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ON THE RELATIONSHIP OF
CONTINUITY AND BOUNDARY REGULARITY IN

PRESCRIBED MEAN CURVATURE DIRICHLET PROBLEMS

KIRK E. LANCASTER AND JARON MELIN

In 1976, Leon Simon showed that if a compact subset of the boundary of a
domain is smooth and has negative mean curvature, then the nonparametric
least area problem with Lipschitz continuous Dirichlet boundary data has
a generalized solution which is continuous on the union of the domain and
this compact subset of the boundary, even if the generalized solution does
not take on the prescribed boundary data. Simon’s result has been extended
to boundary value problems for prescribed mean curvature equations by
other authors. In this note, we construct Dirichlet problems in domains with
corners and demonstrate that the variational solutions of these Dirichlet
problems are discontinuous at the corner, showing that Simon’s assumption
of regularity of the boundary of the domain is essential.

1. Introduction

For n ∈ N with n ≥ 2, suppose � is a bounded, open set in Rn with locally
Lipschitz boundary ∂�. Fix H ∈ C2(Rn

×R) such that H is bounded and H(x, t)
is nondecreasing in t for x ∈�. Consider the prescribed mean curvature Dirichlet
problem of finding a function f ∈ C2(�)∩C0(�) which satisfies

div(T f )= H(x, f ) in �,(1)

f = φ on ∂�,(2)

where φ ∈ C0(∂�) is a prescribed function and

T f = ∇ f√
1+|∇ f |2

;

such a function f , if it exists, is a classical solution of the Dirichlet problem. It has
long been known (e.g., Bernstein in 1912) that some type of boundary curvature
condition (which depends on H ) must be satisfied in order to guarantee that a
classical solution exists for each φ ∈C0(∂�) (e.g., [Jenkins and Serrin 1968; Serrin
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1969]). When H ≡ 0 and ∂� is smooth, this curvature condition is that ∂� must
have nonnegative mean curvature (with respect to the interior normal direction of�)
at each point [Jenkins and Serrin 1968]. However, Leon Simon [1976] has shown
that if 00 ⊂ ∂� is smooth (i.e., C4), the mean curvature 3 of ∂� is negative on 00,
and 0 is a compact subset of 00, then the minimal hypersurface z = f (x), x ∈�,
extends to �∪0 as a continuous function, even though f may not equal φ on 0.
Since [Simon 1976] appeared, the requirement that H ≡ 0 has been eliminated
and the conclusion remains similar to that which Simon reached (see, for example,
[Bourni 2011; Lau and Lin 1985; Lin 1987]).

How important is the role of boundary smoothness in the conclusions reached in
[Simon 1976]? We shall show, by constructing suitable domains � and Dirichlet
data φ, that the existence of a “nonconvex corner” P in 0 can cause the unique
generalized (e.g., variational) solution to be discontinuous at P even if 0 \ {P}
is smooth and the generalized mean curvature 3∗ (i.e., [Serrin 1969]) of 0 at P
is −∞; this shows that some degree of smoothness of 0 is required to obtain the
conclusions in [Simon 1976]. We shall prove the following.

Theorem 1. Let n ∈N, n≥ 2, and assume there exists λ> 0 such that |H(x, t)| ≤ λ
for x ∈ Rn and t ∈ R. Then there exist a domain �⊂ Rn and a point P ∈ ∂� such
that

(i) ∂� \ {P} is smooth (C∞),

(ii) there is a neighborhood N of P such that 3(x) < 0 for x ∈ N ∩ ∂� \ {P},
where 3 is the mean curvature of ∂�, and

(iii) 3∗(P)=−∞, where 3∗ is the generalized mean curvature of ∂�,

and there exists Dirichlet boundary data φ ∈ C∞(Rn) such that the minimizer
f ∈ BV(�) of

(3) J (u)=
∫
�

|Du| +
∫
�

∫ u

0
H(x, t) dtdx +

∫
∂�

|u−φ| dHn−1, u ∈ BV(�),

exists and satisfies (1), f ∈C2(�)∩C0(�\{P})∩ L∞(�), f /∈C0(�), and f 6= φ
in a neighborhood of P in ∂�.

Since there are certainly many examples of Dirichlet problems which have con-
tinuous solutions even though their domains fail to satisfy appropriate smoothness
or boundary curvature conditions (e.g., by restricting to a smaller domain a classical
solution of a Dirichlet problem on a larger domain), the question of necessary or
sufficient conditions for the continuity at P of a generalized solution of a particular
Dirichlet problem is of interest and the examples here suggest (to us) that a “Concus–
Finn” type condition might yield necessary conditions for the continuity at P of
solutions (see Section 5).
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We view this note as analogous to other articles (e.g., [Shi and Finn 2004; Huff
and McCuan 2006; 2009; Korevaar 1980]) which enhance our knowledge of the
behavior of solutions of boundary value problems for prescribed mean curvature
equations by constructing and analyzing specific examples. One might also compare
Theorem 1 with the behavior of generalized solutions of (1)–(2) when ∂� \ {P} is
smooth and |H(x, φ(x))|≤ (n−1)3(x) for x ∈ ∂�\{P} (e.g., [Elcrat and Lancaster
1986; Lancaster 1985; 1988]) and with capillary surfaces (e.g., [Lancaster and Siegel
1996]).

2. Nonparametric minimal surfaces in R3

In this section, we will assume n = 2 and H ≡ 0; this allows us to use explicit
comparison functions and illustrate our general procedure. Let � be a bounded,
open set in R2 with locally Lipschitz boundary ∂� such that a point P lies on ∂�
and there exist distinct rays l± starting at P such that ∂� is tangent to l+∪ l− at P .
By rotating and translating the domain, we may assume P = (0, 1) and there exists
a σ ∈

(
−
π
2 ,

π
2

)
such that

l− = {(r cos(σ ), 1+ r sin(σ )) : r ≥ 0},

l+ = {(r cos(π − σ), 1+ r sin(π − σ)) : r ≥ 0},

�∩ B(P, δ)= {(r cos(θ), 1+ r sin(θ)) : 0< r < δ, θ−(r) < θ < θ+(r)}(4)

for some δ > 0 and functions θ± ∈ C0([0, δ)) which satisfy θ− < θ+, θ−(0)= σ
and θ+(0)= π − σ ; here B(P, δ) is the open ball in R2 centered at P of radius δ.
If we set α = π

2 − σ , then α ∈ (0, π) and the angle at P in � of ∂� has size 2α.
As σ < 0 goes to zero, 2α > π goes to π and the (upper) region between l− and l+

becomes “less nonconvex” and approaches a half-plane through P . We will show
that for each choice of σ ∈

(
−
π
2 , 0

)
, there is a domain � as above and a choice

of Dirichlet data φ ∈ C∞(∂�) such that the solution of (1)–(2) for � and φ is
discontinuous at P .

Fix σ ∈
(
−
π
2 ,−

π
4

)
. Let ε be a small, fixed parameter, say ε ∈ (0, 0.5), and let

a = a(σ ) ∈ (1, 2) be a parameter to be determined. Set τ = (1+ ε) cot(−σ) and
r1 =
√

τ 2
+ (1+ ε)2. Define h2/π ∈ C2

(
(0, 2)× (−1, 1)

)
by

h2/π (x1, x2)=
2
π

ln
(

cos
(
πx2

2

)
sin
(
πx1

2

) ).
Notice that the graph of h2/π is part of Scherk’s first surface, so div(T h2/π )= 0 on
(0, 2)× (−1, 1), and h2/π (t, t − 1) = 0 for each t ∈ (0, 2). A computation using
L’Hospital’s Rule shows

(5) lim
t→0+

h2/π
(
(t cos(θ), 1+ t sin(θ))

)
=

2
π

ln(− tan(θ)), θ ∈
(
−
π
2 , 0

)
.
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Figure 1. �.

Let D = B(O, 1)∩ B((τ,−ε), r1)∩ B((−τ,−ε), r1) be the intersection of three
open disks and let E ⊂ D be a strictly convex domain such that {x ∈ ∂E : x2 < 1}
is a C∞ curve, E ∩ {x2 ≥ 0} = D ∩ {x2 ≥ 0}, E is symmetric with respect to the
x2-axis, and (0,−1) ∈ ∂E ; here O denotes (0, 0). Define

�= B(O, a) \ E

(see Figure 1); notice that P ∈ ∂� and (4) holds with the choice of σ above. If
we set C = {(x1, x2) ∈ R2

: 0 < x1 < 1, x1 − 1 < x2 < 1− x1}, then (5) implies
supx∈C∩∂E h2/π (x) <∞.

Let

m >max
{

r1 cosh−1
(

2+
√
τ 2+ε2

r1

)
, sup

x∈C∩∂E
h2/π (x)

}
.

Notice that m is independent of the parameter a. Define φ ∈ C∞(∂�) by φ = 0
on ∂B(O, a) and φ = m on ∂E . Let f be the variational solution of (1)–(2) with φ
as given here (e.g., [Gerhardt 1974; Giusti 1978]). Since φ ≥ 0 on ∂� and φ > 0
on ∂E , f ≥ 0 in � (e.g., Lemma 2 (with h ≡ 0)) and so f > 0 in � (e.g., the Hopf
boundary point lemma). Notice that h2/π = 0 < f on �∩ ∂C and h2/π < φ on
C ∩ ∂E = C ∩ ∂�, and therefore h2/π < f on �∩C (see Figure 2). Together with
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Figure 2. �∩C , the domain of the comparison function for (6).

(5), this implies

(6) lim inf
�∩C3x→P

f (x)≥ 2
π

ln(tan(−σ)) > 0.

Set W = B(O, a) \ B(O, 1) (see Figure 3); then W ⊂ �. Define the function
g ∈C∞(W )∩C0(W ) by g(x)= cosh−1(a)−cosh−1(|x |) and notice that the graph
of g is part of a catenoid, where g = 0 on ∂B(O, a) and g = cosh−1(a) on ∂B(O, 1).
It follows from the general comparison principle (e.g., [Finn 1986, Theorem 5.1])
that f ≤ g on W and therefore

(7) f ≤ cosh−1(a) on W .

If we select a > 1 so that cosh−1(a) < 2
π

ln(tan(−σ)), then (6) and (7) imply that
f cannot be continuous at P . Notice that [Simon 1976] implies f ∈ C0(� \ {P}).

This example illustrates the procedure we shall use in Section 4; a somewhat
similar approach was used in [Shi and Finn 2004; Korevaar 1980; Lancaster and
Siegel 1996; Serrin 1969]. The case σ ∈

[
−
π
4 , 0

)
has a similar proof with the

changes that D is the intersection of the open disk B(O, 1) with the interiors of two
ellipses, and a Scherk surface with rhomboidal domain [Nitsche 1989, pp. 70–71]
is used as a comparison surface to obtain the analog of (6); the details can be found
in [Melin 2013].
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Figure 3. W , the domain of the comparison function for (7).

3. Lemmata

Lemma 1. Let � be a bounded open set in Rn , n ≥ 2, with locally Lipschitz
boundary and let 0 be an open C2 subset of ∂�. Let φ ∈ L∞(∂�) ∩ C1,β(0).
Suppose g ∈ C2(�)∩ L∞(�) is the variational solution of (1)–(2) and g < φ on 0.
Then

ν ≡
(∇g,−1)√
1+|∇g|2

∈ C0(�∪0)

and ν · η = 1 on 0, where η(x) ∈ Sn−1 is the exterior unit normal to 0 at x.

Proof. Since g minimizes the functional J in (3) over BV(�), g also minimizes
the functional K (u)= J (u)−

∫
0
φ dHn−1. Notice

K (u)=
∫
�

|Du| +
∫
�

∫ u

0
H(x, t) dtdx +

∫
∂�\0

|u−φ| dHn−1
−

∫
0

u dHn−1

for each u ∈ BV(�) with tr(u) ≤ φ on 0; in particular, this holds when u = g.
Therefore, for each x ∈ 0, there exists ρ > 0 such that ∂�∩ Bn(x, ρ)⊂ 0, and the
lemma follows as in [Korevaar and Simon 1996]. �

Lemma 2. Let � be a bounded open set in Rn , n ≥ 2, with locally Lipschitz
boundary, φ,ψ ∈ L∞(∂�) with ψ ≤ φ on ∂�, H0 ∈ C2(�× R) with H0(x, t)
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nondecreasing in t for x ∈�, and H0 ≥ H on �×R. Consider the boundary value
problem

div(T f )= H0(x, f ) in �,(8)

f = ψ on ∂�.(9)

Suppose g ∈ C2(�)∩ L∞(�) is the variational solution of (1)–(2) and either

(i) h ∈ C2(�)∩ L∞(�) is the variational solution of (8)–(9), or

(ii) ψ ∈ C0(∂�), h ∈ C2(�)∩C0(�), and h satisfies (8)–(9).

Then h ≤ g in �.

Proof. Let A= {x ∈� : h(x) > g(x)}. In case (i), let f = hI�\A+gIA, where IB is
the characteristic function of a set B; then a simple calculation using J (g)≤ J ( f )
shows that J1( f )≤ J1(h) and therefore f = h and A =∅, where

J1(u)=
∫
�

|Du| +
∫
�

∫ u

0
H0(x, t) dtdx +

∫
∂�

|u−ψ | dHn−1, u ∈ BV(�),

is the functional which h minimizes. In case (ii), the conclusion follows from
Lemma 1 of [Williams 1978]. �

Lemma 3. Let � ⊂ {x ∈ R2
: x2 > 0} be a bounded open set, n ∈ N with n ≥ 2,

and g ∈ C2(�). Set �̃ = {(x1, x2ω) ∈ Rn
: (x1, x2) ∈ �,ω ∈ Sn−2

} and define
g̃ ∈ C2(�̃) by g̃(x1, x2ω)= g(x1, x2) for (x1, x2) ∈�,ω ∈ Sn−2. Then, for

x = (x1, . . . , xn)= (x1, rω) ∈ �̃

with r =
√

x2
2 + · · ·+ x2

n , ω = 1
r (x2, . . . , xn), and (x1, r) ∈�, we have

div
(

∇ g̃√
1+|∇ g̃|2

)
(x)= div

(
∇g√

1+|∇g|2

)
(x1, r)+

n−2
r

gx2(x1, r)√
1+|∇g(x1, r)|2

.

In particular, if H ≥ 0, R > 0, �⊂ {x ∈ R2
: x2 ≥ R}, and

div
(

∇g√
1+|∇g|2

)
≥ H + n−2

R
on �,

then

div
(

∇ g̃√
1+|∇ g̃|2

)
≥ H on �̃.
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Proof. Notice that

1+ |∇ g̃|2 = 1+ |∇g|2,(
1+ |∇ g̃|2

)
4g̃ =

(
1+ |∇g|2

)(
4g+ n−2

r
gx2

)
,

n∑
i, j=1

∂ g̃
∂xi

∂ g̃
∂x j

∂2g̃
∂xi∂x j

=

(
∂g
∂x1

)2 ∂2g
∂x2

1
+ 2 ∂g

∂x1

∂g
∂x2

∂2g
∂x1∂x2

+

(
∂g
∂x2

)2 ∂2g
∂x2

2
,

and so(
1+ |∇ g̃|2

)
4g̃−

n∑
i, j=1

∂ g̃
∂xi

∂ g̃
∂x j

∂2g̃
∂xi∂x j

=
(
1+ g2

x2

)
gx1x1 − 2gx1 gx2 gx1x2 +

(
1+ g2

x1

)
gx2x2 +

n−2
r
(
1+ g2

x1
+ g2

x2

)
gx2 .

The lemma follows from this. �

4. The n-dimensional case

Let Bk(x, r) denote the open ball in Rk centered at x ∈ Rk with radius r > 0 and
Ok = (0, . . . , 0) ∈ Rk , for k ∈ N. Now consider n ≥ 2 and set

λ = sup
(x,t)∈Rn×R

|H(x, t)|;

if λ= 0, replace it with a positive constant. For each a ∈
(
0, n

λ

)
and Q ∈ Rn , we

have

(10)
∫

Bn(Q,a)
λn dx < nnωn.

By translating our problem in Rn , we may (and will) assume Q = On . By Proposi-
tion 1.1 and Theorem 2.1 of [Giusti 1976], we see that if � is a bounded, connected,
and open set in Rn with Lipschitz-continuous boundary, � ⊂ Bn

(
On,

n
λ

)
, and

φ ∈ L1(∂�), then the functional J in (3) has a minimizer f ∈ BV(�), f ∈ C2(�)

satisfying (1).
The proof in Section 4.1 consists of setting some parameters (e.g., p, r1, r2, m0,

b, c, τ , σ , a), determining the domain �, finding different comparison functions
(e.g., g1, g[u], k±, k2, k3, k4), and mimicking (6) and (7) to show that the variational
solution f of (1)–(2) is discontinuous at a nonconvex corner. In particular, we use
a torus (i.e., ja) to obtain (21), unduloids (i.e., k±, k2) to obtain (24) (an analog of
(7)), and nodoids (i.e., g1, g[u]), unduloids (i.e., k±, k4), and a helicoidal function
(i.e., h2) to obtain (30) (an analog of (6)) and prove that f is discontinuous at
P = (0, p, 0, . . . , 0) ∈ Rn

∈ ∂�.
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4.1. Codimension 1 singular set. In this section, we will obtain a domain � as
above and φ ∈ C∞(Rn) such that P ∈ ∂�, the minimizer f of (3) is discontinuous
at P , ∂� \ T is smooth (C∞), and f ∈ C2(�)∩C0(� \ T ), where T is a smooth
set of dimension n − 2 (i.e., T has codimension 1 in ∂�). We will use portions
of nodoids, unduloids, and helicoidal surfaces with constant mean curvature as
comparison functions. For the convenience of the reader, we will denote functions
whose graphs are subsets of nodoids with the letter g (e.g., g1(x1, x2)), subsets of
CMC helicoids with the letter h, and subsets of unduloids (or onduloids) with the
letter k.

Let N1 ⊂ R3 be a nodoid which is symmetric with respect to the x3-axis and has
mean curvature 1 (when N1 is oriented “inward”, so that the unit normal ENN1 to N1

points toward the x3-axis at the points of N1 which are furthest from the x3-axis).
Let s1 = inf(x,t)∈N1 |x | be the inner neck size of N1 and let s3 satisfy the condition
that the unit normal to N1 is vertical (i.e., parallel to the x3-axis) at each point
(x, t) ∈R2

×R of N1 at which |x | = s3; then s1 < s3. Let s2 ∈ (s1, s3). (Notice that
we can assume s2/s1 is close to s3/s1 if we wish.)

Let us fix 0 < p < 1
λ

and set w = (0, p) ∈ R2, P = (0, p, 0, . . . , 0) ∈ Rn .
Let m0 = λ/2+ (n− 2)/(p/3). We shall assume r2 = s2/m0 < p/3; if necessary,
we may increase m0 to accomplish this. Let r1 = s1/m0 and r3 = s3/m0. Let
N = {(m0)

−1 X ∈ R3
: X ∈ N1}; then N is a nodoid with mean curvature m0. Set

11 = {x ∈ R2
: r1 < |x |< r2}. Fix b ∈

(
0, 1

4m0

(
1+ 2m0 p−

√

1+ 4m2
0 p2

))
.

Define g1 ∈ C∞(11)∩C0(11) to be a function whose graph is a subset of N on
which ENN = (n1, n2, n3) satisfies n3 ≥ 0; then

(11) div
(

∇g1√
1+|∇g1|2

)
= m0 ≥ λ+

2(n−2)
p/3

.

By moving N vertically, we may assume g1(x) = 0 when |x | = r2; then g1 > 0
in 11. Notice that ∂g1

∂x1
(r1, 0)=−∞ and ∂g1

∂x1
(r2, 0) < 0; then there exists a β0 > 0

such that, for each θ ∈ R,

(12) ∂

∂r
(g1(r2)) <−β0 for r1 < r < r2,

where 2= (cos(θ), sin(θ)). Fix β ∈ (0, β0). Let

(13) 0< τ <min
{

pr1
√

r2
2−r2

1

,
2(1− pλ)
λ(2− pλ)

,
b(4p−b)
4(2p−b)

}
.

Consider σ ∈
(
−
π
2 , 0

)
. Notice that the distance between L and the point (0, p−r2)

is r2 cos(σ ), where L is the closed sector given by

L = {(r cos(θ), p+ r sin(θ)) : r ≥ 0, σ ≤ θ ≤ π − σ }.
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Define r4 =
√

p2
+ τ 2 and

M = B2((τ, 0), r4)∩ B2((−τ, 0), r4).

Notice that
τ <

b(4p−b)
4(2p−b)

and therefore B2
(
O2,

1
2(a+ p)− b

)
⊂ M if p < a < p+ b.

Set σ =− arctan(τ/p); then cos(σ ) > r1/r2, since

τ <
p
√

r2
2 − r2

1
r1

,

and L ∩ B2 = ∅, where B2 = B2((0, p− r2), r1). Therefore there exists a δ1 > 0
such that if u = (u1, u2) ∈ ∂B2(O2, p) with |u−w|< δ1, then

(14) B2

( p−r2
p

u, r1

)
⊂ M.

Since
τ <

2(1− pλ)
λ(2− pλ)

,

we have τ−
( 2
λ
−r4

)
<−p and so B2(O2, p)⊂ B2

(
(τ, 0), 2

λ
−r4

)
(see Figure 8, right).

Notice that

(15) M \ {(0,±p)} = {(r cos(θ), p+ r sin(θ)) : 0< r < 2p, θ−(r) < θ < θ+(r)}

for some θ± ∈ C0([0, δ)) satisfying θ−< θ+, θ−(0)=−π − σ , and θ+(0)= σ .
Let a > p and set

T=
{(( 1

2(a+ p)+b cos v
)

cos u,
( 1

2(a+ p)+b cos v
)

sin u, b sin v+c
)
: (u, v)∈ R

}
,

where R=[0, 2π ]×[−π, 0] and 0<c<b; since b< 1
4m0

(
1+2m0 p−

√

1+ 4m2
0 p2

)
,

we see that
1
2(a+ p)− 2b

4b
( 1

2(a+ p)− b
) > m0

for all a ≥ p. We shall assume

(16) a ∈
(

p,min
{

p+ b, 1
λ

})
and c =

√
b2−

( 1
2(a− p)

)2. Notice that T is the lower half of a torus whose mean
curvature (i.e., one half of the trace of the shape operator) at each point is greater
than m0. Let T be the graph of a function ja over

1a =
{

x ∈ R2
:

1
2(a+ p)− b ≤ |x | ≤ 1

2(a+ p)+ b
}
;
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(−τ, 0)

−σ

(0, p)

Figure 4. The domain of ja .

Figure 5. Left: 51, j (�) for 2≤ j ≤ n. Right: 5i, j (�) for 2≤ i < j ≤ n.

then ja(x) = 0 on |x | = a and |x | = p, ja(x) < 0 on p < |x | < a, and ja(x) > 0
on 1

2(a + p)− b ≤ |x | < p and a < |x | ≤ 1
2(a + p)+ b for x ∈ R2. Notice that

| ja(x)|< 1
2m0

for all x ∈1a .
Set

(17) �= Bn(On, a) \M,

where M= M̃ = {(x1, x2ω) ∈ Rn
: (x1, x2) ∈ M, ω ∈ Sn−2

}. If we define

5i, j (A)= {(xi , x j ) : (x1, . . . , xn) ∈ A, xk = 0 for k 6= i, j}

for A ⊂ Rn and 1 ≤ i < j ≤ n, then 51, j (�) = B2(O2, a) \M for 2 ≤ j ≤ n and
5i, j (�)= B2(O2, a) \ B2(O2, 1) for 2≤ i < j ≤ n (see Figure 5).

We wish to select a helicoidal surface in R3 (e.g., [do Carmo and Dajczer 1982])
with constant mean curvature m0, axis {w}×R, and pitch−β (recall−β ∈ (−β0, 0)),
which we will denote S; then, for each t ∈R, kt(S)=S, where kt :R

3
→R3 is the

helicoidal motion given by kt(x1, x2, x3)= (lt(x1, x2), x3−βt) with lt : R
2
→ R2

given by

lt(x1, x2)= (x1 cos(t)+ (x2− p) sin(t), p− x1 sin(t)+ (x2− p) cos(t)).

Set c0 =
1
4βσ < 0. By vertically translating S, we may assume that there is an

open c0-level curve L0 of S with endpoints w = (0, p) and b = (b1, b2) such that
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Figure 6. R.

L0 ⊂ (0,∞)×R, L= L0 is tangent to the (horizontal) line R×{p} at w, and the
slope mv of the tangent line to L at v satisfies |mv|< tan(−σ/5) for each v ∈ L0;
then L× {c0} ⊂ S and the curves lt(L0), −7π

8 < t < 7π
8 , are mutually disjoint.

Notice that the set

R=
{
lt(L0) : −

7π
8 < t < 7π

8

}
=

⋃
−

7π
8 <t< 7π

8

lt(L0)

is an open subset of R2
\ ((−∞, 0]× {p}) (see Figure 6), w ∈R, and S implicitly

defines the smooth function h2 on R given by h2(x) =
β

4 (σ − 4t) if x ∈ lt(L0)

for some t ∈
(
−
π
2 ,

π
2

)
. Notice that B2(w, b1) ∩ {x1 > 0} ⊂ R. Now we have

lt(L0)∩M =∅ for t ∈
( 3σ

4 ,
σ
4

)
and, by making b1 > 0 sufficiently small, we may

assume that

(18) lt(L0)⊂ B2(O2, p) \M for each t ∈
( 3σ

4 ,
σ
4

)
.

Notice that h2 < β(2σ 2
−π)/(8σ) on lt(L0) for −π2 < t < 7π

8 .
Let us fix u = (u1, u2) ∈ ∂B2(O2, p) such that |u−w|<min{δ1, b1} and u1 > 0.

Then there exists θu ∈
(
0, π2

)
such that u = (p cos(θu), p sin(θu)). Define

g[u](x)= g1

(
x + r2− p

p
u
)

and notice that g[u](u)= g1
( r2

p u
)
= 0, since

∣∣ r2
p u
∣∣= r2. Note that the domain

D[u] =
{

x + p−r2
p

u : x ∈11

}
= B2

( p−r2
p

u, r2

)
\ B2

( p−r2
p

u, r1

)
of g[u] is contained in B2(O2, p) since ∂B2

( p−r2
p u, r2

)
and ∂B2(O2, p) are tangent

circles at u and r2 < p (see Figure 7). Notice that

(19) h2(r cos(θu), r sin(θu)) < g[u](r cos(θu), r sin(θu))

when p− r2+ r1 ≤ r ≤ p, because h2(u) < 0= g[u](u), β < β0, and (12) holds.
Let

N± ⊂ {x ∈ R2
: r4 ≤ |(x1± τ, x2)| ≤

2
λ
− r4}×R
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Figure 7. D[u]; �∩D̃[u] is the domain of the comparison
function for (28).

Figure 8. Left: B2(O2, p) * B2
(
(−τ, 0), 2

λ
− r4

)
.

Right: B2(O2, p)⊂ B2
(
(−τ, 0), 2

λ
− r4

)
.

be unduloids in R3 with mean curvature λ
2 such that {(∓τ, 0)}×R are the respective

axes of symmetry; the minimum and maximum radii (or “neck” and “waist” sizes)
of both unduloids are r4 and 2

λ
− r4, respectively. Set

1± = B2
(
(∓τ, 0), 2

λ
− r4

)
\ B2((∓τ, 0), r4)

and define k± ∈ C∞(1±) so that the graphs of k± are subsets of N±, respectively,

div(T k±)=−λ in 1±,

∂
∂r

(
k±((∓p, 0)+r2)

)∣∣
r=r4
=−∞ and ∂

∂r

(
k±((∓p, 0)+r2)

)∣∣
r=2/λ−r4

=−∞ for
each θ ∈ R, where 2 = (cos(θ), sin(θ)). We may vertically translate N± so that
k±(x)= 0 for x ∈R2 with |(x1±τ, x2)|=

2
λ
−r4. Notice that k+(0, p)= k−(0, p)=

sup1+ k+ = sup1− k−.
Let N⊂

{
x ∈ R2

: p ≤ |x | ≤ 2
λ
− p

}
×R be an unduloid with mean curvature λ

2
such that the x3-axis is the axis of symmetry and the minimum and maximum radii
(or “neck” and “waist” sizes) are p and 2

λ
− p, respectively. Set

12 = B2
(
O2,

2
λ
− p

)
\ B2(O2, p)
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Figure 9. B2(O2, a) \ B2(O2, p): (22).

and define k2 ∈ C∞(12) so that the graph of k2 is a subset of N, div(T k2) = −λ

in 12, and ∂
∂r

(
k2(r2)

)∣∣
r=p =

∂
∂r

(
k2(r2)

)∣∣
r=2/λ−p = −∞ for each θ ∈ R, where

2= (cos(θ), sin(θ)).
Define φ ∈ C∞(Rn) so that φ = 0 on ∂Bn(On, a) and φ = m on ∂M, where

(20) m >max
{
g1(0, r1),

1
2m0
, k+(0, r4− τ)+ k2(0, p)− k2

(
0, 2

λ
− p

)}
;

recall then that m > ja
( 1

2(a+ p)− b
)
. Let f be the variational solution of (1)–(2)

with � and φ as given here; that is, let f minimize the functional given in (3) and
notice that the existence of f follows from (10), (16), §1.D of [Giusti 1976], and
[Gerhardt 1974; Giusti 1978]. (Notice that there exists w : B2(O2, a)\M→R such
that f = w̃.) The comparison principle implies ja(x) ≤ f (x) for x ∈ �, and so
f (x)≥ ja(x)≥ 0 if x ∈� with |x | ≤ p (recall (16) holds). In particular,

(21) f (x)≥ 0 when x ∈� with |x | ≤ p.

Set W = (B2(O2, a) \ B2(O2, p))×Rn−2. Now

�⊂ B2(O2, a)×Rn−2
⊂ B2

(
O2,

2
λ
− p

)
×Rn−2

(see Figure 9). Define k3(x)= k2(x1, x2)− k2(0, a) for x = (x1, x2, . . . , xn) ∈W .
Notice that f = 0≤ k3 on W ∩ ∂Bn(On, a),

div(T f )= H(x, f (x))≥−λ= div(T k3) in �∩W ,

and ∂
∂r (k2(r2))|r=p = −∞ (so that limW3y→x T k3(y) · ξ(x) = 1, for ξ the unit

exterior normal to ∂W and x ∈ ∂B2(O2, p) × Rn−2). The general comparison
principle (e.g., [Finn 1986, Theorem 5.1]) then implies

(22) f ≤ k3 in �∩W
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Figure 10. (23): W and Bn(On, a) \ Bn(On, p) when n = 3.

and, in particular,

(23) lim sup
�∩W3y→x

f (y)≤ k3(x) for x ∈ ∂�∩W

(see Figure 10). By rotating the axis of symmetry of W through all lines in Rn

containing On (or, equivalently, keeping W fixed and rotating � about On), we see
that

(24) sup{ f (x) : x ∈ Bn(On, a) \ Bn(On, p)} ≤ k2(0, p)− k2(0, a).

Now define k4 ∈ C∞(1+×Rn−2)∩C0(1+×Rn−2) by

k4(x)= k+(x1, x2)+ k2(0, p)− k2(0, a), x = (x1, x2, . . . , xn) ∈1+×Rn−2.

Combining (1) and (24) with the facts that div(T k4) = −λ in 1+ × Rn−2 and
lim1+×Rn−23y→x T k4(y) · ξ+(x)= 1 for x ∈ ∂B2((−τ, 0), r4)×Rn−2, where ξ+ is
the inward unit normal to ∂B2((−τ, 0), r4)×Rn−2, we see that

(25) f ≤ k4 in �∩ (1+×Rn−2).

(If Figure 8 (left) held, then (25) would not be valid.) Now let L : Rn
→ Rn be any

rotation about On which satisfies L(�)=�, notice that f ◦ L satisfies (1)–(2), and
apply the previous argument to obtain f ◦ L ≤ k4 in �∩ (1+×Rn−2) and therefore

(26) sup{ f (x) : x ∈ ∂M} ≤ k4(p, 0) < m.

From Lemma 1, we see that the downward unit normal Nf to the graph of f
satisfies Nf = (ν, 0) on ∂M \ {(0, pω) : ω ∈ Sn−2

} and

(27) lim
�3y→x

T f (y) · ν(x)= 1 for x ∈ ∂M \ {(0, pω) : ω ∈ Sn−2
}.
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Figure 11. A: (29).

Let us write B= B2
( p−r2

p u, r2
)
; then g̃[u]=0≤ f on�∩∂B̃ and g̃[u]≤ g1(r1, 0)<φ

on B̃ ∩ ∂M . It follows from (1), (11), and Lemma 3 that

(28) g̃[u] < f on �∩ D̃[u] =�∩ B̃.

Set U = {r(cos(θ), sin(θ)ω) ∈� : r ∈ (0, p), θ ∈ (0, θu), ω ∈ Sn−2
}. If we write

∂1U = {(p cos(θ), p sin(θ)ω) : θ ∈ (0, θu], ω ∈ Sn−2
},

∂2U = ∂M∩ ∂U,

∂3U = {(r cos(θu), r sin(θu)ω) ∈� : r ∈ [0, p], ω ∈ Sn−2
},

then ∂U = ∂1U ∪ ∂2U ∪ ∂3U , h̃2 ≤ 0≤ f on ∂1U \ {P}, and h̃2 < g̃[u] < f on ∂3U
(see (19)); then (27) and the general comparison principle imply

(29) h̃2 < f in U = Ã,

where A={r(cos(θ), sin(θ))∈ B2(O2, p)\M :r ∈ (0, p), θ ∈ (0, θu)} (see Figure 11).
Set R2 =

⋃2σ/4
t=3σ/4 lt(L0). Now (18) implies R̃2 ⊂U and so

(30) f > h̃2 ≥−
βσ

4
on R2.

Using (24) and (30), we see that if a ∈
(

p, 2
λ
− p

)
is close enough to p, then

k2(0, p)− k2(0, a) < −βσ4 and therefore f cannot be continuous at P or at any
point of T = {(0, pω) ∈Rn

:ω ∈ Sn−2
}. Note that f ∈C0(�\T ) (e.g., [Lin 1987]).

4.2. One singular point. In this section, we obtain a domain � and φ ∈ C∞(Rn)

such that P ∈ ∂�, the minimizer f of (3) is discontinuous at P , ∂�\{P} is smooth
(C∞), and f ∈ C0(� \ {P}). This is accomplished by replacing M by a convex
set G such that ∂G \ {P} is smooth (C∞) and G ⊂ Bn(On, p). We shall use the
notation of Section 4.1 throughout this section. We assume p ∈

(
0, 1

λ

)
and set

P = (0, p, 0, . . . , 0). (We will no longer require Figure 8 (right) to hold.)
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Figure 12. An illustration of R2 (blue region) and A (green and
blue regions).

x

y

x

z

Figure 13. Left: X
(
θ, π2 , 1

)
. Right: X

(
θ, 1

2 arccos(1− sec(θ) sec(2θ)), 1
)
.

Let α > 1, n ≥ 3, and Y :
[
−

π
2α ,

π
2α

]
×[0, π]× Sn−3

→ Rn be defined by

Y (θ, φ, ω)= 2 cos(αθ) sin(φ)
(
cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)ω

)
.

Let F : Rn
→ Rn be given by

F(x1, . . . , xn)=
( x2

p ,
1−x1

p , x3
p , . . . ,

xn
p

)
and define X (θ, φ, ω) = F(Y (θ, φ, ω)) for − π

2α ≤ θ ≤
π
2α , 0 ≤ φ ≤ π , ω ∈ Sn−3

(see Figures 13 and Figure 14 with n = 3, α = 2; the axes are labeled x, y, z for
x1, x2, x3, respectively). Let G be the open, convex set whose boundary is the image
of X ; that is,

∂G=
{

X (θ, φ, ω) : − π
2α ≤ θ ≤

π
2α , 0≤ φ ≤ π,ω ∈ Sn−3}.

Notice that ∂G \ {P} is a C∞ hypersurface in Rn and ∂G⊂ Bn(On, p).
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Let τ satisfy

0< τ <min
{

pr1
√

r2
2−r2

1

,
b(4p−b)
4(2p−b)

}
.

Set σ =− arctan(τ/p) and α= π/(π+2σ). Then the tangent cones to ∂G and ∂M

at P are identical, cos(σ ) > r1/r2, and (14) holds for u = (u1, u2) ∈ ∂B2(O2, p)
with |u − w| < δ1. By making τ > 0 smaller if necessary, we may assume
Bn
(
On,

1
2(a+ p)− b

)
⊂ G if p < a < p+ b.

Now pick a ∈
(

p,min
{

p+ b, 1
λ

})
such that k2(0, p)− k2(0, a) < −βσ4 , as in

(30), and define

(31) �= Bn(On, a) \G.

Let

m >max
{

g1(0, r1),
1

2m0
,
β(2σ 2

−π)

8σ

}
and define φ ∈ C∞(Rn) so that φ = 0 on ∂Bn(On, a) and φ = m on ∂G, and let
f be the variational solution of (1)–(2). Notice that f ∈ C2(�) satisfies (1) and
f ∈ C0(� \ {P}) (e.g., [Lin 1987]).

As in (28), let B = B2
( p−r2

p u, r2
)
. Set U0 = {x ∈ � : x ∈ B̃, x1 > 0} and

U = {r(cos(θ), sin(θ)ω) ∈� : r ∈ (0, p), θ ∈ (0, θu), ω ∈ Sn−2
}. Now g̃[u] = 0 on

∂U0 ∩ ∂B̃ and g̃[u] ≤ g1(0, r1) < m on ∂U0 ∩ ∂G and so Lemma 2, Lemma 3, and
(1) imply g̃[u] ≤ f in U0 since f minimizes the functional in (3).

As before, set

∂1U =
{(

p cos(θ), p sin(θ)ω
)
: θ ∈ [0, θu], ω ∈ Sn−2},

∂2U = ∂G∩ ∂U,

∂3U =
{(

r cos(θu), r sin(θu)ω
)
∈� : r ∈ [0, p], ω ∈ Sn−2}.

Then f ≥ 0 on ∂1U \{P}, ∂U = ∂1U ∪∂2U ∪∂3U , h̃2≤ 0≤ f on ∂1U , h̃2 <m = φ
on ∂2U , and h̃2 < g̃[u] < f on ∂3U ; Lemma 2 implies that (30) continues to hold.
Then (24) and (30) imply f is discontinuous at P since k2(0, p)− k2(0, a) <−βσ4 .

5. The Concus–Finn conjecture

For the moment, assume n = 2. Around 1970, Paul Concus and Robert Finn
conjectured that if κ ≥ 0, � ⊂ R2 has a corner at P ∈ ∂� of (angular) size 2α,
α ∈

(
0, π2

)
, γ : ∂� \ {P} → [0, π], and

∣∣π
2 − γ0

∣∣> α, where

(32) lim
∂�3x→P

γ (x)= γ0,
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x

y

x

z

Figure 14. Left: 51,2(�). Right: 51,3(�).

then a function f ∈ C2(�)∩C1(� \ {P}) which satisfies

div(T f )= κ f in �,(33)

T f · η = cos(γ ) on ∂� \ {P}(34)

must be discontinuous at P ; here η(x) is the exterior unit normal to� at x ∈∂�\{P}.
In the situation above with α ∈

(
π
2 , π

)
, the “nonconvex Concus–Finn conjecture”

states that if
∣∣π

2 − γ0
∣∣> π −α, then the capillary surface f with contact angle γ

must be discontinuous at P . A generalization (including the replacement of (33) by
(1)) of this extension of the Concus–Finn conjecture in the case γ0 ∈ (0, π) was
proven in [Lancaster 2012]. Both [Lancaster 2010] and [Lancaster 2012] include
the possibility of differing limiting contact angles; that is, the limits

lim
∂+�3x→P

γ (x)= γ1 and lim
∂−�3x→P

γ (x)= γ2

exist, γ1, γ2 ∈ (0, π), and γ1 6= γ2. Here ∂+� and ∂−� are the two components
of ∂� \ {P, Q}, where Q ∈ ∂� \ {P}. When γ1 6= γ2, the necessary and sufficient
(when α ≤ π

2 ) or necessary (when α > π
2 ) conditions for the continuity of f at P

become slightly more complicated.
The cases where γ0 = 0, γ0 = π , min{γ1, γ2} = 0, and max{γ1, γ2} = π remain

unresolved. If we suppose for a moment that the nonconvex Concus–Finn conjecture
with limiting contact angles of 0 or π is proven, then the discontinuity of f at P
in Section 2 follows immediately from the fact that f < φ in a neighborhood in
∂�\ {P} of P , since then Lemma 1 implies γ0 = 0 and therefore

∣∣π
2 −γ0

∣∣>π −α.
In this situation (i.e., the solution f of a Dirichlet problem satisfies a 0 (or π ) contact
angle boundary condition near P), establishing the discontinuity of f at P would
be much easier and a much larger class of domains � with a nonconvex corner
(i.e., α > π

2 ) at P would have this property. For example, if � is a bounded locally
Lipschitz domain in R2 for which (4) holds, f ∈ C2(�) is a generalized solution
of (1)–(2) (and H need not vanish), and φ is large enough near P (depending
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on H and the maximum of φ outside some neighborhood of P) that f < φ on
∂� \ {P} near P , then the fact that γ0 = 0 (Lemma 1) together with the nonconvex
Concus–Finn conjecture would imply that f is discontinuous at P .

Now consider n ∈N with n≥ 3. Formulating generalizations of the Concus–Finn
conjecture in the “convex corner case” (i.e.,�∩Bn(P, r)⊂{X ∈Rn

: (X−P)·µ>0}
for some µ ∈ Sn−1, P ∈ ∂� and r > 0) and in other cases where ∂� is not smooth
at a point P ∈ ∂� may be complicated because the geometry of ∂� \ {P} is much
more interesting when n > 2. Establishing the validity of a generalization of the
Concus–Finn conjecture for solutions of (1) and (34) when n > 2 is probably
significantly harder than doing so when n = 2.

Suppose we knew that a solution f of (1) and (34) is necessarily discontinuous
at a “nonconvex corner” P ∈ ∂� when γ0 = 0, where γ0 is given by (32). In this
case, a necessary condition for the continuity of f at P would be that

lim sup
∂�3X→P

T f (X) · η(X) > 0,

lim inf
∂�3X→P

T f (X) · η(X) < π.

Then the arguments in Section 4 could be made more easily and the conclusion
that f is discontinuous at P would hold in a much larger class of domains �; here,
of course, we use the ridge point P in Section 4 as an example of a “nonconvex
corner” of a domain in Rn . The primary difficulty in proving in Section 4 that f is
discontinuous at P is establishing (30); a more “natural” generalization of �⊂ R2

in Section 2 would be

�∗ = {(xω1, y, ω2, . . . , ωn−1) ∈ Rn
: (x, y) ∈ B2(O2, a) \M, ω ∈ Sn−1

}.

However, the use of Lemma 3 to help establish (30) in�∗ is highly problematic. On
the other hand, an n-dimensional “Concus–Finn theorem” for a nonconvex conical
point (e.g., P ∈ ∂�∗) would only require an inequality like (26) to prove that f <φ
on ∂� \ {P} near P , and hence that f is discontinuous at P; the replacement of
(17) by (31) in order to obtain � such that ∂� \ {P} is C∞ would be unnecessary.
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