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A VARIATIONAL CHARACTERIZATION
OF FLAT SPACES IN DIMENSION THREE

GIOVANNI CATINO, PAOLO MASTROLIA AND DARIO D. MONTICELLI

We prove that, in dimension three, flat metrics are the only complete metrics
with nonnegative scalar curvature which are critical for the σ2-curvature
functional.

1. Introduction

Let (Mn, g) be a Riemannian manifold of dimension n ≥ 3. To fix the notation, we
recall the decomposition of the Riemann curvature tensor of a metric g into the
Weyl, Ricci, and scalar curvature components:

Rm=W + 1
n−2

Ric©∧ g− 1
(n−1)(n−2)

Rg©∧ g,

where ©∧ denotes the Kulkarni–Nomizu product. It is well known [Hilbert 1915]
that Einstein metrics are critical points for the Einstein–Hilbert functional

H=
∫

R dV

on the space of unit volume metrics M1(Mn). From this perspective, it is natural to
study canonical metrics which arise as solutions of the Euler–Lagrange equations
for more general curvature functionals. Berger [1970] commenced the study of
Riemannian functionals which are quadratic in the curvature (see [Besse 2008,
Chapter 4] and [Smolentsev 2005] for surveys). A basis for the space of quadratic
curvature functionals is given by

W =
∫
|W |2 dV, ρ =

∫
|Ric|2 dV, S =

∫
R2 dV .

All such functionals, which also naturally arise as total actions in certain gravitational
field theories in physics, have been deeply studied in recent years by many authors, in
particular on compact Riemannian manifolds with normalized volume (for instance,
see [Berger 1970; Besse 2008; Lamontagne 1994; 1998; Anderson 1997; Gursky
and Viaclovsky 2001; 2015; 2013; Catino 2015] and references therein).
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On the other hand, the study of critical metrics for quadratic curvature functionals
also has a lot of interest in the noncompact setting. For instance, Anderson [2001]
proved that every complete three-dimensional critical metric for the Ricci func-
tional ρ with nonnegative scalar curvature is flat; whereas, Catino [2014] showed a
characterization of complete critical metrics for S with nonnegative scalar curvature
in every dimension.

In this paper we focus our attention on the three-dimensional case and consider
the σ2-curvature functional

F2 =

∫
σ2(A) dV,

where σ2(A) denotes the second elementary symmetric function of the eigenvalues
of the Schouten tensor A = Ric− 1

4 R g. This functional was first considered by
Gursky and Viaclovsky in the compact three-dimensional case. In [2001] they
proved a beautiful characterization theorem of space forms as critical metrics for
F2 on M1(M3) with nonnegative energy F2 ≥ 0.

The main result of this paper is the following variational characterization of
three-dimensional flat spaces.

Theorem 1.1. Let (M3, g) be a complete critical metric for F2 with nonnegative
scalar curvature. Then (M3, g) is flat.

We remark the fact that the nonnegativity condition on the scalar curvature cannot
be removed. This is clear from the example in [loc. cit.] where the authors exhibit
an explicit family of critical metrics for F2 on R3. For instance, the metric given in
standard coordinates by

g = dx2
+ dy2

+ (1+ x2
+ y2)2dz2

is complete, critical and has strictly negative scalar curvature

R =− 8
1+ x2+ y2 .

2. The Euler–Lagrange equation for Ft

In this section we will compute the Euler–Lagrange equation satisfied by critical
metrics for F2. To begin, we observe that, in dimension n≥3, the second elementary
symmetric function of the eigenvalues of the Schouten tensor

A = 1
n−2

(
Ric− 1

2(n−1)
R g

)
can be written as

σ2(A)=−
1

2(n− 2)2
|Ric|2+ n

8(n− 1)(n− 2)2
R2.
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In particular, the functional F2 is proportional to a general quadratic functional of
the form

Ft =

∫
|Ric|2 dV + t

∫
R2 dV,

with the choice t =−n/4(n− 1); see also [Gursky and Viaclovsky 2015; Catino
2015]. The gradients of the functionals ρ and S, computed using compactly
supported variations, are given by [Besse 2008, Proposition 4.66]

(∇ρ)i j =−1Ri j − 2Rik jl Rkl +∇
2
i j R− 1

2(1R)gi j +
1
2 |Ric|2gi j

and
(∇S)i j = 2∇2

i j R− 2(1R)gi j − 2R Ri j +
1
2 R2gi j .

Hence, the gradient of Ft reads

(∇Ft)i j =−1Ri j + (1+ 2t)∇2
i j R− 1

2(1+ 4t)(1R)gi j

+
1
2

(
|Ric|2+ t R2)gi j − 2Rik jl Rkl − 2t R Ri j .

Tracing the equation (∇Ft)= 0, we obtain(
n+ 4(n− 1)t

)
1R = (n− 4)

(
|Ric|2+ t R2).

Defining the tensor E to be the traceless Ricci tensor, Ei j = Ri j−
1
n Rgi j , we obtain

the Euler–Lagrange equation of critical metrics for Ft .

Proposition 2.1. Let Mn be a complete manifold of dimension n ≥ 3. A metric g is
critical for Ft if and only if it satisfies

1Ei j = (1+ 2t)∇2
i j R− n+ 2+ 4nt

2n
(1R)gi j

− 2Rik jl Ekl −
2+ 2nt

n
REi j +

1
2

(
|Ric|2− 4− n(n− 4)t

n2 R2
)

gi j

and (
n+ 4(n− 1)t

)
1R = (n− 4)

(
|Ric|2+ t R2).

In dimension three we recall the decomposition of the Riemann curvature tensor

Rik jl = Ei j gkl − Eil g jk + Ekl gi j − Ek j gil +
1
6 R(gi j gkl − gil g jk).

In particular,
Rik jl Ekl =−2Ei p E j p −

1
6 REi j + |E |2gi j .

Hence, if n = 3 and t =−n/4(n− 1)=−3/8, one has

F2 =−
1
2F−3/8,

and the following formulas hold.



288 GIOVANNI CATINO, PAOLO MASTROLIA AND DARIO D. MONTICELLI

Proposition 2.2. Let M3 be a complete manifold of dimension three. A metric g is
critical for F2 if and only if it satisfies

(2-1) 1Ei j =
1
4∇

2
i j R− 1

12(1R)gi j+4Ei p E j p+
5

12 REi j−
1
2

(
3|E |2− 1

72 R2)gi j

and

(2-2) −2σ2(A)= |Ric|2− 3
8 R2
= |E |2− 1

24 R2
= 0.

Now, contracting (2-1) with E , we obtain the following Weitzenböck formula.

Corollary 2.3. Let M3 be a complete manifold of dimension three. If g is a critical
metric for F2, then the following formula holds

(2-3) 1
21|E |

2
= |∇E |2+ 1

4 Ei j∇
2
i j R+ 4Ei p E j p Ei j +

5
12 R|E |2.

3. Proof of Theorem 1.1

In this section we will prove Theorem 1.1. We assume that (M3, g) is a critical
metric for F2 with nonnegative scalar curvature R ≥ 0. In particular, g has zero
σ2-curvature, i.e., |E |2 = 1

24 R2 and we obtain

1
21|E |

2
=

1
481R2

=
1
24 R1R+ 1

24 |∇R|2.

Putting together this equation with (2-3), we obtain that the scalar curvature R
satisfies the PDE

(3-1) 1
24

(
Rgi j − 6Ei j

)
∇

2
i j R = |∇E |2− 1

24 |∇R|2+ 4Ei p E j p Ei j +
5

12 R|E |2.

To begin, we need the following purely algebraic lemmas.

Lemma 3.1. Let (M3, g) be a Riemannian manifold with R ≥ 0 and σ2(A) ≥ 0.
Then,

Rgi j ≥ 6Ei j

and g has nonnegative sectional curvature.

Proof. Let λ1 ≤ λ2 ≤ λ3 be the eigenvalues of the Schouten tensor A = E + 1
12 Rg

at some point. Then, by the assumptions, we have

4R = tr(A)= λ1+ λ2+ λ3 ≥ 0 and σ2(A)= λ1λ2+ λ1λ3+ λ2λ3 ≥ 0.

We want to show that E ≤ 1
6 Rg or, equivalently, that

A ≤ 1
4 Rg = tr(A)g.

Hence, it suffices to prove that λ3 ≤ tr(A) = λ1 + λ2 + λ3, i.e., that λ1 + λ2 ≥ 0.
But this follows by

0≤ λ1λ2+ λ1λ3+ λ2λ3 = (λ1+ λ2) tr(A)− (λ2
1+ λ

2
2+ λ1λ2)≤ (λ1+ λ2) tr(A).
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The fact that g has nonnegative sectional curvature follows from the decomposition
of the Riemann tensor in dimension three and the curvature condition Ric≤ 1

2 Rg
(for instance see [Hamilton 1982, Corollary 8.2]). �

Lemma 3.2. Let (M3, g) be a Riemannian manifold with R ≥ 0 and σ2(A) =
const≥ 0. Then,

|∇E |2 ≥ 1
24 |∇R|2.

Proof. We will follow the proof in [Gursky and Viaclovsky 2001, Lemma 4.1].
Let p be a point in M3. If R(p)= 0, then ∇R = 0 and the lemma follows. So we
can assume that R(p) > 0. Since −2σ2(A)= |E |2− 1

24 R2
= const,

(3-2) |E |2
∣∣∇|E |∣∣2 = 1

576 R2
|∇R|2.

By Kato’s inequality
∣∣∇|E |∣∣2 ≤ |∇E |2 and the fact that |E |2 ≤ 1

24 R2,

|E |2|∇E |2 ≥ 1
576 R2

|∇R|2 ≥ 1
24 |E |

2
|∇R|2.

By dividing by |E |2(p) 6= 0, the result follows; otherwise, if |E |(p) = 0, then
(∇R)(p)= 0 from (3-2), and we conclude. �

Lemma 3.3. Let (M3, g) be a Riemannian manifold. Then,

Ei p E j p Ei j ≥−
1
√

6
|E |3.

Proof. For a proof of this lemma, for instance, see [op. cit., Lemma 4.2]. �

Corollary 3.4. Let (M3, g) be a complete critical metric for F2 with nonnegative
scalar curvature. Then, Rgi j ≥ 6Ei j , g has nonnegative sectional curvature, and
the scalar curvature satisfies the differential inequality(

Rgi j − 6Ei j
)
∇

2
i j R ≥ 1

12 R3.

Proof. From (3-1), combining Lemmas 3.1, 3.2, and 3.3, we obtain

1
24

(
Rgi j − 6Ei j

)
∇

2
i j R ≥ 5

12
R|E |2− 4

√
6
|E |3 = |E |2

( 5
12

R− 4
√

6
|E |
)
=

1
288

R3,

where in the last equality we have used the fact that |E |2 = 1
24 R2. �

Now we can prove Theorem 1.1. Clearly, if M3 is compact, from Corollary 3.4,
at a maximum point of R we obtain R ≤ 0. Hence, R ≡ 0 on M3, and from (2-2),
Ric≡ 0 and the metric is flat. So, from now on, we will assume the manifold M3

to be noncompact.
Choose now φ = φ(r) to be a function of the distance r to a fixed point O ∈ M3

and let Bs(O) be a geodesic ball of radius s > 0. We denote by CO the cut locus at
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the point O and we choose φ satisfying the following properties: φ = 1 on Bs(O),
φ = 0 on M3

\ B2s(O),

−
c
s
φ3/4
≤ φ′ ≤ 0 and |φ′′| ≤

c
s2 φ

1/2

on B2s(O) \ Bs(O) for some positive constant c > 0. In particular, φ is C3 in
M3
\CO . Let u := Rφ and ai j := (Rgi j −6Ei j ). From Corollary 3.4, we know that

ai j ≥ 0 and we obtain

(3-3) ai j∇
2
i j u = ai j

(
φ∇2

i j R+ R∇2
i jφ+ 2∇i R∇ jφ

)
≥

1
12 R3φ+ Rφ′ai j∇

2
i jr + Rφ′′a(∇r,∇r)+ 2a(∇R,∇φ).

Now, let p0 be a maximum point of u and assume that p0 /∈ CO . If φ(p0)= 0, then
u ≡ 0 and then R ≡ 0 on B2s(O). Hence, from now on we will assume φ(p0) > 0.
Then, at p0, we have ∇u(p0)= 0 and ∇2

i j u(p0)≤ 0. In particular, at p0,

∇R(p0)=−
R(p0)

φ(p0)
∇φ(p0).

Moreover, since ai j ≥ 0, for every vector field X , a(X, X)≤ tr(a)|X |2 = 3R|X |2.
On the other hand, from the standard Hessian comparison theorem, since g has
nonnegative sectional curvature, we know that on M3

\CO , one has ∇2
i jr ≤

1
r gi j .

Thus, from (3-3), at p0, we get

0≥ 1
12

R3φ+ Rφ′ai j∇
2
i jr + Rφ′′a(∇r,∇r)− 2 R

φ
a(∇φ,∇φ)

≥
1
12

R3φ−
(
|φ′|

r
+ |φ′′| + 2(φ

′)2

φ

)
R tr(a)

≥
1
12

R3φ− 3
(
|φ′|

s
+ |φ′′| + 2(φ

′)2

φ

)
R2,

where, in the last inequality, we have used the fact that r ≥ s on B2s(O) \ Bs(O),
i.e., where φ′ 6= 0. From the assumptions on the cut-off function φ, we obtain, at
the maximum point p0,

0≥ 1
12

R2φ1/2
(

Rφ1/2
−

c′

s2

)
for some positive constant c′ > 0. Thus, we have proved that, if p0 /∈ CO , then for
every p ∈ B2s(O)

u(p)≤ u(p0)= R(p0)φ(p0)≤
c′

s2 .

If p0 ∈ CO we argue as follows (this trick is usually referred to Calabi). Let
γ : [0, L]→ M3, where L = d(p0, O), be a minimal geodesic joining O to p0, the
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maximum point of u. Let pε = γ (ε) for some ε > 0. Define now

uε(x)= R(x)φ
(
d(x, pε)+ ε

)
.

Since d(x, pε)+ ε ≥ d(x, O) and d(p0, pε)+ ε = d(p0, O), it is easy to see that
uε(p0)= u(p0) and

uε(x)≤ u(x) for all x ∈ M3,

since φ′ ≤ 0. Hence p0 is also a maximum point for uε. Moreover, p0 /∈ Cpε , so
the function d(x, pε) is smooth in a neighborhood of p0 and we can apply the
maximum principle argument as before to obtain an estimate for uε(p0) which
depends on ε. Taking the limit as ε→ 0, we obtain the desired estimate on u.

By letting s→+∞ we obtain u ≡ 0, so R ≡ 0. From (2-2) we have E ≡ 0 and
so Ric≡ 0 and Theorem 1.1 follows.
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