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THE BLUM–HANSON PROPERTY FOR C(K ) SPACES

PASCAL LEFÈVRE AND ÉTIENNE MATHERON

We show that if K is a compact metrizable space, then the Banach space
C(K ) has the so-called Blum–Hanson property exactly when K has finitely
many accumulation points. We also show that the space `∞(N) = C(βN)

does not have the Blum–Hanson property.

1. Introduction

The following intriguing result is usually referred to as the Blum–Hanson theorem
(see [Blum and Hanson 1960] and [Jones and Kuftinec 1971]): if T is a linear
operator on a Hilbert space H with ‖T ‖ ≤ 1, and if x ∈ H is such that T nx→ 0
weakly as n→∞, then the sequence (T nx) is strongly mixing, which means that
every subsequence of (T nx) converges to 0 in the Cesàro sense; in other words,

lim
K→∞

∥∥∥∥ 1
K

K∑
i=1

T ni x
∥∥∥∥= 0

for any increasing sequence of integers (ni ). (The terminology “strongly mixing”
comes from [Berend and Bergelson 1986].)

Accordingly, a Banach space X is said to have the Blum–Hanson property if
the Blum–Hanson theorem holds true on X ; that is, if T is a linear operator on X
such that ‖T ‖ ≤ 1, then every weakly null T-orbit is strongly mixing. For example,
it was shown rather recently in [Müller and Tomilov 2007] that `p(N) has the
Blum–Hanson property for any p ∈ [1,∞). On the other hand, it is known since
[Akcoglu et al. 1974] that C(T2), the space of all continuous real-valued functions
on the torus T2, does not have this property. Further results and references can be
found in [Lefèvre et al. 2015].

In this short note, we address the Blum–Hanson property for C(K ) spaces. Our
main result is the following.

Theorem 1.1. Let K be a metrizable compact space. Then C(K ) has the Blum–
Hanson property if and only if K has finitely many accumulation points.

MSC2010: primary 46E15, 47A35; secondary 46B25.
Keywords: Blum–Hanson property, spaces of continuous functions, Stone–Čech compactification.
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This will be proved in the next section. In Section 3, we obtain in much the
same way one nonmetrizable result, namely that the space `∞(N)= C(βN) fails
the Blum–Hanson property. Our two results can be put together to get a single
theorem on the Blum–Hanson property for spaces of bounded continuous functions,
which is done in Section 4. We conclude the paper by stating explicitly the “general
principle” underlying our proofs.

2. Proof of Theorem 1.1

For the “if” part of the proof, we will make use of a result from [Lefèvre et al.
2015] which is stated as Lemma 2.1 below.

Let X be a Banach space. For any x ∈ X and t ∈ R+, set

rX (t, x) := sup
{
lim sup

n→∞
‖x + t yn‖

}
,

where the supremum is taken over all weakly null sequences (yn)⊂ X with ‖yn‖≤ 1.
Since rX (t, x) is 1-Lipschitz with respect to t , the quantity rX (t, x)− t is nonin-

creasing and hence it has a limit as t→∞, possibly equal to −∞. Actually, this
limit is nonnegative if X does not have the Schur property, i.e., there is at least one
weakly null sequence in X which is not norm null.

For the needs of the present paper only, we shall say that the Banach space X
has property (P) if, for every weakly null sequence (xk)⊂ X , it holds that

lim
k→∞

lim
t→∞

(rX (t, xk)− t)= 0.

The result we need is the following lemma; for the proof, see the remark just after
Theorem 2.1 in [Lefèvre et al. 2015].

Lemma 2.1. Property (P) implies the Blum–Hanson property.

An extreme example of a space with property (P) is X := c0(N). Indeed, if x ∈ c0

and if (zn) is a weakly null sequence in c0, then

lim sup
n→∞

‖x + zn‖∞ =max(‖x‖∞, lim sup ‖zn‖∞).

It follows that

(∗) rc0(t, x)=max(‖x‖, t),

so that rc0(t, x)− t = 0 whenever t ≥ ‖x‖, for any x ∈ c0.
Let us also note the following useful stability property, whose proof is straight-

forward.

Remark 2.2. If X1, . . . , XN are Banach spaces with property (P), then the `∞
direct sum X1⊕ · · ·⊕ XN also has (P).
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We can now start the proof of Theorem 1.1.

Proof of Theorem 1.1. Let us denote by K ′ the set of all accumulation points
of K . We may assume that K ′ 6=∅, since otherwise K is finite and hence C(K ) is
finite-dimensional.

(a) Assume first that K ′ is finite, say K ′ = {a1, . . . , aN }, and let us show that
X := C(K ) has the Blum–Hanson property.

One may write K = K1∪· · ·∪KN , where the Ki are pairwise disjoint compact sets
and K ′i = {ai }. Then C(K ) is isometric to the `∞ direct sum C(K1)⊕ · · ·⊕ C(KN ),
and each C(Ki ) is isometric to the space c of all convergent sequences of real
numbers. Therefore (by Lemma 2.1 and Remark 2.2), it is enough to show that the
space c has property (P).

We view c as the space C(N∪ {∞}), so that c0 is identified with the subspace of
all f ∈ C(N∪ {∞}) such that f (∞)= 0. We have to show that if ( fk) is a weakly
null sequence in c, then

lim
k→∞

lim
t→∞

(rc(t, fk)− t)= 0.

Observe first that since fk(∞)→ 0 as k →∞, one can find a (weakly null)
sequence ( f̃k) ⊂ c such that f̃k ∈ c0 for all k and ‖ f̃k − fk‖∞ → 0: just set
f̃k := fk − fk(∞)1.

Let (gn) be a weakly null sequence in c with ‖gn‖∞ ≤ 1. As above, choose a
(weakly null) sequence (g̃n)⊂ c such that ‖g̃n − gn‖∞→ 0 and g̃n ∈ c0 for all n.
Since ‖gn‖∞ ≤ 1, we may also assume that ‖g̃n‖∞ ≤ 1 for all n. Then, since fk

and the g̃n are living in c0, we get from (∗) above that, for any t ∈ R+ and for each
k ∈ N,

lim sup
n→∞

‖ f̃k + t g̃n‖∞ ≤ rc0(t, f̃k)=max(‖ f̃k‖∞, t).

By the triangle inequality, it follows that

lim sup
n→∞

‖ fk + tgn‖∞ ≤ ‖ f̃k − fk‖∞+max(‖ f̃k‖∞, t)

for each k ∈ N and all t ≥ 0. This being true for any weakly null sequence (gn)

with ‖gn‖∞ ≤ 1, we conclude that

lim
t→∞

(rc( fk, t)− t)≤ ‖ f̃k − fk‖∞

for each k ∈ N, and hence that

lim
k→∞

lim
t→∞

(rc(t, fk)− t)= 0.
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(b) Now assume that K ′ is infinite. Since K is metrizable, it follows that K contains
a compact set S of the form

S =
∞⋃

k=1

[
{si,k : i ∈ N} ∪ {s∞,k}

]
∪ {s∞,∞},

where all the points involved are distinct and

• si,k→ s∞,k as i→∞ for each fixed k ≥ 1;

• s∞,k→ s∞,∞ as k→∞;

• the sets Sk := {si,k : i ∈ N} ∪ {s∞,k} accumulate to {s∞,∞}, i.e., they are
eventually contained in any neighborhood of s∞,∞.

Thus, we have S′ = {s∞,k : k ≥ 1} ∪ {s∞,∞} and S′′ = {s∞,∞}.
The key point is now to construct a special continuous map θ : S→ S and to

consider the associated composition operator Cθ acting on C(S). This is the same
strategy as in [Akcoglu et al. 1974], in our setting.

Fact 2.3. One can construct a continuous map θ : S→ S such that, denoting by θn

the iterates of θ , the following properties hold true:

(i) θn(s)→ s∞,∞ pointwise on S as n→∞;

(ii) there exists an open neighborhood V of s∞,∞ in S such that

sup
s∈S

#{n ∈ N : θn(s) 6∈ V } =∞.

Proof. We define the map θ as follows:

θ(s∞,∞)= s∞,∞,
θ(si,k)= si,k−1 if k ≥ 2,
θ(s∞,k)= s∞,k−1 if k ≥ 2,
θ(si,1)= si−1,i−1 if i ≥ 2,
θ(s∞,1)= s∞,∞,
θ(s1,1)= s∞,∞.

It is clear that θ is continuous at each point s∞,k , k ≥ 2. Moreover, since
si−1,i−1 → s∞,∞ as i →∞, the map θ is also continuous at s∞,1 and at s∞,∞.
Since all other points of S are isolated, it follows that θ is continuous on S.

An examination of the orbits of θ reveals that, for any s∈ S, we have θn(s)= s∞,∞
for all but finitely many n ∈ N. Indeed, if s = s∞,k for some k ∈ N, then

Orb(s,θ)= {s∞,k, s∞,k−1, . . . , s∞,1, s∞,∞},

whereas if s = si,k for some (i, k) ∈ N×N, then

Orb(s,θ)={si,k,si,k−1, . . . , si,1,si−1,i−1, . . . , si−1,1,si−2,i−2, . . . , s1,2,s1,1,s∞,∞}.
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So property (i) is satisfied.
Set V := S \ S1, where S1 = {si,1 : i ∈ N} ∪ {s∞,1}. This is an open (actually

clopen) neighborhood of s∞,∞ in S. For any N ∈N, the orbit of sN := sN ,1 contains
exactly N points of S \ V = S1, namely sN ,1, sN−1,1, . . . , s1,1. So property (ii) is
satisfied as well. �

Fact 2.4. The space C(S) does not have the Blum–Hanson property.

Proof. Let θ : S → S be given by Fact 2.3, and let Cθ : C(S) → C(S) be the
composition operator associated with θ ,

Cθu = u ◦ θ for all u ∈ C(S).

By property (i) above, we see that Cn
θ u → u(s∞,∞)1 weakly as n →∞, for

every u ∈ C(S).
Let us choose a function f ∈C(S) such that f (s∞,∞)=0 and f ≡1 on F := S\V ,

where V satisfies (ii). Then Cn
θ f → 0 weakly. On the other hand, since f ≡ 1 on F ,

it follows from (ii) that one can find points s ∈ S such that #{n ∈ N : Cn
θ f (s)= 1}

is arbitrarily large. So we have

1
#I

∥∥∥∥∑
n∈I

Cn
θ f
∥∥∥∥
∞

≥ 1

for finite sets I ⊂ N with arbitrarily large cardinality. From this, it is a simple
matter to deduce that the sequence (Cn

θ f ) is not strongly mixing, which concludes
the proof of Fact 2.4. �

It is now easy to conclude the proof of Theorem 1.1, by using the following
trivial observation.

Fact 2.5. Let X be a Banach space, and let Z be a closed subspace of X. Assume
that Z is 1-complemented in X , i.e., there is a linear projection π : X → Z such
that ‖π‖ = 1. If Z fails the Blum–Hanson property, then so does X.

Proof. If T : Z → Z and z ∈ Z witness that Z fails the Blum–Hanson property,
then T̃ := T ◦π : X→ Z ⊂ X and z witness that X also does. �

It is well known that since K is metrizable, there is an isometric linear extension
operator J : C(S) → C(K ). This is a classical result due to Dugundji [1951].
So the space C(S) is isometric to a 1-complemented subspace of C(K ), namely
Z := J [C(S)]. By Fact 2.5, this concludes the proof of Theorem 1.1. �

Remark 2.6. The above proof shows that the space C(S) fails the Blum–Hanson
property in a very special way. Namely, there exists a composition operator Cθ
on C(S) all of whose orbits are weakly convergent and such that some weakly null
orbit is not strongly mixing. As shown in [Akcoglu et al. 1974], the same is true
for the space C(T2). On the other hand, it is observed in [Lefèvre et al. 2015] that
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this is not so in the space C([0, 1]), for the following reason: if θ : [0, 1] → [0, 1]
is a continuous map and if the iterates θn converge pointwise to some continuous
map α : [0, 1] → [0, 1], then the convergence is in fact uniform.

Remark 2.7. Our proof gives the following more precise result: if K has finitely
many accumulation points, then C(K ) has property (P); and, otherwise, one can find
an operator T on C(K ) with ‖T ‖ ≤ 1 such that all T-orbits are weakly convergent
and some weakly null orbit is not strongly mixing.

3. A nonmetrizable example

We have been unable to show without the metrizability assumption on K that C(K )
fails the Blum–Hanson property if K has infinitely many accumulation points. Note
that metrizability was used twice in the proof of Theorem 1.1: to ensure that if K ′

is infinite then K contains the special compact set S; and for the existence of an
isometric (linear) extension operator J : C(S)→ C(K ).

It is well known that the linear extension theorem may fail in the nonmetrizable
case (see, e.g., [Pełczyński 1964, Remark 2.3]). The simplest way to see this is
to observe that if there exists a linear extension operator J : C(S)→ C(K ) then,
denoting by R : C(K )→ C(S) the canonical restriction map, the operator π := JR
is a continuous projection on C(K ) with kernel I (S) := { f ∈ C(K ) : f|S = 0}, so
I (S) is a complemented subspace of C(K ). But this may fail for some pairs (K , S);
for example, one may take (K , S)= (βN, βN \N), where βN is the Stone–Čech
compactification of N, since C(K )= `∞(N) and I (βN \N)= c0(N).

It may also happen that a compact set K has infinitely many accumulation points
and yet does not contain any compact set like S. For example, this holds for
K = βN because there are no nontrivial convergent sequences in βN. However, in
this (very) special case it is possible to adapt the proof of Theorem 1.1 to obtain
the following result.

Proposition 3.1. The space `∞(N) = C(βN) does not have the Blum–Hanson
property.

Proof. It will be more convenient to view `∞ as `∞(N×N)= C(β(N×N)).
Let θ :N×N→N×N be essentially the same map as in the proof of Theorem 1.1

but ignoring the limit points:

θ(i, k)= (i, k− 1) if k ≥ 2,
θ(i, 1)= (i − 1, i − 1) if i ≥ 2,
θ(1, 1)= (1, 1).

We denote by Cθ the associated composition operator acting on `∞ = `∞(N×N):

Cθ f (i, k)= f (θ(i, k)) for every (i, k) ∈ N×N.
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Set f := 1F ∈ `∞(N×N), where F = {(i, 1) : i ≥ 1} \ {(1, 1)} = {(i, 1) : i ≥ 2}.
Exactly as in the proof of Theorem 1.1, one checks that the sequence (Cn

θ f ) is not
strongly mixing in `∞(N×N). So it is enough to show that, on the other hand,
Cn
θ f → 0 weakly in `∞(N×N).
Viewing `∞(N×N) as C(β(N×N)), we have to show that Cn

θ f (U)→ 0 for
every ultrafilter U on N×N. Let us fix such an ultrafilter U .

Since Cn
θ f =Cn

θ 1F = 1θ−n(F) when considered as an element of `∞(N×N), we
have, for any n ∈ N,

Cn
θ f (U)=

{
1 if θ−n(F) ∈ U,
0 if θ−n(F) 6∈ U .

So we need to prove that if n is large enough, then θ−n(F) 6∈ U .
If we set S1 := N× {1}, then θ−n(S1) ∩ S1 is finite for every n ∈ N. This is

readily checked from the definition of θ . Indeed, for each s = (i, 1) ∈ S1, the first
n ∈ N such that θn(s) ∈ S1 is at least equal (in fact, exactly equal) to i ; so for each
fixed n there are at most n points s ∈ S1 such that θn(s) ∈ S1.

Since F ⊂ S1 and θ is finite-to-one, it follows that θ−n(F)∩ θ−n′(F) is finite
whenever n 6= n′.

Now, assume without loss of generality that θ−n(F)∈U for more than one n ∈N.
Then, by what we have just observed, U contains a finite set. Hence, U is a principal
ultrafilter, defined by some point s0 ∈N×N. On the other hand, we know from the
definition of the map θ that θn(s0)= (1, 1) for all but finitely many n ∈ N. Since
(1, 1) /∈ F , it follows that θ−n(F) /∈ U for all but finitely many n. �

Corollary 3.2. The space L∞= L∞(0, 1) does not have the Blum–Hanson property.
Likewise, if H is an infinite-dimensional Hilbert space, then the space B(H) of all
bounded operators on H does not have the Blum–Hanson property.

Proof. This is clear from Proposition 3.1, since these two spaces contain a 1-
complemented isometric copy of `∞. �

4. Further remarks

For any topological space E , let us denote by Cb(E) the space of all real-valued,
bounded continuous functions on E . Combining Theorem 1.1 and Proposition 3.1,
we obtain the following result.

Theorem 4.1. If T is a metrizable topological space, then Cb(T ) has the Blum–
Hanson property exactly when T is compact and has finitely many accumulation
points.

Proof. By Theorem 1.1, it is enough to show that if Cb(T ) has the Blum–Hanson
property, then T is compact. Now, if T is not compact, it contains a countably
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infinite closed discrete set S (thanks to the metrizability assumption). By Dugundji’s
extension theorem, Cb(T ) then contains a 1-complemented isometric copy of Cb(S).
Since Cb(S) is isometric to `∞(N), it follows from Proposition 3.1 that Cb(T ) does
not have the Blum–Hanson property. �

To conclude this paper, and since this may be useful elsewhere, we isolate the
following kind of criterion for detecting the failure of the Blum–Hanson property
in Cb(T ) for a not necessarily metrizable topological space T .

Lemma 4.2. Let T be a Hausdorff topological space. Assume that there exists
a subset S of T which is normal as a topological space, such that the following
properties hold true.

(1) One can find a continuous map θ : S→ S and a point a ∈ S such that
(i) θn(s)→ a pointwise on S as n→∞;

(ii) there exists an open neighborhood V of a such that

sup
s∈S

#{n ∈ N : θn(s) 6∈ V } =∞;

(iii) there exists a further open neighborhood W of a with W ⊂ V such that,
for any infinite set N ⊂ N, one can find n1, . . . , np ∈ N such that the set
θ−n1(S \W )∩ · · · ∩ θ−np(S \W ) is finite.

(2) There is a linear isometric extension operator J : Cb(S)→ Cb(T ).

Then, one can conclude that the space Cb(T ) fails the Blum–Hanson property.

Proof. By (2), it is enough to show that Cb(S) does not have the Blum–Hanson
property. This will of course be done by considering the composition operator
Cθ : Cb(S)→ Cb(S).

Since W ⊂ V by (iii) and since S is normal, one can choose a function f ∈ Cb(S)
such that f ≡ 0 on W and f ≡ 1 on F := S \ V . By condition (ii) in (1), the
sequence (Cn

θ f ) is not strongly mixing; so we just need to check that Cn
θ f → 0

weakly in Cb(S).
Being Hausdorff and normal, the space S is completely regular; so the space Cb(S)

is canonically isometric with C(βS), where βS is the Stone–Čech compactification
of S. The latter can be described as the space of all z-ultrafilters on S, i.e., maximal
filters of zero sets for functions in Cb(S), or, equivalently (since S is normal),
maximal filters of closed subsets of S; see [Gillman and Jerison 1960]. Therefore,
what we have to do is to show that

lim
n→∞

[
lim
U

f (θn(s))
]
= 0 for any z-ultrafilter U on S.

If U is a “principal” z-ultrafilter defined by some s0 ∈ S, i.e., U is convergent
with limit s0, then limU f (θn(s))= f (θn(s0)) for all n, so the result is clear since
f (θn(s0))→ f (a)= 0 as n→∞ by (i).
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Now, let us assume that U is not principal. Then U does not contain any finite
set. Indeed, if a maximal filter of closed sets contains a finite union of closed sets
F1 ∪ · · · ∪ FN , then it has to contain one of the Fi by maximality; so, if U were to
contain a finite set, then it would contain a singleton and hence would be principal
in a trivial way. By (iii), it follows that θ−n(S \W ) 6∈ U for all but finitely many
n ∈ N; and since U is a maximal filter of closed sets, this implies that θ−n(W ) ∈ U
for all but finitely many n. Since f ≡ 0 on W , it follows that limU f (θn(s)) = 0
for all but finitely many n, which concludes the proof. �

Remark 4.3. This lemma would be much neater if condition (iii) above could be
dispensed with; but we don’t know how to prove the lemma without it. The proof of
Theorem 1.1 shows that when S is compact, (i) and (ii) alone are enough for C(S) to
fail the Blum–Hanson property. At the other extreme, the proof of Proposition 3.1
shows that when S is discrete (and infinite), one can find a map θ : S→ S satisfying
(i), (ii) and a property stronger than (iii).

Remark 4.4. When S is compact, condition (iii) actually follows from (i). Indeed,
let W be any open neighborhood of a, and assume that (iii) fails for W and some
infinite set N ⊂ N. Then, by compactness we have

⋂
n∈N θ

−n(S \W ) 6=∅. But if
s ∈

⋂
n∈N θ

−n(S\W ) then θn(s) does not tend to a as n→∞, which contradicts (i).
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