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JET SCHEMES OF THE CLOSURE OF NILPOTENT ORBITS

ANNE MOREAU AND RUPERT WEI TZE YU

We study in this paper the jet schemes of the closure of nilpotent orbits in
a finite-dimensional complex reductive Lie algebra. For the nilpotent cone,
which is the closure of the regular nilpotent orbit, all the jet schemes are
irreducible. This was first observed by Eisenbud and Frenkel, and follows
from a strong result of Mustat,ă (2001). Using induction and restriction of
“little” nilpotent orbits in reductive Lie algebras, we show that for a large
number of nilpotent orbits, the jet schemes of their closures are reducible.
As a consequence, we obtain certain geometric properties of these nilpotent
orbit closures.
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1. Introduction

Throughout this paper, the ground field will be the field C of complex numbers. We
shall work with the Zariski topology, and by variety we mean a reduced, irreducible,
and separated scheme of finite type over C.

For X a scheme of finite type over C and m ∈N, we denote by Jm(X) the m-th
jet scheme of X . It is a scheme of finite type over C whose C-valued points are
naturally in bijection with the C[t]/(tm+1)-valued points of X ; see, e.g., [Mustaţă
2001; Ein and Mustaţă 2009; Ishii 2011]. We have J0(X)' X and J1(X)' TX ,
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where TX is the total tangent bundle of X ; see Section 2 for more details about
generalities on jet schemes. From Nash [1995], it is known that the geometry of
the jet schemes is deeply related to the singularities of X . As an illustration of
that phenomenon, we have the following result, first conjectured by Eisenbud and
Frenkel [Mustaţă 2001, Introduction], which will be important for us.

Theorem 1 [Mustaţă 2001, Theorem 1]. Let X be an irreducible scheme of finite
type over C. If X is locally a complete intersection, then Jm(X) is irreducible for
every m ∈ N if and only if X has rational singularities.

According to Kolchin [1973], in contrast to the above theorem, the arc space
J∞(X) = lim

←−−
Jm(X) of X is always irreducible when X is irreducible. In this

paper, we shall be interested in the irreducibility of the jet schemes for the closure
of nilpotent orbits in a complex reductive Lie algebra.

Let G be a complex connected reductive algebraic group, g its Lie algebra,
and N(g) the nilpotent cone of g. It is the subscheme of g associated to the
augmentation ideal of C[g]G. It is a finite union of nilpotent G-orbits, and there is
a unique nilpotent orbit of g, called the regular nilpotent orbit and denoted by Oreg,
such that N(g)=Oreg.

According to Kostant [1963], the nilpotent cone is a complete intersection which
is irreducible, reduced, and normal. Furthermore, by [Hesselink 1976], it has
rational singularities. Hence by Theorem 1, the jet scheme Jm(N(g)) is irreducible
for every m > 1. In fact, by [Mustaţă 2001, Propositions 1.4 and 1.5], Jm(N(g))
is also a complete intersection which is reduced for every m > 1.

In [op. cit., Appendix], Eisenbud and Frenkel used these results to extend certain
results of Kostant [1963] in the setting of jet schemes. In particular, they proved that
C[Jm(g)] is free over the ring C[Jm(g)]

Jm(G) of Jm(G)-invariants of C[Jm(g)].
Other nilpotent orbit closures do not share these geometric properties in general.

Indeed, according to a recent result of Namikawa [2013], for a nonzero and non-
regular nilpotent orbit O, O is not a complete intersection. In addition, O does not
always have rational singularities since it is not always normal; see, e.g., [Levasseur
and Smith 1988; Kraft and Procesi 1982; Kraft 1989; Broer 1998; Sommers 2003].

Thus, it is quite natural to ask the following question.

Question 1. Let O be a nilpotent orbit of g, and m ∈ N∗. Is Jm(O) irreducible?

Answering Question 1 is the main purpose of this paper. For the zero orbit and
the regular orbit, the answer is positive for every m ∈ N. Outside these extreme
cases, we will see that these jet schemes are rarely irreducible.

Motivations. Since O is not a complete intersection for O nonzero and nonregular,
Theorem 1 cannot be applied directly to answer Question 1. Very recently, Brion
and Fu [2015] gave another proof of Namikawa’s result, which is more uniform and
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slightly shorter. An interesting question, posed by Michel Brion to the first author,
is whether jet schemes can be used to provide another proof of Namikawa’s result.

Let us explain how we can tackle this problem using jet schemes. Let O be a
nilpotent orbit of g. The singular locus of O is exactly O \O. This follows from
[Kaledin 2006, Lemma 1.4; Panyushev 1991]; see also [Henderson 2014, Section 2]
for a recent review. Moreover, we have

codimO(O \O)> 2.

For the nilpotent cone, we have precisely codimN(g)(N(g) \Oreg) = 2, and the
equality N(g)reg =Oreg is a consequence of [Kostant 1963, Theorem 9] (thus the
notation Oreg does not bear any confusion).

So, if we assume that O is a complete intersection, then O is normal and so it
has rational singularities by [Hinich 1991] or [Panyushev 1991]. Hence, in that
event, Mustat,ă’s Theorem implies that Jm(O) is irreducible for every m > 1. So
if we can show that Jm(O) is reducible for some m > 1, then we would obtain a
contradiction.1 The above was our original motivation to look into Question 1.

It may happen that a variety X is not a complete intersection, that X has rational
singularities, and that nonetheless Jm(X) is irreducible for every m > 1. The cone
over the Segre embedding

P1
×Pn−1 ↪→ P2n−1, n > 2,

shows that this situation is possible; see [Mustaţă 2001, Example 4.7]. We do not
know so far whether this situation may happen in the context of nilpotent orbit
closures.

More generally, following Nash’s philosophy, it would be interesting to under-
stand what kind of properties on the singularities of O we can deduce from the
study of Jm(O), m > 1. The fact that O is not a complete intersection (with O
nonzero and nonregular) whenever Jm(O) is reducible for some m ≥ 1 is one
illustration of such a phenomenon.

Nilpotent orbit closures also form an interesting family of varieties, providing
examples and counterexamples in the context of jet schemes. For instance, Exam-
ples 7.6 and 7.7 illustrate that the locally complete intersection hypothesis cannot
be removed from Lemma 2.7(3), and Theorem 2.8(3). Another example is that the
normality is not conserved when we pass to jet schemes. By Kostant, the nilpotent
cone N(g) is normal, and we show in Proposition 7.3 that Jm(N(g)), m > 1, is
not normal for a simple Lie algebra g.

1There are other approaches that use jet schemes to show that O is not a complete intersection; see
Example 7.2.
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Main results. Let us describe the main techniques used to study Question 1 and
summarize the main results of the paper. To avoid technical details, we shall assume
here that g is simple.

Let X be an irreducible variety, and m ∈ N. Then Jm(X) is irreducible if and
only if

π−1
X,m(Xsing)⊂ π

−1
X,m(Xreg),

where πX,m :Jm(X)→ X is the canonical projection from Jm(X) onto X (see
Section 2), Xreg is the smooth part of X , and Xsing is its complement (see Lemma 2.7).
This is our starting point.

For O a nilpotent orbit of g, the singular locus of O is O \O (see Section 3).
The above criterion leads us to the following two conditions which will be central
in our paper (see Definition 3.3).

Definition 1. Let O be a nilpotent orbit of g.

(1) We say that O verifies RC1 if π−1
O,1(0) is not contained in the closure of π−1

O,1(O).
(2) Let m ∈ N∗. We say that O verifies RC2(m) if for some nilpotent orbit O′

contained in O \O, we have dimπ−1
O,m(O

′)> dimπ−1
O,m(O).

Here the letters RC stand for “reducibility condition”.

It follows readily (see Lemma 3.4) that if a nilpotent orbit O of g verifies RC1,
then J1(O) is reducible. Similarly, if a nilpotent orbit O of g verifies RC2(m) for
some m ∈ N∗, then Jm(O) is reducible.

We have a characterization for the condition RC1 (see Proposition 3.6) which
allows us, for example, to show that the nilpotent orbits of sl2p(C), with p > 2,
associated with partitions of the form (2p) verify RC1 (see Example 3.7). Note that
these orbits do not verify RC2(1) (see again Example 3.7).

A nilpotent orbit O is called little if 0 < 2 dimO 6 dim g (see Definition 4.1).
For example, the minimal nilpotent orbit of g is little (see Corollary 4.3), and
the nilpotent orbits of sln(C) associated with partitions of the form (2p, 1q), with
p, q ∈ N∗, are little (see Example 4.4). There are many other examples (see
Section 4). Little nilpotent orbits verify both RC1 and RC2(m) for every m ∈ N∗

(see Proposition 4.2), and they turn out to be useful to study the reducibility of jet
schemes of many other orbits via “restriction” or “induction” of orbits.

Firstly, by “restriction” to some Levi subalgebras of g (see Proposition 4.6), we
can obtain from nilpotent orbits O which verify 0< 2 dimO < dim g examples of
nilpotent orbits which verify RC1 (and that are not necessarily little); see Table 1.
More precisely, as we shall see (in a slightly more general context) in Proposition 4.6,
we have:

Proposition 1. Let l be a Levi subalgebra of g with a center of dimension one, and
such that a := [l, l] is simple. Denote by A the connected subgroup of G whose
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Lie algebra is a. Let e be a nilpotent element of a and suppose that the following
conditions are satisfied:

(i) a contains a regular semisimple element of g,

(ii) 2 dim G . e < dim g.

Then A . e verifies RC1.

Secondly, by “induction”, we can reach from nilpotent orbits of reductive Lie
subalgebras of g many nilpotent orbits of g. Here, we consider induction in the
sense of Lusztig and Spaltenstein [1979]. We refer the reader to Section 5 for the
precise definition of a nilpotent orbit of g induced from another one in some proper
Levi subalgebra l of g. Our next statement says that condition RC2(m), for m ∈N∗,
passes through induction.

Theorem 2. Let l be a Levi subalgebra of g, Ol a nilpotent orbit of l and Og the
induced nilpotent orbit of g from Ol. If Ol verifies RC2(m) for some m ∈ N∗, then
Og also verifies RC2(m).

From this result, we are able to deal with a large number of nilpotent orbits.
First of all, any nilpotent orbit induced from a nilpotent orbit that has a little factor
verifies RC2(m) for every m ∈ N∗ (see Theorem 6.1). In particular, if g is not of
type A1, B2 = C2, or G2, then the subregular nilpotent orbit Osubreg of g verifies
RC2(m) for every m ∈ N∗ (see Corollary 6.2), and so Jm(Osubreg) is reducible for
every m ∈ N∗.

It turns out that many nilpotent orbits can be induced from a nilpotent orbit that
has a little factor. This allows us to obtain the following result when g is of type A
(see Theorem 6.5).

Theorem 3. Any nilpotent orbit of sln(C) associated with a nonrectangular parti-
tion of n verifies RC2(m) for every m ∈ N∗.

For the other simple Lie algebras of classical types, we have the following (see
Theorem 6.7).

Theorem 4. Let n ∈N∗, λ= (λ1, . . . , λt) be a partition of n, and λt+1= 0. Suppose
that there exist 16 k < `6 t such that λk > λk+1+ 2 and λ` > λ`+1+ 2.

(1) If O is a nilpotent orbit of son(C) whose associated partition is λ, then O
verifies RC2(m) for every m ∈ N∗.

(2) If n is even and O is a nilpotent orbit of spn(C) whose associated partition
is λ, then O verifies RC2(m) for every m ∈ N∗.
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While our result in the special linear case is exhaustive relative to induction,
in the orthogonal and symplectic cases, other nilpotent orbits can be obtained by
induction from a little orbit (see Theorem 6.7 and Remark 6.8). For a simple Lie
algebra of exceptional type, we have a list of nilpotent orbits which can be induced
from a little one (see Appendix C).

Organization of the paper. In Section 2, we state some basic properties on jet
schemes with some proofs for the convenience of the reader.

In Section 3, we recall some standard properties of nilpotent orbit closures, and
of their jet schemes. We introduce here the two sufficient conditions RC1 and
RC2(m), m > 1, to study the reducibility of these jet schemes, and we state some
first properties of these conditions.

Section 4 is devoted to little nilpotent orbits. We show that little nilpotent orbits
verify both RC1 and RC2(m) for every m > 1, and we show how they can be used
to prove condition RC1 via the “restriction” of orbits (see Proposition 4.6).

In Section 5, we study the induction of nilpotent orbits the sense of Luzstig
and Spaltenstein [1979]. The main result is that condition RC2(m), for m > 1,
passes through induction (see Theorem 5.6). We describe in Section 6 how to use
Theorem 5.6 to obtain the reducibility of nilpotent orbit closures in simple Lie
algebras according to their Dynkin type. The details of some of the conclusions are
presented in Appendices B and C.

We present in Section 7 some applications of our results to geometric properties
of nilpotent orbit closures. We also discuss in this section some open problems.

The standard notations relative to nilpotent orbits in classical simple Lie algebras
are gathered together in Appendix A. Appendix B contains some numerical data
for classical simple Lie algebras, and Appendix C summarizes our conclusions for
simple Lie algebras of exceptional type.

2. Generalities on jet schemes

In this section, we present some general facts on jet schemes. Our main references
on the topic are [Mustaţă 2001; Ein and Mustaţă 2009; Ishii 2011], and [de Fernex
et al. 2013, Chapter 8].

Let X be a scheme of finite type over C, and m ∈ N.

Definition 2.1. An m-jet of X is a morphism

Spec C[t]/(tm+1)−→ X.

The set of all m-jets of X carries the structure of a scheme Jm(X), called the m-th
jet scheme of X . It is a scheme of finite type over C characterized by the following
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functorial property: for every scheme Z over C, we have

Hom(Z ,Jm(X))= Hom(Z ×Spec C Spec C[t]/(tm+1), X).

The C-points of Jm(X) are thus the C[t]/(tm+1)-points of X . From Definition 2.1,
we have for example that J0(X) ' X and that J1(X) ' TX where TX denotes
the total tangent bundle of X .

For p∈ {0, . . . ,m}, the canonical projection C[t]/(tm+1)→C[t]/(t p+1) induces
a truncation morphism,

πX,m,p :Jm(X)→Jp(X).

We shall simply denote by πX,m the morphism πX,m,0,

πX,m :Jm(X)→J0(X)' X.

Also, the canonical injection C ↪→ C[t]/(tm+1) induces a morphism ιX,m : X →
Jm(X), and we have πX,m ◦ ιX,m = IdX . Hence ιX,m is injective and πX,m is
surjective. We shall always view X as a subscheme of Jm(X).

If f : X→ Y is a morphism of schemes, then we naturally obtain a morphism
fm :Jm(X)→Jm(Y ) making the following diagram commutative:

Jm(X)
fm //

πX,m

��

Jm(Y )

πY,m

��
X

f
// Y

Remark 2.2. In the case where X is affine, we have the following explicit descrip-
tion of Jm(X).

Let n ∈ N∗ and X ⊂ Cn be the affine subscheme defined by an ideal I =
( f1, . . . , fr ) of C[x1, . . . , xn]. Thus

X = Spec C[x1, . . . , xn]/I.

For k ∈ {1, . . . , r}, we extend fk as a map from (C[t]/(tm+1))n to C[t]/(tm+1) via
base extension. Then giving a morphism γ : Spec C[t]/(tm+1)→ X is equivalent
to giving a morphism γ ∗ : C[x1, . . . , xn]/I → C[t]/(tm+1), or to giving

γ ∗(xi )=

m∑
j=0

γ
( j)
i t j, 16 i 6 n

such that for any k ∈ {1, . . . , r},

fk(γ
∗(x1), . . . , γ

∗(xn))= 0 in C[t]/(tm+1).
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For k ∈ {1, . . . , r}, there exist functions f (0)k , . . . , f (m)k , which depend only on f , in
the variables γ = (γ ( j)

i ), for 16 i 6 n and 06 j 6 m, such that

(1) fk(γ
∗(x1), . . . , γ

∗(xn))=

m∑
j=0

f ( j)
k (γ ) t j.

The jet scheme Jm(X) is then the closed subscheme in C(m+1)n defined by the
ideal generated by the polynomials f ( j)

k , where k ∈ {1, . . . , r} and j ∈ {0, . . . ,m}.
More precisely,

Jm(X)'Spec C[x ( j)
1 , . . . , x ( j)

n : j=0, . . . ,m]
/
( f ( j)

k : k=1, . . . , r; j=0, . . . ,m).

In particular, if X is an n-dimensional vector space, then Jm(X)' C(m+1)n and
for p ∈ {0, . . . ,m}, the projection Jm(X)→Jp(X) corresponds to the projection
onto the first (p+ 1)n coordinates.

Example 2.3. Let us consider a concrete example. Let

X = Spec C[x, y, z]/(x2
+ yz)⊂ C3,

and let us compute J1(X) and J2(X). We have

(x0+ x1t + x2t2)2+ (y0+ y1t + y2t2)(z0+ z1t + z2t2)

= x2
0 + y0z0+ (2x0x1+ y0z1+ y1z0)t

+ (2x0x2+ x2
1 + y0z2+ y2z0+ y1z1)t2 mod t3.

Hence J1(X) is the subscheme of

J1(C
3)' C[x0, y0, z0, x1, y1, z1]

defined by the ideal
(x2

0 + y0z0, 2x0x1+ y0z1+ y1z0),

and J2(X) is the subscheme of

J2(C
3)' C[x0, y0, z0, x1, y1, z1, x2, y2, z3]

defined by the ideal

(x2
0 + y0z0, 2x0x1+ y0z1+ y1z0, 2x0x2+ x2

1 + y0z2+ y1z1+ y2z0).

We now list some basic properties that we need in the sequel. Their proofs can
found in [Ein and Mustaţă 2009, Lemma 2.3, Remarks 2.8 and 2.10].

Lemma 2.4. (1) For every open subset U of X , we have Jm(U )= π−1
X,m(U ).

(2) For every scheme Y, we have a canonical isomorphism

Jm(X × Y )'Jm(X)×Jm(Y ).



JET SCHEMES OF THE CLOSURE OF NILPOTENT ORBITS 145

(3) If G is a group scheme over C, then Jm(G) is also a group scheme over C.
Moreover, if G acts on X , then Jm(G) acts on Jm(X).

(4) If f : X → Y is a smooth surjective morphism between schemes, then fm is
also smooth and surjective for every m ∈ N∗.

Geometric properties. It is known that the geometry of the jet schemes Jm(X),
m > 1, is closely linked to that of X . More precisely, we can transport some
geometric properties from Jm(X) to X .

The following proposition gives examples of such phenomena.

Proposition 2.5 [Mumford et al. 1994; Ishii 2011, Theorem 3.5]. Let m ∈ N∗. If
Jm(X) is smooth (respectively, irreducible, reduced, normal, locally a complete
intersection) for some m, then so is X.

For smoothness, the converse is true, even with “every m” instead of “for some m”.
In fact, for smooth varieties, we have the following more precise statement.

Proposition 2.6 [Ein and Mustaţă 2009, Corollary 2.12]. If X is a smooth variety
of dimension n, then the truncation morphism πm,p, for p ∈ {0, . . . ,m}, is a locally
trivial projection with fiber isomorphic to C(m−p)n. In particular, Jm(X) is a
smooth variety of dimension (m+ 1)n.

For the other properties stated in Proposition 2.5, the converse is not true in
general. We refer to [Ishii 2011, §3] for counterexamples. We shall encounter
other counterexamples in this paper in the setting of nilpotent orbit closures. In
this setting, our main purpose is to study the irreducibility of jet schemes. The
following lemma gives a necessary and sufficient condition for the converse of
Proposition 2.5 to hold for irreducibility.

We denote by Xreg the smooth part of X , and by Xsing its complement.

Lemma 2.7. Assume that X is an irreducible reduced scheme of finite type over C,
and let m ∈ N∗.

(1) π−1
X,m(Xreg) is an irreducible component of Jm(X).

(2) Jm(X) is irreducible if and only if π−1
X,m(Xsing) is contained in π−1

X,m(Xreg).

(3) If X is a complete intersection, then Jm(X) is irreducible if and only if
dimπ−1

X,m(Xsing) < dimπ−1
X,m(Xreg).

In particular, if dimπ−1
X,m(Xsing)> dimπ−1

X,m(Xreg), then Jm(X) is reducible.

Proof. Part (3) is proved in [Mustaţă 2001, Proposition 1.4], and parts (1) and (2)
follow from its proof. More precisely, since Xreg is smooth and irreducible,
π−1

X,m(Xreg) is an irreducible closed subset of Jm(X) of dimension (m+ 1) dim X ;
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see Proposition 2.6. Then parts (1) and (2) follow easily from the fact that we have
the decomposition

Jm(X)= π−1
X,m(Xsing)∪π

−1
X,m(Xreg)

of closed subsets, and that π−1
X,m(Xsing) 6⊃ π

−1
X,m(Xreg). �

There are also subtle connections between the geometry of Jm(X), m > 1,
and the singularities of X which are important for us. In particular, according to
[Mustaţă 2001, Theorem 0.1, Propositions 1.5 and 4.12], we have the theorem:

Theorem 2.8 (Mustat,ă). Let X be an irreducible variety over C.

(1) If X is locally a complete intersection, then Jm(X) is irreducible for every
m > 1 if and only if X has rational singularities.

(2) If X is locally a complete intersection and if Jm(X) is irreducible for some
m > 1, then Jm(X) is also reduced.

(3) If X is locally a complete intersection, then (J1(X))reg = π
−1
X,1(Xreg).

Let us give an easy counterexample to the converse implication of Proposition 2.5
for normality. This example turns out to be a particular case of a more general
situation that will be studied in Proposition 7.3.

Example 2.9. Let X be as in Example 2.3. Then X is a complete intersection and
it is normal since the singular locus is reduced to {0} which has codimension 2
in X . Next, it is not difficult to verify that J1(X) is irreducible, reduced, and that
it is a complete intersection. But J1(X) is not normal. Indeed, by Theorem 2.8(3),

(J1(X))sing = π
−1
X,1({0})' {0}×C3.

Hence, the singular locus of J1(X) has codimension 1 in J1(X) since

dimJ1(X)= 2 dim X = 4.

Group actions. Let G be a connected algebraic group, acting on a variety X , and
m ∈ N. Denote by

ρ : G× X→ X, (g, x) 7→ g . x

the corresponding action. As stated in Lemma 2.4, the morphism

ρm :Jm(G× X)'Jm(G)×Jm(X)→Jm(X)

defines an action of Jm(G) on Jm(X).
Recall that we embed X into Jm(X) through ιX,m . For x ∈ X , let us denote by

Gx the stabilizer of x in G, and for m ∈N, we denote by Jm(G)x its stabilizer in
Jm(G). The following results are probably standard. Since we have not found any
reference, we shall include their proofs.



JET SCHEMES OF THE CLOSURE OF NILPOTENT ORBITS 147

Lemma 2.10. Let x ∈ X. Then,

Jm(G) . x =Jm(G . x), Jm(Gx)=Jm(G)x, π−1
G . x,m(G . x)=Jm(G . x).

Proof. The morphism G×{x}→G . x , (g, x) 7→ g . x is a submersion at all points
of G×{x}. Hence, according to [Hartshorne 1977, Chapter III, Proposition 10.4],
it is a smooth morphism onto G . x . So, by Lemma 2.4(4), the induced morphism
Jm(G)×{x} →Jm(G . x) is also smooth and surjective. Consequently, we have
the first equality Jm(G) . x =Jm(G . x).

By applying the first equality to the algebraic group Gx , we get Jm(Gx) . x =
Jm(Gx . x), whence the inclusion Jm(Gx)⊂Jm(G)x.

Conversely, let γ : Spec C[t]/(tm+1)→ G be an element of Jm(G)x. Then
ρm(γ, x)= x ; hence, viewing x as a morphism x : Spec C[t]/(tm+1)→ X ,

ρ(γ (τ), x(τ ))= x(τ ),

where τ is the unique element of Spec C[t]/(tm+1). Thus γ (τ) ∈ Gx and x(τ )= x .
So we have γ ∈Jm(Gx), and the second equality follows.

The third equality is a direct consequence of Lemma 2.4(1) since G . x is open
in its closure. �

Let g be the Lie algebra of G. We consider now the adjoint action of G on g.
For the results we present here, we refer the reader to [Mustaţă 2001, Appendix].
Denote by

gm := g⊗C C[t]/(tm+1)

the generalized Takiff Lie algebra whose Lie bracket is given by

[u⊗ x(t), v⊗ y(t)] = [u, v]⊗ x(t)y(t), u, v ∈ g, x(t), y(t) ∈ C[t]/(tm+1).

As Lie algebras, we have

Jm(g)' gm ' Lie(Jm(G)).

In the sequel, when there is no confusion, we shall use the notations gm and Gm for
Jm(g) and Jm(G) respectively. If a is a Lie subalgebra of g, then Jm(a)' am is
a Lie subalgebra of gm . In particular, for x ∈ g, we have (gm)

x
= (gx)m , where for

any subalgebra m of gk , with k > 0, mx stands for the centralizer of x in m.
We can identify gm with gm+1

'Jm(g) as a variety through the map

gm+1
→ gm, (x0, x1, . . . , xm) 7→ x0+ x1⊗ t + · · ·+ xm ⊗ tm.

Let Gm be a connected algebraic group whose Lie algebra is gm . Let C[gm] be
the coordinate ring of gm , and let C[gm]

Gm be the subring of Gm-invariants. We
conclude in this section with the following result.
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Lemma 2.11. For f ∈C[g]G, the polynomials f (0), . . . , f (m), defined in Remark 2.2,
are elements of C[gm]

Gm.

Proof. This is straightforward from the explicit description of the polynomials
f (0), . . . , f (m) given in Remark 2.2. �

3. Nilpotent orbit closures

From now on, we let G to be a connected reductive algebraic group over C, g its
Lie algebra, and N(g) the nilpotent cone of g. Recall that N(g) is the subscheme
of g defined by the augmentation ideal of C[g]G , and that N(g)=Oreg where Oreg

is the regular nilpotent orbit of g (see the introduction). As mentioned there, we are
interested in this paper in the irreducibility of jet schemes of the closure of nilpotent
orbits.

Recall that for an arbitrary nilpotent orbit O of g, the singular locus of O is O\O
and that codimO(O \O)> 2 (see Section 1).

Definition 3.1. Let O be a nonzero nilpotent orbit of g. Define gO to be the smallest
semisimple ideal of g containing O.

More precisely, if g' z(g)×s1×· · ·×sm , with z(g) the center of g and s1, . . . , sm

the simple factors of g, then O =O1×· · ·×Om , with Oi a nilpotent orbit of si for
i = 1, . . . ,m, and

gO = si1 × · · ·× sik ,

where {i1, . . . , ik} is the set of integers j ∈ {1, . . . ,m} such that Oj is nonzero. In
particular, if O is zero, then gO = 0, and if O is nonzero and g is simple, then
gO = g.

For O a nilpotent orbit of g, we denote by IO the defining ideal of O in gO.
Thus,

O = Spec C[gO]/IO.

Recall that O is conical, so IO is a homogeneous ideal.

Lemma 3.2. Let O be a nonzero nilpotent orbit of g. If f1, . . . , fs are homogeneous
generators of IO, then the minimum degree of the fi is exactly 2.

Proof. By the above discussion, O is a product of nilpotent orbits. We may therefore
assume that g= gO is simple.

Assume that for some i ∈ {1, . . . , s}, deg fi = 1. A contradiction is expected.
Let V be the intersection of all the hyperplanes Hg, g ∈ G, defined by the linear
form

g . fi : g→ C, x 7→ fi (g−1(x)).
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Since O is G-invariant and is contained in the zero locus of fi , O is contained in V.
Thus V is a nonzero G-invariant subspace of g which is different from g (because
V is contained in the hyperplane H1G ), whence the contradiction since g is simple.

The Casimir element, x 7→ 〈x, x〉 with 〈 · , · 〉 the Killing form of g, vanishes
on the nilpotent cone of g. Hence it is contained in IO. Since it has degree 2, the
minimal degree of the fi is exactly 2. �

To determine the reducibility of Jm(O) for O a (nonzero) nilpotent orbit of g,
we introduce the two sufficient conditions below.

Definition 3.3. Let O be a nilpotent orbit of g.

(1) We say that O verifies RC1 if π−1
O,1(0) is not contained in the closure of π−1

O,1(O).
(2) Let m ∈ N∗. We say that O verifies RC2(m) if for some nilpotent orbit O′

contained in O \O, we have dimπ−1
O,m(O

′)> dimπ−1
O,m(O)= (m+ 1) dimO.

The following Lemma directly results from Lemma 2.7(2).

Lemma 3.4. Let O be a nilpotent orbit of g.

(1) If O verifies RC1, then J1(O) is reducible.

(2) If O verifies RC2(m) for some m ∈ N∗, then Jm(O) is reducible.

The zero nilpotent orbit verifies neither RC1 nor RC2(m) for m ∈ N∗. Since
Jm(N(g)) is irreducible for every m ∈N∗ (see Section 1), the same goes for the
regular nilpotent orbit according to Lemma 3.4.

In view of the conditions above, let us study the zero fiber of πO,1 :J1(O)→O.
As in Section 2, we identify (gO)m with (gO)m+1

= gO× · · ·× gO︸ ︷︷ ︸
(m+1) factors

.

Lemma 3.5. Let O be a nonzero nilpotent orbit of g, and m ∈ N∗.

(1) We have π−1
O,1(0)' {0}× gO. In particular, dimπ−1

O,1(0)= dim gO.

(2) If m>2, then dimπ−1
O,m(0)>dimJm−2(O)+dim gO>m dimO+codimgO(O).

Part (2) of Lemma 3.5 remains valid for an affine variety in Cn defined by
homogeneous polynomials of degree at least 2. The special case where all the
generators have the same degree is treated in [Yuen 2007, Proposition 5.2].

Proof. Clearly we may assume that gO = g. Let f1, . . . , fr be homogeneous
generators of IO that we order so that 2= d1 6 . . .6 dr , with di = deg fi for any
i = 1, . . . , r (see Lemma 3.2).

(1) Through our identification, we can write

π−1
O,1(0)' {0}× {x ∈ g | fi (t x)= 0 mod t2 for any i = 1, . . . , r},

whence the statement since for any x ∈g and i ∈{1, . . . , r}, we have fi (t x)= tdi fi (x)
and di > 2.
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(2) Assume that m > 2. Let (x1, x2, . . . , xm−1) be an element of Jm−2(O), and
let xm ∈ g. Then for any i ∈ {1, . . . , r}, we get

fi (t x1+ t2x2+ · · ·+ tm xm)= fi (t x1+ t2x2+ · · ·+ tm−1xm−1) mod tm+1

since fi is homogeneous of degree at least 2. Hence,

fi (t x1+ t2x2+ · · ·+ tm xm)= tdi fi (x1+ t x2+ · · ·+ tm−2xm−1) mod tm+1.

But fi (x1 + t x2 + · · · + tm−2xm−1) = 0 mod tm−1 because (x1, x2, . . . , xm−1) ∈

Jm−2(O). So,

tdi fi (x1+ t x2+ · · ·+ tm−2xm−1)= 0 mod tm+1

since di > 2. In other words, (0, x1, x2, . . . , xm) is an element of π−1
O,m(0).

Thus we obtain an embedding from Jm−2(O)× g into π−1
O,m(0) given by

Jm−2(O)×g→π−1
O,m(0), ((x1, x2, . . . , xm−1), xm) 7→(0, x1, x2, . . . , xm−1, xm).

The assertions follows. �

Let O be a nonzero nilpotent orbit of g, and fix e ∈ O. The tangent space at e
to O is the space [e, g]. Consider the morphism

ηg,e : G×[e, g] → g, (g, x) 7→ g(x).

Proposition 3.6. The nonzero nilpotent orbit O verifies RC1 if and only if the
closure of the image of ηg,e is strictly contained in gO.

Proof. Since [e, g] = [e, gO], we may assume that g= gO. Thus, by the definition
of condition RC1, we have to show that π−1

O,1(0) is contained in

π−1
O,1(O)

if and only if ηg,e is dominant, i.e., G . [e, g] = g.
By Lemma 3.5(1), we have π−1

O,1(0)' {0}× g. On the other hand,

π−1
O,1(O)= G . ({e}× [e, g]).

So, if π−1
O,1(0)⊂ π

−1
O,1(O), then

{0}× g⊂ G . ({e}× [e, g])⊂ G . e×G . [e, g],

whence the inclusion g⊂ G . [e, g], and ηg,e is dominant.
For the other direction, observe that

π−1
O,1(O)
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is a closed bicone of g× g since O and O are both subcones of g. Here, by bicone,
we mean a subset of g× g stable under the natural (C∗ × C∗)-action on g× g.
Therefore, if G . [e, g] = g, then

G . ({e}× [e, g])= G . (C∗e×[e, g])⊃ {0}×G . [e, g] = {0}× g,

whence π−1
O,1(0)⊂ π

−1
O,1(O). �

Example 3.7. Let p ∈ N∗ with p > 2, and g= sl2p(C). In the notation of Appen-
dix A, we claim that the nilpotent orbit O(2p) of g associated with the partition (2p)

verifies RC1. According to Proposition 3.6, it suffices to prove that for the element

e :=
(

0 Ip

0 0

)
∈O(2p),

the morphism ηg,e is not dominant. We readily verify that [e, g] consists of matrices
of the form (

A C
0 −A

)
with A and C of size p. In particular, [e, g] is contained in the closed subset Z of g
consisting of the matrices whose characteristic polynomial is even. Since G([e, g])
and Z are both closed G-stable subsets of g, we get

G([e, g])⊂ Z.

The diagonal matrix diag(1, . . . , 1,−2p+1) is in g but does not lie in Z for p> 2.
Hence, Z is strictly contained in g, and ηg,e is not dominant. Thus O(2p) verifies
RC1.

According to Lemma 3.4(1), J1(O(2p)) is reducible. In fact, we can be more
precise. By [Weyman 2002, Theorem 1] (see also [Weyman 1989] or [Weyman
2003, Proposition 8.2.15]), the defining ideal of O(2p) is generated by the entries
of the matrix X2 as functions of X ∈ sl2p(C). It follows that J1(O(2p)) can be
identified with the scheme of pairs (X0, X1) ∈ sl2p(C)× sl2p(C) defined by the
equations X2

0 = 0 and X0 X1+ X1 X0 = 0. Using this identification, we obtain from
direct computations that

• J1(O(2p)) has exactly one irreducible component of dimension 4p2
=2 dimO(2p),

• all the other irreducible components have dimension 4p2
− 1, and π−1

O(2p ),1
(0) is

one of them.

Remark 3.8. Assume that g = gO. A nilpotent element e is distinguished if its
centralizer is contained in the nilpotent cone. In particular, if e is distinguished, then
the centralizer of an sl2-triple (e, h, f ) in g is zero, and the theory of representations
of sl2 shows that [e, g] contains gh, and hence contains a Cartan subalgebra of g.
Consequently, G . e does not verify RC1.
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Remark 3.9. Assume that g= gO. Since G×[e, g] and g are irreducible varieties,
ηg,e is dominant if and only if there is a nonempty open set U consisting of points a∈
G×[e, g] such that (dηg,e)a is surjective. The differential of ηg,e at a = (g, [e, x]),
with (g, x) ∈ G× g is given by

g×[e, g] → g, (v, [e, w]) 7→ [v, [e, x]] + g([e, w]).

Let us endow G×[e, g] with the action of G by left multiplication on the first factor.
Since ηg,e is G-equivariant, we may assume that a is of the form a = (1G, [e, x])
with x ∈ g. Then (dηg,e)a is surjective if and only if [g, [e, x]] + [e, g] = g.

Consequently, ηg,e is dominant if and only if there exists x ∈ g such that
[g, [e, x]]+ [e, g] = g. This allows us to affirm in some cases that ηg,e is dominant.
For example, for e in the nondistinguished nilpotent orbit O(32) of sl6(C), the map
ηg,e is dominant.

4. Little nilpotent orbits

We introduce in this section a family of nonzero nilpotent orbits which verify both
RC1 and RC2(m) for every m ∈ N∗. This family turns out to be useful to study the
reducibility of jet schemes of many other orbits.

Lemma 3.5 leads us to the following definition.

Definition 4.1. Let O be a nilpotent orbit of g and let gO be as in Definition 3.1.
We say that O is little if 0< 2 dimO 6 dim gO.

In particular, neither the zero orbit nor the regular nilpotent orbit is little.

Proposition 4.2. If O is a little nilpotent orbit of g, then O verifies RC1 and RC2(m)
for every m ∈ N∗.

Proof. Let O be a little nilpotent orbit of g. As in the preceding proofs, we may
assume that g= gO. According to Lemma 3.5(1), dimπ−1

O,1(0)= dim g, and since
π−1
O,1(O) has dimension 2 dimO6 dim g, it follows that O verifies RC2(1) and RC1.

Now let m > 2. According to Lemma 3.5(2), we have

dimπ−1
O,m(0)> m dimO+ codimg(O)> (m+ 1) dimO,

since codimg(O)> dimO because O is little. Hence O verifies RC2(m). �

When g is simple, there is a unique nonzero nilpotent orbit Omin, called the
minimal nilpotent orbit of g, of minimal dimension and it is contained in the closure
of all nonzero nilpotent orbits.

Corollary 4.3. Assume that g is simple and not of type A1. Then Omin is little. In
particular, Jm(Omin) is reducible for every m ∈ N∗.
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Proof. Let e ∈ Omin that we embed into an sl2-triple (e, h, f ) of g, and consider
the corresponding Dynkin grading,

g=
⊕
i∈Z

g(i) with g(i) := {x ∈ g | [h, x] = i x}.

By [Collingwood and McGovern 1993, Lemma 4.1.3],

dimO = dim g− dim g(0)− dim g(1).

In addition, since e ∈Omin, we have dim g(2)= 1 and g=
∑
−26i62 g(i) [Tauvel

and Yu 2005, Proposition 34.4.1]. As a result,

dim g− 2 dimO = dim g(0)− 2.

The Levi subalgebra g(0) contains a Cartan subalgebra which has dimension at
least two by our hypothesis. Hence, dim g− 2 dimO > 0, and so Omin is little. �

For classical simple Lie algebras, there are explicit formulas (see Appendix A)
for the dimension of nilpotent orbits. This allows us to readily obtain examples of
little nilpotent orbits.

Example 4.4. Let n ∈ N∗ and p, q ∈ N.

(i) A nilpotent orbit of sln(C) corresponding to a rectangular partition is never
little.

(ii) The nilpotent orbit O(2p,1q ) of sl2p+q(C) is little if and only if p, q ∈ N∗.

(iii) The nilpotent orbit O(p,1q ) of slp+q(C) is little for q � p.

Explicit computations suggest that it is unlikely that there is a nice description of
little nilpotent orbits in terms of partitions.

For the notation Pε(n), ε ∈ {0, 1}, and Oλ with λ ∈ Pε(n), n ∈ N∗, refer to
Appendix A.

Example 4.5. Let λ= (2p, 1q), with p ∈ N∗ and q ∈ N.

(i) If p is even, then λ ∈P1(n), and the nilpotent orbit Oλ of so2p+q(C) is little.

(ii) If q is even, then λ ∈P−1(n), and the nilpotent orbit Oλ of sp2p+q(C) is little
if and only if p 6 q(q + 1)/2.

The next proposition will allow us to produce new examples of nilpotent orbits
which verify RC1 by the “restriction” of certain little nilpotent orbits to Levi
subalgebras.

Recall that for O a nilpotent orbit of some reductive Lie algebra a, the semisimple
Lie algebra aO was defined in Definition 3.1.
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Proposition 4.6. Assume that g is simple. Let l be a Levi subalgebra of g with
center z(l), and denote by A the connected subgroup of G whose Lie algebra is
a := [l, l]. Let e be a nilpotent element of a and suppose that the following conditions
are satisfied:

(i) a contains a regular semisimple element of g,

(ii) aA . e = a,

(iii) 2 dim G . e 6 dim g− dim z(l).

Then A . e verifies RC1.

Proof. Define the following maps

θ : G× a→ g, (g, x) 7→ g(x), η = ηg,e : G×[e, g] → g, (g, x) 7→ g(x).

Observe that the image of each of these maps is irreducible. Moreover, for any x ∈ g,
the map g 7→ (g−1, g(x)) defines a bijection between Gθ (x) :={g∈G |g(x)∈a} and
θ−1({x}). Similarly, we have a bijection between Gη(x) := {g ∈ G | g(x) ∈ [e, g]}
and η−1({x}). These bijections are isomorphisms of varieties.

Step 1. We shall first compute the dimension of the image of θ .
Let L be the connected subgroup of G whose Lie algebra is l. By condition (i),

a contains regular semisimple elements of g. If s is such an element, then gs is a
Cartan subalgebra of l. Let g ∈ Gθ (s). Then g(s) ∈ a and gg(s)

= g(gs) is another
Cartan subalgebra of l. It follows that there exists τ ∈ L such that τg ∈ NG(g

s), with
NG(g

s) the normalizer of gs in G. Hence, g ∈ L NG(g
s). Thus, we have obtained

the inclusion Gθ (s)⊂ L NG(g
s). On the other hand, since L normalizes a, we get

L ⊂ Gθ (s) and therefore dim L 6 dim Gθ (s).
Let CG(g

s) and CL(g
s) be the centralizers of gs in G and L , respectively. Since

gs is a Cartan subalgebra, CG(g
s) is connected, so CG(g

s)= CL(g
s) is contained

in L . It follows that L NG(g
s) is a finite union of right L-cosets. We deduce that

dim θ−1({s})= dim Gθ (s)= dim L = dim a+ z(l).

Since the set of regular semisimple elements in g is open and dense, we obtain that
for s as above,

dim im θ = dim g+ dim a− dim θ−1({s})= dim g− dim z(l).

Step 2. We now consider the image of η.
Let (e, h, f ) be an sl2-triple of g. We easily check that c := Ch ⊕ ge is a Lie

subalgebra, and that c stabilizes [e, g]. Let C be the connected subgroup of G whose
Lie algebra is c. Then C is contained in Gη(x) for any x ∈ [e, g]. In particular,
dim Gη(x)> dim C = 1+ dim ge for x ∈ [e, g], and so

dim im η 6 dim g+ dim[e, g] − 1− dim ge
= 2 dim G . e− 1.



JET SCHEMES OF THE CLOSURE OF NILPOTENT ORBITS 155

Step 3. By condition (iii) and Steps 1 and 2, we deduce that dim im θ > dim im η.
Thus im θ 6⊂ im η. We claim that this implies that A . e is RC1. Let us suppose on
the contrary that A . e is not RC1. By condition (ii) and Lemma 3.5(1), π−1

A . e,1(0)=
{0}× a. So, π−1

A . e,1(0) is contained in

π−1
A . e,1(A . e).

Recall from the end of Section 2 the notation G1 and A1 for J1(G) and J1(A),
respectively. It follows that

{0}×G . a⊂ G1 . ({0}× a)⊂ G1 A1 . e ⊂ G1 . e,
whence

{0}×G . a⊂ G1 . e.

Since π−1
G . e,1(G . e) = G1 . e (see Lemma 2.10), it follows from the proof of

Proposition 3.6 that

G1 . e∩ ({0}× g)= π−1
G . e,1(G . e)∩ ({0}× g)= {0}×G . [e, g].

Hence we get im θ ⊂ im η and the contradiction. �

Suppose that g is simple. Let us fix a Cartan subalgebra h of g. Denote by 1
the root system relative to (g, h) and let us fix a system of simple roots 5. Given
S ⊂5, we denote 1S = ZS ∩1 the subroot system generated by S, and

lS = h⊕
⊕
α∈1S

gα

where gα denotes the root subspace relative to α. Then lS is a Levi subalgebra of g
and any Levi subalgebra of g is conjugate to one in this form.

Given S ⊂5, set t = [lS, lS] ∩ h. Then, lS verifies condition (i) if and only if
t 6⊂

⋃
α∈1 kerα. To check the latter condition, it is enough to verify that for every

α ∈1, there is β ∈ S such that 〈β∨, α〉 6= 0.
Thus not all Levi subalgebras of g verify condition (i) of Proposition 4.6. For

example, if g is simple of type B`, then a (maximal) Levi subalgebra whose
semisimple part is simple of type B`−1 does not verify the condition. The same
goes for a Levi subalgebra in type C` whose semisimple part is simple of type C`−1.

However, if g is simple of type D` and if l is a Levi subalgebra whose semisimple
part is simple of type D`−1, then l verifies the condition (i). Likewise, if g is simple
of type E7 and if l is a Levi subalgebra whose semisimple part is simple of type E6,
then l verifies the condition (i). Applying Proposition 4.6, we obtain examples of
nilpotent orbits in types D or E6 which verify RC1 that are not little.

We list in Table 1 some nilpotent orbits that we obtain in this way. In all the
examples presented in the table, the center of the Levi subalgebra is 1-dimensional,
and a is simple. The first and second columns give the type of the simple Lie
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g a G . e A . e

D6 D5 (3, 22, 15) (3, 22, 13)

D7 D6 (32, 18) (32, 16)

D9 D8 (32, 22, 18) (32, 22, 16)

D10 D9 (33, 111) (33, 19)

D10 D9 (42, 112) (42, 110)

D10 D9 (5, 22, 111) (5, 22, 19)

D10 D9 (5, 3, 112) (5, 3, 110)

E7 E6 (3A1)
′ 3A1

E7 E6 A2 A2

Table 1. Examples of nonlittle nilpotent orbits satisfying RC1

obtained by restriction.

algebras g and a. Condition (ii) is verified in view of the discussion above. We
describe the nilpotent orbits G . e and A . e in the third and fourth columns, respec-
tively. The description for an orbit in g of type D is given in terms of partitions (see
Appendix A), while for an orbit in g of type E6 or E7, it is given by its Bala–Carter
label.

Remark 4.7. (1) The first and last lines of Table 1 provide examples of a rigid 2

nilpotent orbit which verifies RC1 and which is not little.

(2) Propositions 3.6, 4.2, and 4.6, together with Remark 3.9, allow us to classify
all nilpotent orbits verifying RC1 in simple Lie algebras of exceptional type. They
are listed in Appendix C.

5. Induced nilpotent orbits

Let l be a proper Levi subalgebra of g, and let p be a parabolic subalgebra of g
with Levi decomposition p= l⊕ u so that u is the nilpotent radical of p. Let P, L ,
and U be the connected closed subgroups of G whose Lie algebra are p, l, and u,
respectively. Then P = LU.

The following definitions and results on induced nilpotent orbits are mostly
extracted from [Richardson 1974; Lusztig and Spaltenstein 1979]. We refer
to [Collingwood and McGovern 1993, Chapter 7] for a recent survey.

Theorem 5.1. Let Ol be a nilpotent orbit of l. There exists a unique nilpotent
orbit Og in g whose intersection with Ol + u is a dense open subset of Ol + u.
Moreover, the intersection of Og with Ol + u consists of a single P-orbit and
codimg(Og)= codiml(Ol).

2See Section 5 for the notion of rigid nilpotent orbit, and Appendices A and C for the description
of rigid nilpotent orbits in simple Lie algebras.
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The nilpotent orbit Og only depends on l, and not on the choice of a parabolic
subalgebra p containing it. The nilpotent orbit Og is called the induced nilpotent
orbit of g from Ol, and it is denoted by Indgl (Ol). A nilpotent orbit which is not
induced in a proper way from another one is called rigid. In type A, only the zero
orbit is rigid.

Remark 5.2. (1) Let s1, . . . , sn be the simple factors of [g, g] and denote by
z(g) the center of g. Then there are Levi subalgebras r1, . . . , rn of s1, . . . , sn ,
respectively, such that

l= z(g)× r1× · · ·× rn.

If Ol is a nilpotent orbit of l, then Ol = Or1 × · · · ×Orn , where Or1, . . . ,Orn are
nilpotent orbits in the semisimple parts of r1, . . . , rn , respectively. Then

Indgl (Ol)= Inds1
r1
(Or1)× · · ·× Indsn

rn
(Orn )= Ind[g,g]

[g,g]∩l(Ol).

(2) The induction property is transitive in the following sense [Collingwood and
McGovern 1993, Proposition 7.1.4]: if l1 and l2 are two Levi subalgebras of g with
l1 ⊂ l2, then

Indgl2(Indl2l1(Ol1))= Indgl1(Ol1).

(3) If �l is an L-orbit in Ol \Ol, then the induced nilpotent orbit of g from �l is
contained in Og \Og.

Let Ol be a nilpotent orbit of l and denote by Og the induced nilpotent orbit of g
from Ol. According to Theorem 5.1, Og∩ (Ol+u) is a single P-orbit that we shall
denote by Op; that is,

Op :=Og ∩ (Ol+ u).

Lemma 5.3. The orbits satisfy

Op =Ol+ u, Op ∩Og =Op, Og = G . (Ol+ u).

Proof. The first equality is obvious since Op is dense in Ol+ u by definition.
Next, the inclusion Op ⊂Op ∩Og is clear. To show the other inclusion, assume

that there is x ∈Op∩Og, with x 6∈Op. A contradiction is expected. Since x ∈Op\Op,
dim P . x < dim P . e. Hence,

dim gx > dim px > dim pe
= dim ge.

As a consequence, x is not in Og, whence the contradiction.
A proof of the last equality can be found in [op. cit., Theorem 7.1.3]. �

We have the following generalization.
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Lemma 5.4. The jet schemes satisfy

(1) Jm(Op)=Jm(Ol)+ um ,

(2) Jm(Op)∩Jm(Og)=Jm(Op)= (Jm(Ol)+ um)∩Jm(Og),

(3) Jm(Og) is the closure of Gm .Jm(Op).

Proof. (1) Since Op⊂Ol+u, we get Jm(Op)⊂Jm(Ol)+um because Jm(Ol)+um

is closed. Let e′ ∈Ol and x ∈ u be such that e := e′+ x is in Op. From the above
inclusion, we deduce that

dim p− dim pe 6 dim l− dim le
′

+ dim u= dim p− dim ge,

because dim le
′

= dim ge by Theorem 5.1. Since dim pe 6 dim ge, we get pe
= ge,

whence dim Jm(Op)= dim(Jm(Ol)+ um) by Lemma 2.10 and Proposition 2.6.
So Jm(Op) and Jm(Ol)+um are irreducible varieties of the same dimension, and
the equality follows.

(2) Taking into account Lemma 2.10 and Proposition 2.6, the result follows from
the same arguments as in the proof of the second equality of Lemma 5.3.

(3) By Lemma 2.10,

Jm(Og)= Gm .Jm(Op)⊂ Gm .Jm(Op).

As a result, the jet scheme Jm(Og) is in the closure of Gm .Jm(Op). On the other
hand, since Jm(Og) is Gm-stable, we get

Gm .Jm(Op)⊂Jm(Og).

So the closure of Gm .Jm(Op) is contained in Jm(Og), whence the expected
equality. �

Question 5.5. For m = 0, Gm .Jm(Op) is closed (see Lemma 5.3) essentially
because G/P is compact. For m > 1, Gm/Pm is a trivial fibration over G/P with
m-dimensional affine fiber. Can we show nevertheless that Gm . (Jm(Ol)+ um) is
closed, in other words that Jm(Og)= Gm . (Jm(Ol)+ um)?

Theorem 5.6. Let l be a Levi subalgebra of g, Ol a nilpotent orbit of l, and Og the
induced nilpotent orbit of g from Ol. If Ol verifies RC2(m) for some m ∈ N∗, then
Og also verifies RC2(m).

The rest of the section will be devoted to the proof of Theorem 5.6.

Definition 5.7. Let l be a Levi subalgebra of g. We say that l is a maximal Levi
subalgebra of g if the center of [g, g] ∩ l has dimension one.

Let us first assume that g is simple and that l is a maximal Levi subalgebra of g.
Thus, the center z(l) of l has dimension one. Let us fix a Cartan subalgebra h in l

and 1 the root system relative to (g, h). There exists a simple root system 5 and
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a subset 5′ ⊆ 5 verifying card(5 \5′) = 1 such that l is the sum of h and all
the α-root spaces for α in the root subsystem generated by 5′. Define z to be the
element in h such that

α(z)=
{

0 if α ∈5′,
1 if α ∈5 \5′.

Then z is a generator of z(l) and all the eigenvalues of ad z are integers.
Let m ∈ N. Then ad z induces a Z-grading on gm ,

gm =
⊕
k∈Z

gm(k) with gm(k) := {y ∈ gm | [z, y] = ky}.

Set
p=

⊕
k>0

g0(k) and u=
⊕
k>0

g0(k).

Then p is a parabolic subalgebra of g, where l= g0(0) is a Levi factor and whose
nilpotent radical is u. Denote by P, L , and U the connected closed subgroups of G
whose Lie algebras are p, l, and u, respectively.

Observe that

lm = z(l)m ⊕[lm, lm] = gm(0), pm =
⊕
k>0

gm(k), um =
⊕
k>0

gm(k).

Remark 5.8. Clearly, for any nonzero integer k, we have [z, gm(k)] = gm(k). In
particular, gm(0) = (gm)

z
= ugm(Cz) where ugm(Cz) is the normalizer of z in gm .

Also, if x ∈gm(k), with k ∈N∗, then x is ad-nilpotent, and ead x z= z+[x, z]= z−kx .

Lemma 5.9. Let λ ∈ C∗, x ∈ gm(0), and y ∈ um . If x is ad-nilpotent in gm then
there exists τ ∈Um such that τ(λz+ x + y)= λz+ x.

Proof. For some p>0, y= yp+t with yp ∈gm(p) and t ∈
∑

k>p+1 gm(k). Since x is
ad-nilpotent, the sequence ((ad x)ngm(p))n∈N is decreasing and (ad x)ngm(p)={0}
for n > dim gm(p). Let q ∈ N be such that yp ∈ (ad x)qgm(p). Then

e(1/pλ) ad yp(λz+ x + y)= λz+ e(1/pλ) ad yp x + e(1/pλ) ad yp t

= λz+ x + (1/pλ)[yp, x] + t ′ = λz+ x + y′

with t ′ ∈
∑

k>p+1 gm(k), y′ := (1/pλ)[yp, x] + t ′, and

(1/pλ)[yp, x] ∈ (ad x)q+1gm(p).

Therefore we may start again with y′. After a finite number of steps, we come to an
element in

∑
k>p+1 gm(k). Then we start again with p+1 instead of p and, after a

finite number of steps, we come to an element of the expected form, λz+ x . �
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Lemma 5.10. Let � be an L-orbit contained in Ol and let X be an irreducible
component of π−1

Ol,m
(�). Then

dim Gm . (z(l)+ X + um)= dim X + 2 dim um + 1.

Proof. Set
C := z(l)+ X + um .

Since � and � are L-stable, π−1
Ol,m

(�) is Lm-stable and so is X . In addition, z(l) is
Lm-stable too. Hence, C is Pm-stable because

Pm .C = LmUm . (z(l)+ X + um)= Lm . (z(l)+ X + um)⊂ C.

Observe also that the elements of X are all ad-nilpotent.
Consider the action of Pm on Gm×C given by ρ . (σ, c)= (σρ−1, ρ(c)). Denote

by (σ, c) the Pm-orbit of (σ, c) ∈ Gm ×C with respect to this action, and denote
by Gm ×Pm C the corresponding quotient space. The natural morphism

Gm ×C→ g, (σ, c) 7→ σ(c)

factors through the quotient and we obtain a morphism

ψ : Gm ×Pm C→ g

whose image is Gm .C . Since X and um are both closed cones, z = 1Gm (z) lies in
the image of ψ and

ψ−1(z)= {(σ, c) ∈ Gm ×Pm C | σ(c)= z}.

Let (σ, c) ∈ψ−1(z). Because z is ad-semisimple, c is also ad-semisimple. Since all
elements of X are ad-nilpotent, we deduce that c does not belong to X + um . Also,
since Um ⊂ Pm , we may assume by Lemma 5.9 that c is of the form λz+ x with
λ ∈ C∗ and x ∈ X . Since x ∈ gm(0) = (gm)

z , we deduce from the uniqueness of
the Jordan decomposition that c = λz. In particular, σ is in the normalizer NG(Cz)
of z in G, and c = σ−1(z).

According to Remark 5.8, the identity component of the centralizer CGm(z) of z
in Gm is contained in Pm and has finite index in NGm(Cz). Consequently, ψ−1(z)
is a finite set. Thus, we get that dim Gm .C = dim Gm×Pm C because they are both
irreducible subsets. To conclude, it suffices to observe that dim Gm − dim Pm =

dim um and dim C = 1+ dim X + dim um since z(l)= Cz. �

Since g is simple, its Killing form 〈 · , · 〉 is nondegenerate. Let us denote by φ
the element of C[g]G defined for all x ∈ g by

φ(x)= 〈x, x〉.
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By our choice of z, φ(z) is a nonzero positive integer. Set

C := z(l)+Ol+ u

Lemma 5.11. The nullvariety in C of φ is Ol+ u.

Proof. First of all, Ol+ u is contained in the nullvariety in C of φ. For the other
inclusion, let u = λz + x + y be in C , with λ ∈ C, x ∈ Ol, and y ∈ u, such that
φ(u)= 0. We have

0= φ(u)= 〈λz+ x + y, λz+ x + y〉 = λ2
〈z, z〉+ 〈x, x〉 = λ2

〈z, z〉

since u is orthogonal to p, z(l) is orthogonal to [l, l] ⊕ u, and 〈x, x〉 = φ(x) = 0.
Hence λ= 0 since φ(z) 6= 0. So, u lies in Ol+ u, whence the other inclusion. �

Let φ(0), . . . , φ(m) ∈ C[gm] be the polynomials as defined in Remark 2.2 relative
to φ. According to Lemma 2.11, they are Gm-invariant. In particular, φ(0) is
Gm-invariant.

Lemma 5.12. Let �l be an L-orbit contained in Ol and set �g := Indgl (�l). Then:

(1) the nullvariety in Gm . (z(l)+π
−1
Ol,m

(�l)+um) of φ(0) is contained in π−1
Og,m

(�g),

(2) dimπ−1
Og,m

(�g)> dimπ−1
Ol,m

(�l)+ 2 dim um .

Proof. Let us denote by Y the nullvariety in Gm . (z(l)+π
−1
Ol,m

(�l)+ um) of φ(0).
First of all, observe that Y contains 0 because each of the spaces z(l), π−1

Ol,m
(�l),

and um is a closed cone. In particular, Y is nonempty.

(1) Let u = g . (λz + x + y) be in Y, with g ∈ Gm , λ ∈ C, x ∈ π−1
Ol,m

(�l), and
y ∈ um , such that φ(0)(u) = 0. Since φ(0) is Gm-invariant, setting x0 := πOl,m(x)
and y0 := πu,m(y), we get

0= φ(0)(u)= φ(0)(λz+ x + y)= φ(λz+ x0+ y0)= λ
2φ(z)

by the computations of the proof of Lemma 5.11. Hence λ = 0 since φ(z) 6= 0.
So u lies in Gm . (π

−1
Ol,m

(�l)+ um). But

Gm . (π
−1
Ol,m

(�l)+ um)⊂ Gm . (Jm(Ol)+ um)⊂ Gm .Jm(Og)=Jm(Og)

because Jm(Og) is Gm-invariant. Thus Y is contained in Jm(Og). Then it remains
to observe that for u ∈ Y,

πOg,m(u) ∈ G . (�l + u)=�g

by Lemma 5.3. In conclusion, Y is contained in π−1
Og,m

(�g).

(2) Let X be an irreducible component of π−1
Ol,m

(�) of maximal dimension, and
let Y ′ be the nullvariety in Gm . (z(l) + X + um) of φ(0). The function φ(0) is
not identically zero on Gm . (z(l)+ X + um) since z ∈ Gm . (z(l)+ X + um) and
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φ(0)(z) = φ(z) 6= 0. Since Y ′ is irreducible, we deduce by Lemma 5.10 and our
choice of X that

dim Y ′ = dim Gm . (z(l)+ X + um)− 1

= dim X + 2 dim um = dimπ−1
Ol,m

(�l)+ 2 dim um,

whence the statement, by (1). �

Proposition 5.13. If for some L-orbit �l in Ol, we have

dimπ−1
Ol,m

(�l)> dimπ−1
Ol,m

(Ol),

then
dimπ−1

Og,m
(�g)> dimπ−1

Og,m
(Og),

where �g is the induced nilpotent orbit of g from �l.

Proof. Assume that for some L-orbit �l in Ol, we have

dimπ−1
Ol,m

(�l)> dimπ−1
Ol,m

(Ol).

Then by Lemma 5.12,

dimπ−1
Og,m

(�g)> dimπ−1
Ol,m

(�l)+ 2 dim um

> dimπ−1
Ol,m

(Ol)+ 2 dim um = (m+ 1) dimOl+ 2(m+ 1) dim u.

To conclude, it remains to observe that π−1
Og,m

(Og) has dimension

(m+ 1) dimOl+ 2(m+ 1) dim u

because dimOg = 2 dim u+ dimOl from Theorem 5.1. �

Remark 5.14. The above proof actually shows that π−1
Og,m

(�g) has dimension at
least 2(m+1) dim u+dimπ−1

Ol,m
(�l) even if�l does not verify the hypothesis of the

proposition. This can be used in practice to give an estimate of dimπ−1
Og,m

(Og \Og).

We are now in a position to prove the main result of the section.

Proof of Theorem 5.6. Let l be a Levi subalgebra of g. Then there is a finite sequence
of Levi subalgebras

l= l0 ⊂ l1 ⊂ l1 ⊂ · · · ⊂ lk = g

such that li−1 is a maximal Levi subalgebra of li for every i ∈ {1, . . . , k}.
Let Ol be a nilpotent orbit of l= l0 verifying RC2(m) for some m ∈ N, and set

for i ∈ {1, . . . , k},
Oli = Indlili−1

(Oli−1).

Since induction is transitive (see Remark 5.2(2)),

Og := Indgl (Ol)= Indlklk−1
(Indlk−1

lk−2
(· · · (Indl1l0(Ol0)))).
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So, in order to proof Theorem 5.6, we may assume that l is maximal in g. Let
us write Ol as a product Ol = Or1 × · · · ×Orn , with the rj as in Remark 5.2(1).
Since Ol verifies RC2(m), Orj verifies RC2(m) for some j ∈ {1, . . . , n}. Since l is
maximal in g, either rj = sj and Indsj

rj (Orj ) obviously verifies RC2(m) too, or rj is
maximal in sj and by Proposition 5.13, Indsj

rj (Orj ) verifies RC2(m) as well. Indeed,
since Orj verifies RC2(m), for some �rj in Orj \Orj ,

dimπ−1
Orj ,m

(�rj )> dimπ−1
Orj ,m

(Orj )

and Proposition 5.13 applies. In both cases, by Remark 5.2(3), we conclude that
Og := Indgl (Ol) verifies RC2(m). �

6. Consequence of Theorem 5.6

Theorem 5.6 allows us to answer the reducibility problem for many nilpotent orbits.
Recall from the beginning of Section 3 that if O is a nilpotent orbit of a reductive

Lie algebra g with simple factors s1, . . . , sm , then O =O1× · · ·×Om where Oi is
a nilpotent orbit of si . We shall say that O has a little factor if there exists i such
that Oi is a little nilpotent orbit of si .

The following result is a direct consequence of Theorem 5.6 and Proposition 4.2.

Theorem 6.1. Any nilpotent orbit induced from a nilpotent orbit that has a little
factor verifies RC2(m) for every m ∈ N∗.

When g is simple, there is a unique nilpotent orbit Osubreg of g, called the
subregular nilpotent orbit, such that N(g) \Oreg = Osubreg. It has codimension
rk g+ 2 in g.

Corollary 6.2. Assume that g simple and not of type A1, B2 = C2, or G2. Then
the subregular nilpotent orbit Osubreg of g verifies RC2(m) for every m ∈ N∗. In
particular, Jm(Osubreg) is reducible for every m ∈ N∗.

Proof. Assume first that g has type A2. Then g = sl3(C) and Osubreg = Omin =

O(2,1). Hence, Osubreg is little and verifies RC2(m) for every m ∈ N∗ according to
Corollary 4.3.

Assume now that g is simple with rank > 3. Then there exists a Levi subalgebra l
of g such that [l, l] is simple of type A2, and the subregular nilpotent orbit of g is
induced from that of [l, l] for dimension reasons (see Theorem 5.1). Therefore, the
theorem follows from the case sl3(C) and Theorem 6.1. �

Remark 6.3. Outside types A and B, the subregular nilpotent orbit of a simple Lie
algebra is distinguished. Thus Corollary 6.2 provides examples of distinguished
nilpotent orbits which verify RC2(m) for every m ∈N∗. In particular, according to
Remark 3.8, these nilpotent orbits verify RC2(1) but not RC1.
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Remark 6.4. For g= sp4(C)' so5(C), we can show that J1(Osubreg) is irreducible.
Let us detail this example where the computations are explicit. Let g= sp4(C).

The subregular nilpotent orbit is O(22). By Appendix A, it has dimension 6, and its
singular locus is the union of two nilpotent orbits, O(2,12) =Omin and the zero orbit.

Using [Weyman 2002, Theorem 1] — see also [Weyman 1989] or [Weyman 2003,
Proposition 8.2.15] — and the realization of sp4(C) as the set of anti-self-adjoint
matrices for the symplectic form, we can show that the defining ideal of O(22) is
generated by the entries of the matrix X2 as functions of X ∈ sp4(C).3 It follows that
J1(O(22)) can be identified with the scheme of pairs (X0, X1) ∈ sp4(C)× sp4(C)

defined by the equations X2
0 = 0 and X0 X1+ X1 X0 = 0.

Using this identification, we obtain from direct computations that

dimπ−1
O(22),1

(O(2,12))= 11 and dimπ−1
O(22),1

(0)= 10.

Furthermore, there are no smooth points of J1(O(22)) in

π−1
O(22),1

(O(2,12))∪π
−1
O(22),1

(0).

To see this, we have computed the dimension of the tangent space to J1(O(22)) at
generic points in π−1

O(22),1
(O(2,12)) and π−1

O(22),1
(0), and the smallest dimensions turn

out to be 13 and 14, respectively.
Now, if J1(O(22)) were reducible, it would have an irreducible component of

dimension 10 or 11 by the above equalities. This is not possible according to the
computations of the tangent space dimensions. Hence, J1(O(22)) is irreducible.

Classical types. We now summarize our conclusions for the case where g is simple
of classical type. We refer to Appendix A for the notation relative to the induction
of nilpotent orbits in the classical cases.

Theorem 6.5 (Type A). Let n∈N∗, n>2, and let λ∈P(n) be nonrectangular. Then
the nilpotent orbit Oλ of sln(C) verifies RC2(m) for every m ∈ N∗. In particular,
Jm(Oλ) is reducible for every m ∈ N∗.

Proof. Suppose that λ = (λ1, . . . , λr ) ∈P(n) is nonrectangular, with 1 < r < n.
Then there exists 16 p < r such that λp > λp+1. It follows that

λ= Indn
(n−p−r,p+r)3,

where

3=
(
(λ1− 2, . . . , λp − 2, λp+1− 1, . . . , λr − 1), (2p, 1r−p)

)
.

3Here, we have used the computer program Macaulay2 to check that these equations indeed
generate a reduced ideal.
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Thus any nonrectangular partition of n can be induced from a partition of the form
(2p, 1q) with p, q ∈ N∗. According to Example 4.4, O(2p,1q ) is little for p, q ∈ N∗.
Hence the theorem follows from Theorem 6.1. �

Remark 6.6. It is not difficult to see that rectangular partitions can only be induced
from a rectangular one. So they cannot be induced from a nilpotent orbit that has a
little factor (see Example 4.4).

In fact, for the rectangular case, the theorem is not true. First of all, it is obviously
not true for λ= (n) and λ= (1n). Let us look at some special cases.

(1) Let λ = (2p) with 2p = n. Then we saw in Example 3.7 that Oλ is RC1,
and that all the irreducible components of J1(Oλ) different from π−1

Oλ,1
(Oλ) have

codimension one. In particular, it is not RC2(1).

(2) Let λ = (32). By [Weyman 2002] — see also [Weyman 1989] or [Weyman
2003, Proposition 8.2.15] — the defining ideal of Oλ is generated by tr(X2) and the
entries of the matrix X3 as functions of X ∈ sl6(C). By Appendix A, the singular
locus of Oλ is the finite union of the nilpotent orbits Oµ with

µ ∈ {(3, 2, 1), (3, 13), (23), (22, 12), (2, 14), (16)} ⊂P(6),

and the respective dimensions of π−1
Oλ,1

(Oµ) are 47, 44, 44, 47, 44, 35. Note that
J1(Oλ) has dimension 48. Next, we obtain that the respective dimensions of the
tangent space to J1(Oλ) at generic points in π−1

Oλ,1
(Oµ), with µ running through

the above set, are 49, 51, 51, 48, 52, 69. Arguing as in Remark 6.4, we conclude
that J1(O) is irreducible.

Therefore, from Remark 6.6(1) and (2), we have complete answers for the
reducibility of J1(O) for any nilpotent orbit O in sln(C), for n 6 7, and for any
nilpotent orbit O in slp(C), with p a prime number.

In the other classical simple Lie algebras, we have the following result.

Theorem 6.7 (Types B, C, D). Let λ = (λ1, . . . , λt) ∈Pε(n) with ε ∈ {+1,−1},
and set λt+1 = 0.

(1) Suppose that ε =+1 and there exist 16 k < `6 t such that λk > λk+1+ 2 and
λ` > λ`+1+ 2, then the nilpotent orbit Oλ of son(C) verifies RC2(m) for every
m ∈ N∗.

(2) Suppose that ε =−1 and there exist 16 k < `6 t such that λk > λk+1+ 2 and
λ` > λ`+1+ 2, then the nilpotent orbit Oλ of spn(C) verifies RC2(m) for every
m ∈ N∗.

(3) Suppose that ε = +1 and that λ is very even. Then both OI
λ and OII

λ verify
RC2(m) for every m ∈ N∗. (See Appendix A for the definition of “very even”.)

In particular, Jm(Oλ) is reducible for every m ∈ N∗.
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Proof. Let λ = (λ1, . . . , λt) ∈Pε(n), set λt+1 = 0, and suppose that there exist
16 k < `6 t such that λk > λk+1+ 2 and λ` > λ`+1+ 2 as in the theorem. Then

λ= Indn,ε
(`+k,n−2(`+k)) 0

where

0 :=
(
(2k,1`−k); (λ1− 4, . . . , λk − 4, λk+1− 2, . . . , λ`− 2, λ`+1, . . . , λt)

)
.

So λ is induced from a partition in P(n) of the form (2p, 1q), with p, q ∈ N∗. By
Example 4.4, the partition (2p, 1q) is little. This concludes the proof of parts (1)
and (2) according to Theorem 6.1.

Finally, if λ ∈P1(n) is very even, then Oλ is induced from the nilpotent orbit
O(2t ) of so2t(C) which is little by Example 4.5. Again, we conclude, thanks to
Theorem 6.1. �

Remark 6.8. Unlike the type A case, in types B, C, D, orbits other than the ones
considered in Theorem 6.7 can be induced from little ones. For example, for
λ, p, q ∈ N∗ with p even, we have λ = ((2λ)p, (2λ− 1)q) ∈P1(2λ(p+ q)− q)
and λ does not verify the conditions of Theorem 6.7. However, we have

λ= ((2λ)p, (2λ− 1)q)= Ind2λ(p+q)−q,1
((λ−1)(p+q),2p+q)

(
(λ− 1)p+q, (2p, 1q)

)
Since the nilpotent orbit of so2p+q(C) corresponding to the partition (2p, 1q) is
little (see Example 4.5), Oλ verifies RC2(m) for all m ∈ N∗.

Unfortunately, in types B, C, D, we have not found a nice exhaustive description
of nilpotent orbits that can be reached by induction from a little nilpotent orbit.
Computations using GAP4 show that a big proportion of partitions can be induced
from little ones. See Appendix B for some numerical data.

Exceptional types. Our conclusions for the exceptional types are summarized in
Appendix C. More precisely, we can find in Appendix C the list of nilpotent orbits
in a simple Lie algebra of exceptional type which can be induced from a little one.

7. Applications, remarks and comments

We give in this section applications to geometric properties of nilpotent orbit
closures.

Nilpotent orbits closures and complete intersections. Let O be a nilpotent orbit
of the reductive Lie algebra g.

Theorem 7.1. If O verifies RC1 or RC2(m) for some m > 1, then O is not a
complete intersection.
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Proof. Since the singular locus of O is O \O (see Section 1), it has codimension at
least two in O. Hence, O is normal if it is a complete intersection. If so, by [Hinich
1991] or [Panyushev 1991], it has rational singularities. The theorem is then of
direct consequence of Theorem 2.8. �

In [Namikawa 2013; Brion and Fu 2015], the authors use symplectic resolutions
of singularities of nilpotent orbit closures to prove the above corollary for arbitrary
nilpotent orbits in g. The foregoing provides an alternative method to obtain that
result through jet schemes in a large number of cases (see Section 6). There are other
approaches in the jet scheme setting to show that O is not a complete intersection.
Let us give an example.

Example 7.2. The computations described in Remark 6.6(2), show that for generic

x ∈ π−1
O(32),1

(O(22,12)),

the tangent space at x of J1(O(32)) has dimension 48 = dimJ1(O(32)). Hence,
such an x is a smooth point of J1(O(32)), because J1(O(32)) is irreducible, which
does not belong to π−1

O(32),1
(O(32)). So,

(J1(O(32)))reg 6= π
−1
O(32),1

(O(32))

and by Theorem 2.8(3), O(32) is not a complete intersection.
Unfortunately, theses arguments cannot be used for the nilpotent orbit O(22) of

sp4(C) because, in this case, the computations of Remark 6.4 show that we exactly
have (J1(O(22)))reg = π

−1
O(22),1

(O(22)).

Examples and counterexamples. Our results provide many examples showing that
the converse of Proposition 2.5 for irreducibility is not true. Since the nilpotent cone
N(g) is normal, the following result illustrates that the converse of Proposition 2.5
for normality is also not true.

Proposition 7.3. Assume that g simple, and let m ∈ N. Then Jm(N(g)) is normal
if and only if m = 0.

Proof. Since J0(N(g))'N(g) is normal, we have to show that for any m ∈ N∗,
Jm(N(g)) is not normal.

Fix m ∈N∗. Let ` be the rank of g, and let p1, . . . , p` be homogeneous generators
of C[g]G so that

N(g)= Spec C[g]/(p1, . . . , p`).

By Remark 2.2, we get

Jm(N(g))' Spec C[gm]/(p
( j)
i | i = 1, . . . , `, j = 0, . . . ,m).

Since N(g) is a complete intersection with rational singularities, Jm(N(g)) is
irreducible and reduced by Theorem 2.8. So, it is generically reduced. Furthermore,
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Jm(N(g))

)
reg consists of the set of x = x0 + x1t + . . . xm tm

∈Jm(N(g)) such
that, for i = 1, . . . , ` and j = 0, . . . ,m,

(2) dp( j)
i (x0, x1, . . . , xm) are linearly independent.

Let x0+x1t+· · ·+xm tm
∈gm . By [Raïs and Tauvel 1992, Lemma 3.3(i)], the vectors

dp( j)
i (x0, x1, . . . , xm) for i ∈ {1, . . . , `} and j ∈ {0, . . . ,m} are linearly independent

if and only if the vectors dp1(x0), . . . , dp`(x0) are linearly independent. But by
[Kostant 1963], the later condition is satisfied if and only if x0 is a regular element
of g. Therefore by (2),

(3)
(
Jm(N(g))

)
reg = π

−1
N(g),m(Oreg) and

(
Jm(N(g))

)
sing = π

−1
N(g),m(Osubreg)

since N(g) \Oreg = Osubreg. Then by Serre’s criterion, it is enough to show that
π−1
N(g),m(Osubreg) has codimension one in Jm(N(g)), or else that

(4) dimπ−1
N(g),m(Osubreg)> dimJm(N(g))− 1.

The zero orbit of sl2(C) has codimension 2 in N(sl2(C)). Hence, for dimension
reasons, Osubreg is the induced nilpotent orbit from 0 in any Levi subalgebra l of g
with semisimple part [l, l] isomorphic to sl2(C). So by Remark 5.14, in order to
prove (4), it suffices to show the statement for g= sl2(C).

If g= sl2(C), then Osubreg = 0, but by Lemma 3.5(2),

dimπ−1
N(sl2(C)),m(0)> dimJm−2(N(sl2(C)))+ dim sl2(C)

= 2(m− 1)+ 3= 2m+ 1,

whence the expected result since dimJm(N(sl2(C)))= 2(m+ 1)= 2m+ 2. �

Remark 7.4. For m = 1, (3) is also a consequence of Theorem 2.8(3).

We now give an example illustrating the fact that the converse of Proposition 2.5
is also not true for reducedness.

Example 7.5. The scheme J1(N(sl2(C))) is irreducible and reduced. We read-
ily obtain from the description of J1(N(sl2(C))) given in Example 2.3 that
J1(J1(N(sl2(C)))) is defined by the ideal J of

C[x0, y0, z0, x1, y1, z1, x ′0, y′0, z′0, x ′1, y′1, z′1]

generated by the polynomials
x2

0 + y0z0, 2x0x1+ y0z1+ y1z0,

2x0x ′0+ y0z′0+ z0 y′0, 2x0x ′1+ 2x1x ′0+ y0z′1+ y1z′0+ z1 y′0+ z0 y′1.

A computation made with the program Macaulay2 shows that J is not radical, and
that the radical of J is the intersection of two prime ideals. So, J1(J1(N(sl2(C))))
is neither reduced nor irreducible.
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Example 7.5 gives another piece of evidence that J1(N(sl2(C))) does not have
rational singularities (see Proposition 7.3). Indeed, if it did, then by Theorem 2.8,
J1(J1(N(sl2(C)))) would be irreducible (and reduced) because J1(N(sl2(C)))
is a complete intersection.

We now turn to other interesting phenomena.

Example 7.6. As has been observed in Example 3.7, for the nilpotent orbit O(2p)

of sl2p(C), with p > 2, J1(O(2p)) is reducible and

dimπ−1
O(2p ),1

((O(2p))sing) < dimπ−1
O(2p ),1

(O(2p)).

This shows that Lemma 2.7(3), does not hold in general if X is not a complete
intersection.

Example 7.7. As has been observed in Remark 6.6(2), for the nilpotent orbit O(32)

of sl6(C), J1(O(32)) is irreducible and

(J1(O(32)))reg 6= π
−1
O(32),1

(O(32)).

This shows that Theorem 2.8(3) is not true for varieties that are not locally complete
intersection.

Example 7.8. For the nilpotent orbit O(22) of sp4(C), we have observed (see
Remark 6.4) that

(J1(O(22)))reg = π
−1
O(22),1

(O(22)).

This shows that the equality of Theorem 2.8(3) may hold even if X is not locally a
complete intersection.

Questions and remarks. Although we have determined the reducibility of the
closure of many nilpotent orbits, we would like to complete the cases where our
methods do not apply. Here are some open questions.

Question 7.9. We have seen that jet schemes of nilpotent orbits in sln(C) corre-
sponding to rectangular partitions can be irreducible or reducible. Is there an explicit
characterization?

Question 7.10. In all our examples of nilpotent orbits O with J1(O) reducible,
the orbit O verifies RC1 or RC2(1). Are these conditions necessary or are there
examples of O for which J1(O) is reducible and that verify neither RC1 nor
RC2(1)?

We have used the reducibility of jet schemes to study the property of complete
intersection for nilpotent orbit closures. It is very likely that other geometric
properties of nilpotent orbit closures can be studied using jet schemes.
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Appendix A: Nilpotent orbits in classical simple Lie algebras

We fix in this appendix some notation and basic results, relative to nilpotent orbits
in simple Lie algebras of classical type. Our main references are [Collingwood
and McGovern 1993; Kempken 1983]. The results concerning the induction of
nilpotent orbits are mostly taken from [loc. cit.].

Let n ∈ N∗, and denote by P(n) the set of partitions of n. As a rule, unless
otherwise specified, we write an element λ of P(n) as a decreasing sequence
λ= (λ1, . . . , λr ) omitting the zeroes. Thus,

λ1 > · · ·> λr > 1 and λ1+ · · ·+ λr = n.

We shall denote the dual partition of a partition λ ∈P(n) by tλ. The concatena-
tion of two partitions λ and λ′ will be the rearrangement of the parts in decreasing
order, and shall be denoted by λ^ λ′.

Let us denote by > the partial order on P(n) relative to dominance. More
precisely, given λ= (λ1, . . . , λr ),µ= (µ1, . . . , µs) ∈P(n), we have λ > µ if

k∑
i=1

λi >
k∑

i=1

µi

for 16 k 6min(r, s).

Case sln(C). According to [Collingwood and McGovern 1993, Theorem 5.1.1],
nilpotent orbits of sln(C) are parametrized by P(n). For λ∈P(n), we shall denote
by Oλ the corresponding nilpotent orbit of sln(C), and if we write tλ= (d1, . . . , ds),
then

dimOλ = n2
−

s∑
i=1

d2
i .

Also, if λ,µ ∈P(n), then Oµ ⊂Oλ if and only if µ6 λ.
The Levi subalgebras of sln(C) are parametrized by compositions of n. Let

m = (m1, . . . ,mr ) be a composition of n and

λ= (λ(1), . . . ,λ(r)) ∈P(m1)× · · ·×P(mr ).

It corresponds to a nilpotent orbit in the Levi subalgebra associated to the composi-
tion m. Set

µ := tλ(1)^ · · ·^ tλ(r) and ν = tµ.

Then the partition associated to the induced nilpotent orbit from O(λ(1),...,λ(r)) is ν.
Note that we have νi =λ

(1)
i +· · ·+λ

(k)
i which is much simpler to compute in practice.

We shall denote ν by Indn
m(λ

(1), . . . ,λ(r)) and we shall say that ν is induced from
(λ(1), . . . ,λ(r)).
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Case son(C). For n ∈ N∗, set

P1(n) := {λ ∈P(n) | number of parts of each even number in λ is even}.

According to [Collingwood and McGovern 1993, Theorems 5.1.2 and 5.1.4], nil-
potent orbits of son(C) are parametrized by P(n), with the exception that each very
even partition λ ∈P1(n) (i.e., λ has only even parts) corresponds to two nilpotent
orbits. For λ ∈P1(n), not very even, we shall denote by Oλ the corresponding
nilpotent orbit of son(C). For very even λ ∈P1(n), we shall denote by OI

λ and OII
λ

the two corresponding nilpotent orbits of son(C). In fact, their union form a single
On(C)-orbit.

Let λ= (λ1, . . . , λr ) ∈P1(n) and tλ= (d1, . . . , ds). Then

dimO•λ =
n(n−1)

2
−

1
2

( s∑
i=1

d2
i − #{i | λi odd}

)
where O•λ is either Oλ, OI

λ, or OII
λ according to whether λ is very even or not. Using

the same notation, if λ,µ ∈P1(n), then O•µ (O•λ if and only if µ< λ.
Given λ ∈ P(n), there exists a unique λ+ ∈ P1(n) such that λ+ 6 λ, and if

µ ∈ P1(n) satisfies µ 6 λ, then µ 6 λ+. More precisely, let λ = (λ1, . . . , λn)

(adding zeroes if necessary). If λ ∈P1(n), then λ+ = λ, and if λ 6∈P1(n), set

λ′ = (λ1, . . . , λr , λr+1− 1, λr+2, . . . , λs−1, λs + 1, λs+1, . . . , λn)

where r is maximum such that (λ1, . . . , λr ) ∈P1(λ1+· · ·+λr ), and s is the index
of the first even part in (λr+2, . . . , λn). Note that r = 0 if such a maximum does not
exist, while s is always defined. If λ′ is not in P1(n), then we repeat the process
until we obtain an element of P1(n) which will be our λ+.

The Levi subalgebras in son(C) are parametrized by

L(n) :=
{
(p1, . . . , pk; r)

∣∣∣∣ 2
k∑

i=1

pi + r = n
}
.

Let (p1, . . . , pk; r)∈L(n), (λ(1), . . . ,λ(k))∈P(p1)×· · ·×P(pk) and µ∈P1(r),
and set

ν := Indn
(p1,...,pk ,r,pk ,...,p1)

(λ(1), . . . ,λ(k),µ,λ(k), . . . ,λ(1))

in the notation of the sln(C) case. Thus ν is the partition associated to the nilpotent
orbit in sln(C) induced from the nilpotent orbit in the Levi subalgebra of sln(C)
associated to the composition (p1, . . . , pk, r, pk, . . . , p1) and the multipartition
(λ(1), . . . ,λ(k),µ,λ(k), . . . ,λ(1)). The partition associated to the nilpotent orbit in-
duced from (λ(1), . . . ,λ(k);µ) is ν+. We shall denote ν+ by

Indn,+
(p1,...,pk ;r)(λ

(1), . . . ,λ(k);µ).
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The partition λ ∈P1(n) corresponds to a rigid orbit if and only if

(i) λi − λi+1 6 1 for all i , so the last part of λ is 1;

(ii) no odd number occurs exactly twice in λ.

Note that in the case that λ is a very even partition, ν+ is also very even, and we
obtain both nilpotent orbits corresponding to ν+ via induction of the nilpotent orbits
corresponding to λ; see [Collingwood and McGovern 1993, Theorem 7.3.3(iii)].

Case sp2n(C). For n ∈ N∗, set

P−1(2n) := {λ ∈P(2n) | number of parts of each odd number is even}.

According to [op. cit., Theorem 5.1.3], nilpotent orbits of sp2n(C) are parametrized
by P−1(2n). For λ = (λ1, . . . , λr ) ∈P−1(2n), we shall denote by Oλ the corre-
sponding nilpotent orbit of sp2n(C), and if we write tλ= (d1, . . . , ds), then

dimOλ = n(2n+ 1)− 1
2

( s∑
i=1

d2
i + #{i | λi odd}

)
.

As in the case of sln(C), if λ,µ ∈P−1(2n), then Oµ ⊂Oλ if and only if µ6 λ.
Given λ ∈P(2n), there exists a unique λ− ∈P−1(2n) such that λ− 6 λ, and if

µ ∈P−1(2n) satisfies µ≤ λ, then µ≤ λ−. The construction of λ− is the same as in
the orthogonal case except that s is the index of the first odd part in (λr+2, . . . , λ2n).

As in the orthogonal case, Levi subalgebras are parametrized by L(2n). Let us
conserve the same notations as in the orthogonal case. The partition associated to
the nilpotent orbit induced from (λ(1), . . . ,λ(k);µ) is ν−. We shall denote ν− by

Ind2n,−
(p1,...,pk ;r)(λ

(1), . . . ,λ(k);µ).

The partition λ ∈P−1(2n) corresponds to a rigid orbit if and only if

(i) λi − λi+1 6 1 for all i , so the last part of λ is 1;

(ii) no even number occurs exactly twice in λ.

Appendix B: Statistics in types B, C, and D

As mentioned in Remark 6.8, many nilpotent orbits in son(C) and sp2n(C) can be
obtained by induction from little nilpotent orbits. In particular, these induced orbits
verify RC2(m) for all m ∈ N∗. Computations using GAP4 gave us the following
numerical data supporting our claim.

For ε ∈ {−1,+1} and n ∈N∗, we denote by P`
ε (n) the set of partitions in Pε(n)

induced from little ones.
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Case son(C).

n #P`
1(n) #P1(n) n #P`

1(n) #P1(n) n #P`
1(n) #P1(n)

2 0 1 19 111 130 36 2370 2741
3 0 2 20 130 161 37 2821 3206
4 1 3 21 170 196 38 3265 3740
5 1 4 22 195 236 39 3852 4368
6 2 5 23 250 287 40 4460 5096
7 4 7 24 291 350 41 5242 5922
8 6 10 25 367 420 42 6064 6868
9 9 13 26 423 501 43 7086 7967

10 10 16 27 527 602 44 8182 9233
11 16 21 28 609 722 45 9536 10670
12 20 28 29 751 858 46 10986 12306
13 27 35 30 869 1016 47 12748 14193
14 32 43 31 1055 1206 48 14667 16357
15 45 55 32 1223 1431 49 16974 18803
16 52 70 33 1474 1687 50 19485 21581
17 73 86 34 1710 1981 51 22464 24766
18 83 105 35 2039 2331

Case sp2n(C).

n #P`
−1(2n) #P

−1(2n) n #P`
−1(2n) #P

−1(2n)

1 0 2 13 594 728
2 1 4 14 857 1040
3 3 8 15 1223 1472
4 9 14 16 1726 2062
5 15 24 17 2421 2864
6 28 40 18 3378 3948
7 45 64 19 4652 5400
8 77 100 20 6374 7336
9 119 154 21 8677 9904

10 182 232 22 11728 13288
11 273 344 23 15755 17728
12 409 504 24 21061 23528

Appendix C: Tables for exceptional types

We list on the next few pages nilpotent orbits in a simple Lie algebra of exceptional
type specifying when possible whether they are RC1 or RC2(m). Condition RC1 is
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Type G2. e1 < e2

O dimO RC1 RC2 rigid

A1 [0, 1] 6
√
← little

√
← little

√

Ã1 [1, 0] 8 × ?
√

G2(a1) [2, 0] 10 × ? ×

Type F4. e1 e2 > e3 e4

O dimO RC1 RC2 rigid

A1 [1, 0, 0, 0] 16
√
← little

√
← little

√

Ã1 [0, 0, 0, 1] 22
√
← little

√
← little

√

A1+ Ã1 [0, 1, 0, 0] 28 × ?
√

A2 [2, 0, 0, 0] 30 × ? ×

Ã2 [0, 0, 0, 2] 30 × ? ×

A2+ Ã1 [0, 0, 1, 0] 34 × ?
√

B2 [2, 0, 0, 1] 36 ×
√
←O{2,3,4}min ×

Ã2+ A1 [0, 1, 0, 1] 36 × ?
√

C3(a1) [1, 0, 1, 0] 38 ×
√
←O{1,2,3}min ×

F4(a3) [0, 2, 0, 0] 40 ×
√
←O{2,3,4}

[0,1,0] ×

B3 [2, 2, 0, 0] 42 × ? ×

C3 [1, 0, 1, 2] 42 × ? ×

F4(a2) [0, 2, 0, 2] 44 ×
√
←O{1,2,4}

(2,1),(12)
×

F4(a1) [2, 2, 0, 2] 46 ×
√
←O{1,2,4}(2,1),(2) ×
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Type E6. The notation ResE7
E6
O means that the orbit is obtained by restriction from

the little nilpotent orbit O in E7 as explained in Table 1.

e2
e
1

e
3

e
4

e
5

e
6

O dimO RC1 RC2 rigid

A1 [0,1,0,0,0,0] 22
√
← little

√
← little

√

2A1 [1,0,0,0,0,1] 32
√
← little

√
← little ×

3A1 [0,0,0,1,0,0] 40
√
← ResE7

E6
O(3A1)′ ?

√

A2 [0,2,0,0,0,0] 42
√
← ResE7

E6
OA2 ? ×

A2+A1 [1,1,0,0,0,1] 46 ×
√
←O{1,2,3,4,5}min ×

2A2 [2,0,0,0,0,2] 48 ×
√
←O{1,2,3,4,5}

(3,17)
×

A2+2A1 [0,0,1,0,1,0] 50 × ? ×

A3 [1,2,0,0,0,1] 52 ×
√
←O{1,3,4,5,6}

(2,14)
×

2A2+A1 [1,0,0,1,0,1] 54 × ?
√

A3+A1 [0,1,1,0,1,0] 56 × ? ×

D4(a1) [0,0,0,2,0,0] 58 ×
√
←O{1,3,4,5,6}

(22,12)
×

A4 [2,2,0,0,0,2] 60 ×
√
←O{1,3,4,5,6}

(3,13)
×

D4 [0,2,0,2,0,0] 60 × ? ×

A4+A1 [1,1,1,0,1,1] 62 ×
√
←O{1,2,3,4,6}

((2,12);(12))
×

A5 [2,1,1,0,1,2] 64 × ? ×

D5(a1) [1,2,1,0,1,1] 64 ×
√
←O{1,3,4,5,6}(3,2,1) ×

E6(a3) [2,0,0,2,0,2] 66 ×
√
←O{1,3,4,5,6}

(4,12)
×

D5 [2,2,0,2,0,2] 68 ×
√
←O{1,3,4,5,6}(4,2) ×

E6(a1) [2,2,2,0,2,2] 70 ×
√
←O{1,3,4,5,6}(5,1) ×
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Type E7. Note that the characteristics [0, 0, 0, 0, 2, 0] and [0, 0, 0, 0, 0, 2] of nil-
potent orbits in D6 correspond to the very even partition (26).

e2
e
1

e
3

e
4

e
5

e
6

e
7

O dimO RC1 RC2 rigid

A1 [1,0,0,0,0,0,0] 34
√
← little

√
← little

√

2A1 [0,0,0,0,0,1,0] 52
√
← little

√
← little

√

(3A1)
′′

[0,0,0,0,0,0,2] 54
√
← little

√
← little ×

(3A1)
′

[0,0,1,0,0,0,0] 64
√
← little

√
← little

√

A2 [2,0,0,0,0,0,0] 66
√
← little

√
← little ×

4A1 [0,1,0,0,0,0,1] 70 × ?
√

A2+A1 [1,0,0,0,0,1,0] 76 ×
√
←O{1,2,3,4,5,6}

[0,1,0,0,0,0] ×

A2+2A1 [0,0,0,1,0,0,0] 82 × ?
√

A3 [2,0,0,0,0,1,0] 84 ×
√
←O{2,3,4,5,6,7}

(22,18)
×

2A2 [0,0,0,0,0,2,0] 84 × ? ×

A2+3A1 [0,2,0,0,0,0,0] 84 × ? ×

(A3+A1)
′′
[2,0,0,0,0,0,2] 86 ×

√
←O{2,3,4,5,6,7}

(3,19)
×

2A2+A1 [0,0,1,0,0,1,0] 90 × ?
√

(A3+A1)
′
[1,0,0,1,0,0,0] 92 × ?

√

D4(a1) [0,0,2,0,0,0,0] 94 ×
√
←O{2,3,4,5,6,7}

(24,14)
×

A3+2A1 [1,0,0,0,1,0,1] 94 × ? ×

D4 [2,0,2,0,0,0,0] 96 ×
√
←O{2,3,4,5,6,7}

[0,0,0,0,2,0] ×

D4(a1)+A1 [0,1,1,0,0,0,1] 96 ×
√
←O{2,3,4,5,6,7}

[0,0,0,0,0,2] ×

A3+A2 [0,0,0,1,0,1,0] 98 ×
√
←O{2,3,4,5,6,7}

(3,22,15)
×

A4 [2,0,0,0,0,2,0] 100 ×
√
←O{2,3,4,5,6,7}

(32,16)
×

A3+A2+A1 [0,0,0,0,2,0,0] 100 × ? ×

(A5)
′′

[2,0,0,0,0,2,2] 102 ×
√
←O{2,3,4,5,6,7}

(5,17)
×
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Type E7 (continued). The characteristics [0, 2, 0, 0, 2, 0] and [0, 2, 0, 0, 0, 2] of
nilpotent orbits in D6 correspond to the very even partition (42, 22), while the
characteristics [0, 2, 0, 2, 2, 0] and [0, 2, 0, 2, 0, 2] correspond to (62).

e2
e
1

e
3

e
4

e
5

e
6

e
7

O dimO RC1 RC2 rigid

D4+A1 [2,1,1,0,0,0,1] 102 × ? ×

A4+A1 [1,0,0,1,0,1,0] 104 ×
√
←O{1,3,4,5,6,7}

(22,13)
×

D5(a1) [2,0,0,1,0,1,0] 106 ×
√
←O{2,3,4,5,6,7}

(32,22,12)
×

A4+A2 [0,0,0,2,0,0,0] 106 × ? ×

(A5)
′

[1,0,0,1,0,2,0] 108 × ? ×

A5+A1 [1,0,0,1,0,1,2] 108 × ? ×

D5(a1)+A1 [2,0,0,0,2,0,0] 108 ×
√
←O{1,2,3,4,6,7}

(2,13),(13)
×

D5(a2) [0,1,1,0,1,0,2] 110 × ? ×

E6(a3) [0,0,2,0,0,2,0] 110 ×
√
←O{1,2,3,5,6,7}

(2,1),(12),(14)
×

D5 [2,0,2,0,0,2,0] 112 ×
√
←O{2,3,4,5,6,7}

[0,2,0,0,2,0] ×

E7(a5) [0,0,0,2,0,0,2] 112 ×
√
←O{2,3,4,5,6,7}

[0,2,0,0,0,2] ×

A6 [0,0,0,2,0,2,0] 114 × ? ×

D5+A1 [2,1,1,0,1,1,0] 114 ×
√
←O{1,2,3,4,6,7}

(3,12),(13)
×

D6(a1) [2,1,1,0,1,0,2] 114 ×
√
←O{1,2,4,5,6,7}

(2),(3,13)
×

E7(a4) [2,0,0,2,0,0,2] 116 ×
√
←O{1,3,4,5,6,7}

(32,1) ×

D6 [2,1,1,0,1,2,2] 118 × ? ×

E6(a1) [2,0,0,2,0,2,0] 118 ×
√
←O{2,3,4,5,6,7}

(52,12)
×

E6 [2,0,2,2,0,2,0] 120 ×
√
←O{2,3,4,5,6,7}

[0,2,0,2,2,0] ×

E7(a3) [2,0,0,2,0,2,2] 120 ×
√
←O{2,3,4,5,6,7}

[0,2,0,2,0,2] ×

E7(a2) [2,2,2,0,2,0,2] 122 ×
√
←O{1,3,4,5,6,7}(5,2) ×

E7(a1) [2,2,2,0,2,2,2] 124 ×
√
←O{1,3,4,5,6,7}(6,1) ×
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Type E8. e2
e
1

e
3

e
4

e
5

e
6

e
7

e
8

O dimO RC1 RC2 rigid

A1 [0,0,0,0,0,0,0,1] 58
√
← little

√
← little

√

2A1 [1,0,0,0,0,0,0,0] 92
√
← little

√
← little

√

3A1 [0,0,0,0,0,0,1,0] 112
√
← little

√
← little

√

A2 [0,0,0,0,0,0,0,2] 114
√
← little

√
← little ×

4A1 [0,1,0,0,0,0,0,0] 128 × ?
√

A2+A1 [1,0,0,0,0,0,0,1] 136 × ?
√

A2+2A1 [0,0,0,0,0,1,0,0] 146 × ?
√

A3 [1,0,0,0,0,0,0,2] 148 ×
√
←O{1,2,3,4,5,6,7}

[1,0,0,0,0,0,0] ×

A2+3A1 [0,0,1,0,0,0,0,0] 154 × ?
√

2A2 [2,0,0,0,0,0,0,0] 156 × ? ×

2A2+A1 [1,0,0,0,0,0,1,0] 162 × ?
√

A3+A1 [0,0,0,0,0,1,0,1] 164 × ?
√

D4(a1) [0,0,0,0,0,0,2,0] 166 ×
√
←O{1,2,3,4,5,6,7}

[0,0,0,0,0,1,0] ×

D4 [0,0,0,0,0,0,2,2] 168 ×
√
←O{1,2,3,4,5,6,7}

[0,0,0,0,0,0,2] ×

2A2+2A1 [0,0,0,0,1,0,0,0] 168 × ?
√

A3+2A1 [0,0,1,0,0,0,0,1] 172 × ?
√

D4(a1)+A1 [0,1,0,0,0,0,1,0] 176 × ?
√

A3+A2 [1,0,0,0,0,1,0,0] 178 ×
√
←O{2,3,4,5,6,7,8}

(22,110)
×

A4 [2,0,0,0,0,0,0,2] 180 ×
√
←O{2,3,4,5,6,7,8}

(3,111)
×

A3+A2+A1 [0,0,0,1,0,0,0,0] 182 × ?
√

D4+A1 [0,1,0,0,0,0,1,2] 184 × ? ×

D4(a1)+A2 [0,2,0,0,0,0,0,0] 184 × ? ×

A4+A1 [1,0,0,0,0,1,0,1] 188 ×
√
←O{1,2,3,4,5,6,8}

[0,1,0,0,0,0],(12)
×
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Type E8 (continued). e2
e
1

e
3

e
4

e
5

e
6

e
7

e
8

O dimO RC1 RC2 rigid

2A3 [1,0,0,0,1,0,0,0] 188 × ?
√

D5(a1) [1,0,0,0,0,1,0,2] 190 ×
√
←O{2,3,4,5,6,7,8}

(24,16)
×

A4+ 2A1 [0,0,0,1,0,0,0,1] 192 × ? ×

A4+ A2 [0,0,0,0,0,2,0,0] 194 × ? ×

A5 [2,0,0,0,0,1,0,1] 196 ×
√
←O{2,3,4,5,6,7,8}

(3,22,17)
×

D5(a1)+ A1 [0,0,0,1,0,0,0,2] 196 × ? ×

A4+ A2+ A1 [0,0,1,0,0,1,0,0] 196 × ? ×

D4+ A2 [0,2,0,0,0,0,0,2] 198 ×
√
←O{2,3,4,5,6,7,8}

(26,12)
×

E6(a3) [2,0,0,0,0,0,2,0] 198 ×
√
←O{2,3,4,5,6,7,8}

(32,18)
×

D5 [2,0,0,0,0,0,2,2] 200 ×
√
←O{2,3,4,5,6,7,8}

(5,19)
×

A4+ A3 [0,0,0,1,0,0,1,0] 200 × ?
√

A5+ A1 [1,0,0,1,0,0,0,1] 202 × ?
√

D5(a1)+ A2 [0,0,1,0,0,1,0,1] 202 × ?
√

D6(a2) [0,1,1,0,0,0,1,0] 204 × ? ×

E6(a3)+ A1 [1,0,0,0,1,0,1,0] 204 × ? ×

E7(a5) [0,0,0,1,0,1,0,0] 206 × ? ×

D5+ A1 [1,0,0,0,1,0,1,2] 208 × ? ×

E8(a7) [0,0,0,0,2,0,0,0] 208 ×
√
←O{2,3,4,5,6,7,8}

(32,22,14)
×

A6 [2,0,0,0,0,2,0,0] 210 ×
√
←O{1,2,3,4,5,7,8}

(3,17),(13)
×

D6(a1) [0,1,1,0,0,0,1,2] 210 ×
√
←O{2,3,4,5,6,7,8}

(32,24)
×

A6+ A1 [1,0,0,1,0,1,0,0] 212 × ? ×

E7(a4) [0,0,0,1,0,1,0,2] 212 ×
√
←O{1,2,3,4,5,6,7}

[0,0,0,1,0,1,0] ×

E6(a1) [2,0,0,0,0,2,0,2] 214 ×
√
←O{2,3,4,5,6,7,8}

(5,3,16)
×
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Type E8 (continued). e2
e
1

e
3

e
4

e
5

e
6

e
7

e
8

O dimO RC1 RC2 rigid

D5+ A2 [0, 0, 0, 0, 2, 0, 0, 2] 214 ×
√
←O{1,3,4,5,6,7,8}

(23,12)
×

D6 [2, 1, 1, 0, 0, 0, 1, 2] 216 × ? ×

E6 [2, 0, 0, 0, 0, 2, 2, 2] 216 ×
√
←O{2,3,4,5,6,7,8}

(7,17)
×

D7(a2) [1, 0, 0, 1, 0, 1, 0, 1] 216 ×
√
←O{1,2,4,5,6,7,8}

(12),(22,13)
×

A7 [1, 0, 0, 1, 0, 1, 1, 0] 218 × ? ×

E6(a1)+ A1 [1, 0, 0, 1, 0, 1, 0, 2] 218 ×
√
←O{2,3,4,5,6,7,8}

(42,22,12)
×

E7(a3) [2, 0, 0, 1, 0, 1, 0, 2] 220 ×
√
←O{2,3,4,5,6,7,8}

(5,3,22,1) ×

E8(b6) [0, 0, 0, 2, 0, 0, 0, 2] 220 ×
√
←O{2,3,4,5,6,7,8}

(43,3,13)
×

D7(a1) [2, 0, 0, 0, 2, 0, 0, 2] 222 ×
√
←O{2,3,4,5,6,7,8}

(42,32)
×

E6+ A1 [1, 0, 0, 1, 0, 1, 2, 2] 222 × ? ×

E7(a2) [0, 1, 1, 0, 1, 0, 2, 2] 224 × ? ×

E8(a6) [0, 0, 0, 2, 0, 0, 2, 0] 224 ×
√
←O{2,3,4,5,6,7,8}

(5,33)
×

D7 [2, 1, 1, 0, 1, 1, 0, 1] 226 × ? ×

E8(b5) [0, 0, 0, 2, 0, 0, 2, 2] 226 ×
√
←O{2,3,4,5,6,7,8}

(52,22)
×

E7(a1) [2, 1, 1, 0, 1, 0, 2, 2] 228 ×
√
←O{2,3,4,5,6,7,8}

(7,3,22)
×

E8(a5) [2, 0, 0, 2, 0, 0, 2, 0] 228 ×
√
←O{2,3,4,5,6,7,8}

(52,3,1) ×

E8(b4) [2, 0, 0, 2, 0, 0, 2, 2] 230 ×
√
←O{2,3,4,5,6,7,8}

(62,12)
×

E7 [2, 1, 1, 0, 1, 2, 2, 2] 232 × ? ×

E8(a4) [2, 0, 0, 2, 0, 2, 0, 2] 232 ×
√
←O{2,3,4,5,6,7,8}

(7,5,12)
×

E8(a3) [2, 0, 0, 2, 0, 2, 2, 2] 234 ×
√
←O{2,3,4,5,6,7,8}

(72)
×

E8(a2) [2, 2, 2, 0, 2, 0, 2, 2] 236 ×
√
←O{2,3,4,5,6,7,8}(9,5) ×

E8(a1) [2, 2, 2, 0, 2, 2, 2, 2] 238 ×
√
←O{2,3,4,5,6,7,8}(11,3) ×
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checked using Propositions 3.6, 4.2, 4.6, and Remark 3.9. When condition RC1 is
obtained via Proposition 4.6, we give an example of the bigger simple Lie algebra
and the little nilpotent orbit satisfying condition (iii) of Proposition 4.6 from which
it is obtained.

As for determining whether condition RC2(m) is verified, our main method is
to list the orbits induced by nilpotent orbits that have a little factor (Theorem 6.1).
Thus they are RC2(m) for all m ∈N∗. Since induction is transitive, we can proceed
by induction on the rank of the Lie algebra, where at each step, we only need to
consider induction from orbits in maximal Levi subalgebras which are themselves
induced from nilpotent orbits with a little factor. For an orbit verifying condition
RC2(m), we give an example of a maximal Levi subalgebra l and an orbit in l

induced from a nilpotent orbit with a little factor.
In both cases, if the orbit is little, then we just label it little. The subscript of an

orbit indicates: its characteristics, the associated partition, or its Bala-Carter label.
If a superscript of an orbit is present, it indicates the corresponding maximal Levi
subalgebra.

We have omitted the zero orbit and the regular orbit because they are neither
RC1 nor RC2(m).

All the computations are done using the package sla of GAP4.
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