2007].

When a real hypersurface is Hopf, fundamental formulas are simple. So many
classification theorems are given under that assumption (see, for example, [Nieber-
gall and Ryan 1997]). Kimura [1986] has given a classification of Hopf hypersur-
faces of CPn , n ≥ 2, with constant principal curvatures. He showed that a real
hypersurface in CPn with constant principal curvatures is a Hopf hypersurface if
and only if it is an open part of a homogeneous real hypersurface. A classification
theorem for Hopf hypersurfaces with constant principal curvatures in CH n , n ≥ 2,
was given by Berndt [1989].

On the other hand, the Ricci tensor of the real hypersurfaces is an interesting
subject. It is well known that any real hypersurface of Mn(c), c 6= 0, is not Einstein.
If the Ricci tensor S is of the form S(X, Y ) = ag(X, Y )+ bη(X)η(Y ), then the
real hypersurface is said to be pseudo-Einstein. The classification theorems for
pseudo-Einstein real hypersurfaces in a complex space form Mn(c) have been
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completed [Cecil and Ryan 1982; Kim and Ryan 2008; Kon 1979; Montiel 1985].
Ki [1989] showed that there are no real hypersurfaces with parallel Ricci tensor,
∇S = 0, in Mn(c), n ≥ 3. Several conditions that weaken the condition ∇S = 0
have been studied (see [Ki et al. 1990; Suh 1990]).

We focus on the Ricci tensor S and consider a condition Sξ = βξ , where β is a
function. We note that this condition contains not only Hopf hypersurfaces, Aξ =αξ ,
but also some non-Hopf hypersurfaces. For example, ruled hypersurfaces, which
are an important example of non-Hopf hypersurfaces, also satisfy Sξ = βξ . Under
this assumption, we study some Hopf hypersurfaces and ruled real hypersurfaces
according to the direction of a covariant differentiation of S.

Our main result is the following theorem:

Theorem 1.1. Let M be a connected real hypersurface of Mn(c), c 6= 0, and
suppose that the Ricci tensor S of M satisfies Sξ = βξ for some function β.

(1) If (∇X S)Y is proportional to the structure vector field ξ for any vector fields
X and Y orthogonal to ξ , then M is a Hopf hypersurface.

(2) If (∇X S)Y is perpendicular to the structure vector field ξ for any vector fields
X and Y orthogonal to the structure vector field ξ , then M is a ruled real
hypersurface.

When n = 2, the author gave a corresponding result in [Kon 2014].

2. Preliminaries

Let Mn(c) denote the complex space form of complex dimension n (real dimen-
sion 2n) with constant holomorphic sectional curvature 4c. We denote by J the
almost complex structure of Mn(c). The Hermitian metric of Mn(c) is denoted by G.

Let M be a real (2n−1)-dimensional hypersurface immersed in Mn(c). Through-
out this paper, we suppose that M is connected. We denote by g the Riemannian
metric induced on M from G. We take the unit normal vector field N of M in Mn(c).
For any vector field X tangent to M , we define φ, η and ξ by

J X = φX + η(X)N , J N =−ξ,

where φX is the tangential part of J X , φ is a tensor field of type (1,1), η is a
1-form, and ξ is the unit vector field on M . We call ξ the structure vector field. Then

φ2 X =−X + η(X)ξ, φξ = 0, η(φX)= 0

for any vector field X tangent to M . Moreover, we have

g(φX, Y )+g(X, φY )=0, η(X)=g(X, ξ), g(φX, φY )=g(X, Y )−η(X)η(Y ).

Thus (φ, ξ, η, g) defines an almost contact metric structure on M .
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We denote by ∇̃ the operator of covariant differentiation in Mn(c), and by ∇ the
operator of covariant differentiation in M determined by the induced metric. Then
the Gauss and Weingarten formulas are given respectively by

∇̃X Y =∇X Y + g(AX, Y )N , ∇̃X N =−AX,

for any vector fields X and Y tangent to M .
For the contact metric structure on M , we have

∇Xξ = φAX, (∇Xφ)Y = η(Y )AX − g(AX, Y )ξ.

We call A the shape operator of M . If the shape operator A of M satisfiesAξ=αξ
for some function α, then M is called a Hopf hypersurface. By the Codazzi equation,
we have the following result (see [Maeda 1976]).

Proposition A. Let M be a Hopf hypersurface in Mn(c), n ≥ 2. If X ⊥ ξ and
AX = λX , then α = g(Aξ, ξ) is constant and

(2λ−α)AφX = (λα+ 2c)φX.

We offer an important example of a non-Hopf hypersurface. Take a regular curve
γ in Mn(c)with tangent vector field X . At each point of γ there is a unique complex
projective or hyperbolic hyperplane cutting γ so as to be orthogonal to X and J X .
The union of these hyperplanes is called a ruled real hypersurface (see [Kimura
and Maeda 1989; Lohnherr and Reckziegel 1999; Niebergall and Ryan 1997]).

We remark that the shape operator A is η-parallel if it satisfies g((∇X A)Y, Z)= 0
for any X , Y and Z orthogonal to ξ .

We denote by R the Riemannian curvature tensor field of M . Then the equation
of Gauss is given by

R(X, Y )Z

= c{g(Y, Z)X − g(X, Z)Y + g(φY, Z)φX − g(φX, Z)φY − 2g(φX, Y )φZ}

+ g(AY, Z)AX − g(AX, Z)AY,

and the equation of Codazzi by

(∇X A)Y − (∇Y A)X = c{η(X)φY − η(Y )φX − 2g(φX, Y )ξ}.

From the equation of Gauss, the Ricci tensor S of M is given by

(1) g(SX, Y )= (2n+1)cg(X, Y )−3cη(X)η(Y )+ tr Ag(AX, Y )− g(AX, AY ),

where tr A is the trace of A. Taking a covariant differentiation, we have

(2) g((∇X S)Y, Z)=−3cg(Y, φAX)η(Z)−3cg(φAX, Z)η(Y )+(X trA)g(AY, Z)

+ trAg((∇X A)Y, Z)− g((∇X A)AY, Z)− g((∇X A)Y, AZ).
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Now we develop some lemmas needed to prove our main theorem. Suppose n≥3.

Lemma 2.1. Let M be a real hypersurface in a complex space form Mn(c), n ≥ 3,
c 6= 0. If there exists an orthonormal frame {ξ, e1, . . . , e2n−2} on a sufficiently small
neighborhood N of x ∈ M such that the shape operator A can be represented as

A =


α h1 0 · · · 0
h1 a1

0 a2
...

...
. . . 0

0 · · · 0 a2n−2

 ,
then we have

(aj − ak)g(∇ei ej , ek)− (ai − ak)g(∇ej ei , ek)= 0,(3)

(aj − a1)g(∇ei ej , e1)− (ai − a1)g(∇ej ei , e1)= h1(ai + aj )g(ei , φej ),(4)

h1g(∇ei ej , e1)− h1g(∇ej ei , e1)= {2c− 2ai aj +α(ai + aj )}g(φei , ej ),(5)

(ej ai )= (aj − ai )g(∇ei ej , ei ),(6)

(e1ai )= (a1− ai )g(∇ei e1, ei ),(7)

(a1− aj )g(∇ei e1, ej )+ (aj − ai )g(∇e1ei , ej )= ai h1g(ei , φej ),(8)

(ei h1)= {2c− 2a1ai +α(ai + a1)}g(ei , φe1)− h1g(∇e1ei , e1),(9)

(ei a1)= h1(2ai + a1)g(ei , φe1)+ (ai − a1)g(∇e1ei , e1),(10)

(ξai )= h1g(∇ei e1, ei ),(11)

h1g(∇ei e1, ej )+ (aj − ai )g(∇ξei , ej )= (c+ aiα− ai aj )g(ei , φej ),(12)

(ei h1)= (c+ aiα− a1ai + h2
1)g(ei , φe1)+ (ai − a1)g(∇ξei , e1),(13)

(eiα)= h1(α− 3ai )g(ei , φe1)− h1g(∇ξei , e1),(14)

(e1h1)= (ξa1),(15)

(e1α)= (ξh1),(16)

(a1− ai )g(∇ξe1, ei )− h1g(∇e1e1, ei )= (c+ a1α− a1ai − h2
1)g(ei , φe1),(17)

for any i, j ≥ 2, i 6= j .

Proof. By the equation of Codazzi, we have

g((∇ei A)e1− (∇e1 A)ei , ej )= 0,

where i, j = 2, . . . , 2n− 2. On the other hand, we have

g((∇ei A)e1− (∇e1 A)ei , ej )

= g(∇ei (Ae1)− A∇ei e1−∇e1(Aei )+ A∇e1ei , ej )

= (a1− aj )g(∇ei e1, ej )+ (aj − ai )g(∇e1ei , ej )+ ai h1g(φei , ej ).
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Thus we obtain (8). We obtain the other results through similar computations. �

We remark that these equations hold in the case that M is a Hopf hypersurface,
i.e., h1 = 0. When n = 2, we showed the corresponding result in [Kon 2014].

We define the subspace Lx ⊂ Tx(M) as the smallest subspace that contains ξ
and is invariant under the shape operator A. Then M is Hopf if and only if Lx is
one-dimensional at each point x .

Lemma 2.2. Let M be a real hypersurface of Mn(c). If the Ricci tensor S of M
satisfies Sξ = βξ for some function β, then dim Lx ≤ 2 at each point x of Mn(c).

Proof. By (1), we have

0= g(Sξ, Y )=−g(A2ξ, Y )

for any Y orthogonal to ξ and Aξ . So A2ξ is spanned by ξ and Aξ . Thus we see
that dim Lx ≤ 2. �

Suppose that M is not a Hopf hypersurface and that Sξ =βξ . By Lemma 2.2, we
can take an orthonormal frame {ξ, e1, . . . , e2n−2}, locally, such that A is of the form

A =


α h1 0
h1 a1

a2
. . .

0 a2n−2

 ,
where h1= g(Ae1, ξ), ai = g(Aei , ei ) for i=1, . . . , 2n−2, g(Aei , ej )=0 for i 6= j
and α = g(Aξ, ξ). By (1), we obtain

Sξ = (2n− 2)cξ + (tr A)(h1e1+αξ)− A(h1e1+αξ)

= (tr A−α− a1)h1e1+{(2n− 2)c+ (tr A)α− h2
1−α

2
}ξ = βξ.

So we see that
trA = α+ a1, a2+ · · ·+ a2n−2 = 0.

Moreover, (1) implies that the Ricci tensor S can be represented as

S =


β 0
λ1

. . .

0 λ2n−2

 ,
where β and λi satisfy

β = (2n− 2)c+ (αa1− h2
1), λ1 = (2n+ 1)c+ (αa1− h2

1),

λj = (2n+ 1)c+ tr A · aj − a2
j , j = 2, . . . , 2n− 2.
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3. Real hypersurfaces with η-parallel Ricci tensor

In this section, we consider the additional condition that the Ricci operator S is
η-parallel, that is,

g((∇X S)Y, Z)= 0

for any vector fields X , Y and Z orthogonal to ξ . This is equivalent to the condition
that (∇X S)Y is proportional to ξ [Suh 1990].

Theorem 3.1. Let M be a real hypersurface of Mn(c), c 6= 0, with η-parallel Ricci
tensor. If the Ricci tensor S of M satisfies Sξ = βξ for some function β, then M is
a Hopf hypersurface.

Before proving Theorem 3.1, we need the following lemma.

Lemma 3.2. Let M be a real hypersurface of Mn(c), c 6= 0, with η-parallel Ricci
tensor. If the Ricci tensor S of M satisfies Sξ =βξ for some function β, then we have

g((R(W, X)S)Y, Z)=−g(SφAX, Z)g(φAW, Y )− g(SφAX, Y )g(φAW, Z)

+ g(SφAW, Z)g(φAX, Y )+ g(SφAW, Y )g(φAX, Z)

− g((∇ξ S)Y, Z)g((φA+ Aφ)X,W )

for any X, Y , Z and W orthogonal to ξ .

Proof. Since S is η-parallel, we have

g((R(W, X)S)Y, Z)

= g(R(W, X)SY, Z)− g(R(W, X)Y, SZ)

= g(∇W∇X SY −∇X∇W SY −∇[W,X ]SY, Z)

− g(∇W∇X Y −∇X∇W Y −∇[W,X ]Y, SZ)

=−g((∇X S)Y,∇W Z)+ g(∇W (S∇X Y ), Z)+ g((∇W S)Y,∇X Z)

− g(∇X (S∇W Y ), Z)− g((∇[W,X ]S)Y, Z)− g(∇W∇Y , SZ)

+ g(∇X∇W Y, SZ)

=−g((∇X S)Y, ξ)g(ξ,∇W Z)+ g((∇W S)∇X Y, Z)

+ g((∇W S)Y, ξ)g(ξ,∇X Z)− g((∇X S)∇W Y, Z)

− g((∇ξ S)Y, Z)g(ξ, [W, X ])

=−g(SφAX, Y )g(φAW, Z)+ g(SφAW, Z)g(φAX, Y )

+ g(SφAW, Y )g(φAX, Z)− g(SφAX, Z)g(φAW, Y )

− g((∇ξ S)Y, Z)g((φA+ Aφ)X,W ). �

From Lemma 3.2 we obtain the following:
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Lemma 3.3. Let M be a real hypersurface of Mn(c), c 6= 0, with η-parallel Ricci
tensor. Suppose that the Ricci tensor S of M satisfies Sξ = βξ for some function β.
If SY = λY and if Y is orthogonal to ξ , then we have

g((∇ξ S)Y, Y )g((φA+ Aφ)X,W )= 0

for any X , Y and W orthogonal to ξ .

Proof of Theorem 3.1.
In the following, we suppose that M is not a Hopf hypersurface. We work in an

open set where h1 6= 0.

Case (I): First we consider the case g((∇ξ S)Y, Y )= 0.

Lemma 3.4. β, λ1, . . . , λ2n−2 are constant.

Proof. Since the Ricci tensor S is η-parallel and since g((∇ξ S)Y, Y )= 0, we have

0= g((∇Z S)Y, Y )= g(∇Z SY, Y )− g(S∇Z Y, Y )= Zλ

for any tangent vector field Z. So we see that λ1, . . . , λ2n−2 are constant. On the
other hand, since β = λ1− 3c, we see that β is also constant. �

Lemma 3.5. If λi 6= λj , i, j = 1, . . . , 2n−2, then we have g(∇X ei , ej )= 0 for any
X orthogonal to ξ .

Proof. Since we have Sei = λi ei and Sej = λj ej and since S is η-parallel, we obtain

0= g((∇X S)ei , ej )= (λi − λj )g(∇X ei , ej ). �

If λ1=· · ·=λ2n−2=λ, then M is pseudo-Einstein, i.e., SX=λX+(β−λ)η(X)ξ ,
and so it is a Hopf hypersurface (see [Kon 1979]).

Suppose that M is non-Hopf and that there exist λt and λj , t, j ≥ 2, satisfying
λ1 6= λt and λt 6= λj . By Lemma 3.5,

g(∇j∇t et , ej )=−g(∇et et ,∇ej ej )

=−g(∇et et , ξ)(ξ,∇ej ej )−
∑

k

g(∇et et , ek)g(ek,∇ej ej )

=−g(et , φAet)g(φAej , ej )= 0,

g(∇t∇j et , ej )=−g(∇ej et ,∇et ej )=−g(∇ej et , ξ)g(ξ,∇et eg)

=−g(et , φAej )g(φAet , ej )=−aj at g(et , φej )g(φet , ej ).

On the other hand, from (8),

(a1− at)g(∇ej e1, et)+ (at − aj )g(∇e1ej , et)+ aj h1g(φej , et)= 0.

From Lemma 3.5, we have g(∇ej e1, et)= 0, g(∇e1ej , et)= 0. Since h1 6= 0,

aj g(φej , et)= 0,
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from which we obtain
g(∇et∇ej et , ej )= 0.

Moreover, we have

g(∇[ej ,et ]et , ej )= g(∇ξet , ej )g(ξ, [ej , et ])

= g(∇ξet , ej )(−g(φAej , et)+ g(φAet , ej ))

= g(∇ξet , ej )(at − aj )g(φet , ej )

= g(∇ξet , ej )at g(φet , ej ).

Using (12), we see that

(c+ ajα− aj at)g(φej , et)+ h1g(∇ej e1, et)+ (at − aj )g(∇ξej , et)= 0.

From these equations, we obtain

cg(φej , et)
2
+ at g(φej , et)g(∇ξej , et)= 0.

Hence we have
g(∇[ej ,et ]et , ej )=−cg(φej , et)

2.

Therefore,
g(R(ej , et)et , ej )= cg(φej , et)

2.

On the other hand, the equation of Gauss implies

g(R(ej , et)et , ej )= c+ 3cg(φej , et)
2
+ at aj .

From these equations, we have

c(1+ 2g(φej , et)
2)+ at aj = 0.

Sine c 6= 0, we see that at 6= 0 and aj 6= 0. Thus g(φej , et) = 0 and c+ at aj = 0.
So we can represent A as

A =



α h1

h1 a1

a
. . .

a
b
. . .

b


by setting a = aj , b = at and taking a suitable permutation of {e2, . . . , e2n−2}.
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Suppose there exist j and t such that g(φej , e1) 6= 0 and g(φet , e1) 6= 0. Then
φej and φet satisfy

φej =
∑

k

g(φej , ek)ek + g(φej , e1)e1, Aek = aek,

φet =
∑

l

g(φet , el)el + g(φet , e1)e1, Ael = bel .

So we have
0= g(φej , φet)= g(φej , e1)g(φet , e1),

from which we see that g(φej , e1)= 0 or g(φet , e1)= 0, and hence Aφe1 = aφe1

or Aφe1 = bφe1.
When Aφe1 = aφe1, we have Aφet = bφet . By (4),

(b− a1)g(∇etφet , e1)− (b− a1)g(∇φet et , e1)+ 2h1bg(φet , φet)= 0.

Thus we obtain b = 0, which contradicts c + ab = 0 and c 6= 0. By a similar
computation, the case Aφe1 = bφe1 does not occur.

Next we consider the case λ2=· · ·=λ2n−2 6=λ1. We set λ=λj , j=2, . . . , 2n−2.
From Lemma 3.5, we have g(∇X e1, ei )= 0, i ≥ 2, for any X orthogonal to ξ .

By (4) and (5),

h1(ai + aj )g(φei , ej )= 0, (2c− 2ai aj +α(ai + aj ))g(φei , ej )= 0.

Since aj satisfies
λ= (2n+ 1)c+ tr A · aj − a2

j ,

we can represent A as

A =



α h1

h1 a1

a
. . .

a
b
. . .

b


by taking a suitable permutation of {e2, . . . , e2n−2}.

There exist i and j satisfying g(φei , ej ) 6= 0. Therefore, using h1 6= 0,

ai + aj = 0, 2c− 2ai aj +α(ai + aj )= 0.

We notice that tr A = a1+ α and
∑2n−2

j=2 aj = ka+ lb = 0, where k and l are the
multiplicities of a and b, respectively.
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When ai = aj = a, then we have ai + aj = 2a = 0. Combining this with the
above equations, we obtain b = 0 and c = 0. This is a contradiction. Similarly, the
case ai = aj = b does not occur.

Next, when ai = a, aj = b and a = b, we have a = b = 0 and c = 0. This is a
contradiction.

Finally we consider the case ai = a, aj = b and a 6= b. Then we have a=−b 6= 0.
Since ka + lb = 0, we obtain k = l. This contradicts the fact that M is an odd-
dimensional real hypersurface.

Case (II): Next we consider the case

(18) g((φA+ Aφ)X,W )= 0

for any X and W orthogonal to ξ .
Since {ξ, φe1, . . . , φe2n−2} is an orthonormal basis of the tangent space, we have

trA = g(Aξ, ξ)+
2n−2∑
i=1

g(Aφei , φei )

= α−

2n−2∑
i=1

g(φAei , φei )= α−

2n−2∑
i=1

g(Aei , ei ).

Since tr A = α+
∑2n−2

i=1 g(Aei , ei ), we obtain
∑2n−2

i=1 g(Aei , ei )= 0 and tr A = α.
On the other hand, from trA= a1+α, we have a1 = 0. Substituting X = e1 in (18),
we see that g(Aφe1,W )= 0 for any W orthogonal to ξ . Since

g(Aφe1, ξ)= g(φe1, Aξ)= 0,

we have Aφe1 = 0. Without loss of generality, we can set φe1 = e2. From (13) and
(17), we obtain

(e2h1)= c+ h2
1,(19)

(c− h2
1)+ h1g(∇e1e2, e1)= 0.(20)

On the other hand, since S is η-parallel, putting X = Y = e1 and Z = e2 into (2),
we have

0= trAg((∇e1 A)e1, e2)− g((∇e1 A)Ae1, e2)= h2
1g(e1,∇e1e2).

Since h1 6= 0, we have g(∇e1e2, e1) = 0. Combining this with (20), we see that
h2

1 = c. This contradicts (19), finishing the proof. �

We remark that Suh [1990] and Maeda [2013] classified Hopf hypersurfaces of
nonflat complex space forms with η-parallel Ricci tensor.
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4. Ruled real hypersurfaces

In the previous sections, under the condition that the Ricci tensor S of M satisfies
Sξ =βξ , we gave sufficient conditions for M to be a Hopf hypersurface with respect
to the covariant derivative of the Ricci tensor of S. The purpose of this section is to
give a condition on the Ricci tensor for M to be a ruled real hypersurface.

Theorem 4.1. Let M be a real hypersurface of Mn(c), c 6= 0. If the Ricci tensor S
of M satisfies Sξ = βξ for some function β and if g((∇X S)Y, ξ)= 0 for any vector
fields X and Y orthogonal to ξ , then M is a ruled real hypersurface.

Proof. To prove Theorem 4.1, we need the following proposition:

Proposition 4.2. Let M be a real hypersurface of Mn(c), c 6=0. If the Ricci tensor S
of M satisfies Sξ = βξ for some function β and if g((∇X S)Y, ξ)= 0 for any vector
fields X and Y orthogonal to ξ , then M is not Hopf.

Proof. Suppose that M is a Hopf hypersurface. Then we have Aξ = αξ , and hence
Sξ = βξ . We note that α is constant. Therefore, we have

g((∇X S)Y, ξ)= g((∇X S)ξ, Y )

= g(∇X Sξ, Y )− g(SφAX, Y )

= βg(φAX, Y )− g(φAX, SY )

for any X and Y orthogonal to ξ . We take an orthonormal basis {ξ, e1, . . . , e2n−2}

that satisfies e2i = φe2i−1, i = 1, . . . , n− 1, and set Aet = at et , t = 1, . . . , 2n− 2.
Then we have Aφet = atφet since M is Hopf. Then the Ricci operator S satisfies
Sξ = βξ and Set = λt et , t = 1, . . . , 2n− 2, where

β = (2n− 2)c+ tr A ·α−α2, λt = (2n+ 1)c+ tr A · at − a2
t .

Thus we obtain

0= (β − λt)g(φAX, et)=−(β − λt)g(X, Aφet)

for any X orthogonal to ξ . Since Aξ = αξ , we have g(Aφet , ξ)= 0. From these
equations, we have:

Lemma 4.3. If β 6= λt , then Aφet = 0, that is, āt = 0.

We suppose β 6= λt . Then, from (1), we have

λt = g(Sφet , φet)= (2n+ 1)c.

Using Proposition A and c 6= 0, we have α 6= 0 and

at =−
2c
α
.
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If β 6= λt and β 6= λt = g(Sφet , φet), then we have at = at = 0. This is a
contradiction. Thus we obtain:

Lemma 4.4. If β 6= λt , then β = λt = (2n+ 1)c.

Since M is not Einstein, there exists a t such that β 6= λt . So we see that λt

satisfies β = λt = λt or β = λt 6= λt .
When β = λt = λ̄t , since β = (2n+ 1)c, we have

0= at(tr A− at).

So we obtain at = 0 or at = tr A. If at = 0, then āt =−2c/α. There exists an s that
satisfies λs 6= β, and hence as =−2c/α. Thus we have

β 6= λs = (2n+ 1)c+ tr A
(
−2c
α

)
−

(
−

2c
α

)2
.

Thus λ̄t = λs 6= β. This is a contradiction. So we see that at = tr A 6= 0. In the
following, we set a = at = tr A. Since at = āt = tr A, we have

(2a−α)a = (αa+ 2c).

Thus a satisfies a2
−αa−c= 0, and hence a turns to be constant. In the following,

we set a1 =−2c/α and ā1 = a2 = 0.
Next we compute g(R(e1, e2)e2, e1). By the equation of Gauss,

g(R(e1, e2)e2, e1)= g(R(e1, φe1)φe1, e1)= 4c.

Using (7), a1g(∇e2e1, e2)= 0. Since a1 6= 0, we have g(∇e2e2, e1)= 0. Moreover,

g(∇e2e2, e2)= 0, g(∇e2e2, ξ)=−g(e2, φAe2)= 0.

When k ≥ 3, by (6),
ak g(∇e2e2, ek)= 0.

When ak 6= 0, we have g(∇e2e2, ek)= 0. By (10), g(∇e1e1, e2)= 0. Moreover,

g(∇e1e1, e1)= 0, g(∇e1e1, ξ)= 0.

Since k ≥ 3, by (10) and the fact that a1 is constant,

(a1− ak)g(∇e1ek, e1)= 0.

By a1 6= 0, if ak = 0, then g(∇e1e1, ek)= 0. Thus we have

2n−2∑
k=1

g(∇e1e1, ek)g(ek,∇e2e2)= 0.
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So we have

g(∇e1∇e2e2, e1)= e1g(∇e2e2, e1)− g(∇e2e2,∇e1e1)

=−

∑
k

g(∇e2e2, ek)g(ek,∇e1e1)= 0,

g(∇e2∇e1e2, e1)= e2g(∇e1e2, e1)− g(∇e1e2,∇e2e1)=−g(∇e1φe1,∇e2e1)

= g(∇e1e1, φ∇e2e1)= g(∇e1e1,∇e2e2)= 0,

and

g(∇[e1,e2]e2, e1)

= g(∇ξe2, e1)g(ξ, [e1, e2])+
∑
k≥3

g(∇ke2, e1)g(ek, [e1, e2])

=−a1g(∇ξe2, e1)+
∑
k≥3

g(∇ek e2, e1)g(ek,∇e1e2)−
∑
k≥3

g(∇ek e2, e1)g(ek,∇e2e1).

By (13),
a1g(∇ξe2, e1)= c.

Using (4), we have

g(∇ek e2, e1)=
ak−a1

a1
g(∇e2e1, ek).

On the other hand, by (8),

g(∇ek e2, e1)=
ak
a1

g(∇e1e2, ek).

So we obtain∑
k≥3

g(∇ek e2, e1)(ek,∇e1e2)−
∑
k≥3

g(∇ek e2, e1)g(ek,∇e2e1)

=

∑ (ak−a1)

a1
g(∇e2e1, ek)g(ek,∇e1e2)−

∑ ak
a1

g(∇e1e2, ek)(ek,∇e2e1)

=−

∑
g(∇e2e1, ek)g(ek,∇e1e2)

=−

∑
g(∇e2e1, φek)g(φek,∇e1e2)

=

∑
g(∇e2e2, ek)g(ek,∇e1e1)= 0.

Thus we have
g(R(e1, e2)e2, e1)= c,

from which we obtain c = 0. This is a contradiction. Hence we see that M is not
Hopf. Thus we have proven Proposition 4.2. �
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From Proposition 4.2, if g((∇X S)Y, ξ)= 0 for X, Y ∈ H , then M is not Hopf. In
the following, we suppose that M is not Hopf, that is, h1 6= 0. Then, by Lemma 2.2,
we can take an orthonormal basis {ξ, e1, . . . , e2n−2} such that

(21) Aξ = αξ + h1e1, Ae1 = a1e1+ h1ξ, Aej = aj ej , j = 2, . . . , 2n− 2,

trA = α+ a1, a2+ · · ·+ a2n−2 = 0.

Then we have

β = g(Sξ, ξ)= (2n− 2)c+ (a1α− h2
1),

λ1 = g(Se1, e1)= (2n+ 1)c+ (a1α− h2
1),

λj = g(Sej , ej )= (2n+ 1)c+ tr A · aj − a2
j , j ≥ 2.

By the assumption, for any X and Y orthogonal to ξ ,

0= g((∇X S)ξ, Y )= g(∇X Sξ, Y )− g(SφAX, Y ).

We set SY = λY . Then we have

0= (β − λ)g(φAX, Y ).

Since β 6= λ1, we see that

g(φAX, e1)=−g(AX, φe1)=−g(X, Aφe1)= 0

for any X ∈ H . We also have g(ξ, Aφe1) = 0. Thus we have Aφe1 = 0. In the
following, we set φe1 = e2. Then we have

0= (β − λ2)g(φAe1, e2)= (−3c+ a1α− h2
1)a1.

Lemma 4.5. If h1 6= 0, then a2 = 0. Moreover, a1 = 0 or a1α− h2
1 = 3c.

Case (I): Suppose a1 = 0.
Since a1 = a2 = 0, (13) implies

(e2h1)= c+ h2
1.

If β = (2n+ 1)c = λ2, then h2
1 =−3c and e2h1 = 0. Then we have h2

1 =−c and
c = 0. This is a contradiction. So we have:

Lemma 4.6. If a1 = 0, then β 6= (2n+ 1)c = λ2.

For any X ∈ H , we see that

(β − λk)g(φAX, ek)= 0, k ≥ 3.

If β 6= λk , then g(Aφek, X) = 0, and moreover g(Aφek, ξ) = 0. This shows that
Aφek = 0 and that φek is a principal vector of A. We set

λ̄k = g(Sφek, φek).
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Since a1α− h2
1 6= 3c, we have λ̄k = (2n+ 1)c 6= β. Then, from

(β − λ̄k)g(φAX, φek)= 0,

we have g(Aek, X)= 0. We also have g(Aek, ξ)= 0 since k ≥ 3. Hence we obtain
Aek = 0 for ek satisfying β 6= λk .

We next consider the case β = λj for some j ≥ 3. If β = λj = λi , then

β = (2n+ 1)c+ tr A · aj − a2
j = (2n+ 1)c+ tr A · ai − a2

i .

Therefore, at most two aj are different. By this equation, we have

0= (aj − ai )(tr A− (aj + ai )).

If aj = ai = a for all j and i , then (21) implies
∑

aj = 0. Thus we have all aj = 0,
j = 2, . . . , 2n− 2. Since a1 = 0, M is a ruled real hypersurface.

Let us suppose that two aj are different. We set

Ta = {X | AX = aX, X ∈ Hx}, Tb = {X | AX = bX, X ∈ Hx},

where β = λa = λb, a 6= b. We notice tr A= a+b. If a = 0 or b= 0, then, by (21),
a = b = 0. This contradicts the assumption that a 6= b. So we obtain a 6= 0 and
b 6= 0. We notice that dim Ta + dim Tb is even number.

Let ei , ej ∈ Ta . By (8) and (12),

−ag(∇ei e1, ej )+ ah1g(φei , ej )= 0,

(c+ aα− a2)g(φei , ej )+ h1g(∇ei e1, ej )= 0.

From these, we obtain

(c+ aα− a2
+ h2

1)g(φei , ej )= 0.

If there exist ei and ej such that g(φei , ej ) 6= 0, then

c+ aα− a2
+ h2

1 = 0.

On the other hand, we have

β = (2n− 2)c− h2
1 = (2n+ 1)c+ trA · a− a2.

Since tr A = α+ a1 = α, we have

3c+αa− a2
+ h2

1 = 0.

Therefore, we have 2c = 0. This contradicts c 6= 0. Hence g(φei , ej )= 0 for all ei

and ej of Ta . So we have φTa ⊂ Tb. Similarly, we also have φTb⊂ Ta . Consequently,
we see that

φTa = Tb, φTb = Ta.
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If dim Ta = dim Tb = 1, then φTa = Tb. We see that if Aej = aej , then Aφej = bφej

and a+b= tr A. From (21), we have a+b= 0 and tr A= 0. Therefore, we obtain
tr A = α = 0.

We will prove that there is no real hypersurface that satisfies

a+ b = 0, α = 0, a1 = 0, a2 = 0, trA = 0,

and also
a2
− h2

1 = 3c.

By (5),

(22) (2c+ 2a2)g(φei , φei )− h1g(∇eiφei , e1)+ h1g(∇φei ei , e1)= 0.

On the other hand, we have

g(∇eiφei , e1)= g(φ∇ei ei , e1)=−g(∇ei ei , e2).

By (6),
(a2− ai )g(∇ei e2, ei )− (e2ai )= 0.

Using a2 = 0 and ai = a, we obtain

ag(∇ei ei , e2)= (e2a).

From this equation and a 6= 0, we have

g(∇ei ei , e2)=
(e2a)

a
.

On the other hand,

g(∇φei ei , e1)= g(φ∇φei ei , φe1)= g(∇φeiφei , e2).

By (6), we obtain
(a2+ a)g(∇φei e2, φei )+ (e2a)= 0,

and hence
g(∇φeiφei , e2)=

(e2a)
a

.

Substituting these equations into (22), we get

2(c+ a2)+ h1
(e2a)

a
+ h1

(e2a)
a
= 0.

Thus we have

(23) (c+ a2)a =−h1(e2a).

On the other hand, since a2
− h2

1 = 3c,

a(e2a)= h1(e2h1).
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Since a1 = a2 = 0, by (13), we have

e2h1 = c+ h2
1,

from which we obtain

e2a =
h1

a
(c+ h2

1).

Substituting this into (23), we get

(c+ a2)a =−
h2

1

a
(c+ h2

1)=−
1
a
(a2
− 3c)(a2

− 2c).

Thus we obtain

(a2
− c)2+ 2c2

= 0.

So we have c = 0. This is a contradiction. Consequently, if a1 = 0, then M is a
ruled real hypersurface.

Case (II): Suppose a1 6= 0.
We notice that a2 = 0 and αa1h2

1 = 3c by Lemma 4.5. So we have

(24) (Xa1)α+ a1(Xα)− 2h1(Xh1)= 0

for any tangent vector field X .

Lemma 4.7. ∇e1e1 and ∇e2e2 are perpendicular to ξ , e1 and e2.

Proof. By (14),

(e2α)= αh1+ h1g(∇ξe1, e2).

By (10),

(e2a1)= a1h1+ a1g(∇e1e1, e2).

Substituting these into (24), we get

2a1αh1+αa1g(∇e1e1, e2)+ a1h1g(∇ξe1, e2)− 2h1(e2h1)= 0.

By (9) and (13),

(e2h1)= (2c+αa1)+ h1g(∇e1e1, e2)= (5c+ h2
1)+ h1g(∇e1e1, e2),

(e2h1)= (c+ h2
1)+ a1g(∇ξe1, e2).

From these equations and (24), we have

2h1(a1α− h2
1− 3c)+ (a1α− h2

1)g(∇e1e1, e2)= 0.
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Since a1α− h2
1 = 3c, we have

g(∇e1e1, e2)= 0.

By (7), a1 6= 0 and a2 = 0,

g(∇e2e2, e1)= 0.

Moreover, we have

g(∇e2e2, ξ)=−g(e2, φAe2)= 0, g(∇e1e1, ξ)=−g(e1, φAe1)= 0.

These equations prove our lemma. �

Lemma 4.8. Suppose j ≥ 3. If aj = 0, then g(∇e1e1, ej ) = 0. If aj 6= 0, then
g(∇e2e2, ej )= 0.

Proof. By (6), we have

aj g(∇e2e2, ej )= 0, j ≥ 3.

If aj 6= 0, then g(∇e2e2, ej )= 0 for j ≥ 3. Suppose aj = 0, j ≥ 3. Then, by (10),
(14), (9) and (13),

(ej a1)= a1g(∇e1e1, ej ), (ejα)= h1g(∇ξe1, ej ),

(ej h1)= h1g(∇e1e1, ej ), (ej h1)= a1g(∇ξe1, ej ).

Substituting these into (24), we get

0= (ej a1)α+ a1(ejα)− 2h1(ej h1)

= αa1g(∇e1e1, ej )+ a1h1g(∇ξe1, ej )− h2
1g(∇e1e1, ej )− h1a1g(∇ξe1, ej )

= (αa1− h2
1)g(∇e1e1, ej ).

Since a1α− h2
1 = 3c, we have our lemma. �

Using these lemmas, we compute g(R(e1, e2)e2, e1). We note that e2 = φe1 and
a2 = 0. First, we have

g(∇e1∇e2e2, e1)= e1g(∇e2e2, e1)− g(∇e2e2,∇e1e1)

=−g(∇e2e2, ξ)g(ξ,∇e1e1)− g(∇e2e2, e1)g(e1,∇e1e1)

− g(∇e2e2, e2)g(e2,∇e1e1)−
∑
k≥3

g(∇e2e2, ej )g(ej ,∇e1e1)= 0.
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Next, we have

g(∇e2∇e1e2, e1)

= e2g(∇e1e2, e1)− g(∇e1e2,∇e2e1)

=−g(∇e1e2, ξ)g(ξ,∇e2e1)− g(∇e1e2, e1)g(e1,∇e2e1)

− g(∇e1e2, ξ)g(ξ,∇e2e1)−
∑
k≥3

g(∇e1e2, ek)g(ek,∇e2e1)

=−

∑
k≥3

g(∇e1e2, ek)g(ek,∇e2e1)=−
∑
k≥3

g(∇e1φe1, ek)g(φek, φ∇e2e1)

=

∑
k≥3

g(∇e1e1, φek)g(φek,∇e2e2)=
∑
l≥3

g(∇e1e1, el)g(el,∇e2e2)= 0.

Moreover, we obtain

g(∇[e1,e2]e2, e1)= g(∇ξe2, e1)g(ξ, [e1, e2])+ g(∇e1e2, e1)g(e1, [e1, e2])

+ g(∇e2e2, e1)g(e2.[e1, e2])+
∑
k≥3

g(∇ek e2, e1)g(ek, [e1, e2])

= g(∇ξe2, e1)g(ξ,∇e1e2)

+

∑
k≥3

(g(∇ek e2, e1)g(ek,∇e1e2)− g(∇ek e2, e1)g(ek,∇e2e1)).

On the other hand, by (8), when j ≥ 3,

a1g(∇ej e2, e1)− aj g(∇e1e2, ej )= 0,

(a1− aj )g(∇e2e1, ej )+ aj g(∇e1e2, ej )= 0.

Thus, if a1 = aj , then we see that aj 6= 0 and hence g(∇e1e2, ej )= 0 since a1 6= 0.
Next, when a1 6= aj we have

g(∇e2e1, ej )=−
aj

(a1− aj )
g(∇e1e2, ej ).

On the other hand,

g(∇ej e2, e1)=
aj

a1
g(∇e1e2, ej )=−

(a1− aj )

a1
g(∇e2e1, ej ).

So we have∑
k≥3

(g(∇ek e2, e1)g(ek,∇e1e2)− g(∇ek e2, e1)g(ek,∇e2e1)

=−

∑
k≥3

g(∇e2e1, ek)g(ek,∇e1e2)=−
∑
k≥3

g(φ∇e2e1, ek)g(φek,∇e1e2)

=

∑
l≥3

g(∇e1e1, el)g(el,∇e2e2)= 0.
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Thus we obtain

g(∇[e1,e2]e2, e1)= g(∇ξe2, e1)g(ξ,∇e1e2)

=−g(∇ξe2, e1)g(φAe1, e2)=−a1g(∇ξe2, e1),

and so
g(R(e1, e2)e2, e1)= a1g(∇ξe2, e1).

On the other hand, by (9),

−(2c+αa1)+ h1g(∇e1e2, e1)+ (e2h1)= 0.

Using Lemma 4.7 and a1α− h2
1 = 3c, we have

(e2h1)= 2c+αa1 = 5c+ h2
1.

By (13),
−(c+ h2

1)+ a1g(∇ξe2, e1)+ e2h1 = 0,

from which we obtain
a1g(∇ξe2, e1)=−4c,

and so
g(R(e1, e2)e2, e1)=−4c.

On the other hand, the equation of Gauss implies

g(R(e1, e2)e2, e1)= 4c,

and hence c = 0. This is a contradiction.
Consequently, M is a ruled real hypersurface.
From (2), any ruled real hypersurface satisfies g((∇X S)Y, ξ)= 0 for any X and Y

orthogonal to ξ , and Sξ = βξ for some function β. �

From Theorems 3.1 and 4.1, we have Theorem 1.1.
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