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HOSUNG KIM

Let Z ⊂ PN be a Fano manifold whose Picard group is generated by the
hyperplane section class. Assume that Z is covered by lines and i(Z) ≥ 3.
Let φ : X Z → Z be a double cover, branched along a smooth hypersurface
section of degree 2m, 1≤m≤ i(Z)−2. We describe the defining ideal of the
variety of minimal rational tangents at a general point. As an application, we
show that if Z⊂PN is defined by quadratic equations and 2≤m≤ i(Z)−2,
then the morphism φ satisfies the Cartan–Fubini type rigidity property.

1. Introduction

Throughout the paper, we will work over the field of complex numbers. Let X be a
Fano manifold of Picard number 1. The index of X is the integer i(X) such that
−K X = i(X)L where L is the ample generator of the Picard group of X . For a
general point x ∈ X , a rational curve through x is called a minimal rational curve if
it has minimal K−1

X -degree among all rational curves through x . Denote by Kx the
normalized space of minimal rational curves through x . It is known (e.g., [Kollár
1996, II.3.11.5]) that Kx is a disjoint union of finitely many nonsingular projective
varieties of dimension i(X)− 2. The rational morphism Kx 99K PTx(X), sending a
member of Kx which is smooth at x to its tangent direction, can be extended to a
birational morphism τx :Kx→PTx(X); see [Hwang and Mok 2004; Kebekus 2002].
We denote the image of τx by Cx and call it the variety of minimal rational tangents
(VMRT) at x . The projective geometry of Cx ⊂ PTx(X) helps us to understand
the geometry of X . This is the motivation for the study of the VMRT for various
examples of X . For example, let φ : X → Pn be a double cover branched on a
smooth hypersurface of degree 2m, 2≤m ≤ n− 1. Then for a general point x ∈ X ,
the VMRT Cx ⊂PTx(X) is a complete intersection of multidegree (m+1, . . . , 2m),
and this description implies a certain rigidity property of φ [Hwang and Kim 2013].
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Let Z ⊂ PN be a Fano manifold whose Picard group is generated by the hyper-
plane section class. For each point y ∈ Z , we denote by Ly(Z)⊂PTy(Z) the space
of tangent directions of lines in Z through y. We say that Z ⊂ PN is covered by
lines if Ly(Z) is nonempty for each y ∈ Z . If Z ⊂ PN is covered by lines, then
minimal rational curves on Z are lines in PN contained in Z , and for general y ∈ Z ,
Ly(Z) ⊂ PTy(Z) coincides with the VMRT Cy ⊂ PTy(Z), which is smooth of
dimension i(Z)− 2; see [Hwang 2001, Proposition 1.5].

Our first result is the following theorem.

Theorem 1.1. Let Z ⊂PN be a Fano manifold whose Picard group is generated by
the hyperplane section class. Assume that Z is covered by lines and i(Z)≥ 3. Let
Y ⊂PN be a hypersurface of degree 2m, 1≤m≤ i(Z)−2, with smooth intersection
Y ∩Z. Let φ : X Z

→ Z be a double cover branched along Y ∩Z. Then for a general
point x ∈ X Z, the VMRT Cx is smooth of dimension i(Z)−m−2 and the differential
dφx :PTx(X Z )→PTφ(x)(Z) sends the VMRT Cx ⊂PTx(X Z ) isomorphically to an
intersection of Lφ(x)(Z)⊂PTφ(x)(Z) and m hypersurfaces in PTφ(x)(Z) of degrees
m+ 1, . . . , 2m respectively.

In order to prove the above theorem, we first show that for a certain choice of Y,
the statements in Theorem 1.1 hold by identifying minimal rational curves on X Z

with ECO (even contact order) lines with respect to Y (see Definition 2.4) contained
in Z . For arbitrary Y, we use a flatness argument.

We are going to show an application of Theorem 1.1. First, let us introduce the
definition of Cartan–Fubini type rigidity (CF-rigidity) which was initially defined
by Jun-Muk Hwang.

Definition 1.2 (Cartan–Fubini type rigidity). Let X1 and X2 be Fano manifolds
of Picard number 1 such that 2 ≤ dim X1 ≤ dim X2, and for general x1 ∈ X1

and x2 ∈ X2, 0 ≤ dimKx1 ≤ dimKx2 . We say that a morphism φ : X1 → X2 is
CF-rigid if for any connected open subset (in classical topology) U of X1 and
any biholomorphic immersion ψ : U → X2 such that for any member C of Kx ,
x ∈U, ψ(C ∩U ) is contained in a minimal rational curve of X2, then there exists
0 ∈ Aut(X2) such that ψ = 0 ◦φ|U .

The next theorem is on the CF-rigidity of the identity morphism, which was
essentially proved in [Hwang and Mok 2001].

Theorem 1.3 (Cartan–Fubini type extension theorem). Let X be a Fano manifold of
Picard number 1 and suppose that dimKx ≥ 1 for general x ∈ X. Then the identity
morphism on X is CF-rigid, i.e., for any connected open subset (in the standard
topology) U of X and any biholomorphic immersion ψ :U → X such that for any
member C of Kx , x ∈U, ψ(C ∩U ) is contained in a minimal rational curve of X ,
then there exists 0 ∈ Aut(X) such that ψ = 0|U .
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Let X be a Fano manifold of Picard number 1 and let φ : X→ Pn is a surjective
holomorphic map sending minimal rational curves on X to lines in Pn . [Hwang
and Kim 2013, Theorem 5.4] says that if the VMRT Cx ⊂ PTx(X) is not contained
in a hyperquadric, then φ : X→ Pn is CF-rigid. For example, the double covering
morphism φ : X→ Pn branched along a smooth hypersurface of degree 2m, with
2≤ m ≤ n− 1, is CF-rigid.

Next is an application of Theorem 1.1 on CF-rigidity.

Theorem 1.4. In the setting of Theorem 1.1, assume that Z ⊂ PN is a quadratic
manifold (i.e., scheme theoretically defined by quadratic equations) with i(Z)≥ 4,
and 2 ≤ m ≤ i(Z)− 2. Then φ : X Z

→ Z is CF-rigid. In other words, for any
connected open subset (in classical topology) U ⊂ X Z and any biholomorphic
immersion ψ : U → Z such that for any member C of Kx , x ∈ U, the image
ψ(C ∩U ) ⊂ Z is contained in a line in PN, there exists 0 ∈ Aut(Z) such that
ψ = 0 ◦φ|U .

The key point is that for Z ⊂ PN in Theorem 1.4, its VMRT Ly(Z)⊂ PTy(Z)
is also a quadratic manifold for a general point y ∈ Z ; see [Ionescu and Russo
2013, Theorem 2.4]. Using this observation and Theorem 1.3, we shall prove
Theorem 1.4.

The organization of this paper is as follows. In Section 2, we will review some
basic facts on ECO lines. In Section 3, we will study minimal rational curves on
double covers of certain Fano manifolds covered by lines. Theorem 1.1 will be
proved in Section 4. In the final section, we will prove Theorem 1.4 and present its
applications.

2. ECO lines

The aim of this section is to give a brief review of basic facts on ECO lines which
will be used in the proof of Theorem 1.1. For more details, see [Hwang and Kim
2013].

Definition 2.1. A homogeneous polynomial of degree 2m, m≥ 1, in the polynomial
ring C[s, t] with two variables s and t is an ECO (even contact order) polynomial if
it can be written as the square of a homogeneous polynomial of degree m in C[s, t].

Proposition 2.2 [op. cit., Proposition 3.3]. For each m > 0, there exist m unique
polynomials in the variables t1, . . . , tm ,

Ak(t1, . . . , tm) ∈ C[t1, . . . , tm], m+ 1≤ k ≤ 2m

with the following properties:

(i) Ak(t1, . . . , tm) is weighted homogeneous of degree k with respect to wt(ti )= i
for each i = 1, . . . ,m;
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(ii) the polynomial in two variables (s, t)

s2d
+ a1s2d−1t + · · ·+ a2d−1st2d−1

+ a2d t2d

is an ECO polynomial if and only if ak= Ak(a1, . . . , ad) for each d+1≤ k≤2d.
In particular, the polynomial

s2d
+ ad+1sd−1td+1

+ · · ·+ a2d−1st2d−1
+ a2d t2d

is an ECO polynomial if and only if ad+1 = · · · = a2d = 0.

Definition 2.3. Let f (t0, . . . , tN ) be a homogeneous polynomial of degree 2m in
variables t0, . . . , tN . Write

f (1, y1+ λz1, . . . , yN + λzN )= a f
0 (y; z)+ a f

1 (y; z)λ+ · · ·+ a f
2m(y; z)λ

2m,

where each a f
k (y; z)= a f

k (y1, . . . , yN ; z1, . . . , zN ) is a polynomial in 2N variables
y1, . . . , yN , z1, . . . , zN . Let Ak be as in Proposition 2.2 and set

B f
k (y; z) :=

a f
k (y; z)

a f
0 (y; z)

− Ak

(
a f

1 (y; z)

a f
0 (y; z)

, . . . ,
a f

m(y; z)

a f
0 (y; z)

)
.

We remark that for a fixed y, a f
k (y; z) is a homogeneous polynomial in variables

z1, . . . , zN of degree k. Furthermore for a fixed y with

a f
0 (y; z)= f (1, y1, . . . , yN ) 6= 0,

each B f
k (y; z) is a homogeneous polynomial of degree k in variables z1, . . . , zN .

Definition 2.4. Let Y ⊂ PN be a hypersurface of even degree 2m. A line `⊂ PN

is called an ECO (even contact order) line with respect to Y if ` 6⊂ Y and the local
intersection number at each point of `∩ Y is even. For each point y ∈ PN

\ Y, we
denote by EY

y ⊂ PTy(P
N ) the space of tangent directions of ECO lines with respect

to Y passing through y.

Proposition 2.5 [Hwang and Kim 2013, Proposition 3.8]. Choose a homogeneous
coordinate system t0, . . . , tN on PN. We denote by PN−1

∞
⊂ PN the hyperplane

defined by t0 = 0 and choose a homogeneous coordinate system z1, . . . , zN on
PN−1
∞

given by the restrictions of t1, . . . , tN respectively. Let f (t0, . . . , tN ) be a
homogeneous polynomial of degree 2m and let Y ⊂ PN be its associated hypersur-
face. For each point y = [1 : y1 : · · · : yN ] ∈ PN

\ Y ∪PN−1
∞

, define the projective
isomorphism

υy : P
N−1
∞
→ PTy(P

N )

by sending [z1 : · · · : zN ] ∈ PN−1
∞

to the tangent direction of the line

{(y1+ λz1, . . . , yN + λzN ) | λ ∈ C}
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at the point y. Then the variety υ−1
y (EY

y )⊂PN−1
∞

is set-theoretically the intersection

of m hypersurfaces in PN−1
∞

defined by polynomials in {B f
k (y; z) |m+1≤ k ≤ 2m}.

3. Minimal rational curves on double covers of prime Fano manifolds

Definition 3.1. Let Z ⊂ PN be a Fano manifold whose Picard group is generated
by the hyperplane section class H. Assume that Z is covered by lines and i(Z)≥ 3.
Let Y ⊂ PN be a hypersurface of degree 2m, 1≤ m ≤ i(Z)− 2, defining smooth
hypersurface section B := Y ∩ Z ⊂ Z . Let

φ : X Z
→ Z

be a double cover branched along B. From the adjunction formula

KX Z = φ∗
(
K Z +

1
2(B)

)
= φ∗

(
(−i(Z)+m)H

)
,

X Z is a Fano manifold of index i(X Z )= i(Z)−m and its Picard group is generated
by φ∗(H).

Proposition 3.2. In the setting of Definition 3.1, an irreducible reduced curve
C ⊂ X Z with φ(C) 6⊂ B is a minimal rational curve if and only if its image curve
φ(C) is an ECO line with respect to Y. Moreover for any minimal rational curve
C ⊂ X Z with φ(C) 6⊂ B, φ|C : C→ φ(C) is an isomorphism.

Proof. We fist observe:

Claim: An irreducible reduced curve C ⊂ X Z with φ(C) 6⊂ B has φ∗H -degree 1 if
and only if its image curve φ(C)⊂ Z is an ECO line with respect to Y. Moreover
for any φ∗H -degree 1 curve C ⊂ X Z with φ(C) 6⊂ B, φ|C : C → φ(C) is an
isomorphism.

Proof of the claim. Let C ⊂ X Z be an irreducible reduced curve such that the
image φ(C) is an ECO line with respect to Y. Suppose that φ|C : C → φ(C) is
not birational. For a point z ∈ φ(C)∩ Y, let t be a local uniformizing parameter
on φ(C) at z and let rz be the local intersection number of φ(C) and Y at z. Then
C is analytically defined by the equation s2

= trz . Since rz is even for any choice
of z ∈ φ(C)∩ Y, the composition of the normalization morphism C̃→ C and the
covering morphism φ|C : C→ φ(C) induces a morphism C̃→ φ(C) of degree 2
without ramification point, a contradiction. Thus φ|C : C→ φ(C) is birational and
C has φ∗H -degree 1.

Conversely, if C is an irreducible reduced curve of φ∗H -degree 1, then φ(C)⊂ Z
with φ(C) 6⊂ B and φ|C : C→ φ(C) must be birational. Thus φ−1(φ(C)) has an
irreducible component C ′ different from C with φ(C∩C ′)=φ(C)∩B. By the same
argument as before, if the local intersection number rz at z ∈ φ(C)∩ Y is odd, the
germ of φ−1(φ(C)) over z, defined by s2

= trz, is irreducible, a contradiction. Thus
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rz is even for all z ∈ φ(C)∩ Y which implies that φ(C) is an ECO line. Moreover,
C must be smooth and the morphism φ|C : C→ φ(C) is an isomorphism. �

Let us go back to the proof of our proposition. By the claim above, we only
need to show that for a general point x ∈ X Z, there exists a φ∗H -degree 1 curve
through x . From dimLφ(x)(Z)= i(Z)− 2≥ m and Proposition 2.5, it is induced
that there exists an ECO line ` with respect to Y through φ(x) and contained in Z .
Take one such ECO line `. The claim above shows that the inverse image φ−1(`)

consists of two smooth rational curves of degree 1 with respect to φ∗H . Clearly,
one of those two curves passes through x . �

4. Defining equations of VMRT

In order to find the defining ideal of the VMRT Cx ⊂ PTx(X Z ), we proceed in a
manner analogous to [Hwang and Kim 2013].

Notation 4.1. Let Y ⊂ PN be a hypersurface of even degree 2m, m ≥ 1, and let
Z ⊂ PN be a projective submanifold which is not contained in Y. For each point
y ∈ Z \ Z ∩ Y, we denote by EY

y (Z) ⊂ PTy(Z) the space of tangent directions of
ECO lines with respect to Y contained in Z .

Proposition 4.2. In the setting of Definition 3.1, for a general point x ∈ X Z, the
tangent morphism τx : Kx → PTx(X Z ), sending each member of Kx to its tangent
direction, is an embedding. In particular the VMRT Cx = Im(τx) ⊂ PTx(X Z )

is a nonsingular projective variety with finitely many components of dimension
i(Z)−m − 2, isomorphic to EY

φ(x)(Z) ⊂ PTφ(x)(Z) via the differential morphism
dφx : PTx(X Z )→ PTφ(x)(Z).

Proof. From Proposition 3.2, the differential dφx : PTx(X Z )→ PTφ(x)(Z) sends
the VMRT Cx ⊂ PTx(X Z ) isomorphically to the variety EY

φ(x)(Z)⊂ PTφ(x)(Z).
We note that τx : Kx → PTx(X Z ) is the normalization morphism of its image,

which is equal to Cx . Thus we only need to show that τx is an embedding because
Kx is a smooth projective variety of dimension i(X)− 2= i(Z)−m− 2.

Assume that there are two distinct members C1 and C2 of Kx such that τx([C1])=

τx([C2]). Thus φ(C1) and φ(C2) are lines on PN passing through φ(x) with the
same tangent direction at φ(x), which implies that φ(C1)= φ(C2) is a line; denote
it by `. Therefore φ−1(`) = C1 ∪C2, and hence C2 and C2 meets only over the
points on `∩ B, a contradiction because x ∈ C1 ∩C2 but φ(x) 6∈ B by the general
condition on x . Thus we have shown that τx is injective.

Since we know that Kx is nonsingular, to prove that τx is an embedding, it
remains to show that τx is an immersion. By [Hwang 2001, Proposition 1.4], this
is equivalent to showing that for any member C ⊂ X Z of Kx , the normal bundle
NC/X Z satisfies
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NC/X Z = OP1(1)i(Z)−m−2
⊕On+m−i(Z)+1

P1 .

By the generality of x , we can write

NC/X Z =OP1(a1)⊕ · · ·⊕OP1(an−1)

for integers a1 ≥ · · · ≥ an−1 ≥ 0 satisfying
∑

i ai = i(Z)− m − 2. Since φ is
unramified at general points of C and φ|C : C→ ` := φ(C) is an isomorphism, we
have an injective sheaf homomorphism

φ∗ : NC/X Z → N`/PN =O(1)N−1.

Thus a1 ≤ 1; hence, a1 = · · · = ai(Z)−m−2 = 1 and ai(Z)−m−1 = · · · = an−1 = 0. �

Proposition 4.3. Let Z ⊂PN be a Fano manifold whose Picard group is generated
by the hyperplane section class. Assume that Z is covered by lines and i(Z) ≥ 3.
Then for each m with 1 ≤ m ≤ i(Z)− 2, there exists a hypersurface Y of degree
2m with smooth Y ∩ Z such that for a general point y ∈ Z , EY

y (Z) ⊂ PTy(Z) is
scheme-theoretically the intersection of Ly(Z)⊂ PTy(Z) with m hypersurfaces in
PTy(Z) of degrees m+ 1, . . . , 2m, respectively.

Proof. Take a point ŷ ∈ Z such that Lŷ(Z) is smooth of dimension i(Z)−2. Choose
a homogeneous coordinate system t0, . . . , tN so that ŷ = [1 : 0 : · · · : 0] ∈ Z and
the hyperplane section Z ∩ (t0 = 0) is smooth. Choose homogeneous polynomials
{bk(t1, . . . , tN ) | m+ 1≤ k ≤ 2m} with deg bk = k so that each of the following is
smooth:

(i) the intersection of Z ∩ (t0 6= 0) with the hypersurface in PN defined by

1+ bm+1(t1, . . . , tN )+ · · ·+ b2m(t1, . . . , tN )= 0,

(ii) the intersection of Z ∩ (t0 = 0) with the hypersurface in PN defined by

b2m(t1, . . . , tN )= 0.

Set

f (t0, t1, . . . , tN ) := t2m
0 + tm−1

0 bm+1(t1, . . . , tN )

+ · · ·+ t0b2m−1(t1, . . . , tN )+ b2m(t1, . . . , tN ).

The assumptions (i) and (ii) imply that the hypersurface section of Z defined by
f (t0, . . . , tN ) is smooth. From Proposition 2.2(ii) we obtain the equalities

B f
k (y; z)= bk(z1, . . . , zN ), m+ 1≤ k ≤ 2m.

Since υ−1
y (Ly(Z)) is smooth of dimension i(Z)− 2 ≥ m, it follows that for gen-

eral {bk(z1, . . . , zN ) | m + 1 ≤ k ≤ 2m}, the scheme-theoretical intersection of
υ−1

y (Ly(Z)) and the m hypersurfaces defined by B f
k (y; z), m + 1 ≤ k ≤ 2m,
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is smooth of dimension i(Z) − m − 2. Therefore our proposition comes from
Proposition 2.5. �

Proof of Theorem 1.1. By Propositions 4.2 and 4.3, the theorem holds for a
general hypersurface Y ⊂ PN with smooth intersection Y ∩ Z . In order to prove
it for arbitrary hypersurface Y ⊂ PN with smooth intersection Y ∩ Z , choose a
deformation {Yt | |t | < ε} of Y = Y0 with smooth Yt ∩ Z such that for a Zariski
open subset Ut ⊂ Z \ Yt ∩ Z , the varieties EYt

y (Z)⊂ PTy(Z), y ∈Ut , are

(i) smooth of dimension i(Z)−m− 2 for any t , and

(ii) the intersection of m hypersurface sections of Ly(Z) ⊂ PTy(Z) defined by
hypersurfaces in PTy(Z) of degrees m + 1, . . . , 2m, respectively. (The inter-
section is scheme-theoretic for any t 6= 0 and set-theoretic for t = 0.)

By shrinking ε if necessary, the intersection
⋂

t Ut is nonempty. Let V be a Zariski
open subset of Z such that the variety Ly(Z) is smooth of dimension i(Z)−2. Pick
a point y ∈

(⋂
t Ut

)
∩V. We can construct a smooth family {φt : X Z

t → Z | |t |< ε}
of double covers of Z branched along the Z ∩ Yt . Choose xt ∈ φ

−1
t (y) in a

continuous way. The family {Kxt | |t |< ε} is a flat family of nonsingular projective
subvarieties; see, e.g., [Kollár 1996, II.3.11.5]. Via Proposition 4.2, this implies
that {EYt

y (Z) | |t | < ε} is a flat family of nonsingular projective subvarieties of
Ly(Z)⊂ PTy(Z). From condition (ii) and the flatness, we conclude that EY0

y (Z) is
also scheme-theoretically the intersection of Ly(Z)⊂PTy(Z) with m hypersurfaces
in PTy(Z) of degrees m+ 1, . . . , 2m, respectively. �

5. Rigidity and Extension

The following fact is obvious, but plays an important role in the proof of Theorem 1.4.

Lemma 5.1. Let R be the polynomial ring C[z1, . . . , zN ] in variables z1, . . . , zN .
Consider R as a graded ring with deg zi = 1. Let I, J, and K be homogeneous ideals
of R such that I and K are generated by homogeneous polynomials of degree 2,
and J is generated by homogeneous polynomials of degrees ≥ 3. If h : R→ R is an
automorphism of the graded ring R with h(K )⊂ I + J, then h(K )⊂ I .

Proof of Theorem 1.4. By shrinking U if necessary, we may assume that

• the restriction φ|U :U → Z is an embedding,

• for any x ∈U, Lφ(x)(Z)⊂PTφ(x)(Z) is a smooth quadratic manifold of dimen-
sion i(Z)− 2; see [Ionescu and Russo 2013, Theorem 2.4],

• for any x ∈ U, the space EY
φ(x) ⊂ PTφ(x)(Z) is scheme-theoretically the inter-

section of Lφ(x)(Z)⊂PTφ(x)(Z) and m hypersurfaces in PTφ(x)(Z) of degrees
m+ 1, . . . , 2m, respectively.
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Set U1 = φ(U ) and U2 = ψ(U ). Then we get a biholomorphism

γ := ψ ◦φ|−1
U :U1→U2.

We note that for any y ∈U1, the differential dγy :PTy(Z)→PTγ (y)(Z) is an isomor-
phism sending EY

y (Z)⊂PTy(Z) into Lγ (y)(Z)⊂PTγ (y)(Z). From Lemma 5.1 and
Theorem 1.1, it follows that dyγ (Ly(Z))⊂ Lγ (y)(Z). By shrinking U if necessary,
we may assume that Lγ (y) ⊂ PTγ (y)(Z) is also a smooth quadratic manifold of
dimension i(Z)− 2. Therefore it follows that dyγ (Ly(Z))= Lγ (y)(Z). We finish
the proof by applying [Hwang 2001, Theorem 3.2]. �

The next corollary is an algebraic version of Theorem 1.4

Corollary 5.2. In the setting of Theorem 1.4, let X̂ be a projective variety with
generically finite surjective morphisms g : X̂→ X Z and h : X̂→ Z such that for a
minimal rational curve C through a general point of X Z, there exists an irreducible
component C ′ of g−1(C) whose image h(C ′)⊂ Z ⊂ PN is a line. Then there exists
an automorphism 0 : Z→ Z such that h = 0 ◦φ ◦ g.

Next, Theorems 5.3 and 5.4 can be proved by the same arguments as in the proof
of Theorems 1.7 and 1.9 in [Hwang and Kim 2013], respectively. We include their
proof for the reader’s convenience.

Theorem 5.3. Let Z ⊂PN be a quadratic Fano manifold such that its Picard group
is generated by the hyperplane section class and i(Z)≥ 4. Let Y1, Y2 ⊂ PN, N ≥ 3,
be two hypersurfaces of degree 2(i(Z)− 2) with smooth intersections Y1 ∩ Z and
Y2 ∩ Z. Let φ1 : X1→ Z and φ2 : X2→ Z be double covers of Z branched along
Y1∩Z and Y2∩Z , respectively. Suppose there exists a finite morphism f : X1→ X2.
Then f is an isomorphism.

Proof. Put m = i(Z)− 2 in the proof of Proposition 4.2. Then minimal rational
curves on X i , i = 1, 2, have trivial normal bundles and rational curves through
general points with trivial normal bundles are minimal rational curves. By [Hwang
and Mok 2003, Proposition 6], for a general minimal rational curve C ⊂ X2, each
irreducible component of f −1(C) is a minimal rational curve in X1. In other words,
f sends minimal rational curves of X1 through a general point to those of X2.
Putting

X̂ = X1, X = X2, g = f, φ = φ2, and h = φ1

in Corollary 5.2, we see that φ1 = 0 ◦φ2 ◦ f for some automorphism 0 of Z . Thus
f must be birational, and hence an isomorphism. �

The next theorem is a stronger version of Theorem 1.3.

Theorem 5.4. Let Z ⊂PN be a quadratic Fano manifold such that its Picard group
is generated by the hyperplane section class and i(Z)≥ 4. Let Y1, Y2 ⊂ PN be two
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hypersurfaces of degree 2m, 2≤m ≤ i(Z)−2, with smooth Y1∩ Z and Y2∩ Z. Let
φ1 : X Z

1 → Z and φ2 : X Z
2 → Z be double covers of Z branched along Y1 ∩ Z and

Y2 ∩ Z respectively, and let U1 ⊂ X Z
1 and U2 ⊂ X Z

2 be two connected open subsets.
Suppose that we are given a biholomorphic map γ : U1→ U2 such that for any
minimal rational curve C1 ⊂ X Z

1 , there exists a minimal rational curve C2 ⊂ X Z
2

with γ (U1 ∩C1)=U2 ∩C2. Then we can find a biregular morphism 0 : X Z
1 → X Z

2
with 0|U1 = γ .

Sketch of the proof. Applying Theorem 1.4 to ψ := φ2 ◦ γ :U1→ φ2(U2)⊂ Z and
φ :=φ1, we have 0′ ∈Aut(Z) such that 0′◦φ1|U1 =φ2◦γ . By the assumption on γ
and Proposition 3.2, for a general point y ∈ φ1(U1), we have d0′(EY1

y ) = EY2
0′(y),

which implies that a general ECO line with respect to Y2 contained in Z should be
an ECO line with respect to Y ′.

Since the Picard group of Z is generated by the hyperplane section class and
0′∈Aut(Z), there exists a hypersurface Y ′⊂PN of degree 2m such that0′(Y1∩Z)=
Y ′ ∩ Z . Suppose Y ′ ∩ Z 6= Y2 ∩ Z . By the similar arguments in [Hwang and Kim
2013, Proposition 2.5], we can show that a general ECO line with respect to Y2

contained in Z cannot be an ECO line with respect to Y ′, a contradiction. Therefore
Y ′ ∩ Z = Y2 ∩ Z .

Thus replacing Y1 ∩ Z by 0(Y1 ∩ Z) and φ1 by 0′ ◦ φ1, we may assume that
Y1 ∩ Z = Y2 ∩ Z and φ1(U1)= φ2(U2). By the uniqueness of double covering, it
follows that there exists a biregular morphism 0 : X Z

1 → X Z
2 with 8|U1 = γ . �
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