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THE EISENSTEIN ELEMENTS OF MODULAR SYMBOLS
FOR LEVEL PRODUCT OF TWO DISTINCT ODD PRIMES

DEBARGHA BANERJEE AND SRILAKSHMI KRISHNAMOORTHY

We explicitly write down the Eisenstein elements inside the space of modu-
lar symbols for Eisenstein series with integer coefficients for the congruence
subgroups 00( pq) with p and q distinct odd primes, giving an answer to a
question of Merel in these cases. We also compute the winding elements
explicitly for these congruence subgroups. Our results are explicit versions
of the Manin–Drinfeld theorem.

1. Introduction

In his landmark paper on Eisenstein ideals, Mazur studied torsion points of elliptic
curves over Q and gave a list of possible torsion subgroups of elliptic curves (see
[Mazur 1977, Theorem 8]). Merel [1996b] wrote down modular symbols for the
congruence subgroups 00(p) for any odd prime p that correspond to differential
forms of the third kind on the modular curves. He then used these modular symbols
to give a uniform upper bound on the torsion points of elliptic curves over any
number field in terms of its extension degree [Merel 1996a]. The explicit expressions
of winding elements for prime level of [Merel 1996b] were used by Calegari and
Emerton [2005] to study the ramifications of Hecke algebras at the Eisenstein
primes. Several authors afterwards studied the torsion points of elliptic curves over
number fields using modular symbols.

In the present paper, we study elements of relative homology groups of the
modular curve X0(pq) that correspond to differential forms of the third kind with p
and q distinct odd primes. As a consequence, we give an “effective” proof of
the Manin–Drinfeld theorem (Theorem 9) for the special case of the image in
H1(X0(pq),R) of the path in H1(X0(pq), ∂(X0(pq)),Z) joining 0 and i∞. Since
the algebraic parts of the special values of the L-function are obtained by integrating
differential forms on these modular symbols, our explicit expression of the winding
elements should be useful for understanding the algebraic parts of the special values
at 1 of the L-functions of the quotient Jacobian of modular curves for the congruence
subgroup 00(pq) [Agashe 2000].

MSC2010: primary 11F67; secondary 11F11, 11F20, 11F30.
Keywords: Eisenstein series, modular symbols, special values of L-functions.
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For N ∈ {p, q, pq}, consider the basis EN of E2(00(pq)) (Section 4) for which
all the Fourier coefficients at i∞ belong to Z. The meromorphic differential forms
EN (z) dz are of the third kind on the Riemann surface X0(pq) but of the first kind
on the noncompact Riemann surface Y0(pq).

Let ξ : SL2(Z)→ H1(X0(pq), cusps,Z) be the Manin map (Section 3). For any
two coprime integers u and v with v ≥ 1, let S(u, v) ∈ Z be the Dedekind sum
(see Section 4.1). If g ∈ P1(Z/pqZ) is not of the form (±1, 1), (±1± kx, 1) or
(1,±1± kx) with x one of the primes p or q , then we can write it as (r −1, r +1).

Let δr be 1 or 0 depending on whether r is odd or even. For any integer k, let
sk = k + (δk − 1)pq be an odd integer. Choose integers s, s ′ and l, l ′ such that
l(sk x + 2)− 2spq = 1 and l ′sk x − 2s ′ pq/x = 1. Let

γ
x,k
1 =

(
1+ 4spq −2l

−4s(sk x + 2)pq 1+ 4spq

)
and γ

x,k
2 =

(
1+ 4s ′ pq/x −2l ′

−4s ′(sk)pq 1+ 4s ′ pq/x

)
be two matrices (see Lemma 28). For l = 1, 2, consider the integers

PN (γ
x,k

l )= sgn(t (γ x,k
l ))

(
2
(

S
(
s(γ x,k

l ), |t (γ x,k
l )|N

)
− S

(
s(γ x,k

l ), |t (γ x,k
l )|

))
− S

(
s(γ x,k

l ), 1
2 |t (γ

x,k
l )|N

)
+ S

(
s(γ x,k

l ), 1
2 |t (γ

x,k
l )|

))
with

s(γ x,k
1 )= 1− 4spq(1+ sk x), t (γ x,k

1 )=−2(l − 2s(sk x + 2)pq)

and

s(γ x,k
2 )= 1− 4s ′ pq

(
sk −

1
x

)
, t (γ x,k

2 )=−2(l ′− 2s ′sk pq).

Define the function FN : P
1(Z/pqZ)→ Z by

FN (g)=


2(S(r, N )− 2S(r, 2N )) if g = (r − 1, r + 1),
PN (γ

x,k
1 )− PN (γ

x,k
2 ) if g = (1+ kx, 1) or g = (−1− kx, 1),

−PN (γ
x,k
1 )+ PN (γ

x,k
2 ) if g = (1, 1+ kx) or g = (1,−1− kx),

0 if g = (±1, 1).

Theorem 1. The modular symbol

EEN =

∑
g∈P1(Z/pqZ)

FEN (g)ξ(g)

in H1(X0(pq), ∂(X0(pq)),Z) is the Eisenstein element (Section 5) corresponding
to the Eisenstein series EN ∈ E2(00(pq)).

In [Banerjee 2014], a description is given of Eisenstein elements in terms of
certain integrals for M = p2. In this article, we give an explicit description in
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terms of two matrices γ x,k
1 and γ x,k

2 . Let B1 :R→R be the periodic first Bernoulli
polynomial. For the Eisenstein series E pq (Section 4), we write down the Eisenstein
elements more explicitly if g = (r − 1, r + 1). Replacing p with pq [Merel 1996b,
Lemma 4], we write

Fpq(r − 1, r + 1)=
pq−1∑
h=0

B1

(
hr

2pq

)
.

Recall the concept of the winding elements (Definition 37). We write down the
explicit expression of the winding elements for the congruence subgroup 00(pq).

Corollary 2.

(1− pq)epq =
∑

x∈(Z/pqZ)∗

Fpq(1, x)
{

0, 1
x

}
.

Note that if ν = gcd(pq−1, 12) and n = (pq−1)/ν, then a multiple of winding
element nepq belongs to H1(X0(pq),Z). Manin and Drinfeld proved that the
modular symbol {0,∞} belongs to H1(X0(N ),Q) using the theory of suitable
Hecke operators acting on the modular curve X0(N )/Q. In this paper, we follow
the approach of Merel [1996b, Proposition 11]. Our explicit expression of winding
elements should be useful for understanding the algebraic part of the special values
of L-functions (see [Agashe 2000, p. 26]).

Since Hecke operators are defined over Q, there is a possibility that we can find
the Eisenstein elements for the congruence subgroups of odd level in a completely
different method without using boundary computations. It is tempting to remark
that our method should generalize to the congruence subgroup 00(N ) at least if N is
squarefree and odd. Unfortunately, generalizing our method is equivalent to having
an explicit understanding of boundary homologies of modular curves defined over
rationals. For instance, if N = pqr with p, q, r three distinct primes then there
are eight cusps. Since there are more cusps in these cases, the computation of
boundaries becomes much more tedious. One of the authors wishes to tackle the
difficulty using the “level” of the cusps in a future article.
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3. Modular symbols

Let H∪P1(Q)=H and let 0⊂ SL2(Z) be a congruence subgroup. The topological
space X0(C)= 0\H has a natural structure of a smooth compact Riemann surface.
Consider the usual projection map π : H→ X0(C) and recall that it is unramified
outside the elliptic points and the set of cusps ∂(X0). Both these sets are finite.

3.1. Rational structure of the curve X0(N) defined over Q. There is a smooth
projective curve X0(N ) defined over Q for which the space 00(N )\H is canonically
identified with the set of C-points of the projective curve X0(N ). We are interested
in understanding the Q-structure of the compactified modular curve X0(N ).

3.2. Classical modular symbols. Recall the following fundamental theorem.

Theorem 3 [Manin 1972]. For α ∈ H, consider the map c : 0→ H1(X0(N ),Z)

defined by
c(g)= {α, gα}.

The map c is a surjective group homomorphism which does not depend on the choice
of point α. The kernel of this homomorphism is generated by

(1) the commutator,

(2) the elliptic elements,

(3) the parabolic elements

of the congruence subgroup 0.

In particular, this theorem implies that {α, gα} = 0 for all α ∈ P1(Q) and g ∈ 0.

3.3. Manin map. Let S =
(

0 −1
1 0

)
, T =

(
1 1
0 1

)
and R = ST =

(
0 −1
1 1

)
. The modular

group SL2(Z) is generated by S and T .

Theorem 4 [Manin 1972]. Let

ξ : SL2(Z)→ H1(X0(pq), ∂(X0(pq)),Z)

be the map that takes a matrix g∈SL2(Z) to the class in H1(X0(pq), ∂(X0(pq)),Z)

of the image in X0(pq) of the geodesic in H∪P1(Q) joining g0 and g∞. Then

• the map ξ is surjective;

• for all g ∈ 00(pq)\SL2(Z), we have ξ(g)+ ξ(gS) = 0 and ξ(g)+ ξ(gR)+
ξ(gR2)= 0.

We have a short exact sequence

0→ H1(X0(pq),Z)→ H1(X0(pq), ∂(X0(pq)),Z)→ Z∂(X0(pq)) δ′
→Z→ 0.
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The first map is a canonical injection. The boundary map δ′ takes a geodesic, joining
the cusps r and s to the formal symbol [r ] − [s], and the third map is the sum of
the coefficients.

3.4. Relative homology group H1(X0( pq)− R∪ I, ∂(X0( pq)), Z). Consider the
points i =

√
−1 and ρ = 1

2(1+
√
−3) on the complex upper half-plane with ν

the geodesic joining i and ρ. These are the elliptic points on the Riemann surface
X0(pq). The projection map π is unramified outside cusps and elliptic points.

Say R = π(SL2(Z)ρ) and let I = π(SL2(Z)i) be the image of these two sets
in X0(pq). These two sets are disjoint. Consider now the relative homology group
H1(Y0(pq), R∪ I,Z). For g ∈ SL2(Z), let [g]∗ be the class of π(gν) in the relative
homology group H1(Y0(pq), R ∪ I,Z). Let ρ∗ = −ρ̄ be another point on the
boundary of the fundamental domain. The homology groups H1(Y0(pq),Z) are
subgroups of H1(Y0(pq), R ∪ I,Z). Suppose z0 ∈ H is such that |z0| = 1 and
−1
2 < Re(z0) < 1. Let γ be the union of the geodesics in H ∪ P1(Q) joining 0

to z0 and z0 to i∞. For g ∈ 00(pq)\SL2(Z), let [g]∗ be the class of π(gγ ) in
H1(X0(pq)− R ∪ I, ∂(X0(pq)),Z).

We have an intersection pairing

◦ : H1(X0(pq)− R ∪ I, ∂(X0(pq)),Z)×H1(Y0(pq), R ∪ I,Z)→ Z.

Recall the following results.

Proposition 5 [Merel 1996b; 1995, Proposition 1]. For g, h ∈ 00(pq)\SL2(Z),

[g]∗ ◦ [h]∗ =
{

1 if 00(pq)g = 00(pq)h,
0 otherwise.

Corollary 6 [Merel 1995, Corollary 1]. The homomorphism of groups Z00(pq)\SL2(Z)

→ H1(Y0(pq), R ∪ I,Z) induced by the map

ξ0

(∑
g

µgg
)
=

∑
g

µg[g]∗

is an isomorphism.

The following important property of the intersection pairing will be used later.

Corollary 7 [Merel 1995, Corollary 3]. For g ∈ 00(pq)\SL2(Z), let
∑

h µhh ∈
Z00(pq)\SL2(Z) be such that

∑
h µh[h]∗ is the image of an element of H1(Y0(pq),Z)

under the canonical injection. We have

[g]∗ ◦
(∑

h

µh[h]∗

)
= µg.
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We have a short exact sequence

0→ H1(X0(pq)− R ∪ I,Z)

→ H1(X0(pq)− R ∪ I, ∂(X0(pq)),Z)→ Z{∂(X0(pq))} δ
→Z→ 0.

The boundary map δ takes a geodesic, joining the cusps r and s to the formal
symbol [r ] − [s]. Note that δ′(ξ(g))= δ([g]∗) for all g ∈ SL2(Z).

Recall that we have a canonical bijection 00(pq)\SL2(Z)∼= P1(Z/pqZ) given
by
(

a b
c d

)
→ (c, d). Say

αk =

(
0 −1
1 k

)
, βr =

(
−1 −r
p r p− 1

)
and γs =

(
−1 −s
q sq − 1

)
.

We explicitly write down the elements of P1(Z/pqZ) as the set

{(1, k), (1, tp), (1, t ′q), (p, q), (q, p), (tp, 1), (t ′q, 1), (1, 0), (0, 1)}

with k ∈ (Z/pqZ)∗, t ∈ (Z/qZ)∗, t ′ ∈ (Z/pZ)∗. Observe that (p, q) = (tp, q) =
(p, t ′q) for all t and t ′ coprime to pq .

Lemma 8. The set

Ω = {I, αk, βr , γs | 0≤ k ≤ pq − 1, 0≤ r ≤ p− 1, 0≤ s ≤ q − 1}

forms a complete set of coset representatives of 00(pq)\SL2(Z).

Proof. The orbits 00(pq)αk , 00(pq)βl and 00(pq)γm are disjoint since ab−1 does
not belong to 00(pq) for two distinct matrices a and b from the set Ω . There are
1+ pq + p+ q = |P1(Z/pqZ)| coset representatives. �

We list different rational numbers of the form α(0) and α(∞) with α ∈ Ω as
equivalence classes of cusps as follows:

0 1/p 1/q

−l
lp−1

, (lp− 1, q)= 1

−m
mq−1

, (mq − 1, p)= 1

−1
k
, (k, p) > 1

−m
mq−1

, (mq − 1, p) > 1

−1
k
, (k, q) > 1

−l
lp−1

, (lp− 1, q) > 1

3.5. Manin–Drinfeld theorem. Following [Lang 1995], we briefly recall the state-
ment of the Manin–Drinfeld theorem.

Theorem 9 (Manin–Drinfeld [Drinfeld 1973]). For a congruence subgroup 0 and
any two cusps α and β in P1(Q), the path

{α, β} ∈ H1(X0,Q).
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This theorem can be reformulated in terms of divisor classes on the Riemann
surface.

Theorem 10. Let a=
∑

i mi Pi be a divisor of degree zero on X. Then a is a divisor
of a rational function if and only if there exists a cycle σ ∈ H1(X0,Z) such that∫

a
ω =

∑
i

mi

∫ Pi

P0

ω =

∫
σ

ω

for every ω ∈ H0(X0, �X0 ).

As a corollary, we notice that {x, y} ∈H1(X0,Q) if and only if there is a positive
integer m such that m(π0(x)−π0(y)) is a divisor of a function. In other words, the
degree-zero divisors supported on the cusps are of finite order in the divisor class
group. Manin and Drinfeld proved it using the extended action of the usual Hecke
operators. In particular, it says that {0,∞} ∈ H1(X0,Q) although 0 and ∞ are
two inequivalent cusps of X0. Ogg [1974] constructed a certain modular function
X0(pq) whose divisors coincide with degree-zero divisors on the modular curves.

4. Eisenstein series for 00( pq) with integer coefficients

Let σ1(n) denote the sum of the positive divisors of n. We consider the series

E ′2(z)= 1− 24
(∑

n

σ1(n)e2π inz
)
.

Let 1 be the Ramanujan cusp form of weight 12. For all N ∈ N, the function
z → 1(N z)/1(z) is a function on H invariant under 00(N ). The logarithmic
differential of this function is 2π i EN (z) dz and EN is a classical holomorphic
modular form of weight two for 00(N ) with constant term N − 1. The differential
form EN (z) dz is a differential form of the third kind on X0(N ). The periods
(Section 4.1) of these differential forms are in Z.

By [Diamond and Shurman 2005, Theorem 4.6.2], the set Epq = {E p, Eq , E pq}

is a basis of E2(00(pq)).

Lemma 11. The cusps ∂(X0(pq)) can be identified with the set {0,∞, 1/p, 1/q}.

Proof. If a/c and a′/c′ are in P1(Q), then

00(pq)
a
c
= 00(pq)

a′

c′
⇐⇒

(
ay
c

)
≡

(
a′+ jc′

c′y

)
(mod pq)

for some j and y such that gcd(y, pq) = 1 (see [Diamond and Shurman 2005,
p. 99]). A small check shows that the orbits 00(pq)0, 00(pq)∞, 00(pq)1/p and
00(pq)1/q are disjoint. �
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Let Div0(X0(pq), ∂(X0(pq)),Z) be the group of degree-zero divisors supported
on cusps. For all cusps x , let e00(pq)(x) denote the ramification index of x over
SL2(Z)\H∪P1(Q) and let

r00(pq)(x)= e00(pq)(x)a0(E[x]).

By [Stevens 1982, p. 23], there is a canonical isomorphism δ : E2(00(pq))→
Div0(X0(pq), ∂(X0(pq)),Z) that takes the Eisenstein series E to the divisor

(4-1) δ(E)=
∑

x∈00(pq)\P1(Q)

r00(pq)(x)[x].

Hence, the Eisenstein element is related to the Eisenstein series by the boundary
map. In Proposition 34, we prove that the boundary of the Eisenstein element is
indeed the boundary of the Eisenstein series. By [Stevens 1985, p. 538], we see that

e00(pq)(x)=


q if x = 1/p,
p if x = 1/q ,
1 if x =∞,
pq if x = 0.

Since
∑

x∈∂(X0(pq)) e00(pq)(x)a0(E[x])=0, we write the corresponding degree-zero
divisor as

δ(E)= a0(E)({∞}− {0})+ qa0

(
E
[

1
p

])({
1
p

}
−{0}

)
+pa0

(
E
[

1
q

])({
1
q

}
−{0}

)
.

4.1. Period homomorphisms. We now define period homomorphisms for differ-
ential forms of the third kind.

Definition 12 (period homomorphism). For EN ∈ Epq , the differential forms
EN (z) dz are of the third kind on the Riemann surface X0(pq) but of the first
kind on the noncompact Riemann surface Y0(N ). For any z0 ∈ H and γ ∈ 00(pq),
let c(γ ) be the class in H1(Y0(pq),Z) of the image in Y0(pq) of the geodesic in H

joining z0 and γ (z0). That the class is nonzero follows from Theorem 3. This class
is independent of the choice of z0 ∈ H. Let πEN (γ ) =

∫
c(γ )EN (z) dz. The map

πEN : 00(pq)→ Z is the “period” homomorphism of EN .

Let B1(x) be the first Bernoulli polynomial of period one defined by

B1(0)= 0, B1(x)= x − 1
2
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if x ∈ (0, 1). For any two integers u and v with v ≥ 1, we define the Dedekind sum

S(u, v)=
v−1∑
t=1

B1

( tu
v

)
B1

(u
v

)
.

Recall some well-known properties of the period mapping πEN (see [Mazur 1979,
p. 10; Merel 1996b, p. 14]) for the Eisenstein series EN ∈ Epq .

Proposition 13. Let γ =
(

a b
c d

)
be an element of 00(pq). Then

(1) πEN is a homomorphism 00(pq)→ Z;

(2) the image of πEN lies in µZ, where µ= gcd(N − 1, 12);

(3) πEN (γ )=


a+d

c
(N − 1)+ 12 sgn(c)

(
S(d, |c|)− S

(
d, |c|

N

))
if c 6= 0,

b
d
(N − 1) if c = 0;

(4) πEN (γ )= πEN

((
d c/N

Nb a

))
.

5. Eisenstein elements

Following [Merel 1996b] and [Merel 1993], we recall the concept of Eisenstein
elements of the space of modular symbols. For any natural number M > 4, the con-
gruence subgroup 00(M) is the subgroup of SL2(Z) consisting of all matrices

(
a b
c d

)
such that M | c. The congruence subgroup 00(M) acts on the upper half-plane H in
the usual way. The quotient space00(M)\H is denoted by Y0(M). A priori, these are
all Riemann surfaces and hence algebraic curves defined over C. There are models
of these algebraic curves defined over Q and they parametrize elliptic curves with
cyclic subgroups of order M . Let X0(M) be the compactification of the Riemann
surface Y0(M) obtained by adjoining the set of cusps ∂(X0(M))= 00(M)\P1(Q).

Definition 14 (Eisenstein elements). Let πEN : H1(Y0(pq),Z)→ Z be the period
homomorphism of EN (Section 4.1). The intersection pairing ◦ [Merel 1993]
induces a perfect, bilinear pairing

H1(X0(pq), ∂(X0(pq)),Z)×H1(Y0(pq),Z)→ Z.

Since ◦ is a nondegenerate bilinear pairing, there is a unique element EEN ∈

H1(X0(pq), ∂(X0(pq)),Z) such that EEN ◦ c = πEN (c). The modular symbol EEN

is the Eisenstein element corresponding to the Eisenstein series EN .

We intersect with the congruence subgroup 0(2) to ensure that the Manin maps
become bijective (rather than only surjective), compute the Eisenstein elements
for these modular curves, calculate the boundaries and show that these boundaries
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coincide with the original Eisenstein elements. In the case of 00(p2), although
it is difficult to find the Fourier expansion of modular forms at different cusps,
fortunately for all g ∈ 00(p) the matrices g

(
1 1
0 1

)
g−1 belong to 00(p2), and hence

it is easier to tackle the explicit coset representatives. Unfortunately, for N = pq or
N = p3 this is no longer true.

To get around this problem for the congruence subgroup 00(pq) with p and q
distinct primes, we use the relative homology groups H1(X0(pq), R ∪ I,Z). For
these relative homology groups, the associated Manin maps are bijective and the
push forward of the Eisenstein elements inside the original modular curves turns
out to have the same boundary as the original Eisenstein elements. We consider
three different homology groups in this paper. In particular, the study of the relative
homology group H1(X0(N ), R∪ I,Z) to determine the Eisenstein element is a new
idea. That these relative homology groups should be useful in the study of modular
symbols was discovered by Merel.

Definition 15 (almost Eisenstein elements). For N ∈ {p, q, pq}, the differential
form EN (z) dz is of the first kind on the Riemann surface Y0(pq). Since ◦ is a
nondegenerate bilinear pairing, there is a unique element

E ′EN
∈ H1(X0(pq)− R ∪ I, ∂(X0(pq)),Z)

such that E ′EN
◦c=πEN (c) for all c ∈H1(Y0(pq), R∪ I,Z). We call E ′EN

the almost
Eisenstein element corresponding to the Eisenstein series EN .

6. Even Eisenstein elements

6.1. Simply connected Riemann surface of genus zero with three marked points.
Recall that there is only one simply connected (genus zero) compact Riemann
surface up to conformal bijections: namely, the Riemann sphere or the projective
complex plane P1(C). A theorem of Belyi states that every compact, connected,
nonsingular algebraic curve X has a model defined over Q if and only if it admits a
map to P1(C) branched over three points.

Consider the subgroup 0(2) of SL2(Z) consisting of all matrices which are the
identity modulo the reduction map modulo 2. The Riemann surface 0(2) mod H

is a Riemann surface of genus zero, denoted by X (2). Hence, it can be identified
with P1(C).

The subgroup 0(2) has three cusps 0(2)0, 0(2)1 and 0(2)∞. Hence, 0(2)\H
becomes the simply connected Riemann surface P1(C) with the three marked
points 0(2)0, 0(2)1 and 0(2)∞ given by the respective cusps. The modular curve
X0(pq) has no obvious morphism to X (2). So we consider the modular curve X0
(Section 6.2). There are two obvious maps π, π ′ from X0 to the compact Riemann
surface X0(pq).
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6.2. Modular curves with bijective Manin maps. For the congruence subgroup
0 = 00(pq)∩0(2), consider the compactified modular curve X0 = 0\H∪P1(Q)

and let π0 : H∪P1(Q)→ X0 be the canonical surjection.
Let π0 : 0\H ∪P1(Q)→ 0(2)\H ∪P1(Q) be the map π0(0z) = 0(2)z. The

compact Riemann surface X (2) contains three cusps 0(2)1, 0(2)0 and 0(2)∞. Let
P−=π−1

0 (0(2)1) and let P+ be the union of two sets π−1
0 (0(2)0) and π−1

0 (0(2)∞).
Consider now the Riemann surface X0 with boundary P+ and P−.

Let δr be 1 or 0 depending on whether r is odd or even. For any integer k, let
sk = k + (δk − 1)pq be an odd integer. Let l and m be two unique integers such
that lq +mp ≡ 1 (mod pq) with 1≤ l ≤ p− 1 and 1≤ m ≤ q − 1. The matrices

α′pq =

(
pq pq − 1

pq + 1 pq

)
,

α′k =

(
sk(pq)2 sk pq − 1
sk pq + 1 sk

)
,

β ′r =

(
−1 −(r + δr q)

p+ pq −1+ (r + δr q)(p+ pq)

)
,

γ ′s =

(
−1 −(s+ δs pq)

q + pq −1+ (s+ δs pq)(q + pq)

)
are useful for calculating the boundaries of the Eisenstein elements.

Lemma 16. The set

1= {I, α′k, β
′

r , γ
′

s | 0≤ k ≤ pq − 1, 0≤ r ≤ q − 1, 0≤ s ≤ p− 1} ⊂ 0(2)

forms an explicit set of coset representatives of P1(Z/pqZ).

Proof. An easy check shows that the orbits 00(pq)α′k , 00(pq)β ′r and 00(pq)γ ′s are
disjoint. Since |P1(Z/pqZ)| = pq + p+ q + 1, the result follows. �

The coset representatives in the above lemma are chosen such that 00(pq)βr =
00(pq)β ′r and 00(pq)γs=00(pq)γ ′s .

Lemma 17. 0\0(2) is isomorphic to P1(Z/pqZ).

Proof. The explicit coset representatives of Lemma 16 produce the canonical
bijection. �

We study the relative homology groups H1(X0 − P−, P+,Z) and H1(X0 − P+,
P−,Z). The intersection pairing is a nondegenerate bilinear pairing ◦ :H1(X0−P+,
P−,Z)×H1(X0− P−, P+,Z)→Z. For g ∈0\0(2), let [g]0 (respectively [g]0) be
the image in X0 of the geodesic in H∪P1(Q) joining g0 and g∞ (respectively g1
and g(−1)). Recall the following fundamental theorems.
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Theorem 18 [Merel 1996b]. Let

ξ0 : Z
0\0(2)

→ H1(X0 − P+, P−,Z)

be the map which takes g ∈ 0\0(2) to the element [g]0 and

ξ 0
: Z0\0(2)→ H1(X0 − P−, P+,Z)

be the map which takes g ∈ 0\0(2) to the element [g]0. The homomorphisms ξ0

and ξ 0 are isomorphisms.

Theorem 19 [Merel 1996b]. For g, g′ ∈ 0(2), we have

[g]0 ◦ [g′]0 =
{

1 if 0g = 0g′,
0 otherwise.

The following two lemmas about the set P− are true for the congruence sub-
group 00(N ) with N odd.

Lemma 20. We can explicitly write the elements of the set P− in the form 0x/y
with x and y both odd.

Proof. Suppose that some element of P− is of the form 0x/y with x and y coprime
and y even. Consider the corresponding element in the marked simply connected
Riemann surface X (2). The cusp 0(2)x/y is an element such that y is even and p
is odd (gcd(x, y)= 1). First, choose p′, q ′ such that xq ′− yp′ = 1 and hence

D =
(

x p′

y q ′

)
∈ SL2(Z).

Clearly, q ′ is odd since y is even. If p′ is odd then replace the matrix D with DT−1

to produce a matrix in 0(2) that takes i∞ to x/y. This contradicts 0x/y ∈ P−.
If x is even then the projection of 0x/y produces an element of 0(2)0. So x is

necessarily odd. �

The following lemma is deeply influenced by important results of Manin [1972,
Proposition 2.2] and Cremona [1997, Proposition 2.2.3].

Corollary 21. We can explicitly write the set P− as {01, 01/(pq), 01/p, 01/q}.

Proof. Since P− = π−1
0 (0(2)1), we can write every element of the set P− as 0θ1

for some θ ∈ 1 (Lemma 16). Let δ ∈ {1, p, q, pq}. Then every element of P−
can be written as 0u/(vδ) with gcd(u, vδ)= 1 and gcd(vδ, pq/δ)= 1. Choose an
odd integer m and an even integer l such that lu−mvδ = 1. Matrix multiplication
shows that (

1 0
δ− 1 1

)(
1+ c −c

c 1− c

)
=

1
δ
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and (
−m u+m
−l l + vδ

)
=

u
vδ
,

and hence

A =
(

1 0
δ− 1 1

)(
1+ c −c

c 1− c

)(
l + vδ −m− u

l −m

)
is a matrix such that A(u/(vδ))= 1/δ. The matrix A belongs to 0 if and only if
cvδ≡ l ′ (mod pq/δ). Since vδ is coprime to pq/δ, there is always such a c. Hence,
the set P− consists of the four elements given in the statement of the corollary. �

Let π, π ′ : 0\H→ 00(pq)\H be the maps π(0z) = 00(pq)z and π ′(0z) =
00(pq) 1

2(z + 1) respectively. Consider the matrix h =
(

1 1
0 2

)
. The morphism π ′

is well defined since the matrix hγ h−1 belongs to 00(pq) for all γ ∈ 0. The
morphisms π, π ′ together induce a map

κ : C(X0)→ C(X0(pq))

between the function fields of the Riemann surfaces X0 given by κ( f (z)) =
f (π(0z))2/ f (π ′(0z)). Recall the description of the coordinate chart around a
cusp 0x [Miyake 1976] of the Riemann surface X0.

Definition 22. For a cusp y of the congruence subgroup 0, let 0y be the subgroup
of 0 fixing y. Let t ∈ SL2(R) be such that t (y) = i∞ and let m be the smallest
natural number such that t0y t−1 is generated by

(
1 m
0 1

)
. For the modular curve X0 ,

the local coordinate around the point 0y is given by z→ e2π i t (z)/m .

Example 23. Let y = 1/δ with δ one of the primes p or q . Then h(y)= u/δ with
(u, pq) = 1. Choose integers u′, δ′ with δ′ even such that uδ′ − u′δ = 1; hence
ρh(y) =

(
δ′ u′
−δ u

)
is such that ρh(y)(h(y))= i∞. We can choose such a δ′ ∈ Z since δ

is odd.
Matrix multiplication shows that

ρh(y)T eρh(y)
−1
=

(
1+ eδδ′ e(δ′)2

−eδ2 1− eδδ′

)
.

Hence, the smallest possible e to ensure tT et−1
⊂ 00(pq) is pq/δ.

Example 24. Since det(ρh(y) ◦ h)= 2,

t =
(1

2 l 0
0 1

)
ρh(y) ◦ h ∈ SL2(R)

and t (y)= i∞. A calculation shows that

tT et−1
=

(
1+ 1

2 eδδ′ 1
4 eδ′2

−eδ2 1− 1
2 eδδ′

)
.
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Hence, the smallest possible e to ensure tT et−1
⊂ 0 is e = 2pq/δ.

We use the following lemma to construct differential forms of the first kind on
the ambient Riemann surface X0 − P+.

Lemma 25. Let f : X0(pq)→ C be a rational function. The divisors of κ( f ) are
supported on P+.

Proof. Suppose f is a meromorphic function on the Riemann surface X0(pq).
Then f is given by g/h with g and h holomorphic functions on X0(pq). Every
element of P− is of the form 01/δ with δ | N . By [Miranda 1995, Proposition 4.1],
every holomorphic map on a Riemann surface locally looks like z→ zn.

Consider the morphism π ′ and the point on the modular curve 01/δ. The local
coordinates around the points 00(pq)0, 00(pq)∞ and 00(pq)1/p are given by
q0(z)= e2π i/(−pqz), q∞(z)= e2π i z and q1/q(z)= e2π i z/(p(−qz+1)) respectively. In
the modular curve X0, the local coordinates around the points of P− are given by

q1(z)= e2π i/(2pq(−z+1)),

q1/(pq)(z)= e2π i z/(2(−pqz+1)),

q1/p(z)= e2π i z/(2q(−pz+1)),

q1/q(z)= e2π i z/(2p(−qz+1)).

Now around the points 01 and 01/(pq) we have the equalities q0 ◦ π = q2
1 ,

q0 ◦π
′
= q4

1 and q1/(pq) ◦π = q2
1/(pq), q1/(pq) ◦π

′
= q4

1/(pq).
Let y = 1/δ with δ one of the primes p or q . The local coordinate chart around

the point 01/δ is z→ e2π iρh(x)◦h(z)/(4e). The map π ′ takes it to e2π i2ρh(x)(h(z))/e. For
this coordinate chart the map π ′ is given by z→ z4.

We now consider the map π and a matrix t =
(

1 0
−δ 1

)
such that t (y)= i∞ and

e = pq/δ. The local coordinate around the point 01/δ is z→ e2π i t (z)/(2e) and the
map π takes it to e2π i t (z)/e. In this coordinate chart, the map π is given by z→ z2.
Hence, the function ( f ◦π)2/( f ◦π ′) has no zero or pole on P−. �

Definition 26 (even Eisenstein elements). For EN ∈ Epq , let λEN : X0(pq)→ C

be the rational function whose logarithmic differential is 2π i EN (z) dz = 2π iωEN .
Consider the rational function λEN ,2= (λEN ◦π)

2/(λEN ◦π
′) on X0 . By Lemma 25,

this function has no zeros and poles in P−. Let κ∗(ωEN ) be the logarithmic dif-
ferential of the function. Let ϕEN (c) =

∫
c κ
∗(ωEN ) be the corresponding period

homomorphism H1(X0 − P+, P−,Z)→ Z.
By the nondegeneracy of the intersection pairing, there is a unique element

E0
EN
∈H1(X0−P−, P+,Z) such that E0

EN
◦c=ϕEN (c) for all c∈H1(X0−P+, P−,Z).

The modular symbol E0
EN

is the even Eisenstein element corresponding to the
Eisenstein series EN .
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For EN ∈ Epq , define a function FEN : P
1(Z/pqZ)→ Z by

FEN (g)= ϕEN (ξ0(g))=
∫ g(−1)

g(1)

(
2EN (z)− EN

( 1
2(z+ 1)

))
dz.

Remark 27. It is easy to see that for any γ =
(

a b
c d

)
∈ 0(2),

hγ h−1
=

(
a+ c 1

2(b+ d − a− c)
2c d − c

)
∈ SL2(Z).

For any matrix γ ∈ 0, consider the rational numbers

PN (γ )=
1
12(2πEN (γ )−πEN (hγ h−1)),

t (γ )= b+ d − a− c,

s(γ )= a+ c.

Lemma 28. For γ =
(

a b
c d

)
∈ 0 with c 6= 0,

PN (γ )= sgn(t (γ ))
(

2
(

S
(
s(γ ), |t (γ )|pq

)
− S

(
s(γ ), |t (γ )|

))
− S

(
s(γ ),

∣∣1
2 t (γ )

∣∣pq
)
+ S

(
s(γ ), 1

2 |t (γ )|
))
.

In particular, PN (γ ) ∈ Z for all γ ∈ 0.

Proof. Recall the properties of period homomorphism (see Proposition 13). We
calculate the corresponding periods:

πEN (γ )= πE(T γ T−1)

= πEN

((
a+ c −(a+ c)+ b+ d

c −c+ d

))
= πEN

((
a+ c −(a+ c)+ b+ d

c −c+ d

))
= πEN

((
d − c c/N

t (γ )N a+ c

))
.

By Proposition 13, we have

πEN (γ )=
a+d

t (γ )N
(N − 1)+ 12 sgn(t (γ ))

(
S
(
s(γ ), |t (γ )|N

)
− S

(
s(γ ), |t (γ )|

))
.
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Similarly,

πEN (hγ h−1)

= πEN

((
a+ c 1

2(b+ d − a− c)
2c d − c

))
= πEN

((
d − c 2c/N

1
2 t (γ )N 2 a+ c

))
=

2(a+d)
t (γ )N

(N − 1)+ 12 sgn(t (γ ))
(

S
(
s(γ ), 1

2 |t (γ )|N
)
− S

(
s(γ ), 1

2 |t (γ )|
))
.

Hence, we deduce the formula given in the lemma statement. From the formula,
we see that PN (γ ) ∈ Z for all γ ∈ 0. �

Let x be one of the primes p or q. Choose integers s, s ′ and l, l ′ such that
l(sk x + 2)− 2spq = 1 and l ′sk x − 2s ′ pq/x = 1. Let

γ
x,k
1 =

(
1+ 4spq −2l

−4s(sk x + 2)pq 1+ 4spq

)
and γ

x,k
2 =

(
1+ 4s ′ pq/x −2l ′

−4s ′(sk)pq 1+ 4s ′ pq/x

)
be two matrices in 0. Since the integers l and l ′ are necessarily odd, we have
γ

x,k
1 (1/(sk x + 2))=−1/(sk x + 2) and γ x,k

2 (1/(sk x))=−1/(sk x).
Using the formula of Lemma 28, we deduce that

s(γ x,k
1 )= 1− 4spq(1+ sk x), t (γ x,k

1 )=−2(l − 2s(sk x + 2)pq)

and
s(γ x,k

2 )= 1− 4s ′ pq
(

sk −
1
x

)
, t (γ x,k

2 )=−2(l ′− 2s ′sk pq).

We can now calculate PN (γ
x,k
1 ) and PN (γ

x,k
2 ) using Lemma 28.

Proposition 29.

FEN (g)=


12(S(r, N )− 2S(r, 2N )) if g = (r − 1, r + 1),
6(PN (γ

x,k
1 )− PN (γ

x,k
2 )) if g = (1+ kx, 1) or g = (−1− kx, 1),

−6(PN (γ
x,k
1 )− PN (γ

x,k
2 )) if g = (1,−1− kx) or g = (1, 1+ kx),

0 if g = (±1, 1).

Proof. If g = (r − 1, r + 1) and EN ∈ Epq , we get [Merel 1996b, p. 18]

FEN (g)= ϕEN (ξ0(g))= 12(S(r, N )− 2S(r, 2N )).

We now find the value of the integrals in the remaining cases. The differential
form k∗(ωEN ) is of the first kind on the Riemann surface X0 − P+. We also note
that if g = (±1, 1), (±1± kx, 1) or (1,±1± kx) with x one of the primes p or q ,
then we can’t write it as (r − 1, r + 1).
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Since all the Fourier coefficients of the Eisenstein series are real-valued, an
argument similar to one in [Merel 1996b, p. 19] shows that FEN (sk x + 1, 1) =
FEN (−sk x − 1, 1). Consider the path{

1
sk x+2

,
−1

sk x+2

}
=

{
1

sk x+2
,

1
sk x

}
+

{
1

sk x
,
−1
sk x

}
+

{
−1
sk x

,
−1

sk x+2

}
.

The rational number 1/(sk x) corresponds to a point of P− in the Riemann surface X0 .
The differential form k∗ωEN has no zeros and poles on P−. We deduce that∫

−1/(sk x+2)

1/(sk x+2)
k∗(ωEN )

=

∫ 1/(sk x)

1/(sk x+2)
k∗(ωEN )+

∫
−1/(sk x)

1/(sk x)
k∗(ωEN )+

∫
−1/(sk x+2)

−1/(sk x)
k∗(ωEN )

= 2FN (sk x + 1, 1)+
∫
−1/(sk x)

1/(sk x)
k∗(ωEN ).

Let γ x,k
1 and γ x,k

2 be two matrices in 0 such that γ x,k
1 (1/(sk x+2))=−1/(sk x+2)

and γ x,k
2 (1/(sk x))=−1/(sk x). Then

2FN (sk x + 1, 1)=
∫ γ

x,k
1 (1/(sk x+2))

1/(sk x+2)
k∗(ωEN )−

∫ γ
x,k
2 (1/(sk x))

1/(sk x)
k∗(ωEN ).

We now prove that
∫ γ x,k

2 (1/(sk x))
1/(sk x) k∗(ωEN ) is independent of the choice of the

matrices γ x,k
2 ∈ 0 that take 1/(sk x) to −1/(sk x). Suppose γ x,k

2 and γ ′x,k2 are two
matrices such that γ x,k

2 (1/(sk x))= γ ′x,k2 (1/(sk x))=−1/(sk x). Since γ x,k
2 ∈ 0,

ϕEN (γ
x,k
2 )=

∫ γ
x,k
2 (1/(sk x))

1/(sk x)
k∗(ωEN )

is independent of the choice of any point in H∪ {−1}. By replacing 1/(sk x) with
(γ

x,k
2 )−1(γ ′

x,k
2 )(1/(sk x)), we get that the above integral is the same as∫ γ ′

x,k
2 (1/(sk x))

1/(sk x)
k∗(ωEN )

and the integral is independent of the choice of exceptional matrices. Similarly, we
can prove that ∫ γ x,k(1/(sk x+2))

1/(sk x+2)
k∗(ωEN )

is also independent of the choice of the matrices that take 1/(sk x+2) to−1/(sk x+2).
Since we have already written down two matrices γ x,k

1 and γ x,k
2 in 0 such that
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γ
x,k
1 (1/(sk x + 2)) = −1/(sk x + 2) and γ x,k

2 (1/(sk x)) = −1/(sk x), we use these
matrices to find those integrals.

The above calculation shows that

2πEN (γ
x,k
1 )−πEN (hγ

x,k
1 h−1)= 2FN (sk x+1, 1)+2πEN (γ

x,k
2 )−πEN (hγ

x,k
2 h−1).

We get

FEN (sk x + 1, 1)

=
1
2(2πEN (γ

x,k
1 )−πEN (hγ

x,k
1 h−1)− 2πE(γ

x,k
2 )+πE(hγ

x,k
2 h−1))

= 6(PN (γ
x,k)− PN (γ

x,k
2 )).

Since FEN (1+ sk x, 1) = −FEN (1,−1− sk x), the above equation determines the
Eisenstein elements for the Eisenstein series EN completely. �

From the above lemma, we conclude that 6FN (g)= FEN (g).

Lemma 30. For EN ∈E2(00(pq)), consider the element E0
EN
∈H1(X0−P−, P+,Z)

defined by E0
EN
=
∑

g∈P1(Z/pqZ) FEN (g)ξ
0(g). For all c ∈ H1(X0− P+, P−,Z), we

have E0
EN
◦ c = ϕEN (c).

Proof. By Theorem 19, we can write the even Eisenstein element uniquely as∑
g∈P1(Z/pqZ)

HEN (g)ξ
0(g).

By the same theorem, [g]0 ◦ [h]0 = 1 if and only if 0g = 0h. The functions HEN

and FEN coincide since

HEN (g)=
∑

g∈P1(Z/pqZ)

HEN (g)ξ
0(g) ◦ ξ0(g)= E0

EN
◦ ξ0(g)= FEN (g). �

For the modular curve X0, we have a similar short exact sequence

0→ H1(X0 − P−,Z)→ H1(X0 − P−, P+,Z) δ
0
→ZP+→ Z→ 0.

The boundary map δ0 takes a geodesic, joining the points r and s of P+ to the
formal symbol [r ] − [s].

7. Eisenstein elements and winding elements for 00( pq)

7.1. Eisenstein elements for 00( pq). We first prove an elementary number theo-
retic lemma. Recall, l and m are two unique integers such that lq+mp≡1 (mod pq)
with 1≤ l ≤ p− 1 and 1≤ m ≤ q − 1.

Lemma 31. For all k with 1 ≤ k ≤ q − 1, we can choose an integer s(k) ∈ Z/qZ

such that
(kp,−1)= (p, s(k)p− 1)
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in P1(Z/pqZ). The map k→ s(k) is a bijection (Z/qZ)∗→ Z/qZ−{m}.

Proof. For all k with 1 ≤ k ≤ q − 1, let k ′ be the inverse of k in (Z/qZ)∗. By
the Chinese remainder theorem, we choose a unique x with 1 ≤ x ≤ pq − 1
such that x ≡ −1 (mod p) and x ≡ −k ′ (mod q). Observe that x is coprime to
both p and q. We write x = s(k)p− 1 for a unique s(k) with 0 ≤ s(k) ≤ q − 1.
Since 00(pq)\SL2(Z) ∼= P1(Z/pqZ), we deduce that (kp,−1) = (xkp,−x) =
(−p,−x)= (p, x)= (p, s(k)p− 1) in P1(Z/pqZ).

Consider the map (Z/qZ)∗→Z/qZ given by k→ s(k). If lq+mp≡1 (mod pq)
then m is not in the image. This map is one-to-one since s(k) = s(h) implies
k ≡ h (mod q). Thus the map (Z/qZ)∗→ Z/qZ−{m}k→ s(k) is a bijection. �

For all t coprime to pq , consider the set V of all matrices of the form αt .

Proposition 32. The boundary of any element

X =
∑

g∈P1(Z/pqZ)

F(g)[g]∗

in H1(X0(pq)− R ∪ I, ∂(X0(pq)),Z) is of the form

δ(X)= A(X)
[

1
p

]
+ B(X)

[
1
q

]
+C(X)[∞]− (A(X)+ B(X)+C(X))[0]

with

A(X)=
q−1∑
k=0

(F(βk)− F(βk S)),

B(X)=
p−1∑
i=0

(F(γi )− F(γi S)),

C(X)= F(0, 1)− F(1, 0).

Proof. Choose an explicit coset representative of 00(pq)\SL2(Z) (see Lemma 8)
and write

X = C(X)[I ]∗+
∑
αt∈V

F(1, t)[αt ]
∗
+

q−1∑
k=1

F(1, kp)[αkp]
∗

+

p−1∑
k=1

F(1, kq)[αkq ]
∗
+

q−1∑
i=0

F(p, i p− 1)[βi ]
∗
+

p−1∑
j=0

F(q, jq − 1)[β j ]
∗.
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According to Lemma 31 for 1 ≤ k ≤ q − 1, we have αkp S = Zβs(k) for some
Z ∈ 00(pq). We deduce that

q−1∑
k=1

F(1, kp)[αkp]
∗
+

q−1∑
i=0

F(p, i p− 1)[βi ]
∗

=

q−1∑
k=1

(
F(1, kp)[αkp]

∗
+ F(kp,−1)[αkp S]∗

)
+ F(βm)[βm]

∗

and
p−1∑
k=1

F(1, kq)[αkq ]
∗
+

p−1∑
j=0

F(q, jq − 1)[γ j ]
∗

=

p−1∑
k=1

(
F(1, kq)[αkq ]

∗
+ F(kq,−1)[αkq S]∗

)
+ F(γl)[γl]

∗.

A small check shows that δ([αkp]
∗)= δ([αp]

∗) and δ([αkp]
∗)=−δ([αkp S]∗).

We now calculate δ([βm]
∗) and δ([γl]

∗). Since lq + mp ≡ 1 (mod pq) and
−I ∈ 00(pq), we get

(7-1)
(

1− q(l − 1) m(l − 1)
(l − 1)pq 1+ lq(l − 1)

)(
m −l
q p

)
= γβm S

and (
1− p(m+ 1) −l(m+ 1)
(1+m)pq 1−mp(l +m)

)(
m −l
q p

)
=

(
−1 −l
q −mp

)
= γl

for some γ ∈ 00(pq), and hence we have 00(pq)βm S = γl . From δ([βm]
∗) =

δ([αq ]
∗
− [αp]

∗) and δ([γl]
∗)= δ([αp]

∗
− [αq ]

∗), it is easy to see that

δ

( q−1∑
k=1

F(1, kp)[αkp]
∗
+

q−1∑
i=0

F(p, j p− 1)[β j ]
∗

)

=

q−1∑
k=1

(
F(1, kp)− F(kp,−1)

)
δ([αp]

∗)+ F(βm)δ([βm]
∗)

and

δ

( p−1∑
k=1

F(1, kq)[αkq ]
∗
+

p−1∑
j=0

F(q, jq − 1)[γ j ]
∗

)

=

p−1∑
k=1

(
F(1, kq)− F(kq,−1)

)
δ([αq ]

∗)+ F(q, lq − 1)δ([γl]
∗).
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We have

F(p,mp− 1)δ([βm]
∗)+ F(q, lq − 1)δ([γl]

∗)

=
(
F(βm)− F(βm S)

)(
δ([αq ]

∗)− δ([αp]
∗)
)
.

Recall, δ([αp]
∗)= [0]− [1/p] and δ([αq ]

∗)= [0]− [1/q]. The above calculation
shows that

δ(X)= C(X)δ([I ]∗)+ A(X)δ([αp]
∗)+ B(X)δ([αq ]

∗)

with

A(X)=
q−1∑
k=0

(F(p, kp− 1)− F(kp− 1,−p)),

B(X)=
p−1∑
m=0

(F(γ ′l )− F(γ ′l S)),

C(X)= F(I )− F(S). �

We also prove a similar proposition for 0 ⊂ 0(2).

Proposition 33. The boundary of any element

X =
∑

g∈P1(Z/pqZ)

F(g)ξ 0(g)

in H1(X0 − P−, P+,Z) is of the form

δ0(X)= A′(X)
[

1
p

]
+ B ′(X)

[
1
q

]
+C ′(X)[∞]− (A′(X)+ B ′(X)+C ′(X))[0]

with

A′(X)=
q−1∑
k=0

F(β ′k)−
( q−1∑

k=1

F(α′kp)

)
− F(γ ′l ),

B ′(X)=
p−1∑
i=0

F(γ ′i )−
( p−1∑

k=1

F(α′kq)

)
− F(β ′m),

C ′(X)= F(0, 1)− F(α′pq).

Proof. This is a straightforward calculation using the coset representatives of 0\0(2)
(see Lemma 16). �

Proposition 34. For E ∈ Epq , the boundaries of almost Eisenstein elements E ′E
in H1(X0(pq)− R ∪ I, ∂(X0(pq)),Z) corresponding to the Eisenstein series E
are −δ(E) (Section 4).
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Proof. For E ∈ Epq , let E ′E =
∑

g∈P1(Z/pqZ) G E(g)[g]∗ be the almost Eisenstein ele-
ment. According to Proposition 32, we need to calculate A(E ′E), B(E ′E) and C(E ′E).

For all 0≤ k < q − 1, βk T = βk+1 and βq−1T = γβ0 with

γ =

(
1+ pq q
−qp2 1− qp

)
.

We have an inclusion H1(Y0(pq),Z)→ H1(Y0(pq), R ∪ I,Z). Since {ρ∗, γρ∗} =
{β0ρ

∗, γβ0ρ
∗
} = −

∑q−1
k=0{βkρ, βkρ

∗
}, we deduce that

πE(γ )=

∫ γ z0

z0

E(z) dz

= E ′E ◦ {z0, γ z0}

= −E ′E ◦
( q−1∑

k=0

{βkρ, βkρ
∗
}

)

=−

q−1∑
k=0

E ′E ◦ {βkρ, βkρ
∗
}.

Applying Corollary 6, we have

q−1∑
k=0

E ′E ◦ {βkρ, βkρ
∗
} =

q−1∑
k=0

(G E(βk)−G E(βk S))=−A(E ′E).

Hence, we prove that A(E ′E) = −πE(γ ). By interchanging p and q, we have
B(E ′E)=−πE(γ0) for

γ0 =

(
1+ pq p
−pq2 1− qp

)
.

We now calculate πE(γ ) and πE(γ0) using [Stevens 1985]. Recall, 1/p is a cusp
with e00(pq)(1/p)= q . Consider the matrices

x =
(

1 −q
−p 1+ qp

)
and y =

(
1 −p
−q 1+ qp

)
.

One can easily check that x
( 1 q

0 1

)
x−1
=γ and y

( 1 p
0 1

)
y−1
=γ0. Notice that x(i∞)=

00(pq)1/p and y(i∞)= 00(pq)1/q. By [Stevens 1985, p. 524], we deduce that
πE(γ )= e00(pq)(1/q)a0(E[1/p]) and πE pq (γ0)= e00(pq)(1/p)a0(E[1/p]).

According to Proposition 32, the boundary of the almost Eisenstein element
corresponding to an Eisenstein series E is

δ(E ′E)= A(E ′E)
[

1
p

]
+ B(E ′E)

[
1
q

]
+C(E ′E)[∞]− (A(E

′

E)+ B(E ′E)+C(E ′E))[0]
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with A(E ′E)= qa0(E[1/p]), B(E ′E)= pa0(E[1/q]) and C(E ′E)=−(F(I )−F(S)).
Applying Corollary 6 again, we deduce that F(I )− F(S)=

∫ ρ∗
ρ

E(z) dz =−a0(E).
For E ∈ E2(00(pq)), the boundary of E is

δ(E)= a0(E)([∞]− [0])

+ qa0

(
E
[

1
p

])([
1
p

]
− [0]

)
+ pa0

(
E
[

1
q

])([
1
q

]
− [0]

)
= δ(E ′E). �

Let β and h be the matrices
(

1 2
0 1

)
and

(
1 1
0 2

)
respectively. Let

π∗ : H1(X0 − P−, P+,Z)→ H1(X0(pq)− R ∪ I, ∂(X0(pq)),Z)

be the isomorphism defined by π∗(ξ0(g))= [g]∗ [Merel 1995, Corollary 1]. It is
easy to see that δ(π∗(X))= δ0(X) for all X ∈ H1(X0 − P−, P+,Z).

Proposition 35. For all E ∈ Epq , let E0
E denote the even Eisenstein element in

H1(X0 − P−, P+,Z) (Section 6). The boundary of the modular symbol π∗(E0
E)

is −6δ(E).

Proof. By Theorem 18, we can explicitly write down the even Eisenstein element E0
E

in the relative homology group H1(X0 − P−, P+,Z) as

E0
E =

∑
g∈P1(Z/pqZ)

FE(g)ξ0(g).

According to Proposition 33, we need to calculate A′(E0
E), B ′(E0

E) and C ′(E0
E). For

0 ≤ k < q − 2, we have β ′kβ = β
′

k+2. A small check shows that β ′q−1β = β
′

1 and
β ′q−2β = γ

′β ′0 with

γ ′ =

(
1+ 2pq(1+ q) 2q
−2q(p+ pq)2 1− 2pq(1+ q)

)
∈ 0.

As a homology class in H1(X0 − P+, P−,Z), we have

{−1, γ ′(−1)} = {β ′0(−1), γ ′β ′0(−1)}

= −

q−1∑
k=0

{β ′k(1), β
′

k(−1)}

=

q−1∑
k=0

{β ′k(−1), β ′k(1)}.
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By the definition of the even Eisenstein elements, we conclude that∫ γ ′z0

z0

k∗(ωE)= E0
E ◦ {z0, γ

′z0}

= −E0
E ◦

q−1∑
k=0

(β ′k(1), β
′

k(−1))

=−

q−1∑
k=0

E0
E ◦ {β

′

k(1), β
′

k(−1)}.

It is easy to see that h ASBh−1
∈ SL2(Z) for all A, B ∈0(2). Since [α′kq S] = [γ ′s(k)]

in P1(Z/pqZ), we have κ ′ = α′kq S(γ ′s(k))
−1
∈ 00(pq) and hκ ′h−1

∈ 00(pq). We
deduce that the differential form

k∗(ωE)= f (z) dz =
(
2E(z)− 1

2 E
( 1

2(z+ 1)
))

dz

is invariant under κ ′. According to the above argument,

(7-2) FE(α
′

kq)=

∫ α′kq (−1)

α′kq (1)
f (z) dz

=

∫ α′kq S(1)

α′kq S(−1)
f (z) dz

=−

∫ α′kq S(−1)

α′kq S(1)
f (z) dz

=−

∫ κ ′−1α′kq S(−1)

κ ′−1α′kq S(1)
f (κ ′z) dκ ′z

=−

∫ γ ′s(k)(−1)

γ ′s(k)(1)
f (z) dz

=−FE(γ
′

s(k)).

A similar calculation shows that FE(γ
′

l ) = −FE(β
′
m) and FE(αkp) = −FE(βs(k))

for some s(k) ∈ (Z/qZ)∗. Applying Theorem 18, we have

q−1∑
k=0

FE(β
′

k)=

q−1∑
k=0

E0
E ◦ {β

′

k(1), β
′

k(−1)} = −
∫ γ ′z0

z0

k∗(ωE).

According to the definition of the period πE of the Eisenstein series E(z) (see
Section 4), we get∫ γ ′z0

z0

k∗(ωE)=

∫ γ ′z0

z0

(
2E(z)− 1

2 E
( 1

2(z+ 1)
))

dz = 2πE(γ
′)−πE(hγ ′h−1).
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We calculate πE(γ
′) and πE(hγ ′h−1). From Remark 27, we see that

hγ ′h−1
=

(
1+ z qv2

−4p2q(1+ q)2 1− z

)
with v = 1− p(1+ q) and z = 2pqv(1+ q). Furthermore, the matrix hγ ′h−1

decomposes as

hγ ′h−1
=

(
1− p(1+ q) 1

2 p(1+ q)
−2p(1+ q) 1+ p(1+ q)

)(
1 q
0 1

)(
1− p(1+ q) 1

2 p(1+ q)
−2p(1+ q) 1+ p(1+ q)

)−1

.

Since the matrix (
1− p(1+ q) 1

2 p(1+ q)
−2p(1+ q) 1+ p(1+ q)

)−1

takes the cusp i∞ to 1/p, we have πE(hγ ′h−1) = qa0(E[1/p]). We further
decompose γ ′ as(

1 −2q
−p(1+ q) 1+ 2pq(1+ q)

)(
1 2q
0 1

)(
1 −2q

−p(1+ q) 1+ 2pq(1+ q)

)−1

.

The matrix (
1 −2q

p(1+ q) 1+ 2pq(1+ q)

)
takes the cusp i∞ to 1/p. We see that πE(γ

′)= 2qa0(E[1/p]) and
∫ γ ′z0

z0
k∗(ωE)=

3a0(E[1/p]). A simple calculation shows that

A′(E0
E)=

q−1∑
k=0

FE(β
′

k)−

q−1∑
k=0

FE(α
′

kp)− FE(γ
′

m)= 2
q−1∑
k=0

FE(β
′

k)=−6a0

(
E
[

1
p

])
.

By interchanging p and q , we get B ′(E0
E)=−6a0(E[1/q]). Since α′pq S ∈ 00(pq),

a calculation similar to (7-2) shows that

FE(I )=−FE(αpq)

=

∫
−1

1

(
2E(z)− 1

2 E
( 1

2(z+ 1)
))

dz

=−

∫ β(−1)

−1

(
2E(z)− 1

2 E
( 1

2(z+ 1)
))

dz

=−3a0(E).

We conclude that C ′(E0
E) = FE(I )− FE(αpq) = −6a0(E) and hence δ0(E0

E) =

δ(E0
E)=−6δ(E). �
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The inclusion map

i : (X0(pq)− R ∪ I, ∂(X0(pq)))→ (X0(pq), ∂(X0(pq)))

induces an onto map

i∗ : H1(X0(pq)− R ∪ I, ∂(X0(pq)),Z)→ H1(X0(pq), ∂(X0(pq)),Z)

with i∗([g]∗) = ξ(g). Note that δ([g]∗) = [g0] − [g∞] = δ′(ξ(g)) = δ′(i∗([g]∗)).
From Section 3.4, we have that δ(c) = δ′(i∗(c)) for all homology classes c ∈
H1(X0(pq)− R ∪ I, ∂(X0(pq)),Z).

Lemma 36. The integrals of every holomorphic differential on X0(pq) over i∗(E ′E)
and i∗π∗(E0

E) are zero.

Proof. The proof is a straightforward generalization of [Merel 1996b, Lemma 5]. �

We now prove the main theorem.

Proof of Theorem 1. By [Merel 1995, Corollary 3], we obtain i∗(E ′E)◦c= E ′E ◦i
∗c=∫

c i∗(E(z) dz). Hence, i∗(E ′E) is the Eisenstein element inside the space of modular
symbols corresponding to E . By Propositions 34 and 35, the boundary of π∗(E0

E)

is the same as the boundary of 6i∗(E ′E).
There is a nondegenerate bilinear pairing S2(00(pq))×H1(X0(pq),R)→ C

given by ( f, c)=
∫

c f (z) dz. Hence, the integrals of holomorphic differentials over
H1(X0(pq),Z) are not always zero. By Lemma 36, the integrals of holomorphic
differentials over i∗(E ′E) and i∗(π∗(E0

E)) are always zero. We deduce that

EE = i∗(E ′E)=
1
6

i∗π∗(E0
E)=

1
6

∑
g∈P(Z/pqZ)

FE(g)ξ(g)

for E ∈ Epq . Since FN (g)= 1
6 FEN (g), we obtain the theorem. �

7.2. Winding elements of level pq. Recall the concept of the winding element.

Definition 37 (winding element). Let {0,∞} denote the projection of the path from
0 to∞ in H∪P1(Q) to X0(pq)(C). We have an isomorphism H1(X0(pq),Z)⊗R=

HomC(H0(X0(pq),�1),C). Let epq ∈ H1(X0(pq),R) correspond to the homo-
morphism ω→−

∫
∞

0 ω. The modular symbol epq is called the winding element.

The winding elements are the elements of the space of modular symbols whose
annihilators define ideals of the Hecke algebras with the L-functions of the cor-
responding quotients of the Jacobian nonzero. In this paper, we find an explicit
expression of the winding element. Let epq ∈ H1(X0(pq),Z)⊗R be the winding
element. The following lemma will help us write down the winding element
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explicitly. Since
∑

x∈∂(X0(pq)) e00(pq)(x)a0(E[x])= 0, we write

δ(E)=a0(E)({∞}−{0})+qa0

(
E
[

1
p

])({
1
p

}
−{0}

)
+pa0

(
E
[

1
q

])({
1
q

}
−{0}

)
.

Lemma 38. The constant Fourier coefficients of E pq at cusps 0, 1/p, 1/q and∞
are 1

24(1− pq)/(pq), 0, 0 and 1
24(pq − 1) respectively.

Proof. We first prove that the constant coefficient for the Fourier expansion of E pq

at the cusp 1/p is 0. As usual, the constant term of the Fourier expansion of E pq at
the cusp 1/p is the constant term at∞ of E pq [β0]. Similarly, the constant term of
the Fourier expansion of E pq at the cusp 1/q is the constant term at∞ of E pq [γ0].
Let 1 be the Ramanujan cusp form of weight 12. We write

d
dz

log1(β(z))= 12 d
dz

log(pz+ 1)+ d
dz

log1(z) for β =
(

1 0
p 1

)
.

A simple calculation shows that

1

(
pqz

pz+ 1

)
=1

((
q 0
1 1

)
pz
)

=1

((
q −1
1 0

)(
1 1
0 q

)
pz
)

=1

((
q −1
1 0

)(
pz+ 1

q

))
=

(
pz+ 1

q

)12

1

(
pz+ 1

q

)
.

By taking logarithmic derivative, we deduce that

d
dz

log1
(

q −1
1 0

)(
pz+ 1

q

)
= 12

d
dz

log(pz+ 1)+
d
dz

log1
(

pz+ 1
q

)
.

Since

E pq(z)=
1

2π i
d
dz

log
1(pqz)
1(z)

,

the above calculation shows that the constant term of E pq at the cusp 1/p is 0.
Similarly, the constant term of E pq at the cusp 1/q is 0. The constant term of E pq

at the cusp∞ is 1
24(pq − 1) and at 0 is 1

24(1− pq)/(pq). �

Using Lemmas 36 and 38, we have:

Corollary 39.

(1− pq)epq =
∑

x∈(Z/pqZ)∗

Fpq(1, x)
{

0, 1
x

}
.
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Remark 40. For the Eisenstein series E p ∈ E2(00(p)), 1/p represents the cusp∞
and 1/q represents the cusp 0. We deduce that a0(E p[β0]) =

1
24(p − 1) and

a0(E p[γ0])=
1

24(1− p)/p. For the other Eisenstein series Eq ∈ E2(00(q)), 1/q
represents the cusp∞ and 1/p represents the cusp 0. We deduce that a0(Eq [γ0])=
1

24(q − 1) and a0(Eq [β0])=
1

24(1− q)/q .
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In the present paper we show that Hall algebras of finitary exact categories
behave like quantum groups in the sense that they are generated by inde-
composable objects. Moreover, for a large class of such categories, Hall al-
gebras are generated by their primitive elements, with respect to the natural
comultiplication, even for nonhereditary categories. Finally, we introduce
certain primitively generated subalgebras of Hall algebras and conjecture
an analogue of “Lie correspondence” for those finitary categories.
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1. Introduction

It is well-known that quantum groups are not groups, but rather Hopf algebras,
which are similar to enveloping algebras of Lie algebras. Hall–Ringel algebras
HA of finitary exact categories can be regarded, from many points of view, as
generalizations of quantum groups. One aspect of this analogy is the following
striking result, which we failed to find in the literature.

Theorem 1.1. The Hall algebra HA of any finitary exact category A is generated
by isomorphism classes of indecomposable objects in A .
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We prove a refinement of this theorem (Theorem 2.4), which is an analogue of
the Poincaré–Birkhoff–Witt property for HA , in §4.3.

However, isomorphism classes of indecomposable objects are not the most
efficient as a generating set. For example, if A is the representation category of a
(valued) Dynkin quiver Q, then indecomposables correspond to all positive roots
of the simple Lie algebra associated with Q, while HA can be generated by simple
objects (in other words, indecomposables corresponding to simple roots of the
Lie algebra). Having this in mind, we introduce minimal generating sets for HA ,
namely, primitive elements, which generalize these simple root generators.

More precisely, for any finitary exact category A , the Hall algebra HA has a
natural coproduct1 :HA→HA ⊗̂HA whose image may lie in a suitable completion
of the tensor square of HA . Note, however, that the multiplication and 1 are
not always compatible, that is, 1 need not be a homomorphism of algebras. The
compatibility is guaranteed by Green’s theorem (see [Green 1995]) for all hereditary
cofinitary (so that 1 is an “honest” comultiplication rather than a topological one)
abelian categories A (see Definition 2.11). This includes all categories repk Q
of finite dimensional representations over a finite field k of an acyclic (valued)
quiver Q. In a remarkable paper, Sevenhant and Van den Bergh [2001] proved that
for A = repk Q the Hall algebra HA is a Nichols algebra in an appropriate braided
tensor category (see §2.6 for details) and, in particular, is generated by its space of
primitive elements

VA = {v ∈ HA :1(v)= v⊗ 1+ 1⊗ v}.

We extend this result to a much larger class of categories that we refer to
as profinitary categories. We introduce profinitary categories in terms of their
Grothendieck monoids (denoted 0A for an exact category A , see §2.3 for precise
definitions) by requiring that groups of morphisms between any two objects and all
Grothendieck equivalence classes are finite. By definition, HA is naturally graded
by 0A and if A is profinitary, all homogeneous components (HA )γ , γ ∈ 0A are
finite dimensional.

The class of profinitary categories is large enough. For instance, it includes the
abelian category R− fin of all finite R-modules M (i.e., finite abelian groups with
R-action) for a finitary unital ring R, as defined in [Ringel 1990a, §1]. This includes
all finitely generated (over Z) unital rings. Moreover, if A is profinitary, then so is
any full subcategory B ⊂ A closed under extensions. The following is the main
result of the present work.

Main Theorem 1.2. For any profinitary and cofinitary exact category A , the Hall
algebra HA is generated by the space VA of its primitive elements. Moreover, VA

is minimal in the sense that a nonzero element of VA cannot be expressed as a sum
of products of elements of VA .
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We prove Main Theorem 1.2 in §6.4.
Based on the second assertion of Main Theorem 1.2, we can introduce quasi-

Nichols algebras as both algebras and coalgebras minimally generated by their
primitive elements (see Definition 2.17 for details). In particular, it is easy to see
(cf. Lemma 2.25) that any Nichols algebra is quasi-Nichols. It is noteworthy that
the minimality of VA has the following nice consequence for constructing primitive
elements in HA : once we find a subspace U of VA such that U generates HA as
an algebra, we must stop because U is the space of all primitive elements in HA .

Remark 1.3. Similarly to Grothendieck groups, exact functors induce canonical ho-
momorphisms of Grothendieck monoids. However, even for full embeddings, such
homomorphisms need not be injective. On the other hand, unlike the Grothendieck
group, the Grothendieck monoid always separates simple objects of the category.
For instance, if A is the category of k-representations of the quiver Q = 1→ 2
with dimension vectors (n, 2n), n ∈ Z≥0, then K0(A )∼= Z, but 0A is an additive
monoid generated by β1, β2 subject to the relations β1 + β2 = 2β1 = 2β2. The
canonical homomorphism 0A → K0(A ) is given by β1 7→ 1, β2 7→ 1 and thus is
not injective (see §3.4 for details.) It should also be noted that in this example 0A

is not a submonoid of the Grothendieck monoid of the category repk Q since in
0repk Q both simple objects of A belong to the same class.

A nice property of profinitary categories is that their Hall algebras always contain
primitive elements. If A is profinitary, then its Grothendieck monoid admits a
natural partial order and is generated by its minimal elements with respect to that
order (Proposition 2.12). Moreover, for γ minimal the corresponding homogeneous
component (HA )γ of HA is one-dimensional and primitive.

Quite surprisingly, for a profinitary category, cofinitarity is a simple property of
its Grothendieck monoid. We say that a monoid 0 is locally finite if for all γ ∈ 0,
the set {(α, β) ∈ 0×0 : α+β = γ } is finite.

Theorem 1.4. A profinitary exact category A is cofinitary if and only if 0A is
locally finite.

We prove this theorem in §5.3. As a corollary, we obtain two classes of categories
for which profinitarity implies cofinitarity.

Corollary 1.5. (a) Any full exact subcategory of a profinitary abelian category is
cofinitary.

(b) Any profinitary exact category whose Grothendieck monoid is finitely generated
is cofinitary.

This corollary is proven in §5.3. Based on the above, we propose the following
conjecture.
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Conjecture 1.6. For any profinitary exact category A , its Grothendieck monoid 0A

is locally finite.

By Theorem 1.4, any category as in the above conjecture is also cofinitary.
This conjecture is nontrivial since there exist profinitary exact categories A for

which any ambient abelian category A (which always exists, see, e.g., [Bühler
2010; Keller 1990]) is not profinitary, and the monoid 0A need not be finitely
generated.

Main Theorem 1.2 and Corollary 1.5(a) imply the following theorem.

Theorem 1.7. If A is a profinitary hereditary abelian category, then HA is a
Nichols algebra (see Definition 2.23) of the (braided) space VA of its primitive
elements.

We prove a refined version of this statement (Theorem 2.26) in §7.2.
The case when A = repk Q where Q is a finite acyclic (valued) quiver was

established in [Sevenhant and Van Den Bergh 2001, Theorem 1.1], which inspired
the present work. If A is the category of nilpotent representations of k[x] for a
finite field k, then Theorem 1.7 recovers the classical result of Zelevinsky [1981]
that the Hall–Steinitz algebra is a Hopf algebra (see, e.g., §3.1 for details). More
generally, it is well-known that the category repk Q for any finite valued quiver Q is
hereditary (see [Gabriel 1973; Hubery 2007]). Therefore, Theorem 1.7 is applicable
to such a category as well, that is, Hrepk Q is a Nichols algebra. In particular, so is
the Hall algebra of the category of finite dimensional modules of the free algebra
in n generators over k.

Furthermore, by definition, VA is graded by 0A , that is, VA =
⊕

γ∈0(VA )γ , so
γ ∈ 0A with (VA )γ 6= 0 can be thought of as “simple roots” of A . Given γ ∈ 0+A ,
define its multiplicity mγ by

(1-1) mγ := # Ind Aγ − dimQ(VA )γ ,

where Ind Aγ = Ind A ∩ Iso Aγ . This definition is justified by the following
proposition.

Proposition 1.8. Let A be a profinitary cofinitary exact category. Then mγ ≥ 0 for
all γ ∈ 0+A .

We prove a more precise version of this result (Proposition 2.20) in §6.5. In
particular, Proposition 1.8 implies that if Ind Aγ = ∅ then (VA )γ = 0, that is,
we should look for primitive elements only in those graded components where
indecomposables live. Moreover, if Ind A is finite, then obviously VA is finite
dimensional and we have an efficient procedure for computing it (see §3).

The term “multiplicity” is justified by the following result, which is an immediate
consequence of reformulations [Hua 2000, Theorem 4.1; Deng and Xiao 2003,
§4.1] of the famous Kac conjecture [Kac 1980], proved in [Hausel 2010].
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Theorem 1.9. Let Q be an acyclic quiver, gQ be the corresponding Kac–Moody
algebra and A = repk(Q) where k is a finite field with q elements. Then for any
γ ∈ 0A one has:

(a) mγ > 0 if and only if γ is a nonsimple positive root of gQ ; in that case,
mγ = dim(gQ)γ , that is mγ is the multiplicity of the root γ in gQ .

(b) (VA )γ = 0 unless γ is simple or imaginary.

(c) For any imaginary root γ of gQ , dimQ(VA )γ = pγ (q) where pγ ∈ xQ[x].

In view of Theorem 1.9(c) and results of [Sevenhant and Van Den Bergh 2001]
we define real simple roots of A to be elements γ ∈ 0A for which dimQ(VA )γ = 1
and imaginary simple roots of A to be those γ ∈ 0A with dimQ(VA )γ ≥ 2. For a
profinitary category A we show (Lemma 5.3) that all minimal elements of 0A \{0}
are real simple roots.

In fact, the consideration of examples suggests that a stronger version of this
statement holds.

Conjecture 1.10. Let A be a profinitary and cofinitary exact category. Then each
simple imaginary root of A has nonzero multiplicity.

Clearly, Theorem 1.9 verifies this conjecture when A = repk(Q) for any finite
acyclic quiver Q. We provide more supporting evidence in §3. In those cases,
mγ = 1 quite frequently (see §3.2, §3.3 and §3.4).

Simple real roots are of special interest. Denote by UA the subalgebra of HA

generated by all (VA )α , where α runs over all real simple roots of A , and refer to
it as the quantum enveloping algebra of A . The following well-known fact justifies
this definition.

Theorem 1.11 [Ringel 1990b]. If Q is an acyclic valued quiver, then Urepk Q is
isomorphic to a quantized enveloping algebra of the nilpotent part of gQ .

Since [X ]∈ Iso A is primitive if and only if it is almost simple (see Definition 5.2),
the algebra UA contains the subalgebra CA of HA generated by isomorphism classes
of all almost simple objects. We call CA the composition algebra of A since it
generalizes the composition algebra of repk Q, which is the subalgebra of Hrepk Q

generated by isomorphism classes of simple objects. In fact, in the assumptions
of the above theorem, Urepk Q = Crepk Q . However, it frequently happens that
CA (UA (see §3 for examples). Note the following corollary of Theorem 1.7 and
[Andruskiewitsch and Schneider 2002, Corollary 2.3] (see Lemma 2.24).

Corollary 1.12. If A is a profinitary hereditary abelian category then both CA

and UA are Nichols algebras.
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It turns out that there is another algebra EA , which (yet conjecturally) “squeezes”
between these two. That is, EA is generated by elements eγ ∈ HA , where eγ is the
sum of all isomorphism classes of objects of A whose image in 0 is γ . Since

ExpA :=

∑
γ∈0A

eγ

is a group-like element in the completion of HA with respect to a slightly different
coproduct (see [Berenstein and Greenstein 2013, Lemma A.1]), we referred to
ExpA in [Berenstein and Greenstein 2013] as the exponential of A . Hence we
sometimes refer to EA as the exponential algebra of A . By definition, CA ⊂ EA .

Conjecture 1.13. For any profinitary category A one has

EA =UA .

In particular, ExpA belongs to the completion of UA .

In §3 we provide several supporting examples of profinitary categories A together
with the explicit presentations of HA , UA and EA .

The significance of the conjecture is that it paves the ground for the “Lie corre-
spondence” between the enveloping algebra UA and the quantum Chevalley group
GA that we introduced in [Berenstein and Greenstein 2013] as an analogue of the
corresponding Lie group. That is, Conjecture 1.13 implies that the “tame” part of
GA belongs to the completion of UA .

2. Definitions and main results

2.1. Exact categories and Hall algebras. All categories are assumed to be essen-
tially small. For such a category A we denote by Iso A the set of isomorphism
classes of objects in A . We say that a category A is Hom-finite if HomA (X, Y ) is
a finite set for all X, Y ∈ A .

Let A be an exact category, in the sense of [Quillen 1973] (see also [Keller
1990; Bühler 2010]). We denote by Ext1A (A, B) the set of all isomorphism classes
[X ] ∈ Iso A such that there exists a short exact sequence

(2-1) B //
f
// X

g
// // A

(here f is a monomorphism, g is an epimorphism, f is a kernel of g and g is a
cokernel of f ). We say that A is finitary if it is Hom-finite and Ext1A (A, B) is
finite for every A, B ∈ A .

Following [Hubery 2006] we define Hall numbers for finitary exact categories
as follows. For A, B, X ∈ A fixed, denote by E(A, B)X the set of all short exact
sequences (2-1). The group AutA A×AutA B acts freely on E(A, B)X by

(ϕ, ψ).( f, g)= ( f ϕ−1, ψg), ϕ ∈ AutA B, ψ ∈ AutA A.
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The Hall number F X
AB is the number of AutA A×AutA B-orbits in E(A, B)X and

equals
F X

AB =
#E(A, B)X

#(AutA A×AutA B)
.

Denote
HA =Q Iso A =

⊕
[X ]∈Iso A

Q · [X ].

Proposition 2.1 [Ringel 1990a; Hubery 2006]. For any finitary exact category A ,
the space HA is an associative unital Q-algebra with the product given by

(2-2) [A] · [B] =
∑

[C]∈Iso A

FC
A,B[C].

The unity 1 ∈ HA is the class [0] of the zero object of A .

It is well-known (see, e.g., [Bühler 2010; Keller 1990]) that each exact cate-
gory A can be realized as a full subcategory closed under extensions of an abelian
category A . However, even if A is finitary, it might be impossible to find an ambient
abelian category which is also finitary. On the other hand, any full subcategory of a
finitary abelian category closed under extensions is also finitary.

2.2. Ordered monoids and the PBW property of Hall algebras. Let 3 be an
abelian monoid. We say that 3 is ordered if there exists a partial order C on 3+

such that for µ,µ′, ν, ν ′ ∈3+, we have

µC ν, µ′E ν ′ =⇒ µ+µ′C ν+ ν ′.

Let A be a finitary exact category. The set Iso A is naturally an abelian monoid
with the addition operation defined by [X ]+ [Y ] = [X ⊕ Y ]. Every object in A is
a finite direct sum of indecomposable objects (see Lemma 4.9). Thus, in particular,
Ind A generates Iso A as a monoid. The category A is said to be Krull–Schmidt
if Iso A is freely generated by Ind A .

Define a relation C on (Iso A )+ by [M]C [N ] if

(i) [N ] = [M+⊕M−], and

(ii) there exists a nonsplit short exact sequence M− // // M // // M+.

By abuse of notation, we also denote by C the transitive closure of this relation.
We say that a partial (pre)order ≺ on a set3 is inductive if there exists a function

f : 3→ Z≥0 such that λ ≺ µ =⇒ f (λ) < f (µ). It is obvious that an inductive
preorder is a partial order.

Theorem 2.2. Let A be a Hom-finite exact category. Then (Iso A ,C) is an ordered
monoid and C is inductive with the function f : Iso A → Z≥0 given by

f ([M])= # EndA M.
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Remark 2.3. If the category A is finitary, one can show that the assertion holds
with f replaced by the function [M] 7→ # Ext1A (M,M), [M] ∈ Iso A .

We prove this theorem in §4.2. It is used as the key ingredient in a proof of
the following theorem, which generalizes [Guo and Peng 1997, Theorem 3.1] and
establishes the (weak) PBW property of Hall algebras.

Theorem 2.4. Let A be a finitary exact category. Then for any total order on
the set Ind A of isomorphism classes of indecomposable objects in A , HA is
spanned, as a Q-vector space, by ordered monomials on Ind A . Moreover, if A is
Krull–Schmidt, then such monomials form a basis of HA .

We prove this theorem in §4.3. After [Joyce 2007; Riedtmann 1994], this further
extends an analogy between Hall algebras of finitary categories and universal
enveloping algebras.

2.3. The Grothendieck monoid and grading. Define the relation ≡ on the monoid
Iso A by

[X ] ≡ [Y ] ⇐⇒ [X ], [Y ] ∈ Ext1A (M, N ) for some M, N ∈ A .

This relation is clearly symmetric and reflexive, hence its transitive closure is
an equivalence relation on Iso A which we also denote by ≡. The additivity
of Ext1A (A, B) :=

⋃
X E(A, B)X/AutA X in both A and B yields the following

lemma.

Lemma 2.5. The relation ≡ is a congruence relation on Iso A , that is, [X ] ≡ [Y ],
[X ′] ≡ [Y ′] implies that [X ⊕ X ′] ≡ [Y ⊕ Y ′].

Definition 2.6. The Grothendieck monoid 0A of A is the quotient of Iso A by the
congruence ≡.

Given an object M in A , we denote its image in 0A by |M |. For all γ ∈ 0A , set

Iso Aγ = {[X ] ∈ Iso A : |X | = γ }.

We refer to Iso Aγ as a Grothendieck class in A , and write Ind Aγ = Ind A ∩Iso Aγ .
The following fact is obvious.

Lemma 2.7. For any finitary exact category A , the assignment [M] 7→ |M | defines
a grading of the Hall algebra HA of A by the Grothendieck monoid 0A .

Remark 2.8. After Grothendieck, one defines the Grothendieck group K0(A )

of A as the universal abelian group generated by 0A . Note that the canonical
homomorphism of monoids 0A → K0(A ) can be very far from injective. One
example was already provided in the introduction. Perhaps the most extreme
example is the following. Let A =Vectk be the category of all k-vector spaces over
some field k. Then 0A identifies with the monoid of cardinal numbers. In particular,
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if V is infinite dimensional and W is finite dimensional then |V | = |V | + |V | =
|W | + |V |. This implies that in K0(Vectk), |U | = 0 for every object U of Vectk,
that is, K0(Vectk)= 0.

Also, while K0(A ) can contain elements of finite order, this never occurs in 0A .
Indeed, since [0] ∈ Ext1A (A, B) implies that A = B = 0 and the direct sum of two
nonzero objects is clearly nonzero, we immediately obtain the following lemma.

Lemma 2.9. For any exact category A , zero is the only invertible element of the
Grothendieck monoid 0A .

2.4. Profinitary and cofinitary categories. Let 0 be an abelian monoid. Define a
relation � on 0 by α � β if β = α+ γ for some γ ∈ 0. This relation is clearly an
additive preorder and 0� γ for any γ ∈ 0. The following lemma is obvious.

Lemma 2.10. The preorder � is a partial order on 0 if and only if the equality
α+ β + γ = α for α, β, γ ∈ 0 implies that α = α+ β = α+ γ . In that case, 0 is
the only invertible element of 0.

We say that 0 is naturally ordered if � is a partial order.

Definition 2.11. We say that a Hom-finite exact category A is

(i) profinitary if Iso Aγ is a finite set for all γ ∈ 0A , and

(ii) cofinitary (cf. [Kapranov et al. 2012]) if for every [X ] ∈ Iso A , the set

{([A], [B]) ∈ Iso A × Iso A : [X ] ∈ Ext1A ([A], [B])}

is finite.

Since E(M, N )X identifies with a subset of HomA (N , X)×HomA (X,M), any
profinitary category is necessarily finitary.

Proposition 2.12. Let A be a profinitary category. Then 0A is naturally ordered
and is generated by its minimal elements.

A proof of this proposition is given in §5.2.

Remark 2.13. One can characterize profinitary categories as follows. If A is Hom-
finite and its Grothendieck monoid is locally finite, as defined before Theorem 1.4,
and Ind Aγ is finite for all γ ∈ 0A , then A is profinitary.

Theorem 2.14. Any profinitary abelian category has the finite length property,
hence is Krull–Schmidt.

We prove this theorem in §5.3. This result, together with Theorem 1.4, yields
Corollary 1.5(a).
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Remark 2.15. The finite length property in an abelian category A is much stronger
than the Krull–Schmidt property. For instance, the Grothendieck monoid of an
abelian category with the finite length property is freely generated by classes of
simple objects and the canonical homomorphism 0A → K0(A ) is injective. On
the other hand, the category of coherent sheaves on P1 is Krull–Schmidt, but lacks
the finite length property and each Grothendieck class Iso Aγ , γ 6= 0 is infinite.

2.5. Comultiplication and primitive generation. Let A be any Hom-finite exact
category. Define a linear map 1 : HA → HA ⊗̂HA by

(2-3) 1([C]) =
∑

[A],[B]∈Iso A

F A,B
C · [A]⊗ [B] ,

where HA ⊗̂HA is the completion of the usual tensor product with to the 0A -grading
and F A,B

C is the dual Hall number given by

F A,B
C =

#(AutA A×AutA B)
# AutA C

FC
B,A.

It follows from Riedtmann’s formula [1994] that

F A,B
C =

# Ext1A (B, A)C
# HomA (B, A)

,

where Ext1A (B, A)C = E(B, A)C/AutA C . Also define a linear map ε : HA →Q

by

(2-4) ε([C])= δ[0],[C].

The following fact is obvious.

Lemma 2.16. (a) HA is a topological coalgebra with respect to the above comul-
tiplication and counit.

(b) If A is cofinitary then HA is an ordinary coalgebra, that is, the image of the
comultiplication 1 lies in HA ⊗ HA .

For any coalgebra C with unity denote by Prim(C) the set of all primitive
elements, i.e.,

Prim(C)= {c ∈ C :1(c)= c⊗ 1+ 1⊗ c}.

Definition 2.17. Let A be both a unital algebra and a coalgebra over a field F. We
say that A is a quasi-Nichols algebra if A decomposes as F⊕V⊕

(∑
r>1 V r

)
where

V = Prim(A).

The following is the main result of the paper (Main Theorem 1.2) and is proven
in §6.4.
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Theorem 2.18. Let A be a profinitary and cofinitary exact category. Then the Hall
algebra HA is quasi-Nichols.

This theorem has the following useful corollary, which we prove in §6.5.

Corollary 2.19. Let

(2-5) P = ker ε ·ker ε=Q{[M][N ] : [M], [N ] ∈ (Iso A )+}, Pγ := P∩(HA )γ .

Then P =
∑

k≥2 Prim(HA )
k
=
∑

k≥2(Q Ind A )k and (HA )γ = Prim(HA )γ ⊕ Pγ
for all γ ∈ 0+A .

A natural question is to compute dimensions of Prim(HA )γ , γ ∈ 0+A . The
following is a refinement of Proposition 1.8.

Proposition 2.20. In the notation (1-1) we have

mγ = dimQ(Pγ ∩Q Ind Aγ )

for all γ ∈ 0+A . In particular, if Ind Aγ ⊂ Pγ then Prim(HA )γ = 0.

We prove Proposition 2.20 in §6.5, as well as the following observation, which
is useful for computing primitive elements.

Lemma 2.21. Each primitive element contains at least one isomorphism class
[X ] ∈ Ind A in its decomposition with respect to the basis Iso A of HA . In other
words, Prim(HA )∩Q(Iso A \ Ind A )= {0}.

2.6. Hereditary categories and Nichols algebras. Let 0 be an abelian monoid and
let C0 be the tensor category of 0-graded vector spaces V =

⊕
γ∈0 Vγ over a field F.

The following fact can be easily checked.

Lemma 2.22. For each bicharacter χ : 0×0→ F× the category C0 is a braided
tensor category (C0, 9) with the braiding9U,V :U⊗V → V ⊗U for objects U, V
in C0 given by

9U,V (u⊗ v)= χ(γ, δ) v⊗ u,

for any u ∈Uγ , v ∈ Vδ, γ, δ ∈ 0.

By a slight abuse of notation, given a bicharacter χ : 0×0→ F× we denote
this braided tensor category C0 by Cχ .

Now let A be a finitary hereditary category, i.e., ExtiA (M, N )= 0 for i > 1 and
all M, N ∈ A . Let χA : 0×0→Q× be the bicharacter given by

χA (|M |, |N |)=
# Ext1A (M, N )

# HomA (M, N )
.

The bicharacter χA is easily seen to be well-defined because it is just the (multi-
plicative) Euler form.
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Nichols algebras were formally defined in [Andruskiewitsch and Schneider
2002].

Definition 2.23 [Andruskiewitsch and Schneider 2002, Definition 2.1]. Let (C , 9)
be a braided F-linear tensor category with a braiding9. Let V be an object in (C , 9).
A graded bialgebra with unity B =

⊕
n≥0 Bn in (C , 9) is called a Nichols algebra

of V if B0 = F, B1 = V and B is generated, as an algebra, by B1 = Prim(B).

For each object V of a braided tensor category (C , 9), the tensor algebra T (V ) is
a graded bialgebra (even a Hopf algebra) in (C , 9) with the coproduct determined
by requiring each v ∈ V to be primitive and the grading defined by assigning
degree 1 to elements of V . It is well-known [Andruskiewitsch and Schneider 2002,
Proposition 2.2] that the Nichols algebra of V is unique up to an isomorphism
and is the quotient of T (V ) by the maximal graded bi-ideal I of T (V ) which is
an object in (C , 9) and satisfies I∩ V = {0}. Henceforth we denote the Nichols
algebra of V by B(V ).

The following is proved in [Andruskiewitsch and Schneider 2002, Corollary 2.3].

Lemma 2.24. The assignment V 7→ B(V ) defines a functor from (C , 9) to the
category of bialgebras in (C , 9). Moreover, for any morphism f :U→V in (C , 9),
the kernel of the corresponding homomorphism B( f ) is the (bi-)ideal in B(U )
generated by ker f ⊂U.

The following fact is immediate from the definitions.

Lemma 2.25. Let B be a bialgebra in (C , 9) which is a quasi-Nichols algebra.
Then B is Nichols if and only if

∑
r≥2(Prim(B))r is direct.

The following extends the main result of [Sevenhant and Van Den Bergh 2001].

Theorem 2.26. For any profinitary hereditary abelian category A , the Hall algebra
HA is isomorphic to the Nichols algebra B(VA ) in the category CχA , where VA =

Prim(HA ).

We prove this theorem in §7.2.

Remark 2.27. In fact, the original result of [Sevenhant and Van Den Bergh 2001,
Theorem 1.1] follows from Theorem 2.26. The classification of diagonally braided
Nichols algebras was obtained in [Andruskiewitsch and Schneider 2002, §5] and,
in particular, generalizes some results of [Sevenhant and Van Den Bergh 2001].

3. Examples

In this section we construct primitive elements in several Hall algebras and provide
supporting evidence for Conjectures 1.13 and 1.10. Throughout this section we
write 1(x)=1(x)− x ⊗ 1− 1⊗ x (thus, x is primitive if and only if x ∈ ker1).
Needless to say, every (almost) simple object S satisfies 1([S])= 0 so we focus
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only on nonsimple primitive elements. In this section, k always denotes a finite
field with q elements and all categories are assumed to be k-linear.

3.1. Classical Hall–Steinitz algebra. Let R be a principal ideal domain such that
R/m is a finite field for any maximal ideal m of R. Let A = A (m) be the full
subcategory of finite length R-modules M satisfying mr M = 0 for some r ≥ 0.
Then for each r > 0, there exists a unique, up to an isomorphism, indecomposable
object Ir = R/mr

∈ A . More generally, given a partition λ= (λ1 ≥ · · · ≥ λk > 0),
set Iλ = Iλ1 ⊕ · · ·⊕ Iλk and write `(λ)= k.

Since the Euler form of A is identically zero and A is hereditary, HA is an
ordinary Hopf algebra (the braiding is trivial). The Grothendieck monoid of A

being Z≥0, the algebra HA is Z≥0-graded. We now provide a new (very short) proof
of the following classical result.

Theorem 3.1 [Macdonald 1979; Zelevinsky 1981]. The Hall algebra HA is com-
mutative and cocommutative and is freely generated by the [In], n > 0. Moreover,
HA is freely generated by its primitive elements Pn , n > 0.

Proof. It is easy to see, using duality, that HA is commutative, hence cocommutative.
Let P be the set of all partitions. Given a partition λ= (λ1 ≥ · · · ≥ λr > 0) ∈P,
let Mλ = [Iλ1] · · · [Iλr ]. By Theorem 2.4, the set {Mλ}λ∈P is a basis of HA , hence
HA is freely generated by the isomorphism classes of indecomposables [In], n > 0.
Since HA is commutative, P = ker ε · ker ε is spanned by the Mλ with `(λ) ≥ 2,
hence Q Ind A ∩P ={0} and by Proposition 2.20, dimQ Prim(HA )n = # Ind An = 1
for all n>0. Thus, for each n>0 we have a unique, up to a scalar, nonzero primitive
element Pn in (HA )n . The dimension considerations and Theorem 2.18 immediately
imply that HA is freely generated by the Pn , n > 0. �

This theorem has the following nice corollary.

Corollary 3.2. For all n > 0, let xn ∈ (HA )n \Q(Iso An \ Ind An). Then {xn}n>0

freely generates HA . In particular, EA = HA .

The elements Pn can be computed explicitly (see, e.g., [Hubery 2005, §5]),
namely

Pn =
∑
λ`n

( `(λ)−1∏
j=1

(1− q j )

)
[Iλ],

where q = |R/m|.
Under the isomorphism ψ : HA → Sym, [Iλ] 7→ q−n(λ)Pλ(x; q−1) [Macdonald

1979; Zelevinsky 1981], where Sym is the algebra of symmetric polynomials in
infinitely many variables and Pλ(x; t) is the Hall–Littlewood polynomial, the image
of Pn is the n-th power sum pn . As shown in [Zelevinsky 1981], the pn are primitive
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elements in Sym with the comultiplication defined by

1(en)=

n∑
i=0

ei ⊗ en−i ,

where er is the r -th elementary symmetric polynomial, which equals q−(
r
2)ψ([I(1r )]).

Note also that ψ
(∑

λ`n[Iλ]
)

is the n-th complete symmetric function hn .
Since CA =Q[P1], we have CA ( HA . Since dimQ Prim(HA )n=1 for all n>0,

it follows that UA = HA . Thus, CA ( EA =UA = HA .

3.2. Homogeneous tubes. Let A be the category of finite dimensional k-represen-
tations of a tame acyclic quiver Q. Then A decomposes into a triple of subcategories
of preprojective, preinjective and regular representations (see [Auslander et al. 1995,
Chapter VIII]) which we denote, as in [Berenstein and Greenstein 2013, §5], by
A−, A+ and A0, respectively. The category A0 can be further decomposed into the
so-called stable tubes, that is, components of the Auslander–Reiten quiver of A on
which the Auslander translation acts as an autoequivalence of finite order, called
the rank of the tube. It is well-known that rank 1, or homogeneous, tubes are
parametrized by the set kP1 of homogeneous prime ideals in k[x, y]. Given a
homogeneous prime ideal ρ, let deg ρ be the degree of a generator of that ideal and
denote by Tρ the corresponding rank 1 tube. Then Tρ is equivalent to the category
of nilpotent representations of K[x] where [K : k] = deg ρ and its Hall algebra is
isomorphic to the classical Hall–Steinitz algebra. Thus, for each r >0, Tρ contains a
unique indecomposable Ir (ρ) of length r . Given a partition λ= (λ1≥ · · · ≥λk > 0),
let Iλ(ρ)= Iλ1(ρ)⊕ · · ·⊕ Iλk (ρ). By §3.1 the elements

Pn(ρ)=
∑
λ`n

( `(λ)−1∏
j=1

(1− q j deg ρ)

)
[Iλ(ρ)]

are primitive in HTρ . Let A0,h be the full subcategory of homogeneous objects
in A0 (cf. [Dlab and Ringel 1976, Theorem 3.5]). Since HA 0,h is isomorphic to the
tensor product of the HTρ as a bialgebra, this gives all primitive elements in HA 0,h .
The Grothendieck monoid of A0,h equals the direct sum of infinitely many copies
(indexed by ρ ∈ kP1) of Z≥0.

However, the elements Pn(ρ) are not primitive in HA since an object in A0,h

can have preprojective subobjects and preinjective quotients. They can be used to
construct primitive elements in HA .

Conjecture 3.3. The elements

Pn(ρ)−
1

N (deg ρ)

∑
ρ′∈kP1:deg ρ′=deg ρ

Pn(ρ
′),
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are primitive in HA , where N (d) is the number of elements of kP1 of degree d
(that is, N (1) = |k| + 1 while N (d), d > 1, is the number of irreducible monic
polynomials of degree d in one variable).

This formula can be easily checked in small cases (see, for example, §3.8) or for
the Kronecker quiver, using the results of [Szántó 2006]. Since F I,P

M = 0 for all
P ∈A− and I ∈A+, the above conjecture is an immediate consequence of the next
conjecture.

Conjecture 3.4.1 Let I ∈ A+ and P ∈ A−. Then for any partition λ we have
F P,I
Iλ(ρ) = F P,I

Iλ(ρ′) where ρ, ρ ′ ∈ kP1 with deg ρ = deg ρ ′.

This is known to hold in some special cases (see for example [Szántó 2006;
Hubery 2004]).

In the category A , we have CA = EA =UA ( HA . On the other hand, for A0

we have CA0 ( EA0 =UA0 = HA0 and similarly for each homogeneous tube.

3.3. A tame valued quiver. Consider now the valued quiver 1
(4,1)
−−→ 2. Let k2 be a

field extension of k1=k of degree 4. Note that k2 contains precisely q4
−q2 elements

of degree 4 over k and q2
−q elements of degree 2. A representation of this quiver is

a triple (V1, V2, f ) where Vi is a ki -vector space and f ∈Homk(V1, V2). Finally, a
morphism (V1, V2, f )→ (W1,W2, g) is a pair (ϕ1, ϕ2) where ϕi ∈Homki (Vi ,Wi )

and g ◦ϕ1 = ϕ2 ◦ g.
The smallest indecomposable regular representation is (k2

1, k2, f ), where f is
injective. Thus, f is given by a pair (λ, µ) ∈ k2×k2 which is linearly independent
over k (this pair is the image under f of the standard basis of k2

1). It is easy to see
that, up to an isomorphism, such a pair can be assumed to be of the form (λ, 1)
where λ ∈ k2 \ k1. Denote the resulting representation by E1(λ). A morphism
f : E1(λ)→ E1(λ

′) is uniquely determined by a matrix ϕ1 =
(a

c
b
d

)
∈ M2(k) and

ϕ2 ∈ k2 and we have
(bλ′+ d)λ= aλ′+ c.

If λ has degree 4 over k then EndA E1(λ) ∼= k and AutA E1(λ) ∼= k×. Other-
wise, EndA E1(λ) ∼= L and AutA E1(λ) ∼= L× where [L : k] = 2. It follows
that all E1(λ) with degk λ = 2 are isomorphic, since the stabilizer of such a λ
in GL(2, k) has index q2

− q, and that there are q nonisomorphic representations
E1(λ)with degk λ= 4. It is easy to see that for any λ∈k2\k1 we have (q2

−1)(q−1)
short exact sequences

0→ P1→ E1(λ)→ S1→ 0

1After the present paper was accepted for publication, we were informed that a proof of
Conjecture 3.4 was announced in [Deng and Ruan 2015].
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and q(q4
− 1)(q2

− 1)(q − 1) short exact sequences

0→ S2→ E1(λ)→ S⊕2
1 → 0.

As a result, we conclude that

1(E1(λ))=
(q2
−1)(q−1)

|AutA E1(λ)|

(
[P1]⊗ [S1] + q(q4

− 1)[S2]⊗ [S⊕2
1 ]

)
,

hence

P1(λ) := E1(λ)−
1

(q+1)|AutA E1(λ)|

∑
µ∈(k2\k1)/GL(2,k)

|AutA E1(µ)|E1(µ)

is primitive, and these are all primitive elements of degree 2α1+α2 in HA . There
is precisely one linear relation among them, namely∑

λ∈(k2\k1)/GL(2,k)

|AutA E1(λ)|P1(λ)= 0.

In this case, like in §3.2, CA = EA =UA ( HA which supports Conjecture 1.13.
Also, dimQ Prim(HA )2α1+α2 = q and m2α1+α2 = 1.

3.4. Hereditary categories defined by submonoids. The next two examples are
special cases of the following construction. Consider a submonoid 00 of the
Grothendieck monoid 0 of an abelian category A , and define a full subcate-
gory A (00) of A whose objects X satisfy |X | ∈ 00. By construction, A (00)

is closed under extensions and hence is exact.
First, let A be the category of k-representations of the quiver 1−→ 2. Then 0A

is freely generated by αi = |Si | where the Si , i = 1, 2 are simple objects. Fix r > 0.
Let 0r = Z≥0(α1+ rα2) and set Br = A (0r ). Let P1 = I2 be the projective cover
of S1 and the injective envelope of S2 in A . Then in HA we have

(3-1) [S1][S2]= [S2][S1]+[P1], [S1][P1]=q[P1][S1], [P1][S2]=q[S2][P1].

Every object in Br is isomorphic to S⊕a
1 ⊕ P⊕b

1 ⊕ S⊕(ra+(r−1)b)
2 , a, b≥ 0. The only

simple objects in Br , up to an isomorphism, are X1= S1⊕S⊕r
2 and X2= S⊕r−1

2 ⊕P1.
Then [X1] is a nonzero multiple of E1 = [S2]

r
[S1], and [X2] of E2 = [S2]

r−1
[P1].

In particular, the Ei are primitive elements of HBr . Using (3-1) we can show that
E1 and E2 satisfy the relation

E2 E1 = qr−1 E1 E2− [r − 1]q E2
2,

where [s]q = 1+ · · · + qs−1. The Grothendieck monoid of Br is generated by
βi = |X i |, i = 1, 2, subject to the relation β1+β2 = 2β1 = 2β2 (thus 0Br does not
coincide with 0r and is not even a submonoid of 0A ). It is not hard to check that
E1 and E2 generate HBr and hence form a basis of Prim(HBr ).
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In this case we have CBr =UBr = EBr = HBr and so Conjecture 1.13 holds.
A more complicated example is obtained as follows. Let A be the category of

k-representations of the quiver 1→ 0←− 2. As in the previous example, 0A is
freely generated by αi = |Si |, 0 ≤ i ≤ 2. Let 0◦ = {sα0+ rα1+ rα2 : r, s ∈ Z≥0}

and let B=A (0◦). Let Pi be the projective cover of Si in A and Ii be its injective
envelope. Thus, I1 = S1, I2 = S2, |I0| = α0+α1+α2, |P1| = α0+α1, P0 = S0 and
|P2| = α2+α0. The simple objects in B are S1⊕ S2 and S0, while the nonsimple
indecomposable objects are

P1⊕ S2, P2⊕ S1, P1⊕ P2, I0.

The Grothendieck monoid of B is freely generated by β1 = |S1⊕ S2| and β0 = |S0|.
Clearly, Y1=[S1⊕S2] and Y0=[S0] are primitive in HB. We also have two linearly
independent primitive elements of degree β1+β0, say

Z1 = [I0] − (q − 1)[P1⊕ S2],

Z2 = [I0] − (q − 1)[P2⊕ S1].

Then

[Z1, Z2] = 0, [Y1, Z1]q = [Y1, Z2]q = 0, [Z1, Y0]q = [Z2, Y0]q = 0,

and
[Y1, [Y1, Y0]]q2 = Y1(Z1+ Z2), [[Y1, Y0], Y0]q , Y0]q2 = 0,

where [a, b]t = ab − tba. Here CB = EB = UB ( HB which again supports
Conjecture 1.13. Also, we have a unique imaginary simple root β1 + β0, and
dimQ Prim(HB)β1+β0 = 2 while mβ1+β0 = 1.

3.5. Sheaves on projective curves. Consider the category A of coherent sheaves
on P1(k) (cf. [Burban and Schiffmann 2012; Kapranov 1997; Baumann and Kassel
2001]). Following [Baumann and Kassel 2001], A is equivalent to the category with
objects (M ′,M ′′, φ) where M ′ is a k[z]-module, M ′′ is a k[z−1

]-module and φ is
an isomorphism of k[z, z−1

]-modules M ′z→ M ′′z−1 . In particular, for any n ∈ Z, we
have an indecomposable object O(n)= (k[z], k[z−1

], φn) where φn ∈Aut k[z, z−1
]

is multiplication by z−n . We have (cf. [Baumann and Kassel 2001])

dimk HomA (O(m),O(n))=max(0, n−m+ 1)

and any nonzero morphism O(m)→O(n) is injective.
Consider now the full subcategory A lc of locally free coherent sheaves on P1.

Any object in Alc is isomorphic to a direct sum of objects of the form O(m) and
these are precisely the indecomposables in Alc. The Grothendieck monoid of A lc

identifies with {(0, 0)}∪Z≥0×Z with |O(n)| = (1, n). Note that Alc has no simple
objects. The category Alc is closed under extensions and hence is exact. Since
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Alc is Krull–Schmidt, its Hall algebra has a basis consisting of ordered monomials
on Xm := [O(m)] for any total order on Z. Since m < n implies that O(n)/O(m)
is not an object in Alc, it follows that O(m) is almost simple, hence Xm is primitive
for all m ∈ Z. Thus, HAlc is primitively generated. By [Baumann and Kassel 2001,
Theorem 10(iii)] the defining relations in HA lc are

Xn Xm = qn−m+1 Xm Xn + (q2
− 1)qn−m−1

b(n−m)/2c∑
a=1

Xm+a Xn−a, m < n.

However, Theorem 2.18 does not apply to the Hall algebra of A or A lc since the
categories A or even Alc are neither profinitary nor cofinitary. For example, every
object O(m)⊕O(n), m > n appears as the middle term of a short exact sequence

0→O(n− a)→O(m)⊕O(n)→O(m+ a)→ 0

for all a ≥ 0.
On the other hand, the Hall algebra of the subcategory of torsion sheaves is

isomorphic to the Hall algebra of the regular subcategory for the valued quiver
1 (2,2)
−−→ 2, or, equivalently, the Kronecker quiver.
It should be noted that the Hall algebra of the subcategory of preprojective

modules B+ in the category B of k-representations of the Kronecker quiver is
isomorphic to the subalgebra of HA lc generated by the Xm for m > 0. Indeed,
0B+
∼= Z≥0, and for each k > 0 there is a unique preprojective indecomposable Qk

with |Qk | = k. It is easy to see, by grading considerations, that Qk is primitive.
Then the [Qk], k ≥ 0 can be shown to satisfy exactly the same relations as the Xn

(see [Szántó 2006, Theorem 4.2]). In this case we have

CB+ (UB+ = EB+ = HB+ .

This situation can be generalized as follows. Let X be a smooth projective
curve and let A be the category of coherent sheaves on X . Let A ≥d

lc be the full
subcategory of A whose objects are locally free sheaves of positive rank and of
degree ≥ d. Since the rank and the degree are additive on short exact sequences,
this subcategory is closed under extensions. Since for a coherent sheaf F the
possible degrees of its subsheaves of rank r are bounded above (cf. [Kapranov et al.
2012, Proposition 2.5]), for any fixed pair (r, d) there are finitely many subsheaves
of F of rank r and degree d . We conclude that the category A ≥d

lc is cofinitary and
profinitary, hence Theorem 2.18 applies and the Hall algebra of A ≥d

lc is generated
by its primitive elements. Results on primitive elements in this algebra can be found
in [Kapranov et al. 2012, §3.2]. Note that Alc is Krull–Schmidt, hence its Hall
algebra is PBW on indecomposables.
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3.6. Nonhereditary categories of finite type. Let A be the category of k-represen-
tations of the quiver

1
a12

��

a13

��

2

a24 ��

3

a34��

4

satisfying the relation a24a12 = 0. This category has 14 isomorphism classes of
indecomposable objects, 12 of them having different images in 0A and the two
remaining ones, namely the projective cover P1 of S1 and the injective envelope I4

of S4, having the same image α1+α2+α3+α4 (as before, αi = |Si |).
Let Si j and Si jk be the unique, up to an isomorphism, indecomposables with
|X | = αi +α j and |X | = αi +α j +αk , respectively. Then [Si j ], [Si jk] ∈ P follows
easily, hence Prim(HA )αi+α j = 0= Prim(HA )αi+α j+αk by Proposition 2.20. Let us
show that Prim(HA )α1+α2+α3+α4 = 0; then the only primitive elements are those in
Prim(HA )αi , 1≤ i ≤ 4.

For every object M with |M | = α1+α2+α3+α4, except P1, I4 and S2⊕ S134,
there exists a pair of objects A, B such that F A,B

N = 0 unless [N ] = [M]. This
implies that Prim(HA )α1+α2+α3+α4 is contained in the linear span of [P1], [I4] and
[S2⊕ S134]. We have (with h = |k×| = q − 1)

1([S2⊕ S134])= [S134]⊗ [S2] + [S2]⊗ [S134]

+ h
(
[S2⊕ S34]⊗ [S1] + [S2⊕ S4]⊗ [S13]

+ [S34]⊗ [S1⊕ S2] + [S4]⊗ [S2⊕ S13]
)
,

1([I4])= h
(
[S134]⊗ [S2] + [S234]⊗ [S1] + [S24]⊗ [S13]

)
+ h2(

[S34]⊗ [S1⊕ S2] + [S4]⊗ [S2⊕ S13]
)
,

1([P1])= h
(
[S34]⊗ [S12] + [S2]⊗ [S134] + [S4]⊗ [S123]

)
+ h2(

[S2⊕ S34]⊗ [S1] + [S2⊕ S4]⊗ [S13]
)
.

It is now clear that Prim(HA )α1+α2+α3+α4 = 0.
Let Ei = [Si ], 1 ≤ i ≤ 4. To write a presentation of HA , it is useful to intro-

duce Z = [P1] + [I4] − (q − 1)[S2⊕ S134]. We obtain

(3-2)

[Ei , [Ei , E j ]]q = 0= [[Ei , E j ], E j ]q

for (i, j) ∈ {(1, 2), (1, 3), (2, 4), (3, 4)},

[E2, E3] = 0= [E1, E4],
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and also

[E4, [E1, E2]] = 0, [E1, Z ]q = 0= [Z , E4]q , [E2, Z ] = 0= [E3, Z ],

where
Z = [E1, [E2, [E3, E4]]q ] − [E4, [E3, [E2, E1]]q ].

If we consider the category of representations of the same quiver satisfying
the relation a24a12 = a34a13, its Hall algebra’s subspace of primitive elements is
spanned by the Ei , 1≤ i ≤ 4 which satisfy (3-2), as well as

[E4, [E1, E2]] = 0= [E4, [E1, E3]]

[E1, [E2, [E3, E4]]] = [E4, [E3, [E1, E2]]]

= [E4, [E2, [E1, E3]]] = [E1, [E3, [E2, E4]]].

In both cases CA = EA =UA = HA .

3.7. Special pairs of objects and primitive elements. Before we consider the next
group of examples, we make the following observation. Suppose that we have a pair
of indecomposable objects X�Y in A satisfying HomA (X, Y )=0=HomA (Y, X),
EndA X ∼= EndA Y ∼= k is a field and

dimk Ext1A (X, Y )= dimk Ext1A (Y, X)= 1.

Then there exist unique [ZY X ], [Z XY ] ∈ Iso A such that

Ext1A (X, Y )= {[X ⊕ Y ], [Z XY ]}, Ext1A (Y, X)= {[X ⊕ Y ], [ZY X ]}.

Let B = A (X, Y ) be the minimal additive full subcategory of A containing X
and Y and closed under extensions. Then in HB we have

1([ZY X ])= (q − 1)[X ]⊗ [Y ],

1([Z XY ])= (q − 1)[Y ]⊗ [X ],

1([X ⊕ Y ])= [X ]⊗ [Y ] + [Y ]⊗ [X ],

and so
[Z XY ] + [ZY X ] − (q − 1)[X ⊕ Y ]

is primitive in HB. Indeed, |Ext1A (Y, X)ZY X | = q − 1= |Ext1A (X, Y )Z XY | and so
by Riedtmann’s formula,

F X,Y
ZY X
= q − 1= FY,X

Z XY
, F X,Y

X⊕Y = FY,X
X⊕Y = 1.

This element need not be primitive in HA but is often useful for computations.
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3.8. A rank 2 tube. Let A = repk(Q) where Q is a valued acyclic quiver of
tame type. Let τ be the Auslander–Reiten translation and consider a regular
component of the Auslander–Reiten quiver which is a tube of rank 2 (that is, for
every indecomposable object M in that component we have τ 2(M) ∼= M). The
smallest example is provided by the quiver

2
��

1

DD

// 3

and the Auslander–Reiten component containing S2.
Let X be a simple object in our tube. Then τ(X) is also simple and both satisfy

EndA X ∼= EndA τ(X)∼= k. Furthermore,

Ext1A (X, τ (X))∼= HomA (τ (X), τ (X)), Ext1A (τ (X), X)∼= HomA (X, X),

and so X , τ(X) satisfy the assumptions of §3.7. Thus, we obtain a primitive element
of degree |X | + |τ(X)| in the Hall algebra of our tube given by

Z X,τ (X)+ Zτ(X),X − (q − 1)[X ⊕ Y ].

For the quiver shown above, with X = S2 we have

Y = τ(X)=
0

0
��

k

0 CC

1
// k

while

ZY X =
k

0
��

k

1 CC

1
// k
, Z XY =

k
1
��

k

0 CC

1
// k
.

However, in HA we have

1A (ZY X + Z XY − (q − 1)[X ⊕ Y ])= (q − 1)([S3]⊗ [I2] + [P2]⊗ [S1])

where I2 is the injective envelope of S2 and P2 is its projective cover. Other
indecomposable objects with the same image in 0A are, up to an isomorphism,

E1(λ)=
k

1
��

k

1 CC

λ
// k
, λ ∈ k,

and we have

1(E1(λ))= (q − 1)([S3]⊗ [I2] + [P2]⊗ [S1]).
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This gives q − 1 linearly independent primitive elements

P1(λ)= E1(λ)−
1
q

∑
µ∈k

E1(µ)

and one more primitive element

[ZY X ] + [Z XY ] − (q − 1)[X ⊕ Y ] − 1
q

∑
λ∈k

E1(λ).

Thus, in this case mα1+α2+α3 = 2 and dim Prim(HA )α1+α2+α3 = q.
In general, primitive elements in Hall algebras corresponding to nonhomogeneous

tubes were computed in [Hubery 2005]. It should be noted that they are not primitive
in HA but, conjecturally, can be used to construct primitive elements in a way similar
to that shown above.

3.9. Cyclic quivers with relations. Let A be the category of representations of the
quiver

1
a12
// 2

a21
oo

satisfying the relation a21a12 = 0. The three nonsimple indecomposable objects are,
up to an isomorphism,

S12 : k
1
// k

0
oo , S21 : k

0
// k

1
oo , S212 : k

( 1
0)
// k2

(0 1)
oo .

The object S12 is the projective cover of S1 while S21 is its injective envelope. Thus,

1([S12])= (q − 1)[S2]⊗ [S1], 1([S21])= (q − 1)[S1]⊗ [S2]

and so

(3-3) Z = [S12] + [S21] − (q − 1)[S1⊕ S2]

is the unique, up to a scalar, primitive element in |S1| + |S2|. Let E1 = [S1] and
E2 = [S2]. Then Prim(HA ) is spanned by E1, E2 and Z and

[E1, Z ] = [E2, Z ] = 0

and

[E1, [E1, E2]q ]q−1 = (1− q−1)E1 Z , [E2, [E2, [E2, E1]]q ]q−1 = 0

is a presentation of HA .
Now let A be the category of representations of the same quiver satisfying the

relations a21a12 = 0= a12a21. In this case, we have four indecomposable objects
S1, S2, S12 and S21 which coincide with the ones listed above. Thus, Si j is the
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injective envelope of Si and the projective cover of S j , {i, j} = {1, 2}. As before,
we have a unique nonsimple primitive element given by the same formula (3-3).
The following provides a presentation for HA :

[E1, [E1, E2]q ]q−1 = (1− q−1)E1 Z ,

[E2, [E2, E1]q ]q−1 = (1− q−1)E2 Z ,

[E1, Z ] = [E2, Z ] = 0.

In both examples, we have CA (UA = EA = HA which contributes supporting
evidence for Conjecture 1.13. Note also that in this case mγ = 1 for γ = |S1|+ |S2|.

4. The PBW property of Hall algebras and proof of Theorem 2.4

4.1. Rings filtered and graded by ordered monoids. Let (3,C) be an ordered
abelian monoid, as defined in §2.2. We write µE ν if either µ= ν or µ 6= ν and
µC ν.

Definition 4.1. We say that a unital ring H is 3-filtered if H contains a family of
abelian subgroups HEλ, λ ∈3+, such that for all λ,µ ∈3+,

(i) 1H ∈HEλ and λEµ=⇒HEλ ⊂HEµ;

(ii) H=
∑

λ∈3+ H
Eλ;

(iii) HEλ ·HEµ ⊂HE(λ+µ).

This definition is similar to that in [Polishchuk and Positselski 2005, §4.7];
however, we do not require the ring H to admit a Z≥0-grading compatible with 3.

Given λ ∈3+, let

HCλ =
{

R if λ is minimal,∑
µCλH

Eµ if λ is not minimal,

where R=
⋂
λ∈3+ H

Eλ. Note that R is a subring of H and that each HEλ, hence HCλ,
is an R-bimodule. We have

(4-1) HCλ ·HEµ ⊂HC(λ+µ), HEλ ·HCµ ⊂HC(λ+µ).

Define the abelian group gr3H by

gr3H= R⊕
⊕
λ∈3

Hλ, Hλ
:=HEλ/HCλ.

Lemma 4.2. The abelian group gr3H is a 3-graded unital ring with the multipli-
cation given by

(x +HCλ) • (y+HCµ)= x · y+HC(µ+ν), for x ∈HEλ, y ∈HEµ

and r • (x +HCλ)= r x +HCλ, (x +HCλ) • r = xr +HCλ for all x ∈HEλ, r ∈ R.
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Proof. By construction, the multiplication by elements of R is well-defined. Us-
ing (4-1), we obtain, for all x ∈HEλ, y ∈HEλ,

(x+HCλ)•(y+HCµ)⊂ x ·y+HEλ·HCµ+HCλ·HEµ+HCλ·HCµ⊂ x ·y+HC(λ+µ).

Thus, • is well-defined. The distributivity and the associativity follow from those
in H. Then the ring H is graded by 3 by construction. It remains to observe that
1R is the unity of gr3H. �

Corollary 4.3. For any 3-filtered ring H and any collection λ1, . . . , λk ∈ 3, we
have

HEλ1 · · ·HEλk/(HEλ1 · · ·HEλk ∩HC(λ1+···+λk))=Hλ1 • · · · •Hλk .

Let 3min be the set of minimal, with respect to the partial order E, elements
of 3+. We say that 3 is optimal if it is generated by 3min.

Recall that an F-algebra A is generated over its subalgebra A0 by a subspace
A1 ⊂ A if A1 is an A0-bimodule and there exists a surjective homomorphism
TA0(A1)→ A which restricts to the identity on A0+ A1. Let (3,E) be an optimal
monoid and for any subset 3◦ of 3min define

H◦ :=
∑
λ∈3◦

HEλ, H◦ :=
⊕
λ∈3◦

Hλ.

Lemma 4.4. Let (3,E) be an optimal monoid and let H be a 3-filtered ring. Let
3◦ ⊂ 3min be a generating set for 3 as a monoid. If H◦ generates H then H◦
generates gr3H over R.

Proof. Given x ∈H, define ν(x)=min{k ≥ 0 : x ∈Hk
◦
} where H0

◦
= R =H0

◦
. Since

gr3H is 3-graded, it is sufficient to prove that for every x̄ ∈Hλ, λ ∈3+ we have
x̄ ∈ H•k

◦
for some k. Take x ∈ HEλ \HCλ such that x +HCλ = x̄ . Let k = ν(x).

Then
x ∈

∑
HEλ1 · · ·HEλk ,

where the sum is taken over all (λ1, . . . , λk) ∈ 3
k
◦

such that λ1 + · · · + λk = λ.
Using Corollary 4.3 we conclude that x̄ ∈

∑
Hλ1 • · · · •Hλk ⊂H◦•k . �

Proposition 4.5. Suppose that (3,E) is optimal andC is inductive. Let3◦⊂3min

be a generating set for 3. If H◦ generates gr3H over R then H◦ generates H.

Proof. Define
ν̄(x̄)=min{k ≥ 0 : x̄ ∈H•k

◦
}

for all x̄ ∈ gr3H. We prove by induction on f (λ), λ ∈3+ that for every x ∈HEλ,
we have x ∈Hk

◦
for some k ≥ 0. This is sufficient since every x ∈H belongs to the

sum of finitely many HEλ.
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The induction base is obvious since for λ ∈ 3◦ we can take k = 1. Suppose
that x ∈HEλ for some λ ∈3+ \3◦. If x ∈HEµ for some µC λ then we are done
by the induction hypothesis. Therefore, we may assume that x ∈HEλ \HCλ hence
x̄ := x +HCλ 6= 0 in gr3H. Let k = ν̄(x̄). Then

x̄ ∈
∑

Hλ1 • · · · •Hλk ,

where the sum is taken over (λ1, . . . , λk) ∈3
k
◦

such that λ1+ · · ·+ λk = λ. Then

x ∈
∑

(λ1,...,λk)∈3
k
◦

λ1+···+λk=λ

HEλ1 · · ·HEλk +HCλ ⊂Hk
◦
+HCλ.

hence x = x ′ + x ′′ where x ′ ∈ Hk
◦
, x ′′ ∈ HCλ. Then using the definition of HCλ

we can write x ′′ = x ′′1 + · · · + x ′′` , where x ′′j ∈ HEµ j with µ j C λ, 1 ≤ j ≤ `.
Since f (µ j ) < f (λ), by the induction hypothesis x ′′j ∈H

k′j
◦

for some k ′j ≥ 1 with
1≤ j ≤ `. Then x ∈Hmax(k,k′1,...,k

′

`)
◦

. �

Proposition 4.6 (weak PBW property). Let (3,E) be an optimal monoid, let C be
inductive and let 3◦ ⊂3min be a subset which generates 3 as a monoid. Let H be
a 3-filtered ring. Suppose that there exists a total order ≤ on 3◦ such that

gr3H=
∑
k≥0

∑
λ1≤···≤λk∈3k

◦

Hλ1 • · · · •Hλk .

Then
H=

∑
k≥0

∑
λ1≤···≤λk∈3k

◦

(HEλ1) · · · (HEλk ).

Proof. The argument is similar to the proof of Proposition 4.5. Let

H〈k〉 =
∑

(λ1≤···≤λk)∈3k
◦

(HEλ1) · · · (HEλk ),

We prove, by induction on f (λ), λ ∈ 3+ that for all x ∈ HEλ there exists k ≥ 0
such that x ∈H〈k〉. If λ ∈3◦ then x ∈H〈1〉 and we are done. Otherwise,

x +HCλ ∈
∑

(λ1≤···≤λk)∈3
k
◦

λ1+···+λk=λ

Hλ1 • · · · •Hλk ,

which implies that x ∈ H〈k〉 + HCλ. Since HCλ =
∑

µCλH
Eµ, we then have

x = x ′+ x ′′1 + · · · + x ′′` where x ′ ∈H〈k〉 and x ′′j ∈H
Eµ j for µ j C λ and 1 ≤ j ≤ `.

Applying the induction hypothesis to the x ′′j we conclude that x ′′j ∈H
〈k j 〉 for some k j ,

1≤ j ≤ `, hence x ∈H〈max(k,k1,...,k`)〉. �

We now consider a special case which we will later apply to Hall algebras.
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Corollary 4.7. Let (3,E) be an optimal monoid and let C be an inductive order.
Let H be a unital F-algebra with a basis {[λ] : λ ∈3} such that [0] = 1H and

[λ] · [µ] ∈ F×[λ+µ] +
∑
νCλ+µ

F[ν].

for all λ,µ ∈3. Then for any subset 3◦ of 3min which generates 3 as a monoid,
the set [3◦] := {[λ] : λ ∈3◦} generates H as an algebra. Moreover, for any total
order on3◦, the set M([3◦]) of ordered monomials in [3◦] spans H as an F-vector
space. Finally, if 3 is freely generated by 3◦ then M([3◦]) is a basis of H.

Proof. Clearly, H is3-filtered with HEλ=F{[µ] :µEλ}. In particular, R=F·[0]=F.
Then gr3H has a basis {[λ] : λ ∈3} and

(4-2) [λ] · [µ] ∈ F×[λ+µ],

hence [λ+µ] ∈ F×[λ] · [µ].
Let ≤ be any total order on 3◦. Given λ ∈3, we can write λ = λ1+ · · · + λr

with λi ∈3◦, 1≤ i ≤ r and λ1 ≤ · · · ≤ λr . By (4-2) we have [λ] ∈ F×[λ1] · · · [λr ].
Taking into account that HEλ = F+F[λ] for λ ∈3◦, we see that all assumptions of
Proposition 4.6 are satisfied. �

4.2. Proof of Theorem 2.2. The key ingredient of our argument is the following
result.

Proposition 4.8. Let A be a Hom-finite exact category. Then for any short exact
sequence

(4-3) M− //
f−
// M

f+
// // M+,

we have

(4-4) e([M])≤ e([M+⊕M−]),

where e([X ]) := # EndA X for [X ] ∈ Iso A . Moreover, if (4-4) is an equality
then (4-3) splits.

Proof. We need to prove that the following inequalities hold for every N in A :

(4-5)
# HomA (N ,M)≤ # Hom(N ,M+⊕M−),

# HomA (M, N )≤ # Hom(M+⊕M−, N ).

To prove the first inequality, recall (see, e.g., [Buchsbaum 1959; Yoneda 1954])
that for every N in A , (4-3) induces a long exact sequence of finite abelian groups

0→ HomA (N ,M−)→ HomA (N ,M)→ HomA (N ,M+)
δ∗
−→

Ext1A (N ,M−)−→ Ext1A (N ,M)−→ Ext1A (N ,M+)→ · · · .
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Truncating this sequence yields an exact sequence

(4-6) 0→ HomA (N ,M−)→ HomA (N ,M)→ HomA (N ,M+)
δ∗
−→ Im δ∗→ 0.

Then, computing the multiplicative Euler characteristic of (4-6), we obtain

(4-7) # HomA (N ,M−) · # HomA (N ,M+)= # HomA (N ,M) · # Im δ∗

≥ # HomA (N ,M),

which immediately yields the first inequality in (4-5).
To prove the second inequality, recall that for all N in A , (4-3) induces a long

exact sequence of abelian finite groups

0→ HomA (M+, N )→ HomA (M, N )→ HomA (M−, N )
δ∗

−→

Ext1A (M
+, N )−→ Ext1A (M, N )−→ Ext1A (M

−, N )→ · · · .

Similarly, truncating this sequence yields

0→ HomA (M+, N )→ HomA (M, N )→ HomA (M−, N )
δ∗

−→ Im δ∗→ 0,

and the argument identical to the above gives

# HomA (M, N )≤ # HomA (M+, N ) · # HomA (M−, N )

which is equivalent to the second inequality in (4-5).
Combining the first inequality in (4-5) with N = M+ ⊕ M− and the second

inequality in (4-5) with N = M we obtain

e([M])= # EndA M ≤ # HomA (M+⊕M−,M)

≤ # EndA M+⊕M− = e([M+⊕M−]).

To prove the last assertion, it suffices to show, in view of the above chain of
inequalities, that # HomA (M+⊕M−,M)= # EndA M+⊕M− implies that (4-3)
splits. Indeed, using the additivity of HomA in the first argument we rewrite the
latter equality as

# HomA (M+,M) · # HomA (M−,M)

= # HomA (M+,M+⊕M−) · # HomA (M−,M+⊕M−).

This and (4-5) taken with N = M− imply

# HomA (M+,M)≥ # HomA (M+,M+⊕M−),

which, together with (4-5) with N = M+, yield

# HomA (M+,M)= # HomA (M+,M+⊕M−).
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The last equality and (4-7) taken with N = M+ imply that E0 = Im δ∗ = 0, hence
the natural map HomA (M+,M)→ EndA M+ is surjective. Therefore, there exists
g ∈ HomA (M+,M) such that f+ ◦ g = 1M+ , hence (4-3) splits. �

Recall that C is the preorder defined as the transitive closure of the relation

[M]C [M−⊕M+] ⇐⇒ ∃ a nonsplit short exact sequence M− // // M // // M+

(cf. §2.2). By Proposition 4.8, C is an inductive preorder with the function mapping
[X ] to e([X ]), hence is an inductive partial order.

It remains to prove that the order C is compatible with the addition in Iso A .
Indeed, note that for any X in A , the short exact sequence (4-3) yields a short exact
sequence

(4-8) M−⊕ X //

( f− 0
0 1X

)
// M ⊕ X

( f+,0)
// // M+,

hence [M⊕ X ]E [M−⊕M+⊕ X ]. If [M]C [M−⊕M+], that is, (4-3) is nonsplit,
then clearly (4-8) is also nonsplit, so [M⊕ X ]C [M−⊕M+⊕ X ]. Taking transitive
closure implies that [M⊕X ]C[N⊕X ] for all [M], [N ] ∈ Iso A such that [M]C[N ]
and for all [X ] ∈ Iso A . This completes the proof of Theorem 2.2. �

4.3. Proof of Theorem 2.4. We are now going to apply the machinery developed
in §4.1. We begin by proving that (Iso A ,C) is optimal.

Lemma 4.9. Let A be an exact Hom-finite category. Then every object X in A is
a finite direct sum of indecomposable objects and the number of indecomposable
summands of X is bounded above by # EndA X.

Proof. Let X be a nonzero object in A . Write X = X1⊕ · · ·⊕ Xs for some s > 0,
where all the X i are nonzero. Then # EndA X ≥

∑s
j=1 # EndA X i ≥ s. Let k be

the maximal positive integer s such that X can be written as a direct sum of s
nonzero objects. The maximality of k immediately implies that each summand is
indecomposable. �

Remark 4.10. It should be noted that the Krull–Schmidt theorem does not have
to hold in this generality. For example, the full subcategory of the category of
k-representations of the quiver 1→ 0← 2, with the dimension vector satisfying
dimk V1 = dimk V2, is not Krull–Schmidt.

Corollary 4.11. The monoid Iso A is generated by Ind A and is optimal with
respect to E.

Proof. The first assertion is immediate from the lemma. To prove the second,
observe that if [N ] is not minimal, then [M]C [N ] for some [M] ∈ Iso A and so
N is decomposable. Thus, every [X ] ∈ Ind A is minimal with respect to the partial
order E, hence Iso A is generated by its minimal elements. �
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Proof of Theorem 2.4. Since (Iso A ,C) is optimal and C is inductive, the algebra
HA satisfies the assumptions of Corollary 4.7 with 3 = Iso A and 3◦ = Ind A .
Therefore, for any total order on Ind A , ordered monomials on Ind A span HA .
Finally, if A is Krull–Schmidt, Iso A is freely generated by Ind A , hence ordered
monomials on Ind A form a basis of HA . �

5. The Grothendieck monoid of a profinitary category

5.1. Almost simple objects. We will repeatedly need the following obvious de-
scription of the defining relation of the Grothendieck monoid.

Lemma 5.1. Suppose that [X ] 6= [Y ] ∈ (Iso A )+ and |X | = |Y |. Then there exist
[X i ]∈ (Iso A )+, 0≤ i ≤ r and [Ai ], [Bi ]∈ (Iso A )+, 1≤ i ≤ r such that [X0]= [X ],
[Xr ] = [Y ] and [X i−1], [X i ] ∈ Ext1A (Ai , Bi ), 1≤ i ≤ r .

Definition 5.2. We say that an object X 6= 0 in an exact category A is almost
simple if there is no nontrivial short exact sequence Y � X � Z (or, equivalently,
[X ]∈Ext1A (A, B)=⇒{[A], [B]}={[X ], [0]}) and simple if it has no proper nonzero
subobjects.

Clearly, in an abelian category these notions coincide. Note that an almost simple
object is always indecomposable. Let SA ⊂ Iso A be the set of isomorphism classes
of almost simple objects. The definition (2-3) of comultiplication 1 implies that

F AB
X =

{
1 if {[A], [B]} = {[X ], [0]},
0 otherwise,

hence

(5-1) SA ⊂ Prim(HA ).

Let 0 be an abelian monoid. Observe that the elements of 0+ \ (0++0+) are
precisely the minimal elements of 0+ in the preorder � (cf. §2.4).

Lemma 5.3. Let A be an exact category. Then the restriction of the canonical
homomorphism of monoids φA : Iso A → 0A to SA is a bijection

(5-2) SA → 0+A \ (0
+

A +0
+

A ).

In particular, if A is Hom-finite, then (HA )γ equals Prim(HA )γ and is one-
dimensional for all γ ∈ 0+A \ (0

+

A +0
+

A ).

Proof. Lemma 5.1 implies that for [X ] ∈ SA , we have |X | = |Y | if and only
if [X ] = [Y ]. This shows that the restriction of φA to SA is injective. Furthermore,
if |X | = |Y |+ |Z | = |Y ⊕ Z | for some nonzero [Y ], [Z ] then [X ] = [Y ⊕ Z ], which
is a contradiction since X is indecomposable. Thus, ImφA ⊂ 0

+

A \ (0
+

A +0
+

A ) and
so the map in (5-2) is well-defined. Finally, if [X ] /∈ SA , then [X ] ∈ Ext1A (A, B)
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with |A|, |B| ∈ 0+A , hence |X | = |A| + |B| ∈ 0+A + 0
+

A . Thus, the preimage of
0+A \ (0

+

A +0
+

A ) is contained in SA hence φA |SA is surjective.
In particular, dimQ(HA )γ = # Iso Aγ = 1 for all γ ∈ 0+A \ (0

+

A + 0
+

A ). The
equality (HA )γ = Prim(HA )γ now follows from (5-1). �

Remark 5.4. Note that we can have dimQ(HA )γ = 1 even for γ ∈ 0++0+. For
example, if S, S′ are simple objects with Ext1A (S, S′) = Ext1A (S

′, S) = 0, then
(HA )|S|+|S′| =Q[S⊕ S′] =Q[S][S′]. However, in that case Prim(HA )γ = 0.

5.2. Proof of Proposition 2.12. Let

0
f
A = {γ ∈ 0A : # Iso Aγ <∞}.

Thus, A is profinitary if 0A =0
f
A . Note, however, that 0 f

A need not be a submonoid
of 0A . Since # Iso Aγ = 1 for γ ∈ 0+A minimal, all minimal elements of 0A are
contained in 0 f

A . Given γ ∈ 0 f
A , let sγ =max[X ]∈Iso Aγ

# EndA X .
Proposition 2.12 is a special case of the following proposition.

Proposition 5.5. Let A be a Hom-finite exact category. Then the restriction of the
preorder � to 0 f

A is a partial order. Moreover, 0 f
A is contained in the submonoid

of 0A generated by its minimal elements.

Proof. We need the following lemma.

Lemma 5.6. Let γ ∈ 0 f
A \ {0}. Then γ can be written as a sum of finitely many

minimal elements of 0+A and the number of summands in any such presentation is
bounded by sγ .

Proof. The proof is almost identical to that of Lemma 4.9. Write γ = γ1+ · · ·+ γs

for some γi ∈ 0
+

A . Take X i ∈A with |X i | = γi and let X = X1⊕· · ·⊕ Xs . Then s
cannot exceed the maximal possible number of indecomposable summands of X
which, by Lemma 5.3, is bounded above by # EndA X ≤ sγ . Let k be the maximal
integer s such that γ can be written as a sum of s elements of 0+A . Then the
maximality of k implies that each summand is minimal. �

It follows from Lemma 5.6 that for α ∈ 0 f
A , α = α + β implies that β = 0.

Then α+β + γ = α implies that β + γ = 0, hence β = γ = 0 since 0 is the only
invertible element of 0A . The first assertion of the proposition now follows from
Lemma 2.10, while the second is immediate from Lemma 5.6. �

5.3. Proofs of Theorems 1.4, 2.14 and Corollary 1.5. We begin with Theorem 1.4.
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Proof of Theorem 1.4. Since [A⊕ B] ∈ Ext1A (A, B), Definition 2.11 implies that a
profinitary category A is cofinitary if and only if for any γ ∈ 0A the set

Eγ := {([A], [B]) ∈ Iso A × Iso A : |A| + |B| = γ }

=

⋃
[X ]∈Iso A : |X |=γ

{([A], [B]) ∈ Iso A × Iso A : [X ] ∈ Ext1A (A, B)}

is finite. On the other hand,

Eγ =
⋃

α,β∈0A :α+β=γ

Iso Aα × Iso Aβ .

Therefore, Eγ is finite if and only if {(α, β) ∈ 0A ×0A : α+β = γ } is finite. �

Now we proceed to prove Theorem 2.14. Given an object X ∈ A , an admissible
flag on X is a sequence of objects X0 = X , X1, . . . , Xs = 0 together with short
exact sequences X i // // X i−1 // // Yi , 1≤ i ≤ s. An admissible flag is said to be a
composition series if the Yi are almost simple for all 1≤ i ≤ s.

Proposition 5.7. Let A be a profinitary exact category. Suppose that γ ∈ 0A \ {0}.
Then X ∈A with |X | = γ admits a composition series. Moreover, the length of any
composition series of X is bounded above by sγ .

Proof. We use induction on the partially ordered set (0A ,�) (see Proposition 5.5).
If γ ∈ 0A is minimal then X with |X | = γ is almost simple by (5-2), and hence
admits a composition series. Suppose the assertion is established for all γ ′ ≺ γ
and γ is not minimal. Then X with |X |=γ is not almost simple, hence there exists a
short exact sequence X ′′ // // X h // // X ′ with |X ′|, |X ′′| ≺ |X |. By the induction
hypothesis there exists a short exact sequence Y ′′ // // X ′ g

// // Y with Y almost
simple. Let Y1 = Y . Then we have a short exact sequence

X1 // // X gh
// // Y1

where |X1| ≺ |X |. Therefore, X1 admits a composition series by the induction
hypothesis, which establishes the first assertion of the lemma. The second assertion
is immediate from Lemma 5.6 since |X | = |Y1| + · · · + |Ys |. �

Proof of Theorem 2.14. If A is profinitary and abelian, then the composition series
from Proposition 5.7 is a composition series in the usual sense since all almost
simple objects are simple. Theorem 2.14 is now immediate. �

Proof of Corollary 1.5. Since a full exact subcategory of a cofinitary exact category
is also cofinitary, to prove (a), it suffices to consider the case when A is a profinitary
abelian category. Note that the uniqueness of composition factors in an abelian
category with the finite length property (see, e.g., [Joyce 2006, Theorem 2.7])
implies that 0A is freely generated by its minimal elements. It remains to apply
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Theorem 1.4. To prove (b), note that by Lemma 5.6, 0A is finitely generated
if and only if it contains finitely many minimal elements γ1, . . . , γn . Again by
Lemma 5.6, the number of decompositions of γ ∈ 0A as γ =

∑n
i=1 ciγi , ci ∈ Z≥0

is bounded above by
(sγ+n

n

)
, which is the number of n-tuples (c1, . . . , cn) ∈ Zn

≥0
with

∑n
i=1 ci ≤ sγ . The assertion is now immediate from Theorem 1.4. �

6. Coalgebras in tensor categories and proof of the main theorem

6.1. Quasiprimitive elements and coideals. Let F be a field of characteristic zero.
Let H0 be a bialgebra over F and let C be the category of left H0-comodules.
Given V ∈ C , we denote the left coaction of H0 by δV : V → H0⊗ V and, using
Sweedler-like notation, write

δV (v)= v
(−1)
⊗ v(0), v ∈ V .

The category C is an F-linear tensor category with the unit object F, the tensor
product A⊗B= A⊗F B of objects A, B ∈C acquiring a left H0-comodule structure
via

δA⊗B(a⊗ b)= a(−1)b(−1)
⊗ a(0)⊗ b(0),

for all a ∈ A, b ∈ B.
By definition, a coalgebra in C is an object C ∈ C together with morphisms

1 ∈ HomC (C,C ⊗ C) and ε ∈ HomC (C, F) satisfying the usual axioms. For
any coalgebra C in C , denote by C0 = CoradC (C) the sum of all simple finite
dimensional subcoalgebras of C in C and refer to it as the coradical of C in C .
Clearly, C0 is a subcoalgebra of C in C . Denote also

C1 = QPrimC (C)=1
−1(C ⊗C0+C0⊗C)

and refer to it as the quasiprimitive set of C . Then C1 is a C -subobject of C . It is
well-known (see [Sweedler 1969, Corollary 9.1.7]) that

1(C1)⊂ C1⊗C0+C0⊗C1.

In particular, if C0 = F then QPrimC (C)= F⊕Prim(C). More generally, we have
the following lemma which extends a well-known result (cf. [Montgomery 1993,
Theorem 5.2.2; Sweedler 1969, §9.1]).

Lemma 6.1. Any coalgebra C in C admits an increasing coradical filtration by
subcoalgebras Ck ⊂ C in C , k ≥ 0, defined by C0 = CoradC (C), C1 =QPrimC (C)
and

Ck =1
−1(C ⊗Ck−1+C0⊗C)

for k > 1. Moreover, 1(Ck)=
∑k

i=0 Ci ⊗Ck−i . �
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A coideal in C is a C -subobject I of C satisfying

1(I )⊂ C ⊗ I + I ⊗C.

Proposition 6.2. Let C be a coalgebra in C . Then for any nonzero coideal I in C

one has
I ∩QPrimC (C) 6= {0}.

Proof. For each k ≥ 0 denote Ik := I ∩Ck . If I0 6= {0}, then we are done since
I0 ⊂ C0 ⊂ C1. Assume that I0 = 0. Since C0 ⊂ C1 ⊂ · · · is a filtration, there exists
a unique k ≥ 1 such that Ik−1 = 0 and Ik 6= 0. Then

1(Ik)⊂ C0⊗ Ik + Ik ⊗C0.

Since C1 is the maximal subobject V of C with the property1(V )⊂C0⊗V+V⊗C0,
it follows that Ik ⊂C1 and so k = 1. Thus, I1 = I ∩C1 = I ∩QPrimC (C) 6= {0}. �

6.2. Invariant pairing. Given two objects A, B in C , a pairing 〈 · , · 〉 : A⊗ B→ F

is called H0-invariant if

a(−1)
〈a(0), b〉 = b(−1)

〈a, b(0)〉

for all a ∈ A, b ∈ B.
The following example plays a fundamental role in the sequel.

Example 6.3. Let 0 be an abelian monoid. Its monoidal algebra H0 = F0 has a
natural coalgebra structure, with the elements of 0 being group-like. Then a left
H0-comodule V is in fact a 0-graded vector space, since V =

⊕
γ∈0 Vγ where

Vγ = {v ∈ V : δV (v)= γ ⊗ v}. It is easy to see that a pairing 〈 · , · 〉 : A⊗ B→ F is
H0-invariant if and only if 〈Aγ , Bγ ′〉 = 0, γ 6= γ ′ ∈ 0.

Lemma 6.4. Let 〈 · , · 〉 : A⊗ B→ F be an H0-invariant pairing between objects A
and B of C . Then for any subobject A0 of A in C , its right orthogonal complement

A0
⊥
= {b ∈ B : 〈A0, b〉 = 0}

is a subobject of B in C . Likewise, for any subobject B0 of B in C , its left orthogonal
complement

⊥B0 = {a ∈ A : 〈a, B0〉 = 0}

is a subobject of A in C .

Proof. We prove the first assertion only, the argument for the second one being
similar. Given b ∈ A0

⊥, write δB(b)=
∑

i hi ⊗ bi where the hi ∈ H0 are linearly
independent and bi ∈ B. Since the pairing is invariant, we have for all a ∈ A0∑

i

hi 〈a, bi 〉 = a(−1)
〈a(0), b〉 = 0
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since δA(a)=a(−1)
⊗a(0) ∈ H0⊗A0. Therefore, 〈a, bi 〉= 0 for all i , hence bi ∈ A0

⊥

and so δB(b) ∈ H0⊗ A0
⊥. �

We now prove that an H0-invariant pairing between nonisomorphic simple objects
in C must be identically zero. For that purpose, it will be convenient to introduce
the dual picture. Let H∗0 = HomF(H0, F). Then H∗0 is an associative F-algebra
via f · g = ( f ⊗ g) ◦1H0 for all f, g ∈ H∗0 , where 1H0 : H0→ H0 ⊗ H0 is the
comultiplication on H0 (hereafter we identify F⊗F V with V via the canonical
isomorphism). Then a left H0-comodule V is naturally a left H∗0 -module via
f Fv = ( f ⊗1)δV (v), for all f ∈ H∗0 and v ∈ V . This yields a fully faithful functor
from the category C to the category of left H∗0 -modules. In particular, V ∼= V ′

in C if and only if they are isomorphic as H∗0 -modules. If 〈 · , · 〉 : A⊗ B→ F is an
H0-invariant pairing, then for all a ∈ A, b ∈ B and f ∈ H∗0 we have

(6-1) 〈 f F a, b〉 = f (a(−1))〈a(0), b〉

= f (b(−1))〈a, b(0)〉 = 〈a, f F b〉.

Finally, note that V is a simple H0-comodule if and only if it is simple as a left
H∗0 -module.

Proposition 6.5. Let A and B be simple objects in C . Let 〈 · , · 〉 : A⊗ B→ F be a
nonzero H0-invariant pairing. Then A ∼= B in C .

Proof. Given a ∈ A, let Ja = AnnH∗0 a = { f ∈ H∗0 : f F a = 0}. We need the
following technical result.

Lemma 6.6. Let A, B be objects in C and let 〈·, · 〉 : A⊗B→ F be an H0-invariant
pairing such that ⊥B = 0. If B is simple, then Ja ⊂ AnnH∗0 B for all a ∈ A, a 6= 0.
Moreover, if A is also simple, then Ja = AnnH∗0 A.

Proof. Let a ∈ A, a 6= 0 and take f ∈ Ja . It follows from (6-1) that for all b ∈ B,
0=〈 f Fa, b〉= 〈a, f Fb〉. Thus, 〈a, JaFB〉= 0, hence a ∈⊥(JaFB). Since ⊥B= 0,
this implies that Ja F B is a proper H∗0 -submodule of B, hence Ja F B = 0 by the
simplicity of B.

Suppose now that A is also simple. Then Ja is a maximal left ideal for all a 6= 0.
If Ja 6= Ja′ for some a, a′∈ A then Ja+ Ja′=H∗0 31, hence B=0, which contradicts
the simplicity of B. Thus, Ja = Ja′ for all a, a′ ∈ A and so

AnnH∗0 A =
⋂
a′∈A

Ja′ = Ja. �

Since A, B are simple and the form 〈 · , · 〉 is H0-invariant and nonzero, ⊥B = 0
by Lemma 6.4. Then AnnH∗0 A⊂AnnH∗0 B by Lemma 6.6. Let R = H∗0 /AnnH∗0 A.
Then both A and B are R-modules in a natural way and are simple as such. Moreover,
A ∼= B as H0-comodules if and only if A ∼= B as R-modules. Furthermore, by
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definition of R and Lemma 6.6 every nonzero element of R acts on A by an injective
F-linear endomorphism. Since A is a simple H0-comodule, it is finite dimensional
(see, e.g., [Montgomery 1993, Corollary 5.1.2]). Thus, each nonzero element of R
acts on A by an F-automorphism. This implies that R is a division algebra, hence
admits a unique, up to an isomorphism, simple finite dimensional module, and so
A ∼= B as R-modules. Therefore, A ∼= B as objects in C . �

Remark 6.7. It can be shown that R is a field, since for all f, g ∈ H∗0 we have

〈 f g F a, b〉 = 〈g F a, f F b〉 = 〈a, (g f ) F b〉 = 〈g f F a, b〉.

Hence, since both A and B are simple, f g− g f ∈ AnnH0
∗ A.

Denote by C f the full subcategory of C whose objects are direct sums of
simple comodules with finite multiplicities. Thus, an object V of C f can be
written as V =

⊕
i∈I Vi where each Vi is a finite direct sum of isomorphic simple

subcomodules of V , and hence by [Montgomery 1995] is finite dimensional.

Lemma 6.8. Suppose that V =
⊕

i∈I Vi ∈ C f admits an H0-invariant bilinear
form 〈 · , · 〉 : V ⊗ V → F. Then for any subobject U of V in C ,

U⊥ ⊃
⊕
i∈I

U⊥i ,

where U⊥i = {v ∈ Vi : 〈U ∩ Vi , v〉 = 0}.

Proof. By Proposition 6.5, 〈Vi , V j 〉=0 if i 6= j . The assertion is now immediate. �

6.3. Quasiprimitive generators.

Definition 6.9. Let (A, · , 1) be a unital algebra and (B,1, ε) be a coalgebra in C .
We say that an H0-invariant pairing 〈 · , · 〉 : A⊗ B→ F is compatible with (A, · , 1)
and (B,1, ε) if

〈a · a′, b〉 = 〈a⊗ a′,1(b)〉, ε(b)= 〈1, b〉

for all a, a′ ∈ A, b ∈ B, where 〈 · , · 〉 : (A⊗ A)⊗ (B⊗ B)→ F is defined by

〈a⊗ a′, b⊗ b′〉 = 〈a, b′〉〈a′, b〉.

The main ingredient in our proof of Theorem 2.18 is the following result.

Theorem 6.10. Let A be an algebra (denoted by (A, · , 1)) and a coalgebra (de-
noted by (A,1, ε)) in C f . Let 〈 · , · 〉 : A⊗ A→ F be a compatible pairing between
(A, · , 1) and (A,1, ε) satisfying 〈a, a〉 6= 0 for all a ∈ A \ {0}. Then (A, · , 1) is
generated by A1 = QPrim(A,1, ε).
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Proof. Let B be a C -subalgebra of A. Since A ∈ C f and B is its subobject,
A=

⊕
i Ai and B =

⊕
i Bi where Bi = Ai ∩ B. By Proposition 6.5, 〈Ai , A j 〉 = 0

for all i 6= j . We claim that B⊥ is a coideal of A in C .
Indeed, for any i , j we have

{0} = 〈Bi · B j , B⊥〉 = 〈Bi ⊗ B j ,1(B⊥)〉.

Thus,1(B⊥)⊂
⊕

i, j (Bi⊗B j )
⊥ where (Bi⊗B j )

⊥
={z∈ A j⊗Ai : 〈Bi⊗B j , z〉=0}.

We need the following simple fact from linear algebra.

Lemma 6.11. Let U , V be finite dimensional vector spaces over F and U ′ ⊂ U ,
V ′ ⊂ V their subspaces. Then:

(a) U ′⊗ V ′ = (U ′⊗ V )∩ (U ⊗ V ′);

(b) For any subspaces V1, V2 of V ,

(V1 ∩ V2)
⊥
= V⊥1 + V⊥2 , V⊥1 ∩ V⊥2 = (V1+ V2)

⊥,

where W⊥ = { f ∈ V ∗ : f (W )= 0} for any subspace W ⊂ V ;

(c) (U ′⊗V ′)⊥ = V ′⊥⊗U∗+V ∗⊗U ′⊥, where we canonically identify (U ⊗V )∗

with V ∗⊗U∗.

Proof. Parts (a) and (b) are easily checked. For (c), note that (U ′⊗V )⊥= V ∗⊗U ′⊥

and (U ⊗ V ′)⊥ = V ′⊥⊗U∗. Hence by parts (a), and (b)

(U ′⊗ V ′)⊥ = ((U ′⊗ V )∩ (U ⊗ V ′))⊥

= (U ′⊗ V )⊥+ (U ⊗ V ′)⊥ = V ∗⊗U ′⊥+ V ′⊥⊗U∗. �

Since Ak is finite dimensional and the restriction of 〈·, · 〉 to Ak is nondegenerate,
we naturally identify A∗k with Ak via a 7→ fa , where fa(a′)=〈a′, a〉. Then, applying
Lemma 6.11(c) with U = Ai , V = A j , U ′ = Bi and V ′ = B j , we obtain

(6-2) (Bi ⊗ B j )
⊥
= A j ⊗ B⊥i + B⊥j ⊗ Ai ,

where B⊥k = {a ∈ Ak : 〈Bk, a〉 = 0}. We conclude that

1(B⊥)⊂
⊕
i, j

(Bi ⊗ B j )
⊥
⊂ A⊗ B⊥+ B⊥⊗ A.

To complete the proof of the claim, observe that ε(B⊥)= 〈1, B⊥〉 = 0.
Now we complete the proof of Theorem 6.10. Let B be the subalgebra of A

in C generated by the subobject A1 = QPrimC (A) of A, and suppose that B 6= A.
Then, by the above claim, the orthogonal complement I = B⊥ is a coideal of A
in C . By Lemma 6.8, I ⊃

⊕
i B⊥i 6= {0} because Bi 6= Ai for some i . Therefore,

I 6= {0} and so I ∩ A1 6= {0} by Proposition 6.2. Yet I ∩ B = {0} since 〈x, x〉 6= 0
for all x ∈ A, hence I ∩ A1 = {0} and we obtain a contradiction. Thus, B = A. �
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6.4. Proof of Theorems 1.2 and 2.18. Let F = Q and define Green’s pairing
〈 · , · 〉 : HA ⊗ HA →Q (cf. [Green 1995]) by

(6-3) 〈[A], [B]〉 =
δ[A],[B]

|AutA (A)|

for any [A], [B] ∈ Iso A .
Clearly, this pairing is positive definite and symmetric. We extend 〈 · , · 〉 to a

symmetric bilinear form on HA ⊗ HA by

〈[A]⊗ [B], [C]⊗ [D]〉 = 〈[A], [D]〉〈[B], [C]〉

for any [A], [B], [C], [D] ∈ Iso A .

Lemma 6.12. Let A be a cofinitary category. Then (6-3) is a compatible pairing
(in the sense of Definition 6.9) between the Hall algebra HA and the coalgebra
(HA ,1, ε).

Proof. We abbreviate 0 = 0A and let C = C0 be the category of 0-graded vector
spaces or, equivalently, Q0-comodules (cf. Example 6.3). It follows immediately
from Example 6.3 that the pairing (6-3) is Q0-invariant.

It remains to prove the compatibility in the sense of Definition 6.9, that is,

〈[A] · [B], [C]〉 = 〈[A]⊗ [B],1([C])〉

for all [A], [B], [C] ∈ Iso A . Indeed,

〈[A] · [B], [C]〉 =
FC

A,B

|AutA (C)|
=

F B,A
C

|AutA (B)| |AutA (A)|

=

∑
[A′],[B ′]

F B ′,A′
C 〈[A], [A′]〉〈[B], [B ′]〉

=

∑
[B ′],[A′]

F B ′,A′
C 〈[A]⊗ [B], [B ′]⊗ [A′]〉

= 〈[A]⊗ [B],1([C])〉. �

Proof of Theorems 1.2 and 2.18. Suppose that A is profinitary and cofinitary. Since
for each γ ∈ 0 = 0A , (HA )γ is finite dimensional and hence is a finite direct sum
of isomorphic simple left Q0-comodules, HA ∈ C

f
0 . Then, clearly, A = HA and

the pairing (6-3) satisfy all the assumptions of Theorem 6.10. Therefore, HA is
generated by A1 = QPrim(HA ,1, ε) in C0.

Our next step is to show that A1=Prim(HA ,1, ε), which gives the first assertion
of Main Theorem 1.2. For that, we need the following result.

Lemma 6.13. Let C =
⊕

γ∈0 Cγ be a coalgebra in the category C0. Assume that
for every γ ∈ 0+, there exists hγ ∈ Z>0 such that γ cannot be written as a sum of
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more than hγ elements of 0+. Then CoradC (C)⊂ C0 where 0 is the zero element
of 0.

Proof. First, observe that 0 is the only invertible element of 0, since otherwise
0= α+β for some α, β ∈ 0+ and so α = (n+1)α+nβ for any n ∈ Z>0, which is
a contradiction. Since for any subcoalgebra D =

⊕
γ∈0 Dγ of C in C0

1(Dγ ) ⊂
⊕

γ ′,γ ′′∈0 : γ=γ ′+γ ′′

Dγ ′ ⊗ Dγ ′′,

it follows that 1(D0)⊂ D0⊗ D0. Therefore, D0 is a subcoalgebra of D.
We claim that D = 0 if and only if D0 = 0. Indeed, if D0 = 0, since for the k-th

iterated comultiplication 1k we have

1k(Dγ ) ⊂
∑

γ0,...,γk∈0 : γ0+···+γk=γ

Dγ0 ⊗ · · ·⊗ Dγk ,

it follows that 1hγ (Dγ )= 0, since then in each summand we must have γi = 0 for
some 0≤ i ≤ hγ by the assumptions of the lemma. This implies that Dγ = 0 for
all γ ∈ 0, hence D = 0. The converse is obvious.

Thus, if D is a simple subcoalgebra of C , then D0 6= 0 and so D = D0. �

By Lemma 5.6, 0A satisfies the assumptions of Lemma 6.13, with hγ ≤ sγ ,
hence CoradC (HA ) = Q and QPrimC (HA ) = Q⊕ Prim(HA ). This proves the
first assertion of Main Theorem 1.2. It remains to prove the second assertion (and
thus complete the proof of Theorem 2.18), namely, that Prim(HA ) is a minimal
generating space of HA . We need the following result.

Lemma 6.14. Suppose A is both a unital algebra and coalgebra with1(1)= 1⊗1.
Assume that A admits a compatible pairing 〈 · , · 〉 : A⊗ A→ F, in the sense of
Definition 6.9, such that 〈a, 1〉 = ε(a) for all a ∈ A. Let V = Prim(A). Then 1 /∈ V
and

〈∑
k≥2 V k, F⊕ V

〉
= 0.

Proof. Since v ∈ V is primitive, ε(v)= 0. Furthermore, we show that ε : A→ F is
a homomorphism of algebras. Indeed, given a, a′ ∈ A, we have

ε(aa′)= 〈aa′, 1〉 = 〈a⊗ a′,1(1)〉 = 〈a⊗ a′, 1⊗ 1〉 = 〈a′, 1〉〈a, 1〉 = ε(a)ε(a′).

This immediately implies that ε(V `)= 0 and 〈V `, V 0
〉 = 0, `> 0. Finally, let v ∈ V

and x, y ∈ ker ε. Then

(6-4) 〈xy, v〉=〈x⊗y,1(v)〉=〈x⊗y, v⊗1+1⊗v〉=〈y, v〉ε(x)+ε(y)〈x, v〉=0.

Let ` > 1. Since V `
⊂ V · V `−1 and V k

⊂ ker ε for all k > 0, it follows that
〈V `, V 〉 = 0. �
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Let VA = Prim(HA ) and (HA )>1 =
∑

r≥2 V r
A . From Lemma 6.14, we have

〈(HA )>1,Q⊕ VA 〉 = 0. Since the pairing 〈 · , · 〉 on HA is symmetric positive
definite, (HA )>1 ∩ (Q⊕ VA )= {0}, hence the sum (Q⊕ VA )+ (HA )>1 is direct.
This proves the second assertion of Main Theorem 1.2 and completes the proof of
Theorem 2.18. �

6.5. Proof of Corollary 2.19 and estimates for primitive elements.

Proof of Corollary 2.19. Let H+A = ker ε and let R ⊂ H+A be a generating space
for HA . Then (H+A )

`
=
∑

k≥` Rk , `≥ 1. Taking R =Q Ind A (Theorem 1.1) and
R = Prim(HA ) (Theorem 2.18) we conclude that

P = (H+A )
2
=

∑
k≥2

Prim(HA )
k
=

∑
k≥2

(Q Ind A )k .

On the other hand, H+A = Prim(HA )+ P and P∩Prim(HA )= {0} by Lemma 6.14.
Therefore, H+A = Prim(HA )⊕ P . The graded version is immediate. �

Proof of Proposition 2.20 and Lemma 2.21. We need the following obvious fact
from linear algebra.

Lemma 6.15. Let U be a finite dimensional F-vector space and U1,U ′1,U2 be
subspaces of U such that U = U1 + U2 = U ′1 + U2. If U1 ∩ U2 = {0}, then
dimF U1 = dimF U ′1− dimF(U ′1 ∩U2).

Taking into account Corollary 2.19, we apply this lemma with U = (HA )γ ,
U ′1 =Q Ind Aγ , U2 = Pγ and U1 = Prim(HA )γ to obtain

dimQ Prim(HA )γ = # Ind Aγ − dimQ(Pγ ∩Q Ind Aγ ),

which yields Proposition 2.20.
To prove Lemma 2.21, note that Q(Iso A \ Ind A )= (Q Ind A )⊥. Thus,

Prim(HA )γ ∩Q(Iso A \ Ind A ) ⊂ (Q Ind Aγ )
⊥
∩ P⊥γ

= (Q Ind Aγ + Pγ )⊥ = (HA )
⊥

γ = 0

by Lemma 6.11(b) and Corollary 2.19. �

7. Proof of Theorem 2.26

7.1. Diagonally braided categories. We call a bialgebra H0 coquasitriangular if
it has a skew Hopf self-pairing R : H0 ⊗ H0 → Q. Let C be the category of
left H0-comodules. This category is braided via the commutativity constraint
9U,V :U ⊗ V → V ⊗U for all objects U, V of C defined by

9U,V (u⊗ v)=R(u(−1), v(−1)) · v(0)⊗ u(0)
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for all u ∈ U , v ∈ V , where we use the Sweedler-like notation for the coactions
δU (u) = u(−1)

⊗ u(0) and δV (v) = v
(−1)
⊗ v(0). We will write CR to emphasize

that C is a braided category.

Remark 7.1. The category Cχ introduced in Lemma 2.22 is equivalent to the
category of H0-comodules, where H0 = Q0 is the monoidal algebra of 0 and
R|0×0 = χ .

Our present aim is to prove the following result.

Theorem 7.2. Let B be a bialgebra in CR.

(a) The space V = Prim(B) is a subobject of B in CR.

(b) Suppose that B admits a compatible pairing, in the sense of Definition 6.9,
such that 〈b, 1〉 = ε(b) and 〈b, b〉 6= 0 for all b ∈ B \ {0}. Then the canonical
inclusion V ↪→ B extends to an injective homomorphism

(7-1) B(V )→ B

of bialgebras in CR. In particular, if B is generated by V , then (7-1) is an
isomorphism.

Proof. Part (a) is a special case of the following simple fact.

Lemma 7.3. If C is a coalgebra in CR with unity, then V :=Prim(C) is a subobject
of C in CR.

Proof. Denote by δC : C→ H0⊗C the left coaction of H0 on C . All we have to
show is that δC(V )⊂ H0⊗ V . Fix a basis {bi } of H0 and let v ∈ Prim(C). Write

δC(v)=
∑

i

bi ⊗ vi , vi ∈ C.

Since 1 : C→ C ⊗C is a morphism of left H0-comodules,

(1⊗1) ◦ δC(v)= δC(v⊗ 1)+ δC(1⊗ v).

Taking into account that δC(1)= 1⊗ 1, we obtain∑
i

bi ⊗1(vi )=
∑

i

bi ⊗ vi ⊗ 1+
∑

i

bi ⊗ 1⊗ vi ,

which implies that
1(vi )= vi ⊗ 1+ 1⊗ vi ,

that is, vi ∈ V for all i . �

Now we prove (b). Denote by B ′ the subalgebra of B generated by V = Prim(B).
It is sufficient to show that B ′ = B(V ). We need the following result.

Proposition 7.4. B ′ =
⊕

k≥0 V k , hence B ′ is a graded algebra.
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Proof. We prove that 〈V `, V k
〉 = 0 for all 0≤ k < ` by induction on the pairs (k, `)

with k < `, ordered lexicographically. The induction base for k = 0, 1 is established
in Lemma 6.14. Now, fix ` > 2 and suppose that 〈V s, V r

〉 = 0 for all r < s < `.
Let 1< k < `. Since 1 is a homomorphism of algebras,

1(V k)⊂ (V ⊗ 1+ 1⊗ V )k ⊂
k∑

i=0

V k−i
⊗ V i ,

hence

〈V `, V k
〉 ⊂ 〈V ⊗ V `−1,1(V k)〉 ⊂

k∑
i=0

〈V ⊗ V `−1, V k−i
⊗ V i
〉

=

k∑
i=0

〈V, V i
〉〈V `−1, V k−i

〉 = 〈V, V 〉〈V `−1, V k−1
〉 = {0}

by the inductive hypothesis. It remains to show that the sum
∑

k≥0 V k is direct,
which is an immediate consequence of the following obvious fact.

Lemma 7.5. Let Ui , i ∈ Z≥0, be subspaces of an F-vector space U with a bilinear
form 〈 · , · 〉 : U ⊗ U → F such that 〈U j ,Ui 〉 = 0 if j > i and 〈u, u〉 6= 0 for
all u ∈U \ {0}. Then the sum

∑
i Ui is direct. �

This completes the proof of Proposition 7.4. �

Since B ′0 = Q and B ′1 = V = Prim(B ′) = Prim(B), B ′ is the Nichols algebra
of V by Definition 2.23. Theorem 7.2 is therefore proved. �

7.2. Proof of Theorem 2.26. We need the following reformulation of Green’s
celebrated theorem for Hall algebras ([Green 1995]; see also [Walker 2011]).

Proposition 7.6. Let A be a finitary and cofinitary hereditary abelian category.
Then the Hall algebra HA is a bialgebra in CχA with the coproduct 1 given by
(2-3) and the counit ε given by (2-4).

Proof. For every [C], [C ′] ∈ Iso A we have

1([C])1([C ′])=
( ∑
[A],[B]

F A,B
C · [A]⊗ [B]

)( ∑
[A′],[B ′]

F A′,B ′
C ′ · [A

′
]⊗ [B ′]

)

=

∑
[A],[B],[A′],[B ′]

F A,B
C F A′,B ′

C ′ ·
|Ext1A (B, A′)|
|HomA (B, A′)|

[A][A′]⊗ [B][B ′]

=

∑
[A],[B],[A′],
[B ′],[A′′],[B ′′]

F A,B
C F A′,B ′

C ′ F A′′
A,A′F

B ′′
B,B ′
|Ext1A (B, A′)|
|HomA (B, A′)|

· [A′′]⊗ [B ′′]
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On the other hand,

1([C][C ′])=
∑
[C ′′]

FC ′′
C,C ′1([C

′′
]) =

∑
[C ′′],[A′′],[B ′′]

FC ′′
C,C ′F

A′′,B ′′
C ′′ · [A

′′
]⊗ [B ′′].

We need the following lemma.

Lemma 7.7 ([Green 1995, Theorem 2], see also [Schiffmann 2012]). If A is a fini-
tary and cofinitary hereditary abelian category, then for any objects A′′, B ′′,C,C ′

of A one has

(7-2)
∑

[A],[A′],[B],[B ′]∈Iso A

|Ext1A (B, A′)|
|HomA (B, A′)|

· F B ′′
B,B ′F

A′′
A,A′F

A,B
C F A′,B ′

C ′

=

∑
[C ′′]∈Iso A

FC ′′
C,C ′F

A′′,B ′′
C ′′

This immediately implies that 1([C])1([C ′])=1([C][C ′]). �

Theorem 2.26 now follows from Proposition 7.6 and Theorem 7.2. �
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GENERALIZED SPLINES ON ARBITRARY GRAPHS

SIMCHA GILBERT, JULIANNA TYMOCZKO AND SHIRA VIEL

Let G be a graph whose edges are labeled by ideals of a commutative ring.
We introduce a generalized spline, which is a vertex labeling of G by el-
ements of the ring so that the difference between the labels of any two
adjacent vertices lies in the corresponding edge ideal. Generalized splines
arise naturally in combinatorics (algebraic splines of Billera and others) and
in algebraic topology (certain equivariant cohomology rings, described by
Goresky, Kottwitz, and MacPherson, among others). The central question
of this paper asks when an arbitrary edge-labeled graph has nontrivial gen-
eralized splines. The answer is “always”, and we prove the stronger result
that the module of generalized splines contains a free submodule whose
rank is the number of vertices in G. We describe the module of generalized
splines when G is a tree, and give several ways to describe the ring of gener-
alized splines as an intersection of generalized splines for simpler subgraphs
of G. We also present a new tool which we call the GKM matrix, an analogue
of the incidence matrix of a graph, and end with open questions.

1. Introduction

The goal of this paper is to generalize and extend combinatorial constructions
that have become increasingly important in many areas of algebraic geometry and
topology, as well as to establish a firm combinatorial footing for these constructions.
Given a commutative ring R with identity, an arbitrary graph G= (V, E), and a func-
tion α : E→{ideals I ⊆ R}, we will define a ring of generalized splines. This paper

(1) proves foundational results about generalized splines;

(2) completely analyzes the ring of generalized splines for trees and shows families
of generalized splines for arbitrary cycles;
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Figure 1. Example of a generalized spline on K4.
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(a) Spline on subgraph (P4, α|P4). (b) Spline on subgraph (C4, α|C4).

Figure 2. Nonexamples of generalized splines on K4.

(3) produces an R-submodule within the ring of generalized splines that has
rank |V |, as long as R is an integral domain; and

(4) shows that the study of generalized splines for arbitrary graphs can be reduced
to the case of different subgraphs, especially cycles or trees.

Generalized splines as we define them are a subring of a product of copies of R:

Definition 1.1. The ring of generalized splines RG of the pair (G, α) is defined by

RG = { p ∈ R|V | : for each edge e = uv, the difference pu − pv ∈ α(e)}.

Figures 1 and 2 display examples and nonexamples of elements of RK4 in the
case when each ideal α(e) is generated by a single ring element (given inside 〈 · 〉).
The vertices are labeled with elements of RK4 and the collection of vertex labels in
Figure 1 is a generalized spline. Note that Figures 2(a) and 2(b) are not generalized
splines on K4 but are generalized splines on the subgraphs in bold. These examples
hold for any ring R and any choice of elements α1, α2, . . . , α6 ∈ R to generate the
ideals α(e).
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The name generalized spline comes from one of the important constructions that
we extend. Historically, engineers modeled complicated objects like ships or cars
by identifying important points of the vehicle and then attaching thin strips of wood
(called splines) at those points to approximate the entire hull.

Mathematically, a spline is a collection of polynomials on the faces of a polyhedral
complex that agree (modulo a power of a linear form) on the intersections of two
faces. We refer to this classical tradition as the analytic approach to splines; it
studies the vector space Cr

k (D), where D is a simplicial complex, r is the order of
smoothness to which the polynomials agree over faces, and k is the maximal degree
of a polynomial supported on a maximal face. Splines are used in approximation
theory and numerical analysis, with applications in data interpolation, to create
smooth curves in computer graphics, to find numerical solutions to partial differential
equations, and for other applications [Bartels 1984; Chui and Lai 1985; 1990].

In the analytic tradition, mathematicians seek individual splines satisfying par-
ticular properties as well as characterizations of the space of splines associated
to a given object — for instance, the dimension [Alfeld 1986; 1987; Alfeld and
Schumaker 1987; 1990; Chui and He 1989; Gmelig Meyling and Pfluger 1985;
Schumaker 1979; 1984a; 1984b] or basis [Alfeld et al. 1987a; 1987b; Morgan and
Scott 1975; Schumaker 1988] for a space of splines. Alfeld and Schumaker’s work
is both representative and epitomic: a seminal result of theirs proved a bound on the
dimension of Cr

k (D) when D is a planar simplicial complex and k ≥ 3r+1 [1987].
Billera [1988] pioneered the study of what some call algebraic splines, introduc-

ing methods from homological and commutative algebra to prove a conjecture of
Strang on the dimension of C1

k (D) when D is a generic planar simplicial complex.
In the abstract algebraic setting, mathematicians generalize the class of geometric
objects associated to splines (e.g., Schumaker [1984b], Billera and Rose [1991],
and McDonald and Schenck [2009] study piecewise polynomials on a polyhedral
complex rather than just a simplicial complex) and study algebraic invariants of
modules other than dimension or bases (e.g., the more fundamental question of
freeness [Haas 1991; Billera and Rose 1992; Yuzvinsky 1992; Dalbec and Schenck
2001; DiPasquale 2012], or more algebraically involved questions like computing
coefficients of the Hilbert polynomial [Billera and Rose 1991; Schenck and Stillman
1997; Schenck 1997; McDonald 2007; McDonald and Schenck 2009], identifying
the syzygy module of the span of the edge ideals [Schumaker 1979; Rose 1995;
2004], or analyzing algebraic varieties associated to the piecewise polynomials
[Wang 2000; Zhu and Wang 2005; 2011]). Billera and Rose [1991] introduced a
description of splines in terms of the dual graph of the polyhedral complex that is
equivalent to the piecewise-polynomial definition for so-called hereditary complexes.
Many others used Billera and Rose’s approach in later research [McDonald and
Schenck 2009; Rose 1995; 2004], and it is our starting point.
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In what we might call the topological approach to splines, geometers and topolo-
gists recently and independently rediscovered splines as equivariant cohomology
rings of toric and other algebraic varieties (though they rarely use the name “splines”)
[Brion 1996; Payne 2006; Bahri et al. 2009; Schenck 2012]. Goresky, Kottwitz, and
MacPherson developed a combinatorial construction of equivariant cohomology
called GKM theory [Goresky et al. 1998], which can be used for any algebraic
variety X with an appropriate torus action. Unknowingly, they described precisely
the dual-graph construction of splines: GKM theory builds a graph G X whose
vertices are the T -fixed points of X and whose edges are the one-dimensional orbits
of X . Each edge of this graph is associated to a principle ideal 〈αe〉 in a polynomial
ring, coming from the weight αe of the torus action on the one-dimensional torus
orbits in X . The GKM ring associated to the pair (G X , α) agrees with what we
call the ring of generalized splines for (G X , α). The main theorem of GKM theory
asserts that under appropriate conditions, this GKM ring is in fact isomorphic to
the equivariant cohomology ring H∗T (X;C). (Their work relies on earlier work of
many others, including a much more general result of Chang and Skjelbred [1974]
that points to one way to extend this work topologically to cases in which the ideals
〈αe〉 are no longer principal.) We omit details of the topological background here
because there are several excellent surveys [Knutson and Tao 2003; Tymoczko
2005; Holm 2008]. However, GKM theory is a powerful tool in Schubert calculus
[Goldin and Tolman 2009; Knutson and Tao 2003], symplectic geometry [Goldin
and Tolman 2009; Guillemin et al. 2006; Harada et al. 2005], representation theory
[Fiebig 2011], and other fields. (In some of these applications, the ring structure of
splines is more important than the module structure.)

We note that the most powerful results in each of these approaches are not
replicable using other approaches. For instance, Mourrain and Villamizar [2013]
recently used the algebraic approach to try to re-prove Alfeld and Schumaker’s
results, but could not attain their bound.

Our definition of generalized splines allows us to do several things that weren’t
possible from the algebraic or geometric perspectives:

• We give a lower bound for one of the central questions of classical splines.
Corollary 5.2 proves that every collection of generalized splines over an integral
domain has a free submodule of rank |V |, producing a lower bound for the dimension
of the ring of splines RG whenever RG is a free module over R. This significantly
generalizes work of Guillemin and Zara in the GKM context [2003, Theorem 2.1].

• We streamline earlier combinatorial constructions of splines. Our construction
isolates and highlights the algebraic structures used in previous work on splines. In
our language, algebraic splines assume that the ideals α(e) are principal and that
the generators for the ideals α(e) satisfy some coprimality conditions. A classical
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condition like “piecewise polynomials meet with order r smoothness at an edge e”
corresponds to using the edge ideal α(e)r+1 instead of α(e).

From the geometric point of view, we owe much to a series of papers by Guillemin
and Zara [2001; 2003] whose goal is to construct geometric properties of GKM
manifolds from a strictly combinatorial viewpoint. Yet their combinatorial model
imposes more restrictions than the classical definition of splines — conditions that
are natural (and necessary!) for any geometric application.

• We expand the family of objects on which splines are defined to arbitrary
graphs. Our work shows that graphs that have no reasonable geometric interpretation
nonetheless are central to the analysis of splines. Theorem 6.1 decomposes the ring
of splines for a graph G in terms of the splines for subgraphs of G; Corollary 6.2
specializes Theorem 6.1 to spanning trees, whose splines are completely described
in Theorem 4.1; and Theorem 6.3 decomposes the ring of splines for G in terms of
a particular collection of subcycles and subtrees of G. Cycles play a similarly key
role in Rose’s description of the syzygies of spline ideals [1995; 2004] (see also
[Schumaker 1979]). Yet neither trees nor cycles are geometrically meaningful from
a GKM perspective. (See [Handschy et al. 2014] and [Bowden et al. 2015] for a
deeper investigation of generalized splines on cycles.)

• We expand the family of rings on which splines are defined. This gives a conve-
nient language to describe simultaneously the GKM constructions for equivariant
cohomology and equivariant K -theory. Moreover, generalized splines over integers
have interesting connections to elementary number theory [Handschy et al. 2014].

• We provide the natural language for further generalizations of splines. Our
construction of generalized splines extends even more: label each vertex of the
graph G by a (possibly distinct) R-module Mv and label each edge by a module Me

together with homomorphisms Mv→ Me for each vertex v incident to the edge e.
Geometrically, this corresponds to Braden and MacPherson’s construction of equi-
variant intersection homology [2001], also used by Fiebig in representation-theoretic
contexts [2011]. We discuss this and other open questions in Section 7.

The rest of this paper is structured as follows. Section 2 establishes essential
results for generalized splines that were first shown in special cases like equivariant
cohomology and algebraic splines. We highlight Theorem 2.12 and Corollary 2.13,
which generalize and strengthen Rose’s result [1995] that for certain polyhedral
complexes, the syzygies B of the spline ideal are a direct summand of the splines
RG ∼= R ⊕ B. Corollary 2.13 uses this in Rose’s special case to show that the
syzygies of the ideal generated by the image of α are isomorphic as a module to
the collection of generalized splines whose restriction to a particular fixed point is
zero. This relates the algebraically natural question of finding syzygies of splines
to the question of finding a particular, geometrically natural kind of basis for the
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module of splines. Section 3 describes a tool analogous to the incidence matrix
of a graph that we call a GKM matrix. Section 4 completely characterizes the
generalized splines for trees in terms of a minimal set of free generators for the
ring of generalized splines.

One of our central questions is, when does an edge-labeled graph have nontrivial
generalized splines? The answer (essentially always, as in Theorem 5.1) is actually
more refined. Corollary 5.2 explicitly constructs a free R-submodule of the gener-
alized splines on G of rank |V |. When R is an integral domain and the generalized
splines form a free R-module (as is the case for GKM theory), we conclude that
the rank of the R-module of generalized splines is at least |V |.

Section 5 uses analogues of a shelling order (in combinatorics) or a “flow-up
basis” (in geometry) to identify R-submodules of the generalized splines. Section 6
characterizes generalized splines differently: in terms of the intersections of the
generalized splines formed by various subgraphs. This allows us to reframe the defi-
nition of generalized splines as an intersection of very simple graphs (Theorem 6.1)
and to reduce the number of intersections needed by using certain spanning trees
(Corollary 6.2). Finally, Theorem 6.3 analyzes the GKM matrix directly to de-
compose the ring of generalized splines on G as an intersection of the generalized
splines for particular subcycles of G.

2. Definitions and foundational results

In this section, we formalize a collection of definitions which were stated implicitly
in the introduction. We then give foundational results describing the structure of
the ring of generalized splines, including key methods to construct the ring and to
build new generalized splines from existing ones.

We begin with a quick overview of our notational conventions.

• G: a graph, defined as a set of vertices V and edges E . Assumed throughout
to be finite with no multiple edges between vertices.

• R: a commutative ring with identity 1.

• I: the set of ideals in R.

• α: an edge-labeling function on G that assigns a nonzero element of I to each
edge in E . See Definition 2.1.

• (G, α): an edge-labeled graph.

• α(ei, j )= α(viv j )= Iei, j : the image of the edge ei, j = viv j under the map α.

• αi, j : an arbitrary element of the ideal α(ei, j ). When α(ei, j ) is principal, αi, j
often denotes the generator.

• RG : the ring of generalized splines on (G, α). See Definition 2.3.
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• p: a generalized spline; p = ( pv1, pv2, . . . , pv|V |) denotes an element of⊕
v∈V R. See Definition 2.3.

• pv: the coordinate of p corresponding to vertex v ∈ V . An element of R.

• MG : the (possibly extended) GKM matrix for the graph G. See Definition 3.1.

The first definition describes the combinatorial setup of our work: a graph whose
edges are labeled by ideals in a ring R. The ring R is always assumed to be a
commutative ring with identity, though in later sections we occasionally add more
conditions.

Definition 2.1. Let G = (V, E) be a graph and let R be a commutative ring with
identity. An edge-labeling function is a map α : E→{ideals I ⊆ R} from the set of
edges of G to the set of nonzero ideals in R. An edge-labeled graph is a pair (G, α)
of a graph G together with an edge-labeling function of E . We often refer to the
set of ideals in R as I.

We now precisely define the compatibility condition that we use on the edges.

Definition 2.2. Let G= (V, α) be an edge-labeled graph. An element p∈
⊕

v∈V R
satisfies the GKM condition at an edge e = uv if pu − pv ∈ α(e).

In GKM theory and in the theory of algebraic splines, the ring R is a polynomial
ring in n variables. The ideal α(e) is the principal ideal generated by a linear form
in GKM theory, and by a power of a linear form in the theory of algebraic splines.

We build the ring of generalized splines by imposing the GKM condition at every
edge in the graph.

Definition 2.3. Let (G, α) be an edge-labeled graph. The ring of generalized
splines is

RG,α =

{
p ∈

⊕
v∈V

R such that p satisfies the GKM condition at each edge e ∈ E
}
.

Each element of RG,α is called a generalized spline. When there is no risk of
confusion, we write RG .

We first confirm that in fact RG is a ring.

Proposition 2.4. RG is a ring with unit 1 defined by 1v = 1 for each vertex v ∈ V .

Proof. By definition RG is a subset of the product ring
⊕

v∈V R so we need only
confirm that the identity is in RG and that RG is closed under addition and multipli-
cation. The operations are componentwise addition and multiplication since RG is
in
⊕

v∈V R. The identity in
⊕

v∈V R is the generalized spline 1 defined by 1v = 1
for each vertex v ∈ V . This satisfies the GKM condition at each edge because for
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Figure 3. New generalized splines from old.

every edge e = uv we have 1u − 1v = 0 and 0 is in each ideal α(e). The set RG

is closed under addition because if p, q ∈ RG then for each edge e = uv we have

( p+ q)u − ( p+ q)v = ( pu + qu)− ( pv + qv)= ( pu − pv)+ (qu − qv),

which is in α(e) by the GKM condition. Similarly, the set RG is closed under
multiplication because if p, q ∈ RG then for each edge e = uv we have

( pq)u − ( pq)v = ( puqu)− ( pvqv)

= ( puqu − pvqu)+ ( pvqu − pvqv)

= qu( pu − pv)+ pv(qu − qv),

which is in α(e) by the GKM condition. �

The generalized splines RG also form an R-module: multiplication by r corre-
sponds to scaling each polynomial in the spline p or equivalently to multiplication
by r1. Figure 3(b) demonstrates the R-module structure of RP4 : multiplying p by
an arbitrary element r ∈ R produces the spline r p = (r pv1, r pv2, r pv3) ∈ RP4 .

One major question we study is whether there are nontrivial generalized splines.

Definition 2.5. A nontrivial generalized spline is an element p ∈ RG that is not in
the principal ideal R1.

In other words, we ask whether the R-module RG contains at least two linearly
independent elements. We answer this question completely (and more strongly) in
Theorem 5.1 and Corollary 5.6: yes, except in the trivial cases when G consists of
a single point or R is zero.

If some edge labels were zero then the ring of splines could be trivial for trivial
algebraic reasons: for instance, if all edge labels of G are zero then the only elements
of RG are trivial splines. This is why α(e) is always nonzero in Definition 2.1.
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Definition 2.6. Let (G, α) and (G ′, α′) be edge-labeled graphs with respect to R.
A homomorphism of edge-labeled graphs φ : (G, α)→ (G ′, α′) is a graph homo-
morphism φ1 : G→ G ′ together with a ring automorphism φ2 : R→ R so that for
each edge e ∈ EG we have φ2(α(e))= α′(φ1(e)):

(1)

EG
φ1
−−−→ EG ′yα yα′

I
φ2
−−−→ I

An isomorphism of edge-labeled graphs is a homomorphism of edge-labeled graphs
whose underlying graph homomorphism is in fact an isomorphism.

We stress that the map φ2 is a ring automorphism. This ensures that φ2 induces
a map on the set of ideals φ2 : I→ I and that the diagram in (1) is well defined.
The content of the definition is that the diagram commutes.

Many interesting homomorphisms of edge-labeled graphs arise when φ2 : R→ R
is the identity homomorphism. Indeed, when R is the integers, this is essentially
the only case. However, some rings R have very interesting automorphisms: for
instance, when R is a polynomial on n variables, the symmetric group on n letters
acts on R by permuting variables. This induces an important action in equivariant
cohomology, which is substantively different from a closely related action induced
by the identity ring automorphism [Tymoczko 2008]. Our first proposition confirms
that the ring of generalized splines is invariant under edge-labeled isomorphisms.
More precisely, when two graphs are edge-labeled isomorphic, any generalized
spline for one graph will be a generalized spline for the other.

Proposition 2.7. If φ : (G, α)→ (G ′, α′) is an isomorphism of edge-labeled graphs
then φ induces an isomorphism of the corresponding rings of generalized splines
φ∗ : RG ∼= RG ′ according to the rule that φ∗( p)φ1(u) = φ2( pu) for each u ∈ VG .

Proof. By definition of generalized splines,

p ∈ RG ⇐⇒ pu − pv ∈ α(e) for each edge e = uv in EG .

The map φ2 : R→ R is an automorphism of rings, so the GKM conditions imply

(2) p ∈ RG ⇐⇒ φ2( pu)−φ2( pv) ∈ φ2(α(e)) for each edge e = uv in EG .

The map φ1 is an isomorphism between the underlying graphs G and G ′, so e
is an edge in G if and only if φ1(e) is an edge in G ′. Incorporating the fact that
α′(φ1(e))= φ2(α(e)) for each edge e ∈ EG , this means (2) is equivalent to

(3) φ2( pu)−φ2( pv) ∈ α′(φ1(e)) for each edge e′ = φ1(u)φ1(v) in EG ′ .
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We have that (3) is equivalent to φ∗( p)∈ RG ′ , so we conclude that p is a generalized
spline in RG if and only if φ∗( p) is in RG ′ . �

The next proposition verifies that a generalized spline for the pair (G, α) is a
generalized spline for every subgraph of G.

Proposition 2.8. Let (G, α) be an edge-labeled graph and G ′ = (V ′, E ′) a sub-
graph of G. Let (G ′, α|E ′) be the edge-labeled graph whose function α|E ′ denotes
the restriction of α to the edge set of G ′. If p is a generalized spline for (G, α) then
p|V ′ ∈

⊕
v∈V ′ R is a generalized spline for (G ′, α|E ′).

Proof. Let G ′ ⊆ G as in the hypothesis, let p be a generalized spline for (G, α),
and consider the subcollection p|V ′ obtained by restricting p to the vertex set
V ′ ⊆ V of G ′. For any edge uv in G ′ the corresponding edge uv is in E since
E ′⊆ E . This implies that pu− pv ∈ α(uv) by the GKM condition for (G, α). Since
the edge-labeling function for G ′ is the restriction α|E ′ to the edges in E ′ ⊆ E ,
we conclude that the GKM condition is satisfied at every edge of G ′. It follows
that p|V ′ is a generalized spline for (G ′, α|E ′). �

Example 2.9. Consider the generalized spline on the bold P4 in Figure 2(a) with
edges labeled as in Figure 1. Removing a leaf and its incident edge from P4 gives
the subgraph P3 in Figure 3(a). The generalized spline for P4 still satisfies the
GKM condition at every vertex on the subgraph. Thus p|P3 is a generalized spline
for P3.

The next proposition shows that the special case when one of the edges is
associated to the unit ideal α(e) = R is equivalent to a kind of restriction as in
Proposition 2.8. In this case, the edge e can be erased without affecting the ring of
generalized splines.

Proposition 2.10. Suppose that the edge-labeled graph (G, α) has an edge e with
α(e) = R. Let G ′ = (VG, E − {e}) be the graph G with edge e erased, and let
α′ : E −{e} → I be the restriction α′ = α|E−{e}. Then

RG = RG ′ .

Proof. Proposition 2.8 says that every generalized spline of G is a generalized
spline of G ′, since G ′ is a subgraph of G with the same vertex set whose labeling
agrees on shared edges. Hence RG ⊆ RG ′ . To prove the converse, suppose p is a
generalized spline for (G ′, α′). The GKM condition guarantees that pu− pv ∈α(uv)
for every edge uv ∈ E −{e}. In addition, if u0, v0 are the endpoints of the edge e,
then pu0 − pv0 ∈ R is vacuously true. Since α(e)= R we conclude that the GKM
condition is satisfied for the edge e as well. So p ∈ RG and RG ′ = RG . �

We may build generalized splines from disjoint unions of graphs by taking the
direct sum of the respective generalized splines.
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Proposition 2.11. If G = G1 ∪G2 is the union of two disjoint graphs then the ring
of splines is RG = RG1 ⊕ RG2 .

Proof. Rearranging the GKM conditions gives

RG=

{
p∈

⊕
v∈V

R such that p satisfies the GKM condition at each edge e∈ E(G)
}

=

{
p∈

⊕
v∈V (G1)

R such that pv − pu ∈ α(uv) for all uv ∈ E(G1)
}

⊕

{
p∈

⊕
v∈V (G2)

R such that pv − pu ∈ α(uv) for all uv ∈ E(G2)
}

= RG1 ⊕ RG2

because the vertex sets of G1 and G2 are disjoint. �

Another approach to constructing generalized splines is to build them one vertex
at a time. The next result decomposes the R-module of generalized splines into
a direct sum of the trivial generalized splines and the generalized splines that are
zero at a particular vertex.

Theorem 2.12. Suppose that G is a connected graph with edge-labeling function
α : V→ I. Fix a vertex v ∈ V . Then every generalized spline p ∈ RG can be written
uniquely as p = r1+ pv where pv is a generalized spline satisfying pv

v = 0 and
r ∈ R satisfies r = pv . In other words, if M = 〈 p : pv = 0〉 then RG ∼= R1⊕M as
R-modules.

Proof. The trivial generalized spline 1 is in RG by Proposition 2.4. Let r ∈ R be the
element r = pv . Then define pv to be the generalized spline pv

= p− r1. (There
is a unique element in the ring RG that satisfies this equation.) By construction,

pv
v = pv − r1v = r − r = 0. �

The previous result could lead us to consider R-module bases of generalized
splines; see the open questions in Section 7. Instead, we combine it with a result
of Rose’s to relate the generalized splines that vanish at a particular vertex to the
syzygies of the module generated by the edge ideals. (Schumaker also implicitly
considered syzygies in an earlier work on splines [1979].)

Corollary 2.13. Suppose G is the dual graph of a hereditary polyhedral complex1
and that R is the polynomial ring R[x1, x2, . . . , xd ]. For each edge e in G, let `e

be an affine form generating the polynomials vanishing on the intersection of faces
in 1 corresponding to e. Define α to be the function α(e)= 〈`r+1

e 〉 for each edge e
and let

B =
{
(b1, . . . , b|E |) ∈ R|E | : for all cycles C in G,

the linear combination
∑
e∈C

be`
r+1
e = 0

}
.
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Then M ∼= B as R-modules.

Proof. Under these conditions, Rose proved that RG ∼= R⊕ B as R-modules [1995,
Theorem 2.2]. From the previous claim, we conclude M ∼= B as desired. �

We close this section by describing the relationship between the ring of general-
ized splines associated to an edge-labeling α and the ring of generalized splines
associated to the edge-labeling rα obtained by scaling.

Theorem 2.14. Suppose that (G, α) is a connected edge-labeled graph. Fix an
element r ∈ R and define the edge-labeling function rα : E→ I by rα(e)= r Ie for
each edge e ∈ E. Choose a vertex v0 ∈ V and define M = 〈 p : pv0 = 0〉. If R is an
integral domain then

RG,rα = R1⊕ r M.

Proof. Theorem 2.12 showed that RG,α = R1⊕M . The multiple r RG,α belongs
to RG,rα by definition, so r M ⊆ RG,rα. We also know the intersection r M ∩ R1
is zero since the only element of R1 whose restriction to v0 vanishes is the zero
spline. So RG,rα ⊇ R1⊕ r M .

We now prove the opposite containment. Suppose p′ ∈ RG,rα and suppose
p= p′− p′v0

1. (Note that p satisfies the GKM condition for (G, rα) at each edge.)
We will prove that p∈ r M . We split the argument into two pieces: showing that p is
divisible by r at each vertex, and then showing that p satisfies the GKM conditions
of r M .

To begin, we prove by induction that if vk is connected to v0 by a path of length k
then pvk ∈ r R is in the principal ideal generated by r . The unique path of length
zero is our base case, and the element pv0 = 0 ∈ r R by construction. Suppose
the claim is true for paths of length k − 1 and let vk be a vertex connected to v0

by a path of length k. Then vk is adjacent to a vertex vk−1 which is connected
to v0 by a path of length k− 1. We know pvk−1 ∈ r R by the inductive hypothesis,
and pvk − pvk−1 ∈ r Iek for the edge ek = vk−1vk by the GKM condition. The sum
r Iek + r R ⊆ r R since ideals are closed under addition, so pvk ∈ r R as desired. By
induction and because G is connected, we conclude that pv ∈ r R for all v ∈ V .

We just showed that each ring element p is divisible by r . For each vertex v,
let qv be the ring element with pv = rqv and collect the qv into the element q ∈ R|V |.
We ask whether q ∈ M . To answer this, we need to know whether for each edge
e = uv we have qu − qv ∈ Ie. We know that pu − pv ∈ r Ie by the GKM condition.
Let x = qu − qv ∈ R to isolate the underlying algebraic question: If r x ∈ r Ie then
is x ∈ Ie? The answer is yes when R is an integral domain: if r x ∈ r Ie then we can
find y ∈ Ie with r x = r y. Hence r(x − y)= 0, which implies x = y as long as R
is an integral domain. �
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3. The GKM matrix

The results in the previous section allow us to build new generalized splines from
existing ones. To construct generalized splines from scratch we need a systematic
method for recording and analyzing GKM conditions. We do this by representing
GKM conditions in matrix form. This section shows how to construct GKM matrices
and gives several examples.

Our definition of the GKM matrix assumes the graph G is directed. Remark 3.5
shows that changing the directions on the edges of G does not affect the solution
space of the matrix, so we generally omit orientations from our figures and our
discussion.

Definition 3.1. The GKM matrix of the directed, edge-labeled graph (G, α) is an
|E | × |V | matrix constructed so that the row corresponding to each directed edge
e = uv ∈ E has

• 1 in the column corresponding to u,

• −1 in the column corresponding to v, and

• 0 otherwise.

An extended GKM matrix of the pair (G, α) is an |E | × (|V | + 1) matrix whose
first |V | columns are the GKM matrix, and whose last entry in the row corresponding
to edge e is any element αe ∈ α(e). When there is no risk of confusion, we refer to
an extended GKM matrix as simply the GKM matrix.

For instance, if α(e)= 〈αe1
, . . . , αem

〉 is finitely generated, we could write the
last entry in the row corresponding to e as qe1αe1

+· · ·+qemαem
for arbitrary qei ∈ R.

In particular, if the ideal α(e) is principal and α(e)= 〈αe〉 then we typically write
the last column of the extended GKM matrix as the vector (qeαe)e∈E for arbitrary
coefficients qe ∈ R.

Remark 3.2. Using this language, we can reframe the syzygy module of spline
ideals that Rose defined and that we saw in Corollary 2.13. (See also [Schumaker
1979].) In our context, the syzygy module is essentially the collection of elements
qe ∈ α(e) from the edge ideals so that

∑
e∈C qe = 0 for each cycle C in G. In other

words, it describes a collection of elements qe ∈ α(e) for which the extended GKM
matrix represents a homogeneous system of equations. This condition appears
naturally as we analyze the ring RG further in Theorem 6.3.

Generally we consider qe to be a parameter that takes values in R, as in the
following proposition, which follows immediately from the construction of the
GKM matrix.
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Proposition 3.3. Let MG denote the GKM matrix of (G, α). Then the spline
p ∈ R|V | is a generalized spline for (G, α) if and only if there is an extended
GKM matrix [MG |v] for which p is a solution.

Proof. The matrix MG is constructed to record the GKM condition at every edge
ei, j ∈ E(G). Hence a spline p = ( pv1, . . . , pv|V |) ∈ R|V | is a generalized spline
for (G, α) if and only if MG p = v for some vector v = (αe)e∈E . This is equivalent
to saying the spline p is a solution to the system [MG |v] for some extended GKM
matrix, as claimed. �

We can now manipulate MG to obtain systems of equations that are equivalent
to the original GKM conditions on G. We state the following corollary simply to
stress this fundamental linear algebra property.

Corollary 3.4. If [M ′|v′] is obtained from [M |v] by a series of reversible row or
column operations, then the solution set in R|V | to [M ′|v′] is the same as that
of [M |v].

Reversible operations correspond to invertible matrices in GL|V |(R). For instance,
multiplying a row by x is not reversible for the ring R =C[x] since 1/x is not in R.
However, multiplying a row by x is reversible when R = C(x).

Remark 3.5. Changing the direction of a given edge in G amounts to multiplying
the corresponding row in MG by −1, a reversible operation. Hence while the
definition of the GKM matrix for the pair (G, α) requires a directed graph, the
actual direction chosen is irrelevant to the solution set given by Proposition 3.3.

Example 3.6. We start with the path P3 from Figure 3(a). Its extended GKM
matrix is

MP3 =

[
1 –1 0 q1α1
0 1 –1 q2α2

]
,

whose rows may be added to obtain the equivalent system[
1 0 –1 q2α2+ q1α1
0 1 –1 q2α2

]
.

If p = ( pv1, pv2, pv3) ∈ RP3 then the system has dependent variables pv1 and pv2

and independent variable pv3 . All solutions may be written in the form

pv1 = pv3 + q2α2+ q1α1,

pv2 = pv3 + q2α2,

where pv3 , q1, and q2 are freely chosen elements of R. Setting pv3 = 0, q1 = 1, and
q2 = 1 yields the generalized spline in Figure 3(a).

The following generalization will be a central part of our proof of Theorem 3.8.
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Example 3.7. Consider the path Pn on n vertices:

t t q q q t tPn =
v1 v2 vn−1 vn

α(e1,2) α(en−1,n)

The GKM matrix for this path is
1 –1 0 0 · · · 0 0 α1,2
0 1 –1 0 · · · 0 0 α2,3
0 0 1 –1 · · · 0 0 α3,4
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · 1 –1 αn−1,n

,

where αi,i+1 ∈ α(ei,i+1) are arbitrarily chosen. As before, we can row-reduce the
GKM matrix by setting row i to be the sum

∑n
k=i (row k) for each 1≤ i ≤ n. We

obtain an equivalent system of rank n−1 in which pvn is the only free variable in the
set { pvi : i = 1, . . . , n}. (This system is of maximal rank since an (n− 1)× (n+ 1)
system of equations can have at most one free variable among the pvi .) Figure 4
shows this equivalent system:

1 0 0 0 · · · 0 –1 αn−1,n + · · ·+α3,4+α2,3+α1,2
0 1 0 0 · · · 0 –1 αn−1,n + · · ·+α3,4+α2,3
0 0 1 0 · · · 0 –1 αn−1,n + · · ·+α3,4
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · 1 –1 αn−1,n


Figure 4. A system equivalent to the GKM matrix for Pn .

The linear combinations that occur in the last column of the matrix in Figure 4 can
be used to construct generalized splines for more complicated graphs as well. For
instance, the next result builds on this description of paths to describe a collection
of (usually) nontrivial generalized splines for the cycle Cn .

Theorem 3.8. Let Cn be a finite edge-labeled cycle given by vertices v1, v2, . . . , vn

in order. Define the vector p ∈ R|V | by

(4)



pv1

pv2

pv3
...

pvn−1

pvn


= pv1



1
1
1
...

1
1


+ α1,n



0 0 · · · 0 0
1 0 · · · 0 0
1 1 · · · 0 0
...

...
. . .

...
...

1 1 · · · 1 0
1 1 · · · 1 1





α1,2
α2,3
α3,4
...

αn−2,n−1
αn−1,n
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with arbitrary choices of pv1 ∈ R, αi,i+1 ∈ α(ei,i+1), and α1,n ∈ α(e1,n). Then p
is a generalized spline for Cn . The spline p is nontrivial exactly when α1,n and at
least one of the αi,i+1 are nonzero.

Proof. We check that p ∈ Rn satisfies the GKM condition at every edge of Cn . For
all i with 2≤ i ≤ n− 1 we have

pvi+1 − pvi

= ( pv1 +α1,n(α1,2+ · · ·+αi−1,i +αi,i+1))− ( pv1 +α1,n(α1,2+ · · ·+αi−1,i ))

= α1,nαi,i+1,

which is in α(ei,i+1) by assumption on αi,i+1. It remains to check that the GKM
condition is satisfied at edges e1,2 and e1,n . At edge e1,2 we have

pv2 − pv1 = ( pv1 +α1,nα1,2)− pv1 = α1,nα1,2,

which is in the ideal α(e1,2). At edge e1,n we have

pvn − pv1 = ( pv1 +α1,n(α1,2+ · · ·+αn−1,n))− pv1 = α1,n(α1,2+ · · ·+αn−1,n),

which is in the ideal α(e1,n). Hence p is a generalized spline for Cn . The spline p
is nontrivial if and only if the second term is nonzero, namely, when α1,n and at
least one of the αi,i+1 are nonzero. �

Theorem 3.8 actually does more: it identifies a collection of generalized splines
for Cn that are linearly independent for many choices of R. Indeed, we can write
the generalized splines from Theorem 3.8 in parametric form:

(5)



pv1

pv2

pv3

pv4
...

pvn


= pv1



1
1
1
1
...

1


+ α1,nα1,2



0
1
1
1
...

1


+ α1,nα2,3



0
0
1
1
...

1


+ · · · + α1,nαn−1,n



0
0
0
0
...

1


with coefficients pv1 ∈ R and αi,i+1 ∈ α(ei,i+1) = Ii,i+1 for all 1 ≤ i ≤ n − 1.
The vectors [1, 1, 1, . . . , 1]T , [0, 1, 1, . . . , 1]T , . . . , [0, 0, 0, . . . , 1]T are linearly
independent in Rn but are not necessarily elements of RCn . If R is an integral
domain then for any fixed choices of αi, j ∈α(ei, j )= Ii, j the vectors [1, 1, 1, . . . , 1]T ,
α1,nα1,2[0, 1, 1, . . . , 1]T , . . . , α1,nαn−1,n[0, 0, 0, . . . , 1]T are both linearly indepen-
dent and in RCn .

We will use these kinds of splines — which arise naturally when considering the
GKM matrix — repeatedly in subsequent sections of the paper.
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v1 v2

v4 v3
pv1 − pv2 ∈ α(e1,2)= 〈α1,2〉

pv1 − pv3 ∈ α(e1,3)= 〈α1,3〉

pv1 − pv4 ∈ α(e1,4)= 〈α1,4〉

pv2 − pv3 ∈ α(e2,3)= 〈α2,3〉

pv2 − pv4 ∈ α(e2,4)= 〈α2,4〉

pv3 − pv4 ∈ α(e3,4)= 〈α3,4〉

Figure 5. GKM conditions for K4 whose ideals are all principal.

MK4 =



1 0 0 –1 q1,4α1,4
0 1 0 –1 q2,3α2,3
0 0 1 –1 q3,4α3,4
0 0 0 0 q1,2α1,2− q1,4α1,4+ q2,4α2,4
0 0 0 0 q1,3α1,3− q1,4α1,4+ q3,4α3,4
0 0 0 0 q2,3α2,3− q2,4α2,4+ q3,4α3,4


Figure 6. A system equivalent to the extended GKM matrix for
K4 when all ideals are principal.

Example 3.9. We return to the case of the complete graph K4 whose ideals α(e) are
all principal. By Definition 2.3, the tuple p = ( pv1, pv2, pv3, pv4) is a generalized
spline for K4 if and only if it satisfies the GKM conditions in Figure 5.

The difference pvi− pv j is in the ideal α(ei, j )=〈αi, j 〉 if and only if the difference
pvi − pv j = qi, jαi, j for some qi, j ∈ R, so we represent these GKM conditions by
the following matrix equation (the coefficient matrix is the GKM matrix):

1 –1 0 0
1 0 –1 0
1 0 0 –1
0 1 –1 0
0 1 0 –1
0 0 1 –1




pv1

pv2

pv3

pv4

= [q1,2, q1,3, q1,4, q2,3, q2,4, q3,4
]


α1,2
α1,3
α1,4
α2,3
α2,4
α3,4


.

After several invertible row operations in which we add various rows to other rows,
we obtain an equivalent system of equations such as that given in Figure 6.

4. Generalized splines for trees

We will now use the GKM matrix to describe all generalized splines for trees. We
start by describing the generalized splines for paths, using the same argument as
that for trees but without the notational technicalities.
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Figure 4 shows a matrix that is row-equivalent to the GKM matrix for the
path (Pn, α). The solutions can be written in parametric form as

pv1

pv2

pv3

pv4
...

pvn−1

pvn


= pvn



1
1
1
1
...

1
1


+ αn−1,n



1
1
1
1
...

1
0


+ · · · + α3,4



1
1
1
0
...

0
0


+ α2,3



1
1
0
0
...

0
0


+ α1,2



1
0
0
0
...

0
0


,

where the coefficients pvn and αi,i+1 for all 1 ≤ i ≤ n − 1 are chosen arbitrarily
from the sets R and α(ei,i+1) = Ii,i+1 respectively. By Corollary 3.4, this gives
precisely the collection of generalized splines for the path Pn .

When R is an integral domain, this also gives linearly independent vectors in RPn

(for any choices of αi,i+1 ∈ Ii,i+1):

(6) BRPn
=





1
1
1
1
...

1
1


,



αn−1,n
αn−1,n
αn−1,n
αn−1,n
...

αn−1,n
0


, . . . ,



α3,4
α3,4
α3,4

0
...

0
0


,



α2,3
α2,3

0
0
...

0
0


,



α1,2
0
0
0
...

0
0




.

Morally speaking, this decomposition describes something very close to a basis
for the generalized splines — as long as we can write a basis for the ideals Ii,i+1.
For instance, when each ideal Ii,i+1 is principal and αi,i+1 denotes the generator
of Ii,i+1 for each 1≤ i ≤ n− 1, then these vectors form a basis for RPn . In general,
we won’t be able to find a basis for RG because we can’t even necessarily find bases
for the ideals Ii,i+1. Even when R is a polynomial ring, we need all of the technical
tools developed in the theory of Gröbner bases to compute bases of ideals in R.

However, we can find generators for the splines on trees. We reformulate the
essential property of this basis from the point of view of trees. Observe that p ∈ RPn

must satisfy the following property for any vi , v j ∈ V (Pn) with i < j :

(7) pv j = pvi +

j−1∑
k=i

αk,k+1 for some αk,k+1 ∈ Ik,k+1.

Trees are more complicated than paths, so describing the general result precisely is
more complicated. The main idea is similar to the one above, though. It relies on the
fact that there is exactly one path between any two vertices in a tree, as well as on (7).
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Theorem 4.1. Let T = (V, E, α) be a finite edge-labeled tree. The tuple p ∈ R|T |

is a generalized spline p ∈ RT if and only if given any two vertices vi , v j ∈ V we
may write

(8) pv j = pvi +αi,i1
+ · · ·+αim−1,im

+αim , j for some αl,k ∈ α(el,k)= Il,k,

where vi , vi1, . . . , vim , v j are the vertices in the unique path connecting vi and v j

in the tree T . Furthermore p is nontrivial if and only if at least one of the αl,k is
nonzero.

Proof. We proceed via induction on |V |. The base case |V | = 1 is trivial since
E =∅. We also prove the case |V | = 2, namely, when T is a path on two vertices.
Denote the vertices of T by v1 and v2 and the edge set by E = {e1,2}. Now let
p= (pv1, pv2)∈ R2. By Definition 2.3 we know p∈ RT if and only if pv1− pv2 ∈ I1,2.
We rewrite this as pv1 = pv2+α1,2 for some choice of α1,2 ∈ I1,2. In other words p
is a generalized spline for T if and only if p satisfies (8) for all pairs of vertices in
V = {v1, v2}. Furthermore p is nontrivial if and only if pv1 6= pv2 or equivalently
α1,2 6= 0.

Assume the theorem holds for every tree with at most n vertices and let T ′ =
(V ′, E ′, α) with |V ′| = n+1. Suppose p ∈ R|V

′
| satisfies (8) for all pairs of vertices

in V ′ and let eh,k ∈ E ′ be an arbitrary edge. Since vh and vk are adjacent in T ′

we know pk = ph +αh,k for some αh,k ∈ Ih,k by (8). Rewriting this condition, we
obtain pk − ph ∈ Ih,k . Since eh,k was arbitrary we conclude p ∈ RT ′ .

Conversely, suppose that p ∈ RT ′ . We show that p satisfies (8) for all vertices
in V ′. Without loss of generality, label the vertices of T ′ so that vn+1 is a leaf
adjacent to vn . Choose arbitrary vi , v j ∈ V ′ and let vi , vi1, . . . , vim , v j denote the
vertices in the unique path connecting vi and v j in T ′. Let T denote the subgraph
T ⊆ T ′ induced by vi , vi1, . . . , vim , v j . The graph T is a tree itself, since it is
a connected subgraph of a tree. The restriction of p to the vertices in T is a
generalized spline for T by Proposition 2.8. If T has at most n vertices then the
inductive hypothesis implies that p satisfies (8) for the pair vi , v j . If T has n+ 1
vertices then T is a path of length n+ 1. Figure 4 shows a system equivalent to the
GKM matrix in this case. The first row of this matrix describes the equation

pv j = pvi +αi,i1
+ · · ·+αim−1,im

+αim , j

for some set αl,k ∈ α(el,k) = Il,k . In other words, this graph also satisfies (8),
proving our claim.

Finally, the spline p is nontrivial if and only if there exists some pair of vertices
vi , v j ∈ V ′ such that pvi 6= pv j . This is equivalent to saying that the coefficients
αi,i1

, αi1,i2
, . . . , αim−1,im

, αim , j associated to the path vi , vi1, . . . , vim , v j are not all
equal to 0, by (8). Equivalently there exists a pair l, k with αl,k 6= 0 as desired. �
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5. Existence of generalized splines and lower bounds on the rank of RG

We now address a fundamental question: Do nontrivial generalized splines exist
for an arbitrary edge-labeled graph (G, α)? We solved this question in the case
of edge-labeled cycles (Cn, α) in Theorem 3.8. The answer in that case (yes)
leads naturally to a stronger result: Equation (5) actually identifies a collection of
generalized splines that are linearly independent when R is an integral domain. The
condition that R be an integral domain is crucial, as Bowden and Tymoczko show
in forthcoming work [2015].

Similarly, we will answer the existence question for generalized splines on arbi-
trary (G, α) (yes, unless G consists of a single vertex) by constructing a collection
of generalized splines that are linearly independent when R is an integral domain.
This provides a lower bound on the rank of RG as an R-module when RG is a
free R-module, and constructs a collection of generators associated to vertices
when the ideal α(e) is principal for each edge e. All of these hypotheses are
satisfied for the generalized splines used to construct equivariant cohomology and
equivariant K -theory, where constructing bases is an important and well-studied
question [Guillemin and Zara 2001; Goldin and Tolman 2009]. Geometrically,
Theorem 5.1 and Corollary 5.2 partially extend existing results on flow-up classes
in equivariant cohomology, since we broaden the class of varieties for which we
can construct linearly independent rank-n collections of flow-up classes. The result
is new for equivariant K -theory. We note, however, that our flow-up classes are
generally not a basis for RG .

Corollary 5.2 proves that each RG contains a free submodule of rank n as a
special (and simpler) case of Theorem 5.1.

Theorem 5.1. Let (G, α) be a finite edge-labeled graph. Fix any subgraph G ′ of G
and let p be a generalized spline for (G ′, α|G ′). Let NG ′ =

∏
S αi, j , where each αi, j

is a nonzero element of the ideal α(viv j ) and the product is taken over the set S of
edges incident to a vertex in G ′ but not in G ′, namely,

S = {αi, j : viv j ∈ E(G−G ′) and vi ∈ V (G ′) or v j ∈ V (G ′)}.

Then the vector q defined by

qvi =

{
NG ′ pvi if vi ∈ V (G ′),
0 if vi /∈ V (G ′)

is a generalized spline for G.

Proof. For each edge viv j ∈ E(G), there are three possibilities:

(1) Both vi and v j are in V (G ′). Then pvi − pv j satisfies the GKM condition
in G ′. Thus qvi − qv j = NG ′( pvi − pv j ) satisfies the GKM condition for vi , v j

in G since α(viv j ) is an ideal and NG ′ ∈ R.
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(2) Neither vi nor v j is in V (G ′). Then the difference qvi − qv j = 0−0 vacuously
satisfies the GKM condition for vi , v j in G.

(3) Exactly one of vi , v j is in V (G ′). Suppose that vi ∈ V (G ′) and v j /∈ V (G ′).
Consider the difference qvi − qv j = NG ′( pvi − pv j ). The factor NG ′ is in
the ideal α(viv j ) by definition of NG ′ and by definition of ideals. Hence the
product NG ′( pvi − pv j ) satisfies the GKM condition for vi , v j in G. �

The next corollary constructs classes that look like what are called “flow-up”
classes in geometric applications. Given a partial order on the vertices of G, a flow-
up class associated to the vertex v is a generalized spline pv so that for each vertex u
with u 6> v the spline satisfies pv

u = 0. (In geometric applications, flow-up classes
satisfy additional conditions as well.) These classes occur naturally in geometric
applications: the partial order comes from a suitably generic one-dimensional torus
action on the variety (and hence on the graph), and the spline is the cohomology
class associated to the subvariety that flows into the vertex v. The most famous
examples of flow-up classes occur in flag varieties and Grassmannians, where they
are known as Schubert classes and where they in fact form a basis for the ring of
generalized splines (equivariant cohomology rings, in the geometric context).

Our motivation for the next sequence of corollaries comes from these geometric
applications. In those cases, the ideals α(e) for each edge e are principal. If some
ideals were not principal, the results that follow could be refined to construct a
larger free submodule of RG .

We now construct a rank-n free submodule of the generalized splines for an
arbitrary edge-labeled graph (G, α) using a collection of linearly independent flow-
up classes. The reader interested only in the special case of this corollary could
prove it directly by taking G ′ to be a single vertex.

Corollary 5.2. Let R be an integral domain and (G, α) a connected edge-labeled
graph on n vertices. Then RG contains a free R-submodule of rank n.

Proof. Enumerate the vertices in V (G) as v1, v2, . . . , vn . For each vi define G ′i
to be the subgraph consisting of exactly vertex vi . Clearly p = 1 is a generalized
spline for (G ′i , α|G ′i ) for all 1≤ i ≤ n. Then Theorem 5.1 yields generalized splines
{qi : i = 1, . . . , n} for G, where qiv j

= δi j NG ′i and NG ′i =
∏

j 6=i αi, j for arbitrarily
chosen 0 6= αi, j ∈ α(viv j ). We show that this set is linearly independent in the
R-module RG . Suppose

∑n
i=1 ci qi = 0 for coefficients ci ∈ R. For each 1≤ j ≤ n,

evaluation at v j yields

(9)
n∑

i=1

ci qiv j
=

n∑
i=1

ciδi j NG ′i = c j NG ′j = 0.
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Since R is an integral domain and each αi, j 6= 0 it follows that NG ′j 6= 0 for all j .
Hence (9) implies c j = 0 for all 1 ≤ j ≤ n so that {qi : i = 1, . . . , n} is linearly
independent in RG and therefore spans a free R-submodule of rank n. �

The next corollary makes note of a particular choice for the scaling factor NG ′

in Theorem 5.1 that can be useful in the kinds of examples that arise in geometric
applications. All of the hypotheses hold in typical geometric applications (equivari-
ant cohomology with field coefficients, equivariant K -theory with field coefficients,
and classical algebraic splines).

Corollary 5.3. Fix an edge-labeled graph (G, α) and let R be a unique factoriza-
tion domain. Suppose that for each edge e the ideal α(e) is principal and choose
a generator αi, j for each edge e = viv j . Then for any subgraph G ′ of G we may
apply Theorem 5.1 by choosing

NG ′ = lcm{αi, j : viv j ∈ E(G−G ′) and vi ∈ V (G ′) or v j ∈ V (G ′)}.

The next two corollaries of Theorem 5.1 address particular ways to construct
(nontrivial) generalized splines for G from subgraphs of G.

Corollary 5.4. If G contains any subgraph G ′ for which RG ′ contains a nontrivial
generalized spline then RG also contains a nontrivial generalized spline.

Example 5.5. We can construct generalized splines for the edge-labeled graph
(K4, α) given in Figure 1 using these corollaries. The vertex in the upper-left corner
is v1 and the other vertices, clockwise around the square, are v2, v3, v4. Let C4

denote the Hamiltonian cycle determined by ordering the vertices v1v2v3v4, and let

NC4 = lcm{α(v1v3), α(v2v4)} = lcm{α5, α6}

with the labeling in Figure 1. Theorem 3.8 constructed many nontrivial generalized
splines for C4, including

p =


0

α(v1v4)α(v1v2)

α(v1v4)(α(v1v2)+α(v2v3))

α(v1v4)(α(v1v2)+α(v2v3)+α(v3v4))

=


0
α4α1

α4(α1+α2)

α4(α1+α2+α3)

.
The corollaries show that the multiple NC4 p is a generalized spline for K4.

Corollary 5.6. Let R be an integral domain. If G contains at least two vertices
then RG contains a nontrivial generalized spline.

Proof. The vertex set V has at least two vertices, so V has a proper subset. Let G ′

denote a subgraph of G induced by any proper subset of V . Choose the unit 1 ∈ RG ′

for the spline p in Theorem 5.1. The factor NG ′ is nonzero because R is an integral
domain. �
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6. Decomposing RG as an intersection

This section describes two ways to express RG as an intersection of rings RGi for
simpler graphs Gi . Both are inspired by the GKM matrix, which allows us to
recognize and manipulate the GKM conditions for various subgraphs of G.

In the first decomposition, we essentially reorganize the GKM matrix and identify
the GKM matrices associated to subgraphs of G inside the GKM matrix for G. When
these subgraphs are the edges themselves, we recover the result that the generalized
splines are the intersection of the GKM conditions on all edges independently. We
can alternatively take these subgraphs to be trees, whose generalized splines we
identified completely in Section 4; this reduces the number of intersections needed
to calculate RG .

In the other decomposition, we row-reduce the GKM matrix in a natural way to
demonstrate that RG is the intersection of the generalized splines for a particular
collection of subcycles of G. This demonstrates how the combinatorial perspective
can contribute to the study of generalized splines and GKM theory: cycles are
subgraphs that do not arise from geometric considerations but are natural in this more
general combinatorial setting. It also reinforces Rose’s results [1995; 2004] showing
the importance of cycles in studying splines. Handschy, Melnick, and Reinders
[2014] identify a basis for generalized splines with integer coefficients over cycles in
forthcoming work. Bowden, Cao, Hagen, King, and Reinders [2015] give a simpler
basis for generalized splines over cycles whose edge labels satisfy a coprimality
condition; this allows them to identify the ring structure of the generalized splines
completely.

We begin by expressing the ring of generalized splines as an intersection of
generalized splines for subgraphs.

Theorem 6.1. Let (G, α) be an edge-labeled graph. Suppose G1,G2, . . . ,Gk

are a collection of spanning subgraphs of G whose union is G, in the sense that
V (Gi ) = V (G) for all i and

⋃k
i=1 E(Gi ) = E(G). Let αi = α|Gi be the edge

labelings given by restriction for each i . Then

RG =

k⋂
i=1

RGi .

Proof. Proposition 2.8 showed that RG is contained in RG ′ for each spanning
subgraph G ′ of G, and in particular is contained in RGi for each subgraph Gi .
Conversely, suppose p is contained in

⋂k
i=1 RGi . Every edge v jvk ∈ E(G) is

contained in the edge set of (at least) one of the subgraphs, say Gi . The spline p is
a generalized spline for Gi by hypothesis, so the GKM condition is satisfied at v jvk

in Gi and hence in G as well. �
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Figure 7. Two spanning trees whose generalized splines determine RC3 .

Theorem 6.1 generalizes the definition of RG . Indeed, for each edge e ∈ E(G),
consider the subgraph Ge = (V (G), {e}). The ring RGe is exactly the subring of
R|V (G)| defined by applying the GKM condition at just the edge e. Theorem 6.1 says

RG =
⋂

e∈E(G)

RGe ,

namely, that the generalized splines on G are formed by imposing the GKM
condition on every edge of G simultaneously.

The next corollary uses another common family of subgraphs: spanning trees.
We completely identified the generalized splines for trees in Theorem 4.1. Thus, the
corollary expresses the ring of generalized splines using far fewer intersections than
in the original GKM formulation. Calculating intersections of subrings is subtle,
so this corollary reduces the computational complexity of identifying the ring of
generalized splines.

Corollary 6.2. If G can be written as a union of spanning trees T1, T2, . . . , Tm

(whose edges are not necessarily disjoint) and if αi = α|Ti is the edge labeling given
by restriction for each i then

RG =

m⋂
i=1

RTi .

Figure 7 shows an example using the 3-cycle and principal-ideal edge labels. In
this case RG can be expressed as the intersection of just two rings of generalized
splines, each of which is completely known. In fact, Theorem 4.1 says that the
generalized splines for the two marked paths have the form

(p1, p1+α1,4 p4+α2,4 p2, p1+α1,4 p4)

and
(q1, q1+α1,2q2, q1+α1,2q2+α2,4q4)

for free choices of elements p1, p2, p4, q1, q2, q4 ∈ R. The intersection of these
two sets is RC3 .

Given a connected graph G, we could also use Theorem 6.1 to describe RG

in terms of the generalized splines for cycles as follows. Fix a spanning tree T
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Figure 8. A triangle, its extended GKM matrix, and a row-reduction.

for G. For each edge e ∈ E(G)− E(T ) let Ce denote the unique cycle contained in
T ∪ {e}. (This cycle exists and is unique by a classical result in graph theory [West
2001, pp. 68–69].) Let C ′e be the graph containing the cycle Ce as one connected
component and the rest of the vertices of G as the other connected components.
Then

(10) RG = RT ∩
⋂

e∈E(G)−E(T )

RC ′e

by Theorem 6.1.
However, a natural row-reduction of the GKM matrix of G proves this intersection

directly. To motivate our approach, we return to the complete graph on four vertices
with principal-ideal edge labels from Example 3.9. The system of equations in
Figure 6 is consistent precisely when q = (q1,2, q1,3, q1,4, q2,3, q3,4) ∈ R5 satisfies
the homogeneous system of equations

(11)

q1,2α1,2− q1,4α1,4+ q2,4α2,4 = 0,

q1,3α1,3− q1,4α1,4+ q3,4α3,4 = 0,

q2,3α2,3− q2,4α2,4+ q3,4α3,4 = 0.

Figure 8 shows the edge-labeled 3-cycle v1, v2, v4 of Figure 7, its extended GKM
matrix, and a natural row-reduction of its extended GKM matrix. The equation that
remains is (up to sign) the same as that which occurs in (11). In fact, the entire
system in (11) arises from the equations (up to sign) for the three subcycles induced
by the vertices

• v1, v2, v4,

• v1, v3, v4, and

• v2, v3, v4.
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The next theorem generalizes this example. We also see it, together with
Remark 3.2, as a first step towards generalizing Rose’s work on syzygies of edge
ideals [1995; 2004].

Theorem 6.3. Suppose that (G, α) is an edge-labeled graph on n vertices. Fix a
spanning tree T for G. For each edge e ∈ E(G)− E(T ) let Ce denote the unique
cycle contained in T ∪ {e}. Then the extended GKM matrix for G is equivalent to
an extended GKM matrix for T , followed for each edge e ∈ E(G)− E(T ) by a row
that is zero except in the last column, which is

∑
e′∈Ce

qe′ where qe′ are arbitrary
elements of α(e′).

Proof. Choose a spanning tree T for the graph G. We assume without loss of
generality that the first n − 1 rows of the GKM matrix for G correspond to the
edges in T . The first n− 1 rows of the GKM matrix of G thus consist of the GKM
matrix for T , by construction.

Consider each of the other rows in turn. Each row corresponds to an edge e in G
but not T . We now describe an invertible row operation to eliminate all nonzero
entries from the first n columns of the row corresponding to e and describe RG

more precisely. Denote the edges of the cycle Ce by e1 = e = vi1vi2 , e2 = vi2vi3 ,
. . . , ek = vikvi1 . Let c j ∈ {±1} be the entry in the row corresponding to e j and the
column corresponding to vertex vi j for each 2 ≤ j 6= n. Denote the e j -th row of
the GKM matrix by re j . The sum of the scaled rows,

k∑
j=2

c jre j ,

has 1 in column vi2 , −1 in column vi1 , 0 in the rest of the first n columns, and∑k
j=2 c j q j in the last column, all by the definition of the GKM matrix. Finally we

add
∑k

j=2 c jre j to the row corresponding to e. This leaves 0 in the first n columns
of row e and qe+

∑k
j=2 c j q j in the last entry of the row.

The elements qe and q j are arbitrary elements of their respective ideals and c j is
a unit in R for each j so the set of all possible qe+

∑k
j=2 c j q j is the same as the

set of all possible
∑

e′∈Ce
qe′ . The result follows. �

The last corollary uses this information to describe the generalized splines for G
in terms of the generalized splines for cycles, as promised.

Corollary 6.4. Suppose that (G, α) is an edge-labeled graph on n vertices. Fix a
spanning tree T for G. For each edge e ∈ E(G)− E(T ) let Ce denote the unique
cycle contained in T ∪ {e} together with the other vertices in G. Then

RG = RT ∩
⋂

e∈E(G)−E(T )

RC ′e .
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Proof. Consider an edge e outside of the spanning tree T and its corresponding
cycle Ce. The previous theorem showed that the submatrix of an extended GKM
matrix for G given by the rows indexed by the edges e′ ∈ E(Ce) forms an extended
GKM matrix for the cycle Ce. The vector p ∈ R|V | solves an extended GKM matrix
for G if and only if it simultaneously solves the corresponding extended GKM
matrices for T and all of the Ce for e ∈ E(G)− E(T ). �

7. Open questions

We end with several open questions, extending some of the major research problems
for splines and GKM theory to the context of generalized splines.

Most research into what we call generalized splines focuses on particular exam-
ples, whether because of explicit hypotheses (e.g., a particular choice of the ring R,
the graph G, or the edge-labeling function α) or implicit hypotheses (e.g., that edge
labels be principal). Special cases remain very important, both for applications and
for data to build the general theory.

Question 7.1. Identify RG in important special cases: for instance, when all edge
labels α(e) are principal ideals; or when R is a particular ring (integers, polynomial
rings, ring of Laurent polynomials); or when G is a particular graph or family of
graphs (cycles, complete graphs, bipartite graphs, hypercubes).

Splines on complete graphs are particularly important for approximation theory,
where they appear as the Alfeld split of a simplex (for a proof see [Tymoczko 2015,
Section 3.1]).

Billera asked the following question, seeking an interpretation of r -smoothness
in the context of equivariant cohomology. We extend Billera’s question to ask about
the analogue of r -smoothness for generalized splines over arbitrary rings.

Question 7.2. Let (G, α) be an edge-labeled graph. Define the function αr
: E→ I

by the condition that for each edge e the image αr (e) is the r -th power (α(e))r . The
r-smooth generalized splines are the elements of the ring RG,αr . We ask how the
r-smooth generalized splines compare for various r . Billera asks for a geometric
interpretation of r -smoothness in the context of equivariant cohomology rings.

As a module, the generalized splines RG can also be viewed as group represen-
tations: for instance, the group of automorphisms of the graph G that preserve the
edge labeling naturally induces a representation on RG . Representations obtained
in this and similar ways are often intrinsically interesting [Fiebig 2011; Tymoczko
2008] and can also be a powerful tool with which to approach other questions in
this section [Tymoczko 2008].
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Question 7.3. Given a specific automorphism group, what are the induced repre-
sentations on RG (in terms of irreducible representations, say)? For what families
of graphs are there nontrivial representations on RG?

Propositions 2.8 and 2.10 and Sections 5 and 6 all use combinatorial aspects
of graphs to analyze the ring of generalized splines. More recently, Handschy,
Melnick, and Reinders [Handschy et al. 2014] and Bowden, Cao, Hagen, King, and
Reinders [Bowden et al. 2015] have used deletion and contraction to study splines
on cycles. We believe that these are special cases of a more general relationship
between the underlying combinatorics and geometry.

Question 7.4. How do classical graph-theoretic constructions (such as deletion-
contraction) affect the algebraic structure of splines RG?

Theorems 2.12, 4.1 and 5.1 are part of a larger program to identify useful bases
for splines and GKM modules [Haas 1991; Goldin and Tolman 2009; Guillemin
and Zara 2003]. The next question extends that program to generalized splines.

Question 7.5. Given a graph G, find a minimal generating set (or basis, if R is
an integral domain) for the generalized splines RG . If G is a particular family of
graphs (cycles, complete graphs, etc.), can we find a minimal generating set (or
basis) for RG?

More specifically, geometers think about bases with certain “upper-triangularity”
properties that arise in many important examples, like Schubert classes, Białynicki-
Birula classes, and the canonical classes of [Knutson and Tao 2003] and [Goldin
and Tolman 2009] (see also [Harada and Tymoczko 2010]). Theorem 5.1 is an
initial step in constructing flow-up bases for generalized splines.

Question 7.6. What is the right definition for a flow-up class in the module of gen-
eralized splines? Under what conditions is there a flow-up basis for the generalized
splines?

Answering the previous question may require further extending generalized
splines so that the vertices are labeled by different modules Mv rather than a fixed
ring R, as described in Section 1. Characterizing those splines would have immediate
implications in geometric applications like computing equivariant intersection
homology.

Question 7.7. Which of the results in this paper extend to generalized splines over
modules? Is there an algorithm or an explicit formula to construct flow-up basis
classes for generalized spines over modules?
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GOOD TRACES FOR
NOT NECESSARILY SIMPLE DIMENSION GROUPS

DAVID HANDELMAN

Akin’s notion of good measure, introduced to classify measures on Cantor
sets, has been translated to dimension groups and traces by Bezuglyi and
the author, but emphasizing the simple (minimal dynamical system) case.
Here we permit nonsimplicity. Goodness of tensor products of large classes
of non-good traces (measures) is established. We also determine the pure
faithful good traces on the dimension groups associated to xerox-type ac-
tions on AF C*-algebras; the criteria turn out to involve algebraic geometry
and number theory.

We also deal with a coproduct of dimension groups, wherein, despite ex-
pectations, goodness of direct sums is nontrivial. In addition, we verify a
conjecture of Bezuglyi and Handelman (2014) concerning good subsets of
Choquet simplices, in the finite-dimensional case.
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Introduction and definitions

Akin [1999; 2005] (see also [Akin et al. 2008], among others) introduced and studied
the notion of good measures in connection with the classification of (probability)
measures on Cantor sets up to homeomorphism. With the development in [Putnam
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1989; Herman et al. 1992; Giordano et al. 1995], among others, of classification and
construction of minimal actions with respect to strong orbit and orbit equivalence via
Vershik maps and ordered Grothendieck groups of AF C*-algebras, this and related
properties were translated into the language of (traces on) dimension groups (a class
of partially ordered abelian groups) in [Bezuglyi and Handelman 2014], henceforth
abbreviated [BeH 2014]. In particular, the characterizations therein of goodness of
traces on simple dimension groups provided relatively easy constructions of good
and non-good measures on minimal systems. For more details, see the discussion
in the introduction to [BeH 2014].

Recent work (e.g., [Medynets 2006; Frick and Ormes 2013; Petersen 2012])
has extended Vershik action(s) to nonminimal systems, and correspondingly to
nonsimple dimension groups. Here we give computable criteria for goodness in the
general (approximately divisible) case, and then use the criteria to give a surprising
result that tensor products of (some) non-good traces are good; this applies to the
ugly traces of [BeH 2014]. We also completely determine the pure faithful traces on
fixed point algebras under xerox actions of tori: the latter include Pascal’s triangle
and variations corresponding to spatially and temporally homogeneous random
walks with finite support on the lattice Zd .

From [Handelman 1985, Theorem III.3], the pure faithful traces correspond to
points r = (ri ) in the strictly positive orthant of Rd ; those that are good are precisely
the algebraic points that satisfy two number-theoretic conditions, which in the case
that d=1, reduce to (i) no other algebraic conjugate of r=r1 is positive and (ii) if the
leading and terminal coefficients of the polynomial implementing the random walk
are a0 and ak , then there exists s such that as

0/r and as
kr are both algebraic integers.

We also deal with a strict form of direct sum of dimension groups, determining
when the corresponding sum of traces is good; there are some surprises here, as
the direct sum can be good without either one being good. We find for each m, a
collection of simple dimension groups with traces, (Gi , τi ), such that for any strict
direct sum of m or fewer distinct summands,

⊕
i∈S Gi , the sum of the traces is not

good, but for any sum of more than m direct summands, the sum is good.
We then consider good sets of traces. The first problem is the definition; it should

be consistent with the current definition in the simple case and in the singleton case,
and we discuss various possibilities; finally, we settle on one. We show that for the
class of dimension groups considered above (arising from random walks on Zd),
with any reasonable definition, the notion is surprisingly restrictive, and even order
unit goodness turns out to be sensitive to the Newton polyhedra of the polynomials
(unlike the case for single traces).

There are three appendices. The first discusses connections with dynamical
systems, mostly for simple dimension groups. The second characterizes order unit
good traces on simplicial groups, and the resulting characterization suggests that
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there are no effective criteria for goodness or order unit goodness when there are
discrete traces, in contrast to the approximately divisible situation discussed in the
rest of this article. Appendix C verifies, in the case of a finite-dimensional trace
space, a conjecture made in [BeH 2014, Section 7] concerning the structure of good
subsets relative to a simplex.

Definitions. A partially ordered abelian group G with positive cone G+ is unper-
forated if whenever n is a positive integer and g ∈ G, then ng ∈ G+ entails g ∈ G+.
An order unit for G is an element u ∈ G+ such that for all g ∈ G, there exists a
positive integer K such that −K u ≤ g ≤ K u. A trace (formerly, state) is a nonzero
positive group homomorphism τ : G→ R; if τ(u)= 1 and u is an order unit, we
say τ is normalized (with respect to u). The trace τ is faithful if ker τ ∩G+ = {0}
(this is much weaker than being one-to-one, and corresponds to faithfulness of the
corresponding measure when there is a dynamical system nearby).

When (G, u) is a partially ordered abelian group with order unit, we may form
S(G, u), the compact convex set of normalized traces, equipped with the weak (or
point-open) topology. We denote by Aff S(G, u) the Banach space of continuous
convex-linear (affine) real-valued functions on S(G, u). There is a natural repre-
sentation G→ Aff S(G, u), given by g 7→ ĝ, where ĝ(τ )= τ(g). We call this the
affine representation of (G, u). If h in Aff S(G, u) is strictly positive (as a function
on S(G, u)), we write h� 0. When G is unperforated, we may use the notation
g� 0 or 0� g to indicate that g is an order unit; this is consistent, as ĝ� 0 if
and only if g is an order unit.

If Y ⊂ S(G, u), we define Y` = {h ∈ Aff S(G, u) | h|Y ≡ 0}; when Y = {τ }, a
singleton, we abbreviate this to τ`. In this case, τ` is a codimension-one subspace
of Aff S(G, u) and is an order ideal if and only if τ is pure. Following the convention
in [BeH 2014], we signal purity with the replacement notation τ⊥.

If (G, u) is an unperforated ordered abelian group, we say G is approximately
divisible if its range in Aff S(G, u) is norm-dense; for dimension groups with order
unit, this is equivalent to τ(G) being dense in R for all pure traces τ , or equivalently,
for all order units g ∈G, there exist order units a, b of G such that g= 2a+3b (and
there are many other equivalent formulations) [Handelman 2014, Corollary 6.2].

When I is a subgroup (typically an order ideal) of a partially ordered abelian
group G, we say I has its own order unit w or w is a relative order unit of I if
w ∈ I is an order unit of I with respect to the relative ordering inherited from G.
This is to emphasize the fact that w is not an order unit for G, merely for I .

If G is an unperforated ordered abelian group, we say G is nearly divisible if
for every order ideal (I, w) which has its own order unit, (I, w) is approximately
divisible; from the discussion above, an equivalent form not referring to order ideals
is that for all g ∈ G+, there exist a, b ∈ G+ such that g = 2a+ 3b and g ≤ ka, kb
for some positive integer k. This appears to be a new concept.
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For example, if G = H⊗U , where H is a partially ordered unperforated abelian
group and U is a noncyclic subgroup of the rationals Q, then G is nearly divisible,
and it is approximately divisible if it has an order unit. We will see plenty of nearly
divisible examples that are not of this type in later sections.

A trace on G is discrete if its image τ(G) is a cyclic (that is, discrete) subgroup
of R. An alternative characterization of approximately divisible, for dimension
groups, is that (G, u) admit no discrete traces; for nearly divisible, the characteriza-
tion is that no nonzero order ideal with order unit admits a discrete trace.

For general relevant results on partially ordered abelian groups, especially di-
mension groups, see [Goodearl 1986].

An interval in a partially ordered group G is a subset of the form [0, b] :=
{g ∈ G | 0≤ g ≤ b} for some b ∈ G+.

Following [BeH 2014], and based on Akin’s notion for measures on Cantor sets,
a trace τ : G→ R is good (as a trace of G) if for all b ∈ G+, we have τ([0, b])=
[0, τ (b)]∩τ(G); that is, if a′ ∈G and 0≤ τ(a′)≤ τ(b), there exists a ∈ [0, b] such
that a−a′ ∈ ker τ . If (G, u) is a partially ordered abelian group with order unit, we
say τ is order unit good if in the definition of good, we restrict b to be an order unit.

1. Characterization of goodness

Order unit goodness is relatively easy to characterize when (G, u) is an approxi-
mately divisible dimension group [BeH 2014, Proposition 1.7]: τ is order unit good
if and only if the image of ker τ in Aff S(G, u) is dense in

τ` := {h ∈ Aff S(G, u) | h(τ )= 0}

(the latter is a closed codimension-one subspace of Aff S(G, u)). This makes
examples and non-examples relatively easy to construct. There is a corresponding
characterization for goodness, which we shall simplify a bit, and use to actually do
something.

Proposition 1.1. Suppose (G, u) is a dimension group with order unit. Let τ be a
faithful trace of G. Then τ is good if and only if for all nonzero order ideals with
order unit (I, w), both τ(I )= τ(G) and τ |I is order unit good. If τ is pure, then
sufficient for goodness is that there exist an order ideal I such that τ |I is good and
τ(I+)= τ(G+).

Remark. Necessity is shown in [BeH 2014, Proposition 4.2]; although the state-
ment hypothesizes that τ be pure, this is not used in the proof (it is used there in the
proof of sufficiency); also shown there was that if τ is good, then τ |I is good (as
a trace on the order ideal I ), and this implies (in the case that I is approximately
divisible) that τ |I is order unit good, just from the definitions.
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Remark. It is always possible to reduce to the case that τ is faithful by factoring
out the maximal order ideal J contained in ker τ [BeH 2014, Lemma 4.4]. In this
case, the criteria apply to G/J (replacing G). This would make the statement
somewhat more complicated.

Proof. Proof of necessity is given in [BeH 2014, Proposition 4.2], requiring neither
purity of τ nor approximate divisibility.

Conversely, suppose a ∈G, b ∈G+ and 0< τ(a) < τ(b). Form the order ideal I
generated by b, that is, I ={c∈G | ∃N ∈N such that −Nb≤ g≤ Nb}. Then I is an
order ideal with its own order unit, b. Since τ(I+)= τ(G+), we have τ(I )= τ(G),
and thus there exists a1 ∈ I such that τ(a1)= τ(a). Now order unit goodness of τ |I
yields a′ ∈ I such that τ(a′)= τ(a1)= τ(a) and 0≤ a′≤ b, verifying goodness of τ .

The final statement is just the sufficiency condition of [BeH 2014, Proposi-
tion 4.2]. �

Let G be a dimension group, and let I and J be order ideals thereof. Then
H := I + J (the set of sums of elements in I and J ) and I ∩ J are both order ideals.
Most of the following are variations on [BeH 2014, Lemma 1.3]. As in [BeH 2014],
an element v of G+ is τ -good or τ -order unit good if τ([0, v])= [0, τ (v)] ∩ τ(G).

Lemma 1.2. Suppose G is a dimension group, and I and J each have relative
order units, w, y respectively. Then:

(a) I + J is an order ideal of G with a relative order unit.

(b) Let τ be a trace on G such that ker τ ∩G+= {0} and τ(I )∩τ(J ) is dense in R.
If τ |I and τ |J are good (as traces on I and J respectively), then τ |(I + J )
is good.

(c) If I + J is approximately divisible, then every order unit b of I + J can be
written in the form b = u + v, where u, v are relative order units for I , J
respectively.

(d) If v is τ -order unit good (with respect to I ) and w is τ -order unit good (with
respect to J ), and τ(I )∩ τ(J ) is dense in R, then v+w is τ -order unit good
with respect to I + J .

(e) Suppose that each of I , J and I+ J is approximately divisible, and τ is a trace
on I + J such that each of τ |I and τ |J is order unit good, and τ(I )∩ τ(J ) is
dense in R. Then τ is order unit good as a trace of I + J .

Remark. Part (c) can fail if approximate divisibility is dropped; for example, take
G = Z3 with the usual simplicial ordering, let I be the order ideal generated by
(1, 1, 0) and let J be the order ideal generated by (0, 1, 1); then I + J = G and the
order unit (1, 1, 1) cannot be realized as a sum of relative order units from I and J
respectively.
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Proof. (a) That I + J is an order ideal is ancient; see, e.g., [Goodearl 1986]. If w
and y are respective order units for I and J , then z := w+ y is an order unit for
I + J . To see this, let f ∈ (I + J )+; for dimension groups, (I + J )+ = I++ J+,
hence we can find e ∈ I+ and g ∈ J+ such that f = e+g. Since there exist positive
integers k, k ′ such that e≤ kw and g≤ k ′v, we have f ≤ k ′′z, where k ′′=max{k, k ′}.

(b) Select b ∈ G+ and a ∈ G such that τ(a) < τ(b). We may write b = i + j ,
where i ∈ I+ and j ∈ J+. Then τ(i), τ ( j) > 0. We may write τ(a)= r + s, where
r ∈ τ(I ) and s ∈ τ(J ).

Assume τ(a)≥ τ(i). By density of τ(I )∩ τ(J ), given

0< ε <min{τ(i), τ (b)− τ(a)},

there exists δ∈ τ(I )∩τ(J ) such that τ(i)−ε <r+δ<τ(i). Then s−δ= τ(a)−r−δ
satisfies

τ(a)− τ(i)+ ε > s− δ > τ(a)− τ(i) > 0.

Hence we can write τ(a)= (r+δ)+(s−δ), where the parenthesized terms are respec-
tively in the intervals (0, τ (i)) and (0, τ (a)− τ(i)+ ε). However, ε < τ(b)− τ(a)
entails τ(a)− τ(i)+ ε < τ(b)− τ(i)= τ( j). Since ±δ ∈ τ(I ∩ J ), we may thus
find a1 ∈ I and a2 ∈ J such that 0 < τ(a1) < τ(i) and 0 < τ(a2) < τ( j). Since
each of τ |I and τ |J is good, there exist c1 ∈ [0, i] (the interval in I ) and c2 ∈ [0, j]
such that τ(c1) < τ(i) and τ(c2) < τ( j). Hence we have c := c1+ c2 ∈ [0, b] and
τ(c)= τ(c1)+ τ(c2) < τ(i)+ τ( j)= τ(b), verifying goodness in this case.

Reversing the roles of i and j , the same conclusion results if τ(a)≥ τ( j), so we
are reduced to the case that τ(a) <min{τ(i), τ ( j)}. If τ(a)= 0, there is nothing
to do (except set c = 0). Otherwise, choose 0< ε < τ(a)/2, find real δ ∈ τ(I ∩ J )
such that τ(a)/2− ε < δ+ r < τ(a)/2, and consider τ(a)= (r + δ)+ (s− δ); then
r + δ ∈ (0, τ (a)/2)⊂ (0, τ (i)), so s− δ ∈ (τ (a)/2, τ (a))⊂ (0, τ ( j)). Now we can
proceed as in the previous paragraph.

(c) Now let b be an order unit of I + J . By approximate divisibility of I + J ,
the range of I + J in Aff S(I + J, b) is dense; hence given ε > 0, we may find
b0 ∈ I+ J such that (1/2−ε)1< b̂0< 1/2 (where ˆ refers only to the representation
on S(I + J, b), that is, b̂ = 1). Let ε < 1/8, so that b̂0� 0 and thus b0 is an order
unit of I + J , and moreover, 2b0 ≤ b, and b− b0 is also an order unit for I + J .

Now consider the set S := {c ∈ I+ | c≤ b0}. This is directed, as if c, c′ ∈ S, then
we have c, c′≤ b0, c+c′; interpolating, we obtain c′′ such that c, c′≤ c′′≤ b0, c+c′;
as c+ c′ ∈ I , it follows that c′′ ∈ I , so c′′ ∈ S. As there exists k such that w ≤ kb0,
we can write w =

∑k
i=1wi , where wi ∈ I+ and each wi ≤ b0. Then wi ∈ S, so

there exists u0 ∈ I+ such that wi ≤ u0 ≤ b0 for all i . Since
∑
wi = w is an order

unit for I , we know that ku0 is an order unit for I , and thus u0 is too. Hence there
exists an order unit u0 of I such that u0 ≤ b0.
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Since b−b0 is also an order unit for I+ J , applying the same process to J instead
of I yields an order unit v0 of J such that v0≤b−b0. Thus u0+v0≤b0+(b−b0)=b.
The element b− (u0+ v0) is in the positive cone of I + J , so it can be written as
b−(u0+v0)= c+d , where c ∈ I+ and d ∈ J+. This yields b= (u0+c)+(v0+d);
setting u = u0+ c, we see that u ∈ I+ and is larger than an order unit for I , and
so is itself an order unit for I ; similarly v = v0+ d is an order unit for J .

(d)–(e) Select an order unit b for I + J , and a ∈ I + J such that 0< τ(a) < τ(b).
By (c), we may write b=u+v, where u and v are order units for I and J respectively.
We can write a= r+s, where r ∈ I and s ∈ J , and set t = τ(u) (as τ |I is order unit
good, it does not vanish identically, hence t > 0), so that τ(v)= τ(b)− t , which
is again positive. Now proceed as in the proof of (b). �

The density requirement on τ(I )∩ τ(J ) is essential.

Lemma 1.3. Suppose that u and v are elements of G+, and let τ be a trace such
that each is τ -order unit good on the order ideals they generate, I (u) and I (v)
respectively.

(a) If u+v is τ -order unit good on I (u)+ I (v)= I (u+v) and τ(I (u))+τ(I (v))
is dense in R, then τ(I (u))∩ τ(I (v)) 6= {0}.

(b) If , additionally, both τ(I (u)) and τ(I (v)) are dense subgroups of R, then so
is τ(I (u))∩ τ(I (v)).

Proof. Suppose the intersection consists of just 0. We may find positive real numbers
s ∈τ(I (u)) and t ∈τ(I (v)) such that s>τ(u), t>τ(v), and 0<r := s−t<τ(u+v)
(since the value group is dense). By order unit goodness, there exists a such that
0≤a≤u+v and τ(a)=r . Riesz decomposition entails a=a1+a2, where 0≤a1≤u
and 0 ≤ a2 ≤ v. Set s ′ = τ(a1)≥ 0 and t ′ = τ(a2)≥ 0. Then s − t = s ′ + t ′, so
s−s ′= t+t ′. The intersection consisting of 0 forces s = s ′ and t =−t ′; the latter
forces t = t ′= 0, a contradiction.

Now suppose the intersection is nonzero and not dense. Then it is cyclic, so there
exists x ∈R, which we may assume to be positive, such that τ(I (u))∩τ(I (v))= xZ.
We may find 0< s, t < x with s ∈ τ(I (u)) and t ∈ τ(I (v)) such that 0< r := s− t .
Find a≤ u+v as above with r = τ(a), similarly decompose a= a1+a2, and define
s ′, t ′ as in the preceding paragraph. We deduce s− s ′ = t+ t ′, hence there exists an
integer m such that s− s ′ = mx = t + t ′; as t, t ′ ≥ 0, we have m ≥ 0, but as s < x ,
we have m < 1, hence m = 0. This forces t = t ′ = 0, again a contradiction. �

Corollary 1.4. Let G be a nearly divisible dimension group with a faithful trace τ .
Suppose that I and J are order ideals with their own order units such that each
of τ |I , τ |J , and τ |(I+J ) is order unit good. Then τ(I ) ∩ τ(J ) is a dense sub-
group of R.
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Proof. Since τ is faithful, τ |I and τ |J are nonzero, and since every trace on an order
ideal with order unit is nondiscrete (as the order ideals are approximately divisible by
definition), it follows that τ(I ) and τ(J ) are dense. Now Lemma 1.3(b) applies. �

Let (G, u) be a dimension group. Let J be a collection of nonzero order ideals,
each with their own order unit, such that every order ideal of G with order unit can
be expressed as a sum of order ideals from J (such a sum can always be made
finite, as the order ideal has an order unit); then we say J is a generating set of
order ideals of G.

The criteria in Lemma 1.2 for goodness can be reduced to that on a generating
set of order ideals. This will make the computations of Section 4 much simpler.

Lemma 1.5. Let (G, u) be a nearly divisible dimension group, let J be a generating
set of order ideals of G, and let τ be a faithful trace of G. For τ to be a good trace
of G, it is sufficient that it satisfy

(i) for all J ∈ J , we have τ(J )= τ(G) and

(ii) for all J ∈ J , we have τ |J is an order unit good trace of J .

Proof. We can express a nonzero order ideal I with order unit as I =
∑

Jα for
some Jα ∈ J . Thus τ(I )=

∑
τ(Jα)= τ(G).

Since I has an order unit, the sum can be made finite; now we apply induction
(on the number of summands) to Lemma 1.2(d); this verifies the second property in
Proposition 1.1. �

Verifying the criteria for goodness and related properties is much simpler when
the partially ordered abelian group is an ordered ring having 1 as an order unit.

Lemma 1.6. Let (R, 1) be a (commutative) partially ordered commutative ring
with 1 as order unit. If R is approximately divisible, then it is nearly divisible.

Proof. Approximate divisibility implies the existence of order units u and v such
that 1 = 2u + 3v; for any r ∈ R+ \ {0}, we thus have r = 2(ru)+ 3(rv). From
1≤ ku, kv for some positive integer k, we deduce r ≤ k(ru), k(rv), verifying the
definition of nearly divisible. �

The following is implicit in the proof of [BeH 2014, Corollary 7.12].

Lemma 1.7. Let (R, 1) be a partially ordered (commutative) unperforated ring
with 1 as order unit, that is, an approximately divisible dimension group. Let τ be a
faithful pure trace. Then τ is order unit good if and only if for all σ ∈ ∂e S(R, 1)\{τ },
we have σ(ker τ) 6= {0}.

Proof. Since 1 is an order unit of the partially ordered ring, X := ∂e S(R, 1)
is compact and consists precisely of the normalized multiplicative traces of R;
moreover, Aff S(R, 1) = C(X,R) with the affine representation reinterpreted as
g̃(φ)= φ(g) for φ ∈ X (note the use of ˜ rather than ˆ , to distinguish them). By
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approximate divisibility, the image of R is dense in C(X,R). If A is any ideal
of R, then its closure in C(X,R) is an ideal therein, and hence is of the form
Ann(Y ) := { f ∈ C(X,R) | f |Y ≡ 0} for a unique compact subset Y of X .

Since τ is pure, it is multiplicative, and therefore ker τ is an ideal of R (not an
order ideal, unless ker τ = 0, as ker τ ∩ R+ = {0} is the definition of faithfulness).
The closure of the image of ker τ in C(X,R) can thus be written in the form Ann(Y )
for some compact subset Y .

If τ is order unit good, then Ann(Y ) is Ann({τ }) (corresponding to τ⊥ in
Aff S(R, 1)), from which it follows that Y = {τ }. Hence if σ ∈ X \ {τ }, there exists
a continuous f : X→ [0, 1] such that f (τ )= 0 but f (σ )= 1; then f ∈ Ann({τ }),
hence there exist gn ∈ R such that gn ∈ ker τ and g̃n→ f uniformly. Applying σ ,
there exists n such that σ(gn) 6= 0, so that σ(ker τ) 6= {0}.

Conversely, suppose for every σ ∈ X \ {τ }, we have σ(ker τ) 6= {0}. Then
σ 6∈ Y , hence Y = {τ }, so that the closure of the image of ker τ is codimension one
in C(X,R), hence equal to τ⊥ in Aff S(G, u). Thus τ is order unit good. �

2. Tensor products

If G and H are partially ordered abelian groups, we may form the tensor product (as
Z-modules) G⊗Z H (usually, we delete the subscripted Z); it is equipped with a cone
which makes it into a partially ordered group,

{∑
gi ⊗ hi

∣∣ gi ∈ G+ and hi ∈ H+
}

[Goodearl and Handelman 1986, Proposition 2.1]. If both are dimension groups,
then so is G⊗ H , and if u, v are respectively order units for G, H , then u⊗v is an
order unit for G⊗H . If σ , τ are respective (normalized) traces on (G, u) and (H, v),
then σ ⊗ τ (defined in the obvious way) is a (normalized) trace of (G⊗ H, u⊗ v).

Appendix A informally discusses connections between tensor products of dimen-
sion groups and products of Z-actions on Cantor minimal systems.

A special case occurs when we form the divisible hull of a dimension group,
G⊗Q, the rational vector space that G generates. Then τ extends to a trace G⊗Q

in the obvious way, denoted τ ⊗ 1Q. In general, τ being order unit good or good
implies the corresponding property for τ ⊗ 1Q, but the converse fails practically
generically. As a special case, we [BeH 2014] defined a trace τ to be ugly if τ ⊗1Q

is good and ker τ has discrete image in (the Banach space) Aff S(G, u). Ugly traces
exist in profusion.

In Akin’s original context of measures on Cantor sets, he showed that (what
amounts to) the tensor product of good traces is good; in the context of simple
dimension groups or more generally for approximately divisible dimension groups,
the tensor product of order unit good traces was shown to be order unit good [BeH
2014, Proposition 5.2]. Here, we show a somewhat surprising result for order unit
goodness: if (G, u) and (H, v) are approximately divisible, and both σ ⊗ 1Q and



374 DAVID HANDELMAN

τ ⊗1Q are order unit good on their respective groups, then σ ⊗ τ is order unit good
(as a trace on G⊗ H ). This means that the tensor product has a stronger property
(in general) than its constituents. In particular, the tensor product of ugly traces is
at least order unit good.

A weaker notion is refinability; again based on Akin’s definition in the dynamical
situation, and translated to partially ordered groups: a trace τ on (G, u) is refinable if
whenever b ∈G+ \ker τ and {ai } is a finite subset of G+ such that τ(b)=

∑
τ(ai ),

there exist {a′i } ⊂ G+ such that b =
∑

a′i and τ(ai ) = τ(a′i ). Surprisingly, the
corresponding tensor product results actually fail for refinability (even though the
set of refinable traces is a dense Gδ in the trace space).

Using the criterion of Proposition 1.1, we then obtain a corresponding criterion
for goodness of the tensor product (G and H are nearly divisible, σ⊗1Q and τ⊗1Q

are good, and a condition that guarantees the value groups on the order ideals is the
same as the full value group).

Proposition 2.1. Let (G, u) and (H, v) be approximately divisible dimension
groups with traces σ and τ respectively. If each of σ ⊗ 1Q and τ ⊗ 1Q on G⊗Q

and H ⊗Q respectively is order unit good, then the trace on (G⊗ H, u⊗ v) given
by σ ⊗ τ is order unit good.

If we only require that σ ⊗ τ ⊗ 1Q (a trace on G⊗ H ⊗Q) be order unit good
(in place of each of σ ⊗ 1Q and τ ⊗ 1Q being good), the conclusion is false; an
example will be given later (Example 2.6).

We require a number of elementary results about tensor products. Here the
tensors will be over one of the rings Z, Q, or R; torsion-free (module) means
torsion-free abelian group when the underlying ring is Z; otherwise, it just means
vector space over the relevant field.

Lemma 2.2. Let A and B be torsion-free modules, and A′⊂ A, B ′⊂ B submodules
such that A/A′ and B/B ′ are torsion-free.

(a) The kernel of the map A⊗ B→ A⊗ (B/B ′) is A⊗ B ′.

(b) The kernel of the map A⊗ B→ (A/A′)⊗ (B/B ′) is A⊗ B ′+ A′⊗ B.

Proof. (a) One inclusion is obvious. Because the quotient is torsion-free, A⊗ B/B ′

is torsion-free. We have an induced map (A⊗B)/(A⊗B ′)→ A⊗(B/B ′). If z is in
the kernel, find a nonzero integer n such that nz has a representative in A⊗B of least
length (as n varies over nonzero integers), say nz=

∑
ai⊗bi+(A⊗B ′). Then {ai }

is rationally linearly independent; hence the image, nz̄, yields 0=
∑

ai ⊗ (bi + B ′).
Since B/B ′ is torsion-free, this easily implies all bi + B ′ = 0 (tensor with Q if
necessary, so we are working over a field, then use a basis for B ′Q, extended to
BQ). (This proof works for all fields.)
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(b) First, A ⊗ B/(A ⊗ B ′) is naturally isomorphic to A ⊗ B/B ′ by (a). Then
another application of (a) with the order reversed yields a natural isomorphism
(A⊗(B/B ′))/(A′⊗(B/B ′))∼= (A/A′)⊗(B/B ′). Then the kernel of the first map is
A⊗B ′, and that of the second is A′⊗(B/B ′), which pulls back to A⊗B ′+A′⊗B. �

Proof of Proposition 2.1. We will show that the closure of the image of ker σ ⊗ τ in
Aff S(G⊗ H, u⊗ v) is (σ ⊗ τ)`; by [BeH 2014, Proposition 1.7], σ ⊗ τ is order
unit good.

First, we identify the product Aff S(G, u)⊗R Aff S(H, v) with a subspace of
Aff S(G⊗ H , u⊗v) in the obvious way. Standard results (e.g., pure traces are pure
tensors) yield that it is a dense subspace.

We note that (ker σ)⊗ H +G⊗ (ker τ)⊆ ker σ ⊗ τ . It easily follows that the
closure of the image of (ker σ)⊗ H contains everything in y⊗Aff S(H, v) (real
tensors), where y varies over the image of ker σ (in σ` ⊂ Aff S(G, u)). For y
fixed, y⊗Aff S(H, v) is a real vector space, and this means that we can rewrite it
as yR⊗Aff S(H, v) (just approximate real multiples of v̂ by elements of Ĥ , and
transfer through the tensor product). Taking finite sums, we see that the closure of
the image of ker σ ⊗ H includes the closure of Im(ker σ)Q⊗Aff S(H, v).

Now σ⊗1Q being order unit good implies (ker σ)⊗Q has dense image in σ` (in
Aff S(G, u)). If e is an element of G⊗Q, there exists a nonzero integer m such that
me∈G. If in addition, σ⊗1Q(e)= 0, then σ(me)= 0; thus ker(σ⊗1Q)⊆ (ker σ)Q
(the reverse inclusion is trivial, but never needed).

Thus the closure of the image of (ker σ)⊗H contains Im(ker σ)Q⊗Aff S(H, v),
which in turn contains the closure of Im(ker σ)Q⊗Aff S(H, v), and thus includes
σ`⊗Aff S(H, v).

Similarly, the closure of the image of G⊗ ker τ contains Aff S(G, u)⊗ τ`. Set
A = Aff S(G, u), A′ = σ`, B = Aff S(H, v), and B ′ = τ`; then each is a Banach
space, and (A/A′) and (B/B ′) are both one-dimensional, and the closure of the
image of ker(σ ⊗ τ) contains A′⊗ B+ A⊗ B ′.

By (b) above, (A ⊗ B)/(A′ ⊗ B + A ⊗ B ′) is one-dimensional. Let W =
A′⊗ B+ A⊗ B ′ and Z = Aff S(G, u)⊗Aff S(H, v), so that W is a codimension-
one subspace of Z . It is now an easy exercise to show that when we complete Z to
Aff S(G⊗H, u⊗v), the closure, W , is of at most codimension one. (This is a general
Banach space result; if W 6= z̄, then W = W ∩ Z as W is codimension one in Z ;
choose z∈ Z\W ; the functional sending z 7→1 and W 7→0 is continuous (essentially
the closed graph theorem), and hence extends to a bounded linear functional p on W ;
we may write arbitrary y ∈ Z as lim yn; then yn = p(yn)z+ (yn− p(yn)z), and thus
by continuity, y = p(y)z+ (y− p(y)z), and y− p(y)z is in W , hence z+W = z̄.)

In particular, the closure of the image of ker σ ⊗ τ in Aff S(G ⊗ H, u ⊗ v) is
codimension one. As it is contained in (σ ⊗ τ)`, which is proper, it follows that
the image of ker σ ⊗ τ is dense in (σ ⊗ τ)`. �
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This explains a phenomenon exemplified in [BeH 2014, Example 9]. Let G be a
critical dimension group of rank k+1 (that is, a free rank k+1 abelian group densely
embedded in Rk , and equipped with the strict ordering therefrom [Handelman 1982]).
Then we say G is basic (as a critical group) if it is order-isomorphic to the subgroup
of Rk spanned by {ei ;

∑
α j e j }, where {ei } is the standard basis and {1, α1, . . . , αk}

is linearly independent over the rationals (this guarantees density of the subgroup).
Every critical group is topologically isomorphic to a group of the latter form.

For basic critical groups, every pure trace is ugly, as is immediate from the
definitions. Hence if Gi are basic critical groups (and there is more than one), then
all of the pure traces of their tensor product (a simple dimension group)

⊗
Gi are

good. In [BeH 2014, Example 9], an example was given of a basic critical group of
rank three, for which all pure traces on G⊗G are good. We also asked whether
the pure traces on G⊗G⊗G are good, and now we know that the answer is yes.

It is plausible that among critical groups, basic ones are characterized by all
pure traces being ugly; this is false, but is close to being true [Handelman 2013a,
Proposition 7.4]. There are lots of critical groups for which all or some are bad,
hence not ugly [BeH 2014, Section 2]. It can also happen that if both σ, τ are bad
traces (a trace τ is bad if ker τ consists of the infinitesimal elements of the group
[BeH 2014]), then σ ⊗ τ is good; but it can also arise that σ ⊗ τ is not even ugly.

Now suppose that (G, u) and (H, v) are nearly divisible, and σ , τ are normalized
traces on G, H respectively such that σ ⊗1Q and τ ⊗1Q are both good. We expect
to obtain that σ ⊗ τ is a good trace on G⊗ H .

Lemma 2.3. Let (G, u) and (H, v) be dimension groups with order unit. Then:

(a) G⊗ H is approximately divisible if and only if at least one of G or H is.

(b) G⊗ H is nearly divisible if and only if at least one of G or H is.

Proof. (a) Suppose G is approximately divisible. Every pure trace of (G⊗H, u⊗v)
is of the form σ ⊗ τ [Goodearl and Handelman 1986, Lemma 4.1], where σ , τ
are pure traces of G, H respectively. Then (σ ⊗ τ)(G ⊗ H) is σ(G) · τ(H) (the
set of sums of terms of the form σ(g) · τ(h)); as σ(G) is dense, obviously so is
σ(G) · τ(H), so that G⊗ H has no discrete pure traces, and is thus approximately
divisible. The same argument applies if instead H is approximately divisible.

If neither G nor H is approximately divisible, then there exists a discrete trace
σ of G and a discrete trace τ of H ; as these are normalized (at u, v respectively),
σ(G) = (1/n)Z and τ(H) = (1/m)Z for some positive integers m and n; then
(σ ⊗ τ)(G ⊗ H) = (1/mn)Z, which is discrete. Hence G ⊗ H admits a discrete
trace, and thus is not approximately divisible.

(b) Select a =
∑

gi ⊗ hi ∈ (G⊗ H)+; from the definition of the ordering on the
tensor product, we can assume each of gi and hi are positive in their respective
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groups. By definition, we can write gi = 2ai + 3bi , where 0 ≤ gi ≤ kai , kbi for
some positive integer k; since the sum is finite, we can take the same integer k
for all i . Set c1 =

∑
ai ⊗ hi and c2 =

∑
bi ⊗ hi . Then a = 2c1+ 3c2; moreover,∑

gi ⊗ hi ≤ k
∑

ai ⊗ hi , that is, a ≤ kc1, and similarly a ≤ kc2.
If neither G nor H is nearly divisible, there exist an order ideal of G with its

own order unit, (I, w) together with a discrete trace (of I ) φ, and an order ideal
of H with its own order unit, (J, y) and a discrete trace on it, ψ . Then φ⊗ψ is a
discrete trace (as above) of I ⊗ J ; this being an order ideal of G⊗ H , the latter is
not nearly divisible. �

Lemma 2.4. Let G and H be nearly divisible, having faithful traces σ and τ
respectively such that σ ⊗ 1Q and τ ⊗ 1Q are good as traces on G ⊗Q, H ⊗Q

respectively.

(a) Let (I, w) be an order ideal of G with its own order unit, and let (J, y) be an
order ideal of H with its own order unit. Then (σ ⊗ τ)|(I ⊗ J ) is order unit
good.

(b) Suppose for each order ideal I of G, σ(I ) = σ(G), and similarly, for each
order ideal J of H , we have τ(J ) = τ(H). Then for every nonzero order
ideal L of G⊗ H , we have (σ ⊗ τ)(L)= (σ ⊗ τ)(G⊗ H).

(c) Suppose the hypotheses of (b) apply. Let (L , e) be an arbitrary order ideal of
G⊗ H with its own order unit. Then (σ ⊗ τ)|L is order unit good.

Proof. (a) Each of the restrictions of σ ⊗ 1Q and τ ⊗ 1Q to I ⊗Q and J ⊗Q

respectively is good, hence order unit good, and thus (σ ⊗ τ)|(I ⊗ J ) is an order
unit good trace of I ⊗ J .

(b) First, if L = I ⊗ J (where I and J are nonzero order ideals in G and H respec-
tively), then (σ ⊗τ)(I ⊗ J ) is the subgroup of R generated by all terms of the form
σ(a) ·τ(b), where a ∈ I and b ∈ J , and (σ ⊗τ)(G⊗H) has the same form, except
a and b are allowed to vary over G and H respectively. Since for all a ∈ G, there
exists a′ ∈ I such that σ(a′)= σ(a), and similarly for τ , the two groups are equal.

If e ∈ L+, then by the definition of the tensor product ordering, we can write
e =

∑
gi ⊗ hi . For an element x in the positive cone of a dimension group, let I (x)

be the order ideal it generates; then it is easy to check (since sums of order ideals are
again order ideals in a dimension group) that L = I (e)=

∑
I (gi )⊗ I (hi ); in partic-

ular, L contains a tensor product of order ideals, so the previous paragraph applies.

(c) Every e ∈ (G ⊗ H)+ can be written in the form e =
∑

gi ⊗ hi with gi ∈ G+

and hi ∈ H+. By (a), the restriction of σ ⊗ τ to each of I (gi )⊗ I (hi ) is order unit
good. Since σ ⊗ τ(L)= (σ ⊗ τ)(G⊗H), for any nonzero order ideal L of G⊗H ,
we may apply Lemma 1.2(e) (the intersection of the value groups is dense), so the
restriction of σ ⊗ τ to L is order unit good. �
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Proposition 2.5. Suppose that (G, u, σ ) and (H, v, τ ) are nearly divisible dimen-
sion groups with faithful trace having the following properties:

(i) For all nonzero order ideals I and J of G and H respectively, σ(I )= σ(G)
and τ(J )= τ(H).

(ii) Each of σ ⊗ 1Q and τ ⊗ 1Q is good on G⊗Q, H ⊗Q respectively.

Then σ ⊗ τ is a good trace of G⊗ H.

Proof. This follows from Lemma 2.3, Lemma 2.4, and Proposition 1.1. �

Even in the simple case, it is not true that goodness of τ ⊗ τ ⊗ 1Q (a trace on
G⊗G⊗Q) implies τ ⊗ τ is good. In fact, the next example illustrates something
more drastic.

A weaker property than goodness is refinability: a trace τ : G→R is refinable if
whenever b ∈ G+ and there exist {ai } ⊂ G+ such that τ(b)=

∑
τ(ai ), then there

exist a′i ∈G+ such that τ(ai )= τ(a′i ) and b=
∑

a′i . Good traces are refinable [BeH
2014, Lemma 7.3]. Following [BeH 2014], a trace τ is bad if Inf G = ker τ and
τ is not the only normalized trace. It is trivial that bad traces are refinable when
Inf G = {0} [BeH 2014].

More interestingly, when there is more than one trace, bad traces are generic; in
fact, they constitute a dense Gδ of S(G, u), merely under the assumption that G is
countable [Giordano et al. ≥ 2016]. Because of this, one would expect refinability
to be even better behaved under tensor products than goodness. This is not the case.

Example 2.6. There exists a simple dimension group G with a pure trace τ with
the following properties:

(a) τ is bad, and thus is refinable.

(b) τ ⊗ τ ⊗ 1Q, a trace on G⊗G⊗Q, is good.

(c) The trace τ ⊗ τ : G⊗G→ R is not even refinable.

(d) The trace τ ⊗ τ ⊗ τ ⊗ τ on G⊗4 is good.

Proof. Let α be real, quartic, and integral (that is, it satisfies a monic degree-four
irreducible polynomial with integer coefficients), and let β be a real number not
satisfying any degree-four polynomial over the rationals (in particular, β /∈Q(α),
where the latter is the field generated over the rationals by α). Let G be the subgroup
of R2 generated by {(1, 1), (α, β), (α2, β2)}. The three 2 × 2 determinants are
{β−α, β2

−α2, αβ2
−α2β}; since β 6= α, this set is rationally linearly independent

(rational linear independence of {1, α+β, αβ} follows from β 6∈Q(α)). Thus G is
dense in R2, so with the strict ordering it inherits from the latter, it will be a simple
dimension group.

Let τ : G→ R be the projection onto the first coordinate. This is a pure trace,
and moreover, ker τ = {0}, so that τ is bad, and thus is refinable.
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Now make the identifications

(1, 0)⊗ (1, 0) 7→ (1, 0, 0, 0), (1, 0)⊗ (0, 1) 7→ (0, 1, 0, 0),

(0, 1)⊗ (1, 0) 7→ (0, 0, 1, 0), (0, 1)⊗ (0, 1) 7→ (0, 0, 0, 1).

This yields order isomorphisms Z2
⊗Z2

→ Z4 and R2
⊗R2

→ R4. Then G⊗G,
being a simple dimension group, inherits the strict ordering on R4, and is spanned
by the nine elements

a = (1, 1, 1, 1), b = (α, β, α, β), c = (α2, β2, α2, β2),

d = (α, α, β, β), e = (α2, αβ, αβ, β2), f = (α3, αβ2, α2β, β2),

g = (α2, α2, β2, β2), h = (α3, α2β, αβ2, β3), j = (α4, α2β2, α2β2, β4).

The trace τ ⊗ τ identifies with the projection on the first coordinate, which we will
call σ . Since α satisfies an irreducible polynomial of degree four (and therefore of
no less degree), say α4

= Aα3
+Bα2

+Cα+D, with A, B,C, D ∈Z, it follows that

ker σ = 〈d − b, e− c, g− e, h− f, j − A f − Bc−Cb− Da〉.

(Since σ(G⊗G)⊂ Z[α] and the latter is rank four, the kernel has rank five; this
reduces the problem to showing the cokernel of the group on the right is torsion-free,
which is routine.) The first four of the generators are of the form (0, ∗, ∗, 0), and it is
easy to verify that the group that they span is dense in 0⊕R2

⊕0. The last generator
has nonzero fourth coordinate (since β satisfies no fourth degree polynomial); call
it γ . Thus the closure of ker σ is {0}⊕R2

⊕ γZ.
In particular, the closure of ker σ is not a real vector space, so σ = τ ⊗ τ is

not good; moreover, it is not even refinable, since φ(ker σ) is cyclic and nonzero,
where φ is the projection onto the fourth coordinate [BeH 2014, Proposition B.5].

On the other hand, (ker σ)⊗Q is dense in {0} ⊕ R3, and since ker(σ ⊗ 1Q)

contains (ker σ)⊗Q, it follows that σ ⊗1Q = τ ⊗τ ⊗1Q is a good trace on G⊗Q.
By Proposition 2.1, τ ⊗ τ ⊗ τ ⊗ τ is a good trace on G⊗G⊗G⊗G. �

Left open are the properties of τ ⊗ τ ⊗ τ . Short of computing with a Z-basis
consisting of 27 elements, there did not seem to be any method of attack (the kernel
has rank 23; however, the infinitesimal subgroup is substantial, too).

3. Examples from xerox actions of tori on UHF algebras

We characterize the good faithful pure traces on the dimension groups arising from
xerox-product-type actions of tori on UHF C*-algebras. It turns out that there is a
surprising number-theoretic component.

Appendix A points out strong analogies between Bernoulli measures and the
traces discussed here.
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Form the Laurent polynomial ring in d variables over the integers, Z[x±1
i ], and

let Z[x±1
i ]
+ denote the set of those with only nonnegative coefficients. As in

[Handelman 1985; 1987], we adopt monomial notation; that is, for w ∈ Zd , define
xw = xw(1)1 · xw(2)2 · · · · · xw(d)d . For any f ∈ Z[x±1

i ], we denote the coefficient of xw

in f by ( f, xw) (inner product notation, which is consistent with the origins of the
work), and we set Log f := {w ∈ Zd

| ( f, xw) 6= 0}. Let P =
∑

awxw ∈ Z[x±1
i ]
+

(where aw ∈ Z+), and form the ring RP = Z[{xw/P}w∈Log P ]. Equipped with the
partial ordering generated additively and multiplicatively by {xw/P | w ∈ Log P},
this is a dimension group and an ordered ring with 1 as order unit, and many more
properties (marked with bullets below). We may also form Z[x±1

i , 1/P] (a subring
of the field of fractions of the Laurent polynomial ring). It also has a partial ordering
given by { f/Pk

| ∃N such that P N f has no negative coefficients}. The restriction
of this to RP yields the original ordering.

This arose from the following construction. Let n = P(1, 1, 1, . . . , 1), and form
A=⊗MnC (the UHF C*-algebra). The Laurent polynomial P is the character of an
n-dimensional representation of the torus Td , say given by z 7→ diag(zw) (one for
each w that appears in P , with repetitions as indicated by the multiplicities, that is,
the coefficients). This yields a map π :Td

→MnC with nonzero entries along the di-
agonal. Form φ :=⊗Adπ :Td

→AutA, and the corresponding fixed point subrings,
Aφ(Td ), and A×φ Td , the latter the C*-crossed product. Then (K0(Aφ(T

d )), [1]) is a
naturally ordered ring isomorphic to RP and K0(A×φ Td) is similarly isomorphic
to the ordered ring Z[x±1

i , 1/P]. This will play a role in what follows.
Renault [1980] determined the positive cone and analyzed (inter alia) the structure

of RP when P = 1+ x . The pure (ergodic) traces thereon were determined by Orey
(in terms of the simple random walk) in the mid-1960s.

We normally assume that P is projectively faithful; that is, Log P − Log P
generates (as an abelian group) the standard copy of Zd in Rd (we can reduce to this
case anyway). This has the effect that whenever v ∈ Log Pk

∩ int cvx Log Pk for
some positive integer k, it follows that xv/Pk belongs to RP and RP [(xv/Pk)−1

] =

Z[x±1
i , 1/P]; i.e., the larger ring is obtained by inverting xv/Pk .

We call an element of the form xw/P with w ∈ Log P a formal monomial in RP .
(It can happen that xw/P ∈ RP even ifw 6∈Log P — e.g., ifw+Log Pk

⊆Log Pk+1

for some k. This is not significant for what follows.)
In addition to the obvious facts about RP (it is a commutative, finitely generated —

hence noetherian — domain), the following results are known:

• RP = {g/Pk
| g ∈ Z[x], Log g ⊂ Log Pk

}, RP is a partially ordered ring with 1
as an order unit, and it is a dimension group [Handelman 1985, Section I].

• All sums and finite intersections of order ideals are order ideals (this is true for
all dimension groups) [Goodearl 1986].
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• Products of order ideals are order ideals (this is not generally true for dimension
groups that are commutative partially ordered domains having 1 as an order unit)
[Handelman 1985].

• Every order ideal is an ideal (this is true in every partially ordered commutative
ring in which 1 is an order unit) [Handelman 1985, Proposition I.2].

• If f is a formal monomial, then f RP (the ideal generated by f ) is an order ideal
[Handelman 1987, Proposition II.2A].

• Every order ideal is the finite sum of ideals,
∑

fi RP , where fi are formal
monomials, and all such sums are order ideals [Handelman 1987, p. 19].

• If f is a formal monomial and a ∈ RP , then f a ∈ R+P implies a ∈ R+P (this follows
from the definitions); the conclusion is also true if we replace formal monomial by
order unit, a result that is very special for RP [Handelman 1987, Proposition II.5].

• The pure traces are exactly the multiplicative ones (this is true for any partially
ordered ring with 1 as an order unit); the pure faithful traces are exactly those of the
form τr (g/Pk)= g(r)/Pk(r), where r = (ri ) is a strictly positive d-tuple in Rd , and
these extend in the obvious way to positive homomorphisms τr : Z[x±1

i ; 1/P]→ R

(warning: although the ring Z[x±1
i ; 1/P] is partially ordered, 1 is not an order unit

for it) [Handelman 1985, Theorem III.3].

• The weighted moment map/Legendre transform corresponding to P implements a
homeomorphism ∂e S(RP , 1)→ cvx Log P (the latter is the Newton polytope of P)
sending the faithful pure traces onto the interior; unexpectedly, the set of pure traces
admits a type of convex structure; in particular, the faces correspond to traces that
factor through quotients in a particularly nice way [Handelman 1987, Theorem IV.1].

• In general, RP is not a pure polynomial ring; only rarely does it have unique
factorization [Handelman 1987, Theorem A.8A].

Now let us consider the following property of a faithful pure trace τ ≡ τr :

(1) for every nonzero order ideal I , we have τr (I )= τr (RP).

By Proposition 1.1, this is one of the two necessary conditions for τr to be a good
trace.

Here r = (ri ) ∈ (R
d)++ as described above. First we note that { f RP} (as f

varies over all products of formal monomials) is a generating set of order ideals with
order unit (they are given as ring ideals, but in fact are order ideals by the properties
above, and every order ideal is a finite sum of these). Necessary and sufficient
for (1) to hold is simply that it hold for all ideals of the form Iw = (xw/P)RP

(where w ∈ Log P , a finite set). To see this, note that τr (Iw)= (rw/P(r))τ (RP),
hence τr (Iw)= τr (RP) if and only if P(r)/rw ∈ τr (RP); thus if this holds for all
w ∈Log P , then each of P(r)/rw belong to τ(RP), and hence all their products do;
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this means that for every formal monomial f , 1/τr ( f ) belongs to τr (RP), hence
τr ( f RP)= τ(RP).

The upshot of this is that τr satisfies (1) if and only if for all w ∈ Log P , we have
P(r)/rw ∈ τr (RP). The latter is simply Z[rw/P(r)]w∈Log P . So we deduce this:

Lemma 3.1. For r ∈ (Rd)++, τr satisfies (1) if and only if for all v ∈ Log P ,
P(r)/rv ∈ Z[rw/P(r)]w∈Log P .

This is a fairly drastic condition, even when d = 1 and P = 1+ x or 2+ 3x .
For r ∈ (Rd)++ and P ∈ Z[x±1

i ]
+, let Rr = Z[{rw/P(r)}w∈Log P ]; this is exactly

τr (RP), and is a finitely generated unital subring of R. The next lemma says that r
satisfies (1) if and only if when we extend τr all the way up to Z[x±1

1 , . . . , x±1
d , P−1

],
the image of τr does not increase — something we should have expected, in terms
of the original definition.

Lemma 3.2. Let r = (ri ) ∈ (R
d)++ and P ∈ Z[x±1

i ]
+ be projectively faithful.

Then r satisfies (1) if and only if Rr = Z[r±1
i ; P(r)−1

].

Proof. We may construct RP by beginning with Z[x±1
i ] (the Laurent polynomial

ring) instead of Z[xi ]; this is how it was originally constructed in [Handelman 1985;
1987]. By replacing P by xvP t for some v ∈ Zd and positive integer t (this has no
effect on RP , up to order isomorphism), we can arrange for 0 to be in the interior
of cvx Log P and in Log P . Then 1/P ∈ RP and we may invert 1/P , creating
RP [P] = Z[x±1

i ; P−1
] [Handelman 1987]. Let I = (1/P)RP ; this is an order ideal

[Handelman 1987, p. 19], and Z[x±1
i ; P−1

] =
⋃

j∈Z+ P j RP .
If r satisfies (1) with respect to P , then applying it to I , we obtain

τr (I )= τr (1/P)τr (R)= (1/P(r))τr (R)= (1/P(r))Rr .

By hypothesis, this is Rr , so P(r) is a unit in Rr . Thus τr (P j RP)= P j (r)Rr ⊂ Rr .
Taking the union, we obtain τr (Z[x±1

i ; P−1
]) ⊆ Rr , and the reverse inclusion

is trivial.
Conversely, suppose Rr = τr (Z[x±1

i ; P−1
]). Then τr (x±1

i )= r±1
i and τr (P±1)=

P±1(r) belong to Rr and are invertible therein. Thus if f is any formal monomial,
τr ( f ) is a product of terms of the form rw/P(r), and hence is invertible in Rr .
Thus if I is an order ideal, it contains a formal monomial, and τr (I ) contains an
invertible element in Rr , and so τr (I )= Rr = τr (RP). Thus r satisfies (1). �

In other words, (1) holds if and only if the range of evaluation at r on RP is the
same as the range of the evaluation on the much larger ring Z[x±1

i , 1/P].
Now we consider what (1) means in the special case that d = 1.
Let A be a unital subring of C, the complexes. A complex number r is integral

over A (or r is an A-algebraic integer) if it satisfies a monic polynomial with
coefficients from A; equivalently, r ∈ A[r−1

]. The number r is an A-algebraic unit
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if it satisfies a monic polynomial with coefficients from A whose constant term
is invertible in A; equivalently, A[r ] = A[r−1

]. If A = Z, we just write integral
(adjective) or algebraic integer (noun). If A =Q, these notions coincide, and we
just say r is algebraic. The degree of an integral or algebraic element is the degree
of its minimal polynomial (over A).

Lemma 3.3. Let P be a projectively faithful element of Z[x]+ with smallest and
largest degree coefficients a0 and ak respectively. If r ∈ R++ satisfies (1) with
respect to P , then there exist nonnegative integers s and t such that as

0/r and at
kr

are integral.

Proof. Write P = a0 +
∑

0<i<k ai x i
+ ak xk , where ai are nonnegative inte-

gers (some can be zero, but we still need gcd({i | ai 6= 0} ∪ {k}) = 1). From
P(r) ∈ Z[{r j/P(r)} j∈Log P ], we deduce an equation of the form P(r)m+1

= p(r),
where p ∈ Z[x] and deg p ≤ deg Pm

= km. The leading term of this expres-
sion is am+1

k r (m+1)k , and so r satisfies a monic polynomial with coefficients from
A = Z[a−1

k ]. It follows that at
kr is integral for all sufficiently large s.

Replacing P by its reversal (also called reciprocal) P̃ (defined by P̃(x) =
P(x−1)xk), and redoing the process yields the other form, that as

0/r is integral. �

The following is true if we weaken the hypotheses on P to be projectively
faithful (instead of requiring all the intermediate coefficients to be strictly positive).
The modifications to the proof will muddy an already-complicated but elementary
argument; so we just outline it afterwards. We can replace P by any power of itself,
without changing anything, so the no-gaps condition is just that the second largest
and second smallest terms have nonzero coefficients.

Proposition 3.4. Let r ∈ R++ and P ∈ Z[x]+ be
∑k

i=0 ai x i , where all ai 6= 0.
Let a0 and ak be the coefficients of the least and greatest degree terms in P. Let
Rr = Z[{r i/P(r)}i∈Log P ]. Then the following are equivalent:

(i) r satisfies (1) with respect to P.

(ii) There exist nonnegative integers s and t such that both as
kr and at

0/r are
algebraic integers.

(iii) Rr = Z[r±1, P(r)±1
].

(iv) For all j ∈ Log P , we have P(r)/r j
∈ Rr .

Proof. We begin with (ii) implies (iv). Without loss of generality, we may assume
P = a0+

∑
0<i<k ai x i

+ ak xk .
If c is an algebraic integer, then Z[c] is free on the Z-basis {1, c, c2, . . . , ce−1

},
where e is the degree of c (this is an alternative definition of integrality); in particular,
for every positive integer u, we can write cu

=
∑e−1

i=0 bi ci ; in other words, there
exists a polynomial p ∈ Z[x] of degree at most e− 1 such that cu

= p(c).
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Apply this to c = as
kr ; for each positive integer u, we can write (as

kr)u =
pu(as

kr) = qu(r), where deg qu ≤ e − 1. Multiplying this by ru(s−1), we obtain
(akr)us

= ru(s−1)qu; setting Qu = xu(s−1)qu , we have (akr)us
= Qu(r), where

Qu ∈ Z[x] and deg Qu = u(s−1)+deg qu ≤ u(s−1)+ e−1. Hence (multiplying
by an additional r j ), for every j = 0, 1, 2, . . . , we have Qu, j ∈ Z[x] such that
deg Qu, j = u(s− 1)+ j and (akr)us+ j

= Qu, j (r). We will subsequently choose u
to be fairly large.

Now let N be a (large) positive integer, and consider the k leading coefficients
of P N , that is, the coefficients of the terms xk N , xk N−1, xk N−2, . . . , xk N−k+1. They
are respectively divisible by aN

k , aN−1
k , . . . , aN−k+1

k (as is trivially easy to see).
Hence we may find integers bi (with b0 = 1) such that

P N
−

k−1∑
i=0

(ak x)N−i x N (k−1)bi := G

is a polynomial of degree at most Nk−k. Assume (as we may) that N −k = us for
some integer u. Replace each (ak x N−i ) by Qu,k−i ; this has no effect on the value
at r . Setting H =

∑k−1
i=0 bi Qu,k−i x N (k−1), we have P N (r)= (G+ H)(r). Then

deg(G+ H)≤max{deg G, deg H}

≤max{Nk− k,maxi {deg Qu,k−i + Nk− N }}

≤max{Nk− k, u(s− 1)+ e− 1+ Nk− N }

=max{Nk− k, Nk− N + e− 1+ N − k− u}

≤max{Nk− k, Nk− k− u+ e− 1}.

We can choose u ≥ e−1 at the outset, and so guarantee that deg(G+H)≤ Nk−k.
Thus P(r) = (G + H)(r)/P N−1(r). For every 0 ≤ i ≤ k, we have r i/P(r) ∈ Rr ,
and since deg(G+ H)≤ Nk− k = deg P N−1, we obtain P(r) ∈ Rr .

Now form the reversal of P , given by P̃(x)= P(x−1)xk ; this reverses the roles of
ak and a0, and the same process (using at

0/r being integral) yields, after translating
back, P(r)/r k

∈ Rr . From P(r) ∈ Rr , we obtain r i
= (r i/P(r)) · P(r) ∈ Rr for

i ∈ Log P , and thus for all i ≥ 0. Since P(r)/r k
∈ Rr , we deduce r−k

∈ Rr , hence
r− j
∈ Rr for all j ≥ 0; thus P(r)/r j

∈ Rr .
Now (i) implies (ii) was done in the previous lemma, and the equivalence of (i),

(iii), and (iv) follows from the general results preceding this. �

To prove the result when P is only projectively faithful, we can still write P =
a0+

∑
1≤i≤k−1 ai x i

+ak xk , where gcd {i | ai 6= 0} = 1 (equivalent after translation
to projective faithfulness). Then it is elementary, and presumably well-known, that
there exists M such that for all N , we have (P N , x i ) 6= 0 if M < i < k N − M .
Now in the construction above, make sure that when the multiplications by powers
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of r take place, the exponent lands in the interval where all the coefficients are
guaranteed to be nonzero (we are of course free to take arbitrary large powers of P).

A strange consequence is that when the hypotheses on P are satisfied, the set of r
such that τr satisfies (1) is closed under multiplication; this follows immediately
from (ii), but not obviously from any of the other equivalent properties.

Multiplicativity does not appear to extend to more than one variable. For example,
if P = 2+ 3x + 5y, and we restrict to r = (m, n) with positive integer coordinates,
it is tedious but routine to see that τr satisfies (1) with respect to P if and only if
for all primes p and q ,

p |m =⇒ p | (2+ 5n) and q | n =⇒ q | (2+ 3m).

For example, (7, 1), (3, 11), (2i , 2 j ) (where both i, j > 0) satisfy these conditions,
but (14, 2) does not. There may be another, more appropriate, notion of multiplica-
tion with respect to which the set is closed.

Another general property concerns approximate divisibility. Let K = cvx Log P ;
this is a compact convex polytope. Let e ∈ K be an extreme point (we do not use
the usual term, vertex, because this might be confused with lattice point); then
v ∈ Log P , and there is a pure trace σ v associated with v, given by σ v(g/Pk) =

(g, xkv)/(P, xv)k (this can also be obtained as the limit along a path of τr ), via
l’Hôpital’s rule, as in [Handelman 1985, Section III] (especially just before III.3).

Since every order ideal of RP is of the form
∑

fi RP (finite sum), if we assume
that RP is approximately divisible, then RP is nearly divisible. Thus every order
ideal has its own order unit and is approximately divisible. If τ is faithful, then
τ(I ∩ J ) 6= 0 (no finite intersections of order ideals can be zero since they are also
ideals in a domain), and I ∩ J is itself approximately divisible, hence τ(I ∩ J ) is
dense in R. Thus for any faithful trace that is order unit good for RP , its restriction
to any nonzero order ideal is also order unit good.

Thus we have the following.

Lemma 3.5. The ordered ring RP is approximately divisible if and only if for all
extreme points v of K = cvx Log P , we have (P, xv) > 1.

Lemma 3.6. Let P =
∑
λwxw ∈ Z[x±1

i ]
+ with (P, xv) > 1 for all extreme points

of K = cvx Log P.

(a) Then RP is nearly divisible

(b) If τ is a faithful trace that is order unit good for RP , then its restriction to any
nonzero ideal is order unit good for that ideal.

If we replace RP by SP := RP ⊗Q=Q[xw/P], then it is divisible, which is of
course stronger than nearly divisible, so that (a) holds automatically (without the
hypothesis on the coefficients at extreme points), and (b) also holds by the same
arguments.
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Proposition 3.7. Let r = (ri ) ∈ (R
d)++, and let P ∈ Z[x±1

i ]
+ be projectively

faithful.

(a) The pure trace τr on RP is good if and only if
(i) τr is order unit good for RP and

(ii) for all v ∈ Log P , we have P(r)/rv ∈ Z[rw/P(r)]w∈Log P .

(b) The pure trace τr on SP is good if and only if
(i) τr is order unit good for RP .

Remark. Note the absence of (ii) from (b), and the appearance of RP in (b)(i). It is
known (along the same lines as in [BeH 2014, Proposition 5.10]), that if τr is order
unit good (for either coefficient ring), then each ri is algebraic. Since Q[r1, . . . , rd ]

is thus a field, (ii) is redundant in (b).

Proof. We show that if τr is order unit good (which means that the closure of the
image of ker τr in Aff S(R, 1) is exactly τ⊥r = {h ∈ Aff S(R, 1) | h(τr )= 0}), then
its restriction to any order ideal is also order unit good. It suffices to do this for
I = f RP , where f is a formal monomial.

The map RP→ f RP , given by r 7→ f r , is an order-isomorphism of RP modules
(this of course uses the fact that f r ≥ 0 in RP entails r ≥ 0). Using f as an order
unit for I , the map on traces τ 7→ τ/τ( f ) (restricted to those τ such that τ( f ) 6= 0)
sends τr → τr/τr ( f )= τ ′, and ker τ ′ = ker τr ∩ f RP = f · ker τr (since f (r) 6= 0).
The map between RP modules induces an affine homeomorphism between S(RP , 1)
and S(I, f ), sending τr to τ ′, and it easily follows that τ ′ is order unit good. But
τ ′ is just the normalization of τ |I , hence the latter is order unit good.

The rest follows from the preceding results. �

In one variable, we can show that τr is order unit good if and only if none of the
algebraic conjugates of r (except itself) are positive real. In more than one variable,
the situation is far more complicated, and there is no decisive theorem (yet).

Example. Let d = 1 and P = 1+ x ; then we can rewrite RP = Z[1/P, x/P] =
Z[1− X, X ], where X = x/(1+ x), and the positive cone translates to 〈X, 1− X〉.
This goes back to Renault [1980]. The translation, however, obscures some of the
features, as we will see. First, RP has two discrete pure traces, τ0= σ

0 and τ∞= σ 1

(0 and 1 are the extreme points of the convex set cvx Log P = [0, 1]), so it is not
approximately divisible. However, it is interesting to calculate the condition that
τr (I )= τr (RP) for all nonzero order ideals.

By Proposition 3.7 above, this amounts to 1+r, 1+1/r ∈Z[1/(1+r), r/(1+r)];
as r/(1+r)= 1−1/(1+r), the condition (1) is equivalent to 1+r±1

∈Z[1/(1+r)].
Now for a real number s, the condition s∈Z[1/s] is equivalent to s being an algebraic
integer (that is, satisfying a monic integer polynomial). Hence we infer that if (1)
holds for τr , then r has to be an algebraic unit (that is, not only is its minimal
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polynomial over the integers monic, but the constant term must be ±1 as well).
Conversely, if r is an algebraic unit, then the desired membership property holds.

We conclude that τr satisfies (1) if and only if r is an algebraic unit.
In particular, if r is an integer, then τr satisfies (1) if and only if r = 1 (we are

restricting ourselves to actual traces, hence excluding negative values for r ).
The translation, X = x/(1+ x) converts r to r/(1+ r); then of course τ(X) is

a fractional linear transformation of an algebraic unit, but this characterization is
not as pleasant as the pretranslation version. �

Let V ⊂Cd . For A a subring of C, define IA(V ) to be the ideal in the polynomial
ring A[x1, . . . , xd ] consisting of polynomials that vanish at all points of V . Given
an ideal I of A[x1, . . . , xd ], define Z A(I ) to be the common zero set (in Cd ) of all
elements of I . The variety generated by V over A is simply Z A IA(V ). If A = Z,
we drop the subscript.

We say r = (ri ) ∈ (R
d)++ is really isolated if ZI ({r}) ∩ (Rd)++ = {r}. For

example, if d = 1, then r is really isolated if r is algebraic and all algebraic
conjugates of r other than r itself are not positive real. In general, r is really
isolated means that the slice of the variety generated by r (or more simply, the
Zariski closure of {r}) by the positive orthant contains only r .

The argument in [BeH 2014, Proposition 5.10] shows that if r is really isolated
(or more generally, {r} is an isolated point in (Rd)++ ∩ ZI ({r})), then all of its
coordinates are algebraic (there is an assumption in [BeH 2014] concerning interior
points which is automatic here). We remind the reader that we have assumed
that P is projectively faithful, which implies in particular, that its Newton polytope
contains a d-ball.

The condition that r be really isolated appears in [BeH 2014, Examples 5
and 10], for which the relevant dimension groups are remotely related to the ones
appearing here.

Proposition 3.8. Suppose RP is approximately divisible, and τ is a pure faithful
trace. Then:

(a) τ is an order unit good trace of RP if and only if τ = τr , where r ∈ (Rd)++ is
really isolated.

(b) τr is a good trace of RP if and only if r is really isolated and for all v ∈ Log P ,
we have P(r)/rv ∈ Z[{rw/P(r)}w∈Log P ].

(c) τr is a good trace of RP ⊗Q if and only if r is really isolated.

Proof. Every pure faithful trace of RP is of the form τr for (a unique) r in the
positive orthant.

If r is not really isolated, then there exists r ′ ∈ (Rd)++ such that every polynomial
that vanishes at r also vanishes at r ′. Suppose a := g/Pk

∈ RP ; we may assume
Log g ⊆ Log Pk . If τr (a)= 0, then g(r)= 0, hence g(r ′)= 0, whence τr ′(a)= 0;
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thus with σ = τr ′ , we have σ ∈ ∂e S(R, 1)\ {τr } such that σ | ker τr ≡ 0. Hence τr is
not order unit good. The same of course applies with RP ⊗Q in place of RP .

Conversely, suppose that r is really isolated, but there exists σ ∈ ∂e S(R, 1)\ {τr }

such that σ | ker τr = 0. Then σ cannot be faithful (as otherwise, σ = τr ′ for some
r ′∈ (Rd)++, and r ′∈ ZI ({r})). Consider S= RP⊗Q, and let Tr ,6 be the extension
to S of τr and 6 (both extend, since the ranges are torsion-free abelian groups).
Then Tr (S) = Q[rw/P(r)], which is a field (since the coordinates are algebraic,
so are all the rw/P(r)). Then ker Tr is a field, so ker Tr is a maximal ideal. Also,
ker Tr ∩ RP = ker τr and ker6 ∩ RP = σ . If ker τr ⊆ ker σ , then ker Tr ⊂ ker6,
but maximality of ker Tr implies ker Tr = ker6, and thus ker τr = ker σ . However,
since σ is not faithful, ker σ contains a positive nonzero element of RP , whereas
ker τr does not, a contradiction.

Hence if r is really isolated, then σ ∈ ∂e S(RP , 1) \ {τr } implies σ(ker τr ) 6= 0,
and by Lemma 1.7 above, this implies τr is order unit good. The same of course
applies to Tr as a trace on SP . This yields (a), and contributes to (c).

Part (b) now follows from preceding results in this section.
Part (c) comes from Q[rw/P(r)] being a field (which in turn arises because the

coordinates of r are algebraic), so that condition (1) is automatic. �

A particular consequence is that the set of good pure faithful traces of SP =

RP⊗Q is the same for all choices (with d fixed) of faithfully projective P ∈Z[xi ]
+

(or P ∈Q[xi ]
+), whereas for RP , there is dependence on P .

When d = 1, the conditions for τr to be good are precisely that no distinct alge-
braic conjugate of r be positive and the integrality condition, (ii), of Proposition 3.4.

Example. Let d = 1 and P = 2+3x . By Proposition 3.4, the positive real number r
satisfies (1) if and only if there exists s such that both 2s/r and 3sr are integral. Let
K =Q(r), and ZK denote the ring of integers in K . The fractional ideal rZK factors
as
∏

Pi/
∏

Q j (where Pi and Q j are prime ideals in ZK , and we allow repetitions;
the products might also be over the empty set). The intersections Pi ∩Z and Q j ∩Z

determine primes in Z, denoted respectively pi and q j . Then (1) is equivalent to
pi =2 and q j =3 for all i and j . Hence τr is good for RP if and only if no nonidentity
algebraic conjugate is positive and the prime factorization of the fractional ideal
rZK consists of primes sitting over 2 in the numerator and over 3 in the denominator.

In this section, we have restricted ourselves to pure faithful traces; this is a
technical convenience. By the comment after Proposition 1.1, we can factor out
the largest order ideal contained in the kernel of a trace, and in the case that the
dimension group is RP , these correspond to quotients corresponding to faces of the
Newton polytope [Handelman 1985, Section VII]. This amounts to a reduction to a
lower dimensional lattice and vector space, that is, a polynomial in fewer variables.
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There are related naturally occurring classes of dimension groups whose pure
traces can be similarly analyzed. For example, for the matrix-valued random
walks appearing in [Handelman 2009], in nondegenerate cases, the pure faithful
traces are similarly parameterized by the positive orthant (the nonfaithful traces
are generically terrible, but can be analyzed in reasonable cases). An example
appears in [Petersen 2012], where very specific local limit asymptotics were used
to derive the one-parameter family (indexed by the unit interval) of pure traces. In
fact, that random walk can be represented as M =

( 1+x
1

x
0

)
, and in this very simple

case, via [Handelman 2009], we can write down the pure traces parameterized by
[0,∞] (the endpoints corresponding to the two nonfaithful pure traces) via the
large eigenvalue function. Alternatively (in the notation of [Handelman 2009]), it
is elementary that (1+ x)M̂−1 is an order unit in Eb(G M), so on setting P = 1+ x ,
we can view M/P as a matrix with entries in RP without changing the pure trace
space. This yields a parameterization of the pure traces by those of RP (again
via the large eigenvalue function, an algebraic function), which are indexed by
the unit interval.

4. Direct sums and goodness

For (noncyclic) simple dimension groups, there is a notion of direct sum (corre-
sponding to coproduct; see [BeH 2014, Appendix B] for a discussion). This actually
extends to nearly divisible dimension groups. Let G and H be dimension groups.
Form the group direct sum K = G⊕ H , and impose on it the strict ordering given
by the positive cone

K+ :=
{
(g, h)

∣∣ g ∈ G+ \ {0} and h ∈ H+ \ {0}
}
∪ {(0, 0)}.

We see immediately that K is an unperforated partially ordered group; we denote it
by G⊕s H , although we frequently suppress the subscript s. In general, K need
not be a dimension group (as a simple example, if G is simple and H = Z, then K
is a simple partially ordered abelian group with a discrete trace, and hence cannot
be a dimension group [Goodearl 1986, Proposition 4.22]).

A partially ordered abelian group G is prime if the intersection of any two
nonzero order ideals contains a nonzero positive element; for dimension groups,
this definition simplifies to “the intersection of any nonzero order ideals is nonzero”.
Here is a natural generalization of [Effros et al. 1980, Corollary 1.2].

Lemma 4.1. Let G and H be dimension groups. Then the strict direct sum K =
G⊕s H is a dimension group if and only if both of the following conditions hold:

(a) Both G and H are prime.

(b) Both G and H are nearly divisible.



390 DAVID HANDELMAN

Proof. Assume (a) and (b). The unperforation and directedness of K are trivial, so
it suffices to prove Riesz decomposition. Suppose 0≤ a ≤ b+ c, where a = (g, h),
b = (e, f ), and c = (k, l) and all of a, b, c are in K+ \ {0} (if any of a, b, or c is
zero, the decomposition is immediate). This entails all of g, h, e, f, k, l are nonzero
positive elements of their respective groups, and moreover, that either a = b+ c
(in which case, the decomposition condition is satisfied) or both g < e+ k and
h < f + l in their respective groups. Assume the latter.

By Riesz decomposition in G, there exist 0 ≤ e1 ≤ e and 0 ≤ k1 ≤ k such
that g = e1 + k1. If e = e1, then k1 < k, and the intersection of the order ideals
〈e〉∩〈k−k1〉 is thus nonzero, and contains a nonzero positive element, z. The order
ideal 〈z〉 has z as an order unit, hence (by (b)) is approximately divisible, and it
follows immediately that there exists a positive, nonzero x such that x < e, k− k1.
Then we can write g= (e1−x)+(k1+x). Now e−(e1−x)> 0, and k−(k1+x)> 0.

Now suppose that e1 = 0, so that g = k1. By the same procedure as in the
previous paragraph, there exists a nonzero positive x such that x < e, k1, so we can
write g = x + (k1− x), with x < e and k1− x < k.

This leaves the case that 0< e1 < e. If k1 is zero or k, we reverse the roles of e
and k and apply the preceding, so that in all cases, we can find nonzero positive
xi ∈ G such that g = x1+ x2, with 0< x1 < e and 0< x2 < k.

By applying the preceding to H in place of G, we obtain yi ∈ H such that
h = y1+ y2 with 0 < y1 < f and 0 < y2 < l. Then g = (x1, y1)+ (x2, y2) is the
desired decomposition.

Conversely, suppose that K satisfies Riesz decomposition. If H were not prime,
we could find nonzero y, z in H+ such that 0≤ h ≤ y, z implies h = 0. Consider,
for g ∈ G+ \ {0}, (5g, y) ≤ (3g, y) + (3g, z): this holds in K ; hence if Riesz
decomposition applies, we can write (5g, y)= (3g, y1)+ (3g, z1) with the latter
two terms in K+, and at the very least y1 ≤ y and zi ≤ z. In particular y = y1+ z1,
but since z1 ≤ y, z, we have z1 = 0, so that y1 = y. But this entails (3g, 0) is in the
positive cone of K , which is a contradiction, since g > 0. Now the same argument
applies to G, so both have to be prime.

Suppose that K is a dimension group; we can also assume that G admits an order
unit. Now assume that H is not nearly divisible. Then H admits an order ideal with
its own order unit, (I, w), that has a discrete pure trace; call it τ . Then ker τ is a
maximal order ideal of H ; call it T . Since G has an order unit, it has a maximal order
ideal, J . Consider J ⊕s T . This is an order ideal of K , and it is easy to verify that
K/(J ⊕T ) is order isomorphic to K ′ := (G/J )⊕s Z. Since both pieces are simple,
K ′ is simple, but admits a discrete trace (projection on the second coordinate). Thus
K ′ is not a dimension group. On the other hand, since K is a dimension group, and
the quotient of it by an order ideal is also a dimension group, we have a contradiction.
Hence H must be nearly divisible. The same applies with H replaced by G. �
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If K = G⊕s H , and σ and τ are traces on G and H respectively, we consider
the possibility that φ := σ ⊕ τ (defined by (g, h) 7→ σ(g)+ τ(h)) is good or order
unit good. This turns out to be surprisingly interesting. Iteration of this process
yields some weird examples.

Lemma 4.2 (a consequence of the method of proof of [BeH 2014, Proposition 1.7]).
Suppose (K , w) is an approximately divisible dimension group with order unit, and
φ is an order unit good trace. Then whenever a ∈G, b ∈G++ and 0<φ(a) < φ(b),
for all ε > 0, there exists a′ ∈ [0, b] such that φ(a′)= a and ‖â′− b̂σ(a)/σ (b)‖<ε.

Proof. Approximate divisibility implies density of G in Aff S(G, u). Set j =
σ(b)b̂/σ(a), so that j (σ ) = σ(a) and inf j = σ(a)σ (b)−1 inf b̂. There exists
gn ∈G such that ĝn→ j uniformly. If for infinitely many n, we have gn(σ )= σ(a),
we are done (taking large enough n). Otherwise, select σ(a)(σ (b)2)−1 inf b>ε > 0
and ‖ĝn − j‖ < ε. Then |σ(gn)− σ(a)| < ε provided n is sufficiently large; if
σ(gn) > σ(a), set cn = gn−a. There exists an order unit zn such that 0<σ(cn)1<
ẑn < 2ε. By order unit goodness, there exists vn� zn such that σ(cn)= σ(vn), and
of course, ‖vn‖ ≤ ‖ẑn‖< 2ε. Then gn− vn has image within 3ε of j , and it is easy
to check that gn − vn is strictly positive, and hence is an order unit.

If instead, σ(a) > σ(cn) for infinitely many n, we obtain a corresponding
cn = gn − a and vn� zn , and this time, gn+vn has all the right properties. In both
cases, by taking n sufficiently large, we make the error terms go to zero, and hence
obtain the a′ as one of gn ± vn . �

In the following, the function ψ need not be a group homomorphism.

Lemma 4.3. Suppose G and H are nearly divisible dimension groups, each with
order unit, and respective trace σ and τ . Let K = G⊕ H with the strict ordering,
and suppose that the trace on K , φ := σ ⊕ τ , is order unit good. Then provided the
following condition holds, σ is order unit good as a trace on G:

• There exists a function ψ : τ−1(σ (G)∩ τ(H))→ σ−1(σ (G)∩ τ(H)) that is
pseudonorm continuous with the additional property that σψ = τ .

Remark. As we will see below, without the weird extra condition, the result fails.

Proof. Select an order unit b in G, and a in G such that 0 < σ(a) < σ(b). As
H is approximately divisible, there is a sequence of order units (hn) in H such
that hn → 0 (with respect to the pseudonorm topology on H ; equivalently, as
functions on S(H, v), ĥn converges uniformly to zero). There also exists δ in
G such that σ(b− a)/4 < δ̂ < min{σ(b− a)/2, infθ∈S(G,u) θ(b)/2} uniformly on
S(G, u). Then Bn := (b− δ, hn) are order units of G⊕ H , and φ(a, 0) < φ(Bn)=

σ(b)− σ(δ)+ τ(hn).
Since φ is order unit good and each Bn is an order unit, there exist (an, zn) such

that 0� an� b−δ and 0� zn� hn , with φ((an, zn))= σ(a), and by the previous
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lemma, infS(G,u) ân is bounded below (as n → ∞); in particular, ‖zn‖H → 0
and σ(an)+ τ(zn) = σ(a). Thus zn ∈ τ

−1(σ (G) ∩ τ(H)), so we may consider
the sequence ψ(zn) ∈ σ

−1(σ (G) ∩ τ(H)). Since ψ is pseudonorm continuous,
ψ̂(zn)→ 0 uniformly on S(G, u).

Consider an+ψ(zn); its value at σ is σ(an)+σ(ψ(zn))=σ(an)+τ(zn)=σ(a). If
we choose n sufficiently large so that ‖ψ̂(zn)‖< inf δ, then an+ψ(zn)�b−δ+δ=b.
In addition, we can also choose n sufficiently large so that inf ψ̂(zn)>− infS(G,u) ân ,
by the uniform boundedness below of the an (there is no guarantee that ψ(zn) is
positive). Then an+ψ(zn) is an order unit in the interval [0, b] and we are done. �

One advantage of not requiring normalization of σ and τ is that we can re-
place them by any positive scalar multiples in testing for order unit goodness of
λσ ⊕µτ ; the first hypotheses are unchanged, but the second translates to density of
(λσ(G))∩ (µτ(G)) in R. In the following, we cannot apply earlier results directly,
since G⊕ 0 is not an order ideal of G⊕ H (strict ordering).

Lemma 4.4. Suppose that σ is a trace on G, τ is a trace on H , and σ ⊕ τ = φ is
order unit good for K = G⊕ H with the strict ordering, and moreover assume that
each of G and H is nearly divisible. Then σ(G)∩ τ(H) is dense in R.

Proof. We use the characterization of order unit good traces on approximately
divisible dimension groups; namely kerφ has dense image in φ` [BeH 2014,
Proposition 1.7].

Suppose the intersection is not dense; then there exists a real δ ≥ 0 such that
σ(G) ∩ τ(H) = δZ. We have that kerφ has dense range in Aff S(K , (u, v)) =
Aff S(G, u)×Aff S(H, v). But

kerφ = {(g, h) ∈ G⊕ H | σ(g)=−τ(h)}.

If δ = 0, then kerφ = ker σ ⊕ ker τ (since σ(g) = −τ(h) implies σ(g) ∈
τ(H)∩σ(H), and hence is zero). The image of kerφ is then contained in σ`× τ`,
which is closed and of codimension two in Aff S(K , (u, v)), and so kerφ cannot
be dense in φ` (which has codimension one), hence φ cannot be order unit good.

If δ 6= 0, select g and h in G and H respectively such that σ(g) = δ = τ(h).
Then it is easy to see that kerφ = (ker σ ⊕ ker τ)+ (g,−h)Z, and then its range
is contained in (σ`× τ`)+ (ĝ,−ĥ)Z. However, the latter is closed (easy to see),
and so the image of kerφ is contained in a proper closed subspace (with a discrete
direct summand) of φ`; hence in this case as well, φ is not order unit good. �

Now we want to determine when σ ⊕ τ is good or order unit good. Let
πG : G⊕ H → G and πH : G⊕ H → H be the obvious projection maps. Un-
like the inclusions G, H → G ⊕ H , these are order-preserving. First, consider
σ ◦πG : kerφ→σ(G)∩τ(H)⊆R. The kernel is exactly ker σ⊕ker τ ; we also note
that σ extends to a map 6 : φ`→R (sending ( j, l) to j (σ )), the kernel of which is
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σ`× τ`. Via the identification of Aff S(K , (u, v)) with Aff S(G, u)×Aff S(H, v),
we have the following diagram:

0 - ker σ ⊕ ker τ - kerφ
σ ◦πG- σ(G)∩ τ(H) - 0

k̂er σ × k̂er τ

?

- k̂erφ

?
6 - R

?

0 - σ`× τ`
?

- φ`
?

6 - R
?

- 0

The long horizontal overlines indicate closure, as subgroups of the affine function
vector spaces; of course, there is no requirement that any of the three overlined
groups be real vector spaces (they are norm-complete subgroups). The two leftmost
top vertical arrows are just induced by the affine representations; the right one is
the inclusion, compatible with 6 restricted to the image of kerφ. The two leftmost
bottom vertical arrows are the obvious inclusions. The 6 in the middle row is an
abuse of notation; it represents the restriction of 6 to k̂erφ, the closed subgroup
of φ`, but the notation is already rather complex.

The middle row need not be exact at either end. For example, if kerφ has dense
image in φ` but one or both of ker σ or ker τ does not have dense image in σ` or
respectively τ`, then it is not left exact; if σ(G)∩ τ(H) is discrete, then the middle
line is not right exact.

If kerφ has dense image in φ`, then σ(G) ∩ τ(H) is a dense subgroup of R:
we simply note that density of the image of kerφ in φ`, the latter being a closed
and therefore a norm-complete subspace of Aff S(K , (u, v)), entails that for every
bounded linear functional that is not zero on φ`, its restriction to a dense subgroup
must be not zero and have dense range in the reals. �

It also leads to a straightforward proof that if ker σ and ker τ have dense images
in σ` and τ` respectively, and if σ(G)∩τ(H) is a dense subgroup of R, then kerφ
has dense image in φ`. We have that

σ`× τ` = k̂er σ × k̂er τ ⊆ k̂erφ ⊆ φ`.

The left and right terms of these inclusions are vector spaces, and since σ`× τ`

is a closed codimension-two subspace of Aff S(K , (u, v)) and φ` is codimension
one, it follows that σ`× τ` is a codimension-one subspace of φ`. (The proof does
not stop here — we do not know that k̂erφ is a real vector space.)

The map 6 induces a map from

k̂erφ/(k̂er σ ⊕ k̂er τ )
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to a subgroup of the reals. However, this subgroup of the reals includes the dense
subgroup σ(G)∩ τ(H), and as k̂erφ is a norm-complete abelian group, the image
must be complete, and thus must be onto. In addition, since

ker6 = σ`× τ` = k̂er σ × k̂er τ ,

it follows that
ker6 ∩ k̂erφ = k̂er σ × k̂er τ .

We thus have
ker6 ⊂ k̂erφ ⊆ φ`,

but 6 induces the equality

k̂erφ/(ker6 ∩ k̂erφ)= φ`/ ker6.

It follows immediately that k̂erφ = φ`.
Now we can show that if the closure of the images of ker σ and ker τ are real

vector spaces, and if kerφ is order unit good, then σ and τ are order unit good.
We wish to show

k̂er σ × k̂er τ = σ`× τ`,

as from this it follows trivially that

k̂er σ = σ` and k̂er τ = τ`.

Since the left thing is a vector space, and a complete normed abelian group (hence
a closed vector subspace of Aff S(K , (u, v))), if equality does not hold, there exists
a bounded linear functional α on Aff S(K , (u, v)) that kills k̂er σ × k̂er τ but not
σ`× τ`; in particular, α does not kill φ`.

By composition with the affine representation, we “restrict” α to a real-valued
bounded group homomorphism β : G ⊕ H → R (for a treatment of bounded
group homomorphisms on dimension groups, see [Goodearl 1986]; their behaviour
is just what you’d expect). Since α kills k̂er σ × k̂er τ , it follows that β kills
ker σ ⊕ ker τ . We form the normed abelian group kerφ/(ker σ ⊕ ker τ), which
via σ , we know to be σ(G)∩ τ(H) ⊂ R. Thus β induces a bounded real-valued
group homomorphism on kerφ/(ker σ⊕ker τ); call it β̄. We thus have two bounded
group homomorphisms on the quotient, β̄ and σ̄ , but as the quotient is isomorphic
(as a normed abelian group) to a subgroup of the reals, there must be a positive real
number λ such that β̄ = λσ̄ .

This forces β = λ · σ ◦πG (as bounded group homomorphisms on kerφ). Since
kerφ has dense image in its completion (!) which happens to be φ`, we have that
α|φ` = λ6. Thus α kills σ`× τ`, a contradiction. �

To summarize, we have the following results.
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Proposition 4.5. Suppose (G, u, σ ) and (H, v, τ ) are nearly divisible dimension
groups with order unit and distinguished trace, and form K = G⊕H , and the trace
φ = σ ⊕ τ : K → R.

(a) If φ is order unit good (with respect to either the usual or the strict ordering
on K ), then σ(G)∩ τ(H) is a dense subgroup of the reals, and σ ⊗ 1Q and
τ ⊗ 1Q are order unit good as traces on G⊗Q and H ⊗Q respectively.

(b) If the closure of the images of ker σ and ker τ in σ` and τ` respectively are
real vector spaces, and if φ is order unit good, then both σ and τ are order
unit good.

(c) If σ and τ are order unit good and σ(G)∩ τ(H) is dense in R, then φ is order
unit good.

We can also rephrase this as follows.

Proposition 4.6. Let (G, u, σ ) and (H, v, τ ) be nearly divisible dimension groups
with order units and normalized traces. Consider the following properties:

(1) σ ⊕ τ is an order unit good trace on G⊕s H.

(2) σ(G)∩ τ(H) is a dense subgroup of R.

(3) The closures of the images of ker σ and ker τ in their respective affine spaces
are real vector spaces.

(4) Both σ and τ are order unit good traces.

Then the following implications hold: (1) implies (2); (1) and (3) jointly imply (4);
(4) implies (3); (4) and (2) jointly imply (1).

Remark. The implications are invariant under the transformation (x) 7→ (5− x).

Examples exist (Example 4.8) where G and H are simple dimension groups that
show that if φ is order unit good, then neither σ nor τ (or exactly one of them)
need be order unit good.

This method suggests what to do with multiple traces. Let (Gi , ui , σi ), where
i = 1, 2, . . . , n, be approximately divisible dimension groups, each with order
unit and (unnormalized) trace. Form K =

⊕
Gi with the strict ordering, and

φ = σ1⊕ σ2⊕ · · ·⊕ σn : K → R, and the map T : K → Rn defined by φ((gi ))=∑
σi (gi ) and T ((gi )) = (σ1(g1), σ2(g2), . . . , σn(gn)). Identify Aff S(K , ((ui )))

with the cartesian product Aff S(G1, u1)× · · ·×Aff S(Gn, un).
If (gi ) ∈ kerφ, then σn(gn) = −

∑n−1
i=1 σi (gi ), and we can interchange n with

any other integer less than n. In particular, V := σ−1
n (σn(Gn)∩ (

∑n
i=1 σi (Gi ))) is

independent of permutations and the range of T on kerφ is T (V ).
Extend T to T : Aff S(K , (ui ))→ Rn (sending ( ji ) to ( ji (σi ))). Restricted to

φ`, the range of T is exactly (1, 1, 1, . . . , 1)⊥, i.e., the entries add to zero.
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Now we can form the diagram analogous to the previous one.

0 - ker σ1⊕ · · ·⊕ ker σn - kerφ
T - T (V ) - 0

k̂er σ1× · · ·× k̂er σn

?

- k̂erφ

?
T - T (V )

?

0 - σ`1 × · · ·× σ
`

n

?
- φ`

? T- (1, 1, . . . , 1)⊥
?

- 0

We quickly see that density of T (V ) (a subgroup of Rn contained in (1, . . . , 1)⊥)
in (1, . . . , 1)⊥ is necessary for φ to be order unit good; that is, it is necessary in
order for kerφ to have norm dense image in φ`.

Suppose all the σi are order unit good and T (V ) is dense in (1, . . . , 1)⊥. Then

k̂er σ1× · · ·× k̂er σn = σ
`

1 × · · ·× σ
`

n

is a closed subspace of φ`, and the middle line yields that the codimension of k̂erφ in
Aff S(K ) is n− (n− 1) = 1, so being a closed subspace of the codimension-one
space φ`, k̂erφ must equal it, and therefore φ is order unit good.

Suppose that φ is order unit good (hence we have density of T (V ) in (1, . . . , 1)⊥)
and each k̂er σi is a vector space. To show that the σi are all order unit good, it is
sufficient to show that the ker σi have dense image in σ`, and it is easy to show
that k̂er σ1× · · ·× k̂er σn equals σ`1 × · · ·× σ

`
n is sufficient for this.

We note that the bounded real-valued group homomorphisms on T (V ), and of
course on its closure, are linear combinations of the coordinate functions, which
correspond to the σi , with lack of uniqueness arising from the relation that the sum
of the coefficients is zero.

By assumption, each k̂er σi is a vector space (and closed in Aff S(Gi , ui )),
whence the whole batch L := k̂er σ1× · · · × k̂er σn is a closed subspace of M :=
σ`1 × · · · × σ

`
n (which is itself a closed codimension-n subspace of Aff S(K )). If

they are not equal, there exists a bounded linear functional α on Aff S(K , (ui )) that
kills L but not M . This induces a bounded real-valued group homomorphism β

on kerφ which kills ker σ1⊕ · · ·⊕ ker σn . Hence it induces a bounded real-valued
group homomorphism on the quotient, T (V ), B : T (V )→ R.

Each σi induces 6i on T (V ), and these are the coordinate functions. Hence
there exist real λi such that B =

∑
λi6i . Thus β −

∑
λiσi vanishes identically

on kerφ, and by density, α =
∑
λiσi (where σi is now interpreted as the map

( ji ) 7→ ji (σi ) on Aff S(K )). But this obviously kills σ`1 ×· · ·×σ
`
n , a contradiction.

Hence each σi is order unit good.
To summarize what happens with multiple traces, we have the following:
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Theorem 4.7. Let (Gi , ui , σi ) be approximately divisible dimension groups with
order unit (ui ) and (unnormalized) trace (σi ). Form K =

⊕
Gi (with the strict

ordering), and the trace φ =
⊕
σi on K . Set J = σn(Gn)∩

(∑
i≤n−1 σi (Gi )

)
, a

subgroup of R.

(a) If φ is order unit good, then T (σ−1
n (J )) is dense in (1, 1, . . . , 1)⊥.

(b) If the closure of the image of ker σi in σ`i is a real vector space for all i , and if
φ is order unit good, then all σi are order unit good.

(c) If the image of ker σi is dense in σ`i for all i (that is, each σi is order unit
good), and if T (σ−1

n (J )) is dense in (1, 1, . . . , 1)⊥, then φ is order unit good.

The conditions for order unit goodness with n direct summands are slightly
different, in that they involve the density of a subgroup of Rn−1 (identified with
(1, . . . , 1)⊥), or simply that the closure of T (V ) is a vector space of dimension n−1
(in general, the closure need not be a vector space). To some extent, this explains
some of the phenomena illustrated in the examples below, with direct sums of
two not yielding an order unit good trace, but direct sums of three doing so. In
fact, the argument in the example, Gn = Z+ (

√
3+ n
√

2)Z, essentially boils down
to showing the closure of T (V ) is a two-dimensional vector space. But actually
calculating with T (V ) seems awkward.

However, computation is feasible in special cases. Suppose G1 = Z+
√

6Z,
G2=Z+

√
15Z, and G3=Z+

√
10Z. Then T (V ) is discrete, so σ1⊕σ2⊕σ3 is not

order unit good. However, if we add a fourth term, G4 = Z+ (
√

6+
√

15+
√

10)Z,
then with φ =

⊕
i≤4 σi ,

kerφ =
{(

a+ b
√

6, c+ b
√

15, d + b
√

10,

−(a+ c+ d)− b
(√

6+
√

15+
√

10
)) ∣∣ a, b, c, d ∈ Z

}
.

Let v1 = (1, 0, 0,−1), v2 = (0, 1, 0,−1), and v3 = (0, 0, 1,−1); then kerφ is the
Z-span of

{v1, v2, v3,
√

6v1+
√

15v2+
√

10v3}.

The map from kerφ to R3 given by vi 7→ ei (standard basis elements) has range
equal to the free abelian group on {e1, e2, e3,

√
6e1 +

√
15e2 +

√
10e3}. Since

{1,
√

6,
√

10,
√

15} is linearly independent over the rationals, this group is dense.
It is trivial that {vi } is a real basis for φ`, so φ is good. In this example, all the
ker σi are trivial, so T (V ) is all of kerφ.

On the other hand, if we omit any one or two of the Gi , the resulting trace is not
order unit good, since the resulting T (V ) will be discrete.

We can similarly construct (Gi , σi ) (the Gi subgroups of the reals), i = 1, . . . , n,
such that

⊕n
i=1 σi is order unit good, but for no proper subset J of {1, 2, . . . , n}

with |J | > 1 is
⊕

i∈J σi order unit good: Let {pi }
n
i=1 be distinct primes; set
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Gi = Z+
√

pi Z for 1 ≤ i ≤ n − 1, and Gn = Z+
(∑n−1

i=1
√

pi
)
Z. The resulting

T (V ) will be a critical group of rank n, so all subgroups of lesser rank are discrete.

Example 4.8. There exist simple dimension groups (G, σ ) and (H, τ ) with traces
such that φ = σ ⊕ τ is (order unit) good on the strict direct sum K = G⊕ H , but σ
is not good as a trace on G (and in one case, τ is good, in another case, it is not).

Proof. For simple dimension groups (as G, H , and K are), order unit goodness is
equivalent to goodness. Begin with three subgroups of the reals,

G1 = Z+
√

3Z+
√

5Z,

G2 = Z+
√

2Z+
√

5Z,

G3 = Z+ (
√

3+
√

2)Z.

Let τi denote the respective identifications of Gi with subgroups of the reals; these
are traces on each of these three totally ordered dimension groups. Each τi is the
unique (up to scalar multiple) trace, and thus is good. Now form L = G1 ⊕G2

with the strict order; since both subgroups contain Z+
√

5Z, which is dense, it
follows from the criterion above that τ1⊕ τ2 is a good trace thereon. Next, form
K = L ⊕G3, with the strict order; since the value group of τ1⊕ τ2(L) includes
Z+ (
√

3+
√

2)Z and the latter is dense, we can apply the criterion again, and so
deduce that τ1⊕ τ2⊕ τ3 is good, as a trace on K .

However, we can obtain K by proceeding in a different order. Set G = G1⊕G3

with the strict order. Either by direct examination or by the necessity of the density
condition, τ1⊕ τ3 is not good — note in particular, that the intersection of the value
groups is just Z. Let H = G2; then the obvious permutation-order isomorphism
which takes K to G⊕H takes τ1⊕τ2⊕τ3 to τ1⊕τ3⊕τ2, hence the latter is good. But
with σ =τ1⊕τ3 and τ =τ2, we have that σ is not good, whereas σ⊕τ (and τ ) is good.

To obtain an example wherein neither σ nor τ is good, let G4 be another copy
of G3, set G =G1⊕G3 and H =G2⊕G4 (with the strict orderings of course); τ =
τ2⊕τ4 is not good for the same reason as σ = τ1⊕τ3, but their direct sum is good. �

5. Good sets of traces

As in [BeH 2014], a compact convex subset Y of S(G, u) is order unit good with
respect to (G, u) if given b ∈ G+ \ {0} (b is an order unit of G) and a ∈ G such that
0� â|K � b̂|K , there exists a′ ∈G such that â|K = â′|K and 0≤ a′ ≤ b. When Y
is a face (it need not be; e.g., for any singleton subset of S(G, u), {τ } is good if and
only if the trace τ is good as defined for individual traces), Y is order unit good if and
only if ker Y :=

⋂
τ∈K ker τ has dense range in Y⊥ = {h ∈ Aff S(G, u) | h|K ≡ 0}.

When G is simple, this was defined as good in [BeH 2014]. When G = Aff K
(where K is a Choquet simplex), equipped with the strict ordering, goodness of
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subsets of K is an interesting geometric property. In Appendix B, we show that
at least when K is finite-dimensional, the good subsets of K are as conjectured in
[BeH 2014, Section 7, Conjecture].

There is a problem in defining what a good subset Y should be in the nonsimple
case. It should be consistent with what has been defined in the simple case (where
good is the same as order unit good), and the singleton case (whence came the
original definition of good); additionally, it would be desirable that if Y = S(G, u),
then Y should be good whenever G is a dimension group such that Inf G = {0}.

We give a definition of good in more complicated situations, including for a set of
traces; this extends some of the definitions in [BeH 2014]. For any partially ordered
abelian group H and h ∈ H+, recall the definition of the interval generated by h,
denoted [0, h] (possibly with a subscript H if necessary to avoid ambiguity about
the choice of group), to be { j ∈ H | 0≤ j ≤ h}. Let (G, u) be a dimension group (at
this stage, we really only require that it be a partially ordered unperforated group)
with order unit. Let L be a subgroup of G; we say L is a good subgroup of G if

(i) L is convex (that is, if a ≤ c ≤ b with a, b ∈ L and c ∈ G, then c ∈ L), and
G/L is unperforated;

(ii) using the quotient map π : G→ G/L , the latter equipped with the quotient
ordering, for every b ∈ G+, we have π([0, b])= [0, π(b)].

Convexity is required in order that the quotient positive cone be proper, that is,
the only positive and negative elements are zero. Unperforation is often redundant;
it may always be (in the presence of (ii); see the discussion concerning refinability
in [BeH 2014]). The second property says that for all b ∈ G+, and for all a ∈ G
such that 0≤ a+ L ≤ b+ L (or equivalently, (a+ L)∩G+ and (b− a+ L)∩G+

are both nonempty), there exists a′ ∈ G such that a− a′ ∈ L and 0≤ a′ ≤ b. This
is a strong lifting property.

For example, if τ is a trace, set L = ker τ ; this is convex, and is a good subgroup
of G if and only if τ is good (as a trace); in this case, G/L is naturally isomorphic
to a subgroup of the reals, so unperforation is automatic.

For a subset U of S(G, u) define ker U =
⋂
σ∈U ker σ ; for a subset W of G,

define Z(W )={σ ∈ S(G, u) |σ(w)=0}. For good sets, we may as well assume that
Y = Z(ker Y ) at the outset; in other words, σ ∈ Y if and only if σ(ker K )= 0, since
in any reasonable definition for good or order unit good, the candidate set will satisfy
Y = Z(ker Y ). As explained in [BeH 2014], these form the collection of closed
sets with respect to a Zariski-like topology, and also extend the definition of facial
topology (relative to G) defined on ∂e S(G, u), to S(G, u). If Y ⊂ S(G, u), set Ỹ =
Z(ker Y )={σ ∈ S(G, u) |σ(ker Y )={0}}; this is a closure operation, corresponding
to the facial topology and analogous to the Zariski topology from algebraic geometry.
In many cases, we just assume Y = Ỹ already, since ker Y = ker Ỹ .
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We say Y is a good subset of S(G, u) with respect to (G, u) if Y = Ỹ and ker Y
is a good subgroup of G. If Y = {τ }, and τ is merely an order unit good trace, then
ker τ has dense image in τ`, and this implies Y = Ỹ .

If L is a subgroup of G, then we may form

Y ≡ Z(L)= {σ ∈ S(G, u) | σ(L)= {0}}.

Then Y satisfies Ỹ = Y . However, it can happen that L is a good subgroup of G,
but Z(L) is not a good subset of S(G, u) with respect to G.

For example, let (H, [χX ]) be the ordered Čech cohomology group of any
noncyclic primitive subshift of finite type. It is known not to be a dimension group,
but is unperforated and has numerous other properties (see [Boyle and Handelman
1996] as well as unpublished results of Boyle and the author). There exists a
dimension group (G, u) such that H ∼= G/ Inf G with the quotient ordering. Set
Y = S(G, u), so that ker Y = Inf G. Since the quotient H = G/ Inf G is not a
dimension group, it follows from results below that property (ii) fails. However,
L = {0} is clearly a good subgroup of G, and Z(L)= Y , but ker Y = Inf G. So Y
is not a good subset of S(G, u).

In the definition of a good subgroup, it may be that the relatively strong condition
that G/L is unperforated can be replaced by the much weaker G/L is torsion-
free, in the presence of (ii), the lifting property. This is the case in the situation
described in [BeH 2014, Proposition 7.6], dealing with simple dimension groups
and L = ker Y . There are criteria for the quotient G/L to be unperforated [BeH
2014, Lemma B1], but these are not always easy to verify.

The following is implicit in [BeH 2014, Proposition 7.6].

Lemma 5.1. Suppose (G, u) is a dimension group and L is a convex subgroup
of G satisfying (ii). Then G/L with the quotient ordering is an interpolation group,
and its trace space is canonically affinely homeomorphic to L`. The latter is a
Choquet simplex.

Proof. If 0 ≤ a + L ≤ (b+ L)+ (c+ L) in G/L , first lift b and c separately to
positive elements of G; it doesn’t hurt to relabel them b and c. Applying (ii) to
0 ≤ a+ L ≤ (b+ c)+ L , we can find a′ ∈ [0, b+ c] such that a− a′ ∈ L . Hence
0≤ a′ ≤ b+ c; by interpolation in G, we may find a1 ∈ [0, b] and a2 ∈ [0, c] such
that a′ = a1 + a2. Then a + L = a′ + L = (a1 + L)+ (a2 + L) and ai + L are
positive elements of G/L , and each is less than b+ L , c+ L respectively. Thus
G/L satisfies Riesz decomposition. The rest is standard. �

We may consider the simplest definition possible for goodness of a set; that is,
Y is better (a facetious, but not inapt, name) for (G, u) if (i) Y = Z(ker Y ) and
(ii) whenever a ∈ G, b ∈ G+ and 0 ≤ â|Y ≤ b̂|Y , there exists a′ ∈ G+ such that
â′|Y = â|Y and a′ ≤ b. This turns out to be much too restrictive (although it is an
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interesting property); for example, if Y = S(G, u), then Y is better implies G/ Inf G
(with the quotient ordering; this need not be a dimension group) is archimedean,
which hardly ever occurs; and if G is simple, this is generally stronger than order
unit good. If Y is a singleton, then better agrees with the original definition of good.

Lemma 5.2. Let (G, u) be a dimension group with order unit u. If Y ⊆ S(G, u) is
good with respect to (G, u), then G/ ker Y is a dimension group, with trace space
canonically affinely homeomorphic to Y .

Proof. As good implies order unit good, ker Y has dense image in Y`, and thus
its closure is a vector space, so that by [BeH 2014, Corollary B2], G/ ker Y is
unperforated. Now suppose 0 ≤ a + ker Y ≤ (b + ker Y )+ (b′ + ker Y ), where
the latter two terms are nonnegative. Hence we may assume b, b′ ≥ 0, and
thus 0 ≤ a + ker Y ≤ (b + b′) + ker Y implies there exists a′ ∈ G+ such that
a′ + ker Y = a + ker Y and a′ ≤ b + b′. Riesz interpolation in G yields a de-
composition a′ = a1 + a2, where 0 ≤ a1, a2 and a1 ≤ b and a2 ≤ b′. Hence
a+ ker Y = a′+ ker Y = (a1+ ker Y )+ (a2+ ker Y ), and a1+ ker Y ≤ b+ ker Y ,
and a2+ ker Y ≤ b′+ ker Y . Thus G/ ker Y satisfies interpolation.

Any trace τ of G/ ker Y , normalized at u+ker Y , induces a trace τ̃ of (G, u) by
composing with the quotient map. Conversely, if σ is a trace that kills ker Y , then
from the definition, σ ∈Y . Hence the map S(G/ ker Y, u+ker Y )→ S(G, u) is one-
to-one and onto, and it is easy to see that it is an affine homeomorphism to Aff Y . �

Lemma 5.3. If Y is a good subset of S(G, u), then (I, w) is an order ideal of G
with its own order unit, and for all σ ∈ Y , we have σ |I 6≡ 0, then the map

I/(I ∩ ker Y )→ G/ ker Y

is an order isomorphism.

Proof. First we show I/(ker Y ∩ I ) is unperforated, by showing the image of I
is an order ideal in G/ ker Y (which is unperforated, by the preceding). Select
0≤ a+ ker Y ≤ b+ ker Y , where b ∈ I ; we can write b = b1− b2, where bi ∈ I+,
and thus 0≤ a+ker Y ≤ b1+ker Y , and now b1 ∈ I+. There thus exists a′ ∈ [0, b1]

such that a−a1 ∈ ker Y . As 0≤ a′ ≤ b1 and b1 ∈ I , it follows that a1 ∈ I+, so that
a1+ ker Y is in the image of I ; the latter is thus a convex subgroup of G/ ker Y .
Directedness of the image is trivial, so I/(I ∩ ker Y ) is an order ideal in G/ ker Y .

Any order ideal in an unperforated partially ordered group is itself unperforated,
so I/(ker Y ∩ I ) is unperforated.

If σ ∈ Y and σ(w)= 0, then σ(I )= 0, contradicting the property of Y ; hence
ŵ|Y � δ for some δ > 0. Since G/ ker Y is unperforated and its trace space is
canonically identified with Y , it follows that w+ker Y is an order unit for G/ ker Y .
Hence the order ideal generated by w+ ker Y is all of G/ ker Y . Hence the image
of I in G/ ker Y is onto.
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So far, the map I/(I ∩ker Y )→ G/ ker Y is one-to-one (by construction), order-
preserving (by definition), and now we know that it is onto. To show it is an
order-isomorphism, it suffices to show that the image of I+ is all of the positive cone.

Select b ∈ G+. Then b̂|Y � m for some integer m, so there exists an integer N
such that b̂� N ŵ, and thus 0≤ b+ker Y ≤ Nw+ker Y (the latter by unperforation,
again). By goodness, there exists a ∈ [0, Nw] such that a−b ∈ ker Y ; 0≤ a ≤ Nw
implies a ∈ I+, and it maps to b+ ker Y . �

The latter property is the analogue of τ(I ) = τ(G) for a single good trace τ
of G. If we weaken the hypotheses to “ker Y does not contain I ”, then the result is
unclear. We have similar problems with the following characterization when some
points of Y are not faithful.

Lemma 5.4. Let (I, w) be an order ideal of G with its own order unit, and suppose
that every point of Y does not kill I . Then the map φI : Y → S(I, w), given by
σ 7→ σ/σ(w)|I , is continuous. If Y is good with respect to (G, u), then φI (Y ) is
good with respect to (I, w).

Proof. The restriction map on traces sends every point to a nonzero trace of I , and
thus the map is continuous (as Y is compact, infσ∈Y σ(w) > 0). Suppose ρ is a
normalized trace on (I, w) such that ρ|(I∩ker ρ) is identically zero. Then ρ induces
a trace on I/(I∩ker Y ), hence is a trace on G/ ker Y , and therefore ρ is the restriction
of a trace from G, necessarily killing Y . If r is the lifted trace, we must have r ∈ Y ,
and thus ρ ∈φI (Y ). In particular, relative to (I, w), we have φI (Y )= Z(kerφI (Y )),
and it follows immediately that φI (Y ) is good with respect to (I, w). �

The condition on Y in the next result, that every point be faithful, is rather strong,
but makes things easier to deal with. The much weaker faithfulness condition
(ker Y ∩ G+ = {0}) is innocuous, as we can factor out the maximal order ideal
contained in ker Y .

Lemma 5.5. Let (G, u) be a dimension group, and Y a subset of S(G, u) for
normalized traces σ . Then σ | ker Y ≡ 0 if and only if σ ∈ Y and ker Y ∩G+ = {0}.

(a) The trace space of the quotient G/ ker Y is canonically affinely homeomorphic
to Y .

(b) If G/ ker Y is unperforated and Y satisfies the additional condition that every
element of Y is faithful, then G/ ker Y is simple.

Proof. Let φ be a normalized trace of (G/ ker Y, u+ker Y ), and let π :G→G/ ker Y
be the quotient map. Then σ ′ := σ ◦π is a normalized trace of (G, u) satisfying
σ(ker Y )= 0, so σ ∈ Y . Thus the map S(G/ ker Y, u+ ker Y )→ S(G, u) given by
σ 7→ σ ◦π has image in Y , and is clearly onto Y .

(a) The map is obviously one-to-one, affine, and continuous, with continuous inverse
Y → S(G/ ker Y, u+ ker Y ), and so is an affine homeomorphism.
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(b) Suppose a+ker Y is nonzero and a+ker Y ≥ 0+ker Y ; there thus exists a′ ≥ 0
such that a′− a ∈ ker Y (from the definition of the ordering on the quotient group).
If a+ ker Y is not an order unit, then there exists a normalized trace σ on G/ ker Y
such that σ(a + ker Y ) = 0 (otherwise, â|Y is strictly positive, and as G/ ker Y
is unperforated, this would imply a + ker Y is an order unit in G/ ker Y ). Then
σ ′ = σ ◦π belongs to Y and σ ′(a′)= 0, contradicting ker σ ′ ∩G+ = {0}.

Hence every nonzero element of G/ ker Y is an order unit. �

If in part (b), we drop the unperforated hypothesis, then we can still say something.
From a + ker Y ≥ 0+ ker Y , we have 0 ≤ â|Y ; if for all positive integers m, we
have that ma + ker Y is not an order unit in G/ ker Y , then there must exist a
trace φ on G/ ker Y such that φ(a′)= 0. As in the argument above, this leads to
a contradiction. So in the perforated case, we obtain that there exists m > 0 such
that m(a + ker Y ) is an order unit. If we define simple to mean no proper order
ideals, then the quotient group is simple. (We normally deal with unperforated order
groups, wherein the lack of order ideals is equivalent to every nonzero nonnegative
element being an order unit.)

The following is a variant of [BeH 2014, Lemma 7.1].

Lemma 5.6. Let (G, u) be an approximately divisible dimension group, and let L
be a convex subgroup. If G/L is unperforated, then order units lift. (That is, given
a such that a+ L is an order unit of G/L , there exists an order unit v of G such
that a− v ∈ L.)

Proof. The traces of G/L are the traces of G that kill L , Z := Z(L) ⊂ S(G, u).
As a + L is an order unit, â|L � δ for some δ > 0. As G is approximately
divisible, there exists w ∈ G such that δ/3 < ŵ < δ/2. Then (â − ŵ)|Z � δ/2;
as G/L is unperforated, a−w+ L is in (G/L)+. From the definition of quotient
ordering, there exists c ∈ G+ such that c+ L = a−w+ L . Set v = c+w. Then
v+ L = a−w+w+ L = a+ L; since v ≥ w and w is an order unit, it follows
that v is an order unit. �

If we drop approximate divisibility, we obtain that for all order units a + L
of G/L , there exists an integer N such that for all n ≥ N , there exist order units vn

of G such that vn − na ∈ L . (Instead of using a small order unit w, we take u or
any other order unit we can find.)

The following gives a general result (without assuming G/ ker Y is unperforated,
but instead, that Y is a face) about lifting order units.

Lemma 5.7. Suppose Y = Z(ker Y ) is a face of S(G, u) such that the image of
ker Y is dense in Y⊥. Let a ∈ G satisfy a+ ker Y ≥ 0 and â|Y � δ for some δ > 0.
Then there exists a′ ∈ G++ such that a′+ ker Y = a+ ker Y .
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Proof. From the quotient ordering, there exists c ∈ G+ such that c− a ∈ ker Y . Let
F = {τ ∈ S(G, u) | τ(c)= 0}; because c ∈ G+, F is a face, and is obviously closed.
Since ĉ|Y = â|Y , we must have F ∩ Y = ∅. There thus exists h ∈ Aff S(G, u)+

such that h|Y ≡ 0 and h|F ≡ 1.
As h ∈ Y⊥, there exist gn ∈ ker Y such that ĝn→ h uniformly. Hence ĝn + c→

h+ ĉ uniformly. The latter however is strictly positive (since ĉ≥ 0 and ĉ−1(0)= F).
Hence there exists n such that ĝn + c is strictly positive; as G is unperforated,
a′ := gn+c is an order unit of G. Its image modulo ker Y is c+ker Y =a+ker Y . �

Proposition 5.8. Suppose that (G, u) is a nearly divisible dimension group, and
Y = Z(ker Y ) is a subset of S(G, u) such that for all σ ∈ Y , ker σ ∩ G+ = {0}.
Suppose that either Y is a face or G/ ker Y is unperforated. Then Y is good (with
respect to (G, u)) if and only if

(a) φI (Y ) is order unit good for all order ideals I having their own order unit,

(b) for every nonzero order ideal I , we have I + ker Y = G+ ker Y .

Remark. Condition (b) is just a restatement of the map I/(I ∩ ker Y )→ G/ ker Y
being onto. It does not require the stronger property, that it be an order isomorphism.

Proof. Sufficiency of the conditions: Suppose b ∈ G+ and a ∈ G and in addition,
0 ≤ a + ker Y ≤ b + ker Y . Let I ≡ I (b) be the order ideal generated by b;
that is, I (b) = {g ∈ G | ∃N ∈ N such that − Nb ≤ g ≤ Nb}. By (b), there
exists a1 ∈ I (b) such that a1+ ker Y = a + ker Y . Since I/(I ∩ ker Y ) is simple,
0≤ a1+ker Y ≤ b+ker Y entails either a1+ker Y = 0+ker Y or a1+ker Y is an
order unit. In the former case, set a′ = 0.

Otherwise, if Y is a face, there exists a2 ∈ I++ such that a2+ker Y = a1+ker Y .
Similarly, either b + ker Y = a1 + ker Y (in which case, we take a′ = b) or the
difference b+ ker Y − (a2+ ker Y ) is an order unit in I/(ker Y ∩ I ).

If G/ ker Y is unperforated, then I/(I ∩ker Y ) is unperforated (this follows from
I being an order ideal in G), and applying Lemma 5.6(b) to φI (Y ), is simple with
trace space canonically φI (Y ). This means that the order-preserving one-to-one
and onto map I/(I ∩ker Y )→G/ ker Y induces an affine homeomorphism on their
respective trace spaces; since the images in their affine function representations are
the same, that of I/(I ∩ker Y ) has dense range, and being simple (and φI (Y ) being
a simplex), the latter is a simple dimension group. A one-to-one order-preserving
group homomorphism between simple dimension groups which induces an affine
homeomorphism on the trace spaces is necessarily an order isomorphism.

Thus in either case, we have 0 � â|Y � b̂|Y ; now order unit goodness of
(I (b), b) yields a′ ∈ I+ such that a′ ≤ b.

Necessity of the conditions follows from the preceding results. �
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Now we briefly examine examples in RP . When R is a partially ordered com-
mutative unperforated ring with 1 as an order unit, every closed face of S(R, 1)
is uniquely determined by its extreme points and these form a compact subset
of X = ∂e S(R, 1) (and conversely, every closed subset of X yields a closed face
in this way). Thus, as a preliminary question, we can ask when the closed face
obtained from the closed subset Y of X is good (for R) or order unit good. We
say Y generates an (order unit) good face when this occurs.

It is easy to see that Y generates an order unit good face for R if and only
if for all pure traces σ 6∈ Y , we have σ | ker Y is not identically zero (we define
ker Y =

⋂
τ∈Y ker τ , as usual).

To verify this, if Y generates an order unit good face for R, then ker Y has dense
image in Ann Y := { f ∈ C(X,R) | f |Y ≡ 0}. There exists f ∈ Ann Y such that
f (σ ) 6= 0, and there exist an ∈ ker Y such that ân→ f uniformly, so there exists
a ∈ {an} such that 0 6= â(σ )= σ(a), hence σ | ker Y is not identically zero.

Conversely, suppose σ(ker Y ) 6= {0} for every σ ∈ X \ Y . It is trivial that ker Y
is an ideal of R (not generally an order ideal), so its closure in C(X,R) is a closed
ideal thereof, hence of the form Ann Z for some closed Z ⊂ X . Obviously Y ⊂ X ,
but if σ ∈ Z \ Y , there exists a ∈ ker Y such that σ(a) 6= 0, so that â 6∈ Ann Z , a
contradiction. Hence Z = Y , so ker Y has dense image in Ann Z , and thus Y is
order unit good for R.

Lemma 5.9. Let R be a partially ordered unperforated approximately divisible
commutative ring, and let Y be a compact subset of the set of faithful pure traces.
Let (I, v) be a nonzero order ideal with its own order unit.

(a) The set Y maps by normalized restriction to a compact set of pure faithful
traces on (I, v), YI .

(b) If the closed face generated by Y is order unit good for R, then the closed face
of S(I, w) generated by YI is order unit good for (I, v).

Goodness for RP (several variables) of sets corresponding to faces (that is, closed
subsets of the pure trace space) is dependent on the coefficients. For example, as we
will see below, if V is the variety given by f = (x−3)2+ (y−3)2−1, the circle of
radius one centred at (3, 3) and P= c0+c1x+c2 y, then V (or its corresponding face
in S(RP , 1) is order unit good, but not good, no matter what the choice of (positive)
integers c0, c1, c2. On the other hand, if P1 = P ·Q where Q = c+ x f + yg+ xyh,
where f is a polynomial in x with no negative coefficients such that (x − 3)2+ 8
divides some power of c + x f (such exist!), g is a polynomial in y such that
(y − 3)2+ 8 divides some power of c+ yg, and h is a polynomial in xy−1 such
that (1+ X2) divides some power of h(X), then V is a good subset for RP1 (the
conditions on the coefficients of monomials appearing in the faces of the Newton
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polytope described by the divisibility condition are necessary and sufficient for
Proposition 5.8(b) to apply; however they are also extremely complicated).

Now we specialize to R= RP or RP⊗Q, and to avoid severe complications, also
assume that the compact Y consists of pure faithful traces (that is, Y is a compact
subset of the positive orthant, (Rd)++, after identifying the pure faithful traces with
points of the orthant). Then ker Y = { f/Pk

∈ RP | f |Y ≡ 0}. Recall that for f ∈
Z[x1, . . . , xd ], f/Pk

∈ RP means that there exists l such that Log f P l
⊆Log Pk+l ;

we can well assume Log f ⊆ Log Pk .
Hence Y is order unit good for R if and only if whenever σ is a pure trace not

in Y , we have σ | ker Y 6= 0. If we restrict σ to the faithful pure traces, then we
deduce a necessary condition: if Y ⊂ (Rd)++ is compact, then Y is order unit good
for RP implies

ZI (Y )∩ (Rd)++)= Y.

That is, intersecting the Zariski closure of Y with (Rd)++ gives no new points. In
the singleton case, we have seen that this condition, real isolation, is sufficient.
However, for general compact Y , it is no longer sufficient.

In fact, examples to illustrate this are ubiquitous (when d > 1). The very
simplest one I could think of is the following. Let P = 1 + xy + x (the co-
efficients, here all ones, are not terribly important); then Log P is the triangle
with vertices {(0, 0), (1, 1), (1, 0)}, and as rings RP ∼= Z[X,W ] (the pure poly-
nomial ring in two variables) via the transformation X = x/P and W = xy/P .
Let f = (x − 3)2+ (y− 3)2− 1, so Z( f ) ∩ R2 is the circle of radius one cen-
tred at (3, 3), and we set Y to be this circle, sitting inside the positive quadrant
of R2. In particular, Log f = {(0, 0), (1, 0), (2, 0), (0, 1), (0, 2)}. It is trivial
that ZI (Y ) ∩ (R2)++ = Y . However, there exists σ ∈ ∂e S(RP , 1) \ Y such that
σ | ker Y = 0.

Explicitly, σ is the pure trace corresponding to the extreme point of cvx Log P
given by (0, 0); σ(g/Pk) = (g, x0,0)/(P, x0,0)k . Suppose a = h/Pk

∈ RP ; we
may assume Log h ⊆ Log Pk . If r ∈ Y implies h(r)/Pk(r)= 0, that is, τ(a)= 0
for all τ ∈ Y , then h|Y ≡ 0 (since Y is in the positive quadrant, P|Y vanishes
nowhere). Hence there exists e ∈Q[x, y] such that h= e · f (as IQ( f )= f Q[x, y]);
multiplying by a positive integer N , we may assume Nh = e · f , where e ∈ Z[x, y].

We claim that this forces h(0, 0) = 0, that is, its constant term must be zero,
from which it would follow that σ(a)= 0, showing that ker Y ⊂ ker σ , as desired.
If h(0, 0) 6= 0, then as Log h ⊆ Log Pk , we would have to have (0, 0) ∈ Log h,
and in particular, this point is an extreme point of cvx Log h. Since (0, 0) is also
an extreme point of cvx Log f , it easily follows that (0, 0) is an extreme point
of cvx Log e (we are working with Laurent polynomials as opposed to ordinary
polynomials, hence this complicated argument). Now consider the coefficients of e
and of f restricted to the line x = 0 (that is, throw away all the monomials with
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a power of x), e0 and f0 = y2
− 6y + 17. The product is not zero, and cannot

be a single monomial (since f0 is not), hence there must be, in addition to the
constant term, a term of the form y j in the product. It is easy to check that this
forces (0, j) ∈ Log e · f = Log h. However, Log Pk is contained in the lattice cone
generated by {(0, 0), (1, 1), (1, 0)}, which does not contain (0, j). This contradicts
Log h ⊆ Log Pk .

This example does not depend on the coefficients in P , that is, we could just
as well have taken P = 2+ 3xy+ 5x (which guarantees that RP is approximately
divisible), or whether we take RP or RP ⊗Q.

In contrast, if we take the same f , but P = 2+ 3x + 5y (or with any other
positive coefficients), then f/P2

∈ RP and for all nonfaithful pure σ , we have
σ( f/P2) > 0; hence the same Y is now order unit good for RP . This is part of a
more general criterion.

Let h be a polynomial in d variables, and let S be a finite set of lattice points in
Zd , and K (S)= cvx S. Suppose F is a proper face of K (S), and Log h ⊆ kS (the
set of sums of k elements of S). We define hF,k , the facial polynomial of h relative
to F and k, by throwing away all the terms in xw of h for which w 6∈ k F . In the
case S = Log P , we can form the element hF,k/(PF )

k
∈ RPF (in fewer variables,

the number being the dimension of F). This yields a positive homomorphism
RP → RPF as described in [Handelman 1985].

Let Y satisfy ZI (Y )∩ (Rd)++ = Y , and form the ideal I (Y ) of Z[x1, . . . , xd ].
Let P be a projectively faithful polynomial in Z[x1, . . . , xd ]. We say that Y can be
fitted with respect to P if there exists a polynomial h ∈ I (Y ) such that

(a) Log h ⊆ Log Pk for some k,

(b) for every proper face F of cvx Log P , hF,k has no negative coefficients.

This depends on Log P , but not so much on the coefficients P [Handelman 1987,
Proposition II.5].

Condition (b) can be somewhat weakened, since we are permitted to multiply the
numerator and denominator of h/Pk by powers of P , and apply eventual positivity
criteria, e.g., [Handelman 1986]. The condition is equivalent to “for all pure σ
that are not faithful, there exists h ∈ I (Y ) such that σ(h/Pk) > 0”. For example,
with Log P = {(0, 0), (0, 1), (1, 0)} and Y the circle in (R2)++ of radius 1 centred
at (3, 3), Y is fitted with respect to P . Just observe that f has the three facial
polynomials (corresponding to the three edges of cvx Log P (the extreme points
take care of themselves, so we need not worry about the zero-dimensional faces),
(x − 3)2+ 17, (y− 3)2+ 17, x2

+ y2. If we multiply the first two by a sufficiently
high power, say N , of 1+x (respectively (1+y)), the outcome will have no negative
coefficients. It follows that if h = P N f , then h will be positively fitted with respect
to P , with k = N + 2.



408 DAVID HANDELMAN

Now the following is practically tautological.

Proposition 5.10. Let P be a faithfully projective element of Z[xi ], and Y a com-
pact subset of ((R)d)++. Then Y generates an order unit good face for RP (and
simultaneously for RP ⊗Q) if and only if

(i) ZI (Y )∩ (Rd)++ = Y and

(ii) Y can be fitted with respect to P.

Conditions on Y to guarantee property (b) of Lemma 5.9 seem to be very
difficult, involving divisibility of polynomials (and so depend on the coefficients).
So goodness of subsets of ∂e S(RP , 1) is still problematic.

Appendix A: Connections with zero-dimensional topological dynamics

The referee has observed that this paper uses methods almost entirely from partially
ordered abelian groups and Choquet theory, and its results refer to the former. As
a result, the connections with dynamics are invisible. This informal appendix is
intended to outline some of the connections. We assume that the reader has some
knowledge of Cantor dynamical systems.

Let (X, T ) be a nonatomic zero-dimensional compact separable Hausdorff
space (a Cantor set) together with a self-homeomorphism; we call this pair a
Cantor minimal system. We may functorially attach a partially preordered abelian
group, K0(X, T ), to (X, T ), in any of several equivalent ways, e.g., the preordered
Grothendieck group of the crossed-product C*-algebra C(X)×T Z, or directly by
computing the preordered Čech cohomology, C(X,Z)/(I − T )C(X,Z) (where T
has its natural action on C(X,Z)), with the quotient preordering.

When T is minimal (an abbreviation for the action of T on X is minimal), not only
is the preordering a genuine partial ordering, but K0(X, T ) is a simple dimension
group; moreover (in the minimal case), together with a distinguished order unit, it is
a complete invariant for strong orbit equivalence, and a complete invariant for orbit
equivalence is obtained from the simple dimension group K0(X, T )/ Inf(K0(X, T ))
[Giordano et al. 1995; Herman et al. 1992].

When T is no longer minimal, chain recurrence (a weak condition) will guarantee
that K0(X, T ) is partially ordered [Boyle and Handelman 1996]. Unfortunately,
even for rather natural systems, such as shifts of finite type, K0(X, T ) need not be
a dimension group [Kim et al. 2001], and more recent work suggests that being a
dimension group is a relatively rare phenomenon — moreover, not all (countable)
dimension groups can appear as a K0(X, T ). This calls into question the usefulness
of the results here, since we work almost exclusively with dimension groups.
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Fortunately, many questions in nonminimal cases can be reduced to questions
concerning dimension groups. This is because of the following result of Boyle and
the author.

Theorem. If T is chain recurrent, then there exists a dimension group G together
with an onto, order-preserving group homomorphism φ : G→ K0(X, T ) such that

(a) kerφ ⊆ Inf G, and

(b) φ(G+)= K0(X, T )+.

Not only does this say that K0(X, T ) is order-isomorphic to G/ kerφ with
the quotient ordering on the latter, but it also implies that φ induces a natural
affine homeomorphism between S(G, u), the normalized trace space of G, and
the normalized trace space of K0(X, T ), which itself is just the space of invariant
probability measures on X . The images of G and of K0(X, T ) in their affine
representation agree, and this means that some properties of measures/traces transfer
between (X, T ) and G (a dimension group). For example, order unit goodness is
the same whether we take K0(X, T ) or G.

This allows one to transfer problems about traces (or finite invariant measures)
on K0(X, T ) to the dimension group G. As a simple example (already a known
consequence of Krieger’s marker lemma), if T has no periodic points, then the
image of K0(X, T ) in its affine representation (taking as order unit u = [χX ]) is
dense. In particular, almost divisibility transfers (near divisibility probably does
not). More relevantly, order unit goodness and its refinable counterpart transfer
completely between the two ordered groups, as does the purity criterion of [Goodearl
and Handelman 1980]. Properties involving order ideals do not do so well, but very
often there is a one-way implication. There is obviously more to be done.

Tensor products. Tensor products of dimension groups, or more generally, of
partially ordered abelian groups, as discussed in Section 2, arise naturally. However,
their translation to dynamical systems is not so clear. Nonetheless, there are
examples — every minimal Cantor system can be realized as a continuous adic map
on a Bratteli diagram, and the Cartesian product of the two Cantor sets admits an
adic map compatible with the tensor product [BeH 2014, Appendix A].

There is a less tenuous interrelation. Let (X, T ) and (Y, S) be Cantor dynamical
systems (not necessarily minimal, although not much is known in the nonmini-
mal case), which are at least chain recurrent. Form the product, (X × Y, T × S)
(meaning the Z-action, not the Z2-action). There is a natural order-preserving
group homomorphism, 8 : K0(X × Y, T × S)→ K0(X, T )⊗ K0(Y, S) (with the
usual positive cone on the tensor product). This is induced by the isomorphism
C(X ×Y,Z)∼= C(X,Z)⊗C(Y,Z), the latter factoring onto K0(X, T )⊗ K0(Y, S);
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then (I− (T × S))(C(X × Y,Z)) ⊆ (I− T )C(X × Y,Z)+ (I− S)(C(X × Y,Z))

shows that 8 is well-defined.
Call the system constructed in [BeH 2014, Appendix A] realizing the tensor

product, (X × Y, R). For the following observation, we don’t really need the
construction of R, merely that such a minimal system (realizing the tensor product
of the dimension groups) exists, which is a consequence of [Giordano et al. 1995].

Observation. Suppose (X, T ) and (Y, S) are minimal Cantor dynamical systems.
In the following, any of (b), (c), or (d) implies that T × S is minimal. Moreover,
(b), (c), and (d) are equivalent, and each implies (a); finally, if each of (X, T ) and
(Y, S) has only finitely many ergodic measures, then (a) implies (b).

(a) T × S is orbit equivalent to R.

(b) The kernel of the natural order-preserving homomorphism

8 : K0(X × Y, T × S)→ K0(X, T )⊗ K0(Y, S)

consists of infinitesimals.

(c) Every invariant (T × S)-ergodic measure is of the form µ× ν, where µ is an
invariant measure on (X, T ) and ν is an invariant measure on (Y, S).

(d) For every continuous f : X→Z of X and every coboundary h = (I− S)g of Y
(where g :Y→Z is continuous), [ f ·h] is an infinitesimal in K0(X×Y, T×S).

Remark. The apparent asymmetry in X and Y of (d) is illusory, as

(I− T × S)( f · g)= f · h+ ((I− T ) f ) · (g ◦ S).

Remark. Without the assumption that (X, T ) and (Y, S) have only finitely many
ergodic measures, it is still very likely true that (a) implies (b) anyway.

Proof. We show that (c) implies minimality of the product, and then that (b), (c),
and (d) are equivalent in general. If T × S were not minimal, there would be a
proper closed invariant subset A ⊂ X × Y . Then any invariant ergodic measure
supported on A cannot be a product measure, and of course, one exists.

(b) implies (c): Since the kernel of the map to the tensor product is onto and has only
infinitesimals in its kernel, it induces a homeomorphism on the normalized trace
spaces, and clearly product traces map to product traces under this; since all pure
traces on the tensor product are of the form σ ⊗τ , where σ and τ are pure traces on
the two components respectively, it implies every pure trace on K0(X × Y, T × S)
is a product trace, and this translates to product measure.

(c) implies (d): For any product measure on X × Y , dρ = dµ dν, we have∫
X×Y

f · h dρ =
(∫

X
f dµ

)
·

(∫
Y

h dν
)
= 0.
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From (c), the closed convex hull of the product invariant measures is the set of all
invariant measures, so

∫
X×Y f ·h dζ = 0 for every invariant measure ζ on X × Y .

Hence [ f ·h] vanishes at every trace on K0(X×Y, T×S), and thus is an infinitesimal.

(d) implies (b): The kernel of the map K0(X ×Y, T × S)→ K0(X, T )⊗ K0(X, S)
is spanned by the images (in K0) of

(I−T×S)C(X×Y,Z), C(X,Z)·(I−S)(C(Y,Z)), (I−T )(C(X,Z))·C(Y,Z).

By the remark, every element of (I− T )(C(X,Z)) ·C(Y,Z) belongs to the abelian
group generated by the other two, whose images obviously land in the infinitesimal
subgroup.

(b) implies (a): Factoring out the infinitesimals from both groups yields a unital
order isomorphism (since the original map sends the positive elements onto the
positive elements), so T × S is orbit equivalent to R.

(a) implies (b) (if each of (X, T ) and (Y, T ) has only finitely many ergodic mea-
sures): Let m and n be the respective number of pure traces (ergodic measures). The
number of pure traces on the tensor product is exactly mn, and orbit equivalence
implies the same number of pure traces for K0(X × Y, T × S). The natural map to
the tensor product induces a positive map between the corresponding affine function
spaces (of the same dimension, mn), which must therefore be an isomorphism.
Hence every trace on K0(X × Y, T × S) factors through the tensor product. Thus
the kernel of the map must be contained in the kernel of all the traces, and hence is
contained in the infinitesimal subgroup. �

Bernoulli measures and xerox actions. The results of Section 3 are reminiscent
of those of [Akin et al. 2008], characterizing goodness of Bernoulli measures.
Let {ei } be the standard basis for Zn , and set xi = xei (in monomial notation),
and P = 1+

∑n
i=1 xi (for notational convenience, we sometimes write 1 = xe0 ,

where e0 = 0). Form RP , a very special case of the ordered rings discussed in
this section. This particular one is ring isomorphic to the pure polynomial ring,
AP = Z[X1, . . . , Xn], under the assignment X i = xi/P , and the positive cone is
generated multiplicatively and additively by {X1, . . . , Xn; 1−

∑
X i }.

The pure traces of AP are precisely the multiplicative ones, determined by
X i 7→ pi , where 0 ≤ pi and

∑
pi ≤ 1. Let p = (p1, . . . , pn) denote the corre-

sponding point in the standard simplex in Rn . If p0 : 1−
∑

pi > 0 (which occurs at
least when the corresponding pure trace is faithful, and in other cases as well), we
can reconstruct the point in (Rn)+ (the faithful pure trace of RP whence it came;
explicitly, xi 7→ pi/p0), and when the measure is faithful (meaning all of pi and
p0 are nonzero), these run over the entire open orthant, (Rn)++.

For all choices of (faithfully projective) P , there is a natural map from the pure
trace space of (RP , 1) to the Newton polytope of P , given by the weighted moment
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map; because this particular choice for P is so pleasant, the weighted moment
map is particularly explicit. (For generic P , RP is not even a unique factorization
domain — for example, if P is irreducible over the integers, faithfully projective,
and RP satisfies unique factorization, then up to the natural action of AGL(n,Z)

on the exponents, P =
∑n

i=0 ai xi , where x0 = 1 and ai are positive integers.)
Now back to our specific choice of P; this RP is not approximately divisible

(for example, X i 7→ 0 yields a Z-valued trace on AP ; we could fix this if we
permitted nonmonic coefficients at all of the vertices). Nonetheless, we can analyze
conditions (1) and (2) here.

For the point r := (pi/p0) ∈ Rn)++, τr will satisfy (1) and (2) precisely if r
is really isolated and p0/pi ∈ Z[p j/p0] = τr (RP); in particular, p0/pi are units
in τr (RP) and are algebraic. Since

∑n
1 pi = 1− p0, we quickly deduce that all

of p0, p1, . . . , pn must be algebraic and are units in Z[p0, p1, . . . , pn] (the image
of AP under the corresponding trace).

The density matrices that implement the pure traces on the fixed point C*-algebras
are exactly those whose diagonals are p. In a sense, C*-algebra traces are the
noncommutative analogue of Bernoulli measures.

Strict direct sums. There is no obvious connection between strict direct sums (even
for simple dimension groups) and dynamical systems. In fact, although we know
that a strict direct sum of dimension groups is again a dimension group, given
realizations of the two components (as direct limits, that is, given Bratteli diagrams
for each of them), there is no way known to construct the strict direct sum as such
a direct limit from the two direct limits (that is, there does not seem to be a way of
finding a Bratteli diagram based on the two given ones). There are a few (very few)
ad hoc constructions in very special cases.

Appendix B: Order unit good traces on Zk

The criteria for goodness of traces on nearly divisible dimension groups depend
on order unit goodness; and the usefulness of the former is a consequence of
the relatively simple characterization of order unit good traces on approximately
divisible dimension groups, namely density of the image of ker τ in τ` via the
affine representation of (G, u).

To obtain useful criteria for goodness on a larger class of dimension groups, it
would be helpful to find an analogous characterization of order unit goodness in the
presence of discrete traces. In this appendix, we consider the extreme dimension
groups with discrete traces, namely the simplicial ones, Zk , with the usual ordering.
It is already known that up to scalar multiple, the only good traces are given by left
multiplication by a vector whose entries consist only of zeros and ones [Handelman
2013b, Lemma 6.2].
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With the current definition of order unit good (really intended for approximately
divisible groups), the order unit good traces on Zk can be characterized, but the
characterization makes it difficult to see how to obtain goodness criteria for more
general dimension groups, as we did in the nearly divisible case.

Let v ∈ (Rk×1)+ \ {0}; then v induces a trace on Zk , via left multiplication,
φv : Zk

→ R sending w 7→ vw (we think of Zk as a set of columns, so matrix
multiplication makes sense). Obviously we can replace v by any positive real
multiple of itself without changing properties such as goodness or order unit
goodness. In addition, we may apply any permutation to the entries, with the
same lack of bad consequences. We may also discard any zeros (reducing the size
of the vectors, that is, decreasing k).

Suppose v has only integer entries; then we may order the nonzero entries, so that

v = (n(1), n(2), . . . , n(r); 0, 0, . . . , 0), where n(1)≤ n(2)≤ · · · .

We may also assume that gcd{n(i)} = 1.

Lemma B.1. With this choice of v, we have that φv is order unit good if and only if
n(1)= 1 and for all r ≥ j > 1, we have n( j)≤ 1+

∑
i< j n(i).

Proof. Assume v is in the form indicated, and φv is order unit good. Since
gcd{n(i)} = 1, there exists a vector w such that vw = 1. Set u = (1, 1, 1, . . . , 1);
we have that u is an order unit, hence it is φv-order unit good. Since vu > 1 (unless
v = (1, 0, 0, . . . , 0) which is trivially good), there must exist w0 ∈ (Z

d)+ such that
vw0 = vw = 1< vu. Since the nonzero entries of v are increasing, this forces the
smallest one, n(1), to be 1. Hence n(1)= 1.

Since vu =
∑

n(i) := N , and there exists w ∈ Zk such that vw = 1, for each s
with 1< s< N , there exists ws ∈ {0, 1}k (as 0≤w0≤ u) such that vws = s, by order
unit goodness of u. Now suppose that for some j , we have n( j) > 1+

∑
i< j n(i).

Then n( j)− 1 cannot be realized as a sum of n(i)s (using at most one for each
choice of i), since n( j)− 1>

∑
i< j n(i), and n( j)≤ n( j ′) for all j ′ > j (if there

are any such j ′). Hence no such w0 can exist.
Thus, if u is φv-order unit good, then the constraint on growth must hold.
Conversely, suppose the inequalities hold. It is then an easy induction argument

(on r , augmenting the vector by adjoining n(k+ 1)) to show that u is τv-order unit
good, by realizing every integer in the interval (0, N ). Finally, to show that every
order unit is φv-order unit good (u was the smallest choice), it suffices to show that
if we add a single one to a φv-order unit good vector, the outcome is again φv-order
unit good. �

In particular, the choices for v, (1, 2, 4, 8, 16) and (1, 1, 1, 4) yield order unit
good traces, but (1, 3) and (1, 1, 1, 5) do not. This rather complicated set of
conditions, when applied to order ideals in dimension groups that have a simplicial
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quotient by an order ideal, likely makes order unit goodness unusable for the
purposes we had in mind.

Lemma B.2. If φv : Zk
→ R is an order unit good trace, then up to scalar multiple,

v ∈ (Zk×1)+.

Proof. In Zk , all intervals of the form [0, u] (where u is an order unit) are finite sets.
If there were an irrational ratio among the nonzero entries of v, we would obtain
φv(Z

k)∩ [0, N ] is infinite for any positive integer N . If order unit goodness held,
this would be impossible. Hence all the ratios are rational, and it easily follows that
after suitable scalar multiplication, we can convert v to an integer row. �

Proposition B.3. Let v be an element of (Rk)+ \ {0}. Then φv is an order unit
good trace if and only if up to scalar multiple and after rearrangement so that
v = (n(1), . . . , n(r); 0, 0, . . .) with n(i − 1) ≤ n(i), we have n(i) ∈ N, n(1) = 1,
and for all 1< j ≤ r ,

n( j)≤ 1+
∑
i< j

n(i).

Appendix C: Good simplices

In the finite-dimensional case, we verify a conjecture from [BeH 2014, Section 7]
that good subsets of Choquet simplices are obtained as coproducts of faces with
singleton subsets of disjoint faces.

Let K be a Choquet simplex. A nonempty subset J of K is said to be good
(following [BeH 2014]) if it satisfies the following (redundant set of) properties:

(i) J is a (compact) Choquet simplex.

(ii) There exists a closed flat L such that J = L∩ K .

(iii) If a ∈ Aff(J )++ and b ∈ Aff(K )++ are such that a� b|J , then there exists
a′ ∈ Aff(K )++ such that a′|J = a and a′� b.

We denote this relationship between J and K by J ⊂G K (there is a G inside the
inclusion sign). If F is a closed face of K , we denote it FGK . A question arising out
of [BeH 2014] is to characterize good subsets of Choquet simplices. For example,
closed faces are good, and singleton sets are also good, and coproducts (within the
category of simplices and good subsets) preserve these properties. A conjecture
was made concerning the structure of good subsets; we verify this in the case that
K is finite-dimensional.

Now (ii) is redundant, and only the compact convex part of (i) is necessary. This
is based on the following simple construction.

If X is a subset of a real vector space, define the affine span of X , denoted
Aspan X , as the set of finite sums

{∑
ri xi

∣∣ ri ∈ R,
∑

ri = 1, xi ∈ X
}
.
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If J is a singleton or a line segment, there is (almost) nothing to do. Define
L0 = Aspan J . If there exists v ∈ (K ∩L0) \ J , we can write v =

∑
αivi −β jw j ,

where vi , w j ∈ J , and αi , β j > 0, and
∑
αi −

∑
β j = 1. We can also arrange that

cvx{vi } ∩ cvx{w j } =∅. Hence for any positive η < 1, there exists a ∈ (Aff J )++

such that 1− η < a| cvx{w j } < 1 and a| cvx{ai } < η. Since a is continuous, it is
bounded above, so (iii) applies with some constant b ∈ Aff K .

Hence there exists a′ ∈ (Aff K )++ such that a = a′|J . Evaluating the equation
at a′, we obtain

0< a′(w)=
∑

αi a(vi )−
∑

β j a(w j ) < η
∑

αi − (1− η)
∑

β j .

This entails η
(∑

αi +
∑
β j
)
>
∑
β j . Now

∑
β j > 0, since otherwise v ∈ J .

Hence we can choose at the outset positive η <
∑
β j
/ (∑

αi +
∑
β j
)
, which

yields a contradiction.
Thus L0 ∩ K = J . If xn ∈ L0 and xn → x ∈ K , but x 6∈ J , there exists a line

segment joining x to an element of the relative interior of J ; it must pass through
at least two points in J , hence x ∈ L0. In other words, with L equalling the closure
of L0, we have J = L0 ∩ K = L∩ K .

To check that the compact convex set J must be a simplex if (iii) is sat-
isfied, observe that the quotient Aff K/J` (with the strict ordering on Aff K ,
J` = {a ∈ Aff K | a|J ≡ 0}, and the quotient ordering) is order isomorphic to Aff J
(with the strict ordering). But goodness implies [BeH 2014] that it satisfies Riesz
interpolation, which of course forces J to be a Choquet simplex.

Let K ′ and K ′′ be simplices (simplices mean Choquet simplices; but most
of the time we will working in finite dimensions, so simplex means the usual
simplex) sitting inside some common simplex K which in turn is contained in some
topological vector space. Suppose that Aspan K ′ ∩Aspan K ′′ =∅; we write this
as K ′ ∧ K ′′ =∅. Then the closure of cvx(K ′, K ′′) is itself a simplex, and we refer
to this as the coproduct, written K ′∨̇K ′′ (this is more an internal coproduct, but we
shall not distinguish internal from external). If K ′ and K ′′ are faces of K , sufficient
for K ′ ∧ K ′′ =∅ is that their intersection be empty (since K is a simplex); in this
case, we say that K ′ and K ′′ are disjoint. If {K i

} is a finite family of subsimplices,
then disjointness of the set is defined inductively in the obvious way, so that

∨̇
i K i

makes sense and is a simplex.
We record elementary properties related to goodness.

Lemma C.1. (a) Suppose J ⊂G K and K ⊂G L; then J ⊂G L.

(b) If F G K , then F ⊂G K .

(c) If J ⊂G K and F G K , then J ∩ F G J and J ∩ F ⊂G K whenever J ∩ F 6=∅.

(d) If Ji ⊂G Ki for i = 1, 2 and K1 ∧ K2 =∅, then J1∨̇J2 ⊂G K1∨̇K2.
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The crucial result is the following. Its proof rests heavily on finite-dimensionality,
but is a minor modification of the previous argument.

Lemma C.2. Let K be a finite dimensional simplex, and suppose J ⊂G K . Let J1

and J2 be disjoint faces of J . Set Fi (i = 1, 2) to be the smallest face of K that
contains Ji . Then F1 and F2 are disjoint.

Proof. It suffices to show that F1 ∩ F2 =∅. If not, the intersection is a face, and
hence contains a vertex (that is, extreme point) of K ; call it v. We may suppose
that v 6∈ J2 (since J1 ∩ J2 =∅). Since J is itself a finite-dimensional simplex and
Ji are disjoint faces, for any η > 0 (which we will specify later), we may find
a ∈ Aff(J )++ such that a|J2� 1− ε, a|J1� η, and a� 1 (on all of J ). Set b to
be the constant function 1 on all of K , so that 0� a� b|J .

By goodness, there exists a′ ∈ Aff(K )++ such that a′� b and a′|J = a. It is
now easy to show that for suitably small η (depending on the boundary measure of
elements of Ji ⊂ Fi ), this leads to a contradiction.

Since v 6∈ J and F2 is the smallest face containing J2, there must exist w ∈ J2

such that w = λv+
∑

s λsvs , where vs ∈ ∂e F2, λ > 0, λs ≥ 0 and λ = 1−
∑
λs .

Evaluating at a′, we obtain

λa′(v)= a(w)−
∑

λsa′(vs)≥ 1− η− (1− λ)

(since a′(vs)≤ b(vs)= 1). Thus a′(v)≥ 1− η/λ.
Now working within F1, again since F1 is the smallest face containing J1, there

must exist y ∈ J1 such that y =µv+
∑

t µt yt , where {v, yt } ⊆ ∂e F1, µ> 0, µs ≥ 0,
and µ= 1−

∑
µs . Applying a′, we obtain µa′(v)= a(y)−

∑
µt a′(yt)< η. Hence

a′(v) < η/µ.
Thus the two inequalities force η/µ+ η/λ > 1. We reach a contradiction if we

choose η < 1/(1/µ+ 1/λ). �

One obstruction (among several) to extending this to infinite-dimensional sim-
plices is the fact that the representing measures of relative interior points might
vanish on the intersection of the faces. We would also have to restrict to closed
faces in this case (since otherwise it is not clear that the smallest face exists), and
this presents problems.

Let {Fi } be a disjoint collection of faces — that is, for all i , Fi∧
(∨̇

j 6=i F j
)
=∅—

of the simplex K , and for each i , let vi be a point in the relative interior of Fi ; we
also assume that the Fi are not themselves singletons. We may form J0 := cvx{vi }

and F0 := cvx{Fi }; of course, this is the coproduct of ({vi }, Fi ), and J0 is thus a
good subset of F0 (since each {vi } ⊂G Fi ). As in [BeH 2014], we call the (vi , Fi ),
together with (F, F) (that is, the face F ⊂G F) building blocks. It was conjectured (in
the finite-dimensional case) that if J ⊂G K , then there exists a face F of K , together
with a disjoint face F0 obtained as the coproduct, such that J = F∨̇J0; in other
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words, that coproducts of the building blocks yield all good subsets; alternatively,
that there is a maximal face F of K sitting inside J , and J is obtained by taking
coproducts with respective singleton sets sitting inside pairwise disjoint faces. This
now follows easily.

Corollary C.3. Suppose K is a finite-dimensional simplex and J ⊂G K . Then
there exist a (possibly empty) face F of K together with a finite set of faces Fi

of dimension at least one such that {F, F1, . . . } is disjoint, together with vi in the
relative interior of Fi such that J = cvx{F, vi }.

Proof. We proceed by induction on the dimension of J . Let F be the convex hull
of all the vertices of K that lie in J ; these are automatically vertices of J . If this
exhausts the vertices of J , then F= J and F is a face (since K is a finite-dimensional
simplex), and there is nothing to do. Of course, F can be empty.

Otherwise, there exists a vertex v1 of J that is not in ∂e K ; necessarily this belongs
to a proper face (it cannot be in the interior, in fact by property (ii), but this can
also be proved using only (i) and (iii)) of K , and let F1 be the smallest face of K
containing v1. Then v1 is in the relative interior of F1. Let J 1 be the complementary
face to {v1} in J (that is, the convex hull of all the other vertices of J ).

If J 1 is empty, then J = J 1 is already a singleton, and we are done.
If J 1 is not empty, then J 1

G J , so J 1
⊂G J , and thus by transitivity, J1 ⊂G K . We

can apply the previous lemma. Let F1 be the smallest face of K containing J 1;
then F1

∩ F1 =∅, and thus J decomposes as the coproduct of J 1 and {v1} (using
faces F1 and F1), so by induction on the dimension of J , and we are done. �
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In the theory of automorphic descents developed by Ginzburg, Rallis, and
Soudry in The descent map from automorphic representations of GL.n/ to
classical groups (World Scientific, 2011), the structure of Fourier coeffi-
cients of the residual representations of certain special Eisenstein series
plays an essential role. In a series of papers starting with Pacific J. Math.
264:1 (2013), 83–123, we have looked for more general residual representa-
tions, which may yield a more general theory of automorphic descents. We
continue this program here, investigating the structure of Fourier coeffi-
cients of certain residual representations of symplectic groups, associated
with certain interesting families of global Arthur parameters. The results
partially confirm a conjecture proposed by Jiang in Contemp. Math. 614
(2014), 179–242 on relations between the global Arthur parameters and
the structure of Fourier coefficients of the automorphic representations in
the associated global Arthur packets. The results of this paper can also be
regarded as a first step towards more general automorphic descents for
symplectic groups, which will be considered in our future work.

1. Introduction

Let Sp2n be the symplectic group with symplectic form�
0 vn
�vn 0

�
;

where vn is an n�n matrix with 1s on the second diagonal and 0s elsewhere. Fix a
Borel subgroup B D T U of Sp2n, where the maximal torus T consists of elements
of the form

diag.t1; : : : ; tnI t�1n ; : : : ; t�11 /
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and the unipotent radical U consists of all upper unipotent matrices in Sp2n. Let F
be a number field and A be the ring of adeles of F.

The structure of Fourier coefficients for the residual representations of Sp4n.A/,
with cuspidal support .GL2n; �/, played an indispensable role in the theory of
automorphic descent from GL2n to the metaplectic double cover of Sp2n by
Ginzburg, Rallis, and Soudry in [Ginzburg et al. 2011]. As tested in a special
case in our recent work joint with Xu and Zhang in [Jiang et al. 2015], we expected
the residual representations investigated in [Jiang et al. 2013] may play important
roles in extending the theory of automorphic descent in [Ginzburg et al. 2011]
to a more general setting. In this paper, we take certain interesting families of
residual representations of Sp2n.A/ obtained in [Jiang et al. 2013] and study the
structure of their Fourier coefficients associated to nilpotent orbits as described in
[Jiang 2014]. On one hand, the results of this paper partially confirm a conjecture
proposed by the first named author in [loc. cit.] on relations between the global
Arthur parameters and the structure of Fourier coefficients of the automorphic
representations in the corresponding global Arthur packets. On the other hand,
these results are preliminary steps towards the theory of more general automorphic
descents for symplectic groups, which will be considered in our future work.

We first recall the global Arthur parameters for Sp2n and the discrete spectrum,
and the conjecture made in [loc. cit.]. Then we recall what has been proved about
this conjecture before this current paper, in particular the results obtained in [Jiang
and Liu 2015a]. Finally we describe more explicitly the objective of this paper. The
main results will be precisely stated in Section 2.

1A. Arthur parameters and the discrete spectrum. Let F be a number field and A

be the ring of adeles of F. Recall that the dual group of Gn D Sp2n is SO2nC1.C/.
The set of global Arthur parameters for the discrete spectrum of the space of
all square-integrable automorphic functions on Sp2n.A/ is denoted by z‰2.Sp2n/,
following the notation in [Arthur 2013]. The elements of z‰2.Sp2n/ are of the form

(1-1)  WD  1� 2� � � �� r ;

where  i are pairwise distinct simple global Arthur parameters of orthogonal
type. A simple global Arthur parameter is formally given by .�; b/ with an integer
b � 1, and with � 2 Acusp.a/ being an irreducible unitary cuspidal automorphic
representation of GLa.A/.

In (1-1), one has that  i D .�i ; bi / with �i 2 Acusp.ai /, 2nC 1 D
Pr
iD1 aibi ,

and
Q
i !

bi
�i
D 1 (the condition on the central character of the parameter), following

[Arthur 2013, Section 1.4]. In order for all the  i to be of orthogonal type, the
simple parameters  i D .�i ; bi / for i D 1; 2; : : : ; r satisfy the following parity
condition: if �i is of symplectic type (i.e., L.s; �i ;

V2
/ has a pole at s D 1), then
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bi is even; and if �i is of orthogonal type (i.e., L.s; �i ;Sym2/ has a pole at s D 1),
then bi is odd. A global Arthur parameter  D �riD1.�i ; bi / is called generic if
bi D 1 for all 1� i � r .

Theorem 1.1 [Arthur 2013, Theorem 1.5.2]. For each global Arthur parameter
 2 z‰2.Sp2n/, there exists a global Arthur packet z… . The discrete spectrum of
Sp2n.A/ has the following decomposition

L2disc.Sp2n.F / nSp2n.A//Š
M

 2z‰2.Sp2n/
�2 z… .� /

�;

where z… .� / denotes the subset of z… consisting of members which occur in the
discrete spectrum of Sp2n.A/.

1B. A conjecture on the Fourier coefficients. We will use the notation in [Jiang
and Liu 2015c; 2015a] freely. Following [Jiang and Liu 2015c, Section 2], for
a symplectic partition p of 2n, or equivalently each F-stable unipotent orbit Op,
via the standard sl2.F /-triple, one may construct an F-unipotent subgroup Vp;2.
In this case, the F-rational unipotent orbits in the F-stable unipotent orbit Op are
parametrized by a datum a (see [loc. cit.] for details), which defines a character
 p;a of Vp;2.A/. This character  p;a is automorphic in the sense that it is trivial
on Vp;2.F /. The  p;a-Fourier coefficient of an automorphic form ' on Sp2n.A/ is
defined by

(1-2) ' p;a.g/ WD

Z
Vp;2.F /nVp;2.A/

'.vg/ p;a.v/
�1 dv:

We say that an irreducible automorphic representation � of Sp2n.A/ has a nonzero
 p;a-Fourier coefficient or a nonzero Fourier coefficient attached to a (symplectic)
partition p if there exists an automorphic form ' in the space of � with a nonzero
 p;a-Fourier coefficient ' p;a.g/, for some choice of a. For any irreducible auto-
morphic representation � of Sp2n.A/, as in [Jiang 2014], we define pm.�/ (which
corresponds to nm.�/ in the notation of [loc. cit.]) to be the set of all symplectic
partitions p with the properties that � has a nonzero  p;a-Fourier coefficient for
some choice of a, but for any p0 > p (with the natural ordering of partitions), �
has no nonzero Fourier coefficients attached to p0. It is generally believed (and
may be called a conjecture) that the set pm.�/ contains only one partition for any
irreducible automorphic representation � (or locally for any irreducible admissible
representation �). We refer to [Jiang and Liu 2015b, Section 3], in particular
Conjecture 3.1, for more detailed discussions on this issue.

As in [Jiang 2014], z… .� / is called the automorphic L2-packet attached to
the global Arthur parameter  . For each  of the form in (1-1), let p. / D
Œ.b1/

.a1/ � � � .br/
.ar /� be a partition of 2nC1 attached to the global Arthur parameter
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 , following the discussion in [op. cit., Section 4]. For � 2 z… .� /, the structure
of the global Arthur parameter  deduces constraints on the structure of pm.�/,
which are given by the following conjecture.

Conjecture 1.2 [Jiang 2014, Conjecture 4.2]. For any  2 z‰2.Sp2n/, let z… .� /
be the automorphic L2-packet attached to  . Then the following hold.

(1) Any symplectic partition p of 2n satisfying p > �g_;g.p. // does not belong
to pm.�/ for any � 2 z… .� /.

(2) For every � 2 z… .� /, every partition p 2 pm.�/ has the property that
p � �g_;g.p. //.

(3) There exists at least one member � 2 z… .� / having the property that
�g_;g.p. // 2 p

m.�/.

Here �g_;g denotes the Barbasch–Vogan duality map (see Definition 2.2) from the
partitions for so2nC1.C/ to the partitions for sp2n.C/.

We remark that part (2) is stronger than part (1) in Conjecture 1.2. More related
discussions can be found in [Jiang and Liu 2015b].

There has been progress toward the proof of Conjecture 1.2. When the global
Arthur parameter  D �riD1.�i ; 1/ is generic, in Conjecture 1.2, part (1) is triv-
ial, part (2) is automatic, and part (3) of Conjecture 1.2 can be viewed as the
global version of the Shahidi conjecture, namely, any global tempered L-packet
has a generic member. This can be proved following the theory of automorphic
descent developed by Ginzburg, Rallis, and Soudry [Ginzburg et al. 2011] and
the endoscopy classification of Arthur [2013]. We refer to [Jiang and Liu 2015b,
Section 3.1], in particular Theorem 3.3, for more precise discussion on this issue.
Hence Conjecture 1.2 holds for all generic global Arthur parameters, and those �
satisfying part (3) are generic cuspidal representations.

For Arthur parameters of form D .�; b/�.1GL1.A/; 1/, where � is an irreducible
cuspidal representation of GL2k.A/ and is of symplectic type, and b is even, one
has that p. /D Œb.2k/1�. In this case, part (3) of Conjecture 1.2 has been proved
by Liu in [2013a], where it is also shown that pm.�/ contains only one partition in
this particular case.

For a general global Arthur parameter  , part (1) of Conjecture 1.2 is completely
proved in [Jiang and Liu 2015a]. We remark that if we assume that pm.�/ contains
only one partition, then part (2) of Conjecture 1.2 essentially follows from parts (1)
and (3) of Conjecture 1.2 plus certain local constraints at unramified local places
as discussed in [loc. cit.]. We omit the details here. However, without knowing
that the set pm.�/ contains only one partition, part (2) of Conjecture 1.2 is also
settled in [loc. cit.] partially; namely, any symplectic partition p of 2n, for which
p > �g_;g.p. // under the lexicographical ordering, does not belong to pm.�/
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for any � 2 z… .� /. We refer to [Jiang 2014, Section 4] and also [Jiang and Liu
2015b] for more discussion on this conjecture and related topics.

1C. The objective of this paper. In this section, we begin to investigate part (3)
of Conjecture 1.2. This means that we have to construct or determine a particular
member in a given automorphic L2-packet z… .� / attached to a general global
Arthur parameter  , whose Fourier coefficients achieve the partition �g_;g.p. //.
Such members should be the distinguished members in z… .� /, following the
Whittaker normalization in the sense of Arthur [2013] for global generic Arthur
parameters. For general nongeneric global Arthur parameters, the distinguished
members in z… .� / can be certain residual representations determined by  as
conjectured by Mœglin [2008; 2011], or certain cuspidal automorphic representa-
tions, which may be explicitly constructed through the framework of endoscopy
correspondences as outlined in [Jiang 2014]. Due to the different nature of the
two construction methods, we are going to treat them separately, in order to prove
part (3) of Conjecture 1.2.

As explained in [Jiang and Liu 2015b], when the distinguished members � in a
given z… .� / are residual representations, they can be constructed explicitly from
the given cuspidal data. In this case, our method is to establish the nonvanishing
of the Fourier coefficients of those � associated to the partition �g_;g.p. //, in
terms of the nonvanishing condition (Fourier coefficients or periods) on the con-
struction data that is also defined by the given nongeneric global Arthur parameter
 . Hence, such a method can be regarded as a natural extension of the well-
known Langlands–Shahidi method from generic Eisenstein series [Shahidi 2010] to
nongeneric Eisenstein series, and in particular to the singularity of Eisenstein series,
i.e., the residues of Eisenstein series. On the other hand, this method can also be
regarded as an extension of the automorphic descent method of Ginzburg–Rallis–
Soudry for particular residual representations [Ginzburg et al. 2011] to general
residual representations.

In this paper, we are going to test our method for these nongeneric global
Arthur parameters  , whose automorphic L2-packets z… .� / contain the residual
representations that are completely determined in our previous work joint with
Zhang [Jiang et al. 2013]. Those nongeneric global Arthur parameters of Sp2n.A/
are of the following form

 D .�1; b1/�
r

�
iD2

.�i ; 1/; with b1 > 1;

which has three cases, depending on the symmetry of �1 and the relationship
between �1 and �i for i D 2; 3; : : : ; r . In each case, b � 1.

Case I:  D .�; 2bC 1/��r
iD2.�i ; 1/, where � © �i for any 2� i � r .
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Case II:  D .�; 2bC1/�.�; 1/��r
iD3.�i ; 1/, where � © �i for any 3� i � r .

Case III:  D .�; 2b/��r
iD2.�i ; 1/.

For  2 z‰2.Sp2n/, � 2Acusp.GLa/ is of orthogonal type in Case I and Case II,
and of symplectic type in Case III. Of course, the remaining �i are of orthogonal
type in all three cases.

When � is of orthogonal type, i.e., in both Case I and Case II, the corresponding
residual representations given in [Jiang et al. 2013] must be nonzero. In this paper,
we prove part (3) of Conjecture 1.2 in those two cases, and refer to Section 2 for
more details.

When � is of symplectic type and r � 2, the relation between � and �i , for
i D 2; 3; : : : ; r , is governed by the corresponding Gan–Gross–Prasad conjecture
[Gan et al. 2012], which controls the structure of the automorphic L2-packet
z… .� /. We prove part (3) of Conjecture 1.2 for Case III when z… .� / contains
residual representations. While the automorphic L2-packet z… .� / does not
contain any residual representation, the situation is more involved, and will be
left for a separate treatment in our future work. We discuss with more details in
Section 2.

We will state the main results more explicitly in Section 2. After recalling a
technical lemma from [Jiang and Liu 2015b] in Section 3, we are ready to treat
Case I in both Sections 4 and 5. Case II is treated in Section 6. The final section is
devoted to Case III. One may find more detailed description of the arguments and
methods used in the proof of those cases in each relevant section.

2. The main results

After introducing more notation and basic facts about the discrete spectrum and
Fourier coefficients attached to partitions, we will state the main results explicitly
for each case.

Throughout the paper, we let P 2nr DM
2n
r N 2n

r (with 1� r � n) be the standard
parabolic subgroup of Sp2n with Levi part M 2n

r isomorphic to GLr �Sp2n�2r and
unipotent radical N 2n

r . Also let QP 2nr .A/ D zM 2n
r .A/N 2n

r .A/ be the preimage of
P 2nr .A/ in eSp2n.A/ (the superscript 2nmay be dropped when there is no confusion).
The description of the three cases was briefly given in [Jiang and Liu 2015b]. Here
are the details.

2A. Case I.  2 z‰2.Sp2n/ is written as

(2-1)  D .�; 2bC 1/�
r

�
iD2

.�i ; 1/;

where b � 1 and � © �i for any 2 � i � r . Assume � 2 Acusp.GLa/ has central
character!� , and �i 2Acusp.GLai / has central character!�i for 2� i�r . Following
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the definition of z‰2.Sp2n/, one must have that 2nC1D a.2bC1/C
Pr
iD2 ai , and

!2bC1� �
Qr
iD2 !�i D 1. Consider the isobaric representation � D � � �2� � � �� �r

of GL2mC1.A/, where 2mC 1D aC
Pr
iD2 ai D 2nC 1� 2ab. It follows that �

has central character !� D !� �
Qr
iD2 !�i D 1 and a � 2mC 1D 2nC 1� 2ab.

By [Ginzburg et al. 2011, Theorem 3.1], � descends to an irreducible generic
cuspidal representation � of Sp2n�2ab.A/, which has the functorial transfer back
to � . As remarked before, this is part (3) of Conjecture 1.2 for the generic global
Arthur parameter

 � D .�; 1/� .�2; 1/� � � �� .�r ; 1/:

Hence L.s; � � �/ has a (simple) pole at s D 1.
Let �.�; b/ be the Speh residual representation in the discrete spectrum of

GLab.A/; see [Mœglin and Waldspurger 1989], or [Jiang et al. 2013, Section 1.2].
For any automorphic form

� 2A
�
Nab.A/Mab.F / nSp2abC2m.A/

�
�.�;b/˝�

;

following [Langlands 1976; Mœglin and Waldspurger 1995], one has a residual
Eisenstein series

E.�; s/.g/DE.g; ��.�;b/˝� ; s/:

We refer to [Jiang et al. 2013] for particular details about this family of Eisenstein
series. In particular, it is proved in [Jiang et al. 2013] that E.�; s/.g/ has a simple
pole at .bC 1/=2, which is the right-most one. We denote by E.g; �/ the residue,
which is square-integrable. They generate the residual representation E�.�;b/˝� of
Sp2n.A/. Following [Jiang et al. 2013, Section 6.2], the global Arthur parameter
of this nonzero square-integrable automorphic representation E�.�;b/˝� is exactly
 D .�; 2bC 1/��r

iD2.�i ; 1/ as in (2-1). We prove part (3) of Conjecture 1.2
for Case I.

Theorem 2.1. For any global Arthur parameter of the form

 D .�; 2bC 1/�
r

�
iD2

.�i ; 1/

with b � 1 and � © �i for any 2� i � r , the residual representation E�.�;b/˝� has
a nonzero Fourier coefficient attached to the Barbasch–Vogan duality

�so2nC1;sp2n.p. //

of the partition p. / associated to . ;SO2nC1.C//.

In order to prove Theorem 2.1, we have to precisely figure out the partition
�so2nC1;sp2n.p. //. We recall
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Definition 2.2. Given any partition pq D Œq1q2 � � � qr � for so2nC1.C/ satisfying
q1 � q2 � � � � � qr > 0, whose even parts occur with even multiplicity, let q� D
Œq1q2 � � � qr�1.qr � 1/�. Then the Barbasch–Vogan duality �so2nC1;sp2n , following
[Barbasch and Vogan 1985, Definition A1; Achar 2003, Section 3.5], is defined by

�so2nC1;sp2n.q/ WD ..q
�/Sp2n/

t;

where .q�/Sp2n is the Sp2n-collapse of q�, which is the biggest special symplectic
partition which is smaller than q�.

Following [Jiang 2014, Section 4], p. /D Œ.2bC1/a.1/2mC1�a�. As calculated
in [Jiang and Liu 2015b], when aD 2mC 1, by Definition 2.2,

�so2nC1;sp2n.p. //D Œ.a/
2b.2m/�I

when a � 2m and a is even,

�so2nC1;sp2n.p. //D Œ.2m/.a/
2b�I

and finally, when a � 2m and a is odd,

�so2nC1;sp2n.p. //D Œ.2m/.aC 1/.a/
2b�2.a� 1/�:

The proof of Theorem 2.1 goes as follows. Given a symplectic partition p
of 2n (that is, where odd parts occur with even multiplicities), denote by pSp2n

the Sp2n-expansion of p, which is the smallest special symplectic partition that is
bigger than p. In [Jiang and Liu 2015c], we proved the following theorem which
provides a crucial reduction in the proof of Theorem 2.1.

Theorem 2.3 [Jiang and Liu 2015c, Theorem 4.1]. Let � be an irreducible auto-
morphic representation of Sp2n.A/. If � has a nonzero Fourier coefficient attached
to a nonspecial symplectic partition p of 2n, then � must have a nonzero Fourier
coefficient attached to pSp2n, the Sp2n-expansion of the partition p.

If a � 2m and a is odd, by [Collingwood and McGovern 1993, Lemma 6.3.9],

Œ.2m/.aC 1/.a/2b�2.a� 1/�D Œ.2m/.a/2b�Sp2n:

Hence it suffices to prove the following theorem.

Theorem 2.4. With notation above, the following hold.

(1) If a D 2mC 1, then E�.�;b/˝� has a nonzero Fourier coefficient attached to
Œ.a/2b.2m/�.

(2) If a � 2m, then E�.�;b/˝� has a nonzero Fourier coefficient attached to
Œ.2m/.a/2b�.

Parts (1) and (2) of Theorem 2.4 will be proved in Sections 4 and 5, respectively.
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2B. Case II.  2 z‰2.Sp2n/ is written as

(2-2)  D .�; 2bC 1/� .�; 1/�
r

�
iD3

.�i ; 1/;

where b � 1 and � © �i for any 3� i � r . Assume that � 2Acusp.GLa/ has central
character !� , and �i 2Acusp.GLai / has central character !�i for 3� i � r . Then
2nC 1 D a.2b C 1/C aC

Pr
iD3 ai and !2bC1� � !� �

Qr
iD3 !�i D 1. Consider

the isobaric representation � D �3 � � � �� �r of GL2mC1.A/, where 2mC 1 DPr
iD3 ai D 2nC1�a.2bC2/. Then � has central character !� D

Qr
iD3 !�i D 1.

By [Ginzburg et al. 2011, Theorem 3.1], there is a generic � 2Acusp.Sp2m/ such
that � has the functorial transfer � and hence L.s; � � �/ is holomorphic at s D 1
in this case. For any automorphic form

� 2A
�
Na.bC1/.A/Ma.bC1/.F / nSp2a.bC1/C2m.A/

�
�.�;bC1/˝�

;

one defines a residual Eisenstein series as in Case I

E.�; s/.g/DE.g; ��.�;bC1/˝� ; s/:

By [Jiang et al. 2013], this Eisenstein series has a simple pole at b=2, which is the
right-most one. Denote the representation generated by these residues at s D b=2
by E�.�;bC1/˝� , which is square-integrable. Following [Jiang et al. 2013] and
[Shahidi 2010, Theorem 7.1.2], this residual representation E�.�;bC1/˝� is nonzero.
In particular, by Section 6.2 of [Jiang et al. 2013], the global Arthur parameter of
E�.�;bC1/˝� is exactly  D .�; 2bC 1/� .�; 1/��r

iD3.�i ; 1/ as in Case II. In
this case, we prove

Theorem 2.5. For any global Arthur parameter of the form

 D .�; 2bC 1/� .�; 1/�
r

�
iD3

.�i ; 1/

with b � 1 and � © �i for any 3� i � r , the residual representation E�.�;bC1/˝�
has a nonzero Fourier coefficient attached to the Barbasch–Vogan duality

�so2nC1;sp2n.p. //

of the partition p. / associated to . ;SO2nC1.C//.

Following [Jiang 2014, Section 4], p. /D Œ.2bC 1/a.1/a.1/2mC1�. Now by
Definition 2.2, we may calculate the partition �so2nC1;sp2n.p. // explicitly as
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follows. When a is even,

�so2nC1;sp2n.p. //D �so2nC1;sp2n.Œ.2bC 1/
a.1/2mC1Ca�/

D Œ.2bC 1/a.1/2mCa�t

D Œ.a/2bC1�C Œ.2mC a/�

D Œ.2mC 2a/.a/2b�:

When a is odd,

�so2nC1;sp2n.p. //D �so2nC1;sp2n.Œ.2bC 1/
a.1/2mC1Ca�/

D .Œ.2bC 1/a.1/2mCa�Sp2n/
t

D Œ.2bC 1/a�1.2b/.2/.1/2mCa�1�t

D Œ.a� 1/2bC1�C Œ.1/2b�C Œ.1/2�C Œ.2mC a� 1/�

D Œ.2mC 2a/.aC 1/.a/2b�2.a� 1/�:

As before, if a is odd, then, by the recipe for obtaining the Sp2n-expansion of a
symplectic partition p given in [Collingwood and McGovern 1993, Lemma 6.3.9],

Œ.2mC 2a/.aC 1/.a/2b�2.a� 1/�D Œ.2mC 2a/.a/2b�Sp2n:

Hence it suffices to prove the following theorem.

Theorem 2.6. The residual representation E�.�;bC1/˝� has a nonzero Fourier
coefficient attached to Œ.2mC 2a/.a/2b�.

The proof of Theorem 2.6 is given in Section 6, using induction on the integer b.
We note that when b D 0, the Arthur parameter is

 D 2.�; 1/�
r

�
iD3

.�i ; 1/;

which does not parametrize automorphic representations in the discrete spectrum.
Indeed, in this case, the corresponding automorphic representation constructed from
the Eisenstein series is the value at sD0, which we still denote by E�.�;1/˝� DE�˝� .
It is clear that in this case, the partition p. / is the trivial partition. On the other
hand, following [Shahidi 2010, Theorem 7.1.3], the representation E�.�;1/˝� has a
nonzero Whittaker–Fourier coefficient. In other words, Theorem 2.6 still holds for
b D 0. As we proceed in Section 6, the case of b D 0 will serve as the base of the
induction argument.

2C. Case III.  2 z‰2.Sp2n/ is written as

(2-3)  D .�; 2b/�
r

�
iD2

.�i ; 1/;
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where b � 1. In this case, � is of symplectic type (and hence a D 2k is even),
while �i for all 2� i � r are of orthogonal type. Assume that � 2Acusp.GLa/ has
central character !� , and �i 2Acusp.GLai / has central character !�i for 2� i � r .
By the definition of Arthur parameters, one has that 2nC 1 D 2ab C

Pr
iD2 ai ,

and
Qr
iD2 !�i D 1. Consider the isobaric representation � D �2 � � � �� �r of

GL2mC1.A/, where 2mC 1 D
Pr
iD2 ai D 2nC 1� 2ab. Hence � has central

character !� D
Qr
iD2 !�i D 1.

By [Ginzburg et al. 2011, Theorem 3.1], there is a generic � 2Acusp.Sp2m/ that
has the functorial transfer � . Then we define a residual Eisenstein series

E.�; s/.g/DE.g; ��.�;b/˝� ; s/

associated to any automorphic form

� 2A
�
Nab.A/Mab.F / nSp2abC2m.A/

�
�.�;b/˝�

:

By [Jiang et al. 2013], this Eisenstein series may have a simple pole at b=2, which is
the right-most one. Denote the representation generated by these residues at sD b=2
by E�.�;b/˝� . This residual representation is square-integrable. If L

�
1
2
; � ��

�
¤ 0,

the residual representation E�˝� is nonzero, and hence by the induction argument
in [Jiang et al. 2013], the residual representation E�.�;b/˝� is also nonzero. Finally,
following [op. cit., Section 6.2], we see that the global Arthur parameter of E�.�;b/˝�
is exactly  D .�; 2b/��r

iD2.�i ; 1/ as in (2-3).

Theorem 2.7. Assume that aD 2k and L
�
1
2
; � � �

�
¤ 0. If the residual represen-

tation E�˝� of Sp4kC2m.A/, with � © 1Sp0.A/, has a nonzero Fourier coefficient
attached to the partition Œ.2k C 2m/.2k/�, then, for any b � 1, the residual rep-
resentation E�.�;b/˝� has a nonzero Fourier coefficient attached to the partition
Œ.2kC 2m/.2k/2b�1�.

We remark that if � Š 1Sp0.A/,
�
1
2
;
�
DL

�
1
2
; � ��

�
¤ 0. In this case, [Liu 2013a,

Theorem 4.2.2] shows that pm.E�.�;b/˝� /D fŒ.2k/2b�g.
In fact, the assumption that the residual representation E�˝� of Sp4kC2m.A/,

with � © 1Sp0.A/, has a nonzero Fourier coefficient attached to the partition
Œ.2k C 2m/.2k/� is exactly [Ginzburg et al. 2004, Conjecture 6.1], and hence
Theorem 2.7 has a close connection to the Gan–Gross–Prasad conjecture [Gan et al.
2012]. We will come back to this issue in our future work.

In this case, p. / D Œ.2b/a.1/2mC1�, and following the calculation in [Jiang
and Liu 2015b],

�so2nC1;sp2n.p. //D Œ.aC 2m/.a/
2b�1�;

where aD 2k is even. The proof of Theorem 2.7 is given in Section 7.
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When L
�
1
2
; � � �

�
is zero for the Arthur parameter in (2-3), the corresponding

automorphic L2-packet z… .� / are expected to contain all cuspidal automorphic
representations if it is not empty. We are going to apply the construction of endo-
scopy correspondences outlined in [Jiang 2014] to construct the distinguished
cuspidal members in z… .� /. The details for this case will be considered in our
future work. See [Jiang and Liu 2015b] for a brief discussion in this aspect.

3. A basic lemma

We recall a basic lemma from [Jiang and Liu 2015b], which will be a technical key
step in the proofs of this paper. Let H be a reductive group defined over F. We
first recall [Jiang and Liu 2013, Lemma 5.2], which is also formulated in a slightly
different version in [Ginzburg et al. 2011, Corollary 7.1]. Note that the proof of
[Jiang and Liu 2013, Lemma 5.2] is valid for H.A/.

Let C be an F-subgroup of a maximal unipotent subgroup of H, and let  C be
a nontrivial character of ŒC �D C.F / nC.A/. Suppose that zX; zY are two unipotent
F-subgroups, satisfying the following conditions:

(1) zX and zY normalize C ;

(2) zX \ C and zY \ C are normal in zX and zY , respectively, . zX \ C/ n zX and
. zY \C/ n zY are abelian;

(3) zX.A/ and zY .A/ preserve  C ;

(4)  C is trivial on . zX \C/.A/ and . zY \C/.A/;

(5) Œ zX; zY �� C ;

(6) there is a nondegenerate pairing . zX \C/.A/� . zY \C/.A/! C�, given by
.x; y/ 7!  C .Œx; y�/, which is multiplicative in each coordinate, and identifies
. zY \C/.F / n zY .F / and . zX \C/.F / n zX.F / with the duals of the subgroups
zX.F /. zX \C/.A/ n zX.A/ and zY .F /. zY \C/.A/ n zY .A/, respectively.

Let B D C zY and D D C zX , and extend  C trivially to characters of ŒB� D
B.F / n B.A/ and ŒD� D D.F / nD.A/, which will be denoted by  B and  D ,
respectively.

Lemma 3.1 [Jiang and Liu 2013, Lemma 5.2]. Assume that .C;  C ; zX; zY / satisfies
all the above conditions. Let f be an automorphic form on H.A/. ThenZ

ŒC �

f .cg/ �1C .c/ dc � 0; for all g 2H.A/;

if and only if Z
ŒD�

f .ug/ �1D .u/ du� 0; for all g 2H.A/;
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if and only if Z
ŒB�

f .vg/ �1B .v/ dv � 0; for all g 2H.A/:

For simplicity, we always use  C to denote its extensions  B and  D when we
apply Lemma 3.1 to various circumstances. Lemma 3.1 can be extended as follows
and will be a technical key in this paper.

Lemma 3.2 [Jiang and Liu 2015b, Lemma 6.2]. Assume that .C;  C ; zX; zY / satis-
fies the following conditions: zX D f zXigriD1, zY D fzY igriD1, and for 1� i � r , each
quadruple

. zXi�1 � � � zX1C zYr � � � zY iC1;  C ; zXi ; zY i /

satisfies all the conditions of Lemma 3.1. Let f be an automorphic form on H.A/.
Then Z

Œ zXr ��� zX1C�

f .xcg/ �1C .c/ dc dx � 0; for all g 2H.A/;

if and only ifZ
ŒC zYr ��� zY1�

f .cyg/ �1C .c/ dy dc � 0; for all g 2H.A/:

The proof of this lemma is carried out by using Lemma 3.1 inductively, and was
given with full details in [loc. cit.].

4. Proof of part (1) of Theorem 2.4

In this section, we assume that aD 2mC 1 and show that E�.�;b/˝� has a nonzero
Fourier coefficient attached to p WD Œ.2mC 1/2b.2m/�.

Proof of part (1) of Theorem 2.4. We will prove the theorem by induction on b.
Note that when b D 0, E�.�;b/˝� Š � which has a nonzero Fourier coefficient
attached to Œ.2m/� since � is generic. Now assume that E�.�;b�1/˝� has a nonzero
 Œ.2mC1/2b�2.2m/�;˛-Fourier coefficient attached to Œ.2mC1/2b�2.2m/�, for some
˛ 2F �=.F �/2.

Take any ' 2 E�.�;b/˝� and consider its  p;˛-Fourier coefficients attached to p:

(4-1) ' p;˛ .g/D

Z
ŒVp;2�

'.vg/ �1p;˛.v/ dv:

For definitions of the unipotent group Vp;2 and its character  p;˛ , see [Jiang and Liu
2015c, Section 2]. By [op. cit., Corollary 2.4], the integral in (4-1) is nonvanishing
if and only if the following integral is nonvanishing:

(4-2)
Z
ŒY1Vp;2�

'.vg/ �1p;˛.v/ dv;
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where Y1 is defined in [Jiang and Liu 2015c, (2.5)] corresponding to the partition
Œ.2mC 1/2b.2m/� and the character  p;˛ extends to Y1Vp;2 trivially.

Assume that T is the maximal split torus in Sp2b.2mC1/C2m, consisting of
elements

diag.t1; t2; : : : ; tb.2mC1/Cm; t
�1
b.2mC1/Cm; : : : ; t

�1
2 ; t

�1
1 /:

Let !1 be the Weyl element of Sp2b.2mC1/C2m, sending elements t 2 T to the
torus elements

(4-3) t 0 D diag.t .0/; t .1/; t .2/; : : : ; t .m/; t .mC1/; t .m/;�; : : : ; t .2/;�; t .1/;�; t .0/;�/;

where t .0/ D diag.t1; t2; : : : ; t2mC1/, and with e D 2mC 1,

t .mC1/ D diag.teCmC1; : : : ; t.b�1/eCmC1; t
�1
be�m; : : : ; t

�1
2e�m/

and

t .j / D diag.teCj ; : : : ; t.b�1/eCj ; t
�1
be�jC1; : : : ; t

�1
2e�jC1; tbeCj /;

for 1� j �m.
Now identify Sp.2b�1/.2mC1/C2m with its image in Sp2b.2mC1/C2m under

the embedding g 7! diag.I2mC1; g; I2mC1/, and denote the restriction of !1 to
Sp.2b�1/.2mC1/C2m by !01. We conjugate cross the integration variables by !1
from the left; then the integral in (4-2) becomes

(4-4)
Z
ŒUp;2�

'.u!1g/ 
!1
p;˛.u/

�1 du;

where Up;2 D !1Y1Vp;2!�11 , and  !1p;˛.u/D  p;˛.!�11 u!1/.
Now, we describe the structure of elements in Up;2, each of which has the form

(4-5) uD

0@z2mC1 q1 q2
0 u0 q�1
0 0 z�2mC1

1A0@I2mC1 0 0

p1 I.2b�2/.2mC1/C2m 0

p2 p�1 I2mC1

1A;
where z2mC1 2 V2mC1, the standard maximal unipotent subgroup of GL2mC1;
u0 2 UŒ.2mC1/2b�2.2m/�;2 WD !01Y2VŒ.2mC1/2b�2.2m/�;2!

0�1
1 with Y2 as in [Jiang

and Liu 2015c, (2.5)] corresponding to the partition Œ.2mC 1/2b�2.2m/�; and
pi ; qi , 1� i � 2, are described as follows:

� q1 2M.2mC1/�..2b�2/.2mC1/C2m/, such that q1.i; j /D 0 for 1� i � 2mC 1
and 1� j � .2b� 2/C .2b� 1/.i � 1/.

� p1 2M..2b�2/.2mC1/C2m/�.2mC1/, such that p1.i; j /D 0 for 1� j � 2mC1
and .2b� 2/C .2b� 1/.i � 1/C 1� i � .2b� 2/.2mC 1/C 2m.

� q2 2M.2mC1/�.2mC1/, symmetric with respect to the secondary diagonal, such
that q2.i; j /D 0 for 1� i � 2mC 1 and 1� j � i .
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� p2 2M.2mC1/�.2mC1/, symmetric with respect to the secondary diagonal, such
that p2.i; j /D 0 for 1� i � 2mC 1 and 1� j � i .

Note that

 !1p;˛

0@z2mC1 q1 q2
0 I.2b�2/.2mC1/C2m q�1
0 0 z�2mC1

1AD  � 2mX
iD1

z2mC1.i; i C 1/

�
:

Next, we apply Lemma 3.2 to fill the zero entries in q1; q2 using the nonzero
entries in p1; p2. To proceed, we need to define a sequence of one-dimensional
root subgroups and put them in a correct order.

Let Xj , with 1 � j � .2b � 2/C 1, be the one-dimensional subgroups corre-
sponding to the roots such that the corresponding entries are in the first row of q1
or q2 and are identically zero, from right to left. For 1 < i �m, let Xj , with� i�1X
kD1

Œ.2b�2/C.2b�1/.k�1/Ck�

�
C1� j �

iX
kD1

Œ.2b�2/C.2b�1/.k�1/Ck�;

be the one-dimensional subgroups corresponding to the roots such that the corre-
sponding entries are in the i -th row of q1 or q2 and are identically zero, from right
to left.

Let Yj , with 1�j �.2b�2/C1, be the one-dimensional subgroups corresponding
to the roots such that the corresponding entries are in the second column of p1 or
p2 and are not identically zero, from bottom to top. For 1 < i �m, let Yj , with

1C

i�1X
kD1

Œ.2b�2/C.2b�1/.k�1/Ck�� j �

iX
kD1

Œ.2b�2/C.2b�1/.k�1/Ck�;

be the one-dimensional subgroups corresponding to the roots such that the corre-
sponding entries are in the .i C 1/-th column of p1 or p2 and are not identically
zero, from bottom to top.

Let W1 be the subgroup of Up;2 such that the entries corresponding to the
one-dimensional subgroups Yj above, with

1� j � ` WD

mX
kD1

Œ.2b� 2/C .2b� 1/.k� 1/C k�;

are all identically zero. And let  W1 D  
!1
p;˛jW1 . Then .W1;  W1 ; fXj g

`
j ; fYj g

`
j /

satisfies all the conditions for Lemma 3.2. Hence, by that lemma, the integral in
(4-4) is nonvanishing if and only if the following integral is nonvanishing:

(4-6)
Z
ŒW2�

'.w!1g/ W2.w/
�1 dw;
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where W2 WD
Q`
jD1XjW1 and  W2 is the character on W2 extended trivially

from  W1 .
Now we consider the i-th row of q1 and q2, with mC 1 � i � 2m. We will

continue to apply Lemma 3.2 to fill the zero entries in q1 and q2, row by row,
from the .mC 1/-th row to 2m-th row. But for each mC 1 � i � 2m, before
we apply Lemma 3.2 as above, we need to take the Fourier expansion along the
one-dimensional root subgroup X2ei . For example, for i DmC 1, we first take the
Fourier expansion of the integral in (4-6) along the one-dimensional root subgroup
X2emC1 . We will get two kinds of Fourier coefficients corresponding to the orbits
of the dual of ŒX2emC1 � WD X2emC1.F / n X2emC1.A/: the trivial orbit and the
nontrivial one. For the Fourier coefficients attached to the nontrivial orbit, we can
see that there is an inner integral

'
 
Œ.2mC2/12b.2mC1/�2�;ˇ; ˇ 2 F �;

which is identically zero by [Jiang and Liu 2015a, Proposition 6.4]. Therefore only
the Fourier coefficient attached to the trivial orbit, which actually equals to the
integral in (4-6), survives. Then, we can apply the Lemma 3.2 to the .mC 1/-th
row of q1 and q2 similarly as above.

After considering all the i-th row of q1 and q2, mC 1 � i � 2m as above, we
get that the integral in (4-6) is nonvanishing if and only if the following integral is
nonvanishing:

(4-7)
Z
ŒW3�

'.w!1g/ W3.w/
�1 dw;

where W3 has elements of the following form:

(4-8) w D

0@z2mC1 q1 q2
0 u0 q�1
0 0 z�2mC1

1A;
where z2mC1 2 V2mC1, the standard maximal unipotent subgroup of GL2mC1;

u0 2 UŒ.2mC1/2b�2.2m/�;2 WD !
0
1Y2VŒ.2mC1/2b�2.2m/�;2!

0�1
1

with Y2 as in [op. cit., (2.5)] corresponding to the partition Œ.2mC 1/2b�2.2m/�;

q1 2M.2mC1/�..2b�2/.2mC1/C2m/;

such that q1.2mC 1; j /D 0 for 1� j � .2b� 2/.2mC 1/C 2m;

q2 2M.2mC1/�.2mC1/;
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symmetric with respect to the secondary diagonal, such that q2.2mC 1; 1/ D 0.
Also,

 W3

0@z2mC1 q1 q2
0 I.2b�2/.2mC1/C2m q�1
0 0 z�2mC1

1AD  � 2mX
iD1

z2mC1.i; i C 1/

�
:

Now consider the Fourier expansion of the integral in (4-7) along the one-
dimensional root subgroup X2e2mC1 . By the same reason as above, only the Fourier
coefficient corresponding to the trivial orbit of the dual of ŒX2e2mC1 � survives,
which is actually equal to the integral in (4-7):

(4-9)
Z
ŒW4�

'.w!1g/ W4.w/
�1 dw;

where elements in W4 have the same structure as in (4-8), except that q2.2mC1; 1/
is not identically zero.

It is easy to see that the integral in (4-9) has an inner integral which is exactly
' N12m , using notation in Lemma 4.2 below. On the other hand, we know that by
Lemma 4.2 below, ' N12m D '

Q N
12mC1 . Therefore, the integral in (4-9) becomes

(4-10)
Z
ŒW5�

'.w!1g/ W5.w/
�1 dw;

where elements in W5 are of the form:

w D w.z2mC1; u
0; q1; q2/D

0@z2mC1 q1 q2
0 u0 q�1
0 0 z�2mC1

1A;
where z2mC1 2 V2mC1, the standard maximal unipotent subgroup of GL2mC1;

u0 2 UŒ.2mC1/2b�2.2m/�;2 WD !
0
1Y2VŒ.2mC1/2b�2.2m/�;2!

0�1
1

with Y2 as in [loc. cit.] corresponding to the partition Œ.2mC 1/2b�2.2m/�;

q1 2M.2mC1/�..2b�2/.2mC1/C2m/;

and q2 2M.2mC1/�.2mC1/, symmetric with respect to the secondary diagonal. And

 W5

0@z2mC1 q1 q2
0 I.2b�2/.2mC1/C2m q�1
0 0 z�2mC1

1AD  � 2mX
iD1

z2mC1.i; i C 1/

�
:

Hence, the integral in (4-10) can be written as

(4-11)
Z
W6

'P2mC1.w!1g/ W6.w/
�1 dw;

whereW6 is a subgroup ofW5 consisting of elements of the formw.z2mC1; u
0; 0; 0/,

 W6 D W5 jW6 , and 'P2mC1 is the constant term of ' along the parabolic subgroup
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P2mC1 DM2mC1N2mC1 of Sp2b.2mC1/C2m with the Levi subgroup isomorphic
to GL2mC1 �Sp.2b�2/.2mC1/C2m.

By Lemma 4.1 below, 'P2mC1.w!1g/ is an automorphic form in � j � j�b ˝
E�.�;b�1/˝� when restricted to the Levi subgroup. Note that the restriction of
 W5 to the z2mC1-part gives a Whittaker coefficient of � , and the restriction to
the u0-part gives a  Œ.2mC1/2b�2.2m/�;˛-Fourier coefficient of E�.�;b�1/˝� up to
the conjugation of the Weyl element !01. On the other hand, � is generic, and
by induction assumption, E�.�;b�1/˝� has a nonzero  Œ.2mC1/2b�2.2m/�;˛-Fourier
coefficient. Therefore, we conclude that E�.�;b/˝� has a nonzero  p;˛-Fourier
coefficient attached to the partition p D Œ.2mC 1/2b.2m/�. This completes the
proof of part (1) of Theorem 2.4, up to Lemmas 4.1 and 4.2, which are stated
below. �

Note that Lemmas 4.1 and 4.2 are analogs of [Liu 2013a, Lemmas 4.2.4 and 4.2.6],
with similar arguments, and hence we state them without proofs.

Lemma 4.1. Let Pai DMaiNai , with 1� i � b and a � 2mC 1, be the parabolic
subgroup of Sp2abC2m with Levi part

Mai Š GLai �Spa.2b�2i/C2m :

Let ' be an arbitrary automorphic form in E�.�;b/˝� . Denote by 'Pai .g/ the
constant term of ' along Pai . Then, for 1� i � b,

'Pai 2A
�
Nai .A/Mai .F / nSp2abC2m.A/

�
�.�;i/j � j�.2bC1�i/=2˝E�.�;b�i/˝�

:

Note that when b D i , E�.�;b�i/˝� D � .

Lemma 4.2. Let N1p be the unipotent radical of the parabolic subgroup P1p of
Sp2b.2mC1/C2m with the Levi part being GL�p1 �Sp2b.2mC1/C2m�2p. Let

 N1p .n/ WD  .n1;2C � � �Cnp;pC1/ and Q N1p .n/ WD  .n1;2C � � �Cnp�1;p/

be two characters of N1p . For any automorphic form ' 2 E�.�;b/˝� , define  N1p
and Q N1p-Fourier coefficients as follows:

(4-12) ' N1p .g/ WD

Z
ŒN1p �

'.ng/ N1p .n/
�1 dn

and

(4-13) '
Q N1p .g/ WD

Z
ŒN1p �

'.ng/ Q N1p .n/
�1 du:

Then ' N1p � 0 for all p � 2mC 1, and ' N12m D '
Q N
12mC1 .
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5. Proof of part (2) of Theorem 2.4

In this section, we assume that a � 2m and � is  ˛-generic for ˛ 2 F �=.F �/2,
and show that E�.�;b/˝� has a nonzero Fourier coefficient attached to Œ.2m/.a/2b�.

First, we construct a residual representation of eSp2ab.A/ as follows. For any Q� 2
A
�
Nab.A/ zMab.F / n eSp2ab.A/

�
 �˛�.�;b/

, following [Mœglin and Waldspurger
1995], an residual Eisenstein series can be defined by

zE. Q�; s/.g/D
X

2Pab.F /nSp2ab.F /

�s Q�.g/:

It converges absolutely for real part of s large and has meromorphic continuation
to the whole complex plane C. By similar argument as that in [Jiang et al. 2013],
this Eisenstein series has a simple pole at b=2, which is the right-most one. Denote
the representation generated by these residues at s D b=2 by QE�.�;b/. This residual
representation is square-integrable.

We separate the proof of part (2) of Theorem 2.4 into three steps:

Step (1) E�.�;b/˝� has a nonzero Fourier coefficient attached to the partition
Œ.2m/12ab� with respect to the character  Œ.2m/12ab�;˛ (for definition, see [Jiang
and Liu 2015c, Section 2]).

Step (2) QE�.�;b/ is irreducible. Let D2abC2m2m; ˛ .E�.�;b/˝� / be the  ˛-descent of
E�.�;b/˝� [Ginzburg et al. 2011, Section 3.2]. Then, as a representation of eSp2ab.A/,
it is square-integrable and contains the whole space of the residual representation
QE�.�;b/.

Step (3) QE�.�;b/ has a nonzero Fourier coefficient attached to the symplectic partition
Œ.a/2b�.

Proof of part (2) of Theorem 2.4. From the results in steps (1)–(3) above, we can see
that E�.�;bC1/˝� has a nonzero Fourier coefficient attached to the composite parti-
tion Œ.2m/12ab�ı Œ.a/2b� (for the definition of composite partitions and the attached
Fourier coefficients, we refer to [Ginzburg et al. 2003, Section 1]). Therefore, by
[Jiang and Liu 2015c, Lemma 3.1] or [Ginzburg et al. 2003, Lemma 2.6], E�.�;b/˝�
has a nonzero Fourier coefficient attached to Œ.2m/.a/2b�, which completes the
proof of the part (2) of Theorem 2.4. �

5A. Proof of step (1). Note that by [Ginzburg et al. 2003, Lemma 1.1], E�.�;b/˝�
has a nonzero Fourier coefficient attached to the partition Œ.2m/12ab� with respect
to the character  Œ.2m/12ab�;˛ if and only if the  ˛-descent D2abC2m2m; ˛ .E�.�;b/˝� /
of E�.�;b/˝� is not identically zero as a representation of eSp2ab.A/.

Recall that P 2lr DM
2l
r N

2l
r (with 1� r � l) is the standard parabolic subgroup

of Sp2l with Levi part M 2l
r isomorphic to GLr �Sp2l�2r and N 2l

r the unipotent
radical. QP 2lr .A/ is the preimage of P 2lr .A/D zM 2l

r .A/N
2l
r .A/ in eSp2l.A/.
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Take any � 2 E�.�;b/˝� ; we will calculate the constant term of the Fourier–Jacobi
coefficient FJ �

 ˛m�1
.�/ along P 2abr , which is denoted by CN 2abr

�
FJ �
 ˛m�1

.�/
�
, where

1� r � ab.
By [Ginzburg et al. 2011, Theorem 7.8],

(5-1) CN 2abr

�
FJ �
 ˛m�1

.�/
�

D

X
0�k�r

2P 1
r�k;1k

.F /nGLr .F /

Z
L.A/

�1.i.�//FJ
�
 ˛
m�1Ck

.CN 2abC2mr�k

�
�
�
/. O�ˇ/ d�:

We explain the notation used in (5-1) as follows: N 2abC2m
r�k denotes the unipotent

radical of the parabolic subgroup P 2abC2mr�k of Sp2abC2m with the Levi subgroup
GLr�k �Sp2abC2m�2rC2k , and P 1r�k;1k is a subgroup of GLr consisting of ma-
trices of the form �

g x

0 z

�
;

with z 2 Uk , the standard maximal unipotent subgroup of GLk . For g 2 GLj ,
with j � abCm, Og D diag.g; I2abC2m�2j ; g�/, and L is a unipotent subgroup,
consisting of matrices of the form

�D

�
Ir 0

x Im

�̂
with i.�/ in the last row of x, and

ˇ D

�
0 Ir
Im 0

�̂
:

We assume that � D �1˝ �2, with �1 2 S.Ar/ and �2 2 S.Aab�r/. Finally, the
Fourier–Jacobi coefficients satisfy the identity

FJ �2
 ˛m�1Ck

�
CN 2abC2mr�k

.�/
�
. O�ˇ/ WD FJ �2

 ˛m�1Ck

�
CN 2abC2mr�k

.�. O�ˇ/�/
�
.I /;

with �. O�ˇ/ denoting the right translation by O�ˇ, where the function is regarded
as taking first the constant term CN 2abC2mr�k

.�. O�ˇ/�/, and then after restricted to
Sp2abC2m�2rC2k.A/, taking the Fourier–Jacobi coefficient

FJ �2
 ˛m�1Ck

;

which is a map taking automorphic forms on Sp2abC2m�2rC2k.A/ to those oneSp2ab�2r.A/.
By the cuspidal support of �, CN 2abC2mr�k

.�/ is identically zero, unless k D r or
r � k D la with 1 � l � b. When k D r , since Œ.2mC 2r/12ab�2r � is bigger
than �so2nC1.C/;sp2n.C/.p. // under the lexicographical ordering, by [Jiang and
Liu 2015a, Proposition 6.4; Ginzburg et al. 2003, Lemma 1.1], FJ �2

 ˛m�1Cr
.�/ is
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identically zero, and hence the corresponding term is zero. When r � k D la, with
1� l � b and 1� k � r , then by Lemma 4.1, after restricting to Sp2a.b�l/C2m.A/,
CN 2abC2mr�k

.�. O�ˇ/�/ becomes a form in E�.�;b�l/˝� whose Arthur parameter is

 0 D .�; 2b� 2l C 1/�
r

�
iD2

.�i ; 1/:

Since Œ.2mC 2k/12a.b�l/�2k� is bigger than �so2n0C1.C/;sp2n0 .C/.p. 
0// under the

lexicographical ordering, where 2n0 D 2a.b� l/C 2m, by [Jiang and Liu 2015a,
Proposition 6.4; Ginzburg et al. 2003, Lemma 1.1], it follows that

FJ �2
 ˛m�1Ck

�
CN 2abC2mr�k

.�. O�ˇ/�/
�

is also identically zero, and hence the corresponding term is also zero. Therefore,
the only possibilities that

CN 2abr

�
FJ �
 ˛m�1

.�/
�
¤ 0

are r D la with 1 � l � b, and k D 0. To prove that FJ �
 ˛m�1

.�/ is not identically
zero, we just have to show that

CN 2abr

�
FJ �
 ˛m�1

.�/
�
¤ 0 for some r:

Let r D ab; then

(5-2) CN 2abab

�
FJ �
 ˛m�1

.�/
�
D

Z
L.A/

�1.i.�//FJ
�2
 ˛m�1

�
CN 2abC2mab

.�/
�
.�ˇ/ d�:

By Lemma 4.1, when restricted to GL2ab.A/�Sp2m.A/,

CN 2abC2mab
.�/ 2 ı

1=2

P
2abC2m
ab

jdetj�
bC1
2 �.�; b/˝ �:

Clearly, the integral in (5-2) is not identically zero if and only if � is  ˛-generic.
By assumption, � is  ˛-generic, and hence

FJ �
 ˛m�1

.�/

is not identically zero. Therefore, E�.�;b/˝� has a nonzero Fourier coefficient
attached to the partition Œ.2m/12ab� with respect to the character  Œ.2m/12ab�;˛.
This completes the proof of step (1).

5B. Proof of step (2). The proof of irreducibility of QE�.�;b/ is similar to that of
QE�.�;1/ which is given in the proof of [Ginzburg et al. 2011, Theorem 2.1]. To show
the square-integrable residual representation QE�.�;b/ is irreducible, it suffices to
show that at each local place v,

(5-3) Ind
zSp2ab.Fv/
QPab.Fv/

� �˛v �.�v; b/j � j
b
2
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has a unique irreducible quotient, where we assume that  Š˝v v , Pab is the par-
abolic subgroup of Sp2ab with Levi subgroup isomorphic to GLab , and QPab.Fv/ is
the preimage of Pab.Fv/ in eSp2ab.Fv/. Note that�.�v; b/ is the unique irreducible
quotient of the following induced representation

IndGLab.Fv/
Q
ab
.Fv/

�vj � j
b�1
2 ˝ �vj � j

b�3
2 ˝ � � �˝ �vj � j

1�b
2 ;

where Qab is the parabolic subgroup of GLab with Levi subgroup isomorphic to
GL�ba . Let Pab be the parabolic subgroup of Sp2ab with Levi subgroup isomorphic
to GL�ba , and QPab .Fv/ is the preimage of Pab .Fv/ in eSp2ab.Fv/. We just have to
show that the following induced representation has a unique irreducible quotient

(5-4) Ind
zSp2ab.Fv/
QP
ab
.Fv/

� �˛v �vj � j
2b�1
2 ˝ �vj � j

2b�3
2 ˝ � � �˝ �vj � j

1
2 :

Since �v is generic and unitary, by [Tadić 1986; Vogan 1986], �v is fully parabolic,
induced from its Langlands data with exponents in the open interval

�
�
1
2
; 1
2

�
.

Explicitly, we can assume that

�v Š �1j � j
˛1 � �2j � j

˛2 � � � � � �r j � j
˛r ;

where the �i are tempered representations, ˛i 2R, and 1
2
>˛1>˛2> � � �>˛r >�

1
2

.
Therefore, the induced representation in (5-4) can be written as

� �˛v �1j � j
2b�1
2
C˛1 � �2j � j

2b�1
2
C˛2 � � � � � �r j � j

2b�1
2
C˛r

��1j � j
2b�3
2
C˛1 � �2j � j

2b�3
2
C˛2 � � � � � �r j � j

2b�3
2
C˛r

� � � � � �1j � j
1
2
C˛1 � �2j � j

1
2
C˛2 � � � � � �r j � j

1
2
C˛r Ì 1 zSp0.Fv/

:

Since ˛i 2R and 1
2
>˛1>˛2> � � �>˛r >�

1
2

, we can easily see that the exponents
satisfy

2b�1

2
C˛1 >

2b�1

2
C˛2 > � � �>

2b�1

2
C˛r

>
2b�3

2
C˛1 >

2b�3

2
C˛2 > � � �>

2b�3

2
C˛r

> � � �>
1

2
C˛1 >

1

2
C˛2 > � � �>

1

2
C˛r > 0:

By Langlands classification of metaplectic groups (see [Borel and Wallach 2000;
Ban and Jantzen 2013]), one can see that the induced representation in (5-4) has a
unique irreducible quotient which is the Langlands quotient. This completes the
proof of irreducibility of QE�.�;b/.

To prove the square-integrability of D2abC2m2m; ˛ .E�.�;b/˝� /, we need to calculate
the automorphic exponent attached to the nontrivial constant term considered in
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step (1); r D ab, and for definition of automorphic exponent see [Mœglin and
Waldspurger 1995, I.3.3]. For this, we need to consider the action of

g D diag.g; g�/ 2 GLab.A/� eSp0.A/:

Since r D ab,

ˇ D

�
0 Iab
Im 0

�̂
:

Let
Qg WD ˇ diag.Im; g; Im/ˇ�1 D diag.g; I2m; g�/:

Then changing variables in (5-2) via � 7! Qg� Qg�1 will give a Jacobian jdetgj�m.
On the other hand, by [Ginzburg et al. 2011, Formula (1.4)], the action of g on �1
gives  �˛ .detg/jdetgj1=2. Therefore, g acts by �.�; b/.g/ with character

ı
1=2

P
2abC2m
ab

. Qg/jdetgj�
bC1
2 jdetgj�m �˛ .detg/jdetgj

1
2

D  �˛ .detg/ı1=2
P 2abab

.g/jdetgj�
b
2 :

Therefore, as a function on GLab.A/� eSp0.A/,

(5-5) CN 2abab

�
FJ �
 ˛m�1

.�/
�
2  �˛ı

1=2

P 2abab

jdet. � /j�
b
2�.�; b/˝ 1 zSp0.A/

:

Since, the cuspidal exponent of �.�; b/ isn�
1�b

2
;
3�b

2
; : : : ;

b�1

2

�o
;

the cuspidal exponent of CN 2abab

�
FJ �
 ˛m�1

.�/
�

isn�
1�2b

2
;
3�2b

2
; : : : ;�

1

2

�o
:

Hence, by Langlands square-integrability criterion [Mœglin and Waldspurger 1995,
Lemma I.4.11], the automorphic representation D2abC2m2m; ˛ .E�.�;b/˝� / is square-
integrable.

From (5-5), it is easy to see that as a representation of GLab.A/� eSp0.A/,

(5-6) CN 2abab

�
D2abC2m2m; ˛ .E�.�;b/˝� /

�
D  �˛ı

1=2

P 2abab

jdet. � /j�
b
2�.�; b/˝1 zSp0.A/

:

From the cuspidal support of the Speh residual representation �.�; b/ of GLab.A/,
one can now easily see that

CN 2ab
ab

�
D2abC2m2m; ˛ .E�.�;b/˝� /

�
D  �˛ı

1=2

P 2ab
ab

� j � j
1�2b
2 ˝ � j � j

3�2b
2 ˝ � � �˝ � j � j�

1
2 ˝ 1 zSp0.A/

;

where N 2ab
ab is the unipotent radical of the parabolic subgroup P 2abab with Levi

isomorphic to GL�ba . By [op. cit., Corollary 3.14(ii)], any noncuspidal irreducible
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summand of D2abC2m2m; ˛ .E�.�;b/˝� / must be contained in the space QE�˝b;ƒ, which is
the residual representation generated by residues of the Eisenstein series associated
to the induced representation

Ind
zSp2ab.A/
QP 2ab
ab

.A/
 �˛� j � j

s1 ˝ � j � js2 ˝ � � �˝ � j � jsb;

at the point

ƒD
n
1�2b

2
;
3�2b

2
; : : : ;

�1

2

o
:

Since the Speh residual representation �.�; b/ of GLab.A/ is irreducible, by taking
residues in stages, one can easily see that the space of the residual representation
QE�˝b;ƒ is exactly identical to that of QE�.�;b/. Therefore, any noncuspidal irreducible
summand of D2abC2m2m; ˛ .E�.�;b/˝� / must be contained in the space QE�.�;b/. Hence,
the descent representation D2abC2m2m; ˛ .E�.�;b/˝� / has a nontrivial intersection with
the space of the residual representation QE�.�;b/. Since we have seen that QE�.�;b/
is irreducible, D2abC2m2m; ˛ .E�.�;b/˝� / must contain the whole space of the residual
representation QE�.�;b/. This completes the proof of step (2).

5C. Proof of step (3). The proof of the fact that QE�.�;b/ has a nonzero Fourier
coefficient attached to the symplectic partition Œ.a/2b� is very similar to the proof of
[Liu 2013a, Theorem 4.2.2], if a is even. The idea is to apply Lemma 3.2 repeatedly
and use induction on b. Note that the case of QE�.�;1/ has already been proved in
[Ginzburg et al. 2011, Theorem 8.1]. We omit the details here for this case.

In the following, we assume that a D 2kC 1 and prove QE�.�;b/ has a nonzero
Fourier coefficient attached to the symplectic partition p WD Œ.2kC1/2b� by induction
on b. When bD 1, it has been proved in [op. cit., Theorem 8.2], we will use similar
idea here. Assume that QE�.�;b�1/ has a nonzero Fourier coefficient attached to the
symplectic partition Œ.2kC 1/2b�2�.

Take any ' 2 QE�.�;b/; its Fourier coefficients attached to p are of the following
form

(5-7) ' p .g/D

Z
ŒVp;2�

'.vg/ �1p .v/ dv:

For definitions of the unipotent group Vp;2 and its character  p , see [Jiang and Liu
2015c, Section 2].

Note that the one-dimensional torus Hp defined in [op. cit, (2.1)] has elements
of the form

Hp.t/D diag.A.t/; A.t/; : : : ; A.t//; where A.t/D diag.t2k; t2k�2; : : : ; t�2k/;

and there are 2b copies of A.t/. Also note that the group Lp.A/ defined in [op. cit,
Section 2] is isomorphic to GL2kC1

2b
.A/, and the stabilizer of the character  p
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in Lp is isomorphic to the diagonal embedding eSp�
2b
.A/. Let � be this diagonal

embedding. Let

N D

8<:n.x/ WD
0@1 0 x

0 I2b�2 0

0 0 1

1A9=;:
Then

(5-8) �.N /D

8<:�.n.x//D
0@I2kC1 0 xI2kC1

0 I.2kC1/.2b�2/ 0

0 0 I2kC1

1A9=;:
To show the integral in (5-7) is nonvanishing, it suffices to show that the following

integral is nonvanishing:

(5-9)
Z
F nA

Z
ŒVp;2�

'.vn.x/g/ �1p .v/ dv dx:

Let ! be a Weyl element which sends Hp.t/ to the torus element

diag
�
A.t/; t2kI2b�2; t

2k�2I2b�2; : : : ; t
�2kI2b�2; A.t/

�
:

Then ! has the form diag.I2kC1; !1; I2kC1/. Conjugating from left by !, the
integral in (5-9) becomes

(5-10)
Z
ŒW �

'.w!g/ �1W .w/ dw;

where W D !Vp;2�.N /!
�1 and  W .w/ D  p.!

�1w!/. Then elements of W
have the form

(5-11) w D

0@z2kC1 q1 q2
0 w0 q�1
0 0 z�

2kC1

1A0@I2kC1 0 0

p1 I.2b�2/.2kC1/ 0

p2 p�1 I2kC1

1A;
where z2kC1 2 V2kC1, the standard maximal unipotent subgroup of GL2kC1;
w0 2!1VŒ.2kC1/2b�2�;2!

�1
1 ; q1 2M.2kC1/�..2b�2/.2kC1// with certain conditions;

p1 2 M..2b�2/.2mC1//�.2mC1/ with certain conditions; q2 2 M.2kC1/�.2kC1/,
symmetric with respect to the secondary diagonal, such that q2.i; j / D 0 for
1 � j < i � 2k C 1, and q2.1; 1/ D q2.2; 2/ D � � � D q2.2k C 1; 2k C 1/;
p2 2M.2kC1/�.2kC1/, symmetric with respect to the secondary diagonal, such that
p2.i; j /D 0 for 1� j � i � 2kC 1.

Next, as in the proof of Section 4, we apply Lemma 3.2 to fill the zero entries in
q1; q2 using the nonzero entries in p1; p2. Similarly, to proceed, we need to define
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a sequence of one-dimensional root subgroups and put them in a correct order:

˛ij D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

eiCe2kC1�iCj

if 1� i � k and 1� j � i;

ei � e.2kC1/C.2b�2/i�.j�1/

if 1� i � k and i C 1� j � i C .2b� 2/i;

ei C eiCj

if kC 1� i � 2k and 1� j � 2kC 1� i;

vei C e.2kC1/b�.b�1/�.2b�2/.i�k�1/Cj

if kC 1� i � 2k and .2kC 1� i/C 1� j
� .2kC 1� i/C ..b� 1/C .2b� 2/.i � k� 1//;

ei � e.2kC1/b�.j�1/

if kC 1� i � 2k and .2kC 1� i/C ..b� 1/C .2b� 2/.i � k� 1//C 1� j
� .2kC 1� i/C .2b� 2/i:

For the above roots ˛ij , letX˛i
j

be the corresponding one-dimensional root subgroup.
For 1 � i � k and 1 � j � i , let ˇij D �e2kC1�iCj � eiC1. For 1 � i � k

and i C 1 � j � i C .2b � 2/i , let ˇij D e.2kC1/C.2b�2/i�.j�1/ � eiC1. For
kC1� i � 2k and 1� j � 2kC1� i , let ˇij D�eiCj �eiC1. For kC1� i � 2k
and .2k C 1� i/C 1 � j � .2k C 1� i/C ..b � 1/C .2b � 2/.i � k � 1//, let
ˇij D�e.2kC1/b�.b�1/�.2b�2/.i�k�1/Cj � eiC1. Finally, for kC 1� i � 2k and

.2kC1� i/C ..b�1/C .2b�2/.i �k�1//C1� j � .2kC1� i/C .2b�2/i;

let ˇij De.2kC1/b�.j�1/�eiC1. For the above roots ˇij , letXˇ i
j

be the corresponding
one-dimensional root subgroup.

Let

mi D

�
i C .2b� 2/i if 1� i � k;
.2kC 1� i/C .2b� 2/i if kC 1� i � 2k:

Let eW be the subgroup of W with elements of the form as in (5-11), but with the
p1 and p2 parts zero. Let  eW D  W jeW . For any subgroup of W containing eW,
we automatically extend  eW trivially to this subgroup and still denote the character
by  eW .

Next, we will apply Lemma 3.2 to a sequence of quadruples. For any i such that
1� i � kC 1, one can see that the following quadruple satisfies all the conditions
for Lemma 3.2: �eW i ;  eW ; fX˛ij gmijD1; fXˇ ij gmijD1�;
where eW i D

i�1Y
sD1

msY
jD1

X˛s
j

eW 2kY
lDiC1

mlY
jD1

Xˇ l
j
:
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Applying Lemma 3.2, one can see that the integral in (5-10) is nonvanishing if and
only if the following integral is nonvanishing:

(5-12)
Z
ŒeW 0
i
�

'.w!g/ �1eW 0
i

.w/ dw;

where

(5-13) eW 0i D iY
sD1

msY
jD1

X˛s
j

eW 2kY
lDiC1

mlY
jD1

Xˇ l
j
;

and  eW 0
i

is extended from  eW trivially.
For any i such that kC 2 � i � 2k, before applying Lemma 3.2 repeatedly to

certain sequence of quadruples as above, we need to take the Fourier expansion of
the resulting integral at the end of the step i � 1 along XeiCei (at the end of step
kC 1, one gets the integral in (5-12) with i D kC 1 there, at the end of step s,
kC2� s � 2k�1, one would get the integral in (5-14)). Under the action of GL1,
we get two kinds of Fourier coefficients corresponding to the two orbits of the dual
of ŒXeiCei �: the trivial one and the nontrivial one. It turns out that any Fourier
coefficient corresponding to the nontrivial orbit contains an inner integral which
is exactly the Fourier coefficients attached to the partition Œ.2i/1.2kC1/.2b/�2i �,
which is identically zero by [Jiang and Liu 2015a, Proposition 6.4], since i � kC2.
Therefore only the Fourier coefficient attached to the trivial orbit survives.

After taking Fourier expansion of the resulting integral at the end of step i � 1
along XeiCei as above, one can see that the following quadruple satisfies all the
conditions for Lemma 3.2:�

XeiCei
eWi ;  eW ; fX˛ij gmijD1; fXˇ i1gmijD1�;

where eWi D i�1Y
sD1

msY
jD1

X˛s
j

i�1Y
tDkC2

XetCet
eW 2kY
lDiC1

mlY
jD1

Xˇ l
j
:

Applying Lemma 3.2, we can see that the resulting integral at the end of step i � 1
is nonvanishing if and only if the following integral is nonvanishing:

(5-14)
Z
ŒeW 0
i
�

'.w!g/ �1eW 0
i

.w/ dw;

where

(5-15) eW 0i D iY
sD1

msY
jD1

X˛s
j

iY
tDkC2

XetCet
eW 2kY
lDiC1

mlY
jD1

Xˇ l
j
;

and  eW 0
i

is the trivial extension of  eW .
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One can see that elements of eW 0
2k

have the following form:

(5-16) w D

0@z2kC1 q1 q2
0 w0 q�1
0 0 z�

2kC1

1A ;
where z2kC1 2 V2kC1, which is the standard maximal unipotent subgroup of
GL2kC1;

w0 2 !1VŒ.2kC1/2b�2�;2!
�1
1 I

q1 2Mat.2kC1/�.2kC1/.2b�2/ with q1.2kC1; j /D 0 for 1� j � .2kC1/.2b�2/;
q2 2Mat.2kC1/�.2kC1/, symmetric with respect to the secondary diagonal, with
q2.2kC 1; 1/D 0. For w 2 eW 0

2k
of form in (5-16),

 eW 0
2k

.w/D  

 
2kX
iD1

zi;iC1

!
 Œ.2kC1/2b�2�.!

�1
1 w0!1/:

Now consider the Fourier expansion of the integral in (5-14) along the one-
dimensional root subgroup X2e2kC1 . By the same reason as above, only the Fourier
coefficient corresponding to the trivial orbit of the dual of ŒX2e2kC1 � survives, which
is actually equal to the integral in (5-14) (with i D 2k there):

(5-17)
Z
ŒW2kC1�

'.w!g/ W2kC1.w/
�1 dw;

where elements in W2kC1 have the same structure as in (5-16), except that the
element q2.2kC 1; 1/ is not identically zero.

One can see that the integral in (5-17) has an inner integral which is exactly
' N12k, using notation in Lemma 5.2 below. On the other hand, we know that by
Lemma 5.2 below, ' N12k D '

Q N
12kC1. Therefore, the integral in (5-17) becomes

(5-18)
Z
ŒW 0
2kC1

�

'.w!g/ W 0
2kC1

.w/�1 dw;

where any element in W 0
2kC1

has the following form:

w D w.z2kC1; w
0; q1; q2/D

0@z2kC1 q1 q2
0 w0 q�1
0 0 z�

2kC1

1A;
where z2kC1 2 V2kC1, the standard maximal unipotent subgroup of GL2kC1;
w0 2!1VŒ.2kC1/2b�2�;2!

�1
1 ; q1 2Mat.2kC1/�.2kC1/.2b�2/; q2 2Mat.2kC1/�.2kC1/,

symmetric with respect to the secondary diagonal. For w 2W 0
2kC1

as above,

 W 0
2kC1

.w/D  

� 2kX
iD1

zi;iC1

�
 Œ.2kC1/2b�2�.!

�1
1 w0!1/:



FOURIER COEFFICIENTS OF RESIDUAL REPRESENTATIONS 449

Hence, the integral in (5-18) can be written as

(5-19)
Z
W 00
2kC1

'P2kC1.w!g/ W 002kC1
.w/�1 dw;

where W 00
2kC1

is a subgroup of W 0
2kC1

consisting only of elements of the form
w.z2kC1; w

0; 0; 0/,
 W 00

2kC1
D  W 0

2kC1

ˇ̌
W 00
2kC1

;

and 'P2mC1 is the constant term of ' along the parabolic subgroup QP2kC1.A/D
zM2kC1.A/N2kC1.A/ of eSp2b.2kC1/.A/ with the Levi subgroup isomorphic to

GL2kC1.A/� eSp.2b�2/.2kC1/.A/.
By Lemma 5.1 below, '.w!g/ QP2kC1.A/ is an automorphic form in

 �˛ � j � j
� 2b�1

2 ˝ QE�.�;b�1/

when restricted to the Levi subgroup. Note that the restriction of  W 0
2kC1

to the
z2kC1-part gives us a Whittaker coefficient of � , and the restriction to the w0-part
gives a Fourier coefficient of QE�.�;b�1/ attached to the partition Œ.2kC 1/2b�2�, up
to the conjugation of the Weyl element !1. On the other hand, � is generic, and by
induction assumption, QE�.�;b�1/ has a nonzero Fourier coefficient attached to the
partition Œ.2kC 1/2b�2�. Therefore, we can conclude that QE�.�;b/ has a nonzero
 p-Fourier coefficient attached to the partition Œ.2kC 1/2b�. This completes the
proof of step (3), up to Lemmas 5.1 and 5.2, which are stated below.

We remark that as Lemmas 4.1 and 4.2, Lemmas 5.1 and 5.2 below are also
analogues of [Liu 2013a, Lemmas 4.2.4 and 4.2.6], with similar arguments, and
hence we again only state them without proofs.

Lemma 5.1. Let QP.2kC1/i .A/D zM.2kC1/i .A/N.2kC1/i .A/, with 1� i � b, be the
parabolic subgroup of eSp2b.2kC1/.A/ with Levi part

zM.2kC1/i .A/Š GL.2kC1/i .A/� eSp.2kC1/.2b�2/.A/:

Let ' be an arbitrary automorphic form in QE�.�;b/. Denote by 'P.2kC1/i the constant
term of ' along P.2kC1/i . Then, for 1� i � b, 'P.2kC1/i belongs to

A
�
N.2kC1/i .A/ zM.2kC1/i .F / n eSp2b.2kC1/.A/

�

 �˛

�.�;i/j � j�.2b�i/=2˝QE�.�;b�i/
:

Lemma 5.2. Let N1p .A/ be the unipotent radical of the parabolic subgroup
QP1p .A/ of eSp2b.2kC1/.A/ with Levi part isomorphic to

GL�p1 .A/� eSp2b.2kC1/�2p.A/:

Let

 N1p .n/ WD  .n1;2C � � �Cnp;pC1/ and Q N1p .n/ WD  .n1;2C � � �Cnp�1;p/;
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be two characters of N1p .A/. For any automorphic form ' 2 QE�.�;b/, define  N1p
and Q N1p-Fourier coefficients by:

' N1p .g/ WD

Z
ŒN1p �

'.ng/ N1p .n/
�1 dn;(5-20)

'
Q N1p .g/ WD

Z
ŒN1p �

'.ng/ Q N1p .n/
�1 du:(5-21)

Then ' N1p � 0 for all p � 2kC 1, and ' N12k D '
Q N
12kC1 .

6. Proof of Theorem 2.6

In this section, we prove that E�.�;bC1/˝� has a nonzero Fourier coefficient attached
to Œ.2mC 2a/.a/2b�. Assume that � is  ˛-generic with ˛ 2 F �=.F �/2.

As in the proof of part (2) of Theorem 2.4 in Section 5 we separate the proof of
Theorem 2.6 into two steps:

Step (1) E�.�;bC1/˝� has a nonzero Fourier coefficient attached to the partition
Œ.2mC 2a/12ab� with respect to the character  Œ.2mC2a/12ab�;˛ (for the definition,
see [Jiang and Liu 2015c, Section 2]).

Step (2) Let
D2a.bC1/C2m2m; ˛ .E�.�;bC1/˝� /

be the  ˛-descent from the representation E�.�;bC1/˝� of Sp2a.bC1/C2m.A/ to a
representation of eSp2ab.A/. Then it is square-integrable and contains the whole
space of the residual representation QE�.�;b/ which is irreducible and constructed at
the beginning of Section 5.

Proof of Theorem 2.6. First, recall from the step (3) in the proof of part (2) of
Theorem 2.4 that QE�.�;b/ has a nonzero Fourier coefficient attached to the symplectic
partition Œ.a/2b�. From the results in steps (1) and (2) above, we can see that
E�.�;bC1/˝� has a nonzero Fourier coefficient attached to the composite partition
Œ.2mC2a/12ab�ıŒ.a/2b� (for the definition of composite partitions and the attached
Fourier coefficients, we refer to [Ginzburg et al. 2003, Section 1]). Therefore,
by [Jiang and Liu 2015c, Lemma 3.1] or [Ginzburg et al. 2003, Lemma 2.6],
E�.�;bC1/˝� has a nonzero Fourier coefficient attached to Œ.2mC 2a/.a/2b�. �

Before proving the above two steps, we record the following lemma which is
analogous to Lemma 4.1, whose proof will be omitted.

Lemma 6.1. Let Pai DMaiNai , with 1 � i � bC 1, be the parabolic subgroup
of Sp2a.bC1/C2m whose Levi part Mai Š GLai �Spa.2bC2�2i/C2m. Let ' be an
arbitrary automorphic form in E�.�;bC1/˝� . Denote by 'Pai .g/ the constant term
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of ' along Pai . Then, for 1� i � bC 1,

'Pai 2A
�
Nai .A/Mai .F / nSp2a.bC1/C2m.A/

�
�.�;i/j � j�.2bC1�i/=2˝E�.�;bC1�i/˝�

:

Note that when iDb, E�.�;bC1�i/˝� DE�˝� , which is not a residual representation
as explained at the end of Section 2B, is nonzero and generic by [Shahidi 2010,
Theorem 7.1.3]; and when i D bC 1, E�.�;bC1�i/˝� D � .

6A. Proof of step (1). By [Ginzburg et al. 2003, Lemma 1.1], E�.�;bC1/˝� has a
nonzero Fourier coefficient attached to the partition Œ.2mC 2a/12ab� with respect
to the character  Œ.2mC2a/12ab�;˛ if and only if the  ˛-descent

D2a.bC1/C2m2mC2a; ˛ .E�.�;bC1/˝� /

of E�.�;bC1/˝� , which is a representation of eSp2ab.A/, is not identically zero.
Take any � 2 E�.�;bC1/˝� , we will calculate the constant term of

FJ �
 ˛
mCa�1

.�/

along the parabolic subgroup QP 2abr .A/ D zM 2ab
r .A/N 2ab

r .A/ of eSp2ab.A/ with
Levi subgroup isomorphic to GLr.A/� eSp2ab�2r.A/, 1� r � ab, which is denoted
by

CN 2abr

�
FJ �
 ˛
mCa�1

.�/
�
:

By [Ginzburg et al. 2011, Theorem 7.8],

(6-1) CN 2abr

�
FJ �
 ˛
mCa�1

.�/
�

D

X
0�k�r

2P 1
r�k;1k

.F /nGLr.F /

Z
L.A/

�1.i.�//FJ
�2
 ˛mCa�1Ck

�
CN 2a.bC1/C2mr�k

.�/
�
. O�ˇ/ d�;

The notation in (6-1) is explained in order: N 2a.bC1/C2m
r�k is the unipotent radical

of the parabolic subgroup P 2a.bC1/C2mr�k of Sp2a.bC1/C2m; P 1r�k;1k is a subgroup
of GLr consisting of matrices of the form�

g x

0 z

�
;

with z 2 Uk , the standard maximal unipotent subgroup of GLk . For g 2 GLj ,
j � a.bC 1/Cm, Og D diag.g; I2a.bC1/C2m�2j ; g�/; L is a unipotent subgroup,
consisting of matrices of the form

�D

�
Ir 0

x ImCa

�̂
;
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and i.�/ is the last row of x, and

ˇ D

�
0 Ir

ImCa 0

�̂
:

Finally, the Schwartz function � D �1˝�2 with �1 2 S.Ar/ and �2 2 S.Aab�r/,
and the function

FJ �2
 ˛mCa�1Ck

�
CN 2a.bC1/C2mr�k

.�/
�
. O�ˇ/

WD FJ �2
 ˛mCa�1Ck

�
CN 2a.bC1/C2mr�k

.�. O�ˇ/�/
�
.I /;

with �. O�ˇ/ denoting the right translation by O�ˇ, is a composition of the restriction
to Sp2a.bC1/C2m�2rC2k.A/ of CN 2a.bC1/C2mr�k

.�. O�ˇ/�/ with the Fourier–Jacobi
coefficient

FJ �2
 ˛mCa�1Ck

;

which takes automorphic forms on Sp2a.bC1/C2m�2rC2k.A/ to those forms oneSp2ab�2r.A/.
By the cuspidal support of � ,

CN 2a.bC1/C2mr�k
.�/

is identically zero, unless k D r or r � k D la with 1 � l � bC 1. When k D r ,
since Œ.2mC 2aC 2r/12ab�2r � is bigger than �so2nC1.C/;sp2n.C/.p. // under the
lexicographical ordering, by [Jiang and Liu 2015a, Proposition 6.4; Ginzburg et al.
2003, Lemma 1.1],

FJ �2
 ˛mCa�1Cr

.�/

is identically zero, hence the corresponding term is zero. When r � k D la,
1� l � bC1 and 1�k� r , by Lemma 6.1, after restricting to Sp2a.bC1�l/C2m.A/,
CN 2a.bC1/C2mr�k

.�. O�ˇ/�/ becomes a form in E�.�;bC1�l/˝� . Note that the Arthur
parameter of E�.�;bC1�l/˝� is

 0 D

�
.�; 2b� 2l C 1/� .�; 1/�r

iD3.�i ; 1/ if 1� l � b;
�riD3.�i ; 1/ if l D bC 1:

Since Œ.2mC 2k/12a.bC1�l/�2k� is bigger than �so2n0C1.C/;sp2n0 .C/.p. 
0// under

the lexicographical ordering, where 2n0 D 2a.bC 1� l/C 2m, by [Jiang and Liu
2015a, Proposition 6.4; Ginzburg et al. 2003, Lemma 1.1],

FJ �2
 ˛mCa�1Ck

�
CN 2a.bC1/C2mr�k

.�. O�ˇ/�/
�

is also identically zero. Hence the corresponding term is also zero.
It follows that the only possibilities for which

CN 2a.bC1/C2mr

�
FJ �
 ˛
mCa�1

.�/
�
¤ 0
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are r D la with 1 � l � b C 1, and k D 0. To prove that FJ �
 ˛
mCa�1

.�/ is not
identically zero, we just have to show that

CN 2abr

�
FJ �
 ˛
mCa�1

.�/
�
¤ 0

for some r .
Take r D ab. Then we have

(6-2) CN 2abab

�
FJ �
 ˛
mCa�1

.�/
�
D

Z
L.A/

�1.i.�//FJ
�2
 ˛mCa�1

�
CN 2a.bC1/C2mab

.�/
�
.�ˇ/ d�:

By Lemma 6.1, when restricted to GL2ab.A/�Sp2mC2a.A/,

CN 2a.bC1/C2mab
.�/ 2 ı

1=2

P
2a.bC1/C2m
ab

j � j
�
bC1
2 �.�; b/˝ .E�˝� /;

where E�˝� is not a residual representation as explained at the end of Section 2B.
Clearly, the integral in (6-2) is not identically zero if and only if E�˝� is

 ˛-generic. Since by assumption, � is  ˛-generic, we have that E�˝� is also
 ˛-generic by [Shahidi 2010, Theorem 7.1.3]. Hence,

FJ �
 ˛
mCa�1

.�/

is not identically zero. Therefore, E�.�;b/˝� has a nonzero Fourier coefficient
attached to the partition Œ.2mC 2a/12ab� with respect to the character

 Œ.2mC2a/12ab�;˛:

This completes the proof of step (1).

6B. Proof of step (2). To prove the square-integrability of the descent representa-
tion

D2a.bC1/C2m2mC2a; ˛ .E�.�;bC1/˝� /;

as in Section 5B, we need to calculate the automorphic exponent attached to the
nontrivial constant term considered in step (1) (r D ab). For this, we need to
consider the action of

g D diag.g; g�/ 2 GLab.A/� eSp0.A/:

Since r D ab, we have that ˇ D
�

0 Iab
ImCa 0

�̂
. Let

Qg WD ˇ diag.ImCa; g; ImCa/ˇ�1 D diag.g; I2mC2a; g�/:

Then changing variables in (5-2), � 7! Qg� Qg�1 will give a Jacobian jdetgj�m�a.
On the other hand, by [Ginzburg et al. 2011, Formula (1.4)], the action of g on �1
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gives  �˛ .detg/jdetgj
1
2 . Therefore, g acts by �.�; b/.g/ with character

ı
1=2

P
2a.bC1/C2m
ab

. Qg/jdetgj�
bC1
2 jdetgj�m�a �˛ .detg/jdetgj

1
2

D  �˛ .detg/ı1=2
P 2abab

.g/jdetgj�
b
2 :

Therefore, as a function on GLab.A/� eSp0.A/,

(6-3) CN 2abab

�
FJ �
 ˛
mCa�1

.�/
�
2  �˛ı

1=2

P 2abab

jdet. � /j�
b
2�.�; b/˝ 1 zSp0.A/

:

Since the cuspidal exponent of �.�; b/ isn�
1�b

2
;
3�b

2
; : : : ;

b�1

2

�o
;

the cuspidal exponent of CN 2abab

�
FJ �
 ˛
mCa�1

.�/
�

isn�
1�2b

2
;
3�2b

2
; : : : ;�

1

2

�o
:

Hence, by the Langlands square-integrability criterion ([Mœglin and Waldspurger
1995, Lemma I.4.11]), the automorphic representation

D2a.bC1/C2m2mC2a; ˛ .E�.�;bC1/˝� /

is square integrable.
From (6-3), it follows that as a representation of GLab.A/� eSp0.A/,

(6-4) CN 2abab

�
D2a.bC1/C2m2mC2a; ˛ .E�.�;bC1/˝� /

�
D  �˛ı

1=2

P 2abab

jdet. � /j�
b
2�.�; b/˝ 1 zSp0.A/

:

Therefore, a similar argument as in Section 5B implies that any noncuspidal sum-
mand of

D2a.bC1/C2m2mC2a; ˛ .E�.�;bC1/˝� /

must be an irreducible subrepresentation of QE�.�;b/. Hence,

D2a.bC1/C2m2mC2a; ˛ .E�.�;bC1/˝� /

has a nontrivial intersection with the space of the residual representation QE�.�;b/.
Since QE�.�;b/ is irreducible,

D2a.bC1/C2m2mC2a; ˛ .E�.�;bC1/˝� /

must contain the whole space of the residual representation QE�.�;b/. This completes
the proof of step (2).
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7. Proof of Theorem 2.7

In this section, assuming that a D 2k, L.1
2
; � � �/ ¤ 0, � © 1Sp0.A/, and E�˝�

has a nonzero Fourier coefficient attached to the partition Œ.2k C 2m/.2k/�, we
prove that E�.�;b/˝� has a nonzero Fourier coefficient attached to the partition
Œ.2kC 2m/.2k/2b�1�, for any b � 1.

Without loss of generality, by [Jiang and Liu 2015c, Lemma 3.1] or [Ginzburg
et al. 2003, Lemma 2.6], we may assume that E�˝� has a nonzero Fourier coeffi-
cient corresponding to the partition Œ.2kC 2m/12k� with respect to the character
 Œ.2kC2m/12k�;˛ for some ˛ 2 F �=.F �/2. Then the  ˛-descent of E�˝� is a
generic representation of eSp2k.A/. Note that by the constant formula in [Ginzburg
et al. 2011, Theorem 7.8], one can easily see that this descent is also a cuspidal
representation of eSp2k.A/

Similarly as in previous sections, we separate the proof of Theorem 2.7 into
three steps:

Step (1) E�.�;b/˝� has a nonzero Œ.2kC2m/12k.2b�1/�;˛-Fourier coefficient attached
to the partition Œ.2k C 2m/12k.2b�1/� (for definition, see [Jiang and Liu 2015c,
Section 2]).

Step (2) Let Q� be any irreducible subrepresentation of the  ˛-descent of E�˝� .
Then it is a generic cuspidal representation of eSp2k.A/ which is weakly lifting
to � . Using the theory of theta correspondence and the strong lifting from generic
cuspidal representations of SO2nC1.A/ to automorphic representations of GL2n.A/,
proved in [Jiang and Soudry 2003] (see also [Cogdell et al. 2004]), � is also a strong
lifting of Q� .

Define a residual representation QE�.�;b�1/˝Q� as follows: for any

Q� 2A
�
Nk.2b�1/.A/ zMk.2b�1/.F / n eSp2k.2b�1/.A/

�

 �˛

�.�;b�1/˝Q�

one defines as in [Mœglin and Waldspurger 1995]) the residual Eisenstein series

zE. Q�; s/.g/D
X

2Pk.2b�1/.F /nSp2k.2b�1/.F /

�s Q�.g/:

It converges absolutely for real part of s large and has meromorphic continuation
to the whole complex plane C. By similar argument as that in [Jiang et al. 2013],
this Eisenstein series has a simple pole at b=2, which is the right-most one. Denote
the representation generated by these residues at s D b=2 by QE�.�;b�1/˝Q� . This
residual representation is square-integrable. Since � is also a strong lifting of Q� ,
the same argument as in Section 5B implies that QE�.�;b�1/˝Q� is also irreducible
(details will be omitted).

Let
D4kbC2m2kC2m; ˛ .E�.�;b/˝� /
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be the  ˛-descent of E�.�;b/˝� . Then as a representation of eSp2k.2b�1/.A/, it
is square-integrable and contains the whole space of the residual representation
QE�.�;b�1/˝Q� , where Q� is an irreducible subrepresentation of the  ˛-descent of
E�˝� .

Step (3) Let Q� be any irreducible subrepresentation of the  ˛-descent of E�˝� .
QE�.�;b�1/˝Q� has a nonzero Fourier coefficient attached to the partition Œ.2k/2b�1�.

Proof of Theorem 2.7. From the results in steps (1)–(3) above, we can see that
E�.�;b/˝� has a nonzero Fourier coefficient attached to the composite partition
Œ.2kC2m/12k.2b�1/�ıŒ.2k/2b�1� (for the definition of composite partitions and the
attached Fourier coefficients, we refer to [Ginzburg et al. 2003, Section 1]). There-
fore, by [Jiang and Liu 2015c, Lemma 3.1] or [Ginzburg et al. 2003, Lemma 2.6],
E�.�;b/˝� has a nonzero Fourier coefficient attached to Œ.2kC 2m/.2k/2b�1�. �

Before proving the above three steps, we record the following lemma which is
analogous to Lemmas 4.1 and 6.1.

Lemma 7.1. Let Pai D MaiNai , with 1 � i � b, be the parabolic subgroup of
Sp2abC2m with Levi part Mai Š GLai �Spa.2b�2i/C2m. Let ' be an arbitrary
automorphic form in E�.�;b/˝� . Denote by 'Pai .g/ the constant term of ' along
Pai . Then, for 1� i � b,

'Pai 2A
�
Nai .A/Mai .F / nSp2abC2m.A/

�
�.�;i/j � j�.2b�i/=2˝E�.�;b�i/˝�

:

Note that when i D b, E�.�;b�i/˝� D � .

7A. Proof of step (1). By [Ginzburg et al. 2003, Lemma 1.1], E�.�;b/˝� has a
nonzero Fourier coefficient attached to the partition Œ.2kC 2m/12ab� with respect
to the character  Œ.2kC2m/12ab�;˛ if and only if the  ˛-descent

D4kbC2m2kC2m; ˛ .E�.�;b/˝� /

of E�.�;b/˝� is not identically zero, as a representation of eSp2k.2b�1/.A/.
We calculate the constant term of

FJ �
 ˛
kCm�1

.�/;

for � 2 E�.�;b/˝� , along the parabolic subgroup

QP 2k.2b�1/r .A/D zM 2k.2b�1/
r .A/N 2k.2b�1/

r .A/

of eSp2k.2b�1/.A/ with Levi isomorphic to GLr.A/� eSp2k.2b�1/�2r.A/, which is
denoted by CN 2k.2b�1/r

�
FJ �
 ˛
kCm�1

.�/
�
, where 1� r � k.2b� 1/.
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By [Ginzburg et al. 2011, Theorem 7.8],

(7-1) CN 2k.2b�1/r

�
FJ �
 ˛
kCm�1

.�/
�

D

X
0�s�r

2P 1r�s;1s .F /nGLr .F /

Z
L.A/

�1.i.�//FJ
�2
 ˛kCm�1Cs

�
CN 4kbC2mr�s

.�/
�
. O�ˇ/ d�:

The notation in this formula is as follows: N 4kbC2m
r�s is the unipotent radical of the

parabolic subgroup P 4kbC2mr�s of Sp4kbC2m with Levi isomorphic to

GLr�s �Sp4kbC2m�2rC2s;

and P 1r�s;1s is a subgroup of GLr consisting of matrices of the form�
g x

0 z

�
;

with z 2 Us , the standard maximal unipotent subgroup of GLs . For g 2 GLj ,
j � 2kbCm, OgD diag.g; I4kbC2m�2j ; g�/; L is a unipotent subgroup, consisting
of matrices of the form

�D

�
Ir 0

x IkCm

�̂
;

i.�/ is the last row of x, and

ˇ D

�
0 Ir

IkCm 0

�̂
:

The Schwartz function � D �1˝ �2 with �1 2 S.Ar/ and �2 2 S.Ak.2b�1/�r/,
and the function

FJ �2
 ˛kCm�1Cs

�
CN 4kbC2mr�s

.�/
�
. O�ˇ/ WD FJ �2

 ˛kCm�1Cs

�
CN 4kbC2mr�s

.�. O�ˇ/�/
�
.I /;

with �. O�ˇ/ denoting the right translation by O�ˇ, is a composition of the restriction
of CN 2abC2mr�k

.�. O�ˇ/�/ to Sp4kbC2m�2rC2s.A/with the Fourier–Jacobi coefficient

FJ �2
 ˛kCm�1Cs

;

taking automorphic forms on Sp4kbC2m�2rC2s.A/ to those on eSp4kb�2k�2r.A/.
By the cuspidal support of �, CN 4kbC2mr�s

.�/ is identically zero, unless s D r or
r � s D 2kl with 1 � l � b. When s D r , since Œ.2kC 2mC 2r/14kb�2k�2r � is
bigger than �so2nC1.C/;sp2n.C/.p. // under the lexicographical ordering, by [Jiang
and Liu 2015a, Proposition 6.4; Ginzburg et al. 2003, Lemma 1.1],

FJ �2
 ˛kCm�1Cr

.�/

is identically zero, and hence the corresponding term is zero. When r � s D la,
1 � l � b and 1 � s � r , by Lemma 7.1, after restricting to Sp4k.b�l/C2m.A/,
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CN 4kbC2mr�s
.�. O�ˇ/�/ becomes a form in E�.�;b�l/˝� . The Arthur parameter of

E�.�;b�l/˝� is

 0 D .�; 2b� 2l/�
r

�
iD2

.�i ; 1/:

Since Œ.2kC 2mC 2s/14k.b�l/�2k�2s� is bigger than �so2n0C1.C/;sp2n0 .C/.p. 
0//

under the lexicographical ordering, where 2n0D 4k.b� l/C2m, by [Jiang and Liu
2015a, Proposition 6.4; Ginzburg et al. 2003, Lemma 1.1],

FJ �2
 ˛kCm�1Cs

�
CN 4kbC2mr�s

.�. O�ˇ/�/
�

is also identically zero, and hence the corresponding term is also zero. Therefore,
the only possibilities that

CN 2k.2b�1/r

�
FJ �
 ˛
kCm�1

.�/
�
¤ 0

are r D 2kl , 1 � l � b, and s D 0. To prove that FJ �
 ˛
kCm�1

.�/ is not identically
zero, we just have to show that

CN 2k.2b�1/r

�
FJ �
 ˛
kCm�1

.�/
�
¤ 0

for some r .
Taking r D 2k.b� 1/, we have

(7-2) CN 2k.2b�1/2k.b�1/

�
FJ �
 ˛
kCm�1

.�/
�
D

Z
L.A/

�1.i.�//FJ
�2
 ˛kCm�1

�
CN 4kbC2m2k.b�1/

.�/
�
.�ˇ/ d�:

By Lemma 7.1, when restricted to GL2k.2b�2/.A/�Sp4kC2m.A/,

CN 4kbC2m2k.b�1/
.�/ 2 ı

1=2

P
4kbC2m
2k.b�1/

jdetj�
bC1
2 �.�; b� 1/˝ E�˝� :

It follows that the integral in (7-2) is not identically zero if and only if E�˝� has
a nonzero Fourier coefficient corresponding to the partition Œ.2kC 2m/12k� with
respect to the character  Œ.2kC2m/12k�;˛ . Hence, by assumption,

FJ �
 ˛
kCm�1

.�/

is not identically zero. Therefore, E�.�;b/˝� has a nonzero Fourier coefficient
attached to the partition Œ.2kC 2m/12k.2b�1/� with respect to the character

 Œ.2kC2m/12k.2b�1/�;˛:

This completes the proof of step (1).
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7B. Proof of step (2). In order to prove the square-integrability of the descent
representation

D4kbC2m2kC2m; ˛ .E�.�;b/˝� /;

we need to calculate the automorphic exponent attached to the nontrivial constant
term considered in step (1) with r D 2k.b� 1/ (for the definition of automorphic
exponent, see [Mœglin and Waldspurger 1995, I.3.3]). For this, we need to consider
the action of

g D diag.g; I2k; g
�/ 2 GL2k.b�1/.A/� eSp2k.A/:

Since r D 2k.b� 1/, ˇ D
�

0 I2k.b�1/
IkCm 0

�̂
: Let

Qg WD ˇ diag.IkCm; g; IkCm/ˇ
�1
D diag.g; I4kC2m; g

�/:

Then changing variables in (5-2) via � 7! Qg� Qg�1 will give a Jacobian jdetgj�k�m.
On the other hand, by [Ginzburg et al. 2011, Formula (1.4)], the action of g on �1
gives  �˛ .detg/jdetgj1=2. Therefore, g acts by �.�; b� 1/.g/ with character

ı
1=2

P
4kbC2m
2k.b�1/

jdetgj�
bC1
2 jdetgj�k�m �˛ .detg/jdetgj

1
2

D  �˛ .detg/ı1=2
P
2k.2b�1/

2k.b�1/

.g/jdetgj�
b
2 :

Thus, combined with the calculation in step (1), as a function on GL2k.b�1/.A/�eSp2k.A/,

(7-3) CN 2k.2b�1/2k.b�1/

�
FJ �
 ˛
kCm�1

.�/
�

2  �˛ ı
1=2

P
2k.2b�1/
2k.b�1/

jdet. � /j�
b
2�.�; b� 1/˝D4kC2m

2k
.E�˝� /:

Note that by the constant formula in [op. cit., Theorem 7.8], one can easily see
that

D4kC2m
2k

.E�˝� /

is a cuspidal representation of eSp2k.A/. Since the cuspidal exponent of �.�; b�1/
is n�

2�b

2
;
4�b

2
; : : : ;

b�2

2

�o
;

the cuspidal exponent of CN 2k.2b�1/2k.b�1/
.FJ �

 ˛
kCm�1

.�// isn�
2�2b

2
;
4�2b

2
; : : : ;�1

�o
:

Hence, by the Langlands square-integrability criterion [Mœglin and Waldspurger
1995, Lemma I.4.11], the automorphic representation D4kbC2m2kC2m; ˛ .E�.�;b/˝� / is
square-integrable.
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From (7-3), as a representation of GL2k.b�1/.A/� eSp2k.A/, we have

(7-4) CN 2k.2b�1/2k.b�1/

�
D4kbC2m2kC2m; ˛ .E�.�;b/˝� /

�
D  �˛ ı

1=2

P
2k.2b�1/

2k.b�1/

jdet. � /j�
b
2�.�; b� 1/˝D4kC2m2k; ˛ .E�˝� /:

Therefore, using a similar argument as in Section 5B, one can see that

D4kbC2m2kC2m; ˛ .E�.�;b/˝� /

contains an irreducible subrepresentation of the residual representation QE�.�;b�1/˝Q� ,
where Q� is an irreducible generic cuspidal representation of eSp2k.A/ which is a
subrepresentation of the  ˛-descent of E�˝� , and is weakly lifting to � . Since
� is also a strong lifting of Q� , a similar argument as in Section 5B implies that
QE�.�;b�1/˝Q� is irreducible. Hence D4kbC2m2kC2m; ˛ .E�.�;b/˝� / must contain the whole
space of residual representation QE�.�;b�1/˝Q� . This completes the proof of step (2).

7C. Proof of step (3). Let Q� be any irreducible subrepresentation of the ˛-descent
of E�˝� , then it is a generic cuspidal representation of eSp2k.A/. Assume that Q� is
 ˇ-generic for some ˇ 2 F �=.F �/2.

As in previous sections, we need to record the following lemma which is analo-
gous to Lemma 5.1.

Lemma 7.2. Let QPai .A/ D zMai .A/Nai .A/ with 1 � i � b � 1 be the parabolic
subgroup of eSp2k.2b�1/.A/ with Levi part

zMai .A/Š GLai .A/� eSp2k.2b�1�2i/.A/:

Let ' be an arbitrary automorphic form in QE�.�;b�1/˝Q� . Denote by 'Pai .g/ the
constant term of ' along Pai . Then, for 1� i � b� 1,

'Pai 2A
�
Nai .A/ zMai .F /n eSp2k.2b�1/.A/

�

 �˛

�.�;i/j � j�.2b�1�i/=2˝QE�.�;b�1�i/˝Q�
:

Note that when i D b� 1, QE�.�;b�1�i/˝Q� D Q� .

First, we show that QE�.�;b�1/˝Q� has a nonzero Fourier coefficient attached to
the partition Œ.2k/12k.2b�2/� with respect to the character  Œ.2k/12k.2b�2/�;ˇ . By
[Ginzburg et al. 2003, Lemma 1.1], we know that QE�.�;b�1/˝Q� has a nonzero
 Œ.2k/12k.2b�2/�;ˇ -Fourier coefficient attached to the partition Œ.2k/12k.2b�2/� if
and only if the  ˇ-descent

zD2k.2b�1/2k; ˇ . QE�.�;b�1/˝Q� /

of QE�.�;b�1/˝Q� is not identically zero, as a representation of Sp2k.2b�2/.A/.
Take any � 2 QE�.�;b�1/˝Q� ; we will calculate the constant term of

FJ �

 
ˇ

k�1

.�/
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along P 2k.2b�2/r , which is denoted by

CN 2k.2b�2/r

�
FJ �

 
ˇ

k�1

.�/
�
;

where 1 � r � k.2b � 2/. Recall that P 2k.2b�2/r DM
2k.2b�2/
r N

2k.2b�2/
r is the

parabolic subgroup of Sp2k.2b�2/ with Levi subgroup isomorphic to

GLr �Sp2k.2b�2/�2r :

By [Ginzburg et al. 2011, Theorem 7.8],

(7-5) CN 2k.2b�2/r
.FJ �

 
ˇ

k�1

.�//

D

X
0�s�r

2P 1r�s;1s .F /nGLr .F /

Z
L.A/

�1.i.�//FJ
�2

 
ˇ

k�1Cs

�
CN 2k.2b�1/r�s

.�/
�
. O��/ d�:

Here is the notation in the formula: N 2k.2b�1/
r�s .A/ is the unipotent radical of the

parabolic subgroup QP 2k.2b�1/r�s .A/ of eSp2k.2b�1/.A/with Levi subgroup isomorphic
to GLr�s.A/� eSp2k.2b�1/�2rC2s.A/, P 1r�s;1s is a subgroup of GLr consisting of
matrices of the form �

g x

0 z

�
;

with z 2 Us , the standard maximal unipotent subgroup of GLs . For g 2 GLj ,
with j � k.2b � 1/, Og D diag.g; I2k.2b�1/�2j ; g�/, L is a unipotent subgroup,
consisting of matrices of the form

�D

�
Ir 0

x Ik

�̂
;

i.�/ is the last row of x, and

�D

�
0 Ir
Ik 0

�̂
:

The Schwartz function � D �1˝ �2 with �1 2 S.Ar/ and �2 2 S.Ak.2b�2/�r/,
and the function

FJ �2
 
ˇ

k�1Cs

�
CN 2k.2b�1/r�s

.�/
�
. O��/ WD FJ �2

 
ˇ

k�1Cs

�
CN 2k.2b�1/r�s

.�. O��/�/
�
.I /;

with �. O��/ denoting the right translation by O��, is a composition of the restriction
to eSp2k.2b�1/�2rC2s.A/ of CN 2abC2mr�s

.�. O��/�/ with Fourier–Jacobi coefficient

FJ �2

 
ˇ
k�1Cs

;

taking automorphic forms on eSp2k.2b�1/�2rC2s.A/ to those on Sp2k.2b�2/�2r.A/.
By the cuspidal support of �, CN 2k.2b�1/r�s

.�/ is identically zero, unless s D r or
r � s D 2kl with 1� l � b� 1. When s D r , from the structure of the unramified
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components of the residual representation QE�.�;b�1/˝Q� , by [Jiang and Liu 2015a,
Lemma 3.2],

FJ �2

 
ˇ
k�1Cr

.�/

is identically zero, and hence the corresponding term is zero. When r � s D 2kl ,
1� l�b�1 and 1� s� r , then by Lemma 7.2, after restricting to eSp2k.2b�1�2l/.A/,
CN 2k.2b�1/r�s

.�. O��/�/ becomes a form in QE�.�;b�1�l/˝Q� . From the structure of the
unramified components of the residual representation QE�.�;b�1�l/˝Q� , by [loc. cit.],

FJ �2

 
ˇ
k�1Cs

�
CN 2k.2b�1/r�s

.�. O��/�/
�

is also identically zero, and hence the corresponding term is also zero. Therefore,
the only possibilities that

CN 2k.2b�2/r

�
FJ �

 
ˇ

k�1

.�/
�
¤ 0

are r D 2kl , 1 � l � b� 1, and s D 0. To prove that FJ �

 
ˇ

k�1

.�/ is not identically
zero, we just have to show

CN 2k.2b�2/r

�
FJ �

 
ˇ

k�1

.�/
�
¤ 0

for some r .
Taking r D 2k.b� 1/, we have

(7-6) CN 2k.2b�2/r

�
FJ �

 
ˇ

k�1

.�/
�
D

Z
L.A/

�1.i.�//FJ
�2

 
ˇ
k�1

�
CN 2k.2b�1/2k.b�1/

.�/
�
.��/ d�:

By Lemma 7.2, when restricted to GL2k.b�1/.A/� eSp2k.A/,

CN 2k.2b�1/2k.b�1/
.�/ 2 ı

1=2

P
2k.2b�1/
2k.b�1/

jdetj�
b
2  �˛�.�; b� 1/˝ Q�:

It is clear that the integral in (7-6) is not identically zero if and only if Q� is  ˇ-
generic. Hence, by assumption,

FJ �
 ˛
k�1
.�/

is not identically zero. Thus, QE�.�;b�1/˝Q� has a nonzero Fourier coefficient attached
to the partition Œ.2k/12k.2b�2/� with respect to the character  Œ.2k/12k.2b�2/�;ˇ .

Next, we show that the  ˇ-descent

zD2k.2b�1/2k; ˇ . QE�.�;b�1/˝Q� /

of QE�.�;b�1/˝Q� is square-integrable and contains the whole space of the residual
representation E�.�;b�1/ which is irreducible, as shown in [Liu 2013b, Theorem 7.1].

To prove the square-integrability of

zD2k.2b�1/2k; ˇ . QE�.�;b�1/˝Q� /;
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we need to calculate the automorphic exponent attached to the nontrivial constant
term considered above (r D 2k.b� 1/). For this, we need to consider the action of

g D diag.g; g�/ 2 GL2k.b�1/.A/�Sp0.A/:

Since r D 2k.b� 1/, �D
�
0 I2k.b�1/
Ik 0

�̂
. Let

Qg WD � diag.Ik; g; Ik/�
�1
D diag.g; I2k; g

�/:

Then changing variables in (7-6) via � 7! Qg� Qg�1 will give a Jacobian jdetgj�k.
On the other hand, by [Ginzburg et al. 2011, Formula (1.4)], the action of g on �1
gives jdetgj1=2. Therefore, g acts by �.�; b� 1/.g/ with character

ı
1=2

P
2k.2b�1/
2k.b�1/

jdetgj�
b
2 jdetgj�k 

 �ˇ
.detg/jdetgj

1
2 D ı

1=2

P
2k.2b�2/
2k.b�1/

.g/jdetgj�
b�1
2 :

Therefore, as a function on GL2k.b�1/.A/�Sp0.A/,

(7-7) CN 2k.2b�2/2k.b�1/

�
FJ �

 
ˇ

k�1

.�/
�
2 ı

1=2

P
2k.2b�2/
2k.b�1/

jdet. � /j�
b�1
2 �.�; b� 1/˝ 1Sp0.A/:

Since the cuspidal exponent of �.�; b� 1/ isn�
2�b

2
;
4�b

2
; : : : ;

b�2

2

�o
;

the cuspidal exponent of CN 2k.2b�2/2k.b�1/

�
FJ �

 
ˇ

k�1

.�/
�

isn�
3�2b

2
;
5�2b

2
; : : : ;�

1

2

�o
:

By the Langlands square-integrability criterion ([Mœglin and Waldspurger 1995,
Lemma I.4.11]), the automorphic representation

zD2k.2b�1/2k; ˇ . QE�.�;b�1/˝Q� /

is square integrable.
From (7-7), it is easy to see that as a representation of GL2k.b�1/.A/�Sp0.A/,

(7-8) CN 2k.2b�2/2k.b�1/

�
zD2k.2b�1/2k; ˇ . QE�.�;b�1/˝Q� /

�
D ı

1=2

P
2k.2b�2/
2k.b�1/

jdet. � /j�
b�1
2 �.�; b� 1/˝ 1Sp0.A/:

It follows that
zD2k.2b�1/2k; ˇ . QE�.�;b�1/˝Q� /

has a nontrivial intersection with the space of the residual representation E�.�;b�1/.
Since by [Liu 2013b, Theorem 7.1, part (2)], E�.�;b�1/ is irreducible,

zD2k.2b�1/2k; ˇ . QE�.�;b�1/˝Q� /
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must contains the whole space of the residual representation E�.�;b�1/. By [op. cit.,
Theorem 7.1, part (3)], the descent

zD2k.2b�1/2k; ˇ . QE�.�;b�1/˝Q� /

is actually irreducible and equals the residual representation E�.�;b�1/ identically.
By [op. cit., Theorem 4.2.2], we know that pm.E�.�;b�1//DfŒ.2k/2b�2�g. There-

fore, by [Jiang and Liu 2015c, Lemma 3.1] or [Ginzburg et al. 2003, Lemma 2.6],
QE�.�;b�1/˝Q� has a nonzero Fourier coefficient attached to the partition Œ.2k/2b�1�.
This completes the proof of step (3).
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ON THE EXISTENCE OF CENTRAL FANS
OF CAPILLARY SURFACES

AMMAR KHANFER

We prove that under some conditions every nonparametric capillary surface
which has a central fan (of radial limits at a point O) can be perturbed with
respect to the contact angle and the perturbed surfaces continue to have
central fans. In particular, any nonparametric capillary surface which is
symmetric with respect to a vertical plane through O and has a central fan
may be perturbed (with respect to the contact angle) in a nonsymmetric
manner and the resulting capillary surfaces will not be symmetric with re-
spect to the vertical plane but will continue to have central fans.

1. Introduction

Let � be a bounded open set in R2 with locally Lipschitz boundary ∂� such that a
point O lies on ∂�, ∂�\{O} is a C2 curve and there exist distinct rays l± starting at
O such that ∂� is tangent to l+∪l− at O. By rotating and translating the domain, we
may assume O= (0, 0), l+={r(cosα, sinα) :r≥0}, l−={r(cosα,−sinα) :r≥0}
and

�∩ B(O, δ)= {r(cos θ, sin θ) : 0< r < δ, θ−(r) < θ < θ+(r)}

for some α ∈ (0, π), δ > 0 and functions θ± ∈ C0([0, δ)) which satisfy θ−< θ+,
θ−(0)=−α and θ+(0)= α; here B(O, δ) is the open ball in R2 centered at O of
radius δ. We will assume this description of � holds throughout this paper.

Let γ be a measurable function mapping ∂� into [0, π] and f ∈C2(�)∩L∞(�)
be a (bounded) variational solution of the nonparametric capillary surface problem
of finding a function u ∈ C2(�) such that

div(T u)= κu+ λ in �,(1)

T u · ν = cos γ a.e. on ∂�,(2)

where

T u =
(

D1u√
1+ |Du|2

,
D2u√

1+ |Du|2

)
,

MSC2010: primary 35J93, 76B45; secondary 35J62, 53A10.
Keywords: capillary surfaces, nonconvex corner, central fans.
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κ and λ are constants and ν is the outer unit normal to ∂�. We will assume κ > 0
and therefore, by vertical translation, assume λ= 0. (Since κ > 0, f is unique.)

Lancaster and Siegel [1996] proved that if γ is bounded away from 0 and π
near O, then the radial limit of f at O in the direction θ ,

R f (θ) def
= lim

r↓0
f (r cos θ, r sin θ),

exists for each θ ∈ [−α, α], R f belongs to C0([−α, α]), R f (−α) is the limiting
height at O of the trace of f on ∂−� = ∂�∩ {y < 0} and R f (α) is the limiting
height at O of the trace of f on ∂+�= ∂�∩ {y > 0}. In particular, when α > π

2 ,
so that ∂� has a nonconvex (or reentrant) corner at O, and f is discontinuous at O,
the conclusion of Theorem 1 of [Lancaster and Siegel 1996] is that the radial limits
of f behave in one of the following ways:

(i) There exist α1 and α2 so that−α≤α1<α2≤α and R f is constant on [−α, α1]

and [α2, α] and is strictly increasing or strictly decreasing on [α1, α2]. Label
these case (I) and case (D), respectively.

(ii) There exist α1, αL , αR, α2 so that−α≤α1<αL <αR <α2≤α, αR =αL+π ,
and R f is constant on [−α, α1], [αL , αR], and [α2, α] and is either strictly
increasing on [α1, αL ] and strictly decreasing on [αR, α2] or strictly decreasing
on [α1, αL ] and strictly increasing on [αR, α2]. Label these case (ID) and
case (DI), respectively.

In addition, if the limits

(3) γ1 = lim
∂+�3(x,y)→O

γ (x, y) and γ2 = lim
∂−�3(x,y)→O

γ (x, y)

both exist, then [Lancaster 2010; 2012; Lancaster and Siegel 1996] imply that α2

equals α− γ1 in cases (I) and (DI) and α+ γ1−π in cases (D) and (ID) while α1

equals −α+ γ2 in cases (D) and (DI) and π −α− γ2 in cases (I) and (ID).
The intervals in [−α, α] on which R f is constant are called “fans” in, for example,

[Lancaster 1985]; specifically, [−α, α1] and [α2, α] are called “side fans” and, if it
exists, [αL , αL +π ] is called a “central fan”. When � and γ are symmetric with
respect to the x-axis, we have R f (α) = R f (−α) and, if α > π

2 , αL = −
π
2 and

αR =
π
2 . (If κ < 0 in (1), we would need to explicitly assume f (x, y)= f (x,−y)

for (x, y) ∈�.) If the fans touch or overlap (e.g., γ1+ γ2 ≥ 2α−π in a situation
where case (DI) would hold), then f is continuous at O.

Let � be a bounded domain in R2 which is symmetric with respect to the x-axis
and has a reentrant corner of size 2α > π at the origin O. Let γ : ∂�→ (0, π)
also be symmetric with respect to the x-axis such that the limits in (3) exist and
γ1 = γ2 <

π
2 . As in Example 2 of [Lancaster and Siegel 1996], it follows that the

solution f of (1)–(2) with the domain � and contact angle γ above is continuous



ON THE EXISTENCE OF CENTRAL FANS OF CAPILLARY SURFACES 469

at O if and only if γ1≥
π
2−α and the radial limits R f (θ) of f at O have a central fan

if γ1<
π
2 −α. Danzhu Shi and Robert Finn [2004] considered the borderline case in

which γ1=α−
π
2 , so that f is continuous at O. By perturbing the domain (using “an

asymmetric domain perturbation that is in an asymptotic sense arbitrarily small”),
they showed that the solution of the perturbed capillary problem is discontinuous
at O. (They convert the behavior of the radial limit function from a constant in
Example 2 to case (I) in the perturbed problem.)

Consider a similar (symmetric) situation with a constant contact angle γ which
satisfies γ <α− π

2 , so that the solution f of (1)–(2) with the (symmetric) domain�
and contact angle γ is discontinuous at O, the radial limits R f (θ) of f at O have a
central fan and case (DI) holds. Applying the procedure of Finn and Shi, one makes
a suitable, nonsymmetric (with respect to the x-axis) perturbation of � outside
a neighborhood of O and obtains a new solution f̃ of (1)–(2) in the perturbed
domain �̃, and one then shows that f̃ is discontinuous at O and the radial limits
R f̃ (θ) have no central fan (i.e., case (I) holds); the size of the domain perturbation
required to achieve this depends on the size of α− π

2 − γ .
We might view their example and procedure as a perturbation of the contact angle

in a fixed domain �̂ as follows. Let �̂ be the largest open subset of �∩ �̃ which is
symmetric with respect to the x-axis. Let ν̂ denote the exterior unit normal to �̂ at
points of ∂�̂ where it exists. Define (variable) contact angles λ, λ̃ : ∂�̂→[0, π] as
follows:

• On ∂�̂∩ ∂�, set λ= γ .

• On ∂�̂∩ ∂�̃, set λ̃= γ .

• On ∂�̂∩�, set λ= T f · ν̂ when ν̂ is defined; recall that f ∈ C2(�).

• On ∂�̂∩ �̃, set λ̃= T f̃ · ν̂ when ν̂ is defined; recall that f̃ ∈ C2(�̃).

Using the procedure given in [Shi and Finn 2004], notice that ν̂ exists at all but
a finite number of points and so λ and λ̃ are defined almost everywhere on ∂�̂.
From Theorem 5.1 of [Finn 1986], we see that f and f̃ are the solutions of (1)–(2)
with domain �̂ and contact angles λ and λ̃ respectively. We may therefore view λ̃

as a perturbation of the (symmetric) contact angle λ and, when γ < α− π
2 , this

perturbation λ̃ destroys the central fan. In this paper, we establish the stability of
central fans with respect to sufficiently small perturbations of the contact angle γ ,
leaving the domain � fixed; this implies that λ̃ is a “large” perturbation of λ. We
shall prove the following result.

Theorem 1. Suppose � is a bounded open domain in R2 which has a reentrant
corner at O of size 2α with α ∈

(
π
2 , π

)
as described above. Suppose also that there

is a finite set A = {P1, . . . , Pm} ⊂ ∂� with m ≥ 1 and P1 = O such that ∂� \ A
is a C4 curve (if m = 1) or a finite disjoint union of C4 curves (if m > 1). Let
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γ ∈ C1,β(∂� \ A), for some β ∈ (0, 1), satisfy δ0 ≤ γ ≤ π − δ0 for some δ0 > 0
such that the limits

γ1 = lim
∂+�3(x,y)→O

γ (x, y) and γ2 = lim
∂−�3(x,y)→O

γ (x, y)

both exist. Suppose there exists f ∈ C2(�)∩ L∞(�) which satisfies (1)–(2) and is
discontinuous at O and the radial limit function of f at O, R f ( · ), behaves as in
case (ID) or case (DI).

Then there exist functions ω± : ∂�→ [0, π] with 0≤ ω+ ≤ γ ≤ ω− ≤ π on ∂�
and ω+ < γ < ω− on ∂� \ A such that if σ : ∂�→ (0, π) with ω+ ≤ σ ≤ ω− a.e.
on ∂� and δ1 ≤ σ ≤ π − δ1 for some δ1 ∈ (0, δ0), then the radial limit function Rh
of the solution h ∈ C2(�) of (1)–(2) with γ replaced by σ in (2) has the same type
of behavior (i.e., case (ID) or case (DI) holds) as does R f . In particular, the radial
limits of h have a central fan.

The following corollary shows that Example 2 of [Lancaster and Siegel 1996] can
be perturbed (with respect to the contact angle) and that the resulting nonsymmetric
nonparametric capillary surfaces will have central fans.

Corollary 2. Let � be an open, connected, bounded Lipschitz domain which is
symmetric with respect to the x-axis such that O = (0, 0) ∈ ∂�, ∂� \ {O} is a C4

curve and� has a corner at O with opening angle 2α >π . Suppose γ : ∂�\{O}→
(0, π) is a C1,β map which satisfies γ (x,−y) = γ (x, y) for (x, y) ∈ ∂� and for
which the limit

lim
∂�3(x,y)→O

γ (x, y)= γ0,

exists and 0 < γ0 < α − π
2 . Let f ∈ C2(�) ∩ C1,β(� \ {O}) of (1)–(2). Then f

is discontinuous at O, the radial limit function R f behaves as in case (DI) and
there exist functions ω± : ∂�→ [0, π] with 0 ≤ ω+ ≤ γ ≤ ω− ≤ π on ∂� and
ω+<γ <ω− on ∂�\ A such that if σ : ∂�→ (0, π) with ω+≤ σ ≤ω− a.e. on ∂�
and δ1 ≤ σ ≤ π − δ1 for some δ1 ∈ (0, δ0), then the radial limit function Rh of the
solution h ∈C2(�) of (1)–(2) with γ replaced by σ in (2) is discontinuous at O and
behaves as in case (DI).

We do not address the stability of the continuity at O of a solution f of (1)–(2)
but we note that the procedure in [Shi and Finn 2004], as stated, would not establish
the discontinuity at O of f for arbitrarily small perturbations of the domain (in the
asymptotic sense of Shi and Finn) when γ1 = γ2 > α−

π
2 .

2. Some lemmas

Lemma 3. Let � be a bounded open domain in R2 with Lipschitz boundary and
let 0 be an open subset of ∂� which is a C2,β curve for some β ∈ (0, 1). Let
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γ ∈ L∞(∂�) satisfy δ ≤ γ ≤ π − δ a.e. on ∂� for some δ > 0 and γ ∈ C1,β(0).
Suppose there exists f ∈ C2(�)∩ L∞(�) which satisfies

(4) div(T u)= κu in �

and

(5) T u · ν = cos γ on 0.

Then f ∈ C2,β(�∪0).

See [Finn 1986, p. 210, Note 5], or [Finn 1988], or the introduction of [Korevaar
and Simon 1996], which references [Simon and Spruck 1976; Taylor 1977].

The next result uses the notation of [Korevaar and Simon 1996, Theorem 2];
in particular,

(∇g(x),−1)√
1+ |∇g(x)|2

denotes the continuous extension of the (downward) unit normal to the graph of g
when considered as a function on this graph.

Lemma 4. Let � be a bounded open domain in R2 with Lipschitz boundary and
let 0 be an open subset of ∂� which is a C3 curve. Let φ ∈ L∞(∂�) be in C1,β(0)

for some β ∈ (0, 1). Suppose g ∈ C2(�)∩ L∞(�) is the variational solution of

div(T u)= κu in �,

u = φ on ∂�;

that is, g minimizes J ( · ) over BV(�), where

J (u)=
∫
�

√
1+ |Du|2+

∫
�

∫ u

0
κt dt dx +

∫
∂�

|u−φ| ds, u ∈ BV(�).

Set

Q = {(x, t) ∈ 0×R :min{φ(x), g(x)} ≤ t ≤max{φ(x), g(x)}}

and Q0 = Q \ T , where T ⊂ ∂�×R is the graph of φ, and let G be the graph of g
over�. Then for each x0∈0, there exists a δ>0 such that {x ∈∂� : |x−x0|≤δ}⊂0

and the following conclusions hold:

(a) 5= {(x, t) ∈ Q ∪G : |x − x0| ≤ δ} is a C1,σ manifold with boundary whose
boundary is the union of {(x, φ(x)) ∈ T : x ∈ 0, |x − x0| ≤ δ} and {(x, g(x)) :
x ∈�, |x − x0| = δ} for some σ ∈ (0, 1).
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(b) The (downward) unit normal EN to 5 is a continuous function and

EN (x, t)=


(∇g(x),−1)√
1+ |∇g(x)|2

if x ∈�∪0 and t = g(x),

(ν(x), 0) if (x, t) ∈ Q and g(x)≤ t < φ(x),

(− ν(x), 0) if (x, t) ∈ Q and φ(x) < t ≤ g(x),

where ν denotes the outward unit normal to ∂�.

Proof. Let A = {x ∈ 0 : g∗(x) = φ(x)}, B = {x ∈ 0 : g∗(x) 6= φ(x)}, and A0 be
the interior (in 0) of A, where g∗ is the trace of g on ∂�; let us define g∗(x) to be
φ(x) if x ∈ 0 and g∗(x) is not otherwise defined. Using the arguments in [Elcrat
and Lancaster 1986], we see that if x0 ∈ A0, then there exists a δ > 0 such that
{x ∈ ∂� : |x − x0| ≤ δ} ⊂ A0 and (a) and (b) hold.

Suppose x0 ∈ B such that g∗(x0)= z0 <φ(x0) and so (x0, z0) is an interior point
of Q∪G. Standard results on the regularity of solutions of obstacle problems at
interior points imply g is continuous on (�×R)∩U , where U is a neighborhood
in R3 of (x0, z0), and, considered as a parametric surface, (Q∪G)∩U is a C1,α

surface for some α ∈ (0, 1). (For example, this follows from [Simon and Spruck
1976] or [Taylor 1977], since the contact angle is zero at these interior points.
Another argument follows from [Hildebrandt 1973]; by “blowing up” or dilating R3

about (x0, z0), we may assume the function f : E × R3
× R3

× R3
→ R given

by f (w, X, p, q) = |p|2 + |q|2 + 1
2κ(X3 − z0)((X − (x0, z0)) · (p× q)) satisfies

conditions A and B of that paper in a neighborhood U × I of (x0, z0), where I
is an open interval containing z0, and so, for smooth Dirichlet data ψ slightly
larger than z0 near x0 and equal to g on �∩ ∂U , a theorem in [Hildebrandt 1973]
shows there is a parametric minimizer of

∫
E f (w, z,∇z) du dv that is smooth in

the interior of its domain E = {(u, v) : u2
+ v2 < 1} and, from [Miranda 1964]

(or [Finn 1986, p. 16, Note 10]), we see that this parametric solution is a graph
z = h(x, y). Since g ≤ h on ∂U by the choice of ψ and h ≤ g on ∂U since ψ < φ
on U ∩ ∂�, we see that g = h in U . In particular, g is continuous at each point
of 0 ∩ B and the points of A \ A0 are isolated.) An application of [Bourni 2011]
shows that (a) and (b) hold; that is, we may choose a domain V ⊂� such that ∂V
is a C1,α curve in R2, x0 ∈ ∂V ⊂ 0 ∪�, ∂�∩ (�∩ ∂V) = {x ( j)

: j = 1, 2} with
x ( j)
∈ B ( j = 1, 2), the closure in R3 of {(x, g(x))∈�×R : x ∈ ∂V} is a C1,α curve

in R3 which meets 0×R tangentially at (x ( j), g∗(x ( j))), j = 1, 2, and we can find
a function ψ : ∂V→R whose graph is a C1,α curve in R3 such that g∗ ≤ψ ≤ φ on
∂�∩ ∂V (see Figure 1(a)) and apply the conclusion of [Bourni 2011] to see that (a)
and (b) hold in a neighborhood of x0. If x0 ∈ B such that g∗(x0) = z0 > φ(x0),
apply the argument above to −g (with −φ as Dirichlet data).
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g*

*

g*

φ

(a) ∂ ν ∩ ∂ Ω (b) ∂ ν ∩ ∂ Ω

φ

ψ

ψ
g  = ψ = φ 

Figure 1. The traces of g, ψ and φ.

Suppose x0 ∈ A \ A0. Notice, from the arguments above, that A0 and B are
open. There exist a domain V ⊂ � and a function ψ : ∂V → R as above such
that x0 ∈ ∂V ⊂ 0 ∪� and ∂�∩ (�∩ ∂V) = {x ( j)

: j = 1, 2} with x ( j)
∈ A0 ∪ B

( j = 1, 2); we argue as above (see, for example, Figure 1(b)). �

Lemma 5. Let � be a bounded open domain in R2 with Lipschitz boundary and
let 0 be an open subset of ∂� which is a C4 curve or a finite disjoint union of C4

curves. Let γ ∈ L∞(∂�) satisfy δ ≤ γ ≤ π − δ a.e. on ∂� for some δ > 0 and
γ ∈ C1,β(0) for some β ∈ (0, 1). Suppose there exists f ∈ C2(�)∩ L∞(�) which
satisfies (4) and (5). Let ε > 0. Define g = gε ∈ BV(�) to be the minimizer over
BV(�) of Jε( · ), where

Jε(u)=
∫
�

√
1+ |Du|2+

∫
�

∫ u

0
kt dt dx +

∫
∂�

|u− ( f + ε)| ds

for u ∈ BV(�). We have:

(i) g ∈ C2(�) and satisfies (4).

(ii) The unit normal EN to5 is in C0,β(�∪ E) for each compact subset E of 0 and
hence the contact angle

(6) γg
def
= arccos(T g · ν) ∈ [0, π]

is well defined and continuous on 0, where ν denotes the outward unit normal
to ∂�. In particular, γg = 0 on {x ∈ 0 : g(x) < f (x)+ ε}.

(iii) Suppose there is a finite set A = {x1, . . . , xm} ⊂ ∂� such that 0 = ∂� \ A.
Then f ≤ g ≤ f + ε in �.

(iv) Suppose there is a finite set A = {x1, . . . , xm} ⊂ ∂� such that 0 = ∂� \ A.
Then γg < γ on 0.

Proof. (i) The existence of g follows from Theorem 5 of [Gerhardt 1974], or
Theorem 2.1 of [Giusti 1976]. The interior regularity of g follows from Theorem 3.1
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of [Giusti 1976] (see also [Gerhardt 1974, p. 174; Williams 1978, Theorem 3]).
The fact that g satisfies (4) is standard (e.g., [Gerhardt 1974, p. 174]).

(ii) The boundary regularity of g follows from Lemma 4. On {x ∈ 0 : g(x) <
f (x)+ ε}, we have EN (x, g(x))= (ν(x), 0), T g(x)= ν(x), and so

γg(x)= arccos(ν(x) · ν(x))= arccos(1)= 0.

(iii) Notice that f, g ∈ C2(�)∩C0(�∪0). Set M = {x ∈� : f (x) > g(x)}. On
∂M ∩0, g < f + ε and so by (ii) and Lemma 4, with 5 = Q ∪G, where Q =
{(x, z) : (x, z)∈ E, g(x)≤ z< f (x)} ∈M×R, implies that sup cos γg = T g ·ν= 1;
hence γg = 0 on ∂M∩0. Thus f = g on �∩∂M and γg = 0 almost everywhere on
∂�∩ ∂M and so the general comparison principle (e.g., [Finn 1986, Theorem 5.1])
implies f ≤ g in M ; hence M =∅.

Now let τ > 0 and set N = {x ∈� : g(x) > f (x)+ε+τ }. Then g= f +ε+τ on
�∩∂N and g> f +ε on ∂N∩0 and so Lemma 4 implies γg=π almost everywhere
on ∂�∩ ∂N . The general comparison principle then implies g ≤ f + ε+ τ and so
N =∅. Therefore g ≤ f + ε+ τ in � for each τ > 0 and so g ≤ f + ε in �.

(iv) Suppose first x ∈ 0 and there is a sequence {y j } in 0 such that x = lim j→∞ y j

and g(y j ) < f (y j )+ ε for each j . Then (ii) implies γg(y j )= 0 for each j and so
γg(x)= 0. Since γ ∈ (0, π), we see that γg(x)= 0< γ (x).

Suppose next that x ∈ 0 and g ≥ f + ε in P ∩0, where P is a neighborhood
of x in R2. From (iii), we see that g = f + ε in P ∩ 0. If γg(x) > γ (x), then
g(x − tν(x)) > f (x − tν(x))+ ε for t > 0 small and this contradicts (iii). (Recall
that ν(x) is the exterior unit normal to ∂� at x .) Thus γg ≤ γ on 0.

Finally, suppose x ∈ 0, γg(x) = γ (x) and g = f + ε in P ∩ ∂�, where P is
a neighborhood of x in R2; notice that [Heinz 1970] and Lemma 3 imply g ∈
C2,β(P ∩�). Since g ≤ f + ε in � and γg(x) = γ (x), the tangent plane 5g to
z= g at (x, g(x)) and the tangent plane5 to z= f +ε at (x, g(x))= (x, f (x)+ε)
must coincide. Now the mean curvature Hg of z = g at (x, g(x)) is 1

2κg(x) and the
mean curvature H f of z = f + ε at (x, g(x)) is 1

2κ f (x) = 1
2(κg(x)− κε). Since

g = f + ε in P ∩0, the (signed) curvature of the curve z = f (x − tν(x))+ ε must
be strictly less than the (signed) curvature of the curve z = g(x − tν(x)) for t > 0
small and so g(x− tν(x)) > f (x− tν(x))+ε for t > 0 small, contradicting (iii). �

3. Stability of central fans

We will begin by establishing the stability of the central fans with respect to “one-
sided” perturbations of γ . (See Figures 2 and 3.)

Theorem 6. Let � be an open, connected, bounded Lipschitz domain such that
O = (0, 0) ∈ ∂�, � has a corner at O with opening angle 2α > π and there is
a finite set A = {P1, . . . , Pm} ⊂ ∂� with m ≥ 1 and P1 = O such that ∂� \ A is
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f * + δ f * + δ

f * f *
( g  )*+ ( g  )*+

Figure 2. The traces of f , g+ and f + δ.

a C4 curve (if m = 1) or a finite disjoint union of C4 curves (if m > 1). Suppose
γ : ∂� \O→ (0, π) is a C1,β map for which the limits

lim
∂+�3(x,y)→O

γ (x, y)= γ1, lim
∂−�3(x,y)→O

γ (x, y)= γ2

exist with γi ∈ (0, π), i = 1, 2, and f ∈ C2(�)∩C1,β(� \ {O}) satisfies

div(T f )= κ f in �,

T f · ν = cos γ on ∂� \ {O}

such that f is discontinuous at O and the radial limits R f ( · ) of f at O have a
central fan.

There exists a δ > 0 such that if g+ ∈ BV(�)∩C2(�) is the variational solution
of the Dirichlet problem

div(T g)= κg in �,(7)

g = f + δ on ∂� \ A,(8)

and if ω+ def
= arccos(T g+ ·ν) on ∂�\A, then for any function σ ∈ L∞(∂�) satisfying

(9) ω+ ≤ σ ≤ γ a.e. on ∂�

and δ1 ≤ σ ≤ π − δ1 for some δ1 > 0, the variational solution h ∈ BV(�)∩C2(�)

of the capillary problem

(10) div(T h)= κh in �, T h · ν = cos σ on ∂� \ A

is discontinuous at O, the radial limits Rh( · ) of h at O have a central fan and they
have the same type of behavior (i.e., case (DI) or (ID)) as R f ( · ).

Proof. Suppose first that R f behaves as in case (DI) and so

R f (0) <min{R f (α), R f (−α)}.
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h* h*

f * f *
( g  )*+ ( g  )*+

Figure 3. The traces of f , h and g+.

Let δ < min{R f (α) − R f (0), R f (−α) − R f (0)} and let g+ be the variational
solution of the Dirichlet problem (7)–(8) for this choice of δ (see Figure 2). From
Lemma 5(iv), we see that ω+ < γ on ∂�\ A and therefore there exist σ ∈ L∞(∂�)
which satisfy (9); let us select σ and h as in the theorem (see Figure 3). From
Lemma 5(iii) and the general comparison principle, we see that f ≤ h ≤ g+≤ f +δ
in � and hence

(11) R f (θ)≤ Rh(θ)≤ Rg+(θ)≤ R f (θ)+ δ for θ ∈ [−α, α];

thus

Rh(α)− Rh(0)≥ R f (α)− (R f (0)+ δ)= R f (α)− R f (0)− δ > 0

and

Rh(−α)− Rh(0)≥ R f (−α)− (R f (0)+ δ)= R f (−α)− R f (0)− δ > 0.

Now we know that the radial limits of h at O exist and behave as in [Lancaster
and Siegel 1996] (i.e., one of case (I), (D), (ID) or (DI) must hold; if, for example,
case (I) held, one would have R f (−α) < R f (0) < R f (α)). The calculations above
show that R f (−α)> R f (0) and R f (α)> R f (0) and therefore Rh( · ) must behave
as in case (DI); hence Rh( · ) has a central fan (see Figure 4).

R f + δ

L− α αα Rα θ

2 δ

R f

R f

R h

Figure 4. The radial limits of f , h and f + δ.
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Suppose next that R f behaves as in case (ID) and so

R f (0) >min{R f (α), R f (−α)}.

If we let δ < min{R f (0)− R f (α), R f (0)− R f (−α)}, we may repeat the same
argument as above and obtain Rh(0) > Rh(−α) and Rh(0) > Rh(α); hence Rh( · )
must behave as in case (ID) and therefore has a central fan. �

Remark 7. The corresponding theorem with (8) replaced by

(12) g− = f − δ on ∂� \ A

and with ω− def
= arccos(T g− ·ν) on ∂�\ A, ω−≥ σ ≥ γ on ∂�\ A, δ1≤ σ ≤π−δ1

for some δ1 > 0 and h a solution of (10) yields f − δ ≤ g− ≤ h ≤ f in � and

(13) R f (θ)≤ Rh(θ)≤ R f (θ)+ δ for θ ∈ [−α, α];

hence h is discontinuous at O and the radial limits Rh( · ) of h at O have the same
type of behavior (i.e., case (DI) or (ID)) as R f ( · ).

Proof of Theorem 1. Suppose R f behaves as in case (DI) or case (ID) and define
δ = 1

2 min{|R f (α)− R f (0)|, |R f (−α)− R f (0)|}. Combining the arguments in
Theorem 6 and Remark 7, we obtain

R f (α)− R f (0)− δ ≤ Rh(α)− Rh(0)≤ R f (α)− R f (0)+ δ

and

R f (−α)− R f (0)− δ ≤ Rh(α)− Rh(0)≤ R f (−α)− R f (0)+ δ.

If R f behaves as in case (DI), we have 0< Rh(α)−Rh(0) and 0< Rh(−α)−Rh(0)
and therefore Rh behaves as in case (DI). If R f behaves as in case (ID), we have
Rh(α)− Rh(0) < 0 and Rh(−α)− Rh(0) < 0 and therefore Rh behaves as in
case (ID). �

Proof of Corollary 2. Since γ0 <α−
π
2 , we see that |2γ −π |> 2π−2α. It follows

from [Lancaster 2012] that f is discontinuous at O. Since f (x, y) = f (x,−y)
for each (x, y) ∈�, the radial limits of f cannot behave as in cases (I) or (D) of
Theorem 1 of [Lancaster and Siegel 1996] and therefore they have a central fan.
That case (DI) holds for R f ( · ) follows from [Lancaster 2012] or directly from the
fact that (π − γ0)+ (π − γ0)+π > 4π − 2α > 2α means case (ID) cannot hold.
The claim follows from Theorem 1. �

Remark 8. It should be emphasized that the conclusion of Theorem 1 is not that
“there exists a δ > 0 such that if σ : ∂�→ [0, π] satisfies γ − δ ≤ σ ≤ γ + δ a.e.
on ∂�, then the radial limit function Rh of the solution h ∈C2(�) of (1)–(2) with γ
replaced by σ in (2) has the same type of behavior (i.e., case (ID) or case (DI)
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holds) as does R f ”. The validity of such a conclusion is an interesting question
which might spur further investigation.
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SURFACES OF PRESCRIBED MEAN CURVATURE H(x, y, z)
WITH ONE-TO-ONE CENTRAL PROJECTION

ONTO A PLANE

FRIEDRICH SAUVIGNY

Dedicated to the memory of Professor Stefan Hildebrandt in gratitude

When we consider surfaces of prescribed mean curvature H with a one-to-
one orthogonal projection onto a plane, we have to study the nonparametric
H-surface equation. Now the H-surfaces with a one-to-one central projec-
tion onto a plane lead to an interesting elliptic differential equation, which
is derived in Section 2; in the case H = 0 this PDE was invented by T. Radó.
We establish the uniqueness of the Dirichlet problem for this H-surface
equation in central projection in Section 3, and develop an estimate for the
maximal deviation of large H-surfaces from their boundary values, resem-
bling an inequality by J. Serrin. In Section 4 we provide a Bernstein-type
result for the case H = 0 and classify the entire solutions of the minimal
surface equation in central projection. We also solve the Dirichlet problem
for H = 0 by a variational method. In Section 5 we solve the Dirichlet prob-
lem for nonvanishing H with compact support via a nonlinear continuity
method, and we construct large H-surfaces bounding extreme contours by
an approximation. Finally, in Section 6 we solve the Dirichlet problem on
discs for the nonparametric H-surface equation in central projection under
certain restrictions for the mean curvature.

1. Introduction

In Plateau’s problem for variable H = H(x, y, z), one constructs branched immer-
sions of prescribed mean curvature H(x, y, z) bounding a given Jordan contour 0
in R3 by minimizing an energy functional (see [Dierkes et al. 2010a, Part II]). This
parametric H-surface

X = X (u, v)= (x(u, v), y(u, v), z(u, v))

satisfies Rellich’s nonlinear elliptic system (3-31) and is given in conformal param-
eters — apart from the isolated branch points. In [Sauvigny 1982], this parametric
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surface X is shown to be a graph z = ζ(x, y) above the (x, y)-plane for certain
contours 0 and solves the Dirichlet problem for the nonparametric H-surface
equation to the given boundary values.

In the present paper we solve the Dirichlet problem for H-surfaces in the rep-
resentation (2-3) with a one-to-one central projection by a nonlinear continuity
method (compare Theorem 5.1) and an approximation (see Theorem 6.1). We
start with a solution of Plateau’s problem for H = 0 which possesses a one-to-one
central projection (see Theorem 4.1). Having answered the uniqueness question
(compare Theorem 3.1), we study intensively the stability and the compactness
of this boundary value problem with the aid of [Sauvigny 1982, Satz 1]. In the
minimal surface case, the relevant PDEs (2-17) and (2-24) already appear in a paper
by T. Radó [1932] — but the inhomogeneous equations seem to be investigated here
for the first time.

We can determine the set of entire solutions for the nonparametric minimal
surface equation in central projection (compare Theorem 4.2). While minimal
surfaces remain in the convex hull of their bounding contour, this is not the case
for surfaces of prescribed mean curvature. However, we can estimate the deviation
of our solution from their boundary values by comparison with large spherical
caps (see Theorems 2.1 and 3.2). These surfaces do not belong to the family of
graphs; however, they possess a one-to-one central projection and can be used here.
Moreover, we can construct large solutions of Plateau’s problem by a continuity
and approximation method (compare Theorem 5.2).

2. The H-surface equation in central projection

It is well-known that the set of surfaces of constant mean curvature H ∈ R is
invariant under translations and rotations. When we consider these H-surfaces with
one-to-one central projection onto a plane E , we can assume by translation that
the origin (0, 0, 0) ∈ R3 represents the center of projection. Furthermore, we can
attain by rotation that this plane E is parallel to the xy-plane. Now H-surfaces
are transformed into (a−1

· H)-surfaces after a dilation by the factor a ∈ R \ {0}.
Therefore, we can select the set

(2-1) E := {(x, y, 1) ∈ R3
| x, y ∈ R}

without loss of generality as our projection plane after a suitable dilation. For the
general study of H-surfaces with prescribed mean curvature H = H(x, y, z) on
domains in the Euclidean space, we refer our readers to Chapter 5 of the treatise
[Dierkes et al. 2010a] by U. Dierkes, S. Hildebrandt, and F. Sauvigny.

Choose an arbitrary domain �⊂ R2 in the plane; with the real-valued function

(2-2) % = %(x, y) ∈ C2(�,R)
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we associate the vector-valued function

(2-3) X = X (x, y) := %(x, y) · (x, y, 1), (x, y) ∈�.

At all points (x, y) ∈ � with %(x, y) 6= 0, we obtain in (2-3) a differential-
geometrically regular surface with one-to-one central projection onto the plane E .

In this context, let us calculate the first derivatives of the surface X , namely

(2-4)
Xx(x, y)= %x(x, y) · (x, y, 1)+ %(x, y) · (1, 0, 0),

Xy(x, y)= %y(x, y) · (x, y, 1)+ %(x, y) · (0, 1, 0),

and the coefficients of its first fundamental form, which are

(2-5)

X2
x (x, y)= Xx · Xx(x, y)

= %2
x(x, y) · (x2

+ y2
+ 1)+ 2%(x, y)x%x(x, y)+ %2(x, y),

Xx · Xy = %x(x, y)%y(x, y)(x2
+y2
+1)+%(x, y)[y%x(x, y)+x%y(x, y)],

X2
y (x, y)= %2

y(x, y) · (x2
+ y2
+ 1)+ 2%(x, y)y%y(x, y)+ %2(x, y),

for (x, y) ∈�. Furthermore, we determine the exterior product of the vectors (2-4)
as follows:

(2-6) Xx ∧ Xy(x, y)

=
(
%x · (x, y, 1)+ % · (1, 0, 0)

)
∧
(
%y · (x, y, 1)+ % · (0, 1, 0)

)
= %%x(x, y) · (−1, 0, x)+ %%y(x, y) · (0,−1, y)+ %2(x, y) · (0, 0, 1)

= %(x, y) ·
(
−%x(x, y),−%y(x, y), %(x, y)+ x%x(x, y)+ y%y(x, y)

)
.

The surface element W (x, y) is given by

(2-7) W (x, y)2 := |Xx ∧ Xy(x, y)|2

= %2(x, y) ·
(
|∇%(x, y)|2+ [%(x, y)+ x%x + y%y]

2)
= %2(x, y) ·

(
%2(x, y)+ (1+ x2)%2

x + (1+ y2)%2
y

+ 2xy%x%y + 2x%%x + 2y%%y
)
.

Therefore, the equivalence

(2-8) Xx ∧ Xy(x, y) 6= 0 if and only if %(x, y) 6= 0,

which we have already used above, holds true.
We determine the second derivatives of our surface (2-3) via (2-4) and obtain

(2-9)

Xxx(x, y)= %xx(x, y) · (x, y, 1)+ 2%x(x, y) · (1, 0, 0),

Xxy(x, y)= %xy(x, y) · (x, y, 1)+ (%y(x, y), %x(x, y), 0),

Xyy(x, y)= %yy(x, y) · (x, y, 1)+ 2%y(x, y) · (0, 1, 0).
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With the aid of (2-6) and (2-9), we determine the coefficients of its second funda-
mental form — multiplied by W (x, y)— in the following triple products:

(2-10)

(Xx , Xy, Xxx)|(x,y) = %
2%xx(x, y)− 2%%2

x(x, y),

(Xx , Xy, Xxy)|(x,y) = %
2%xy(x, y)− 2%%x%y(x, y),

(Xx , Xy, Xyy)|(x,y) = %
2%yy(x, y)− 2%%2

y(x, y).

For an adequate geometric formulation we need some definitions.

Definition 2.1. With each domain �⊂ R2 we associate the cone

(2-11) C(�) := {(ξ, η, ζ )∈R3
| ξ = r x, η= r y, ζ = r, (x, y)∈�, 0< r <+∞},

where �× {1} ⊂ R3 represents its base and (0, 0, 0) its vertex. The cone C(�)
consists of the generating lines

L(x,y) := {(r x, r y, r) ∈ R3
| 0< r <+∞} for all (x, y) ∈�.

The boundary of our cone ∂C(�) is composed of the generating lines L(x,y),
(x, y) ∈ ∂�.

Definition 2.2. At first, we define the logarithmic mean curvature on the cylinder
�×R by the continuous function

(2-12) D = D(x, y, z) :�×R→ R ∈ C0(�×R).

Then we prescribe the associate mean curvature on the cone C(�) by setting

(2-13)
H(ξ, η, ζ ) :=

D(x, y, ln r)
r

,

(ξ, η, ζ )= (r x, r y, r) ∈ C(�), (x, y) ∈�, 0< r <+∞.

At all points with %(x, y) > 0, the representation (2-3) yields a surface of
prescribed mean curvature H from (2-12) and (2-13), or briefly an H-surface,
if and only if the following partial differential equation (PDE) holds true:

(2-14) 2D(x, y, ln %)%2

×
(
%2
+ (1+ x2)%2

x + (1+ y2)%2
y + 2xy%x%y + 2x%%x + 2y%%y

)3/2

= 2H(%x, %y, %)%3

×
(
%2
+ (1+x2)%2

x + (1+y2)%2
y + 2xy%x%y + 2x%%x + 2y%%y

)3/2

= 2H(%x, %y, %)W 3(x, y)

= X2
y (Xx , Xy, Xxx)− 2(Xx · Xy)(Xx , Xy, Xxy)+ X2

x (Xx , Xy, Xyy)

= %2(X2
y%xx(x, y)− 2(Xx · Xy)%xy(x, y)+ X2

x %yy(x, y)
)

− 2%(x, y)
(
X2

y%
2
x(x, y)− 2(Xx · Xy)%x%y(x, y)+ X2

x %
2
y(x, y)

)
.
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Besides the prescription (2-13) for the mean curvature, we have used the identity
(2-7) for the surface element and the equations (2-10) for the triple products. With
the aid of the relations (2-5) we immediately calculate

(2-15) X2
y%

2
x(x, y)− 2(Xx · Xy)%x%y(x, y)+ X2

x %
2
y(x, y)= %2(x, y)|∇%(x, y)|2.

When we insert the identity (2-15) into the equation (2-14), we arrive at the PDE

(2-16) 2D(x, y, ln %)

×
(
%2
+ (1+ x2)%2

x + (1+ y2)%2
y + 2xy%x%y + 2x%%x + 2y%%y

)3/2

= X2
y%xx(x, y)− 2(Xx · Xy)%xy(x, y)+ X2

x %yy(x, y)

− 2%(x, y)|∇%(x, y)|2.

Taking the coefficients of the first fundamental form (2-5) into account, we obtain
the PDE

(2-17) 2D(x, y, ln %)

×
(
%2
+ (1+ x2)%2

x + (1+ y2)%2
y + 2xy%x%y + 2x%%x + 2y%%y

)3/2

=
(
%2

y · (x
2
+ y2
+ 1)+ 2%y%y + %

2)%xx

− 2
(
%x%y · (x2

+ y2
+ 1)+ %[y%x + x%y]

)
%xy

+
(
%2

x · (x
2
+ y2
+ 1)+ 2%x%x + %

2)%yy(x, y)− 2%|∇%(x, y)|2,

for (x, y) ∈�.
Since our surface X is regular in �, we can assume the property

(2-18) %(x, y) > 0, (x, y) ∈�,

after an eventual reflection. Now we use the logarithmic representation

(2-19) σ(x, y) := ln %(x, y), (x, y) ∈�.

Then we determine their first derivatives

(2-20) σx(x, y)=
%x

%
(x, y), σy(x, y)=

%y

%
(x, y), (x, y) ∈�,

as well as their second derivatives

(2-21)

(σxx + σ
2
x )|(x,y) =

%xx

%
(x, y),

(σxy + σxσy)|(x,y) =
%xy

%
(x, y),

(σyy + σ
2
y )|(x,y) =

%yy

%
(x, y).
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From the identity (2-15) we deduce the relation

(2-22) X2
yσ

2
x (x, y)− 2(Xx · Xy)σxσy(x, y)+ X2

x σ
2
y (x, y)= |∇%(x, y)|2

= %2
|∇σ(x, y)|2.

Into the equation (2-17) we insert the second derivatives (2-21) and observe (2-22)
to obtain

(2-23) 2D(x, y, ln %)%2

×

(
1+ (1+ x2)

(
%x

%

)2

+ (1+ y2)

(
%y

%

)2

+2xy
%x

%

%y

%
+2x

%x

%
+2y

%y

%

)3/2

=
(
%2

y · (x
2
+ y2
+ 1)+ 2%y%y + %

2)%xx

%

− 2
(
%x%y · (x2

+ y2
+ 1)+ %[y%x + x%y]

)%xy

%

+
(
%2

x · (x
2
+ y2
+ 1)+ 2%x%x + %

2)%yy

%
(x, y)

− 2|∇%(x, y)|2

=
(
%2

y · (x
2
+ y2
+ 1)+ 2%y%y + %

2)σxx

− 2
(
%x%y · (x2

+ y2
+ 1)+ %[y%x + x%y]

)
σxy

+
(
%2

x · (x
2
+ y2
+ 1)+ 2%x%x + %

2)σyy(x, y)

− %2(x, y)|∇σ(x, y)|2,

for (x, y) ∈�. Now we use formulae (2-20) for the first derivatives and arrive at
the PDE

(2-24) 2D(x, y, σ )
(
1+ (1+ x2)σ 2

x + (1+ y2)σ 2
y + 2xyσxσy + 2xσx + 2yσy

)3/2
=
(
σ 2

y · (x
2
+ y2
+ 1)+ 2yσy + 1

)
σxx

− 2
(
σxσy · (x2

+ y2
+ 1)+ [yσx + xσy]

)
σxy

+
(
σ 2

x · (x
2
+ y2
+ 1)+ 2xσx + 1

)
σyy(x, y)− |∇σ(x, y)|2,

for (x, y) ∈�.

Definition 2.3. Let us address the PDE (2-17) as the H-surface equation in central
projection and the PDE (2-24) as the logarithmic H-surface equation. In the special
case D≡ 0≡ H , we speak of the PDE (2-17) as the minimal surface equation in cen-
tral projection and of the PDE (2-24) as the logarithmic minimal surface equation.

In the case D= D(x, y) :�→R, where the logarithmic mean curvature does not
depend on the z-variable, we prescribe the associate mean curvature H from (2-13)
on the base of the cone C(�). The mean curvature is positive-homogeneously
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continued on each generating line L(x,y), (x, y) ∈ �, of the degree −1. Then
our PDE (2-17) is positive-homogeneous in the following sense: for any positive
solution %(x, y) of (2-17) and all parameters a>0, the function a·%(x, y) solves this
differential equation as well. In the special case that the logarithmic mean curvature

(2-25) D̂(x, y) :=
−2

1+ x2+ y2 , (x, y) ∈ R2,

is prescribed on the base of our cone, we can explicitly solve the PDE (2-17) as
follows.

Theorem 2.1. Let the right-hand side D̂ from (2-25) with its homogeneous continu-
ation Ĥ of (2-13) be given on the cone C(�) for �= R2. Then the functions

(2-26) %̂(x, y) :=
a

1+ x2+ y2 , (x, y) ∈R2, for arbitrary parameters a > 0,

solve the Ĥ-surface equation (2-17) in central projection.

Proof. Equivalently to the PDE (2-17) for the function %̂, we consider the PDE (2-24)
for its logarithmic representation σ̂ (x, y) := ln %̂(x, y), (x, y) ∈ R2, and obtain

(2-27)

σ̂ (x, y)= ln a− ln(1+ x2
+ y2),

σ̂x(x, y)=
−2x

1+ x2+ y2 , σ̂y(x, y)=
−2y

1+ x2+ y2 .

We easily determine the expressions

(2-28)

(1+ x2)σ̂ 2
x + (1+ y2)σ̂ 2

y + 2xyσ̂x σ̂y + 2x σ̂x + 2yσ̂y = 0,

σ̂ 2
y · (x

2
+ y2
+ 1)+ 2yσ̂y + 1= 1,

σ̂x σ̂y · (x2
+ y2
+ 1)+ [yσ̂x + x σ̂y] = 0,

σ̂ 2
x · (x

2
+ y2
+ 1)+ 2x σ̂x + 1= 1,

for (x, y) ∈�. Therefore, the PDE (2-24) is reduced to the equation

1σ̂(x, y)−|∇σ̂ (x, y)|2 =
−4

1+x2+y2+
4x2
+4y2

(1+x2+y2)2
−

4x2
+4y2

(1+x2+y2)2

=
−4

1+x2+y2 = 2D̂(x, y),

for (x, y) ∈ R2. Consequently, the PDE (2-17) with the right-hand side from (2-25)
is satisfied for the functions (2-26). �

Remark. For each a> 0, the surface (2-3) on the domain �=R2 with the function
(2-26) represents a surface of constant mean curvature−2/a with one-to-one central
projection onto the plane E . More precisely, we obtain a sphere of radius a/2 about
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the center (0, 0, a/2), where its south pole (0, 0, 0) has been exempted. We shall
use these solutions, which represent a foliation of spheres, as comparison surfaces
in the next section.

Proof. In the case a = 1, the equations (2-3) and (2-26) represent the stereographic
projection of this sphere onto the plane E . Here we employ a theorem of Euclid on
right triangles: the square of a small side equals its projection on the hypotenuse
times the hypotenuse. Based on a simple diagram with a right triangle, we thus
obtain 12

= %(x, y)
√

1+ x2+ y2 ·
√

1+ x2+ y2, which yields

%(x, y)=
1

1+ x2+ y2 .

By a dilation with the factor a, we can easily inspect the general case a > 0. �

3. Uniqueness of Dirichlet’s problem and estimates

Definition 3.1. Let the logarithmic mean curvature D(x, y, z) :�×R→R be given
on the cylinder adjoint to the bounded Jordan domain �⊂ R2, with its associate
mean curvature H(ξ, η, ζ ) :C(�)→R from (2-13) on the cone C(�). On the Jordan
contour ∂� let the positive continuous boundary distribution φ : ∂�→ (0,+∞)
be prescribed. Then the positive solution

% = %(x, y) :�→ (0,+∞) ∈ C2(�)∩C0(�)

of the PDE (2-17) under the Dirichlet boundary condition

(3-1) %(x, y)= φ(x, y) for all (x, y) ∈ ∂�

is named the solution of the Dirichlet problem P(�, φ, H) for the H-surface equa-
tion in central projection.

Definition 3.2. The logarithmic mean curvature D(x, y, z) :�×R→ R satisfies
the monotonicity condition if, for each point (x, y) in the domain �, the function d
defined by

d(z) := D(x, y, z) for z ∈ R

is of class C1 and satisfies

(3-2) d ′(z)= ∂

∂z
D(x, y, z)≥ 0 for z ∈ R.

The maximum principle for elliptic equations implies the following.

Theorem 3.1 (uniqueness of P(�, φ, H)). Let %( j)
= %( j)(x, y), j = 1, 2, denote

two solutions of the Dirichlet problem P(�, φ, H) in the Jordan domain �⊂ R2,
where the logarithmic mean curvature satisfies the monotonicity condition. Then

%(1)(x, y)= %(2)(x, y) for (x, y) ∈�.
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Proof. Let us consider two solutions

(3-3) %( j)
= %( j)(x, y) : R2

→ (0,+∞) ∈ C2(�)∩C0(�), with j = 1, 2,

of the Dirichlet problem P(�, φ, H). We can apply the maximum principle to the
difference of their logarithmic representations,

σ ( j)(x, y) := ln %( j)(x, y), (x, y) ∈�, with j = 1, 2,

since the associate PDE (2-24) is quasilinear. The elliptic differential operator for the
difference function possesses a nonpositive coefficient of 0 order, due to the mono-
tonicity condition (compare [Sauvigny 2012a, Chapter 6, §2]). Therefore, we obtain

%(1)(x, y)= %(2)(x, y), (x, y) ∈�,

and the Dirichlet problem P(�, φ, H) is uniquely determined. �

Furthermore, we prove the following interesting theorem.

Theorem 3.2 (geometric maximum principle). Let % = %(x, y) denote a solution
of the Dirichlet problem P(�, φ, H) in the Jordan domain � ⊂ R2, which is
contained in the disc �b := {(x, y) ∈ R2

| x2
+ y2 < b2

} of radius 0 < b < +∞.
Furthermore, let the logarithmic mean curvature satisfy the monotonicity condition
and the inequalities

(3-4) D̂(x, y)≤ D(x, y, z)≤ 0 for all (x, y, z) ∈�×R.

Then we have the estimate

(3-5) 0< min
(ξ,η)∈∂�

φ(ξ, η)≤ %(x, y)≤ (1+ b2) · max
(ξ,η)∈∂�

φ(ξ, η),

for all points (x, y) ∈�.

Proof. (1) From (2-17) and (3-4) we infer the elliptic differential inequality

(3-6)
(
%2

y · (x
2
+ y2
+ 1)+ 2%y%y + %

2)%xx

− 2
(
%x%y · (x2

+ y2
+ 1)+ %[y%x + x%y]

)
%xy

+
(
%2

x · (x
2
+ y2
+ 1)+ 2%x%x + %

2)%yy(x, y)− 2%|∇%(x, y)|2 ≤ 0,

for (x, y) ∈�. Within the domain � our function % cannot attain a strict minimum,
and the estimate on the left-hand side of (3-5) is established.

(2) We compare the solution % with the spherical solution of Theorem 2.1,

(3-7) %̂(x, y) :=
a

1+ x2+ y2 , (x, y)∈R2, where a := (1+b2) max
(ξ,η)∈∂�

φ(ξ, η).

By construction we have the inequality

(3-8) %̂(x, y)≥ %(x, y) for all (x, y) ∈ ∂�
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on the boundary. From the condition (3-4) and the PDE (2-24) for the logarithmic
representation

σ̂ (x, y) := ln %̂(x, y), (x, y) ∈�,

we deduce the differential inequality

(3-9)
(
σ̂ 2

y ·(x
2
+ y2
+1)+2yσ̂y+1

)
σ̂xx−2

(
σ̂x σ̂y ·(x2

+ y2
+1)+[yσ̂x+x σ̂y]

)
σ̂xy

+
(
σ̂ 2

x · (x
2
+ y2
+ 1)+ 2x σ̂x + 1

)
σ̂yy(x, y)− |∇σ̂ (x, y)|2

= 2D̂(x, y)
(
1+(1+x2)σ̂ 2

x +(1+y2)σ̂ 2
y +2xyσ̂x σ̂y+2x σ̂x+2yσ̂y

)3/2

≤ 2D(x, y, σ̂ )

×
(
1+ (1+ x2)σ̂ 2

x + (1+ y2)σ̂ 2
y + 2xyσ̂x σ̂y + 2x σ̂x + 2yσ̂y

)3/2
,

at all points (x, y) ∈�. The logarithmic representation

σ(x, y) := ln %(x, y), (x, y) ∈�,

of the function % satisfies the quasilinear PDE (2-24). Together with (3-9) the
difference function

τ(x, y) := σ(x, y)− σ̂ (x, y), (x, y) ∈�,

is subject to the differential inequality

Lτ(x, y)≥ 0, (x, y) ∈�,

for an elliptic differential operator L (see [Sauvigny 2012a, Chapter 6, §2]). Due to
the monotonicity condition, the coefficient for the 0-order term of L is nonpositive.
Because of (3-8) we have τ(x, y)≤ 0 for (x, y) ∈ ∂� and hence, by the maximum
principle for elliptic operators, τ(x, y)≤ 0 for (x, y) ∈�. With the aid of (3-7) we
arrive at the estimate

(3-10) %(x, y)≤ %̂(x, y)≤ a = (1+ b2) · max
(ξ,η)∈∂�

φ(ξ, η), (x, y) ∈�.

This shows the right-hand side of the statement (3-5) above. �

Remark. For embedded surfaces of constant mean curvature, J. Serrin [1969]
established a maximum-estimate by the bounding contour; there the reflection
method of A. D. Alexandroff was employed. Our method above is based on a
foliation of H-surfaces with variable mean curvature.

Already at the beginning of the last century, A. Korn and C. H. Müntz solved the
boundary value problem of the minimal surface equation for contours deviating only
a little from planar curves. From §§ 413–415 of J. C. C. Nitsche’s treatise [1975] we
learn that Plateau’s problem for parametric minimal surfaces with positive second
variation is stable with respect to small perturbations of the bounding contour.
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The approximate solutions are obtained by solving a peculiar nonlinear elliptic
PDE which is accessible to Banach’s fixed point theorem within the Hölder space
C2+α(B) (compare [Dierkes et al. 2010a, §5.6, Proposition 1]). We have used this
method in Proposition 1.8 of [Sauvigny 2012b, Chapter 13], in order to establish the
stability of the nonparametric H-surface equation under small perturbations with
respect to the C2+α-norm of the boundary data. Since the logarithmic H-surface
equation (2-24) has a similar structure, we can prove the stability for our Dirichlet
problem P(�, φ, H) under homothetic transformations — near the identity — of
the boundary values.

Lemma 3.1 (perturbation result). Let�⊂R2 denote a convex C2+α-Jordan domain
with 0< α < 1, such that the logarithmic mean curvature

D = D(x, y, z) ∈ C1+α(�×R,R)

satisfies the monotonicity condition. For the associate mean curvature H due to
(2-13) on the cone C(�) and the positive boundary distribution φ : ∂�→ (0,+∞)
of class C2+α, the problem P(�, φ, H) possesses a solution. Then the Dirichlet
problem P(�, λφ, H) is solvable for all parameters 1− ε ≤ λ≤ 1+ ε, where the
quantity ε > 0 is sufficiently small.

Proof. (1) Instead of the PDE (2-17) we use the equivalent equation (2-24) and
start with a solution σ = σ(x, y)∈C2+α(�) of this logarithmic H-surface equation.
Then we consider the perturbation

(3-11) σ(x, y)+ t + τ(x, y), (x, y) ∈�,

with a parameter −ε ≤ t ≤ ε and a function τ in the Banach space

B := {τ = τ(x, y) ∈ C2+α(�) | τ(x, y)= 0 for all (x, y) ∈ ∂�}.

We insert (3-11) into (2-24) and observe that our perturbed function (3-11) satisfies
the logarithmic H-surface equation (2-24) if and only if the function τ ∈ B fulfills
the PDE

(3-12)
(
(σy + τy)

2
· (x2
+ y2
+ 1)+ 2y(σy + τy)+ 1

)
(σxx + τxx)

−2
(
(σx+τx)(σy+τy)·(x2

+y2
+1)+[y(σx+τx)+x(σy+τy)]

)
(σxy+τxy)

+
(
(σx + τx)

2
· (x2
+ y2
+ 1)+ 2x(σx + τx)+ 1

)
(σyy + τyy)

− |(∇σ +∇τ)|(x,y)|
2

= 2D(x, y, σ + t + τ)
(
1+ (1+ x2)(σx + τx)

2
+ (1+ y2)(σy + τy)

2

+ 2xy(σx + τx)(σy + τy)+ 2x(σx + τx)+ 2y(σy + τy)
)3/2

,

for (x, y) ∈�.
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(2) On the left-hand side of (3-12) we collect all those terms, where the factors of
the set

F := {τx , τy, τxx , τxy, τyy}

appear in the same order, to the following differential operators: the terms of order 0
result in the expression

(3-13) 2D(x, y, σ )
(
1+ (1+ x2)σ 2

x + (1+ y2)σ 2
y + 2xyσxσy + 2xσx + 2yσy

)3/2
,

since σ solves the PDE (2-24). Then we collect all terms of order 1 to the linear
elliptic differential operator

(3-14) L0τ :=
(
σ 2

y · (x
2
+ y2
+ 1)+ 2yσy + 1

)
τxx

− 2
(
σxσy · (x2

+ y2
+ 1)+ [yσx + xσy]

)
τxy

+
(
σ 2

x · (x
2
+ y2
+ 1)+ 2xσx + 1

)
τyy(x, y)

+ a(x, y)τx + b(x, y)τy

with coefficients a(x, y), b(x, y) of the class Cα(�) depending on the solution σ .
The remaining terms of order 2 and 3 are assembled to the nonlinear operator
Q=Q(τ ) : B→ Cα(�). On the ball Bδ := {τ = τ(x, y) ∈ B | ‖τ‖C2+α(�) ≤ δ} of
radius δ > 0 the estimates

(3-15)
‖Q(τ )‖Cα(�) ≤ L1(δ)‖τ‖C2+α(�) for all τ ∈ Bδ,

‖Q(τ̃ )−Q(τ̂ )‖Cα(�) ≤ L2(δ)‖τ̃ − τ̂‖C2+α(�) for all τ̃ , τ̂ ∈ Bδ

hold true. Here as well as in (3-18), (3-19), (3-26) below, the constants L j (δ) > 0
satisfy limδ→0+ L j (δ)= 0 for j = 1, 2, 3, 4. When we respect that all terms in Q are
either quadratic or cubic in F and control their Hölder-norms, we immediately see
the assertions (3-15) above, where the upper inequality implies that the operator Q
is superlinear.

Now the equation (3-12) appears in the equivalent form

(3-16) L0τ +Q(τ )
= 2D(x, y, σ + t + τ)

(
1+ (1+ x2)(σx + τx)

2
+ (1+ y2)(σy + τy)

2

+ 2xy(σx + τx)(σy + τy)+ 2x(σx + τx)+ 2y(σy + τy)
)3/2

− 2D(x, y, σ )
(
1+ (1+ x2)σ 2

x + (1+ y2)σ 2
y

+ 2xyσxσy + 2xσx + 2yσy
)3/2

.

(3) We introduce the nonlinear operator

(3-17) N (τ ) :=
(
1+ (1+ x2)(σx + τx)

2
+ (1+ y2)(σy + τy)

2

+2xy(σx + τx)(σy + τy)+ 2x(σx + τx)+ 2y(σy + τy)
)3/2

,
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for τ ∈ B, where the power 3/2 is larger than 1. Therefore, we obtain the estimate

(3-18) ‖N (τ̃ )−N (τ̂ )‖Cα(�) ≤ L3(δ)‖τ̃ − τ̂‖C2+α(�) for all τ̃ , τ̂ ∈ Bδ.

Thus we receive the superlinear operator

(3-19)
R(τ ) :=N (τ )−N (0), τ ∈ B,

satisfying ‖R(τ )‖Cα(�) ≤ L3(δ)‖τ‖C2+α(�), τ ∈ Bδ.

Now we rewrite (3-16) into the equivalent form

(3-20) L0τ +Q(τ )= 2D(x, y, σ + t + τ)N (τ )− 2D(x, y, σ )N (0)

= 2D(x, y, σ + t + τ)(N (0)+R(τ ))− 2D(x, y, σ )N (0)

= 2(D(x, y, σ + t + τ)− D(x, y, σ ))N (0)

+ 2D(x, y, σ + t + τ)R(τ ).

(4) Let us determine

(3-21) D(x, y, σ (x, y)+ t + τ(x, y))− D(x, y, σ (x, y))

=

∫ 1

0

d
ds D(x, y, s[τ(x, y)+ t] + σ(x, y)) ds = c0(x, y)[τ(x, y)+ t],

for (x, y) ∈�, with the nonnegative function

c0(x, y) :=
∫ 1

0
Dz(x, y, s[τ(x, y)+ t] + σ(x, y)) ds,

due to the monotonicity condition. We insert (3-21) into the PDE (3-20) and arrive at

(3-22) L0τ +Q(τ )= 2c0(x, y)[τ(x, y)+ t]N (0)+ 2D(x, y, σ + t + τ)R(τ ).

Introducing the coefficient function c(x, y) := −2c0(x, y)N (0) ≤ 0, (x, y) ∈ �,
and the linear elliptic operator Lτ := L0τ + c(x, y)τ , τ ∈ B, we obtain the PDE

(3-23) Lτ = 2tc0(x, y)N (0)−Q(τ )+ 2D(x, y, σ + t + τ)R(τ )=:Mt(τ )

with the nonlinear operator Mt : B→ Cα(�) on the right-hand side.
For each θ > 0, we can find quantities δ = δ(θ) > 0 and ε = ε(θ) > 0 such that

(3-24) ‖Mt(τ )‖Cα(�) ≤ θ
−1δ for all τ ∈ Bδ and all − ε ≤ t ≤+ε.

This follows from the structure of the operator Mt in (3-23), since the operators Q
and R are superlinear as in (3-15) and (3-19) and the expression

sup
τ∈Bδ,t∈[−1,+1]

‖D(x, y, σ + t + τ)‖Cα(�)

is finite, due to the regularity of D on the convex domain �.
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Furthermore, with δ = δ(θ) > 0 and ε = ε(θ) > 0 we realize the estimate

(3-25) ‖Mt(τ̃ )−Mt(τ̂ )‖Cα(�) ≤
1

2θ
‖τ̃ − τ̂‖C2+α(�)

for all τ̃ , τ̂ ∈ Bδ and − ε ≤ t ≤+ε.

Here the structure of the operator Mt in (3-23) is combined with the inequalities
(3-15), (3-18) and the following estimate, which is based on the regularity of D in
the convex domain �:

(3-26) ‖D( · , · , σ + t + τ̃ )− D( · , · , σ + t + τ̂ )‖Cα(�) ≤ L4(δ)‖τ̃ − τ̂‖C2+α(�)

for all τ̃ , τ̂ ∈ Bδ and t ∈ [−1,+1].

(5) Due to Theorem 5.2 in [Sauvigny 2012b, Chapter 9], the linear elliptic operator
L : B→ Cα(�) satisfies the Schauder estimate

(3-27) ‖τ‖C2+α(�) ≤ θ‖Lτ‖Cα(�) for all τ ∈ B,

where θ > 0 represents the Schauder constant. Consequently, L possesses an inverse
L−1 bounded with respect to the respective Hölder norms. With δ = δ(θ) the set
L(Bδ) contains a ball of radius θ−1δ within the Banach space Cα(�). When we
remember (3-24) with ε=ε(θ), we can transform (3-23) into the fixed point equation

(3-28) τ = L−1
◦Mt(τ ), with τ ∈ Bδ for all − ε ≤ t ≤+ε.

The nonlinear operator L−1
◦Mt : Bδ→ Bδ yields a contraction

(3-29) ‖L−1
◦Mt(τ̃ )−L−1

◦Mt(τ̂ )‖C2+α(�) ≤
1
2‖τ̃ − τ̂‖C2+α(�)

for all τ̃ , τ̂ ∈ Bδ and − ε ≤ t ≤+ε

due to (3-25) and (3-27). Banach’s fixed point theorem furnishes a unique solution
τ ∈ Bδ of the equation (3-28) for all −ε ≤ t ≤+ε. �

With the aid of the uniformization method, we shall estimate the area of the
solutions for our Dirichlet problem. Let � ⊂ R2 denote a C2+α-Jordan domain
with the positive boundary distribution φ : ∂�→ (0,+∞) of the class C2+α. We
define the Jordan contour

0(φ) := {(xφ(x, y), yφ(x, y), φ(x, y)) ∈ R3
| (x, y) ∈ ∂�}

and the area M(φ) > 0 of the conical surface

S(φ) := {(λxφ(x, y), λyφ(x, y), λφ(x, y)) ∈ R3
| (x, y) ∈ ∂�, λ ∈ (0, 1)}.

With the logarithmic mean curvature (2-12) let us define the mean curvature H
due to (2-13) on the cone C(�). We consider a solution %= %(x, y) ∈ P(�, φ, H).
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The associate surface (2-3) possesses the area A(%) and the volume V (%) of the
conical domain

G(%) := {(λx%(x, y), λy%(x, y), λ%(x, y)) ∈ R3
| (x, y) ∈�, λ ∈ (0, 1)}.

This H-surface has the minimal mean curvature

(3-30) m(%) := inf
(x,y)∈�

H(x%(x, y), y%(x, y), %(x, y)) ∈ R.

Lemma 3.2 (area estimate). We can estimate the area A(%) of a solution % for the
Dirichlet problem P(�, φ, H) in

A(%)≤−3m(%)V (%)+M(φ)

by the minimal mean curvature m(%) as well as the volume V (%) of the conical do-
main G(%) for the solution, and by the area M(φ) of the given conical surface S(φ).

Proof. Let us introduce conformal parameters into the surface (2-3). Then we obtain
a parametric H-surface X (u, v)= (x(u, v), y(u, v), z(u, v)) : B→R3

∈C2+α(B)
which is regular on the closure of the unit disc B := {(u, v) ∈ R2

| u2
+ v2 < 1} in

the differential-geometric sense. More precisely, we have the following conditions:

(3-31) 1X (u, v)= 2H(X (u, v))Xu ∧ Xv, |Xu|
2
= |Xv|2 > 0,

Xu · Xv = 0, X · Xu ∧ Xv > 0 on B.

With the aid of triple products ( · , · , · ) we calculate

(3-32) 2H(X)(X, Xu, Xv)= X ·1X = (X · Xu)u + (X · Xv)v − |∇X |2 on B

and obtain

(3-33) 1
2 |∇X |2 =−H(X)(X, Xu, Xv)+ 1

2{(X · Xu)u + (X · Xv)v} on B.

Let us denote the exterior normal to the unit disc by ν : ∂B→ S1. Furthermore,
we use the arc length σ and the line element dσ on ∂B. Then we integrate (3-33)
as follows:

(3-34) A(%)= 1
2

∫∫
B
|∇X |2 du dv

=

∫∫
B
−H(X)(X, Xu, Xv) du dv+ 1

2

∫
∂B
(X · Xν) dσ.

We use the positive orientation of the conformal parameters as well as the minimal
mean curvature (3-30) in order to estimate the two-dimensional integral on the right-
hand side. Denoting by N (u, v) the unit normal, the conformal parametrization
yields the identity

Xσ ∧ N = Xν on ∂B,
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which we use in (3-34) for the one-dimensional integral. Thus we obtain

(3-35) A(%)≤−m(%)
∫∫

B
(X, Xu, Xv) du dv+ 1

2

∫
∂B
(X, Xσ , N ) dσ

≤−m(%)
∫∫

B
(X, Xu, Xv) du dv+ 1

2

∫
∂B
|X ∧ Xσ | dσ

=−m(%)
∫∫

B
(X, Xu, Xv) du dv+M(φ).

Then we apply the Gaussian integral theorem to the conical domain G(%) and the
vector field

W (x, y, z) := (x, y, z), (x, y, z) ∈ G(%),

which is tangential on the conical boundary S(φ)= ∂G(%)∩ ∂C(�). Therefore, we
receive the expression

(3-36)
∫∫

B
(X, Xu, Xv) du dv =

∫∫∫
G(%)

div W (x, y, z) dx dy dz = 3V (%).

We insert (3-36) into (3-35) and obtain with

(3-37) A(%)≤−3m(%)V (%)+M(φ)

the final estimate. �

Remark. Originally, R. Finn [1954] established a priori estimates of the area for
graphs of minimal surface type. E. Heinz [1971] proved such an estimate for graphs
of prescribed mean curvature. Here we refer our readers to Proposition 1.2 in
[Sauvigny 2012b, Chapter 13].

4. Some results on Radó’s minimal surface equation

In this section, we consider the special case H ≡ 0≡ D. With the aid of Plateau’s
problem, we can solve Dirichlet’s problem for the PDE (2-17) with vanishing right-
hand side. This has already been proposed by Radó [1932] (compare [Nitsche 1975,
§402]). However, we shall apply alternative methods from my dissertation [Sauvigny
1982] and book with Dierkes and Hildebrandt [Dierkes et al. 2010a, §§5.1–5.3],
in order to realize that the central projection is one-to-one. The n-dimensional
situation has been studied by E. Tausch [1981] using nonparametric methods.

By variational methods we establish the following theorem.

Theorem 4.1 (solution of P(�, φ, 0)). Let �⊂ R2 denote a convex C2+α-Jordan
domain and let φ : ∂�→ (0,+∞) denote a positive C2+α-boundary distribution
with 0 < α < 1. Then the Dirichlet problem P(�, φ, 0) possesses exactly one
solution %(x, y), (x, y) ∈�.
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Proof. (1) We solve Plateau’s problem for the regular C2+α-Jordan contour

0 := {(xφ(x, y), yφ(x, y), φ(x, y)) ∈ R3
| (x, y) ∈ ∂�}

with a parametric minimal surface X (u, v)= (x(u, v), y(u, v), z(u, v)) : B→ R3.
This surface is defined on the closure of the unit disc B := {(u, v)∈R2

| u2
+v2< 1}

and satisfies the Laplace equation

1X (u, v)= 0, (u, v) ∈ B.

Its isothermal first fundamental form

ds2
= X2

u du2
+ 2Xu · Xv du dv+ X2

v dv2
= E(u, v)(du2

+ dv2), (u, v) ∈ B,

might only degenerate at isolated branch points of X , and its unit normal N (u, v),
(u, v) ∈ B, exists within the class C2(B)∩C1(B) subject to the Schwarzian differ-
ential equation

(4-1) 1N (u, v)− 2E(u, v)K (u, v)N (u, v)= 0, (u, v) ∈ B.

Here K (u, v) ≤ 0 denotes the Gaussian curvature of the metric ds2 at regular
points (u, v). The differential equation (4-1) can be found in Hilfssatz 1 and Satz 1
of [Sauvigny 1982] (see [Dierkes et al. 2010a, §5.1, Theorem 1] as well). The
necessary investigations on the regularity and branch points of H-surfaces are
contained in Chapter 2 of the treatise [Dierkes et al. 2010b] by Dierkes, Hildebrandt,
and A. Tromba.

(2) The minimal surface X (B) lies in the convex hull of its bounding contour 0,
where the latter is situated on the boundary of the convex cone C(�), outside its
vertex. This implies the inclusions

(4-2) X (B)⊂ C(�) and X (∂B)⊂ ∂C(�) \ {(0, 0, 0)}.

The arguments from [Sauvigny 1982, §2] show that the minimal surface approaches
the bounding cone ∂C(�) transversally and does not possess boundary branch
points. When we consider the auxiliary function

θ(u, v) := N (u, v) · X (u, v), (u, v) ∈ B,

we obtain the boundary condition

(4-3) θ(u, v) > 0, (u, v) ∈ ∂B.

With the aid of (4-1), we derive the PDE for our auxiliary function

(4-4) 1θ(u, v)

= (1N (u, v)) · X (u, v)+ 2∇N (u, v) · ∇X (u, v)+ N (u, v) · (1X (u, v))

= X (u, v) ·1N (u, v)− N (u, v) ·1X (u, v)= 2E(u, v)K (u, v)θ(u, v),
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for (u, v) ∈ B. Before we have fixed three points on the contour 0, such that the
boundary representation is positive-oriented with respect to the projection plane E .

(3) Now the metric ds2 is stable in the following sense:

(4-5)
∫∫

B
|∇ψ(u, v)|2 du dv

≥−2
∫∫

B
E(u, v)K (u, v)ψ(u, v)2 du dv for all ψ ∈ C1

0(B).

This stability condition has been established in [Sauvigny 1982, §3] by the area-
minimizing property for the solutions of Plateau’s problem. Due to Hilfssatz 6 of
[Sauvigny 1982] (compare [Dierkes et al. 2010a, §5.3, Proposition 1]), we obtain

(4-6) θ(u, v) > 0, (u, v) ∈ B.

On the basis of the property (4-6), we can exclude interior branch points for our
minimal surface by a winding number argument. Therefore, the surface

X : B→ C(�)

represents a minimal embedding, with one-to-one central projection onto the plane E ,
which bounds the contour0. Thus we have solved the Dirichlet problem P(�, φ, 0).

�

Finally, we classify the entire solutions of Radó’s partial differential equation.

Theorem 4.2 (Bernstein-type result). Let %=%(x, y)∈C2(R2, (0,+∞)) represent
a positive solution of the minimal surface equation in central projection

(4-7)
(
%2

y · (x
2
+ y2
+ 1)+ 2%y%y + %

2)%xx

− 2
(
%x%y · (x2

+ y2
+ 1)+ %[y%x + x%y]

)
%xy

+
(
%2

x · (x
2
+ y2
+ 1)+ 2%x%x + %

2)%yy(x, y)− 2%|∇%(x, y)|2 = 0,

for (x, y) ∈ R2. Then it follows that %(x, y)= c for all (x, y) ∈ R2, with a positive
constant 0< c <∞.

Proof. (1) We define the complete minimal embedding

(4-8) X (x, y) := (x%(x, y), y%(x, y), %(x, y)), (x, y) ∈ R2,

in the Euclidean space R3. For an arbitrary radius 0 < R < +∞, we consider
the geodesic disc about the center X0 := X (0, 0) parametrized over the domain
(0, 0) ∈ DR ⊂ R2. Into this minimal disc X (x, y), (x, y) ∈ DR , we introduce
conformal parameters and obtain the parametric minimal surface X (u, v), (u, v)∈ B
with its unit normal N (u, v), (u, v) ∈ B.
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(2) The auxiliary function

θ(u, v) := N (u, v) · X (u, v), (u, v) ∈ B,

satisfies the conditions

(4-9)
1θ(u, v)− 2E(u, v)K (u, v)θ(u, v)= 0, (u, v) ∈ B,

θ(u, v) > 0, (u, v) ∈ B.

The arguments of Theorem 1 in [Dierkes et al. 2010a, §5.4] show that our minimal
surface X (u, v), (u, v) ∈ B, is stable in the sense of the inequality (4-5). This
property holds true for the discs of all radii 0< R <+∞ about X0.

(3) Theorem 3 in [Dierkes et al. 2010a, §5.5] shows that the surface (4-8) represents
a plane within the half-space z > 0. It follows that %(x, y)= c for all (x, y) ∈ R2,
with a positive constant 0< c <+∞. �

5. Large H-surfaces bounding extreme contours

We return to surfaces of prescribed mean curvature with compact support and solve
the associate Dirichlet problem on convex domains. We use the deformation method,
which is presented in [Sauvigny 2012b, Chapter 13, §1] for the nonparametric H-
surface equation.

Lemma 5.1 (nondegeneracy result). Suppose X (u, v) := (x(u, v), y(u, v), z(u, v)),
(u, v) ∈ B, is a parametric H-surface, with unit normal N (u, v), (u, v) ∈ B,
and suppose its prescribed mean curvature (2-12) in the class C1+α(�×R) with
(2-13) satisfies the monotonicity condition. Furthermore, let the auxiliary function
θ(u, v) := N (u, v) · X (u, v)≥ 0, (u, v)∈ B, possess a zero (u0, v0)∈ B within this
disc. Then the identity θ(u, v)≡ 0, (u, v) ∈ B, follows.

Proof. For our prescribed mean curvature H , we easily determine the equation

(5-1) ∇H(X) · X = r ·
d
dr

{
D(x, y, ln r)

r

}
= r ·

{
Dz(x, y, ln r)

r2 −
D(x, y, ln r)

r2

}
=

Dz(x, y, ln r)
r

−
D(x, y, ln r)

r
≥−

D(x, y, ln r)
r

=−H(ξ, η, ζ )=−H(X),

for all points X = (ξ, η, ζ )= (r x, r y, r)∈ C(�), (x, y)∈�, 0< r <+∞. With the
aid of Hilfssatz 1 and Satz 1 in [Sauvigny 1982] (see also [Dierkes et al. 2010a, §5.1,
Theorem 1]) and the estimate (5-1), we obtain the following differential inequality
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on the unit disc B for our auxiliary function:

(5-2) 1θ(u, v)
= (1N (u, v)) · X (u, v)+ 2∇N (u, v) · ∇X (u, v)+ N (u, v) · (1X (u, v))

= X (u, v) ·1N (u, v)− N (u, v) ·1X (u, v)

= X (u, v) ·1N (u, v)− 2E(u, v)H |X (u,v)

=−q(u, v)θ(u, v)− 2E(u, v)∇H |X (u,v) · X (u, v)− 2E(u, v)H |X (u,v)

≤−q(u, v)θ(u, v).

Here we have used the potential

(5-3) q(u, v) := 2
(
2E(u, v)H |2X (u,v)−E K (u, v)−E(u, v)∇H |X (u,v) ·N (u, v)

)
,

for (u, v)∈ B. Since a point (u0, v0)∈ B with θ(u0, v0)= 0 exists, the nonnegative
function θ solving (5-2) has to vanish in B identically, due to Hilfssatz 5 in [Sauvigny
1982]. �

By a nonlinear continuity method we prove the following theorem.

Theorem 5.1 (solution of P(�, φ, H∗)). On the convex C2+α-Jordan domain �
we prescribe the logarithmic mean curvature

D(x, y)= D∗(x, y) :�→ R ∈ C1+α
0 (�)

with compact support, subject to the inequalities

(5-4) D̂(x, y)≤ D(x, y)≤ 0 for all points (x, y) ∈�.

Denote by H∗ its homogeneous continuation onto the cone C(�) due to (2-13).
Then the Dirichlet problem P(�, φ, H∗) of the H∗-surface equation in central
projection possesses a solution % = %(x, y) ∈ C2+α(�) for all C2+α functions
φ : ∂�→ (0,+∞).

Proof. (1) We introduce the positive quantity

(5-5) r∗ := (1+ b2) · max
(ξ,η)∈∂�

φ(ξ, η).

Then we choose a weakly monotonically decreasing function χ=χ(z)∈C1(R,[0,1])
with the properties

(5-6) χ(z)= 1 for all z ∈ (−∞, ln r∗], χ(z)= 0 for all z ∈ [ln(r∗+1),+∞).

Thus we prescribe the logarithmic mean curvature

(5-7) D = D(x, y, z) := D∗(x, y) ·χ(z), (x, y, z) ∈�×R,
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on the cylinder �×R. Due to (2-13), we observe the associate mean curvature H
on the cone C(�) as follows:

(5-8)
H(ξ, η, ζ )=

D∗(x, y)
r

= H∗(ξ, η, ζ ), (ξ, η, ζ )= (r x, r y, r),

with (x, y) ∈�, 0< r ≤ r∗,

and

(5-9)
H(ξ, η, ζ )= 0, (ξ, η, ζ )= (r x, r y, r),

with (x, y) ∈�, r∗+ 1≤ r <+∞.

(2) For the parameters 1 ≤ λ < +∞ let us consider the Dirichlet problems
P(�, λφ, H) with the mean curvature H being prescribed. These H-surfaces
with one-to-one central projection bound the contours

(5-10) 0λ := {(xλφ(x, y), yλφ(x, y), λφ(x, y)) ∈ R3
| (x, y) ∈ ∂�}

situated on the boundary of our cone. On account of (5-9) we can choose a parameter
1< λ∗ <+∞ large enough that the mean curvature H vanishes within the convex
hull of the contour 0λ∗ . Therefore, we can solve the Dirichlet problem P(�, λ∗φ, H)
with the aid of Theorem 4.1.

(3) Now the set

(5-11) 3 := {λ ∈ [1, λ∗] | P(�, λφ, H) possesses a solution}

is open, since the solutions are stable with respect to small homothetic perturbations
of the bounding contour due to Lemma 3.1. Here we use that the logarithmic mean
curvature from (5-6) and (5-7) satisfies the monotonicity condition in Definition 3.2.
Moreover, the set 3 is closed since the property of one-to-one central projection
remains valid in the limit. This follows from Lemma 5.1 which requires the mono-
tonicity condition again. Since the cone is convex and the mean curvature vanishes
near the boundary, the surfaces approach the conical boundary ∂C(�) transversally.

(4) In order to establish the compactness of our solutions, we need a joint bound on
the area of the surfaces. Here we use the area estimate from Lemma 3.2 as follows:
on account of Theorem 3.2 we obtain a bound from below for the mean curvature
of our surfaces. Furthermore, this Theorem 3.2 yields a uniform estimate for the
volumes appearing in Lemma 3.2.

With the aid of the Courant–Lebesgue lemma and the geometric maximum princi-
ple in a local version, we can easily derive a modulus of continuity for our parametric
solutions in order to establish the equicontinuity of our functions on the closed
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disc B. In this context, we use at each point (ξ0, η0, ζ0)= (r0x0, r0 y0, r0) ∈ C(�),
with (x0, y0) ∈� and r0 > 0, the conical ε-neighborhood

(5-12) Uε(ξ0, η0, ζ0)

:=
{
(r x, r y, r) ∈ R3

| (x, y) ∈� with (x − x0)
2
+ (y− y0)

2
≤ ε2 and

r ∈ R with (1− ε)r0 ≤ r ≤ (1+ ε)r0µ(x0, y0, ε)/(1+ x2
+ y2)

}
,

where we need the function

µ(x0, y0, ε) := sup{1+ x2
+ y2
| (x, y) ∈� with (x − x0)

2
+ (y− y0)

2 < ε2
}.

The parametric representation X (u, v), (u, v) ∈ B, of a solution % = %(x, y),
(x, y) ∈ �, for our Dirichlet problem under condition (5-4) is subject to the
inclusion principle

X (∂2)⊂Uε(ξ0, η0, ζ0) ⇒ X (2)⊂Uε(ξ0, η0, ζ0) for all domains 2⊂�,

where we use the proof of Theorem 3.2. Then we can adapt the proof of Theo-
rem 2(iii) in [Dierkes et al. 2010a, §7.1] and especially Lemma 4 to obtain the
desired equicontinuity. Alternatively, we can modify the proofs of Satz 5 and
Hilfssatz 10 in [Sauvigny 1982] by using the inclusion principle above.

(5) Now we combine from [Sauvigny 2012b, Chapter 12] the gradient estimate
Theorem 2.6 by Heinz and the inner C1+α-estimate Theorem 2.7 for the H-surface
system (3-31), which both require a smallness condition, with the modulus of
continuity as in proof of Theorem 5.4(2). Thus we obtain an inner C1+α-estimate
for our solutions, which implies an interior C2+α-estimate via Theorem 4.4 in
[Sauvigny 2012b, Chapter 9].

Therefore, we can extract a uniformly convergent subsequence on B which
converges in C2+α

loc (B)∩C0(B) to a solution of Plateau’s problem. We invoke the
boundary regularity result proved by Heinz [1970] and Hildebrandt (see [Dierkes
et al. 2010b, §2.3, Theorem 2]). Thus our limit surface belongs to the Banach space
C2+α(B).

Alternatively, we could control the convergence within the Banach space C2+α(B)
with the aid of [Dierkes et al. 2010b, §2.1, Proposition 2 and Lemma 7; §2.2,
Theorem 2], together with Theorems 4.6 and 5.2 from [Sauvigny 2012b, Chapter 9].

(6) Since our set 3 is nonempty, we obtain the identity 3 = [1, λ∗]. Therefore,
the problem P(�, φ, H) possesses a solution. Finally, we use Theorem 3.2 and
remember (5-5). Consequently, the solution of P(�, φ, H) lies within the conical
section described in (5-8), where the curvatures H and H∗ coincide. Thus we have
found a solution of the Dirichlet problem P(�, φ, H∗). �
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Definition 5.1. To each Jordan domain �⊂ R2 and positive boundary distribution
φ : ∂�→ (0,+∞) ∈ C0(∂�,R) we associate the Jordan contour

(5-13) 0 = 0(�, φ) := {(xφ(x, y), yφ(x, y), φ(x, y)) ∈ R3
| (x, y) ∈ ∂�}

with one-to-one central projection onto the curve ∂�. We name 0 an extreme
contour if each point X0 = (ξ0, η0, ζ0) ∈ 0 admits a real number a = a(X0) > 0
such that

(5-14) 0 ⊂ K(a) and X0 ∈ 0 ∩ ∂K(a).

Here we use the balls of support

(5-15) K(a) := {(ξ, η, ζ ) ∈ R3
| ξ 2
+ η2
+ (ζ − a/2)2 ≤ a2/4}

of radius a/2> 0 about the center (0, 0, a/2).

Theorem 5.2 (large embedded solutions for Plateau’s problem). We have a function
φ = φ(x, y) : ∂�→ (0,+∞) ∈ C2+α, on the boundary of a convex C2+α-Jordan
domain � ⊂ R2, such that 0 = 0(�, φ) represents an extreme contour. Further-
more, let us prescribe with D = D(x, y) : �→ R ∈ C1+α(�) the logarithmic
mean curvature subject to the restriction (5-4) and denote by H its homogeneous
continuation onto the cone C(�) due to (2-13). Then we can solve the Dirichlet
problem P(�, φ, H) by a function % = %(x, y) ∈ C2+α(�).

Proof. (1) Approximate D=D(x, y) by functions Dk
=Dk(x, y):�→R∈C1+α

0 (�)

for k = 1, 2, . . . within Cα
loc(�) which are dominated as follows:

(5-16) D(x, y)≤ Dk(x, y)≤ 0, (x, y) ∈�, for all k ∈ N.

Therefore, these functions Dk are subject to the restrictions (5-4), and the conver-
gence in � is compactly uniform. Then we denote by H k their continuation onto
the cone C(�) due to (2-13). With the aid of Theorem 5.1 we solve the Dirichlet
problems P(�, φ, H k) by the functions %k

= %k(x, y) ∈ C2+α(�) for all k ∈ N.

(2) We choose the solution %̃(x, y), (x, y) ∈ �, of the problem P(�, φ, 0) in
Theorem 4.1 as a lower barrier function. Now we observe that 0 represents an
extreme contour. For each (x0, y0) ∈ ∂� with the associate point

X0 := (x0φ(x0, y0), y0φ(x0, y0), φ(x0, y0)) ∈ 0

we can find a real number a = a(x0, y0) > 0 such that the ball K(a) from (5-15)
satisfies the conditions (5-14). Together with the solution

%̂(x, y) := a(1+ x2
+ y2)

−1
, (x, y) ∈�,
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from Theorem 2.1 as an upper barrier function, we obtain the estimates

(5-17) %̃(x, y)≤ %k(x, y)≤ %̂(x, y) for all (x, y) ∈� and all k ∈ N

via the method of proof in Theorem 3.2.

(3) The parametric representations of these solutions yield H k-surfaces X k(u, v) of
equibounded mean curvature and belonging to C2+α(B). Now we use the arguments
in parts (4) and (5) of the proof for Theorem 5.1 and establish the equicontinuity of
{X k
}k=1,2,3,... on the closed disc by the inclusion principle. With the aid of [Dierkes

et al. 2010b, §2.2, Theorem 2 and §2.3, Theorem 2] we see that these functions
converge to a function X ∈ C1+α(B, T ) in isothermal parameters which is situated
in the spherical solid

(5-18) T := {Y = (r x, r y, r) ∈ R3
| (x, y) ∈�, %̃(x, y)≤ r ≤ %̂(x, y)}.

At the point X0 ∈ ∂T the surfaces associated with the lower and upper barrier
functions form an angle ω = ω(x0, y0) ∈ (0, π).

The inclusion X (B) ⊂ T and the representation X (u0, v0) = X0 ∈ ∂T with
(u0, v0) ∈ ∂B imply that the point (u0, v0) does not constitute a branch point of X .
Otherwise the local expansion there would imply that the surface X protrudes
from T — an evident contradiction.

Furthermore, the inclusion X (B) ⊂ C(�) holds true. If X (u0, v0) = X0 ∈ ∂T
were true for a point (u0, v0) ∈ B, the local expansion of X would force the surface
to protrude from T — which is impossible. Since the boundary point X0 can be
chosen arbitrarily on 0, the inclusion above and the exclusion of branch points
on ∂B is established.

For the local expansions, we refer our readers to Theorem 2 and Corollary 2 in
[Dierkes et al. 2010b, §3.1] and to the original paper by Heinz [1970].

(4) The functions X k(u, v) ∈ C2+α(B) satisfy the nonlinear elliptic systems

(5-19) 1X k(u, v)= 2H k(X k(u, v))X k
u ∧ X k

v on B for k = 1, 2, . . . .

Since the mean curvatures H k
= H k(ξ, η, ζ ) : C(�)→ R converge compactly

uniformly in the open cone C(�) and the surfaces X k
= X k(u, v) : B → C(�)

converge due to (3) uniformly on B to the continuous function X : B→ C(�) with
the property X (B)⊂ C(�), we see the limit relation

(5-20) lim
k→∞

H k(X k(u, v))= H(X (u, v)) for all (u, v) ∈ B.

Since the relation (5-20) occurs within Cα
loc(B) and a modulus of continuity in

(3) has been established, we can use the arguments from part (5) in the proof of
Theorem 5.1. Consequently, the functions X k converge within the space C2+α

loc (B)
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to the H-surface
X = X (u, v) ∈ C2+α(B)∩C0(B)

bounding the regular C2+α-contour 0.

(5) We invoke Theorem 2 in [Dierkes et al. 2010b, §2.3] again and see that
X = X (u, v) ∈ C2+α(B). Furthermore, Lemma 5.1 guarantees that our limit
surface satisfies

(5-21) X (u, v) · N (u, v) > 0, (u, v) ∈ B,

where we use the inclusion X (B) ⊂ T at the boundary. By a winding number
argument, we can easily exclude the interior branch points, and the H-surface
X : B→R3 is a differential-geometrically regular surface. Finally, the nonparametric
representation of this surface % = %(x, y) ∈ C2+α(�) solves the Dirichlet problem
P(�, φ, H). �

Remark. For arbitrary a > 0, let us consider a regular C2+α-Jordan contour on
the boundary of the ball K(a) with a one-to-one and convex central projection
onto the plane E . Due to Theorem 5.2 above, we can construct for all nonpositive
curvatures H greater or equal to the mean curvature of the upper hemisphere an
H-surface bounding the contour 0 with one-to-one projection onto E . Since these
surfaces include the large spherical caps, we receive large embedded solutions of
Plateau’s problem. We have to distinguish our considerations from the investigations
of H. Brézis and M. Coron [1984] or independently of M. Struwe [1985]. For
constant H they construct two solutions of Rellich’s H-surface system by variational
methods and obtain two not necessarily immersed H-surfaces which solve Plateau’s
problem for the same contour.

6. The Dirichlet problem P(�b, φ, H) on discs

In this section we concentrate on circular cones C(�b) associated with the discs

�b := {(x, y) ∈ R2
| x2
+ y2 < b2

}

of radius 0< b <+∞ about the origin. One can easily prove the following lemma.

Lemma 6.1 (boundary curvature). For arbitrary radii 0< b<+∞ we parametrize
the circular cones ∂C(�b) by

(6-1) Y = Y (r, t) := (rb cos t, rb sin t, r), 0< r <+∞, 0≤ t < 2π.

Their mean curvature with respect to the interior normal is given by

(6-2) Hb(r, t)=
1

2rb
√

1+ b2
, 0< r <+∞, 0≤ t < 2π.
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Theorem 6.1 (solution of P(�b, φ, H)). On the closed disc�b of radius 0<b<∞,
let us prescribe the logarithmic mean curvature D(x, y) ∈ C1+α(�b) subject to the
inequalities (5-4) and the estimate

(6-3) −
1

2b
√

1+ b2
< D(x, y)≤ 0 for all points (x, y) ∈ ∂�b.

We denote by H its homogeneous continuation onto the circular cone C(�b) due to
(2-13). Then the Dirichlet problem P(�b, φ, H) possesses a solution

% = %(x, y) ∈ C2+α(�b)∩C0(�b)

for all continuous boundary distributions φ : ∂�b→ (0,+∞).

Proof. (1) As in the proof of Theorem 5.2, let us approximate D = D(x, y) by the
functions

Dk
= Dk(x, y) :�b→ R ∈ C1+α

0 (�b) for k = 1, 2, . . .

within Cα
loc(�b), dominated due to (5-16) when we replace the domain � with �b.

We denote by H k their continuation onto the circular cone C(�b) due to (2-13)
and approximate the continuous boundary distribution φ : ∂�b→ (0,+∞) ∈ C0

uniformly by the sequence φk
: ∂�b→ (0,+∞) ∈ C2+α for k = 1, 2, . . . .

With the aid of Theorem 5.1, we solve the Dirichlet problems P(�b, φ
k, H k)

by the functions %k
= %k(x, y) ∈ C2+α(�b) for all k ∈ N. In the parametric

form we receive H k-surfaces X k(u, v) ∈ C2+α(B) bounding the Jordan contours
0k
:= 0(�b, φk) from (5-13). By an area estimate as in part (4) of the proof of

Theorem 5.1, we select a subsequence of {X k(u, v)}k=1,2,... which is uniformly
convergent on B to the limit

X = X (u, v) ∈ C0(B, C(�b)).

(2) Let us take a point (x, y)= (b cos t, b sin t)∈∂�b with an appropriate 0≤ t<2π
and a number r > 0, such that we obtain the boundary point (r x, r y, r) ∈ ∂C(�b)

of the cone. We use the balls

Kδ(r x, r y, r) := {(ξ, η, ζ ) ∈ R3
| (ξ − r x)2+ (η− r y)2+ (ζ − r)2 < δ2

}

about this point of radius δ = δ(r x, r y, r) > 0, which we shall choose sufficiently
small. Now we need circular cylinders of curvature h > 0 which are generated as
images of the standard cylinder

(6-4) Sh := {(ξ, η, ζ ) ∈ R3
| ξ 2
+ η2 < 1/4h2

}

of curvature h under an appropriate rotation and translation.
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At the point (r x, r y, r)we use as the cylinder of support Sh(r x, r y, r) the circular
cylinder of curvature

(6-5) h :=
1
2r

(
1

2b
√

1+ b2
− D(x, y)

)
∈

(
−

1
r

D(x, y), Hb(r, t)
)

with the properties

(6-6)
C(�b)∩ Kδ(r x, r y, r)⊂ Sh(r x, r y, r)∩ Kδ(r x, r y, r),

∂C(�b)∩ ∂Sh(r x, r y, r)∩ Kδ(r x, r y, r)= L(x,y) ∩ Kδ(r x, r y, r).

Here we have to apply our Lemma 6.1 from above. For the prescribed mean
curvature, the estimate

(6-7) |H(ξ, η, ζ )| ≤ h at all points (ξ, η, ζ ) ∈ C(�b)∩ Kδ(r x, r y, r)

holds true.

(3) The limit surface X (u, v) from (1) cannot touch the cone ∂C(�b) at an in-
terior point. If this happened, we could find a point (u0, v0) ∈ B such that
X (u0, v0)= (r x, r y, r) holds true for a boundary point (r x, r y, r) ∈ ∂C(�b) con-
sidered in (2) above. Now we use Hildebrandt’s geometric maximum principle for
H-surfaces in circular cylinders, presented in Hilfssatz 3 in [Sauvigny 1982] or
Proposition 1.6 in [Sauvigny 2012b, Chapter 13].

Transforming the setting into the standard cylinder (6-4) by rotation and trans-
lation, we show in (4) that the continuous auxiliary function

(6-8)
9(u, v) := x(u, v)2+ y(u, v)2, (u, v) ∈ B,

with (u− u0)
2
+ (v− v0)

2 < ε2,

is subharmonic in the sense of mean values, where ε > 0 is sufficiently small. Due to
Theorem 2.9 in [Sauvigny 2012a, Chapter 5], the function 9 is subject to the maxi-
mum principle. Therefore, the surface X would locally coincide with the bounding
cylinder and protrude from C(�b), which is impossible. Consequently, we have

(6-9) X (B)⊂ C(�b).

(4) Now we prove that the function 9 is subharmonic: for k= 1, 2, . . . we consider
the approximate auxiliary functions

(6-10)
9k(u, v) := xk(u, v)2+ yk(u, v)2, (u, v) ∈ B,

with (u− u0)
2
+ (v− v0)

2 < ε2,

associated with the solutions X k
∈C2+α(B, C(�b)) of the H-surface system (5-19).

Since their mean curvatures H k are equally bounded as in (6-7) due to (5-16), these
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functions satisfy

(6-11) 19k(u, v)≥ 0, (u, v) ∈ B, with (u− u0)
2
+ (v− v0)

2 < ε2,

by Hildebrandt’s maximum principle cited above. The functions X k and 9k con-
verge uniformly, and consequently the subharmonic property (6-11) for 9k — in
the mean-value sense — is transferred to the limit function 9.

(5) As we have seen in part (4) of the proof of Theorem 5.2, the inclusion (6-9)
implies that the convergence of our sequence X k(u, v) ∈ C2+α(B), k = 1, 2, . . . ,
occurs in the space C2+α

loc (B)∩C0(B) to the limit surface

(6-12) X = X (u, v) ∈ C2+α(B)∩C0(B).

Lemma 5.1 guarantees that our surface satisfies

(6-13) X (u, v) · N (u, v) > 0, (u, v) ∈ B.

Therefore, the surface X has a one-to-one central projection onto the plane E and
possesses the nonparametric representation

(6-14) % = %(x, y) ∈ C2+α(�b)∩C0(�b)

solving the Dirichlet problem P(�b, φ, H). �
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