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A NOTE ON MINIMAL GRAPHS
OVER CERTAIN UNBOUNDED DOMAINS

OF HADAMARD MANIFOLDS

MIRIAM TELICHEVESKY

Given an unbounded domain � of a Hadamard manifold M, it makes sense
to consider the problem of finding minimal graphs with prescribed contin-
uous data on its cone topology boundary, i.e., on its ordinary boundary to-
gether with its asymptotic boundary. In this article it is proved that under
the hypothesis that the sectional curvature of M is ≤−1, this Dirichlet prob-
lem is solvable if � satisfies a certain convexity condition at infinity and if
∂� is mean convex. We also prove that mean convexity of ∂� is a necessary
condition, extending to unbounded domains some results that are valid on
bounded ones.

1. Introduction

The classical theorem of Jenkins and Serrin on minimal graphs theory, following
the works of Bernstein [1910], Haar [1927], Radó [1930] and Finn [1965], states
the following.

Theorem 1 [Jenkins and Serrin 1968, Theorem 1]. Let D ⊂ Rn be a bounded
domain whose boundary is of class C2. Then the Dirichlet problem for the minimal
surface equation in D is well posed for C2 boundary data if and only if the mean
curvature of ∂D is everywhere nonnegative.

In the last four decades, several works considered problems related to Theorem 1
in distinct directions. Some of them are listed below together with some references.

• Unbounded domains of R2: [Hwang 1988; Collin and Krust 1991; Sá Earp
and Rosenberg 1989; Ripoll and Tomi 2014; Krust 1989; Kuwert 1993; Kutev
and Tomi 1998].

• Bounded domains of a Hadamard manifold M : [Folha and Rosenberg 2012;
Mazet et al. 2011; Aiolfi et al. 2016].
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• Asymptotic Dirichlet problems on Hadamard manifolds: [do Espírito Santo
et al. 2010; Ripoll and Telichevesky 2015; Gálvez and Rosenberg 2010;
Castéras et al. 2013].

• Replace the ambient space Rn+1 by the hyperbolic spaces Hn+1 [Barbosa and
Sá Earp 1998; Guio and Sá Earp 2005; López 2001; Nitsche 2002] or other
ambient spaces with a Killing field satisfying certain hypotheses [Alías and
Dajczer 2007; Dajczer et al. 2008; 2013]. In this setting it is natural to consider
CMC Killing graphs and there is an extensive bibliography on it.

The purpose of this article is to prove that similar existence and nonexistence
results remain valid if in Theorem 1, Rn is replaced by a Hadamard manifold M
with sectional curvature KM ≤−1 and the domain D is unbounded and “strictly
convex at infinity” (see Definition 4).

Classically, Dirichlet problems on unbounded domains are considered in Rn

without prescribed values at infinity. In fact, sometimes the behavior at infinity of
bounded solutions is determined by their boundary values. For instance, in R2 it is a
consequence of Theorem 2 of [Collin and Krust 1991], which states that if u and v
are distinct solutions of the Dirichlet problem in an unbounded domain U ⊂ R2

which coincide on ∂U , then sup |u − v| must have at least logarithmic growth.
However, since the manifolds that we consider in this work have sectional curvature
KM ≤−1, it turns out that the asymptotic boundary of unbounded domains may be
“good enough” to prescribe continuous data on them. It therefore makes sense to
consider the generalized Dirichlet problem for the minimal hypersurface equation,
Problem 2, described in the sequel. In order to state it, let us introduce some useful
notations that are not standard.

Throughout this paper M denotes an m-dimensional Hadamard manifold, m ≥ 2,
with sectional curvature KM satisfying KM ≤−1. The asymptotic boundary ∂∞M
of M is defined by the set of equivalence classes of geodesic rays that stay at finite
distance for all time, and it is possible to compactify M by adding ∂∞M to it.
M := M ∪ ∂∞M carries the so-called cone topology (see [Eberlein and O’Neill
1973]), which makes it canonically homeomorphic to a closed ball. If U ⊂ M is
any set, we denote by U ct

⊂ M and ∂ctU ⊂ M its closure and boundary in terms of
the cone topology; we also use the notation ∂∞U := ∂ctU ∩ ∂∞M .

Problem 2. Let �⊂ M be a C2 domain of M . Given ϕ ∈C(∂ct�), find a minimal
graph over � that attains ϕ on its boundary, or, equivalently, find a solution of the
Dirichlet problem

u ∈ C2(�)∩C�ct,

M(u) := div
(

∇u√
1+|∇u|2

)
= 0 in �,

u|∂ct� = ϕ.
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Concerning the existence, perhaps the main difficulty dealing with unbounded
domains is the nonexistence of natural barriers. In general, barriers are constructed
using distance functions to a point or to the boundary of the domain, which cannot be
adapted directly to points at infinity. Here the geometry of M at infinity plays an im-
portant role. For instance, the hyperbolic spaces Hn have “good geometry” at infinity
by the existence of hyperspheres separating points at infinity and having their princi-
pal curvatures with the correct sign. The natural way to generalize this fact in order
to use the Hessian comparison theorem and adapt barriers of Hn to other Hadamard
manifolds is given by the strict convexity condition (SC condition) at infinity, intro-
duced in [Ripoll and Telichevesky 2015]. In that work it is proved that Problem 2
is solvable for �= M (in this case, it is called the asymptotic Dirichlet problem)
and any continuous boundary data if M satisfies the SC condition described below.

Definition 3. A Hadamard manifold M is said to satisfy the strict convexity con-
dition at infinity if for all x ∈ ∂∞M and all relatively open subsets 0 ⊂ ∂∞M
with x ∈ 0, there exists an open set V ⊂ M of class C2 such that x is an interior
point of ∂∞V (with respect to the induced topology), ∂∞V ⊂0 and M \V is convex.

At this point, it should be mentioned that under the hypothesis KM ≤−1, the
SC condition is always satisfied by 2-dimensional manifolds, by the rotationally
symmetric ones and by those manifolds with controlled decay on sectional curvature
(exponential decay) (see also [Ripoll and Telichevesky 2015]). We also should
mention that under the same assumption on KM , the SC condition is equivalent
to the convex conic neighborhood condition presented by H. Choi [1984] in the
study of the asymptotic Dirichlet problem with respect to Laplace’s operator on
Cartan–Hadamard manifolds; the equivalence is a consequence of a lemma of
A. Borbély [1998b, Lemma 1]. In fact, both Dirichlet problems are closely related
and may be studied together (see also [Ripoll and Telichevesky 2015]).

Contrasting with the existence results under the SC condition, we cite a counter-
example constructed by I. Holopainen and J. Ripoll [2015]. In this work the
authors present a Hadamard manifold with KM ≤−1 that does not admit a solution
to the asymptotic Dirichlet problem for the minimal hypersurface equation for
any continuous ϕ ∈ C(∂∞M), although there are bounded nonconstant minimal
graphs globally defined on M (see Theorem 1.1 of [Holopainen and Ripoll 2015]).
This counterexample proves that the condition KM ≤−1 is not sufficient to solve
Problem 2 with any continuous boundary data.

Taking into account all these facts, the following definition is natural.

Definition 4. A domain �⊂ M is strictly convex at infinity if for any x ∈ ∂∞� and
any relatively open neighborhood 0⊂ ∂ct� of x , there exists an open neighborhood
V = V (x, 0,�)⊂� of x such that V ∩ ∂ct�⊂ 0 and all the principal curvatures
of ∂V ∩�, oriented in the direction of � \ V , are nonnegative.
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Notice that when �= M , this definition coincides with the SC condition. With
Definition 4 it is now possible to state our main existence result.

Theorem 5. Let � ⊂ M be a mean convex domain (with respect to the inward
orientation) that is strictly convex at infinity. Then Problem 2 is solvable for any
continuous boundary data.

Returning our attention to Theorem 1, when �⊂ Rn is bounded, the mean con-
vexity is a necessary condition to the solvability of Problem 2 for any continuous ϕ.
The second part of this article is dedicated to proving that mean convexity is also
necessary in M if we deal with unbounded domains and require boundedness of
solutions. In Section 3 we present some necessary lemmata and the proof of the
following nonexistence result.

Theorem 6. Let � ⊂ M be a domain and suppose that there exists y ∈ ∂� such
that the mean curvature of ∂� at y (with respect to the inward orientation) satisfies
H(y)< 0. Then there exists a continuous function ϕ : ∂ct�→R such that Problem 2
is not solvable.

The construction of ϕ depends on two basic ingredients. First of all, on the
local aspect concerning the negativity of the mean curvature H(y), it is essential to
guarantee that ϕ(y) is bounded by values of the solution on a small sphere centered
at y, say, on Sr (y)∩�. The second essential ingredient is the existence of a bounded
barrier in � \ Br (y) with some special properties. Similar results outside Rn were
proved on bounded domains considering barriers dependent on the diameter of �,
as in [Nitsche 2002]. Our main improvement is dropping the dependence on the
size of the domain.

Combining the results of Theorems 5 and 6, we get:

Theorem 7. Let � ⊂ M be a domain that is strictly convex at infinity. Then the
Dirichlet problem (Problem 2) is solvable for any continuous boundary data if and
only if � is mean convex.

It remains an open question what happens if we assume that � is not strictly
convex at infinity. We conjecture that in this case it is also possible to construct a
continuous function on ∂ct� for which the Dirichlet problem is not solvable, and
therefore strict convexity at infinity is also a necessary condition. Since it deals
with nonexistence of solutions in arbitrarily large domains, Theorem 6 may have
an important role in the study of this conjecture.

To finish, we should mention that there is a large gap between the behavior of
KM at infinity in the cases where Theorem 5 is true and in the ones where it is false.
It also remains unknown if there exists some sharp condition on KM that assures
solvability of Problem 2 for any continuous boundary data.
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2. Existence result

This section is dedicated to proving Theorem 5. We start with a very important
tool, the comparison principle for unbounded domains. It plays an important role
in both existence and uniqueness. For now, we just need to work with functions
that extend continuously to the asymptotic boundary, however in Section 3 we treat
a larger class of functions, as stated above.

Proposition 8 (comparison principle for unbounded domains). Let U ⊂ M be an
unbounded domain of M. If u, v ∈ C2(U ) are such that M(v)≤M(u) on U with
lim supp→x u ≤ lim infp→x v for all x ∈ ∂ctU , then u ≤ v in U.

Proof. Choose o ∈ M . Let ε > 0 be an arbitrary constant. Using the basis of the
cone topology of M , we obtain that for all x ∈ ∂∞U , there is an open truncated
cone Nx := To(x, αx , Rx) (that is, the image of a truncated cone of opening angle
αx and radius Rx by the exponential map of a point o) such that u < v+ ε on Nx .
Since ∂∞U is compact, there exists uniform R such that u < v+ ε on U \ BR(o).
In addition, notice that the hypothesis implies that u ≤ v on ∂U . Therefore we
have u ≤ v+ ε on ∂(U ∩ BR(o)), which implies, by the comparison principle on
bounded domains, that u ≤ v+ ε on U ∩ BR(o), and hence the last inequality holds
on U . Since ε is arbitrary, the proof is complete. �

We now prove Theorem 5 using Perron’s method.
A function 6 ∈ C0(�ct) is called a supersolution for M if, given a bounded

subdomain U ⊂�, if u ∈C2(U )∩C0(U ) is a solution of M= 0 in U , the condition
u|∂U ≤6|∂U implies that u ≤6|U . A subsolution is defined by replacing ≤ by ≥.

Let Sϕ be defined by

Sϕ := {v ∈ C0(�ct) | v is a subsolution for M with v|∂ct� ≤ ϕ}.

By Proposition 8, v0 ≡minϕ ∈ Sϕ , which implies that Sϕ 6=∅, and w ≡maxϕ is
such that v ≤ w for all v ∈ Sϕ . These facts imply that u :�→ R given by

(1) u(x) := sup{v(x) | v ∈ Sϕ}

is well-defined, and we shall prove that under the hypotheses of Theorem 5, we
have u ∈ C∞(�)∩C(�ct), M(u)= 0 and u|∂ct� = ϕ.

We first prove that u ∈ C∞(�) and M(u)= 0. Given x ∈�, let r = rx > 0 be
sufficiently small such that the open geodesic ball of center x and radius r satisfies
Br (x)⊂� and furthermore r satisfies the inequality

(n−1)2

n
coth2 r ≥− inf

Br (x)
RicM .

Such r > 0 exists because coth r→+∞ as r→ 0+ and RicM is of course bounded
in bounded sets containing x .
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The cylinder ∂Br (x)×R⊂ M ×R has mean curvature ≥ n−1
n coth r (pointing

inward) as a consequence of the Hessian comparison theorem, and therefore this
choice of r implies, by Theorem 2 of [Dajczer et al. 2013], the existence of minimal
graphs in Br (x) extending continuously to any prescribed continuous boundary
data on ∂Br (x), and this is an essential fact when we use Perron’s method.

Consider a sequence (vm)m ⊂ Sϕ such that limm vm(x) = u(x). Theorem 2 of
[Dajczer et al. 2013] again implies that for each m ∈ N there exists a solution
wm,x ∈ C∞(Br (x))∩C(Br (x)) of M = 0 such that wm,x |∂Br (x) = vm |∂Br (x). The
interior gradient estimate given by Theorem 1 of [Dajczer et al. 2013] implies
that (wm,x)m contains a subsequence converging uniformly on compact subsets
of Br (x) to a solution wx ∈ C∞(Br (x)) of M= 0. As in [Gilbarg and Trudinger
1998, Section 2.8], one may prove that wx = u|Br (x), which implies that u ∈C∞(�)
and M= 0. This is done by taking the limit of minimal lifts um ∈ Sϕ of each vm

defined by

um(y) :=
{
vm(y) if y ∈� \ Br (x),
wm,x(y) if y ∈ Br (x).

We now need to prove that u extends continuously to the desired boundary data
on ∂ct�. Since ∂� is mean convex, standard arguments guarantee that the solution
assumes the desired data on ∂�. To conclude the proof it is necessary to guarantee
that it also extends continuously to ∂∞�, hence in the following we construct
barriers at infinity.

Given x ∈ ∂ct� and an open subset V such that x ∈ ∂ctV ∩∂ct�, we call an upper
barrier for M relative to x and V with height C a function 6 ∈ C(�) such that

(i) 6 is a supersolution for M;

(ii) 6 ≥ 0 and limp∈�, p→x 6(p)= 0, the limit with respect to the cone topology;

(iii) 6�\V ≥ C .

Lower barriers are defined analogously.
A point x ∈ ∂ct� is said to be regular (with respect to the mean curvature

operator M) if it satisfies the following property: given C > 0 and a relatively open
subset 0⊂ ∂ct� with x ∈0, there exist an open set V ⊂� such that x is an interior
point of V ∩ ∂ct� (with respect to the topology induced on the boundary), with
V ∩ ∂ct�⊂ 0, and an upper barrier 6 :�→ R relative to x and V with height C .

The following lemma is analogous to Theorem 2.7 of [Choi 1984], but we present
the proof for the sake of completeness.

Lemma 9. The function u given by (1) extends continuously to ϕ to each regular
point x ∈ ∂∞�.

Proof. Given x ∈ ∂∞� and ε > 0, let 0 ⊂ ∂ct� be such that |ϕ−ϕ(x)|< ε/2 in 0.
Let 6 : �→ R be an upper barrier relative to x and V with height C = max |ϕ|,
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where V is given by the definition of regularity. It follows that w :=6+ϕ(x)+ ε
is a supersolution for M. By the choice of 0, it holds that w > ϕ on 0 and since
w|∂ct�\0 ≥max |ϕ|, it of course satisfies w ≥ ϕ on ∂ct� \0. Therefore v ≤ w for
all v ∈ Sϕ , which implies that

lim
p∈�,p→x

u(p)≤ lim
p∈�,p→x

w(p)= ϕ(x)+ ε.

On the other hand, notice that v0 := ϕ(x)− ε−6 belongs to Sϕ and therefore
u ≥ v0 in �, which implies that

lim
p∈�,p→x

u(p)≥ lim
p∈�,p→x

v0(p)= ϕ(x)− ε.

Since ε is arbitrary, we have ϕ(x)≤ limp∈�,p→x u(p)≤ ϕ(x). �

To finish, we now prove regularity at the points of ∂∞�.

Proposition 10. Let �⊂ M be a domain that is strictly convex at infinity. Then M
is regular at each point of ∂∞�.

Proof. Let x ∈ ∂∞� and let 0 ⊂ ∂ct� be a relatively open neighborhood of x . By
hypothesis, there exists an open neighborhood V ⊂� of x such that V ∩ ∂ct�⊂ 0

and ∂V ∩� has nonnegative principal curvatures.
Let s : V → R be the distance function to ∂V ∩�. Since KM ≤ −1 and all

principal curvatures of ∂V ∩� are nonnegative, we have that the Laplacian of s
satisfies

(2) 1s ≥ (n− 1) tanh s

(see, for instance, Theorem 4.3 of [Choi 1984]).
Define g : (0,+∞)→ R by

g(s) :=
∫
+∞

s

dt√
cosh2(n−1) t−1

.

Notice that g is well-defined and lims→0+ g(s)=+∞, lims→+∞ g(s)= 0. Define
now w : V → R by w(p) := g(s(p)). A straightforward computation gives

M(w)= (n− 1) coshn−1 s sinh s+ (1− n) cosh1−n s1s

and hence the estimate 1s ≥ tanh s leads to M(w)≤ 0.
We remark thatw is a solution if M =Hn and V is a totally geodesic hypersphere.
To finish with the proof, define the supersolution 6 ∈ C0(�) by

6(p)=
{

min{w(p),C} if p ∈ V ,
C if p ∈� \ V ,

which is of course an upper barrier relative to x and V with height C , and hence
the proof is complete. �
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3. Nonexistence result

We now prove that mean convexity of ∂� is a necessary condition, as stated in
Theorem 6. We start with the next classical lemma, proved by Jenkins and Serrin
[1968] in the case where the domain is bounded and contained on Rn .

Lemma 11. Let U ⊂ M be an open domain and 0 a relatively C1 open subset
of ∂U. If u ∈ C(U )∩C2(U ∪0) and w ∈ C(U )∩C2(U ) satisfy

M(w) <M(u) in U,(3)

u ≤ w on ∂U \0, and(4)

∂w

∂ν
=−∞ in 0,(5)

where ν is the inner normal vector to ∂U , then u ≤ w in U.

Proof. If u ≤ w on 0, the result is a consequence of the comparison principle.
Suppose, towards a contradiction, that there exists y ∈ Int0 such that

d :=max
0
(u−w)= u(y)−w(y) > 0.

Then u ≤w+d on ∂U , and hence by the comparison principle we have u ≤w+d
in U . Therefore

∂

∂ν
(u−w)(y)≤ 0⇒ ∂

∂ν
(u)(y)≤−∞,

contradicting the fact that u ∈ C2(U ∪0). �

Lemma 12. Let �⊂ M be an open C2 domain (possibly unbounded) with mean
curvature (with respect to the inner normal) H : ∂�→ R. Suppose that there
exist y ∈ ∂� such that H(y) < 0. Then there exists s > 0 depending only on
the local geometry of � near y and C > 0 depending only on H(y) such that if
u ∈ C2(�)∩C(�ct) satisfy M(u)= 0 in �, then

u(y)≤ C + sup
∂Bs(y)∩�

u.

Proof. Let d : �̃→ R be given by d(x)= dist (x, ∂�), where �̃⊂� is the open
subset where d is smooth. Since H(y) < 0, it holds that 1d(y) = −H(y) > 0.
Since ∂� is C2, there exists s > 0 such that Bs(y)∩�⊂ �̃ and

1d(x) >−H(y)
2
=: ε, ∀x ∈ Bs(y)∩�.

This is the required s.
We claim that if x ∈ Bs(y) ∩�, then u(x) ≤ C + sup∂Bs(y)∩� u. To prove it,

let 0x be the level set of d that contains x and �x be the set enclosed by 0x and
∂Bs(y), that is, �x := {p ∈ Bs(y) | d(p) > d(x)}.
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Consider ψ given by

(6) ψ(t)= π
2 − arcsec(t + 1).

Then ψ ≥ 0, ψ(0)= π/2 and limt→+∞ ψ(t)= 0. Its first and second derivatives
are given below:

ψ ′(t)=− 1
(t+1)

√
t2+2t

,

ψ ′′(t)= 1
(t+1)2

√
t2+2t

+
1

(t2+2t)3/2
.

Define w : Bs(y)∩�x → R by

w(p) := Aψ(d(p)) + sup
∂Bs(y)∩�

u,

where A > 0 is to be determined. After some computations we obtain

(1+ |∇w|2)3/2M(w)(p)= Aψ ′′(d(p))+
(

Aψ ′(d(p))+ A3ψ ′(d(p))3
)
1d(p).

Using then that 1d(p) > ε and ψ ′ < 0 in the domain we are considering, we obtain

(1+ |∇w|2)3/2M(w)≤ A
[
ψ ′′+ εψ ′+ εA2ψ ′3

]
= A(t + 1)−3(t2

+ 2t)−3/2[(t + 1)(t2
+ 2t)+ (t + 1)3

− ε(t + 1)2(t2
+ 2t)− εA2].

Notice that the term in the brackets is a polynomial of degree 4 with leading
coefficient −ε < 0 and constant term 1− εA2. Then it is clear that there exists
A > 0 large enough that this polynomial is negative for all t ≥ 0; with this choice
of A we obtain that M(w) < 0 on �x .

Furthermore, by definition ofw we havew≥u on ∂Bs(y)∩�x and ∂w/∂ν=−∞
on 0x , which is an open C1 portion of ∂�x . We also notice that u ∈ C2(0x). By
Lemma 11, we obtain w ≥ u in �x . Since x is arbitrary and u is continuous, it
holds the desired inequality with C = Aπ

2 , which concludes the proof. �

Proposition 13. Let M be a Hadamard manifold with sectional curvature KM ≤−1.
There exists universal C > 0 such that if � is a C1 domain of M and u satisfies
M(u)= 0 in �, then

sup
∂Bs(y)∩�

u ≤ C + sup
∂ct�\Bs(y)

u

for all y ∈ ∂� and s > 0 such that ∂Bs(y)∩� is a nonempty connected set.

Proof. Consider w :� \ Bs(y)→ R given by

w(x)= Bψ(r(x)) + sup
∂ct�\Bs(y)

u,
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where ψ is given by (6), r(x) := dist (x, ∂Bs(y)) and B is an appropriate constant
to be chosen latter. Since KM ≤−1, we have by the Hessian comparison theorem
that 1r ≥ n− 1. Hence, mimicking the computations of the previous lemma, we
obtain the same polynomial, except that we have n− 1 instead of ε and B instead
of A. It is again clear that there exists B large enough that M(w)≤ 0. We remark
that such a constant does not depend on anything (except in the fact that KM ≤−1)
since we may choose the constant that is appropriate to the case n = 2 and it works
on all dimensions.

We are again in the situation of the hypotheses of Lemma 11, with U =�\Bs(y).
Hence we obtain, for all x ∈ ∂Bs(y)∩�,

u(x) ≤ sup
∂ct�\Bs(y)

u+ B π
2

and the proof is complete. �

Proof of Theorem 6. By combining the estimates obtained in Lemma 12 and
Proposition 13, we obtain the existence of a continuous function ϕ : ∂�→ R for
which Problem 2 is not solvable: it suffices to put ϕ(y)= π(A+ B), where A and
B are given by the previous results, and ϕ = 0 on ∂� \ Bs(y), where s is given in
the proof of Lemma 12. �

4. Applications

Corollary 14. Let � be a domain that has only finitely many points on ∂∞�. Then
Problem 2 is solvable for any continuous ϕ if and only if � is mean convex.

Proof. Notice that since ∂∞M is compact, ∂∞� is also compact and therefore
“finitely many points on ∂∞�” is equivalent to “isolated points on ∂∞�”. In order
to apply Theorem 7, it suffices to prove that � is strictly convex at infinity.

Given x ∈ ∂∞�, let W ⊂ �ct be a relatively open neighborhood of x . We
may suppose without loss of generality that x is the only point at infinity of W ,
otherwise we just work with any open subset of W where this property holds.
Choosing o ∈ M \W , we have that W is contained on some truncated cone centered
at o with radius R > 0, and as a consequence we have ∂W ⊂ M \ BR(o). Set
V :=� \ BR(o), and it is clear that it satisfies the required conditions. �

Corollary 15. If M satisfies the SC condition and � is a mean convex domain
of M such that ∂∞� is composed only of open portions and isolated points, then
Problem 2 is solvable in �. In particular, this is the case if either dim M = 2 or M
is rotationally symmetric, or

(7) min{KM(5) |5 is a 2-plane in Tp M , p ∈ BR+1(o)} ≥ −
e2k R

R2+2ε , R ≥ R∗

for some constants ε, R∗ > 0.
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Particular cases of Corollary 15 may be found in [Ripoll and Telichevesky 2015].

4.1. Application of the technique: Dirichlet problems for p-Laplacians. Con-
sider now the following Dirichlet problem for the p-Laplacian operator, p > 1, for
continuous u in the Sobolev space W 1,p(�):

(8)
{
1p(u) := div (|∇u|p−2

∇u)= 0 in �,
u|∂� = ϕ.

Concerning the case � = M , the counterexamples constructed by A. Ancona
[1994] and by A. Borbély [1998a] show that some convexity at infinity is also
needed to obtain existence of solutions of asymptotic Dirichlet problems related to
the Laplacian operator 1. I. Holopainen [2015] constructed a counterexample for
the p-Laplacian operator 1p. The manifolds constructed by them contain a point
in ∂∞M with the property that any open neighborhood of it has the whole manifold
as the convex hull, and hence M is not strictly convex at infinity.

On the other hand, in [Ripoll and Telichevesky 2015] the authors proved that
the SC condition is sufficient for solvability of asymptotic Dirichlet problems with
respect to 1p. We may extend this result to our case, proving that if � is strictly
convex at infinity, then every x ∈ ∂∞� is regular with respect to the operator 1p.

The proof is mutatis mutandis the same as we have done above; it is sufficient to
replace M by 1p and the function g constructed in Proposition 10 by

g(s) := c
∫
+∞

s
cosh(1−n)/(p−1)(t) dt,

where c is a sufficiently large constant (c = 2C(cosh 1)(n−1)/(p−1) works).
Together with the classical theory of existence of solutions over bounded domains

that satisfy the exterior sphere condition, we obtain the following result.

Theorem 16. Let M be a Hadamard manifold with sectional KM ≤−1. Let�⊂M
be an unbounded domain that is strictly convex at infinity and that satisfies the
exterior sphere condition on its finite part, namely, given x ∈ ∂�, there exist a
sphere contained in M \� that is tangent to ∂� at x. Then (8) is solvable for
any ϕ ∈ C(∂ct�).
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