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TONY J. PUTHENPURAKAL

Let R be an excellent regular ring of dimension d containing a field K of
characteristic zero. Let I be an ideal in R. We show that Ass H d�1

I
.R/

is a finite set. As an application, we show that if I is an ideal of height g

with height QD g for all minimal primes of I then for all but finitely many
primes P�I with height P�gC2, the topological space Specı.RP=IRP/ is
connected. We also show that to prove a conjecture of Lyubeznik (regarding
finiteness of associate primes for local cohomology modules) for all excellent
regular rings of dimension � d containing a field of characteristic zero, it
suffices to prove AssS H

gC1

J
.S / is finite for all ideals J in S of height g

(here 0� g � d), where S is an excellent regular domain of dimension � d

containing an uncountable field of characteristic zero.

1. Introduction

Throughout this paper R is a commutative Noetherian ring. If M is an R-module
and if I is an ideal in R, we denote by H i

I .M/ the i -th local cohomology module
of M with respect to I .

The following conjecture is due to Lyubeznik [2002]:

Conjecture 1.1. If R is a regular ring, then each local cohomology module H i
I .R/

has finitely many associated prime ideals.

There are many cases where this conjecture is true: for regular rings R of
prime characteristic [Huneke and Sharp 1993], for regular local and affine rings
of characteristic zero [Lyubeznik 1993], and for unramified regular local rings of
mixed characteristic [Lyubeznik 2000]. It is also true for smooth Z-algebras [Bhatt
et al. 2014].

Lyubeznik [2002] especially asked whether Conjecture 1.1 is valid for a regular
ring R containing a field of characteristic zero. It is easy to give examples where
existing techniques, to show finiteness of associate primes of local cohomology
modules, fail:
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Example 1.2. (a) Let .S;m/ be a complete local domain of dimension d � 2
containing a field of characteristic zero. Assume S is not regular. Let the singular
locus be defined by the ideal J . Notice J ¤ 0. Let x 2 J be nonzero. Set RD Sx .
Then R is a domain of dimension d � 1; see [Matsumura 1989, Lemma 1, p. 247].
Also clearly R is regular.

(b) Let T be a regular domain as above containing a field K of characteristic zero.
Let f 2KŒX1; : : : ; Xn� be a smooth polynomial. Then RD T ŒX1; : : : ; Xn�=.f /
is a regular ring.

In both the examples above, we do not know whether AssR.H i
I .R// is a finite

set for all ideals I of R.

In all the essential cases where finiteness of associated primes is known, the
local cohomology modules of R have some additional global structure. If R is of
characteristic p then local cohomology modules have the structure of F -modules
[Lyubeznik 1997]. In characteristic zero, for complete local rings and smooth
affine algebras over algebraically closed fields, local cohomology modules have an
appropriate D-module structure. For smooth Z-algebras, Bhatt et al. [2014] use a
rather clever mixture of D-module and F -module theory. For a general regular ring
containing a field of characteristic zero, there is no obvious structure that local coho-
mology modules satisfy that we can exploit to prove finiteness of associate primes.

For the rest of the paper, assume that R contains a field of characteristic zero.
For simplicity, we assume that dimRD d is finite. By Grothendieck’s vanishing
theorem, H i

I .R/D 0 for all i > d ; see [Brodmann and Sharp 1998, Theorem 6.1.2].
In general, for a Noetherian ring R of dimension d , the set AssR.Hd

I .R// is finite;
see [Brodmann et al. 2000, Remark 3.11] (also see [Marley 2001, Proposition 2.3]).
IfR is a regular ring of dimension d and I is an ideal inR then using the Hartshorne–
Lichtenbaum theorem (cf. [Iyengar et al. 2007, Theorem 14.1]), it is easy to prove
that

AssR.Hd
I .R//D fP j P 2MinR=I and heightP D dg:

The following is the main result of this paper:

Theorem 1.3. Let R be an excellent regular ring of dimension d containing a field
of characteristic zero. Let I be an ideal in R. Then AssR.Hd�1

I .R// is a finite set.

The main idea of this paper is that it is fruitful to look at the following relative
situation: Let I � J be ideals in a Noetherian ring R. We have a natural map
� iI;J WH

i
I .R/!H i

J .R/ for each i � 0. Fix i0 � 0. Set

Ci0R D f.I; J / j I � J and ]AssR.image � i0I;J /D1g:

Here ]S denotes the number of elements in a set S . If AssRH
i0
I .R/ is infinite then

.I; I / 2 Ci0R . Conversely, if .I; J / 2 Ci0R then AssRH
i0
J .R/ is infinite. We partially

order Ci0R as follows: set .I; J / � .I 0; J 0/ if I 0 � I and J 0 � J . It is easy to see
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that every ascending chain in Ci0R stabilizes. If Ci0R is nonempty then its maximal
elements have some peculiar properties; see Lemma 2.10.

The following result is a crucial ingredient in the proof of Theorem 1.3.

Theorem 1.4. Let R be an excellent regular domain of dimension d containing
an uncountable field of characteristic zero. Assume for some i0 that the set Ci0R is
nonempty. Let .I; J / be a maximal element in Ci0R . Then there exists a multiplica-
tively closed set S of R such that in the ring AD S�1R we have

(a) .S�1I; S�1J / is a maximal element in Ci0A ,

(b) heightS�1I D i0,

(c) S�1I D P1\P2\ � � � \Pr , where Pi is a prime in A of height i0,

(d) Ass image � i0
S�1I;S�1J

�m-Spec.A/,

(e) heightmD heightm0 for m;m0 2m-Spec.A/,

(f) m-Spec.A/ is a countably infinite set.

Furthermore, if AssR.H r
L.R// is a finite set for all r < i0 and for all ideals L of R

then heightS�1J D i0� 1.

The assumptions that R is a domain and contains an uncountable field are mild
hypotheses; see Section 3. The assumption on the excellence of R is satisfied by
most examples. As an easy consequence of Theorem 1.4, we get the following
significant simplification of Lyubeznik’s conjecture.

Theorem 1.5. The following are equivalent:

(i) Lyubeznik’s conjecture has a positive answer for all excellent regular rings of
dimension � d containing a field of characteristic zero.

(ii) For all excellent regular domains R of dimension � d containing an uncount-
able field of characteristic zero, AssR.H

gC1
J .R// is a finite set for all ideals J

of height g, with 1� g � d .

The following are applications of Theorem 1.3:

Corollary 1.6. Let R be an excellent regular ring of dimension d � 4 containing a
field K. Then for any ideal I , we have AssH i

I .R/ is a finite set for all i � 0.

If M is an R-module then set

AssiR.M/D fP j P 2 AssM and heightP D ig:

Using the Hartshorne–Lichtenbaum theorem, we get that if R is regular and I is an
ideal in R then [

i�0

AssiR.H
i
I .R//DMinR=I I

see Corollary 8.2.
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Corollary 1.7. Let R be an excellent regular ring of dimension d containing a field
of characteristic zero. Let I be an ideal in R. Then[

i�0

AssiC1R .H i
I .R// is a finite set:

We need a description of primes which appear in Corollary 1.7. To do so, we
first make the following definition: recall if .A;m/ is a local ring then Specı.A/D
Spec.A/ n fmg considered as a subspace of Spec.A/.

Definition 1.8. Let .A;m/ be a local ring and let I be an ideal in A. We say
Specı.A=I / is absolutely connected if for every flat local map .A;m/! .B; n/

with mBDn, B complete andB=n algebraically closed, Specı.B=IB/ is connected.

Remark 1.9. It is easy to see that if Specı.A=I / is absolutely connected then it is
connected.

As a consequence of a result of Ogus [1973, Corollary 2.11] (also see [Huneke
and Lyubeznik 1990, Theorem 1.1]), we get this:

Proposition 1.10. Let R be an excellent regular ring of dimension d containing
a field of characteristic zero and let I be an ideal in R of height g. Assume
heightQD g for all minimal primes Q of I . Then[
i�0

AssiC1R .H i
I .R//D

˚
P
ˇ̌
P � I; heightP � gC 2; and

Specı.RP =IP / is NOT absolutely connected
	
:

As an immediate application we get this:

Corollary 1.11. Assume the hypotheses of Proposition 1.10 hold. For all but finitely
many primes P � I with heightP �gC2, we get that Specı.RP =IP / is absolutely
connected. In particular, Specı.RP =IP / is connected.

Here is an overview of the contents of the paper. In Section 2 we discuss a
few general results that we need. In the next section we discuss the flat extension
R ! RŒŒX��X . We need it as an essential technique in our paper requires an
uncountable field contained inR. In Section 4 we discuss countable prime avoidance.
We also give a construction which is used several times in our paper. In Section 5
we prove Theorem 1.4. In the next section we prove our main result, Theorem 1.3.
In Section 7 we prove the simplicity of a D-module. This is needed in the proof of
Theorem 1.3. In Section 8 we prove Corollary 1.6. Finally in Section 9 we give
proofs of Corollary 1.7 and Proposition 1.10.

2. Generalities

In this section we prove some general results. Some of them are perhaps already
known to the experts. However, we prove them as we do not have a reference.
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We first prove the following general result:

Proposition 2.1. Let R be a Noetherian ring and let I be an ideal in R. Let M be
a finitely generated R-module. Then AssR.H i

I .M// is a countable set.

To prove the proposition, we need the following notion.

Definition 2.2. We say an R-module E is countably generated if there exists a
countable set of elements fengn�1 which generate E as an R-module.

The following lemma is useful:

Lemma 2.3. Let R be a Noetherian ring and let E be a countably generated
R-module. Then AssR.E/ is a countable set.

Proof. Let fengn�1 generate E as an R-module. For m � 1, let Dm be the
R-submodule of E generated by e1; : : : ; em. Clearly Dm �DmC1 for all m� 1,
ED

S
m�1Dm and

S
m�1AssR.Dm/�AssR.E/. IfP 2AssR.E/ thenP D .0Wu/

for some u 2E. Say u 2Dr . Then P 2 AssR.Dr/. Thus[
m�1

AssR.Dm/D AssR.E/:

Since R is Noetherian and Dm is a finitely generated R-module, AssR.Dm/ is
a finite set for all m� 1. It follows that AssR.E/ is a countable set. �

Proof of Proposition 2.1. Fix i � 0. Then

H i
I .M/D lim

��!
ExtiR.R=I

n;M/:

In particular H i
I .M/ is a quotient of

L
n�1 ExtiR.R=I

n;M/. It follows that
H i
I .M/ is countably generated. The result now follows from Lemma 2.3. �

2.4. We need to compare R-linear maps f; gWE! F , where E;F are R-modules.

Definition 2.5. Let f; gWE ! F be R-linear maps. We say f Š g if there exist
isomorphisms ˛WE!E and ˇWF !F such that the following diagram commutes:

E
f
//

˛

��

F

ˇ

��

E
g
// F

The following result is clear:

Proposition 2.6. Let R be a ring and let E;F be R-modules. Let f; gWE! F be
R-linear. If f Š g then we have the following isomorphisms of R-modules:

kerf Š kerg; imagef Š imageg and cokerf Š cokerg: �



238 TONY J. PUTHENPURAKAL

2.7. Let R be a Noetherian ring and let I; J be ideals of R with I � J . Let �I ; �J
be the I -torsion and J -torsion functors respectively. Let M be an R-module. Let
us recall the construction of the natural maps

� iI;J .M/WH i
I .M/!H i

J .M/

for all i � 0:
Let E be an injective resolution ofM . Then note that we have a natural morphism

of complexes � W�I .E/! �J .E/. Taking cohomology, we obtain our natural maps
� iI;J .M/ for all i � 0.

The following result will be used several times.

Lemma 2.8. Let R! S be a flat map of Noetherian rings. Let I; J be ideals of R
with I � J . Let M be an R-module. Then for all i � 0, we have

� iI;J .M/˝S Š � iIS;JS .M ˝S/:

Proof. Let E be an injective resolution of M . Then E˝S is �KS -acyclic for any
ideal K of R; see [Brodmann and Sharp 1998, Theorem 4.1.9]. Furthermore, we
have a natural equivalence of functors �K ˝ S Š �KS ; see [loc. cit., Proposi-
tion 4.3.1]. Thus we have a commutative diagram of complexes

�I .E/˝S
�.M/˝S

//

˛

��

�J .E/˝S

ˇ

��

�IS .E˝S/
�.M˝S/

// �JS .E˝S/

where ˛ and ˇ are isomorphisms of complexes. The result follows. �

2.9. Let R be a Noetherian ring. Let I � J be ideals in R. We have a natural map
� iI;J WH

i
I .R/!H i

J .R/ for each i � 0. Fix i0 � 0. Set

Ci0R D f.I; J / j I � J and ]AssR.image � i0I;J /D1g:

Here ]S denotes the number of elements in a set S . We partially order Ci0R as
follows: set .I; J / � .I 0; J 0/ if I 0 � I and J 0 � J . It is easy to see that every
ascending chain in Ci0R stabilizes. If Ci0R is nonempty then its maximal element has
a peculiar property which we now describe:

Lemma 2.10. Assume the hypotheses of 2.9 hold. Assume .I; J /2Ci0R is a maximal
element. Let S be a multiplicatively closed subset of R. If .S�1I; S�1J / 2 Ci0

S�1R
then

(1) .S�1I; S�1J / is a maximal element in Ci0
S�1R

,

(2) S�1I \RD I and S�1J \RD J .
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To prove the lemma, we need the following easy result.

Proposition 2.11. Assume the hypotheses of Lemma 2.10 hold. If .K;L/ 2 Ci0
S�1R

then .K \R;L\R/ 2 Ci0R .

Proof. SetK1DK\R andL1DL\R. We note that S�1K1DK and S�1L1DL.
By Propositions 2.8 and 2.6, we get that

S�1.image � i0K1;L1
.R//Š image � i0K;L.S

�1R/:

It follows that
]AssR.image � i0K1;L1

.R//D1:

So .K1; L1/ 2 Ci0R . �
Proof of Lemma 2.10. (1) Suppose .S�1I; S�1J / � .K;L/ for some .K;L/ 2
Ci0
S�1R

. Then by Proposition 2.11, we get .K \ R;L \ R/ 2 Ci0R . Notice that
.I; J /� .K\R;L\R/. By the maximality of .I; J / in Ci0R , we get that I DK\R
and J D L\R. So .S�1I; S�1J /D .K;L/.

(2) Set K D S�1I and LD S�1J . Then by Proposition 2.11 and our hypotheses,
.K\R;L\R/ 2 Ci0R . Notice that .I; J /� .K\R;L\R/. So by the maximality
of .I; J / in Ci0R , we get I DK \R and J D L\R. �

2.12. Product of rings. Assume RDR1�R2� � � ��Rn. If R is Noetherian then
each Ri is Noetherian. Note that an ideal I in R is of the form I1 � I2 � � � � � In,
where Ij is an ideal in Rj . Further note that P is a prime in R if and only if Pi is
a prime ideal in Ri for some i and Pj DRj for j ¤ i . Thus Spec.R/ is a disjoint
union of Spec.R1/; : : : ;Spec.Rn/.

The following result is easy to verify.

Proposition 2.13. LetMi beRi modules. ThenM DM1�� � ��Mn is anR-module.
Furthermore,

AssR.M/D

n[
iD1

AssRi
.Mi /:

Remark 2.14. In the above proposition, a prime P of Ri is identified with the
following prime of R:

R1 � � � � �Ri�1 �P �RiC1 � � � � �Rn:

The following result takes a little work. However, it is completely elementary
and so we skip the proof.

Proposition 2.15. Assume the hypotheses of 2.12 hold. For each i � 0, we have an
isomorphism

H i
I .R/ŠH

i
I1
.R1/�H

i
I2
.R2/� � � � �H

i
In
.Rn/:
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The following remark will be used often.

Remark 2.16. Let R be a regular ring. Let fP1; : : : ; Png be minimal primes of R.
Set Ri DR=Pi . Then

RŠR1 �R2 � � � � �RnI

see [Matsumura 1989, Exercise 9.11]. Notice that the Ri are regular domains.
If R is excellent then each Ri is excellent. Furthermore, if dimRD d then it is

easy to see that dimRi � d for all i and dimRm D d for some m.
By Propositions 2.15 and 2.13, it follows that if

I D I1 � � � � � In

then AssH i
I .R/ is finite if and only if AssH i

Ij
.Rj / is finite for all j . Thus for the

questions we are interested in, it suffices to assume that R is a domain.

3. The flat extension R!RŒŒX��X

In our arguments we need to assume that R contains an uncountable field. When
this is not the case, we consider the flat extension R!RŒŒX��X . Set S DRŒŒX��
and let T D SX DRŒŒX��X , i.e., the ring obtained by inverting X .

Remark 3.1. (i) IfR contains a countable fieldK then note thatKŒŒX�� is a subring
of S and so KŒŒX��X is a subring of T . The field KŒŒX��X is uncountable. Thus T
contains an uncountable field.

(ii) If R is regular then so is S ; see [Bruns and Herzog 1993, Theorem 2.2.13].
Therefore T is also regular.

(iii) Let R be an excellent regular ring of finite dimension containing a field of
characteristic zero. As S D RŒŒX�� is regular, it is universally catenary. Also
.X/� radS and S=.X/DR is excellent. So by [Rotthaus 1980], we get that S is
excellent. It follows that T is excellent.

The following proposition gives information about the behavior of primes when
we pass from R to T .

Proposition 3.2. Assume that the hypotheses above hold. Let p be a prime in R.
Then:

(i) pT is a prime in T .

(ii) T is a faithfully flat extension of R.

(iii) pT \RD p.

(iv) height pT D height p.

(v) Let P be a prime ideal in T . If P \RD p then P D pT .

(vi) dimT D dimR.
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Proof. (i) Clearly pS is a prime in S . Also X … pS . As pT is localization of pS ,
we get that it is prime in T .

(ii) T is clearly a flat R-algebra. Let m be a maximal ideal of R. Then mT is a
prime ideal of T . In particular, mT ¤ T . So T is faithfully flat [Matsumura 1989,
Theorem 7.2].

(iii) We have
pT \RD pT \S \RD pS \RD p:

(iv) By [loc. cit., Theorem 15.1], we get

height pT D height pC dimTpT =pTpT :

As pTpT is the maximal ideal in TpT , we get the required result.

(v) Again by [loc. cit., Theorem 15.1], we get

heightP D height pC dimTP =pTP :

Set �.p/DRp=pRp, the residue field ofRp. Then note that TP =pTP is a localization
of �.p/ŒŒX�� at a multiplicatively closed set containing X . It follows that TP =pTP
is a field. So heightP D height p. Now P contains the prime ideal pT which by
(iii) also has heightD height p. So P D pT .

(vi) This follows easily from (iv) and (v). �

We need Theorem 23.3 from [Matsumura 1989]. Unfortunately there is a typo-
graphical error in the statement of this theorem, so we state it here.

Theorem 3.3. Let 'WA! B be a homomorphism of Noetherian rings, and let E
be an A-module and G a B-module. Suppose that G is flat over A; then we have
the following:

(i) If p 2 SpecA and G=pG ¤ 0 then

a'.AssB.G=pG//D AssA.G=pG/D fpg:

(ii) AssB.E˝AG/D
[

p2AssA.E/

AssB.G=pG/.

Remark 3.4. In [Matsumura 1989], AssA.E˝G/ is typed instead of AssB.E˝G/.
Also note that a'.P /D P \A for P 2 SpecB .

3.5. Let M be an R-module. Set

AssiR.M/D fP j P 2 AssR.M/ and heightP D ig:

We now state the main result of this section.
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Theorem 3.6. Let R be a Noetherian ring and let M be an R-module. Set S D
RŒŒX�� and T D SX . Then:

(1) The mapping defined by

 WAssR.M/! AssT .M ˝R T /;

p! pT;

is a bijection.

(2)  maps AssiR.M/ bijectively to AssiT .M ˝R T /.

Proof. (1) By Theorem 3.3, we get that

AssT .M ˝R T /D
[

p2AssR.M/

AssT .T=pT /:

By Proposition 3.2(i), we get that pT is a prime ideal in T . So AssT T=pT D fpT g.
Thus

AssT .M ˝R T /D fpT j p 2 AssR.M/g:

So the map  is well-defined and surjective. By Proposition 3.2(iii), we get that it
is injective.

(2) This follows from (1) and Proposition 3.2(iv). �

An immediate corollary is this:

Corollary 3.7. Assume that the hypotheses of Theorem 3.6 hold. Then:

(1) AssRM is an infinite set if and only if AssT M˝RT is an infinite set.

(2) AssiRM is an infinite set if and only if AssiT M˝RT is an infinite set. �

4. Countable prime avoidance

4.1. Setup. In this section, R is a Noetherian ring containing an uncountable
fieldK. We describe a construction which we will use often. The essential ingredient
is the following well-known countable avoidance. We give a proof due to lack of a
suitable reference.

Lemma 4.2. Assume the hypotheses of 4.1 hold. Let fIngn�1 be ideals in R and
let J be another ideal in R. If J �

S
n�1 In then J � Im for some m.

Proof. Let J D .x1; : : : ; xc/. Let V DKx1CKx2C� � �CKxc . Then V is a finite
dimensional K-vector space. Also, clearly V D

S
n�1 V \In. As K is an uncount-

able field, we get that V \ImDV for somem. Thus xi 2Im for all i . So J �Im. �
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4.3. Construction. Assume that the hypotheses of 4.1 hold and that fpngn�1 is
a sequence of primes in R. Also assume that pi ª pj for i ¤ j . Consider the
multiplicatively closed set

S DR n
[
n�1

pn:

Set T D S�1R. The following result gives information about primes in T .

Proposition 4.4. Assume the hypotheses of 4.3 hold. We have:

(1) If pT is a prime in T , where p is a prime in R, then p� pn for some n.

(2) piT ª pjT for i ¤ j .

(3) pnT are distinct maximal ideals of T .

(4) m-Spec.T /D fpnT gn�1.

Proof. (1) We have p\ S D ∅. So p �
S
n�1 pn. By Lemma 4.2, we get that

p� pn for some n.

(2) If piT � pjT for some i ¤ j , then intersecting with R, we get pi � pj for some
i ¤ j ; a contradiction.

(3) Let pnT � P for some prime P of T . Say P D pT , where p is a prime in R.
By (1) we get that pT � pmT for some m. By (2) we get m D n. So P D pnT .
Thus pnT is a maximal ideal in T . That they are all distinct follows from (2).

(4) This follows from (1) and (3). �

We will need the following intersection result:

Proposition 4.5. Assume that the hypotheses of 4.3 hold. Let ƒ be any subset of
fpngn�1 (possibly infinite). Set

U D
\
p2ƒ

p and V D
\
p2ƒ

pT:

Then UT D V .

Proof. Clearly UT � V Let � D a=s 2 V and p 2 ƒ. As � 2 pT , we get that
� D r=s1, where r 2 p. It follows that there exists s0 2 S such that s0s1a 2 p. As
s0s1 … p, we get that a 2 p. Thus a 2U . Therefore � 2UT , and hence V DUT . �

5. Proof of Theorem 1.4

Proof of Theorem 1.4. Suppose Ci0R is nonempty for some i0. Let .I; J / be a
maximal element in Ci0R . It follows from Proposition 2.1 that AssR.image � i0I;J / is a
countably infinite set. As dimR is finite, we can choose an infinite subset fpngn�1
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of AssR.image � i0I;J / such that height pr D height ps for all r; s. Clearly the primes
fpngn�1 are mutually incomparable. Set

S DR n
[
n�1

pn and AD S�1R:

By Proposition 4.4, we get m-Spec.A/D fpnAgn�1. Furthermore, by construction,
height pnAD height pn is constant. Also by Lemma 2.8, we get that

AssA.image � i0IA;JA/�m-Spec.A/:

By Lemma 2.10, we also get that .IA; JA/ is a maximal element of Ci0A .
Suppose, if possible, that g D height IA < i0.

Claim 1: AssAH
i0
IA.A/ is an infinite set.

Suppose, if possible, that AssAH
i0
IA.A/ D fQ1;Q2; : : : ;Qsg is a finite set.

Notice that heightQi � i0 > g for all i . Note that IA is a radical ideal. Let
IA D P1 \ P2 \ � � � \ Pr for some primes Pj . Say heightP1 D g. Choose
xi 2Qi nP1. Set x D x1x2 � � � xs . Then x 2Qi for all i . Also x … P1, so x … IA.

We have an exact sequence

� � � !H
i0
IAC.x/

.A/
�

i0
IAC.x/;IA
�������!H

i0
IA.A/! .H

i0
IA.A//x! � � � :

As x 2 Qi for all i , we get that .H i0
IA.A//x D 0. Thus � i0

IAC.x/;IA
is surjective.

Notice that
�
i0
IAC.x/;JA

D �
i0
IA;JA ı �

i0
IAC.x/;IA

:

As � i0
IAC.x/;IA

is surjective, it follows that AssA.image � i0
IAC.x/;JA

/ is an infinite
set. So

.IAC .x/; JA/ 2 Ci0A :

Also x…IA. This contradicts the maximality of .IA; JA/ in Ci0A . Thus AssAH
i0
IA.A/

is an infinite set.
Now let ƒ be an infinite subset of AssA.H

i0
IA.A//. Set

Wƒ D
\
P2ƒ

P:

Clearly IA�Wƒ.

Claim 2: IADWƒ.
Suppose, if possible, that there exists x 2Wƒ n IA. We have an exact sequence

� � � !H
i0
IAC.x/

.A/
�

i0
IAC.x/;IA
�������!H

i0
IA.A/

�i0
��! .H

i0
IA.A//x! � � � :

For P 2ƒ, let P D .0W aP / for some aP 2H
i0
IA.A/. Clearly �i0.aP /D 0 for all

P 2ƒ. It follows that

ƒ� AssA.image.� i0
IAC.x/;IA

//:
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Thus .IAC.x/; IA/2Ci0A . Also x…IA. This contradicts the maximality of .IA; JA/
in Ci0A . Thus Claim 2 is true.

Let
Lj D fP j P 2 AssA.H

i0
IA.A// and heightP D j g:

As dimA is finite, we get by Claim 1 that Lj is infinite for some j . Choose j0 to
be the maximum j with Lj infinite. Set

ƒD Lj0
n fp j p a minimal prime of IA and height pD j0g:

Clearly ƒ is an infinite set. Set

T D A n
[
P2ƒ

P and B D T �1A:

By Proposition 4.4, we get that

m-Spec.B/D fPB j P 2ƒg:

It follows from Claim 2 and Proposition 4.5 that

IB D
\
P2ƒ

PB:

Thus IB is the Jacobson radical of B . Note we also get that AssB H
i0
IB.B/ contains

m-Spec.B/.
Since R is excellent, A is excellent and hence B is excellent. Therefore

Reg.B=IB/ is an open set. As IB is a radical ideal, we get that Reg.B=IB/
is nonempty. Since rad.B=IB/D 0, it follows that there exists a maximal ideal m
of B with .B=IB/m a regular local ring. As B is a regular ring, Bm is a regular ring.
Also note that by our construction, IBm¤mBm. As Bm=IBm is regular, we get that
IBm is generated by part of a regular system of parameters. Say IBmD .x1; : : : ; xc/

and c < dimBm. We now note that

H
j
IBm

.Bm/D 0 for j ¤ c and AssH c
IBm

.Bm/D f.x1; : : : ; xc/g:

It follows that m … AssB H
i0
IB.B/; a contradiction. Thus height IAD i0.

Let IAD P1 \P2 \ � � � \Ps \Q1 \Q2 \ � � � \Ql , where heightPj D i0 for
all j and heightQj � i0C1 for all j . Set K DP1\� � �\Ps . It is well known that
the natural map

�
i0
K;IAWH

i0
K .A/!H

i0
IA.A/ is an isomorphism.

It follows that .K; JA/ 2 Ci0A . By the maximality of .IA; JA/ in Ci0A , we get that
K D IA.

Now assume AssR.H r
L.R// is a finite set for all r < i0 and for all ideals L of R.

In particular, AssR.H
i0�1
J .R// is a finite set. So AssA.H

i0�1
JA .A// is a finite set.

Suppose, if possible, that heightJA < i0� 1. Let

AssA.H
i0�1
JA .A//D fQ1;Q2; : : : ;Qsg:
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Notice heightQj � i0�1 for all j . Let JADP1\P2 � � �\Pr , where heightP1D
heightJA < i0 � 1. Choose yj 2 Qj n P1. Also choose x 2 I n P1. Set t D
y1y2 � � �ysx. Then t 2Qj for all j . We note that

.H
i0�1
JA .A//t D 0:

Also note that as t … P1, we get t … JA.
Thus we have a commutative diagram

0 // H
i0
IAC.t/

.A/
Š

//

�
i0
IA;JAC.t/

��

H
i0
IA.A/

�
i0
IA;JA

��

// 0

0 // H
i0
JAC.t/

.A/
�

i0
JAC.t/;JA

// H
i0
JA.A/

�
// .H

i0
JA.A//t

We note that as t 2 I , we get t 2 rad.A/. Let m be a maximal ideal in A and let
.0W am/D m, where am 2 image � i0IA;JA. Clearly �.am/D 0. Thus it follows that
m 2 AssA.H

i0
JAC.t/

.A//. A simple diagram chase shows that, in fact,

m 2 AssA.image � i0
IA;JAC.t/

/:

Thus .IA; JAC .t// 2 Ci0A . This contradicts the maximality of .IA; JA/ in Ci0A .
Therefore heightJAD i0� 1. �

As an immediate consequence, we get this:

Proof of Theorem 1.5. (i) D) (ii): This is obvious.

(ii) D) (i): By Theorem 1.4, it follows that Lyubeznik’s conjecture holds for all
excellent regular domains of dimension � d containing an uncountable field of
characteristic zero. By results in Section 3, it follows that Lyubeznik’s conjecture
holds for all excellent regular domains of dimension � d containing a field of
characteristic zero. By Remark 2.16, the result holds for all excellent regular rings
of dimension � d containing a field of characteristic zero. �

6. Proof of Theorem 1.3

In this section we prove Theorem 1.3. We will need the following result (see
[Matsumura 1989, proof of Theorem 31.1]).

Lemma 6.1. Let fQngn�1 be an infinite family of primes in a Noetherian ring T ,
and let P be another prime ideal in T with P � Qn for all n. Suppose that
height.Qn=P /D 1 for all n. Then\

n�1

Qn D P:
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We also need Corollary 7.8. As the techniques to prove it are totally different,
we postpone the proof of Corollary 7.8 to the next section.

Proof of Theorem 1.3. By Remark 2.16, we may assume that R is a domain.
By results in Section 3, we may assume that R contains an uncountable field of
characteristic zero.

Suppose, if possible, that for some ideal K of R, we have AssR.Hd�1
K .R//

is an infinite set. So .K;K/ 2 Cd�1R . Thus Cd�1R ¤ ∅. Let .I; J / be a maximal
element in Cd�1R . We now do the construction as in Theorem 1.4. Then in the ring
AD S�1R, we have

(a) .IA; JA/ is a maximal element in Cd�1A ,

(b) height IAD d � 1,

(c) IAD P1\P2\ � � � \Pr , where Pi is a prime in A of height d � 1,

(d) AssA.image �d�1IA;JA/�m-Spec.A/,

(e) m-Spec.A/ is a countably infinite set.

We now note that dimA D d . This is so since for any Noetherian ring T of
dimension n and an ideal L of T , we have AssT .Hn

L.T // is a finite set. Thus
dimA ¤ d � 1. Furthermore, by Grothendieck’s vanishing theorem, it is not
possible that dimA < d � 1. Thus dimAD d . Again by Theorem 1.4, we get that
heightmD d for all maximal ideals of A. We note that IA� rad.A/.

Claim 1: There exists a localization B of A such that

(1) dimB D d ,

(2) heightmD d for all maximal ideals m of B ,

(3) m-Spec.B/ is a countably infinite set,

(4) AssB.image �d�1IB;JB/�m-Spec.B/,

(5) IB is a prime ideal of height d � 1,

(6) IB D rad.B/.

To prove the claim, we recall that IAD P1 \P2 \ � � � \Pr , where Pi is a prime
ideal in A of height d � 1. We consider two cases.

Case 1: r D 1. Then IAD P1 is a prime ideal of height d � 1. Also P1 � m for
all maximal ideals m of A. As heightm D d for all maximal ideals of A and as
m-Spec.A/ is a countably infinite set, by Lemma 6.1 we get IA D P1 D rad.A/.
Thus we can take B to be A.

Case 2: r � 2. Consider the sets

Yi D fm jm 2m-Spec.A/ and m� Pig:
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As IA � rad.A/, we get Y1 [ Y2 [ � � � [ Yr D m-Spec.A/. So there exists i such
that Yi is an infinite set. After relabeling, we may assume i D 1. Set

T1 D A n
[
m2Y1

m and A1 D T
�1
1 A:

Let IA1 DQ1\Q2\ � � � \Qs be an irredundant primary decomposition of IA1
with Q1DP1A1. (Note as IA1 is a radical ideal, all Qi are prime ideals.) We note
that heightQ1 D d � 1. Furthermore, height nD d for each maximal ideal of A1.
Also by Proposition 4.4, ]m-Spec.A1/D ]Y1 D1. As Q1 �m for each maximal
ideal of A1, by Lemma 6.1 we get Q1 D rad.A1/.

We also note that AssA1
.image �d�1IA1;JA1

/ � m-Spec.A1/ and IA1 � rad.A1/.
For j � 2, consider the sets

Y 0j D fm jm 2m-Spec.A1/ and m�Qj g:

Claim 2: Y 0j is a finite set for all j � 2.
Suppose, if possible, that Yj is an infinite set for some j . Then by Lemma 6.1,

we get
Qj D

\
m2Y 0

j

m� rad.A1/DQ1:

This contradicts the fact thatQ1\� � �\Qs is an irredundant primary decomposition
of IA1. Thus Claim 2 is proved.

Now set

ƒDm-Spec.A1/ n
[
j�2

Y 0j ; T2 D A1 n
[
m2ƒ

m and B D T �12 A1:

It is easy to prove that B satisfies all the assertions in Claim 1.
We now note that B is excellent. So Reg.B=IB/ is an open set. As IB is a

prime ideal, we get that Reg.B=IB/ is nonempty. Since rad.B=IB/D 0, it follows
that there exists a maximal ideal m of B with .B=IB/m a regular local ring. As
B is a regular ring, Bm is a regular ring. Also note that height IBm D d � 1 and
heightmBm D d . As Bm=IBm is regular, we get that IBm is generated by part
of a regular system of parameters. Say IBm D .x1; : : : ; xd�1/ and say mBm D

.x1; : : : ; xd�1; xd /. Let k be the residue field of Bm. Set C DcBm. Note that C D
kŒŒx1; : : : ; xd �� and IC D .x1; : : : ; xd�1/. Let nD .x1; : : : ; xd /C be the maximal
ideal of C . By our assumption, n2AssC .image �d�1IC;JC /. However, this contradicts
Corollary 7.8. Thus AssR.Hd�1

K .R// is a finite set for all ideals K of R. �

7. Simplicity of a local cohomology module

The references for this section are [Björk 1979; Lyubeznik 1993]. Let O D
KŒŒX1; : : : ; Xn��, where K is a field of characteristic zero. Let D be the ring
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of K-linear differential operators on D. By the work of Lyubeznik, it is known that
if I is an ideal in O then H i

I .O/ are finitely generated D-modules for all i � 0.
The main goal of this section is to prove that if Pg D .X1; : : : ; Xg/ for 1� g � n
then Hg

Pg
.O/ is simple as a D-module. This result is known in the polynomial case

and is easy to prove. A few experts we asked also claimed that this fact is known
even in the case of power series rings. However, none of them had a reference for
this result. As this result is crucial for us; we give a proof of this fact.

7.1. Consider the
P

-filtration where
P
k D

˚
Q 2 D j Q D

P
j˛j�k q˛.X/@

˛
	

is the set of differential operators of order � k. The associated graded ring
grD D

P
0˚

P
1 =
P
0˚ � � � is isomorphic to the polynomial ring OŒ�1; : : : ; �n�,

where �i is the image of @i in
P
1 =
P
0.

7.2. LetM be a finitely generatedD-module. We consider filtrations F ofK-linear
subspaces of M with the property that Fi D 0 for i < 0, Fi �FiC1, M D

S
i�0 Fi

and
P
i Fj �FiCj . Note that grF M D

L
i�0 Fi=Fi�1 is a grD-module. We say

F is a good filtration of M if grF M is finitely generated as a grD-module. We
note that every finitely generated D-module M has a good filtration.

7.3. Let M be the unique graded maximal ideal of grD. Let F be a good filtration
on M . Then note that dim grF M D dim.grF M/M; see [Bruns and Herzog 1993,
Theorem 1.5.8]. Let e.grF M/ be the multiplicity of .grF M/M with respect to
the maximal ideal M.grD/M of the regular local ring .grD/M. Let F ;G be two
good filtrations on M . Then by [Björk 1979, Lemma 6.2, Chapter 2], we get that

dim grF M D dim grGM and e.grF M/D e.grGM/:

Thus if F is a good filtration on M then we can set

dimM D dim grF M and eM.M/D e.grF M/:

7.4. It is well known that if M is a nonzero D-module then dimM � n. If
dimM D n or if M D 0 then we say M is a holonomic D-module. By the work
of Lyubeznik, it is known that if I is an ideal in O then H i

I .O/ is a holonomic
D-module for all i � 0.

We need the following lemma and its corollary:

Lemma 7.5. LetM be a holonomicD-module. IfM ¤ 0 andM is not simple then
eM.M/� 2.

Proof. As M is not simple, it has a proper nonzero submodule K. Set C DM=K.
Then K;C are nonzero holonomic D-modules.

Let F be a good filtration on M . Set F D quotient filtration on C and let
G D fFn\Kgn�0 be the induced filtration on K. Then we have an exact sequence



250 TONY J. PUTHENPURAKAL

of graded grD-modules,

(�) 0! grG K! grF M ! grF C ! 0:

Thus grG K and grF C are finitely generated grD modules. So F is a good filtration
of C and G is a good filtration of K.

All the modules in equation (�) have dimension n. Computing multiplicities
we get

eM.M/D eM.K/C eM.C /� 2: �

As an immediate corollary, we obtain this:

Corollary 7.6. Let M be a holonomic D-module. If eM.M/ D 1 then M is a
simple D-module.

The main result of this section is this:

Lemma 7.7. Let ODKŒŒX1; : : : ; Xn�� and let Pg D .X1; : : : ; Xg/ for g� 1. Then
eM.H

g
Pg
.O//D 1. Thus Hg

Pg
.O/ is a simple D-module.

Proof. We first consider the case when g D n. So Pn D m D .X1; : : : ; Xn/. In
this case it is well known that Hn

m.O/ŠD=DmDKŒ@1; : : : ; @n� as D-modules.
Let Fi D

˚P
j˛j�i a˛@

˛ j a˛ 2 K
	
. Let Q 2

P
i be a differential operator of

order � i . Then notice that Q can also be written as Q D
P
j˛j�i @

˛a˛. Set
a˛D c˛Ct˛ , where a˛ 2K and t˛ 2m. Then notice that the image ofQ inD=Dm

is
P
j˛j�i c˛@

˛. Thus F is the quotient filtration of
P

. Therefore F is a good
filtration on D=Dm. Also note that

grF D=DmD grD=m grD DKŒ�1; : : : ; �n�:

Clearly eM.D=Dm/D 1. Also note that XiF� � F��1 for all � � 0.
We now consider the case when g < n. Set S D KŒŒX1; : : : ; Xg �� and n D

.X1; : : : ; Xg/. Let D0 be the ring of K-linear differential operators on S . Let
M D H

g
n .S/ D D0=D0n. Set N D H

g
Pg
.O/ D M ˝S O. We note that the

D-module structure on N is given by @1; : : : ; @g acting on M and @i acting on O
for i > g. Also note that for r 2O, m2M and t 2O, we have r � .m˝ t /Dm˝rt .
Let F be the D0-filtration on M as discussed earlier. Set

�� D

� X
finite sum

m˛˝ r˛

ˇ̌̌
m˛ 2 F� and r˛ 2O

�
:

Let � D a@a1

1 � � � @
ag

g � � � @
an
n 2

P
i . So

Pn
kD1 ak � i . In particular,

Pg

kD1
ak � i .

Let m˝ r 2�� . Then

� � .m˝ r/D
�
a.@

a1

1 � � � @
ag

g m/
�
˝
�
a.@

agC1

gC1 � � � @
an
n r/

�
2��Ci :
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Thus � is a filtration on N compatible with the
P

-filtration on D. Therefore
gr�N is a grD-module.

We first assert that gr�N is generated by 1˝ 1 2 �0. Let � D m˝ r 2 �� .
Then note that if m D

P
˛ a˛@

˛ then m D Q � 1, where Q D
P
˛ a˛@

˛. Thus
� D rQ � .1˝ 1/. Therefore we have an obvious surjective map 'W grD! gr�N
which takes 1 to 1˝ 1. Thus � is a good filtration on N .

Let �D Œm˝r�2��=���1. For i �g, we haveXim2F��1. ThusXi .m˝r/D
m˝Xir DXim˝ r 2���1. Therefore Xi� D 0 for all i � g. Also notice that for
i > g, we have �i� D Œm˝@i .r/�. But m˝@ir 2�� . As degree �i D 1, we get that
�i�D 0. Thus ' factors to a surjective map N'WO=.X1; : : : ;Xg/Œ�1; : : : ; �g �! gr�N .

As gr�N has dimension n, it follows that N' is in fact an isomorphism. Thus
gr�N ŠO=.X1; : : : ; Xg/Œ�1; : : : ; �g � and clearly it has multiplicity one. �

We need the following result in the proof of our main result.

Corollary 7.8. Let ODKŒŒX1; : : : ; Xn�� and let P D .X1; : : : ; Xg/, where g < n.
Set mD .X1; : : : ; Xn/. Let J � P . Let �g WHg

P .O/!H
g
J .O/ be the natural map.

Then Ass image �g is either empty or equal to fP g. In particular m…Ass image �g .

Proof. We note that any injective D-module is also an injective O-module. Thus
we can take an injective resolution of O as a D-module and note that computing � i

with this resolution, we get that � i WH i
P .O/!H i

J .O/ is D-linear. By Lemma 7.7,
we get that N DHg

P .O/ is a simple D-module. Thus image �g ŠN or it is zero.
The result follows. �

8. Small dimensions

In this section we prove several elementary results regarding local cohomology
modules of regular rings of dimension�4. We note that the results for dimension�3
are probably well known to the experts. However, as we are unable to find a
reference, we give a proof for these cases too.

We first prove the following general result.

Proposition 8.1. Let R be a regular ring of dimension d . Let I be an ideal in R.
Then

AssR.Hd
I .R//D fP j P 2MinR=I and heightP D dg:

Proof. We may assume I is a radical ideal. Suppose P 2 AssR.Hd
I .R//. Then

as heightP � d D dimR, we get that P is a maximal ideal of R. Note that
PRP 2 AssRP

.Hd
IRP

.RP // and thus PcRP 2 AsscRP
.Hd

IcRP

.cRP//.
Notice that cRP is a domain and so by the Hartshorne–Lichtenbaum theorem (see

[Iyengar et al. 2007, Theorem 14.1]), we get that IcRP is a zero-dimensional ideal
in cRP . It follows that IRP is a zero -dimensional ideal in RP . As IRP is a radical
ideal, we get that IRP D PRP . The result follows. �
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If M is an R-module then set

AssiR.M/D fP j P 2 AssM and heightP D ig:

As an easy corollary to Proposition 8.1, we get this:

Corollary 8.2. Let R be a regular ring of dimension d . Let I be an ideal in R.
Then [

i�0

AssiR.H
i
I .R//DMinR=I:

Proof. We may assume I is a radical ideal. Let I D P1 \ � � � \Pr . Notice that
IRPi

D PiRPi
for each i and RPi

is a regular local ring of height ci D heightPi .
Notice that Pi 2 Assci

R .H
ci

I .R//. Thus

MinR=I �
[
i�0

AssiR.H
i
I .R//:

Conversely let P 2 AssiR.H
i
I .R//. We localize at P . Then RP is a regular local

ring of dimension i . The result now follows from Proposition 8.1. �

Remark 8.3. If I is an ideal of height g then it is well known that

AssHg
I .R/D fP j P � I; heightP D gg:

We now prove this:

Lemma 8.4. Let R be a regular ring and let I be an ideal of height one. Then
AssRH i

I .R/ is finite for i D 1; 2.

Proof. For i D 1, the result follows from Remark 8.3.
For i D 2, we first consider the case when I has a primary decomposition

I DQ1 \ � � � \Qr , where height
p
Qi D 1 for all i . We claim that H j

I .R/ D 0

for all j � 2. Suppose this is not true. Let P 2 AssH j
I .R/ for some j � 2. We

localize at P . We now note that IRP is a principal ideal; see [Bruns and Herzog
1993, Exercise 2.2.28]. So H s

IRP
.RP /D 0 for all s � 2, a contradiction. Therefore

H
j
I .R/D 0 for all j � 2. Thus our assertion holds in this special case.
Now let I be a general ideal of height one. Then I D J \K, where K has

height � 2 and J is an ideal of height one. Furthermore, J is of the special kind
discussed above. So H j

J .R/D 0 for j � 2. By the Mayer–Vietoris sequence (see
[Iyengar et al. 2007, Theorem 15.1]) and noting that height.J CK/� 3, we have
an exact sequence

0!H 2
K.R/!H 2

I .R/!H 3
JCK.R/:

As heightK � 2 and height.J CK/� 3, the result follows from Remark 8.3. �

An easy consequence of the above results is the following:
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Corollary 8.5. Let R be a regular ring of dimension d � 3. Then for any ideal I ,
we have AssH i

I .R/ is a finite set for all i � 0.

Proof. By Remark 2.16, we may assume that R is a domain. We have nothing to
show for d D 0. The assertion for d D 1 follows from Proposition 8.1. For d D 2,
the result follows from Lemma 8.4 and Remark 8.3.

Now consider the case when d D 3. If height I D 1 then the result follows from
Lemma 8.4 and Proposition 8.1. If height I D 2, the result follows from Remark 8.3
and Proposition 8.1. If height I D 3, the result follows from Proposition 8.1. �

We now give a proof of Corollary 1.6.

Proof. By Corollary 8.5, we may assume dimR D 4. By the results of [Huneke
and Sharp 1993], the result holds when charK D p > 0. Thus we may assume that
charK D 0. By Remark 2.16, we may assume that R is a domain.

If height I D 1, then the result follows from Lemma 8.4, Theorem 1.3 and
Proposition 8.1. If height I D 2, the result follows from Remark 8.3, Theorem 1.3
and Proposition 8.1. If height I D 3, the result follows from Remark 8.3 and
Proposition 8.1. If height I D 4, the result follows from Proposition 8.1. �

9. Proofs of Corollary 1.7 and Proposition 1.10

In this final section we give an application of Theorem 1.3. Throughout R will
denote a regular ring of dimension d containing a field of characteristic zero.

Proof of Corollary 1.7. Suppose, if possible, that[
i�0

AssiC1R .H i
I .R// is an infinite set:

As H i
I .R/D 0 for i > d , we get that AssiC1R .H i

I .R// is infinite for some i � d .
By Corollary 3.7, we may assume that R contains an uncountable field. Suppose
AssiC1R .H i

I .R//D fpngn�1. Consider the ring

AD S�1R; where S DR n
[
n�1

pn:

Then A is a regular ring of dimension i C 1. Furthermore, AssAH i
IA.A/ is an

infinite set. This contradicts Theorem 1.3. �

Recall that if .A;m/ is a local ring then Specı.A/D Spec.A/ n fmg considered
as a subspace of Spec.A/.

Definition 9.1. Let .A;m/ be a local ring and let I be an ideal in A. We say
Specı.A=I / is absolutely connected if for every flat local map .A;m/! .B; n/

with mB D n and B=n algebraically closed, Specı.B=IB/ is connected.
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Remark 9.2. It is easy to see that if Specı.A=I / is absolutely connected then it is
connected.

Proof of Proposition 1.10. First assume that P � I , heightP D c � gC 2 and
Specı.RP =IP / is not absolutely connected. So there is a flat extension .B; n/ ofRP
such that B is complete, PB D n, B=n algebraically closed and Specı.B=IB/ is
disconnected. We note that B is a complete regular ring of dimension c. Also
note that as dimRP =IP � 2, we have that dimB=IB � 2. By the result of Ogus
[1973, Corollary 2.11], we have that H c�1

IB .B/¤ 0. So H c�1
IRP

.RP /¤ 0. Therefore
P 2 SuppH c�1

I .R/. We claim that P is a minimal prime of H c�1
I .R/. Sup-

pose there exists Q 2 SuppH c�1
I .R/ and Q ¨ P . Then heightQ � c � 1. By

Grothendieck’s vanishing theorem, we have heightQ� c�1. So heightQD c�1.
By our assumption, we have that dimRQ=IRQ � 1. So dim cRQ=IcRQ � 1. By the
Hartshorne–Lichtenbaum theorem, we have H c�1

IcRQ

.cRQ/D 0. Thus

.H c�1
I .R//Q DH

c�1
IRQ

.RQ/D 0;

a contradiction. Therefore P is a minimal prime of H c�1
I .R/ and so belongs to

Assc.H c�1
I .R//.

Conversely assume P 2 Assc.H c�1
I .R//. So H c�1

IRP
.RP /¤ 0. By Remark 8.3,

we get that c � 1� gC 1. So c � gC 2. Let RP ! B be any local flat extension
with .B; n/ complete, PB D n and B=n algebraically closed. We note that by
our assumptions, dimRP =IRP � 2. As RP =IRP ! B=IB is flat local map
with fiber a field, we have that dimB=IB D dimRP =IRP � 2. Also by faithful
flatness, H c�1

IB .B/¤ 0. Thus again by the same result of Ogus, Specı.B=IB/ is
disconnected. Therefore Specı.RP =IP / is not absolutely connected. �

Remark 9.3. The above result is also true in characteristic p with the same proof.
The reason is that Ogus’ result is true in characteristic p; see [Peskine and Szpiro
1973, Theorem III.5.5].
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