
Pacific
Journal of
Mathematics

A SHORT PROOF OF THE EXISTENCE
OF SUPERCUSPIDAL REPRESENTATIONS
FOR ALL REDUCTIVE p-ADIC GROUPS

RAPHAËL BEUZART-PLESSIS

Volume 282 No. 1 May 2016



PACIFIC JOURNAL OF MATHEMATICS
Vol. 282, No. 1, 2016

dx.doi.org/10.2140/pjm.2016.282.27
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FOR ALL REDUCTIVE p-ADIC GROUPS

RAPHAËL BEUZART-PLESSIS

Let G be a reductive p-adic group. We give a short proof of the fact that
G always admits supercuspidal complex representations. This result has
already been established by A. Kret using the Deligne–Lusztig theory of
representations of finite groups of Lie type. Our argument is of a different
nature and is self-contained. It is based on the Harish-Chandra theory of
cusp forms and it ultimately relies on the existence of elliptic maximal tori
in G.

Let p be a prime number and let F be a p-adic field (i.e., a finite extension
of Qp). We denote by O the ring of integers of F and we fix a uniformizer $ ∈ O.
We also denote by val : F×→ Z the normalized valuation (i.e., val($)= 1). Let
G be a connected reductive group defined over F . We will denote by g the Lie
algebra of G. A sentence like “Let P = MN be a parabolic subgroup of G” will
mean as usual that P is a parabolic subgroup of G defined over F , that N is its
unipotent radical and that M is a Levi component of P also defined over F . More
generally, all subgroups of G that we consider will be defined over F . We will
also need to fix Haar measures on the various groups that we consider. The precise
normalization of these Haar measures won’t be important (unless we specify that
they need to satisfy an explicit compatibility condition) and we will only make use
of Haar measures on unimodular groups (e.g., F points of reductive or unipotent
groups), so that the distinction between left and right Haar measures is irrelevant
here and will be dropped from the notations.

Remark 1. We exclude fields of positive characteristic because we will use in a
crucial way the exponential map. If G = GLn , then we can instead use the map
X 7→ Id+X and work over any nonarchimedean local field. For classical groups,
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we could probably also replace the exponential map by some Cayley map and
considerably weaken the characteristic assumption.

Recall that a smooth representation of G(F) is a pair (π, Vπ ) where Vπ is a
complex vector space (usually infinite dimensional) and π : G(F)→ GL(Vπ ) is
a morphism such that for all vectors v ∈ Vπ the stabilizer StabG(F)(v) of v in
G(F) is an open subgroup. Let (π, Vπ ) be a smooth representation of G(F) and
let P = MN be a parabolic subgroup of G. The Jacquet module of (π, Vπ ) with
respect to P is the space of coinvariants

Vπ,N = Vπ/Vπ (N ),

where Vπ (N ) is the subspace of Vπ generated by the elements v− π(n)v for all
v ∈ Vπ and all n ∈ N (F). It is the biggest quotient of Vπ on which N (F) acts
trivially. There is a natural linear action πN of M(F) on Vπ,N and (πN , Vπ,N ) is
a smooth representation of M(F). The functor Vπ 7→ Vπ,N is an exact functor
from the category of smooth representations of G(F) to the category of smooth
representations of M(F). Indeed, this follows rather easily from the following fact
(see [Renard 2010, Proposition III.2.9]):

(1) Let (N (F)k)k>0 be an increasing sequence of compact-open subgroups of N (F)
such that N (F)=

⋃
k>0 N (F)k (such a sequence always exists). Then a vector

v ∈ Vπ belongs to Vπ (N ) if and only if there exists k > 0 such that∫
N (F)k

π(n)v dn = 0.

Let (π, Vπ ) be an irreducible smooth representation of G(F) (irreducible means
that Vπ is nontrivial and that it has no nonzero proper G(F)-invariant subspace).
The representation (π, Vπ ) is said to be supercuspidal if for all proper parabolic
subgroups P =MN of G, the Jacquet module Vπ,N is zero. An equivalent condition
is that the coefficients of (π, Vπ ) are compactly supported modulo the center (see
[Renard 2010, Theorem VI.2.1]).

The purpose of this short note is to prove the following result.

Theorem 2. G(F) admits irreducible supercuspidal representations.

Remark 3. This theorem has already been proved by A. Kret [2012]. The proof of
Kret has the advantage of working in any characteristic (cf. Remark 1) and of being
explicit (i.e., it exhibits a way to construct such supercuspidal representations by
compact induction). Kret’s proof eventually relies on the Deligne–Lusztig theory
of representations of finite groups of Lie type and so can hardly be considered
elementary. Although less complete and explicit than the results of [Kret 2012], the
proof presented here has the advantage of being short and (almost) self-contained,
using only elementary harmonic analysis arguments.
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We will deduce Theorem 2 from the existence of nonzero compactly supported
cusp forms, in the sense of Harish-Chandra, for the group G(F). Before stating
this existence result, we need to introduce some more definitions and notation. We
will denote, as usual, by C∞c (G(F)) the space of complex-valued functions on
G(F) that are smooth, i.e., locally constant, and compactly supported. We say that
a function f ∈ C∞c (G(F)) is a cusp form if for all proper parabolic subgroups
P = MN of G, we have∫

N (F)
f (xn) dn = 0, for all x ∈ G(F)

(these functions are called supercusp forms in [Harish-Chandra 1970]). We shall
denote by C∞c,cusp(G(F)) ⊆ C∞c (G(F)) the subspace of cusp forms. As we said,
Theorem 2 will follow from the following existence theorem.

Theorem 4. We have C∞c,cusp(G(F)) 6= 0.

Proof that Theorem 4 implies Theorem 2. Let us denote by ρ the action of G(F) on
C∞c (G(F)) by right translation. Then

(
ρ,C∞c (G(F))

)
is a smooth representation

of G(F). Moreover, it is easy to see that the subspace C∞c,cusp(G(F))⊆C∞c (G(F))
is G(F)-invariant. We claim the following:

(2) For all proper parabolic subgroups P = MN of G, we have

C∞c,cusp(G(F))N = 0.

Let P = MN be a proper parabolic subgroup of G and fix an increasing sequence
(N (F)k)k>0 of compact-open subgroups of N (F) such that N (F)=

⋃
k>0 N (F)k .

Let f ∈ C∞c,cusp(G(F)). By (1), it suffices to show the existence of an integer k > 0
such that ∫

N (F)k
ρ(n) f dn = 0,

or, what amounts to the same,

(3)
∫

N (F)k
f (xn) dn = 0, for all x ∈ G(F).

Since Supp( f ) (the support of the function f ) is compact, there exists k > 0 such
that

(4) Supp( f )∩
[
Supp( f )

(
N (F) \ N (F)k

)]
=∅.

We now show that (3) is satisfied for such k. Let x ∈G(F). If x /∈Supp( f )N (F)k ,
the term inside the integral (3) vanishes identically and there is nothing to prove.
Assume from now on that x ∈ Supp( f )N (F)k . Up to translating x by an element
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of N (F)k , we may as well assume that x ∈ Supp( f ). Then, by (4) we have
xn /∈ Supp( f ) for all n ∈ N (F) \ N (F)k . It follows that∫

N (F)k
f (xn) dn =

∫
N (F)

f (xn) dn.

But by definition of C∞c,cusp(G(F)), this last integral vanishes. This proves (3) and
ends the proof of (2).

We now show how to deduce from (2) that Theorem 4 implies Theorem 2.
Assume that Theorem 4 is satisfied. Then, we can find f ∈ C∞c,cusp(G(F)) which is
nonzero. Denote by V f the G(F)-invariant subspace of C∞c,cusp(G(F)) generated
by f and let V ⊆ V f be a maximal G(F)-invariant subspace among those not
containing f (which exists by Zorn’s lemma). Then V f /V is a smooth irreducible
representation of G(F). We claim that it is supercuspidal. Indeed, let P = MN be
a proper parabolic subgroup of G. By (2) and since the Jacquet module’s functor is
exact, we have (V f /V )N = 0. Thus, V f /V is indeed a supercuspidal representation
of G(F) and this proves Theorem 2. �

We are now left with proving Theorem 4. The strategy is to prove first an analog
result on the Lie algebra and then lift it to the group by means of the exponential map.
Let C∞c (g(F)) be the space of complex-valued smooth and compactly supported
functions on g(F). We say that a function ϕ ∈ C∞c (g(F)) is a cusp form if for all
proper parabolic subgroups P = MN of G, we have∫

n(F)
ϕ(X + N ) dn = 0, for all X ∈ g(F),

where n(F) denotes the F-points of the Lie algebra of N . We will denote by
C∞c,cusp(g(F))⊆ C∞c (g(F)) the subspace of cusp forms. The analog of Theorem 4
for the Lie algebra is the following lemma.

Lemma 5. We have C∞c,cusp(g(F)) 6= 0.

Before proving this lemma, we first explain how it implies Theorem 4.

Proof that Lemma 5 implies Theorem 4. Assume that Lemma 5 holds. Then, we
can find a nonzero function ϕ ∈ C∞c,cusp(g(F)). The idea is to lift ϕ to a function on
G(F) using the exponential map. Of course, the exponential map is not necessarily
defined on the support of ϕ. Hence, we need first to scale the function ϕ so that
its support becomes small. Let us fix an element λ ∈ F× which we will eventually
assume to be sufficiently small. We define the function ϕλ by

ϕλ(X)= ϕ(λ−1 X), X ∈ g(F).

We easily check that ϕλ is still a cusp form. Recall that there exists an open
neighborhood ω⊆ g(F) of 0 on which the exponential map exp is defined and such
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that it realizes an F-analytic isomorphism

exp : ω '�,

where �= exp(ω). Since Supp(ϕλ)= λSupp(ϕ), for λ sufficiently small we have

Supp(ϕλ)⊆ ω.

We henceforth assume that λ is that sufficiently small. This allows us to define a
function fλ on G(F) by setting

fλ(g)=
{
ϕλ(X) if g = exp(X) for some X ∈ ω,
0 otherwise,

for all g ∈ G(F). Note that we have fλ ∈ C∞c (G(F)), and obviously the function
fλ is nonzero. Hence, we will be done if we can prove the following:

(5) If λ is sufficiently small, the function fλ is a cusp form.

Let us denote by log :�→ ω the inverse of the exponential map. Then, by the
Campbell–Hausdorff formula, it is easy to see that we can find an O-lattice L in the
F-vector space g(F) which is contained in ω and satisfies the following condition:

(6) log(eX eY ) ∈ X + Y +$ valL (X)+valL (Y )L

for all X, Y ∈ L , where we have set valL(X) = sup{k ∈ Z : X ∈ $ k L} for all
X ∈ g(F). For all integers n > 0, set Kn = exp($ n L). It is easy to infer from (6)
that Kn is an open-compact subgroup of G(F) for all n > 0. Since ϕ is smooth
and compactly supported, there exists n0 > 0 such that translation by $ n0 L leaves
ϕ invariant. Also, since ϕ is compactly supported, there exists n1 > 0 such that
Supp(ϕ) ⊆ $−n1 L . We will show that (5) holds provided val(λ) > 2n1 + n0.
Assume this is so and set n = val(λ)− n1. Then we have

(7) Supp(ϕλ)= λSupp(ϕ)⊆ λ$−n1 L =$ n L .

Hence, it follows that

(8) Supp( fλ)⊆ Kn.

Let P = MN be a proper parabolic subgroup of G and let x ∈ G(F). Consider
the integral

(9)
∫

N (F)
fλ(xn) dn.

If x N (F) ∩ Kn = ∅, then by (8) the term inside the integral above vanishes
identically and it follows that the integral is equal to zero. Assume from now on
that x Kn∩N (F) 6=∅. Up to translating x by an element of N (F), we may assume
that x ∈ Kn . Then we may write x = eX for some X ∈ $ n L . Using (8) again,
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and since Kn is a subgroup of G(F), we see that the integral (9) is supported on
Kn ∩ N (F). Thus, we have equalities

(10)
∫

N (F)
fλ(xn) dn =

∫
Kn∩N (F)

fλ(eX n) dn.

Set L N = L ∩n(F). Then if we normalize measures correctly, the exponential map
induces a measure preserving isomorphism $ n L N ' Kn ∩ N (F), so that we have

(11)
∫

Kn∩N (F)
fλ(eX n) dn =

∫
$ n L N

fλ(eX eN ) dn =
∫
$ n L

ϕλ(log(eX eN )) dn.

By (6), for all N ∈$ n L N we have

(12) log(eX eN ) ∈ X + N +$ 2n L .

Moreover, as ϕ is invariant by translation by $ n0 L , the function ϕλ is invariant
by translation by λ$ n0 L = $ n+n1+n0 L (recalling that n = val(λ)− n1). Since
val(λ)> 2n1+ n0, we also have n > n1+ n0. Hence, the function ϕλ is invariant
by translation by $ 2n L and so using (12), we deduce

ϕλ(log(eX eN ))= ϕλ(X + N )

for all N ∈$ n L N . From (10) and (11), it follows that

(13)
∫

N (F)
fλ(xn) dn =

∫
$ n L

ϕλ(X + N ) dn.

By (7) and since X ∈$ n L , the function N 7→ϕλ(X+N ) for N ∈ n(F) is supported
on $ n L N . Consequently, we have∫

$ n L
ϕλ(X + N ) dn =

∫
n(F)

ϕλ(X + N ) dn.

As ϕλ is a cusp form, this last integral vanishes. Hence, using (13) we see that the
integral (9) is also zero. Since it is true for all x ∈ G(F) and all proper parabolic
subgroups P = MN of G, this shows that fλ is a cusp form. Hence, (5) is indeed
satisfied as soon as val(λ)> 2n1+n0, and this ends the proof that Lemma 5 implies
Theorem 4. �

It only remains to establish Lemma 5. Recall that a maximal torus T in G is said
to be elliptic if AT = AG , where AT and AG denote the maximal split subtori in T
and the center of G, respectively. The proof of Lemma 5 will ultimately rely on the
following existence result (see [Platonov and Rapinchuk 1994, Theorem 6.21]):

Theorem 6. G admits an elliptic maximal torus.
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Proof of Lemma 5. Let us fix a symmetric nondegenerate bilinear form B on g(F)
which is G(F)-invariant. Such a bilinear form is easy to construct. On gder(F),
the derived subalgebra of g(F), we have the Killing form BKil which is symmetric,
G(F)-invariant and nondegenerate. Hence, we may take B = Bz⊕ BKil where Bz

is any nondegenerate symmetric bilinear form on zG(F), the center of g(F). Let us
also fix a nontrivial continuous additive character ψ : F→ C×. Using those, we
can define a Fourier transform on C∞c (g(F)) by

ϕ̂(Y )=
∫
g(F)

ϕ(X)ψ(B(X, Y )) d X, ϕ ∈ C∞c (g(F)), Y ∈ g(F).

Of course, this Fourier transform also depends on the choice of a Haar measure
on g(F).

More generally, if V is a subspace of g(F) and V⊥ denotes the orthogonal of V
with respect to B, we can also define a Fourier transform C∞c (V )→C∞c (g(F)/V⊥),
ϕ 7→ ϕ̂, by setting

ϕ̂(Y )=
∫

V
ϕ(Y )ψ(B(X, Y )) dY, X ∈ g(F)/V⊥,

where again we need to choose a Haar measure on V . It is easy to check that for
compatible choices of Haar measures, the following diagram commutes:

C∞c (g(F))

resV

��

FT // C∞c (g(F))∫
V⊥
��

C∞c (V )
FT // C∞c (g(F)/V⊥)

whereby the horizontal arrows are Fourier transforms, the left vertical arrow is
given by restriction to V and the right vertical arrow is given by integration over
the cosets of V⊥. For P = MN a parabolic subgroup of G, we have p(F)⊥ = n(F)
(where p stands for the Lie algebra of P). The commutativity of the above diagram
in this particular case gives us (for some compatible choices of Haar measures) the
formula

(14)
∫
n(F)

ϕ̂(X + N ) dn =
∫
p(F)

ϕ(Y )ψ(B(X, Y )) dY

for all ϕ ∈ C∞c (g(F)) and all X ∈ g(F).
Let Tell be an elliptic maximal torus of G, whose existence is guaranteed by

Theorem 6. Let tell be its Lie algebra and set tell,reg = tell ∩ greg for the subset
of G-regular elements in tell. Denote by tell,reg(F)G the subset of elements in
greg(F) that are G(F)-conjugated to an element of tell,reg(F). Then, tell,reg(F)G

is an open subset of g(F) (since the map Tell(F) \ G(F) × tell,reg(F)→ g(F),
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(g, X) 7→ g−1 Xg, is everywhere submersive). In particular, we can certainly find a
nonzero function ϕ ∈ C∞c (g(F)) whose support is contained in tell,reg(F)G . Let us
fix such a function ϕ. We claim the following:

(15) The function ϕ̂ is a cusp form.

Indeed, let P = MN be a proper parabolic subgroup of G and let X ∈ g(F). We
need to see that the integral ∫

n(F)
ϕ̂(X + N ) dn

is zero. By (14), this integral is equal to∫
p(F)

ϕ(Y )ψ(B(X, Y )) dY.

Hence, we only need to show that Supp(ϕ)∩ p(F)=∅. By definition of ϕ, it even
suffices to see that tell,reg(F)G ∩ p(F)=∅. But this follows immediately from the
fact that, P being proper, it does not contain any elliptic maximal torus of G. �
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