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QUANTUM GROUPS AND GENERALIZED CIRCULAR
ELEMENTS

MICHAEL BRANNAN AND KAY KIRKPATRICK

We show that with respect to the Haar state, the joint distributions of the
generators of Van Daele and Wang’s free orthogonal quantum groups are
modeled by free families of generalized circular elements and semicircular
elements in the large (quantum) dimension limit. We also show that this class
of quantum groups acts naturally as distributional symmetries of almost-
periodic free Araki–Woods factors.

1. Introduction

There are intriguing connections between the representation theory of certain classes
of compact matrix groups and independent Gaussian structures in probability theory.
For instance, if one considers the N 2 matrix elements {ui j }1≤i, j≤N of the fundamen-
tal representation of the N×N orthogonal group ON = ON (R) on the Hilbert space
CN, then it is well known that the joint moments of these variables with respect to
the Haar probability measure are approximated by an independent and identically
distributed, mean zero, variance 1/N family of real Gaussian random variables in the
large N limit; see, for example, [Diaconis and Freedman 1987]. Intimately related
to this asymptotic Gaussianity result is the celebrated theorem of Freedman [1962;
Diaconis and Freedman 1987], which says that an infinite sequence x = (xn)n∈N

of real-valued random variables is a conditionally independent centered Gaussian
family with common variance if and only if the sequence is rotatable: i.e., for each
N ∈N, the joint distribution of the N-dimensional truncation xN = (xn)1≤n≤N of x
is invariant under rotations by ON .

When one replaces the family of orthogonal groups {ON }N∈N by the unitary
groups {UN }N∈N, analogous results are known to hold where one replaces real
Gaussian random variables by their complex-valued counterparts. The key ingredi-
ent for the above results is a certain asymptotic orthonormality property for canonical
generators (weighted Brauer diagrams, in fact) of the spaces of intertwiners between
the tensor powers of the fundamental representations of these groups in the large
rank limit. This asymptotic feature of the representation theory is most concisely
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expressed via the so-called Weingarten calculus developed in [Collins 2003; Collins
and Śniady 2006], with origins in the pioneering work of Weingarten [1978] on
the asymptotics of unitary matrix integrals. For a broad treatment of probabilistic
symmetries, we refer to the text [Kallenberg 2005].

Within the framework of operator algebras and noncommutative geometry, com-
pact quantum groups provide a vast and rich generalization of the theory of compact
groups. The operator algebraic theory of compact quantum groups was pioneered
by Woronowicz — see [1987; 1998], for instance — and has led recently to many
interesting examples and developments in the theory of operator algebras.

One can ask noncommutative probabilistic questions about compact quantum
groups, because every compact quantum group G admits a natural analogue of the
Haar probability measure (the Haar state). The last decade or so has seen a flurry
of activity in this direction, particularly for free quantum groups and Voiculescu’s
free probability theory. For instance, the free orthogonal quantum groups O+N
and free unitary quantum groups U+N discovered by Wang [1993] turn out to have
interesting noncommutative probabilistic structures that share deep parallels with the
aforementioned classical results for ON and UN . Most notable for our purposes are
the works of Banica–Collins [2007] and Curran [2010]. Banica and Collins show that
the rescaled matrix elements {

√
Nui j }1≤i, j≤N of the fundamental representation

of O+N (respectively U+N ) converge in joint distribution to a freely independent
family of standard — mean zero, variance one — semicircular (respectively circular)
elements in a free group factor. Curran provides a free probability analogue of
Freedman’s rotatability theorem: An infinite sequence x = (xn)n∈N of self-adjoint
noncommutative random variables in a W∗-probability space (M, ϕ) is quantum
rotatable if and only if there exists a W∗-subalgebra B ⊆ M and a ϕ-preserving
conditional expectation E : M→ B such that x is an identically distributed family
of mean zero semicircular elements that is free with amalgamation over B. A
similar result for U+N is obtained in [loc. cit.].

In this paper, we consider similar noncommutative probabilistic questions for
a broad class of compact quantum groups introduced by Van Daele and Wang
[1996] that generalizes the construction of U+N and O+N (which they called universal
quantum groups). To define such a universal quantum group, one uses an invertible
matrix F ∈ GLN (C) to deform the defining algebraic relations for the quantum
groups O+N and U+N , yielding a pair of new compact matrix quantum groups called
O+F and U+F . When F = 1 (the N × N identity matrix), we recover O+N and U+N
as special cases (see Section 3 for precise definitions). We follow recent literature
conventions and refer to O+F as free orthogonal quantum groups and U+F as free
unitary quantum groups (both with parameter matrix F).

The quantum groups G = O+F ,U
+

F (at least when F is not a multiple of a
unitary matrix) are especially interesting because their Haar states are nontracial
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and because the corresponding quantum group von Neumann algebras L∞(G) are
known to be type III factors in many cases; see [De Commer et al. 2014; Vaes and
Vergnioux 2007].

The main result of this paper is that in this far more general (possibly nontracial)
setting, asymptotic freeness still emerges in the large rank limit. In Theorems 5.1,
5.2, and 5.4, we show that the joint distribution of the (suitably rescaled) matrix
elements of the fundamental representation of the quantum group O+F can be
approximated by a freely independent family of noncommutative random variables
consisting of semicircular elements and Shlyakhtenko’s generalized circular ele-
ments [1997], which is built in a natural way from the initial data F ∈ GLN (C).
Generalized circular elements are nontracial deformations of Voiculescu’s circular
elements, and they arise as canonical generators of free Araki–Woods factors
[loc. cit.]. Since free Araki–Woods factors are the natural nontracial (or type III)
deformations of the free group factors, our asymptotic freeness results for O+F
provide a satisfactory generalization of the tracial asymptotic freeness results of
[Banica and Collins 2007]. We also remark in Section 5C how similar asymptotic
freeness results can be obtained for the free unitary quantum groups U+F .

Our proofs of asymptotic freeness results in O+F and U+F follow the general
outline of the earlier work [Banica and Collins 2007; Collins and Śniady 2006], and
we use a modified version of the Weingarten calculus for our situation. In our case,
the formulas become a bit more unwieldy, a consequence of the extra parameters
that arise from the nontrivial matrix F ∈ GLN (C). On the other hand, there is one
significant and interesting difference between our (nontracial) setting and the earlier
asymptotic (free) independence results on groups and quantum groups where the
Haar state is tracial. In the case of O+F and U+F , F ∈GLN (C), we find that the error
in approximation of joint moments by free variables is of order

O((Tr(F∗F))−1),

a bound that is in many cases much smaller than the traditional bound given by
O(1/N ) in the classical case. This fact allows us to observe, for example, asymptotic
freeness results in a fixed dimension N, by considering families of quantum groups
{O+F }F∈3⊂GLN (C) where the quantum dimension Tr(F∗F) tends to infinity; see
Theorem 5.4.

Based on our nontracial asymptotic freeness results described above, together
with Curran’s work on quantum rotatability [2010], it now becomes natural to ask
whether the free quantum groups O+F act nontrivially on free Araki–Woods factors
in a free-quasifree state-preserving way. In Section 6, we answer this question in
the affirmative, and as a result we observe that almost-periodic free Araki–Woods
factors admit a wealth of quantum symmetries. A future goal of the authors is
to find a suitable “type III” version of Freedman’s theorem adapted to O+F , U+F ,
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and free Araki–Woods factors. After a first version of this paper appeared, it was
pointed out to the authors that the main result of Section 6, namely Theorem 6.5,
can also be obtained as a special case of a very general result of S. Vaes [2005,
Proposition 3.1].

We finish this section with an outline of the paper’s organization. Section 2
discusses some preliminaries on quantum groups and free probability that are
required. Section 3 defines the quantum groups O+F and U+F and gives Weingarten-
type formulas for joint moments of the generators of O+F with respect to the
Haar state. Section 4 considers the large quantum dimension asymptotics of these
Weingarten formulas. Section 5 gives various asymptotic freeness results for O+F ,
and includes a remark on how to extend our results on O+F to some of their unitary
counterparts U+F . Finally Section 6 considers O+F as quantum symmetries of almost-
periodic free Araki–Woods factors. This is achieved by associating to each O+F a
canonical free family of generalized circular elements whose joint distribution is
invariant under quantum rotations by O+F .

2. Preliminaries

In this section we briefly review some concepts from free probability theory and
compact quantum group theory. For more details, we refer the reader to [Nica and
Speicher 2006] for free probability and to [Timmermann 2008; Woronowicz 1998]
for quantum groups.

2A. Noncommutative probability spaces and free independence. A noncommu-
tative probability space (NCPS) is a pair (A, ϕ), where A is a unital C∗-algebra, and
ϕ : A→C is a state (i.e., a linear functional such that ϕ(1A)= 1 and ϕ(a∗a)≥ 0 for
all a ∈ A). Elements a ∈ A are called random variables. Given a family of random
variables X = {xr }r∈3 ⊂ (A, ϕ), the joint distribution of X is the collection of all
joint ∗-moments {

ϕ
(
P((xr )r∈3)

)
: P ∈ C〈tr , t∗r : r ∈3〉

}
,

where C〈tr , t∗r : r ∈3〉 is the unital ∗-algebra of noncommutative polynomials in
the variables {tr }r∈3, equipped with antilinear involution tr 7→ t∗r . Given another
family of random variables Y = {yr }r∈3 in a NCPS (B, ψ), we say that X and Y
are identically distributed if

ϕ
(
P((xr )r∈3)

)
= ψ

(
P((yr )r∈3)

)
for all P ∈ C〈tr , t∗r : r ∈3〉.

Let (A, ϕ) be a NCPS. A family of ∗-subalgebras {Ar }r∈3 of A is said to be
freely independent (or simply free) if the following condition holds: for any choice
of indices r(1) 6= r(2), r(2) 6= r(3), . . . , r(k − 1) 6= r(k) ∈ 3 and any choice of
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centered random variables xr( j) ∈ Ar( j) (i.e., ϕ(xr( j))= 0), we have the equality

ϕ(xr(1)xr(2) . . . xr(k))= 0.

A family of random variables X = {xr }r∈3 ⊂ (A, ϕ) is said to be free if the
family of unital ∗-subalgebras

{Ar }r∈3, Ar := alg
(
1, xr , x∗r

)
,

is free in the above sense. Let Sα = {x
(α)
r }r∈3 ⊂ (Aα, ϕα) be a net of families of

random variables and S = {xr }r∈3 ∈ (A, ϕ) be another family of random variables.
We say that Sα converges to S in distribution (and write Sα → S) if, for any
noncommutative polynomial P ∈ C〈Xr : r ∈3〉,

lim
α
ϕα(P(Sα))= ϕ(P(S)).

2B. Fock spaces, semicircular elements, and generalized circular elements. Let
H be a complex Hilbert space. The full Fock space is the Hilbert space

F(H)=
∞⊕

n=0

H⊗n,

where we put H⊗0
:=C�, where � is a fixed unit vector, called the vacuum vector.

The vacuum expectation is the state ϕ� :B(F(H))→C given by ϕ�(x)= 〈� | x�〉,
x ∈ B(F(H)).

For each ξ ∈ H, we define the left creation operator `(ξ) ∈ B(F(H)) by{
`(ξ)�= ξ,

`(ξ)η = ξ ⊗ η, η ∈ H⊗n, n ≥ 1.

Note that ‖`(ξ)‖B(F(H)) = ‖ξ‖H. Given a NCPS (A, ϕ), a (standard) semicircular
element is a self-adjoint random variable x ∈ A with the same distribution as
s(ξ) :=`(ξ)+`(ξ)∗∈ (B(F(H)), ϕ�), where ξ ∈H is a unit vector. Given α, β∈R+,
a random variable x ∈ (A, ϕ) is called an (α, β)-generalized circular element if it has
the same distribution as the element α`(ξ)+β`(η)∗ ∈ (B(F(H)), ϕ�), where ξ, η
are orthonormal vectors in H. One can readily verify that for an (α, β)-generalized
circular element x ,

ϕ(x∗x)= α2 and ϕ(xx∗)= β2,

and this information completely determines the ∗-moments of x with respect to ϕ.
We will call the numbers α2 and β2 the left and right variances of x , respectively.

Next, we want to state a well known theorem which gives a combinatorial
characterization of the joint distribution of a free semicircular or generalized circular
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family. To do this, we first need some notation concerning noncrossing partitions
that will be used below and throughout the remainder of the paper.

Notation 2.1. Let k ∈ N and denote by [k] the ordered set {1, . . . , k}.

(1) The lattice of partitions of [k] will be denoted by P(k), and the lattice of
noncrossing partitions will be denoted by NC(k). The standard partial order
on both lattices will be denoted by ≤.

(2) If π ∈ P(k) partitions [k] into r disjoint, nonempty subsets V1, . . . ,Vr (called
blocks), we write |π | = r and say that π has r blocks.

(3) Given a function i : [k] →3, we denote by ker i the element of P(k) whose
blocks are the equivalence classes of the relation

s ∼ker i t ⇐⇒ i(s)= i(t).

Note that if π ∈P(k), then π ≤ker i is equivalent to the condition that whenever
s and t are in the same block of π , i(s) must equal i(t) (i.e., the function
i : [k] →3 is constant on the blocks of π ).

(4) Elements of P(k)which partition [k] into subsets with exactly two elements are
called pairings and the set of pairings of [k] is denoted by P2(k). We also write
NC2(k)=P2(k)∩NC(k). If k is odd, we of course have P2(k)=NC2(k)=∅.

(5) Given π ∈ P2(k) and s, t ∈ [k], we will always write (s, t) ∈ π if {s, t} is a
block of π and s < t .

(6) Let ε : [k] → {1, ∗} be a function. We let NCε2(k)⊂NC2(k) be the subset of
all noncrossing pairings such that for all (s, t) ∈ π ,

ε(s) 6= ε(t).

Theorem 2.2 [Nica and Speicher 2006, Chapters 7 and 15]. Let X = (xr )r∈3 be a
family of random variables in an NCPS (A, ϕ).

(1) If xr = x∗r for each r ∈ 3, then X is a free family of standard semicircular
variables if and only if for any k ∈ N and r : [k] →3,

ϕ(xr(1) · · · xr(k))=
∑

π∈NC2(k)
ker r≥π

∏
(s,t)∈π

ϕ(xr(s) xr(t))

= |{π ∈NC2(k) : ker r ≥ π}|.

(2) Let (αr , βr )r∈3 ⊂ R+ ×R+. Then X is a free family of (αr , βr )-generalized
circular elements if and only if for any k ∈N, r : [k]→3, and ε : [k]→ {1, ∗},

ϕ
(
xε(1)r(1) · · · x

ε(k)
r(k)

)
=

∑
π∈NCε2(k)

ker r≥π

∏
(s,t)∈π

ϕ
(
xε(s)r(s) xε(t)r(t)

)
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where, in the above equation,

ϕ(xε(s)r(s) x
ε(t)
r(t) )=

{
α2

r(s), (ε(s), ε(t))= (∗, 1)
β2

r(s), (ε(s), ε(t))= (1, ∗)

2C. Free Araki–Woods factors and generalized circular elements. Let HR be a
real separable Hilbert space and let (Ut) be an orthogonal representation of R on
HR. Let H = HR⊗R C be the complexified Hilbert space. If A is the infinitesimal
generator of (the extension of) Ut on H (i.e., Ut = Ai t ), then it follows that the
map j : HR ↪→ H defined by j (ξ)= (2/(A−1

+ 1))1/2ξ is an isometric embedding
of HR into H [Shlyakhtenko 1997]. Let KR = j (HR); then KR ∩ i KR = {0} and
KR+ i KR is dense in H. The free Araki–Woods factor is the von Neumann algebra

0(HR,Ut)
′′
=W∗(`(ξ)+ `(ξ)∗ : ξ ∈ KR)⊆ B(F(H)).

The restriction of the vacuum expectation ϕ� = 〈� | · �〉 on B(F(H)) to
0(HR,Ut)

′′ is always a faithful normal state, and turns (0(HR,Ut)
′′, ϕ�) into a

noncommutative probability space.
We recall from [loc. cit.] that Ut is the trivial representation if and only if

0(HR,Ut)
′′ ∼= L(Fdim HR

), the von Neumann algebra generated by the left regular
representation of the free group on dim HR generators. Otherwise, 0(HR,Ut)

′′ is a
type III factor.

Free Araki–Woods factors arise naturally when one considers free families of
generalized circular elements that we introduced earlier. More precisely, we have
the following theorem, which follows easily from the results in [op. cit., Section 6].

Theorem 2.3 [Shlyakhtenko 1997]. Let X = (xr )r∈3 be a free family of (αr , βr )-
generalized circular elements in a noncommutative probability space (A, ϕ) and
let 0< λr =min{αβ−1, βα−1

} ≤ 1. Then there is a state-preserving ∗-isomorphism
(W∗(X), ϕ)∼= (0(HR,Ut)

′′, ϕ�), where Ut is the almost-periodic orthogonal repre-
sentation acting on the Hilbert space HR =

⊕
r∈3 R2 given by

Ut =
⊕
r∈3

Rλr(t), where Rλr(t)=
(

cos(t log λr ) − sin(t log λr )

sin(t log λr ) cos(t log λr )

)
.

Moreover, every free Araki–Woods factor 0(HR,Ut)
′′ arising from an almost-

periodic representation Ut arises in this fashion.

2D. Compact quantum groups. A compact quantum group G is a pair (C(G),1)
where C(G) is a unital C∗-algebra and 1 : C(G) → C(G) ⊗ C(G) is a unital
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∗-homomorphism satisfying
(ι⊗1)1= (1⊗ ι)1 (coassociativity),

[1(C(G))(1⊗C(G))] = [1(C(G))(C(G)⊗ 1)]
= C(G)⊗C(G) (nondegeneracy),

where [S] denotes the norm-closed linear span of a subset S ⊂ C(G)⊗C(G). Here
and in the rest of the paper, the symbol ⊗ will denote the minimal tensor product
of C∗-algebras, ⊗ will denote the spatial tensor product of von Neumann algebras,
and � will denote the algebraic tensor product of complex associative algebras.
The homomorphism 1 is called a coproduct.

For any compact quantum group G= (C(G),1), there exists a unique Haar state
hG : C(G)→ C which satisfies the following left and right 1-invariance property,
for all a ∈ C(G):

(2-1) (hG⊗ ι)1(a)= (ι⊗ hG)1(a)= hG(a)1.

Note that in general h = hG is not faithful on C(G). In any case, we can construct
a GNS representation πh : C(G)→ B(L2(G)), where L2(G) is the Hilbert space
obtained by separation and completion of C(G) with respect to the sesquilinear form
〈a | b〉 = h(a∗b), and πh is the natural extension to L2(G) of the left multiplication
action of C(G) on itself. The von Neumann algebra of G is given by

L∞(G)= πh(C(G))′′ ⊆ B(L2(G)).

We note that 1r extends to an injective normal ∗-homomorphism 1r : L∞(G)→
L∞(G)⊗L∞(G), and the Haar state on C(G) lifts to a faithful normal 1r -invariant
state on L∞(G).

Let H be a finite dimensional Hilbert space and U ∈ B(H)⊗C(G) be invertible
(unitary). Then U is called a (unitary) representation of G if, following the leg
numbering convention,

(2-2) (ι⊗1)U =U12U13.

If we fix an orthonormal basis of H, we can identify U with an invertible matrix
U = [ui j ] ∈ MN (C(G)) and (2-2) means exactly that

1(ui j )=

N∑
k=1

uik ⊗ uk j (1≤ i, j ≤ N ).

Of course the unit 1 ∈ C(G) is always a representation of G, called the trivial
representation.

Let U ∈ B(H1)⊗ C(G) and V ∈ B(H2)⊗ C(G) be two representations of G.
An intertwiner between U and V is a bounded linear map T : H1→ H2 such that
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(T ⊗ ι)U = V (T ⊗ ι). The Banach space of all such intertwiners is denoted by
HomG(U, V ). When U = 1 is the trivial representation, we write HomG(U, V )=
Fix(V ) ⊂ H2, and call Fix(V ) the space of fixed vectors for V. If there exists an
invertible (unitary) intertwiner between U and V, they are said to be (unitarily)
equivalent. A representation is said to be irreducible if its only self-intertwiners
are the scalar multiples of the identity map. It is known that each irreducible
representation of G is finite dimensional and every finite dimensional representation
is equivalent to a unitary representation. In addition, every unitary representation is
unitarily equivalent to a direct sum of irreducible representations.

A compact quantum group G is called a compact matrix quantum group if there
exists a finite dimensional unitary representation U = [ui j ] ∈ MN (C(G)) whose
matrix elements generate C(G) as a C∗-algebra. Such a representation U is called
a fundamental representation of G. In this case, we note that the Haar state h is
faithful when restricted to the dense unital ∗-subalgebra Pol(G)⊆ C(G) generated
by {ui j }1≤i, j≤N.

3. The free quantum groups O+F and U+F

In this section we recall the definition of the free orthogonal and unitary quantum
groups O+F and U+F , introduced by Van Daele and Wang in [1996].

Notation 3.1. Given a complex ∗-algebra A and a matrix X = [xi j ] ∈ MN (A), we
denote by X the matrix [x∗i j ] ∈ MN (A).

Definition 3.2 [Van Daele and Wang 1996]. Let N ≥ 2 be an integer and let
F ∈ GLN (C).

(1) The free unitary quantum group U+F (with parameter matrix F) is the compact
quantum group given by the universal C∗-algebra

(3-1) C(U+F )= C∗({vi j }1≤i, j≤N : V = [vi j ] is unitary and FVF−1 is unitary),

together with coproduct 1 : C(U+F )→ C(U+F )⊗C(U+F ) given by

1(vi j )=

N∑
k=1

vik ⊗ vk j (1≤ i, j ≤ N ).

(2) Let c=±1 and assume that FF = c1. The free orthogonal quantum group O+F
(with parameter matrix F) is the compact quantum group given by the universal
C∗-algebra

(3-2) C(O+F )= C∗({ui j }1≤i, j≤N :U = [ui j ] is unitary and U = FUF−1),
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together with coproduct 1 : C(O+F )→ C(O+F )⊗C(O+F ) given by

1(ui j )=

N∑
k=1

uik ⊗ uk j (1≤ i, j ≤ N ).

Remark 3.3. The coproduct1 is defined so that the matrices of generators V =[vi j ]

and U = [ui j ] are always fundamental representations of the compact matrix
quantum group U+F and O+F .

Remark 3.4. Note that the above definition for O+F makes sense for any F ∈
GLN (C). The additional condition FF =±1 is equivalent to the requirement that
U is always an irreducible representation of O+F . Indeed, Banica [1996] showed
that U is irreducible if and only if FF =±λ1 (λ > 0); moreover we clearly have
O+F = O+λ−1/2 F .

We remark that for our asymptotic freeness results, our assumption that FF =±I
is not a major restriction. Indeed, by a result of Wang [2002, Section 6], O+F for
generic F ∈ GLN (C) can be decomposed into a free product of finitely many
quantum groups O+Fi

and U+Pk
with Fi , Pk invertible matrices and Fi F̄i =±1.

For the remainder of the paper, we will deal mostly with the free orthogonal
quantum groups O+F . Later on in Section 5C we indicate how to extend some of
our orthogonal results to the unitary case.

3A. Canonical F-matrices for O+F . Let c ∈ {±1} and let F ∈ GLN (C) be such
that FF = c1. In [Bichon et al. 2006], it is shown that if c = 1, then there is an
integer 0≤ k ≤ N/2, a nondecreasing sequence ρ = (ρi )

k
i=1 ∈ (0, 1)k, and a unitary

w ∈UN such that

F (+1)
ρ := wtFw =

 0 Dk(ρ) 0
Dk(ρ)

−1 0 0
0 0 1N−2k

,(3-3)

where Dk(ρ) denotes the k× k diagonal matrix with diagonal entries given by the
k-tuple ρ.

On the other hand if c =−1, then by [loc. cit.] N = 2k must be even and there
must exist a nondecreasing sequence ρ = (ρi )

k
i=1 ∈ (0, 1]k and a unitary w ∈UN

such that

F (−1)
ρ := wtFw =

(
0 Dk(ρ)

−Dk(ρ)
−1 0

)
.(3-4)

Remark 3.5. Note that the Kac type quantum groups O+N correspond to the case
F = 1N , which is exactly the canonical deformation matrix F (+1)

ρ with k = 0.

According to [loc. cit.], given two matrices Fi ∈ GLNi (C) such that Fi Fi = ci 1,
the two free orthogonal quantum groups O+F1

and O+F2
are isomorphic if and only
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if N1 = N2, c1 = c2, and F2 = vF1v
t for some unitary matrix v ∈ UN1 . The

corresponding equivalence relation on such matrices has fundamental domain given
by all matrices of the form F (±1)

ρ . As a consequence, we call such matrices F (±1)
ρ

canonical F-matrices. The canonical F-matrices yield the most natural coordinate
system in which to represent the isomorphism equivalence class of any given O+F .

3B. Integration over O+F . In this section, we consider the problem of evaluating
arbitrary monomials in the generators {ui j }1≤i, j≤N of C(O+F ) with respect to the
Haar state hO+F .

Notation 3.6. Fix an orthonormal basis {ei }
N
i=1 for CN and F ∈ GLN (C). Define

ξ =

N∑
i=1

ei ⊗ ei and ξF
= (id⊗F)ξ =

N∑
i=1

ei ⊗ Fei .

For each l ∈ N, π ∈NC2(2l), and i : [2l] → [N ] define,

δF
π(i)=

∏
(s,t)∈π

Fi(t)i(s),

and put

ξF
π =

∑
i :[2l]→[N ]

δF
π(i)ei(1)⊗ ei(2)⊗ · · ·⊗ ei(2l) ∈ (C

N )⊗2l.

For the purposes of integrating monomials over O+F with respect to the Haar
state, we are interested in the l-th tensor power of the fundamental representation
U = [ui j ] of O+F ,

U jl
:= [ui(1) j (1) · · · ui(l) j (l)] ∈ B((CN )⊗l)⊗C(O+F ).

U jl is evidently a representation of the quantum group O+F , and the following
theorem of Banica describes the space of fixed vectors of these higher tensor powers
of U.

Theorem 3.7 [Banica 1996]. Let N ≥ 2, c ∈ {±1}, and F ∈ GLN (C) be such that
FF = c1. Then for each l ∈ N,

Fix(U j2l+1)= {0},

and
Fix(U j2l)= span{ξ F

π : π ∈NC2(2l)}.

Moreover, {ξ F
π }π is a linear basis for Fix(U j2l).

With the preceding theorem in hand, we now use the Weingarten calculus to
describe the Haar state on O+F in terms of the Gram matrices associated to the
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bases {ξF
π }π∈NC2(2l) of Fix(U j2l). For each l ∈N, define an |NC2(2l)|× |NC2(2l)|

matrix G2l,F = [G2l,F (π, σ )]π,σ∈NC2(2l) by

G2l,F (π, σ )= 〈ξ
F
π | ξ

F
σ 〉 (π, σ ∈NC2(2l)).

Theorem 3.8. Let N ≥ 2, c ∈ {±1}, and F ∈ GLN (C) be such that FF = c1. Set
NF := Tr(F∗F). Then for any l ≥ 1, G2l,F is an invertible matrix and

G2l,F (π, σ )= c l+|π∨σ |N |π∨σ |F (π, σ ∈NC2(2l)),

where π ∨ σ denotes the join of π and σ in the lattice P(2l).

Proof. The first assertion follows from Theorem 3.7. For the second assertion,
fix π, σ ∈NC2(2l) and let π ∨ σ = {V1,V2, . . . ,Vm}, where each Va is a block of
π ∨ σ . Then we have

G2l,F (π, σ )=
∑

i :[2l]→[N ]

δF
π(i)δ

F
σ (i)=

m∏
a=1

( ∑
i :Va→[N ]

δF
π |Va
(i)δF

σ |Va
(i)
)
.

From the above equation we see that G2l,F (π, σ ) is a multiplicative function of the
blocks of π ∨ σ , and therefore it suffices to prove the theorem when π ∨ σ = 12l .

To prove this special case of the theorem, we proceed by induction on l: If
2l = 2, then G2l,F = 〈ξ

F
| ξF
〉 = Tr(F∗F)= NF = c2 NF . Now assume l ≥ 2 and

that the desired result is true for all π ′, σ ′ ∈ NC2(2l − 2) with π ′ ∨ σ ′ = 12l−2.
Fix π, σ ∈NC2(2l) such that π ∨ σ = 12l . Since π is noncrossing, we can fix an
interval {r, r + 1} in π and let {a, r}, {b, r + 1} be the corresponding (unordered)
pairs of σ that connect to r and r + 1. (Note that σ does not pair r and r + 1
because |π ∨ σ | = 1 and l ≥ 2.) Now let π ′ ∈NC2(2l − 2) be the pairing obtained
by deleting the block {r, r + 1} from π and let σ ′ ∈ NC2(2l − 2) be the pairing
obtained by deleting the points r, r + 1 from σ and pairing a and b. Note that by
construction, π ′ ∨ σ ′ = 12l−2.

Using the readily verified identities

cξF
= (ι⊗(ξF )∗⊗ι)(ξF

⊗ξF )= ((ξF )∗⊗ι)(ι⊗ξF
⊗ι)ξF

= (ι⊗(ξF )∗)(ι⊗ξF
⊗ι)ξF,

it easily follows that G2l,F (π, σ )= 〈ξ
F
π |ξ

F
σ 〉 = c〈ξF

π ′ | ξ
F
σ ′〉. We then have from our

induction assumption that

G2l,F (π, σ )= c(cl−1+|π ′∨σ ′|NF )= cl+1 NF . �

For each l ∈ N, denote by W2l,F the matrix inverse of G2l,F . In the following
theorem we give a Weingarten-type moment formula for the Haar state on O+F .
Compare with [Banica and Collins 2007; Banica et al. 2009], where a version of
the following result is obtained in the case where F ∈ GLN (R) and c = 1.
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Theorem 3.9. For each pair of multi-indices i, j : [l] → [N ],

hO+F (ui(1) j (1)ui(2) j (2) · · · ui(l) j (l))=


0 if l is odd,∑

π,σ∈NC2(l)

Wl,F (π, σ )δF
π( j)δF

σ (i) otherwise.

Proof. We use the fact that if V ∈ B(H)⊗ C(G) is a unitary representation of
a compact quantum group G with Haar state h, then PV = (id⊗h)(V ) is the
orthogonal projection onto Fix(V ). Using this fact, the quantity we are interested
in is the (i, j)-th matrix element of the projection PU jl . Since PU jl = 0 when l is
odd (by Theorem 3.7), the first equality is immediate.

For the second equality, assume l ≥ 2 is even. Let {ξF
π }π∈NC2(l) be the basis for

Fix(U jl) from Theorem 3.7 and define a new set {ξ̃F
π }π∈NC2(l) ⊂ Fix(U jl) by

ξ̃F
π =

∑
σ∈NC2(l)

W1/2
l,F (π, σ )ξ

F
σ ,

where W1/2
l,F is the matrix square root of Wl,F . Then {ξ̃F

π }π∈NC2(l) is an orthonormal
basis for Fix(U jl) by Theorem 3.8 and

PU jl =

∑
π∈NC2(l)

|ξ̃F
π 〉〈ξ̃

F
π |.

Therefore,

hO+F (ui(1) j (1)ui(2) j (2) · · · ui(l) j (l))

= 〈ei | PU jl ej 〉

=

∑
ρ∈NC2(l)

〈ξ̃F
ρ | ej 〉〈ei | ξ̃

F
ρ 〉

=

∑
π,σ,ρ∈NC2(l)

W1/2
l,F (ρ, π)〈ξ

F
π | ej 〉W

1/2
l,F (ρ, σ )〈ei | ξ

F
σ 〉

=

∑
π,σ∈NC2(l)

Wl,F (π, σ )〈ξ
F
π | ej 〉〈ei | ξ

F
σ 〉

=

∑
π,σ∈NC2(l)

Wl,F (π, σ )δF
π( j)δF

σ (i). �

3C. Integrating ∗-monomials over O+F . Note that the defining relations for the
generators {ui j }1≤i, j≤N of (C(O+F ), hO+F ) imply that the family {ui j }1≤i, j≤N is self-
adjoint. Moreover, taking the deformation matrix F to be in canonical form, as
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defined in Section 3A, we can write

F = F (c)ρ =

 0 Dk(ρ) 0
cDk(ρ)

−1 0 0
0 0 1N−2k

.
where Dk(ρ) denotes the k × k diagonal matrix with diagonal entries given by a
k-tuple ρ = (ρi )

k
i=1 ⊂ (0, 1]k, and N = 2k if c = −1. Then F−1

= cF, and we
easily compute from (3-2) that

(3-5) u∗i j = (cFUF)i j = c
∑

1≤r,s≤N

Fir Fs j urs

=


cFi,i+k F j+k, j ui+k, j+k 1≤ i, j ≤ 2k,

Fi,i+k ui+k, j 1≤ i ≤ 2k, j > 2k,
F j+k, j ui, j+k 1≤ j ≤ 2k, i > 2k,

ui j i, j > 2k

where in the above equations we perform the additions i 7→ i+k, j 7→ j+k mod 2k.
Using these equations, it is easy to see that the fundamental representation U =
[ui j ]1≤i, j≤N of O+F admits the following canonical block-matrix decomposition.

(3-6) U =


[ua,b]1≤a,b≤k [ua,b+k]1≤a,b≤k [ua,t ] 1≤a≤k

t≥2k+1

[cρ−1
a ρ−1

b u∗a,b+k]1≤a,b≤k [ρ
−1
a ρbu∗a,b]1≤a,b≤k [ρ

−1
a u∗a,t ] 1≤a≤k

t≥2k+1

[us,b] 1≤b≤k
s≥2k+1

[ρbu∗s,b] 1≤b≤k
s≥2k+1

[us,t ]s,t≥2k+1

.
Remark 3.10. From Equation (3-6), we see that the C∗-algebra C(O+F ) is generated
by the subset(

{ui j }1≤i≤k
1≤ j≤N

∪ {ui j } 1≤ j≤k
2k+1≤i≤N

∪ {ui j }2k+1≤i, j≤N

)
⊂ {ui j }1≤i, j≤N .

3C1. General ∗-moments over O+F . Let ε ∈ {1, ∗} and i, j ∈ [N ]. Using (3-6) (or
equivalently (3-5)), we can find unique numbers iε, jε ∈ [N ] and tF (i, j, ε) ∈ R

such that

(3-7) uεi j = tF (i, j, ε)uiε jε .

In particular, arbitrary ∗-moments in the generators {ui j }1≤i, j≤N can be computed
using the formula of Theorem 3.9.

Proposition 3.11. Let l ∈ N, i, j : [l] → [N ], and ε : [l] → {1, ∗} be given. If l is
odd, then

hO+F

(
uε(1)i(1) j (1)u

ε(2)
i(2) j (2) · · · u

ε(l)
i(l) j (l)

)
= 0.
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If l is even, then

hO+F

(
uε(1)i(1) j (1)u

ε(2)
i(2) j (2) · · · u

ε(l)
i(l) j (l)

)
=

l∏
r=1

tF (i(r), j (r), ε(r)) hO+F

( l∏
r=1

ui(r)ε(r), j (r)ε(r)

)

=

l∏
r=1

tF (i(r), j (r), ε(r))
∑

π,σ∈NC2(l)

Wl,F (π, σ )δF
π( jε)δF

σ (iε),

where iε = (iε(1)(1), iε(2)(2), . . . , iε(l)(l)) and jε = ( jε(1)(1), jε(2)(2), . . . , jε(l)(l)).

The proof of this result is immediate.

3C2. Variances of the generators of C(O+F ). The simplest (nonzero) ∗-moments
are the left and right covariances of the generators {ui j }1≤i, j≤N ⊂ C(O+F ), i.e., the
quantities

〈ui j | ukl〉L = hO+F (u
∗

i j ukl) and 〈ukl | ui j 〉R = hO+F (ui j u∗kl).

The left and right covariances can be computed using Proposition 3.11. Alternatively,
we can compute these quantities using the Schur orthogonality relations

hO+F (u
∗

i j ukl)=
δ jl(Q−1)ki

NF
, hO+F (ui j u∗kl)=

δik Ql j

NF
(1≤ i, j ≤ N ),(3-8)

where

Q = F tF, Q−1
= FF∗, and Tr(Q)= Tr(Q−1)= NF .

See, for example, [Woronowicz 1998] and the paragraphs following Theorem 7.2 of
[Vaes and Vergnioux 2007]. In particular, when F = F (c)ρ is a canonical F-matrix
as above, then the structure of Q is simple:

Q =

Dk(ρ)
−2 0 0

0 Dk(ρ)
2 0

0 0 1N−2k

.
In particular, it follows from (3-8) that {ui j }1≤i, j≤N is an orthogonal system with
respect to the inner products 〈 · | · 〉L and 〈 · | · 〉R induced by hO+F , and a simple
calculation shows that the N × N matrix of left and right variances

8=
[
(〈ui j | ui j 〉L , 〈ui j | ui j 〉R)

]
1≤i, j≤N
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has the following block-matrix decomposition (compare with the decomposition of
the fundamental representation of O+F given by (3-6)).

(3-9) 8=
1

NF

[
(Q−1

i i , Q j j )
]

1≤i, j≤N

=
1

NF


[(ρ2

a , ρ
−2
b )]1≤a,b≤k [(ρ

2
a , ρ

2
b)]1≤a,b≤k [(ρ

2
a , 1)]k×(N−2k)

[(ρ−2
a , ρ−2

b )]1≤a,b≤k [(ρ
−2
a , ρ2

b)]1≤a,b≤k [(ρ
−2
a , 1)]k×(N−2k)

[(1, ρ−2
b )](N−2k)×k [(1, ρ2

b)](N−2k)×k [(1, 1)]k×k


4. Large (quantum) dimension asymptotics

Using our Weingarten formulas (Theorem 3.9 and Proposition 3.11), we can study
the large (quantum) dimension asymptotics of ∗-moments over O+F . Let F ∈
GLN (C) be such that FF = c1, and let NF = Tr(F∗F). We will call the number
NF the quantum dimension of the fundamental representation U = [ui j ] of O+F .
Note that we always have NF ≥ N . The following proposition shows that the
Weingarten matrices Wl,F associated to O+F are asymptotically diagonal as the
quantum dimension NF tends to infinity. This result should be compared with
[Banica and Collins 2007, Theorem 6.1].

Theorem 4.1. For each l ∈ 2N, as NF →∞,

N l/2
F Wl,F (π, σ )= δπ,σ + O(N−1

F ) (π, σ ∈NC2(l)).

Proof. According to Theorem 3.8, Wl,F =G−1
l,F and Gl,F (π, σ )= c l/2+|π∨σ |N |π∨σ |F .

Observe that |π ∨ σ | = l/2 if and only if π = σ , and |π ∨ σ | ≤ l/2− 1 otherwise.
Therefore, with respect to the operator norm, we have the asymptotic formula

Gl,F = N l/2
F I + O(N l/2−1

F )= N l/2
F (I + O(N−1

F )).

Write N−l/2
F Gl,F = I + AF , where ‖AF‖ ≤ Cl N−1

F for some Cl ≥ 0. Then for
sufficiently large NF , we have the absolutely convergent power series expansion

N l/2
F Wl,F = (I + AF )

−1
=

∞∑
r=0

(−1)r Ar
F = I + O(N−1

F ) (NF →∞).

The result now follows. �

The following proposition is a consequence of Theorem 4.1 and gives an asymp-
totic factorization of the normalized joint moments over O+F .
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Proposition 4.2. Fix l ∈ 2N and i, j : [l] → [N ]. Then there is a constant Dl > 0
(depending only on l) such that

N l/2
F

∣∣∣∣hO+F (ui(1) j (1)ui(2) j (2) · · · ui(l) j (l)) −
∑

π∈NC2(l)

∏
(s,t)∈π

hO+F (ui(s) j (s)ui(t) j (t))

∣∣∣∣
≤

Dl
NF
· max
π,σ∈NC2(l)

|δF
π( j)δF

σ (i)|.

Proof. Using Theorem 4.1, one can find a constant Dl > 0 such that∑
π,σ∈NC2(l)

|N l/2
F Wl,F (π, σ )− δπ,σ | ≤

Dl
NF
.

Since it also follows from Theorem 3.9 that∑
π∈NC2(l)

∏
(s,t)∈π

hO+F (ui(s) j(s)ui(t) j(t)) =
∑

π∈NC2(l)

∏
(s,t)∈π

N−1
F Fi(t)i(s)Fj(t) j(s)

= N−l/2
F

∑
π∈NC2(l)

δF
π(i)δF

π( j),

we obtain

N l/2
F

∣∣∣∣hO+F (ui(1) j (1)ui(2) j (2) · · · ui(l) j (l)) −
∑

π∈NC2(l)

∏
(s,t)∈π

hO+F (ui(s) j (s)ui(t) j (t))

∣∣∣∣
=

∣∣∣∣ ∑
π,σ∈NC2(l)

N l/2
F (Wl,F (π, σ )− δπ,σ )δF

π( j)δF
σ (i)

∣∣∣∣
≤

Dl
NF
· max
π,σ∈NC2(l)

∣∣δF
π( j)δF

σ (i)
∣∣. �

Using Propositions 3.11 and 4.2, we obtain a similar asymptotic factorization
result for ∗-moments.

Corollary 4.3. Fix l ∈ 2N, ε : [l] → {1, ∗}, and i, j : [l] → [N ]. Then there is a
constant Dl > 0 (depending only on l) such that

(4-1) N l/2
F

∣∣∣∣hO+F

(
uε(1)i(1) j (1) · · · u

ε(l)
i(l) j (l)

)
−

∑
π∈NC2(l)

∏
(s,t)∈π

hO+F

(
uε(s)i(s) j (s)u

ε(t)
i(t) j (t)

)∣∣∣∣
≤

Dl
NF
· max
π,σ∈NC2(l)

∣∣δF
π ( jε)δF

σ (iε)
∣∣ l∏

r=1

|tF (i(r), j (r), ε(r))|.

5. Asymptotic freeness in O+F

We now arrive at the main asymptotic freeness results of this paper.
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Let us fix a canonical matrix

F = F (c)ρ =

 0 Dk(ρ) 0
cDk(ρ)

−1 0 0
0 0 1N−2k

 ∈ GLN (C),

as in Section 3C. Recall from Remark 3.10 that the subset of (rescaled) matrix
elements

SF = {
√

NF ui j } 1≤i≤k
1≤ j≤N

∪ {

√
NF ui j } 1≤ j≤k

2k+1≤i≤N
∪ {

√
NF ui j }2k+1≤i, j≤N

generates the C∗-algebra C(O+F ). In this section we show that the set SF is asymp-
totically free in the following sense.

Theorem 5.1. Let

S = {yi j } 1≤i≤k
1≤ j≤N

∪ {yi j } 1≤ j≤k
2k+1≤i≤N

∪ {yi j }2k+1≤i, j≤N

be a family of noncommutative random variables in an NCPS (A, ϕ) with the
following properties.

(1) S is freely independent.

(2) For each i, j , the elements yi j ∈ S and
√

NF ui j ∈ SF have the same left and
right variances, given by the matrix entries of NF8 in (3-9).

(3) If either i ≤ k or j ≤ k, then each yi j is a generalized circular element.

(4) If 2k+ 1≤ i, j ≤ N , then yi j is a standard semicircular element.

Then for each l ∈ 2N, there is a constant Dl > 0 such that

(5-1)
∣∣∣hO+F

(√
NF uε(1)i(1) j (1) · · ·

√
NF uε(l)i(l) j (l)

)
−ϕ

(
yε(1)i(1) j (1) · · · y

ε(l)
i(l) j (l)

)∣∣∣
≤

Dl
NF
· max
π,σ∈NC2(l)

∣∣δF
π( jε)δF

σ (iε)
∣∣ l∏

r=1

|tF (i(r), j (r), ε(r))|,

for each ε : [l] → {1, ∗} and i, j : [l] → [N ].

Proof. Since S is a free family consisting of generalized circular elements and
standard semicircular elements satisfying conditions (2)–(4) above, Theorem 2.2
gives

ϕ
(
yε(1)i(1) j (1) · · · y

ε(l)
i(l) j (l)

)
=

∑
π∈NC2(l)

∏
(s,t)∈π

ϕ
(
yε(s)i(s) j (s)y

ε(t)
i(t) j (t)

)
=

∑
π∈NC2(l)

∏
(s,t)∈π

NF hO+F

(
uε(s)i(s) j (s)u

ε(t)
i(t) j (t)

)
.

The theorem now follows from Corollary 4.3. �
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5A. Asymptotic freeness in the large dimension limit. Using Theorem 5.1, we see
that the quantum groups O+F provide asymptotic models for almost-periodic free
Araki–Woods factors. That is, canonical generators of almost-periodic free Araki–
Woods factors can be approximated in joint distribution by normalized coordinates
over a suitable sequence of O+F quantum groups.

To see this, let 0(HR,Ut)
′′ be an almost-periodic free Araki–Woods factor. Then

we can write 0(HR,Ut)
′′
= (zi : i ∈ N)′′, where (zi )i∈N is a free family of (1, λi )-

generalized circular elements zi (with 1 < λi < ∞). To approximate the joint
∗-distribution of (zi )i∈N, define, for each k ∈ N,

F(k)=
(

0 Dk+1(1,
√
λ1, . . . ,

√
λk)
−1

−Dk+1(1,
√
λ1, . . . ,

√
λk) 0

)
∈ GL2k+2(C).

Theorem 5.2. The family of noncommutative random variables

(zi,k)
k
i=1 =

(√
NF(k)u1,i+1

)k
i=1 ⊂

(
C(O+F(k)), hO+F(k)

)
converges in joint distribution as k→∞ to (zi )i∈N ⊂ (0(HR,Ut)

′′, ϕ�).

Proof. By construction, (zi,k)
k
i=1 and (zi )

k
i=1 have the same left and right variances.

By Theorem 5.1, we then have for any l ∈ 2N, ε : [l] → {1, ∗}, i : [l] → N, and
k = k(i) sufficiently large,∣∣hO+F(k)

(
zε(1)i(1),k · · · z

ε(l)
i(l),k

)
−ϕ�

(
zε(1)i(1) · · · z

ε(l)
i(l)

)∣∣
≤

Dl
NF(k)

· max
π,σ∈NC2(l)

∣∣δF(k)
π (1ε)δF(k)

σ ((i + 1)ε)
∣∣ l∏

r=1

|tF(k)(1, i(r)+ 1, ε(r))|.

Since both quantities

max
π,σ∈NC2(l)

∣∣δF(k)
π (1ε)δF(k)

σ ((i + 1)ε)
∣∣ and

l∏
r=1

|tF(k)(1, i(r)+ 1, ε(r))|

are constant once l, i , and ε are fixed, and NF(k)=Tr(F(k)∗F(k))≥Tr(1)= 2k+2,
we conclude that∣∣hO+F(k)

(
zε(1)i(1),k · · · z

ε(l)
i(l),k

)
−ϕ�

(
zε(1)i(1) . . . z

ε(l)
i(l)

)∣∣≤ constant
2k+2

→ 0. �

Remark 5.3. Using the same reasoning as in the proof of Theorem 5.2, it is easy
to see that for the above sequence of quantum groups (O+F(k))k∈N, the entire family
of normalized generators

SF(k) = {
√

NF(k)ui j }1≤i, j≤k ∪ {
√

NF(k)ui, j+k}1≤i, j≤k

of C(O+F(k)) converges in distribution to a free family of generalized circular ele-
ments {yi j }1≤i, j<∞ ∪ {wi j }1≤i, j<∞ in an NCPS (A, ϕ) with the following left and
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right variances (determined by Theorem 5.1):

ϕ(y∗i j yi j )= ρ
2
i , ϕ(yi j y∗i j )= ρ

−2
j , ϕ(w∗i jwi j )= ρ

2
i , ϕ(wi jw

∗

i j )= ρ
2
j ,

where ρ1 = 1 and ρi = λ
−1/2
i−1 for i ≥ 2. Note also that there is a state-preserving

∗-isomorphism W∗({yi j }1≤i, j<∞ ∪ {wi j }1≤i, j<∞) and W∗((zi )i∈N) = 0(HR,Ut)
′′,

the almost-periodic free Araki–Woods factor we started with. (This isomorphism
follows from [Shlyakhtenko 1997, Theorem 6.4]).

5B. Asymptotic freeness in finite dimensions. In Theorem 5.2, we saw that nor-
malized generators of a suitable family of the O+F converge in distribution to free
random variables as the size N of the matrices F ∈ GLN (C) go to infinity. On the
other hand, the general estimate of Theorem 5.1 shows that in the nontracial setting,
the rate of approximation to freeness is governed by the growth of the quantum
dimension NF = Tr(F∗F), and not the physical dimension N. This phenomenon
allows one to consider scenarios where NF → ∞, while the dimension N of
F ∈ GLN (C) is fixed. This is illustrated by the next theorem.

Theorem 5.4. Fix k ∈ N and a sequence ρ = (ρ1, . . . , ρk) ∈ (0, 1)k and let

F(γ )=


0 Dk+1(ρ) 0 0

Dk+1(ρ)
−1 0 0 0

0 0 0 γ

0 0 γ−1 0

 ∈ GL2k+2(C) (0< γ < 1).

Then the subset of generators

S̃F(γ ) = {
√

NF(γ )ui j } 1≤i≤k
1≤ j≤2k

⊂
(
C(O+F(γ )), hO+F(γ )

)
converges in distribution to a free family of generalized circular elements

S̃ = {yi j } 1≤i≤k
1≤ j≤2k

in a NCPS (A, ϕ) with left and right variances given by

ϕ(y∗i j yi j )= ρ
2
i and ϕ(yi j y∗i j )=

{
ρ−2

j , 1≤ j ≤ k,
ρ2

j , k+ 1≤ j ≤ 2k.

Remark 5.5. Note that Theorem 5.4, makes a statement about the limiting distri-
bution of a subset S̃F(γ ) of generators of C(O+F(γ )). We cannot make a statement
about the asymptotic freeness of the entire family of generators SF(γ ) in this setting
since some of these variables do not have limiting distributions. For example,

hO+F(γ )

(√
NF(γ )u

ε(1)
k+1,k+1

√
NF(γ )u

ε(2)
k+1,k+1

)
=

{
γ 2, ε(1)= ∗, ε(2)= 1,
γ−2, ε(1)= 1, ε(2)= ∗,

which implies that
√

NF(γ )uk+1,k+1 does not have a limiting distribution as γ → 0.
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Proof of Theorem 5.4. By construction, the families S̃ and S̃F(γ ) have the same
left and right variances (which are independent of γ ). Therefore, we may apply
Theorem 5.1 to obtain, for any l ∈ 2N, ε : [l] → {1, ∗}, i : [l] → [k], j : [l] → [2k],∣∣hO+F(γ )

(√
NF(γ )u

ε(1)
i(1) j (1) · · ·

√
NF(γ )u

ε(l)
i(l) j (l)

)
−ϕ

(
yε(1)i(1) j (1) · · · y

ε(l)
i(l) j (l)

)∣∣
≤

Dl
NF(γ )

· max
π,σ∈NC2(l)

∣∣δF(γ )
π ( jε)δF(γ )

σ (iε)
∣∣ l∏

r=1

|tF(γ )(i(r), j (r), ε(r))|.

Since the numerator of the above expression is fixed with respect to γ and NF(γ ) =

γ 2
+ γ−2

+
∑k

i=1(ρ
2
i + ρ

−2
i )→∞ as γ → 0, the theorem follows. �

5C. A remark on the free unitary case. Let c=±1 and F ∈GLN (C) be a canon-
ical F-matrix. In this section we briefly comment on the free unitary quantum
groups U+F .

In this case, it is known from the fundamental work of Banica [1997] that there
is an injective ∗-homomorphism L∞(U+F ) ↪→ L∞(T) ∗ L∞(O+F ), the unital free
product of C(T) and C(O+F ), given by vi j 7→ wui j . Here, w ∈ C(T) is canonical
unitary coordinate function on the unit circle T. Moreover, it is known that under
the above embedding, hU+F = (τ ∗ hO+F )|C(U

+

F )
, where τ denotes integration with

respect to the Haar probability measure on T.
In other words, the variables {vi j }1≤i, j≤N ⊂ (C(U+F ), hU+F ) and {wui j }1≤i, j≤N ⊂

(C(T)∗C(O+F ), τ ∗hO+F ) are identically distributed. Using this observation, together
with some basic facts about free independence and the results we have already
obtained on O+F , we arrive at the following unitary version of Theorem 5.1, whose
proof we leave as an exercise to the reader. (Note that the extra freeness inside
C(U+F ) given by the above free product model yields a slightly cleaner statement
than Theorem 5.1.)

Theorem 5.6. Fix a canonical deformation matrix

F = F (c)ρ =

 0 Dk(ρ) 0
cDk(ρ)

−1 0 0
0 0 1N−2k

 ∈ GLN (C),

and let S = {yi j }1≤i, j≤N be a family of noncommutative random variables in an
NCPS (A, ϕ) with the following properties.

(1) S is freely independent.

(2) For each i, j , the elements yi j ∈ S and
√

NF vi j ∈ C(U+F ) have the same left
and right variances, given by the matrix entries of NF8 in (3-9).

(3) Each yi j is a generalized circular element.
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Then for each l ∈ 2N, there is a constant Dl > 0 such that∣∣hU+F

(√
NF v

ε(1)
i(1) j (1) · · ·

√
NF v

ε(l)
i(l) j (l)

)
−ϕ

(
yε(1)i(1) j (1) · · · y

ε(l)
i(l) j (l)

)∣∣
≤

Dl
NF
· max
π,σ∈NC2(l)

∣∣δF
π( jε)δF

σ (iε)
∣∣ l∏

r=1

|tF (i(r), j (r), ε(r))|,

for each ε : [l] → {1, ∗} and i, j : [l] → [N ].

Remark 5.7. The most general version of Theorem 5.6 for U+F with F ∈ GLN (C)

arbitrary is not known to the authors and requires further investigation.

6. O+F and quantum symmetries of free Araki–Woods factors

In this final section we return to the free orthogonal quantum groups O+F and
investigate to what extent they can be regarded as quantum symmetries of free Araki–
Woods factors. Inspired by the fact that the free group factors L(FN ) admit O+N as
natural quantum symmetries [Curran 2010], we are interested in finding canonical
families of (nontracial) noncommutative random variables (x1, . . . , xN ) belonging
to an NCPS (A, ϕ) whose joint distribution is O+F -invariant in the following sense.

Definition 6.1. Let (A, ϕ) be an NCPS and consider x= (x1, . . . , xN )⊂ A. Fix F ∈
GLN (C) and let U = [ui j ] ∈ MN (C(O+F )) be the fundamental representation of O+F .
We say that x has an O+F -invariant joint distribution (or, that x is O+F -rotatable) if
for any l ∈ N, i : [l] → [N ], and any ε : [l] → {1, ∗},

(6-1)
∑

j :[l]→N

uε(1)i(1) j (1)u
ε(2)
i(2) j (2) · · · u

ε(l)
i(l) j (l) ϕ

(
xε(1)j (1) x

ε(2)
j (2) · · · x

ε(l)
j (l)

)
= ϕ

(
xε(1)i(1) xε(2)i(2) · · · x

ε(l)
i(l)

)
1.

We note that the existence of an N-tuple x with the above O+F -invariance property
is connected to the existence of an action of the quantum group O+F on the von
Neumann algebra generated by x.

Definition 6.2. Let G be a compact quantum group with von Neumann algebra
L∞(G)= πh(C(G))′′ and (extended) coproduct 1r : L∞(G)→ L∞(G)⊗ L∞(G).
Let M a von Neumann algebra.

(1) A left action (or simply an action) of G on M is a normal, injective, and unital
∗-homomorphism α : M→ L∞(G)⊗M such that (ι⊗ α) ◦ α = (1⊗ ι) ◦ α. We
denote the action of G on M by the notation G yα M .

(2) If ϕ is a faithful normal state on M, we say that an action GyαM is ϕ-preserving
if (ι⊗ϕ) ◦α = ϕ( · )1L∞(G). Such an action has notation G yα (M, ϕ).
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Remark 6.3. If x = (x1, . . . , xN ) ⊂ (A, ϕ) is an N-tuple with an O+F -invariant
joint distribution, then it is easy to see that

α(xi )=

N∑
j=1

πh(ui j )⊗ x j (1≤ i ≤ n)

defines a ϕ-preserving action O+F yα (W∗(x1, . . . , xN ), ϕ), where πh : C(O+F )→
L∞(O+F ) is the GNS representation associated to the Haar state.

We now show that such O+F -invariant noncommutative random variables exist
for any F. To do this, we first need a lemma.

Lemma 6.4. Let Q = F tF, where F ∈ GLN (C) is a canonical F matrix (so that,
in particular, Q is diagonal), and let U = [ui j ] ∈ MN (C(O+F )) be the fundamental
representation of O+F . Then

N∑
r=1

uir u∗jr = δi j 1 and
N∑

r=1

u∗ir ujr (Q−1)rr = δi j (Q−1)i i 1 (1≤ i, j ≤ N ).

Proof. The first equality is a direct consequence of the fact that the fundamental
representation U is unitary. To prove the second inequality, we use [Timmermann
2008, Proposition 3.2.17] which shows that U Q−1U t

= Q−1. Since Q is diagonal
and positive definite, the result follows. �

In the case where F ∈ GLN (C) is canonical, the way to find O+F -rotatable
generators of a free Araki–Woods factor is to fix a column of the fundamental
representation of O+F and take an N-tuple of freely independent generalized circular
elements with the same left and right variances as this column (up to a common
nonzero scaling factor). Again, we note that after completion of a first draft of
this paper, it was pointed out to the authors that the following theorem can also be
obtained as a consequence of [Vaes 2005, Proposition 3.1].

Theorem 6.5. Let F ∈ GLN (C) be a canonical F matrix and let Q = F tF with
diagonal entries (Qi i )

N
i=1. Let x = (x1, . . . , xN ) ⊂ (A, ϕ) be a ∗-free family of

generalized circular elements with left and right covariances given by

ϕ(x∗i xi )= Q−1
i i , ϕ(xi x

∗

i )= 1, (1≤ i ≤ N ).

Then x has an O+F -invariant joint ∗-distribution. In other words, there is a
ϕ-preserving action O+F yα (W∗(x1, . . . , xN ), ϕ) given by

α(xi )=

N∑
j=1

πh(ui j )⊗ x j ,

where U = [ui j ] is the fundamental representation of O+F .
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Proof. We must verify (6-1) for the N-tuple x, for each choice of l ∈N, i : [l]→[N ],
and ε : [l] → {1, ∗}. To start, observe that when l is odd or |ε−1(1)| 6= |ε−1(∗)|,
then both sides of (6-1) are always zero. Therefore, we assume l ∈ 2N and that
|ε−1(1)| = |ε−1(∗)| = l/2.

We begin by considering the case l = 2, and fix 1≤ i(1), i(2)≤ N , ε(1) 6= ε(2)∈
{1, ∗}. Then we have

N∑
j (1), j (2)=1

uε(1)i(1) j (1)u
ε(2)
i(2) j (2)ϕ

(
xε(1)j (1) x

ε(2)
j (2)

)
=

N∑
j (1)=1

uε(1)i(1) j (1)u
ε(2)
i(2) j (1)ϕ

(
xε(1)j (1) x

ε(2)
j (1)

)
.

If ε(1)= 1 and ε(2)= ∗, then ϕ(xj (1) x
∗

j (1))= 1 and the above quantity equals

N∑
j (1)=1

ui(1) j (1)u
∗

i(2) j (1) = δi(1),i(2)1= ϕ(xi(1) x
∗

i(2))1

by Lemma 6.4. If ε(1) = ∗ and ε(2) = 1, then ϕ(x∗j (1)xj (1)) = Q−1
j (1) j (1) and the

above quantity equals

N∑
j (1)=1

u∗i(1) j (1)ui(2) j (1) Q−1
j (1)j (1) = δi(1),i(2)ϕ(x∗i(1) xi(1))1= ϕ(x

∗

i(1) xi(2))1,

again by Lemma 6.4. In each case, we obtain

(6-2)
N∑

j (1), j (2)=1

uε(1)i(1) j (1)u
ε(2)
i(2) j (2)ϕ

(
xε(1)j (1) xε(2)j (2)

)
= ϕ

(
xε(1)i(1) xε(2)i(2)

)
1.

Now let 2< l ∈ 2N and fix ε : [l]→{1, ∗} and i : [l]→[N ]. Then from Theorem 2.2,∑
j :[l]→N

uε(1)i(1) j (1)u
ε(2)
i(2) j (2) · · · u

ε(l)
i(l) j (l)ϕ

(
xε(1)j (1) xε(2)j (2) · · · x

ε(l)
j (l)

)
=

∑
j :[l]→N

uε(1)i(1) j (1)u
ε(2)
i(2) j (2) · · · u

ε(l)
i(l) j (l)

( ∑
π∈NCε2(l)

∏
(s,t)∈π

ϕ
(
xε(s)j (s) xε(t)j (t)

))

=

∑
π∈NCε2(l)

( ∑
j :[l]→N

uε(1)i(1) j (1)u
ε(2)
i(2) j (2) · · · u

ε(l)
i(l) j (l)

∏
(s,t)∈π

ϕ
(
xε(s)j (s) xε(t)j (t)

))
.

Fix π ∈ NCε2(l) and consider the internal sum above. Since π is noncrossing,
it contains a neighboring pair (r, r + 1). Applying (6-2) to the partial sum over
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1≤ j (r), j (r + 1)≤ N, we obtain∑
j :[l]→[N ]

uε(1)i(1)i(1)u
ε(2)
i(2)i(2) · · · u

ε(l)
i(l)i(l)

∏
(s,t)∈π

ϕ
(
xε(s)j (s) xε(t)j (t)

)
= ϕ(xε(r)i(r) xε(r+1)

i(r+1) )

×

( ∑
j :[l]\{r,r+1}→[N ]

uε(1)i(1)i(1)· · · u
ε(r−1)
i(r−1)i(r−1)u

ε(r+2)
i(r+2)i(r+2)· · · u

ε(l)
i(l)i(l)

∏
(s,t)∈π\(r,r+1)

ϕ
(
xε(s)j (s) xε(t)j (t)

))
.

Repeatedly applying the same principle to this new internal sum of lower order
(note that π \ (r, r + 1) is again noncrossing), after a total of l/2− 1 steps, we get

(6-3)
∑

j :[l]→[N ]

uε(1)i(1)i(1)u
ε(2)
i(2)i(2) · · · u

ε(l)
i(l)i(l)

∏
(s,t)∈π

ϕ
(
xε(s)j (s) xε(t)j (t)

)
=

∏
(s,t)∈π

ϕ
(
xε(s)i(s) xε(t)i(t)

)
1.

Therefore,∑
j :[l]→N

uε(1)i(1) j (1)u
ε(2)
i(2) j (2) · · · u

ε(l)
i(l) j (l)ϕ

(
xε(1)j (1) xε(2)j (2) · · · x

ε(l)
j (l)

)
=

∑
π∈NCε2(l)

∏
(s,t)∈π

ϕ
(
xε(s)i(s) xε(t)i(t)

)
1= ϕ

(
xε(1)i(1) xε(2)i(2) · · · x

ε(l)
i(l)

)
1. �

Remark 6.6. It is clear that (W∗(x1, . . . , xN ), ϕ) ∼= (0(HR,Ut)
′′, ϕ�) is a free

Araki–Woods factor associated to a finite dimensional orthogonal representation
(Ut)r∈R (compare with Theorem 2.3). Moreover, it is interesting to note that the
type classification for the von Neumann algebras L∞(O+F ) and 0(HR,Ut)

′′ is the
same. More precisely, if 0 < R∗

+
is the subgroup generated by the eigenvalues of

Q⊗ Q−1, then both of these algebras are type II1 when Q = 1, type IIIλ if 0 = λZ,
and type III1 otherwise. Compare [Shlyakhtenko 1997, Theorem 6.1; Vaes and
Vergnioux 2007, Theorem 7.1].

Remark 6.7. Theorem 6.5 only considers the case of a canonical matrix F. For
generic F ∈ GLN (C) such that FF = c1, recall from Section 3A that there is
a canonical F-matrix F (c)ρ ∈ GLN (C) and v ∈ UN such that F (c)ρ = vFvt and
O+F ∼= O+F (c)ρ . Then O+F yαF (0(HR,Ut)

′′, ϕ�), where 0(HR,Ut)
′′ is the free Araki–

Woods factor on which O+F (c)ρ acts in the sense of the above theorem. Indeed let
x = (x1, . . . , xN ) be the generalized circular system constructed in Theorem 6.5,
let αF (c)ρ

be the corresponding action, and let y = vx. Then W∗(x) =W∗( y) and
one readily checks from the defining relations that

W = vUv∗,

where W = [wi j ] and U = [ui j ] are the fundamental representations of O+F and
O+F (c)ρ , respectively. A simple calculation then shows that condition (6-1) holds with
the wi j replacing the ui j and the yi replacing the xi .
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