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EXHAUSTING CURVE COMPLEXES BY FINITE RIGID SETS

JAVIER ARAMAYONA AND CHRISTOPHER J. LEININGER

Let S be a connected orientable surface of finite topological type. We prove
that there is an exhaustion of the curve complex C(S) by a sequence of finite
rigid sets.

1. Introduction

The curve complex C(S) of a surface S is a simplicial complex whose k-simplices
correspond to sets of k + 1 distinct isotopy classes of essential simple closed
curves on S with pairwise disjoint representatives. The extended mapping class
group Mod±(S) of S acts on C(S) by simplicial automorphisms, and a well-known
theorem due to Ivanov [1997], Korkmaz [1999] and Luo [2000] asserts that C(S)
is simplicially rigid for S 6= S1,2. More concretely, the natural homomorphism

Mod±(S)→ Aut(C(S))

is surjective unless S = S1,2; in the case S = S1,2 there is an automorphism of
C(S) that sends a separating curve on S to a nonseparating one and thus cannot be
induced by an element of Mod±(S) (see [Luo 2000]).

In [Aramayona and Leininger 2013], henceforth abbreviated [AL], we extended
this picture and showed that curve complexes are finitely rigid. Specifically, for
S 6= S1,2 we identified a finite subcomplex X(S)⊂C(S) with the property that every
locally injective map X(S)→ C(S) is the restriction of an element of Mod±(S);
in the case of S1,2 a similar statement can be made, this time using the group
Aut(C(S)) instead of Mod±(S). We refer to such a subset X(S) as a rigid set.

The rigid sets constructed in [AL] enjoy some curious properties. For instance,
if S = S0,n is a sphere with n punctures then X(S) is homeomorphic to an (n− 4)-
dimensional sphere. Since C(S) has dimension n−4, it follows that X(S) represents
a nontrivial element of Hn−4(C(S),Z) which, by a result of Harer [1986], is the
only nontrivial homology group of C(S). In fact, Broaddus [2012] and Birman,
Broaddus and Menasco [Birman et al. 2015] have recently proved that X(S) is a
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MSC2010: 57M99.
Keywords: curve complex, mapping class group, rigidity.

257

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2016.282-2
http://dx.doi.org/10.2140/pjm.2016.282.257


258 JAVIER ARAMAYONA AND CHRISTOPHER J. LEININGER

generator of Hn−4(C(S),Z) when viewed as a Mod±(S)-module; in the case when
S has genus ≥ 2 and at least one puncture, they prove that X(S) contains a generator
for the homology of C(S).

The rigid sets identified in [AL] all have diameter 2 in C(S), and a natural
question is whether there exist finite rigid sets in C(S) of arbitrarily large diameter;
see Question 1 of that work. In this paper we prove that, in fact, there exists an
exhaustion of C(S) by finite rigid sets:

Theorem 1.1. Let S 6= S1,2 be a connected orientable surface of finite topological
type. There exists a sequence X1 ⊂ X2 ⊂ · · · ⊂ C(S) such that

(1) Xi is a finite rigid set for all i ≥ 1,

(2) Xi has trivial pointwise stabilizer in Mod±(S), for all i ≥ 1, and

(3)
⋃

i≥1 Xi = C(S).

Remarks. (i) A similar statement can be made for S= S1,2, by replacing Mod±(S)
by Aut(C(S)) in the definition of rigid set above.

(ii) We stress that Theorem 1.1 above does not follow from the main result in [AL].
Indeed, a subset of C(S) containing a rigid set need not itself be rigid; compare
with Proposition 3.2 below.

(iii) The combination of a recent theorem of J. Hernández (as yet unpublished) and
the main result in [AL] gives an alternate proof of Theorem 1.1 in the case when S
has genus ≥ 3; compare with the remark on page 262 below.

As a consequence of Theorem 1.1 we will obtain a “finitistic” proof of the
aforementioned result of [Ivanov 1997; Korkmaz 1999; Luo 2000] on the simplicial
rigidity of the curve complex. In fact, we will deduce the following stronger form
due to Shackleton [2007].

Corollary 1.2. Let S 6= S1,2 be a connected orientable surface of finite topological
type. If φ : C(S)→ C(S) is a locally injective simplicial map, then there exists
h ∈Mod±(S) such that h = φ.

The first author and Souto [2013] proved that if X⊂C(S) is a rigid set satisfying
some extra conditions, then every (weakly) injective homomorphism from the right-
angled Artin group A(X) into Mod±(S) is obtained, up to conjugation, by taking
powers of roots of Dehn twists in the vertices of X. Since the finite rigid sets Xi of
Theorem 1.1 all satisfy the conditions of [Aramayona and Souto 2013], we obtain
the following result; here, Tγ denotes the Dehn twist about γ .

Corollary 1.3. Let S 6= S1,2 be a connected orientable surface of finite topological
type, and consider the sequence X1 ⊂ X2 ⊂ · · · ⊂ C(S) of finite rigid sets given by
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Theorem 1.1. If ρi : A(Xi )→Mod±(S) is an injective homomorphism, then there
exist functions a, b : C(0)(S)→ Z \ {0} and fi ∈Mod±(S) such that

ρi (γ
a(γ ))= fi T b(γ )

γ f −1
i ,

for every vertex γ of Xi .

We remark that Kim and Koberda [2013] have previously shown the existence
of injective homomorphisms A(Yi )→Mod±(S) for sequences Y1 ⊂ Y2 ⊂ · · · of
subsets of C(S). Such homomorphisms may in fact be obtained by sending a
generator of A(Yi ) to a sufficiently high power of a Dehn multitwist, see [Kim and
Koberda 2015].

Plan of the paper. In Section 2 we recall some necessary definitions and basic
results from our previous paper [AL]. Section 3 deals with the problem of enlarging
a rigid set in such a way that it remains rigid. As was the case in [AL], the techniques
used in the proof of our main result differ depending on the genus of S. As a result,
we prove Theorem 1.1 for surfaces of genus g= 0, g ≥ 2 and g= 1 in Sections 4, 5
and 6, respectively.

2. Definitions

Let S = Sg,n be an orientable surface of genus g with n punctures and/or marked
points. We define the complexity of S as ξ(S)= 3g− 3+ n. We say that a simple
closed curve on S is essential if it does not bound a disk or a once-punctured disk
on S. An essential subsurface of S is a properly embedded subsurface N ⊂ S for
which each boundary component is an essential curve in S.

The curve complex C(S) of S is a simplicial complex whose k-simplices cor-
respond to sets of k + 1 isotopy classes of essential simple closed curves on S
with pairwise disjoint representatives. In order to simplify the notation, a set of
isotopy classes of simple closed curves will be confused with its representative
curves, the corresponding vertices of C(S), and the subcomplex of C(S) spanned
by the vertices. We also assume that representatives of isotopy classes of curves and
subsurfaces intersect minimally (that is, transversely and in the minimal number of
components), and denote by i(α, β) their intersection number.

If ξ(S)> 1, then C(S) is a connected complex of dimension ξ(S)−1. If ξ(S)≤ 0
and S 6= S1,0, then C(S) is empty. If ξ(S)= 1 or S = S1,0, then C(S) is a countable
set of vertices; in order to obtain a connected complex, we modify the definition of
C(S) by declaring α, β ∈ C(0)(S) to be adjacent in C(S) whenever i(α, β) = 1 if
S = S1,1 or S = S1,0, and whenever i(α, β)= 2 if S = S0,4. Furthermore, we add
triangles to make C(S) into a flag complex. In all three cases, the complex C(S) so
obtained is isomorphic to the well-known Farey complex.

We recall some definitions and results from [AL] that we will need later.
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Definition 2.1 (detectable intersection). Let S be a surface and Y ⊂ C(S) a sub-
complex. If α, β ∈ Y are curves with i(α, β) 6= 0, then we say that their intersection
is Y -detectable (or simply detectable if Y is understood) if there are two pants
decompositions Pα, Pβ ⊂ Y such that

(1) α ∈ Pα, β ∈ Pβ and Pα −α = Pβ −β.

We note that if α, β have detectable intersection, then they must fill a ξ = 1
(essential) subsurface, which we denote N (α∪β)⊂ S. For notational purposes, we
call P = Pα −α = Pβ −β a pants decomposition of S− N (α ∪β), even though it
includes the boundary components of N (α∪β). The following lemma is Lemma 2.3
in [AL].

Lemma 2.2. Let Y ⊂ C(S) be a subcomplex, and α, β ∈ Y intersecting curves with
Y-detectable intersection. If φ : Y→C(S) is a locally injective simplicial map, then
φ(α), φ(β) have φ(Y )-detectable intersection, and hence fill a ξ = 1 subsurface.

Farey neighbors. A large part of our arguments will rely on being able to recognize
when two curves are Farey neighbors, which we now define.

Definition 2.3 (Farey neighbors). Let α and β be curves on S which fill a ξ = 1
subsurface N ⊂ S. We say α and β are Farey neighbors if they are adjacent in C(N ).

The following result is a useful tool for recognizing Farey neighbors, and is a
rephrasing of Lemma 2.4 in [AL] (see also the comment immediately after it):

Lemma 2.4. Suppose α1, α2, α3, α4 are curves on S such that

(1) α2, α3 together fill a ξ = 1 subsurface N ⊂ S,

(2) i(αi , α j )= 0⇔ |i − j |> 1 for all i 6= j , and

(3) α1 and α4 have nonzero intersection number with exactly one component of ∂N.

Then α2 and α3 are Farey neighbors.

3. Enlarging rigid sets

In this section we discuss the problem of enlarging rigid sets of the curve complex.
We recall the definition of rigid set from [AL].

Definition 3.1 (rigid set). Suppose S 6= S1,2. We say that Y ⊂ C(S) is rigid if for
every locally injective simplicial map φ : Y →C(S) there exists h ∈Mod±(S) with
h|Y = φ, unique up to the pointwise stabilizer of Y in Mod±(S).

Remark. The definition above may seem somewhat different from the one used in
[AL], where we used the group Aut(C(S)) instead of Mod±(S). Nevertheless, in
light of the results of Ivanov [1997], Korkmaz [1999] and Luo [2000] mentioned
in the introduction, the two definitions are essentially the same as S 6= S1,2. For
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S = S1,2, however, we will use the group Aut(C(S)) instead of Mod±(S), due to
the existence of nongeometric automorphisms of C(S).

The main step in the proof of Theorem 1.1 is to enlarge the rigid sets constructed
in [AL] in a way that the sets we obtain remain rigid. As we mentioned in the
introduction, while one might be tempted to guess that a set that contains a rigid
set is necessarily rigid, this is far from true, as the next result shows.

Proposition 3.2. Let S = S0,n , with n ≥ 5, and X the finite rigid set identified in
[AL] (defined in Section 4). For every curve α ∈C(S)\X, the set X∪{α} is not rigid.

Proof. Let Sα be the smallest subsurface of S containing all the curves in X which
are disjoint from α. Observe that since X is rigid, it is also filling and therefore Sα is
a proper subsurface of S. Let S′α be the connected component of S\ Sα that contains
α; from the construction in [AL], every component of ∂S′α which is essential in S
is an element of X. We claim that there exists f ∈Mod(S) with the following two
properties:

(1) The restriction of f to Sα is the identity map.

(2) For every β ∈ X with i(α, β) 6= 0, we have i( f (α), β) 6= 0.

In order to construct such an f , one can for instance consider an element h∈Mod(S)
that is pseudo-Anosov on S′α and the identity on Sα; any sufficiently high power of
h will satisfy the two conditions above.

At this point, define a map φ : X∪ {α} → C(S) by φ(β)= β for all β 6= α, and
φ(α) = f (α). By construction, the map φ is locally injective and simplicial, but
cannot be the restriction of an element of Mod±(S). �

While Proposition 3.2 serves to highlight the obstacles for enlarging a rigid set
to a set that is also rigid, we now explain two procedures for doing so. First, we
recall the following definition from [AL].

Definition 3.3. Let A be a set of curves in S.

(1) A is almost filling (in S) if the set

B = {β ∈ C(0)(S) \ A | i(α, β)= 0 ∀α ∈ A}

is finite. In this case, we call B the set of curves determined by A.

(2) If A is almost filling (in S), and B = {β} is a single curve, then we say that β
is uniquely determined by A.

An immediate consequence of the definition is the following.

Lemma 3.4. Let Y be a rigid set of curves, and A ⊂ Y an almost filling set in S. If
β is uniquely determined by A, then Y ∪ {β} is rigid.
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Proof. Given any locally injective simplicial map φ : Y ∪ {β} → C(S), we let
f ∈Mod±(C(S)) be such that f |Y = φ. Then f (β) is the unique curve determined
by f (A)= φ(A). On the other hand, φ(β) is connected by an edge to every vertex
in φ(A), since φ is simplicial. Since φ is injective on the star of β, it is injective
on β ∪ A, and so φ(β) /∈ A. It follows that φ(β) is the curve uniquely determined
by φ(A), and hence f (β)= φ(β). �

In particular, this gives rise to one method for enlarging a rigid set which we
formalize as follows. Given a subset Y ⊂ C(S), define

Y ′ = Y ∪ {β | β is uniquely determined by some almost filling set A ⊂ Y }.

From this we recursively define Y = Y 0 and Y r
= (Y r−1)′ for all r > 0. Observe

that, as an immediate consequence of Lemma 3.4, we obtain:

Proposition 3.5. If Y ⊂ C(S) is a rigid set, then so is Y r for all r ≥ 0.

Remark. J. Hernández has recently proved that for every surface S of genus ≥ 3,
there exists an explicit finite subcomplex Y ⊂ C(S) such that⋃

r≥0

Y r
= C(S).

As a corollary of this result, and using the main result in [AL], he provides an
alternate proof of Theorem 1.1; compare with remark (iii) on page 258 above.

Next, we give a sufficient condition for the union of two rigid sets to be rigid.
Before doing so, we need the following definition.

Definition 3.6 (weakly rigid set). We say that a set Y ⊂ C(S) is weakly rigid if,
whenever h, h′ ∈Mod±(S) satisfy h|Y = h′|Y , then h = h′.

Alternatively, Y is weakly rigid if the pointwise stabilizer in Mod±(S) is trivial.
Note that if Y is a weakly rigid set, then so is every set containing Y .

Lemma 3.7. Let Y1, Y2 ⊂C(S) be rigid sets. If Y1∩Y2 is weakly rigid then Y1∪Y2

is rigid.

Proof. Let φ : Y1∪Y2→C(S) be a locally injective simplicial map. Since Yi is rigid
and has trivial pointwise stabilizer in Mod±(S) (because Y1∩Y2 does), there exists
a unique hi ∈Mod±(S) such that hi |Yi = φ|Yi . Finally, since Y1∩Y2 is weakly rigid
we have h1 = h2 = h. Therefore h|Y1∪Y2 = φ, and the result follows. �

We now proceed to describe our second method for enlarging a rigid set. We
start with some definitions and notation. We write Tα for the Dehn twist along a
curve α. Recall that the half-twist Hα about a curve α is defined if and only if the
curve cuts off a pair of pants containing two punctures of S. Furthermore, there is
exactly one half-twist about α if in addition S is not a four-holed sphere.
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Definition 3.8. Farey neighbors α and β are twistable if either

(1) N (α ∪β) is a one-holed torus, or

(2) N (α ∪β) is a four-holed sphere and Hα, Hβ are both defined and unique.

In this situation we define fα = Tα and fβ = Tβ in the first case and fα = Hα and
fβ = Hβ in the second. We call fα, fβ the twisting pair for α, β.

In case (1) we call α and β toroidal and in case (2) we call them spherical.

We note that whether twistable Farey neighbors α and β are toroidal or spherical
can be distinguished

(i) by i(α, β) (whether it is 1 or 2),

(ii) by the homeomorphism types of α and β (whether they are nonseparating
curves or they cut off a pair of pants), or

(iii) by the homeomorphism type of N (α ∪β) (whether it is a one-holed torus or a
four-holed sphere).

The following well-known fact describes the common feature of these two situations.

Proposition 3.9. Suppose α, β are twistable Farey neighbors and that fα, fβ is
their twisting pair. Then

fα(β)= f −1
β (α) and f −1

α (β)= fβ(α),

and these are the unique common Farey neighbors of both α and β.

Sets of twistable Farey neighbors which interact with each other frequently occur
in our rigid sets. We distinguish one particular type of such sets in the following
definition.

Definition 3.10. Suppose Y is a rigid subset of C(S) and A = {α1, . . . , αk} ⊂ Y .
We say that A is a closed string of Farey neighbors in Y provided the following
conditions are satisfied, counting indices modulo k:

(1) The curves αi , αi+1 are twistable Farey neighbors with twisting pair fαi , fαi+1 .

(2) i(αi , αi+1) 6= 0 is Y-detectable.

(3) i(αi , α j )= 0 if i − j 6= ±1 modulo k.

(4) αi , αi+1, αi+2, αi+3 satisfy the hypothesis of Lemma 2.4.

Given a closed string of twistable Farey neighbors A ⊂ Y , we define

YA = Y ∪ { f ±1
αi
(α j )}

k
i, j=1.

Remark. Two comments are in order:
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(1) There is a priori some ambiguity in the notation as fαi can be defined as part
of the twisting pair for αi , αi+1 as well as for αi−1, αi . However, if αi is part
of two pairs of different twistable Farey neighbors in Y , then they must both
be toroidal or both spherical as this is determined by the homeomorphism type
of αi . Consequently, the mapping class fαi is independent of what twistable
pair it is included in.

(2) Given condition (3) of Definition 3.10, the set YA has a more descriptive
definition. Namely,

YA = Y ∪ { f ±1
αi
(α j ) | i − j =±1 modulo k}.

See Figure 1 for an example of a closed string of twistable Farey neighbors and
two of their images under the twisting pair.

The situation in the next proposition arises in multiple settings, and provides a
way to extend a rigid set to a larger set which is nearly rigid.

Proposition 3.11. Let Y be a rigid subset of C(S) and A = {α1, . . . , αk} ⊂ Y a
closed string of twistable Farey neighbors in Y . Then, counting indices modulo k:

(1) f ±1
αi
(αi+1)= f ∓1

αi+1
(αi ) are the unique common Farey neighbors of αi and αi+1.

(2) i( f ±1
αi
(α j ), α j ′) 6= 0 for all i and all

( j, j ′) ∈ {(i + 1, i), (i + 1, i + 1), (i − 1, i), (i − 1, i − 1)}.

Furthermore, these intersections are YA-detectable.

α1

α2α3

α4

α5

Figure 1. The set Y = A = {α1, . . . , α5} is the rigid set X(S0,5)

identified in [Luo 2000] and [AL], and is a closed string of twistable
Farey neighbors. The red curves in the picture are fα1(α2), fα2(α1),
for the twistable pair α1, α2. The automorphism group of YA

that fixes Y pointwise is generated by an orientation-reversing
involution σ : S0,5→ S0,5 that fixes αi and interchanges fαi and
fαi+1 , for all i (mod 5).
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(3) For any locally injective simplicial map φ : YA→ C(S),

φ( fαi (αi+1))= φ( f −1
αi+1

(αi )) and φ( f −1
αi
(αi+1))= φ( fαi+1(αi ))

are the unique Farey neighbors of φ(αi ) and φ(αi+1).

Proof. Conclusion (1) follows immediately from Definition 3.10 part (1) and
Proposition 3.9.

Next we prove conclusion (2). Fix ( j, j ′) as in the proposition. Then since
i(αi , α j ) 6= 0, it follows that fαi (α j ) nontrivially intersects both αi and α j . Since
α j ′ is one of these latter two curves, the first statement follows. By part (2) of
Definition 3.10, i(αi , α j ) 6= 0 is Y-detectable. Let Pαi , Pα j ⊂ Y be pants de-
compositions containing αi and α j , respectively, as in Definition 2.1, and set
P = Pαi − αi = Pα j − α j . Then since fαi is supported in N (αi ∪ α j ) which is
contained in the complement of P , we can define two more pants decompositions

P f ±1
αi (α j )

= P ∪ f ±1
αi
(α j )⊂ YA.

Together with Pαi and Pα j these are sufficient to detect all the intersections claimed.
In all cases, P ⊂ Y is the pants decomposition of the complement of N (αi ∪α j ),
as required.

For conclusion (3), we explain why φ( fαi (αi+1)) and φ(αi ) are Farey neighbors.
The other three cases are similar. For this, we consider the set

{φ( fαi (αi−1)), φ(αi )= φ( fαi (αi )), φ( fαi (αi+1)), φ(αi+2)= φ( fαi (αi+2))}.

The equalities here follow from the disjointness property (3) of Definition 3.10 since
a Dehn twist or half-twist has no effect on a curve that is disjoint from the curve
supporting the twist. The goal is to prove that all three conditions of Lemma 2.4
are satisfied.

By part (2) of the proposition and Lemma 2.2 it follows that any two consecutive
curves in this set have φ(YA)-detectable intersections and fill a ξ = 1 subsurface.
Therefore condition (1) of Lemma 2.4 is satisfied for this set of curves. Since
αi−1, αi , αi+1, αi+2 satisfy condition (2) of Lemma 2.4 and the given set is the
image of these under the simplicial map φ ◦ fαi , these curves also satisfy condition
(2) of Lemma 2.4.

Finally, we wish to verify that condition (3) of Lemma 2.4 is satisfied. Since Y
is rigid, there exists f ∈Mod±1(S) inducing φ|Y . We also note that

N = N (αi ∪αi+1)= N (αi ∪ fαi (αi+1))

has only one boundary component — all other holes of this subsurface (if any) must
be punctures of S. Since the pants decomposition of the complement of N is

P = Pαi −αi = Pαi+1 −αi+1 = P fαi (αi+1)− fαi (αi+1)
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and is contained in Y , we see that φ(P) = f (P). Because this is used in the
φ(YA)-detection of both i(φ(αi ), φ(αi+1)) 6= 0 and i(φ(αi ), φ( fαi (αi+1))) 6= 0, we
have

f (N )= N ( f (αi )∪ f (αi+1))= N (φ(αi )∪φ(αi+1))= N (φ(αi )∪φ( fαi (αi+1))).

Consequently, this surface has only one boundary component, and so condition (3)
of Lemma 2.4 is satisfied. �

Proposition 3.12. If Y is a rigid subset of C(S) and A = {α1, . . . , αk} is a closed
string of twistable Farey neighbors in Y , then any locally injective simplicial map
φ : YA→ C(S) which is the identity on Y satisfies φ(YA)= YA. Furthermore, the
subgroup of the automorphism group of YA fixing Y pointwise has order at most 2. If
this subgroup is nontrivial, then it is generated by the involution σ : YA→ YA given
by σ( fαi (α j ))= f −1

αi
(α j ) for all i, j (or equivalently, for all i, j with i − j =±1

(modulo k)).

Proof. Since f ±1
αi
(αi+1) is the unique pair of common Farey neighbors of αi , αi+1,

and since φ(αi ) = αi , φ(αi+1) = αi+1, Proposition 3.11 implies that for every i
and j with i − j =±1 (modulo k), we have

{φ( fαi (α j )), φ( f −1
αi
(α j ))} = { fαi (α j ), f −1

αi
(α j )},

and so the first claim of the proposition follows.
Next we suppose φ is any automorphism of Y that restricts to the identity

on Y . We claim that if there is some i, j with i − j = ±1 (modulo k) so that
φ( fαi (α j ))= f −1

αi
(α j ), then this is true for every i, j with i − j =±1 (modulo k).

To this end, suppose that φ( fαi (αi+1)) = f −1
αi
(αi+1) for some index i (the case

φ( fαi (αi−1))= f −1
αi
(αi−1) is similar). Then note that

i( fαi (αi−1), fαi (αi+1))= 0= i( f −1
αi
(αi−1), f −1

αi
(αi+1))

while

i( fαi (αi−1), f −1
αi
(αi+1)) 6= 0 6= i( f −1

αi
(αi−1), fαi (αi+1)).

Since φ is simplicial and locally injective, we must have φ( fαi (αi−1))= f −1
αi
(αi−1)

and φ( f −1
αi
(αi−1))= fαi (αi−1). Consequently,

φ( fαi−1(αi ))= φ( f −1
αi
(αi−1))= fαi (αi−1)= f −1

αi−1
(αi ).

Repeating this argument again, it follows that φ( fαi (αi+1))= f −1
αi
(αi+1) for all i ,

as required. Thus, in this case, φ is given by σ as in the statement of the proposition.
If we are not in the situation of the previous paragraph, then it follows that φ is

the identity, completing the proof. �
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After this discussion we are in a position to explain how to obtain an exhaustion of
C(S) by finite rigid sets. Here, Mod(S) denotes the index 2 subgroup of Mod±(S)
consisting of those mapping classes that preserve orientation.

Proposition 3.13. Let Y ⊂ C(S) be a finite rigid set such that Mod(S) · Y = C(S).
Suppose there exists G ⊂ Y such that

(1) the set { fα | α ∈ G} generates Mod(S), and

(2) Y ∩ fα(Y ) is weakly rigid for all α ∈ G.

Then there exists a sequence Y = Y1 ⊂ Y2 ⊂ · · · ⊂ Yn ⊂ · · · such that Yi is a finite
rigid set, Yi has trivial pointwise stabilizer in Mod±(S) for all i , and⋃

i∈N

Yi = C(S).

Proof. First, the fact that Y is rigid implies that fα(Y ) is rigid for all α ∈ Y .
Therefore, the set Y2 := Y ∪ fG(Y ) is also rigid by assumption (2) and repeated
application of Lemma 3.7. We now define, for all n ≥ 2,

Yn+1 := Yn ∪ fG(Yn).

By induction, we see that Yn is rigid for all n and so the first claim follows. Next,
the pointwise stabilizer of Y in Mod±(S) is trivial because Y ∩ fα(Y ) is weakly
rigid. Therefore, Yn has trivial pointwise stabilizer in Mod±(S), as Y ⊂ Yn for all n.
Finally, since { fα | α ∈ G} generates Mod(S) and Mod(S) · Y = C(S), it follows
that ⋃

i∈N

Yi = C(S),

which completes the proof. �

We end this section by explaining how Theorem 1.1 implies that curve complexes
are simplicially rigid

Proof of Corollary 1.2. Let S 6= S1,2, and let φ : C(S) → C(S) be a locally
injective simplicial map. Let X1 ⊂ X2 ⊂ · · · be the exhaustion of C(S) provided
by Theorem 1.1. Since Xi is rigid and has trivial pointwise stabilizer in Mod±(S),
there exists a unique mapping class hi ∈Mod±(S) such that hi |Xi = φ|Xi . Finally,
Lemma 3.7 implies that hi = h j for all i, j , and thus the result follows. �

4. Punctured spheres

In this section we prove Theorem 1.1 for S = S0,n . If n ≤ 3 then C(S) is empty and
thus the result is trivially true. The case n= 4 is dealt with at the end of this section,
as it needs special treatment. Thus, from now on we assume that n ≥ 5. As in [AL]
we represent S as the double of an n-gon 1 with vertices removed, and define X as
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Figure 2. Octagon and arcs for S0,8.

the set of curves on S obtained by connecting every nonadjacent pair of sides of 1
by a straight line segment and then doubling; see Figure 2 for the case n = 8.

Note that the pointwise stabilizer of X in Mod±(S) has order two, and is generated
by an orientation-reversing involution i : S→ S that interchanges the two copies
of 1. The rigidity of the set X, which was established in [AL], may be rephrased
as follows:

Theorem 4.1 [AL]. For any locally injective simplicial map φ : X→ C(S), there
exists a unique h ∈Mod(S) such that h|X = φ, unique up to precomposing with i .

We are going to enlarge the set X in the fashion described in Section 3. We
number the sides of1 in a cyclic order, and denote by α j the curve defined by the arc
on 1 that connects the sides with labels j and j + 2 mod n. Let A = {α1, . . . , αn};
in the terminology of [AL], A is the set of chain curves of X. Observe that every
element of A bounds a disk containing exactly two punctures of S, and that if two
elements of A have nonzero intersection number then they are Farey neighbors
in X. Thus we see that A is a closed string of n twistable Farey neighbors, and
may consider the set XA from Definition 3.10. As a first step towards proving
Theorem 1.1 for S0,n , we show that XA is rigid. Since the pointwise stabilizer of
XA is trivial, this amounts to the following statement:

Theorem 4.2. For any locally injective simplicial map φ :XA→ C(S), there exists
a unique g ∈Mod±(S) such that g|XA = φ.

Proof. Let φ : XA→ C(S) be a locally injective simplicial map. By Theorem 4.1,
there exists h ∈Mod±(S) such that h|X = φ|X, unique up to precomposing with the
involution i . Since i fixes every element of X, after precomposing φ with h−1 we
may assume that φ|X is the identity map. We have φ(XA)=XA by Proposition 3.12;
moreover, the automorphism group of XA fixing X pointwise has order two, gen-
erated by the involution σ : XA → XA that interchanges fαi (αi+1) and f −1

αi+1
(αi )

for all i . Since i |XA = σ , up to precomposing φ with i , we deduce that φ|XA is the
identity, as we wanted to prove. �
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We now prove Theorem 1.1 for spheres with punctures:

Proof of Theorem 1.1 for S = S0,n , n ≥ 5. Let XA be the set constructed above,
which is rigid and has trivial pointwise stabilizer in Mod±(S), by Theorem 4.2.
The set {Hα | α ∈ A} generates Mod(S); see, for instance, Corollary 4.15 of [Farb
and Margalit 2012]. In addition, XA ∩ Hα(XA) is weakly rigid for all α ∈ A, as it
contains A and Hαi (α j ) for any αi , α j disjoint from α. Finally, by inspection we
see Mod(S) ·XA = C(S). Therefore, we may apply Proposition 3.13 to the sets
Y =XA and G = A to obtain the desired sequence XA = Y1 ⊂ Y2 ⊂ · · · ⊂ Yn ⊂ · · ·

of finite rigid sets. �

Proof of Theorem 1.1 for S = S0,4. As mentioned in the introduction, in this case
C(S) is isomorphic to the Farey complex. It is easy to see, and is otherwise explicitly
stated in [AL], that any triangle in C(S) is rigid. From this, plus the fact that any
edge in C(S) is contained in exactly two triangles, it follows that any subcomplex of
C(S) that is homeomorphic to a disk is also rigid. Consider the dual graph of C(S)
(which is in fact a trivalent tree T ), equipped with the natural path metric. Let Y1

be a triangle in C(S), and define Yn to be the union of all triangles of C(S) whose
corresponding vertices in T are at distance at most n from the vertex corresponding
to Y1. Then the sequence (Yn)n∈N gives the desired exhaustion of C(S). �

5. Closed and punctured surfaces of genus g ≥ 2

In this section we consider the case of a surface S of genus g≥ 2 with n≥ 0 marked
points. First observe that if g = 2 and n = 0, then since C(S2,0) ∼= C(S0,6) [Luo
2000], the main theorem for S2,0 follows from the case S0,6, already proved in
Section 4. We therefore assume that n ≥ 1 if g = 2. Once we have recalled some
properties of X⊂ C(S) from [AL], we sketch the proof of Theorem 1.1 for closed
surfaces as it is simpler.

We let X⊂ C(S) denote the finite rigid set constructed in [AL]. The definition
of the set X is somewhat involved and we will not recall it in full detail. Instead,
we first note that X contains the set of chain curves

C= {α0
0, . . . , α

n
0 , α1, . . . , α2g+1}

depicted in Figure 3. For notational purposes we also write α0 = α
1
0 (or in case

n = 0, α0 = α
0
0). In addition to these curves, X contains every curve which occurs

as the boundary component of a subsurface of S filled by a subset A ⊂ C, provided
its union is connected in S and has one of the following forms:

(1) A = {αi
0, α

j
0 , αk} where 0≤ i ≤ j ≤ n and k = 1 or 2g+ 1.

(2) A = {αi
0, α

j
0 , αk, αk+1} where 0≤ i ≤ j ≤ n and k = 1 or 2g.
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(3) A = {αi | i ∈ I } where I ⊂ {0, . . . , 2g+ 1} is an interval (modulo 2g+ 2). If
n > 0 and A has an odd number of curves, then we additionally require that
the first and last numbers in the interval I be even.

See Figure 4 for some key examples.
The pointwise stabilizer of X in Mod±(S) is trivial. Thus the rigidity of the set

X, established in [AL], may be rephrased as follows.

Theorem 5.1 [AL]. Let S= Sg,n with g≥ 2 and n≥ 0 (and n≥ 1 if g= 2). For any
locally injective simplicial map φ : X→ C(S), there exists a unique h ∈Mod±(S)
such that h|X = φ.

Sketch of Theorem 1.1 for closed surfaces. Since the closed case avoids some of
the technicalities that arise in the general case, we sketch the proof here. We begin
by noting that in [AL] it is shown that X contains every curve which occurs as the
boundary component of a subsurface of S filled by a subset A ⊂ C, provided its
union is connected in S, without any further qualifications on the set A.

We enlarge X to X2
= (X′)′ and consider the set X2

∪TC(C). The set C is a closed
string of twistable Farey neighbors (that the nonzero intersections are X2-detectable
follows from their X-detectability proved in [AL]). By Proposition 3.12, this set
will be rigid if we can rule out the potential order two symmetry. It thus suffices
to show that one of the curves in TC(C) is already in X2. This is illustrated for
Tα2g (α2g−1) in Figure 8 (the pictures for a closed surface are obtained by ignoring
punctures and any curves which subsequently become trivial, and identifying pairs

α2g+1

α2g

α1

α2

α3

α2
0

α1
0

α0
0

Figure 3. Chain curves C on a genus 4 surface with 2 marked points.

β
ε1 2

σ 2 2

Figure 4. Examples of subsets of C (in blue), together with the
boundary components (in red) of the subsurface filled by them.
The red curves are in X.
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that become isotopic). Therefore, X2
∪TC(C) is indeed rigid. One can also find an

appropriate closed string of twistable Farey neighbors containing the curve β shown
in Figure 4 (see Lemma 5.5 below), and so it follows that X2

∪ TC(C)∪ Tβ(C) is
also rigid. Since Tα0, . . . , Tα2g+1, Tβ generate Mod(S) (see, e.g., [Farb and Margalit
2012]), Theorem 1.1 follows from Proposition 3.13.

The general case. It will be necessary to refer to some of the curves in X by name,
so we describe the naming convention briefly in those cases, along the lines of [AL].
We have already described the names of the elements of C. For 0 < i < j ≤ n
we let εi j be the boundary component of the subsurface N (α1 ∪ α

i−1
0 ∪ α

j
0 ) that

also bounds a ( j − i + 1)-punctured disk in S (containing the i-th through j-th
punctures). We call the curves εi j outer curves; see Figure 4. For 0< i ≤ j ≤ n,
we also consider the other boundary component of N (α1 ∪ α

i−1
0 ∪ α

j
0 ); this is a

separating curve dividing the surface into two (punctured) subsurfaces of genus 1
and g−1 respectively. We denote this curve σ i j . One more curve in X that we refer
to as β is shown in Figure 4, and is a component of the boundary of the subsurface
N (α2g−2 ∪α2g−1 ∪α2g).

The strategy for proving Theorem 1.1 for surfaces of genus g ≥ 2 is similar in
spirit to the one for punctured spheres, although considerably more involved. The
main idea is to produce successive rigid enlargements of the rigid set X identified
in [AL], until we are in a position to apply Proposition 3.13. We begin by replacing
X with X′, which is rigid by Proposition 3.5. For every 0< j ≤ n, let

A j = {σ
i j
| 0< i ≤ j} ∪ {σ j i

| j ≤ i ≤ n} ∪ {α1, α3, α4, α5, . . . , α2g+1}.

The set A j is almost filling and uniquely determines a curve denoted α j
1 ; see

Figure 5. The naming is suggestive, as all α j
1 are homotopic to α1 upon filling in

the punctures.
We can similarly find a subset A0 (shown in the left of Figure 6) which is almost

filling and uniquely determines a curve denoted α0
1 (shown on the right of Figure 6),

which bounds a disk enclosing every puncture of S. Consequently, α j
1 ∈ X

′ for all
j = 0, . . . , n.

α2
1

Figure 5. The surface on the left contains the set A2 which
uniquely determines α2

1 .
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α0
1

Figure 6. The curves A0 ⊂ X (left) and the curve α0
1 ∈ X

′ (right).

β+A

β−A
A

A′

Figure 7. The sets A = {α1, . . . , α5} ⊂ C and A′ ⊂ X (left) and
the curves β±A ∈ X

′ determined by A∪ A′ (right).

Punctured surface promotion. One issue that arises only in the case n > 0 is that
for intervals I ⊂ {0, . . . , 2g + 1} (modulo 2g + 2) of odd length, the boundary
curves of the neighborhood of the subsurface filled by A = {αi | i ∈ I } are only
contained in X when I starts and ends with even indexed curves. Passing to the set
X′ allows us to easily enlarge further to a set which rectifies this problem.

Specifically, we define X1 to be the union of X′ together with boundary compo-
nents of subsurfaces filled by sets A= {αi , αi+1, . . . , α j } where 0< i ≤ j ≤ 2g−1
and i, j are both odd. See Figure 7 for examples. Let Bo be the set of all curves
defined by such sets A.

Before we proceed, we describe this set in more detail. Cutting S open along
α1∪α3∪· · ·∪α2g−1∪α2g+1 we obtain two components2+o and2−o . These are each
spheres with holes: 2+o is the sphere in “front” in Figure 3, which is a (g+ n+ 1)-
holed sphere containing the n punctures of S, while 2−o is the (g+1)-holed sphere
in the “back” in Figure 3. For every A={αi , αi+1, . . . , α j } where 0< i < j ≤ 2g−1
and i, j are both odd, the boundary of the subsurface filled by A has exactly two
components β±A with β+A ⊂2

+
o and β−A ⊂2

−
o (possibly peripheral in2±o depending

on A). Furthermore, for every such set A, there is a “complementary” set A′ ⊂ X

such that A∪ A′ is almost filling, and such that {β±A } is the set determined by A∪ A′.
See Figure 7.

Lemma 5.2. For all g ≥ 2 and n ≥ 1, the set X1 is rigid and has trivial pointwise
stabilizer in Mod±(Sg,n).

Proof. First, X1 has trivial pointwise stabilizer since X does. Given any locally
injective simplicial map φ : X1→ C(S), there exists a unique h ∈Mod±(S) such
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that φ = h|X′ , by Theorem 5.1 and Proposition 3.5. Composing with the inverse
of h if necessary, we can assume φ is the identity on X′. So we need only show
that φ(γ ) = γ for all γ ∈ X1−X′. With respect to the notation above, any such
curve is β±A for A= {αi , αi+1, . . . , α j }, where 0< i ≤ j ≤ 2g−1 and i, j are both
odd. Since A∪ A′ is almost filling, φ({β±A })= {β

±

A }. Now, for A= {α1, α2, α3}, we
have i(β+A , α

1
0) 6= 0 and i(β−A , α

1
0)= 0; here, α1

0 is the curve depicted in Figure 6.
Therefore φ(β+A ) = β

+

A , as φ is locally injective and simplicial. Finally, an easy
connectivity argument involving the set of curves {β±A }A yields the desired result. �

Half the proof and the case of one or fewer punctures. We now enlarge the set
X1 ⊂ C(S) from Lemma 5.2 to X2

1 = (X
′

1)
′
⊂ C(S). According to Proposition 3.5,

X2
1 is rigid, and since the pointwise stabilizer of X is trivial, so is the pointwise

stabilizer of X2
1. We will need the following lemma; see Figure 3 for the labeling

of the curves.

Lemma 5.3. For any g≥2 and n≥0 (with n≥1 if g=2), we have Tα2g (α2g−1)∈X
2
1.

Proof. This requires a series of pictures, slightly different for the case g ≥ 3 and
for g = 2.

Case 1: g ≥ 3. We refer the reader to Figure 8; although we have only drawn the
figures for g = 3 and n = 2, it is straightforward to extend them to all g ≥ 3 and
n ≥ 0. The upper left figure shows an almost filling set of curves contained in X1,
determining uniquely the curve on the upper right figure, which is thus in X′1. This
curve is then used to produce an almost filling set, depicted on the lower left hand
figure, that uniquely determines Tα2g (α2g−1), shown on the right. Thus we see that
Tα2g (α2g−1) ∈ X

2
1, as claimed.

Figure 8. Illustrating Tα2g (α2g−1) in X2
1, when g = 3. The almost

filling set on the left (blue) uniquely determines the curve in the
right figure (red).
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Figure 9. Illustrating Tα2g (α2g−1) in X2
1, when g = 2 and n ≥ 1.

The almost filling set on the left (blue) uniquely determines the
curve in the right figure (red).

Case 2: g = 2 and n ≥ 1. In this case a different set of pictures is required; see
Figure 9. The upper left hand figure shows an almost filling set of curves that is
contained in X1 and uniquely determines the curve shown on the upper right. This
curve is then used to produce an almost filling set, depicted in the middle left picture,
which is contained in X′1 and uniquely determines the curve in the middle right
figure. We now make use of this new curve to produce an almost filling set (lower
left) that is contained in X2

1 and uniquely determines Tα2g (α2g−1) (lower right). �

We claim that the set X2
1 ∪ TC(C) is rigid. More concretely:

Lemma 5.4. Let φ :X2
1∪TC(C)→C(S) be a locally injective simplicial map. Then

there exists a unique h ∈Mod±(S) such that h|X2
1∪TC(C) = φ.

Proof. Let φ :X2
1∪TC(C) be a locally injective simplicial map. Since X2

1 is rigid and
its pointwise stabilizer in Mod±(S) is trivial, there exists a unique h ∈Mod±(S)
such that h|X2

1
= φ|X2

1
. Precomposing φ with h−1, we may assume that in fact φ|X2

1
is the identity map.

For i = 0, . . . , n, Ci = {α
i
0, α1, . . . , α2g+1} is a closed string of twistable Farey

neighbors in X2
1 (the fact that the nonzero intersection numbers between these curves
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is X-detectable, hence X2
1-detectable, is shown in the proofs of Theorem 5.1 and

6.1 in [AL]). Consider the set X2
1∪ TCi (Ci ), and observe that, in the terminology of

Definition 3.10, it equals YA for Y = X2
1 and A = Ci . By Proposition 3.12,

φ(X2
1 ∪ TCi (Ci ))= X2

1 ∪ TCi (Ci );

moreover, the automorphism group of X2
1 ∪ TCi (Ci ) fixing X2

1 pointwise has order
at most two. But, by Lemma 5.3, Tα2g (α2g−1) ∈X

2
1 and thus this group is trivial. In

other words, we have shown that the set X2
1 ∪ TCi (Ci ) is rigid.

Now, X2
1 ∪ TC0(C0)∪ TC1(C1) is also rigid by Lemma 3.7, since

(X2
1 ∪ TC0(C0))∩ (X

2
1 ∪ TC1(C1))

is weakly rigid as it contains X2
1. Since TC(C) =

⋃n
i=0 TCi (Ci ), we may repeat

essentially this same argument n− 1 more times to conclude X2
1 ∪ TC(C) is rigid,

as required. �

Next, we provide a further enlargement of our rigid set. Let β be the curve
depicted in Figure 4, which is one of the boundary components of the surface
N (α2g−2 ∪α2g−1 ∪α2g). We claim:

Lemma 5.5. The set X2
1 ∪ TC(C)∪ Tβ(C) is rigid.

Proof. Let φ :X2
1∪TC(C)∪Tβ(C)→C(S) be a locally injective simplicial map. By

Lemma 5.4, X2
1∪TC(C) is rigid and thus, up to precomposing φ with an element of

Mod±(S), we may assume that φ|X2
1∪TC(C) is the identity. The set

A = {α2g, α2g−1, α2g−2, β, α2g+1} ⊂ X2
1

is a closed string of twistable Farey neighbors in X2
1 (again, detectability of

the nonzero intersection numbers is shown in [AL]). Therefore, we may apply
Proposition 3.12 to X = X2

1 ∪ TC(C) and A to deduce that φ(XA) = XA; observe
that XA =X2

1∪ TC(C)∪ Tβ(C). Moreover, the automorphism group of XA fixing X

pointwise is trivial, by Lemma 5.4, and thus the result follows. �

Proof of Theorem 1.1 for g ≥ 2 and n ≤ 1. Let Y =X2
1∪TC(C)∪Tβ(C). When S is

closed or has one puncture, the Dehn twists about chain curves and the Dehn twist
about the curve β generate Mod(S); see, for example, Corollary 4.15 of [Farb and
Margalit 2012]. For γ ∈ C∪ {β}, the set

Tγ (Y )∩ (Y )

contains C, together with Tα(α′) for any α, α′ ∈ C which are disjoint from γ . In
particular, this set is weakly rigid. By inspection, the Mod(S)-orbit of Y is all
of C(S), and so by Proposition 3.13, this set suffices to prove the theorem. �



276 JAVIER ARAMAYONA AND CHRISTOPHER J. LEININGER

Multiple punctures. When Sg,n has n ≥ 2 (and g ≥ 2), the twists in the curves C
and {β} do not generate the entire mapping class group. In this case, one needs to
add the set of half-twists about the outer curves εi (i+1) bounding twice-punctured
disks; see again Corollary 4.15 of [Farb and Margalit 2012]. Because of this, and in
light of Proposition 3.13, when n≥ 2 we would like to enlarge our rigid set from the
previous subsection by adding half-twists of chain curves about outer curves εi (i+1).
In fact, denoting this set of outer curves by OP = {ε

i (i+1)
}

n−1
i=1 we shall show that

these curves are already in X2
1. Specifically, we prove:

Lemma 5.6. We have HOP (C)⊂ X2
1.

Proof. If α ∈ C and ε j ( j+1)
∈ OP , then we must show that Hε j ( j+1)(α) ∈ X2

1 for
each j = 1, . . . , n−1. This is clear if i(α, ε j ( j+1))= 0, since then Hε j ( j+1)(α)= α.
The intersection number is nonzero only when α = α j

0 , so it suffices to consider
only this case.

To prove Hε j ( j+1)(α
j
0 ) ∈X

2
1, we need only exhibit the almost filling sets from X′1

uniquely determining this curve. This in turn requires an almost filling set from X1.
As before, we provide the necessary curves in a sequence of two figures. First,
the almost filling set on the left of Figure 10 is contained in X′, and hence in X1

(compare with Figure 5), and uniquely determines the curve γ1 depicted on the
right of the same figure. Therefore, γ1 ∈ X

′

1. Figure 11 is then an almost filling
set in X′1, and uniquely determines the curve on the right of the same figure. This
curve is Hε j ( j+1)(α

j
0 ), and so completes the proof. �

We are finally in a position to prove Theorem 1.1 for surfaces of genus g ≥ 2
and n ≥ 2.

Figure 10. Determining the curve γ1.

Figure 11. Determining the curve Hεi (i+1)(αi
0).
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Proof of Theorem 1.1 for S = Sg,n , g ≥ 2, n ≥ 2.. The set Y = X2
1 ∪ TC(C)∪ Tβ(C)

is rigid by Lemma 5.6, and has trivial pointwise stabilizer in Mod±(S) since X does.
Moreover, Mod(S)·Y =C(S) by inspection. Consider the subset G = C∪ {β} ∪OP ;
as mentioned before, the (half-)twists about elements of G generate Mod(S). In addi-
tion, for every α∈G, Y∩ fα(Y ) is weakly rigid. Thus we can apply Proposition 3.13
to Y and G, hence obtaining the desired exhaustion of C(S). �

6. Tori

In this section we will prove Theorem 1.1 for S = S1,n , for n ≥ 0. First, if n ≤ 1
then C(S) is isomorphic to the Farey complex, and thus the result follows as in
the case of S0,4; see Section 4. For n = 2, Theorem 1.1 is not true as stated due
to the existence of nongeometric automorphisms of C(S), as mentioned in the
introduction. However, in light of the isomorphism C(S0,5)∼= C(S1,2) [Luo 2000],
the same statement holds after replacing the group Mod±(S) by Aut(C(S)) in the
definition of rigid set, by the results of Section 4.

Therefore, from now on we assume n ≥ 3. In [AL], we constructed a finite rigid
set X described as follows. View S1,n as a unit square with n punctures along the
horizontal midline and the sides identified. The set X contains a subset C⊂ X of
n+ 1 chain curves

C= {α1, . . . , αn} ∪ {β}

where α1, . . . , αn are distinct curves which appear as vertical lines in the square and
β is the curve which appears as a horizontal line; see Figure 12. We assume that
the indices on the αi are ordered cyclically around the torus, and that the punctures
are labeled so that the i-th puncture lies between αi and αi+1. The boundaries of
the subsurfaces filled by connected unions of these chain curves form a collection

Figure 12. Chain curves on the left, and some examples of outer
curves on the right, in S1,5.
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of curves, denoted O which we refer to as outer curves. Then

X= C∪O.

This set has a nontrivial pointwise stabilizer in Mod±(S1,n), which can be realized
as the (descent to S1,n of the) horizontal reflection of the square through the midline
containing the punctures. Denoting this involution r : S1,n→ S1,n , we summarize
the result of [AL] in the following theorem.

Theorem 6.1 [AL]. For any locally injective simplicial map φ :X→ C(S1,n) there
exists h ∈Mod±(S1,n) such that h|X=φ. Moreover, h is unique up to precomposing
with r .

The strategy of proof is again similar to that of previous sections, although the
technicalities are different, and boils down to producing an enlargement of the set
X so that Proposition 3.13 can be applied.

We begin by enlarging the set X as follows. We let δi be the curve coming from
the vertical line through the i-th puncture in the square. For every 1 ≤ i ≤ n, let
β+i be the curve obtained from β by pushing it up over the i-th puncture. More
precisely, we consider the point-pushing homeomorphism fi : S1,n → S1,n that
pushes the i-th puncture up and around δi , and then let β+i = fi (β). We similarly
define β−i = f −1

i (β), and set β±i (i+1) = f ±1
i+1 f ±1

i (β), where the subscripts are taken
modulo n. See Figure 13.

Let

X1 = X∪ {β±i | 1≤ i ≤ n} ∪ {β±i (i+1) | 1≤ i ≤ n}

with indices in the last set taken modulo n. We first prove that this set is rigid;
since the pointwise stabilizer of X1 in Mod±(S1,n) is trivial, this amounts to the
following proposition.

Figure 13. Curves β−2 , β+3 , and β+4 5 on S1,5.
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Proposition 6.2. For any locally injective simplicial map φ : X1→ C(S1,n), there
exists a unique h ∈Mod±(S1,n) so that h|X1 = φ.

The proof of this proposition will require a repeated application of Lemma 2.4,
and as such, we must verify that certain quadruples of curves satisfy the hypotheses
of that lemma. We will need to refer to the outer curves by name. To this end, note
that since any outer curve surrounds a set of (cyclically) consecutive punctures, we
can determine an outer curve by specifying the first and last puncture surrounded.
Consequently, we let εi j denote the outer curve surrounding all punctures from
the i-th to the j-th, with all indices taken modulo n. Observe that since the set of
punctures is cyclically ordered, we do not need to assume that i < j in the definition
of εi j . We will need the following lemma.

Lemma 6.3. For each 1≤ i ≤ n, consider the following four quadruples of curves
in X1, with indices taken modulo n:

• β±(i−1) i , ε
(i+1) i , β±i , ε

(i−1) i ,

• β±i (i+1), ε
i (i−1), β±i , ε

i (i+1).

Each of these satisfies the hypothesis of Lemma 2.4. Furthermore, the nonzero
intersections are all X1-detectable. Consequently, ε(i+1) i and εi (i−1) are the unique
Farey neighbors of β−i and β+i .

Proof. The fact that the four quadruples of curves each satisfy the hypothesis of
Lemma 2.4 is clear by inspection. See the left side of Figure 14 for the case

β−(i−1) i , ε
(i+1) i , β−i , ε

(i−1) i .

The four-holed sphere N filled by the Farey neighbors ε(i+1) i , β±i and εi (i−1), β±i
has holes corresponding to the i-th puncture and the curves β and ε(i+1) (i−1); see the
right side of Figure 14. Only ε(i+1) (i−1) intersects β±(i−1) i , β

±

i (i+1), ε
(i−1) i , εi (i+1)

nontrivially, as required for Lemma 2.4.

Figure 14. The curves β−2 3, ε
4 3, β−3 , ε

2 3 on the left. The four-
holed sphere filled by ε4 3 and β±3 on the right.
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Figure 15. We use {β, β−2 3, ε
4 5, ε4 1

} to detect i(β−3 , ε
2 3) 6= 0.

To see that all the intersections are X1-detectable, we need only exhibit the
necessary curves in X1 determining a pants decomposition of S−N . See Figure 15
for the curves necessary to detect i(β−i , ε

(i−1) i ) 6= 0. We leave the other cases to
the reader. �

We are now in a position to prove Proposition 6.2.

Proof of Proposition 6.2. Let φ : X1→ C(S1,n) be a locally injective simplicial
map. By Theorem 6.1, there exists f ∈Mod±(S1,n) such that f |X = φ|X, unique
up to precomposing with r . In fact, after precomposing φ with f −1 we may as well
assume that φ|X is the identity.

According to Lemma 6.3, for all i , φ(ε(i+1) i )= ε(i+1) i and φ(εi (i−1))= εi (i−1)

are the unique Farey neighbors of φ(β−i ) and φ(β+i ) (with indices taken modulo n).
Consequently, φ({β±i }) = {β

±

i } for all i . Notice that i(β+i , β
−

j ) = 0 for all i, j ,
while i(β+i , β

+

j ) = i(β−i , β
−

j ) = 2 for all i, j . It follows that if φ(β−i ) = β
+

i for
some i , then this is true for all i . Composing with r if necessary, we deduce that
φ(β±i )= β

±

i for all i . All that remains is to see that φ(β±i (i+1))= β
±

i (i+1) for all i .
To prove this we need only show that

β±i (i+1) ∈ (X∪ {β
±

j | 1≤ j ≤ n})′,

and then we can apply Proposition 3.5. First note that if n = 3, then β±i (i+1) = β
∓

i+2,
so there is nothing to prove in this case. In general, one readily checks that β+i (i+1)
is uniquely determined by the almost filling set

{β, β−1 , β
−

2 , . . . , β
−

n } \ {β
−

i , β
−

i+1}.

This completes the proof. �

Let OP = {ε
i (i+1)
}

n
i=1, counting indices modulo n. For n ≥ 5, this is a closed

string of twistable Farey neighbors in X1, and we could appeal to Proposition 3.12
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to add the half-twists about curves in OP in this case. However, we can provide a
single argument for all n ≥ 3.

Lemma 6.4. For all ε, ε′ ∈ OP , H±1
ε (ε′) ∈ X′. Consequently, H±1

ε (X′1) ∪X
′

1 is
rigid.

Proof. We start with the proof of the first statement. If i(ε, ε′) = 0, then there
is nothing to prove. Otherwise, up to a homeomorphism we may assume that
ε = εi (i+1) and ε′ = ε(i+1) (i+2). Then we note that Hεi (i+1)(ε(i+1) (i+2)) is the curve
uniquely determined by the almost filling set of curves

{β+i+1} ∪ {α1, . . . , αn} \ {αi+1, αi+2},

completing the proof of the first statement.
For the second statement, we note that Hεi (i+1)(X′1)∩X

′

1 contains the weakly rigid
set OP ∪ {β

+

i+2}, for example. Therefore, since X1 is rigid by Proposition 6.2, so is
X′1 by Proposition 3.5, and hence by Lemma 3.7 it follows that Hεi (i+1)(X′1)∪X

′

1 is
rigid, as required. A similar argument proves the statement for H−1

εi (i+1) . �

We also need to consider Dehn twists in αi and β. To deal with these, we
first define X2 = X′1 ∪ HOP (X

′

1), where HOP (X
′

1) is the union of H±1
ε (X′1) over

all ε ∈OP . By Lemma 6.4, X2 is rigid.

Lemma 6.5. For all i = 1, . . . , n, we have T±1
αi
(β)= T∓1

β (αi ) ∈ X
2
1 ⊂ X2

2. Conse-
quently, T±1

αi
(X2

2)∪X
2
2 and T±1

β (X2
2)∪X

2
2 are rigid.

Proof. As in previous arguments, we exhibit a series of pictures that will yield the
desired result; see Figure 16. It is straightforward to modify such pictures to treat
the case of an arbitrary n ≥ 3. The top left picture shows an almost filling set in
X1 that uniquely determines a curve in X′1 on the top right. Then the lower left is
an almost filling set in X′1 that uniquely determines the curve in (X′1)

′
= X2

1. This
curve is precisely Tβ(αi )= T−1

αi
(β). Similarly, Tαi (β)= T−1

β (αi ) ∈ X
2
1.

Finally, we easily observe that X2
2 ∩ Tαi (X

2
2) is weakly rigid, as it contains

C∪ Hε(i−1) i (αi−1), which is weakly rigid. Appealing to Lemma 3.7, it follows that
X2

2 ∪ Tαi (X
2
2) is rigid. The other cases follow similarly. �

Finally, we prove our main result for surfaces of genus 1.

Proof of Theorem 1.1 for S = S1,n . Since X2 is rigid, by Propositions 3.5, the set
Y = X2

2 is rigid. Moreover, Mod(S1,n) · Y = C(S1,n), by inspection. A generating
set for Mod(S1,n) is given by the Dehn twists fα about the elements α ∈ C and the
half-twists fε about the elements ε ∈ A = {εi (i+1)

} (see Section 4.4 of [Farb and
Margalit 2012], for instance). Let G = C∪ A and note that, for each α ∈ G, the set
Y ∪ fαY is rigid. Therefore, we may apply Proposition 3.13 to obtain the desired
exhaustion of C(S1,n) by finite rigid sets. �
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Figure 16. Illustrating Tβ(α2) ∈ X
2
2 on S1,5.
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A VARIATIONAL CHARACTERIZATION
OF FLAT SPACES IN DIMENSION THREE

GIOVANNI CATINO, PAOLO MASTROLIA AND DARIO D. MONTICELLI

We prove that, in dimension three, flat metrics are the only complete metrics
with nonnegative scalar curvature which are critical for the σ2-curvature
functional.

1. Introduction

Let (Mn, g) be a Riemannian manifold of dimension n ≥ 3. To fix the notation, we
recall the decomposition of the Riemann curvature tensor of a metric g into the
Weyl, Ricci, and scalar curvature components:

Rm=W + 1
n−2

Ric©∧ g− 1
(n−1)(n−2)

Rg©∧ g,

where ©∧ denotes the Kulkarni–Nomizu product. It is well known [Hilbert 1915]
that Einstein metrics are critical points for the Einstein–Hilbert functional

H=
∫

R dV

on the space of unit volume metrics M1(Mn). From this perspective, it is natural to
study canonical metrics which arise as solutions of the Euler–Lagrange equations
for more general curvature functionals. Berger [1970] commenced the study of
Riemannian functionals which are quadratic in the curvature (see [Besse 2008,
Chapter 4] and [Smolentsev 2005] for surveys). A basis for the space of quadratic
curvature functionals is given by

W =
∫
|W |2 dV, ρ =

∫
|Ric|2 dV, S =

∫
R2 dV .

All such functionals, which also naturally arise as total actions in certain gravitational
field theories in physics, have been deeply studied in recent years by many authors, in
particular on compact Riemannian manifolds with normalized volume (for instance,
see [Berger 1970; Besse 2008; Lamontagne 1994; 1998; Anderson 1997; Gursky
and Viaclovsky 2001; 2015; 2013; Catino 2015] and references therein).
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On the other hand, the study of critical metrics for quadratic curvature functionals
also has a lot of interest in the noncompact setting. For instance, Anderson [2001]
proved that every complete three-dimensional critical metric for the Ricci func-
tional ρ with nonnegative scalar curvature is flat; whereas, Catino [2014] showed a
characterization of complete critical metrics for S with nonnegative scalar curvature
in every dimension.

In this paper we focus our attention on the three-dimensional case and consider
the σ2-curvature functional

F2 =

∫
σ2(A) dV,

where σ2(A) denotes the second elementary symmetric function of the eigenvalues
of the Schouten tensor A = Ric− 1

4 R g. This functional was first considered by
Gursky and Viaclovsky in the compact three-dimensional case. In [2001] they
proved a beautiful characterization theorem of space forms as critical metrics for
F2 on M1(M3) with nonnegative energy F2 ≥ 0.

The main result of this paper is the following variational characterization of
three-dimensional flat spaces.

Theorem 1.1. Let (M3, g) be a complete critical metric for F2 with nonnegative
scalar curvature. Then (M3, g) is flat.

We remark the fact that the nonnegativity condition on the scalar curvature cannot
be removed. This is clear from the example in [loc. cit.] where the authors exhibit
an explicit family of critical metrics for F2 on R3. For instance, the metric given in
standard coordinates by

g = dx2
+ dy2

+ (1+ x2
+ y2)2dz2

is complete, critical and has strictly negative scalar curvature

R =− 8
1+ x2+ y2 .

2. The Euler–Lagrange equation for Ft

In this section we will compute the Euler–Lagrange equation satisfied by critical
metrics for F2. To begin, we observe that, in dimension n≥3, the second elementary
symmetric function of the eigenvalues of the Schouten tensor

A = 1
n−2

(
Ric− 1

2(n−1)
R g

)
can be written as

σ2(A)=−
1

2(n− 2)2
|Ric|2+ n

8(n− 1)(n− 2)2
R2.
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In particular, the functional F2 is proportional to a general quadratic functional of
the form

Ft =

∫
|Ric|2 dV + t

∫
R2 dV,

with the choice t =−n/4(n− 1); see also [Gursky and Viaclovsky 2015; Catino
2015]. The gradients of the functionals ρ and S, computed using compactly
supported variations, are given by [Besse 2008, Proposition 4.66]

(∇ρ)i j =−1Ri j − 2Rik jl Rkl +∇
2
i j R− 1

2(1R)gi j +
1
2 |Ric|2gi j

and
(∇S)i j = 2∇2

i j R− 2(1R)gi j − 2R Ri j +
1
2 R2gi j .

Hence, the gradient of Ft reads

(∇Ft)i j =−1Ri j + (1+ 2t)∇2
i j R− 1

2(1+ 4t)(1R)gi j

+
1
2

(
|Ric|2+ t R2)gi j − 2Rik jl Rkl − 2t R Ri j .

Tracing the equation (∇Ft)= 0, we obtain(
n+ 4(n− 1)t

)
1R = (n− 4)

(
|Ric|2+ t R2).

Defining the tensor E to be the traceless Ricci tensor, Ei j = Ri j−
1
n Rgi j , we obtain

the Euler–Lagrange equation of critical metrics for Ft .

Proposition 2.1. Let Mn be a complete manifold of dimension n ≥ 3. A metric g is
critical for Ft if and only if it satisfies

1Ei j = (1+ 2t)∇2
i j R− n+ 2+ 4nt

2n
(1R)gi j

− 2Rik jl Ekl −
2+ 2nt

n
REi j +

1
2

(
|Ric|2− 4− n(n− 4)t

n2 R2
)

gi j

and (
n+ 4(n− 1)t

)
1R = (n− 4)

(
|Ric|2+ t R2).

In dimension three we recall the decomposition of the Riemann curvature tensor

Rik jl = Ei j gkl − Eil g jk + Ekl gi j − Ek j gil +
1
6 R(gi j gkl − gil g jk).

In particular,
Rik jl Ekl =−2Ei p E j p −

1
6 REi j + |E |2gi j .

Hence, if n = 3 and t =−n/4(n− 1)=−3/8, one has

F2 =−
1
2F−3/8,

and the following formulas hold.
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Proposition 2.2. Let M3 be a complete manifold of dimension three. A metric g is
critical for F2 if and only if it satisfies

(2-1) 1Ei j =
1
4∇

2
i j R− 1

12(1R)gi j+4Ei p E j p+
5

12 REi j−
1
2

(
3|E |2− 1

72 R2)gi j

and

(2-2) −2σ2(A)= |Ric|2− 3
8 R2
= |E |2− 1

24 R2
= 0.

Now, contracting (2-1) with E , we obtain the following Weitzenböck formula.

Corollary 2.3. Let M3 be a complete manifold of dimension three. If g is a critical
metric for F2, then the following formula holds

(2-3) 1
21|E |

2
= |∇E |2+ 1

4 Ei j∇
2
i j R+ 4Ei p E j p Ei j +

5
12 R|E |2.

3. Proof of Theorem 1.1

In this section we will prove Theorem 1.1. We assume that (M3, g) is a critical
metric for F2 with nonnegative scalar curvature R ≥ 0. In particular, g has zero
σ2-curvature, i.e., |E |2 = 1

24 R2 and we obtain

1
21|E |

2
=

1
481R2

=
1
24 R1R+ 1

24 |∇R|2.

Putting together this equation with (2-3), we obtain that the scalar curvature R
satisfies the PDE

(3-1) 1
24

(
Rgi j − 6Ei j

)
∇

2
i j R = |∇E |2− 1

24 |∇R|2+ 4Ei p E j p Ei j +
5

12 R|E |2.

To begin, we need the following purely algebraic lemmas.

Lemma 3.1. Let (M3, g) be a Riemannian manifold with R ≥ 0 and σ2(A) ≥ 0.
Then,

Rgi j ≥ 6Ei j

and g has nonnegative sectional curvature.

Proof. Let λ1 ≤ λ2 ≤ λ3 be the eigenvalues of the Schouten tensor A = E + 1
12 Rg

at some point. Then, by the assumptions, we have

4R = tr(A)= λ1+ λ2+ λ3 ≥ 0 and σ2(A)= λ1λ2+ λ1λ3+ λ2λ3 ≥ 0.

We want to show that E ≤ 1
6 Rg or, equivalently, that

A ≤ 1
4 Rg = tr(A)g.

Hence, it suffices to prove that λ3 ≤ tr(A) = λ1 + λ2 + λ3, i.e., that λ1 + λ2 ≥ 0.
But this follows by

0≤ λ1λ2+ λ1λ3+ λ2λ3 = (λ1+ λ2) tr(A)− (λ2
1+ λ

2
2+ λ1λ2)≤ (λ1+ λ2) tr(A).
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The fact that g has nonnegative sectional curvature follows from the decomposition
of the Riemann tensor in dimension three and the curvature condition Ric≤ 1

2 Rg
(for instance see [Hamilton 1982, Corollary 8.2]). �

Lemma 3.2. Let (M3, g) be a Riemannian manifold with R ≥ 0 and σ2(A) =
const≥ 0. Then,

|∇E |2 ≥ 1
24 |∇R|2.

Proof. We will follow the proof in [Gursky and Viaclovsky 2001, Lemma 4.1].
Let p be a point in M3. If R(p)= 0, then ∇R = 0 and the lemma follows. So we
can assume that R(p) > 0. Since −2σ2(A)= |E |2− 1

24 R2
= const,

(3-2) |E |2
∣∣∇|E |∣∣2 = 1

576 R2
|∇R|2.

By Kato’s inequality
∣∣∇|E |∣∣2 ≤ |∇E |2 and the fact that |E |2 ≤ 1

24 R2,

|E |2|∇E |2 ≥ 1
576 R2

|∇R|2 ≥ 1
24 |E |

2
|∇R|2.

By dividing by |E |2(p) 6= 0, the result follows; otherwise, if |E |(p) = 0, then
(∇R)(p)= 0 from (3-2), and we conclude. �

Lemma 3.3. Let (M3, g) be a Riemannian manifold. Then,

Ei p E j p Ei j ≥−
1
√

6
|E |3.

Proof. For a proof of this lemma, for instance, see [op. cit., Lemma 4.2]. �

Corollary 3.4. Let (M3, g) be a complete critical metric for F2 with nonnegative
scalar curvature. Then, Rgi j ≥ 6Ei j , g has nonnegative sectional curvature, and
the scalar curvature satisfies the differential inequality(

Rgi j − 6Ei j
)
∇

2
i j R ≥ 1

12 R3.

Proof. From (3-1), combining Lemmas 3.1, 3.2, and 3.3, we obtain

1
24

(
Rgi j − 6Ei j

)
∇

2
i j R ≥ 5

12
R|E |2− 4

√
6
|E |3 = |E |2

( 5
12

R− 4
√

6
|E |
)
=

1
288

R3,

where in the last equality we have used the fact that |E |2 = 1
24 R2. �

Now we can prove Theorem 1.1. Clearly, if M3 is compact, from Corollary 3.4,
at a maximum point of R we obtain R ≤ 0. Hence, R ≡ 0 on M3, and from (2-2),
Ric≡ 0 and the metric is flat. So, from now on, we will assume the manifold M3

to be noncompact.
Choose now φ = φ(r) to be a function of the distance r to a fixed point O ∈ M3

and let Bs(O) be a geodesic ball of radius s > 0. We denote by CO the cut locus at
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the point O and we choose φ satisfying the following properties: φ = 1 on Bs(O),
φ = 0 on M3

\ B2s(O),

−
c
s
φ3/4
≤ φ′ ≤ 0 and |φ′′| ≤

c
s2 φ

1/2

on B2s(O) \ Bs(O) for some positive constant c > 0. In particular, φ is C3 in
M3
\CO . Let u := Rφ and ai j := (Rgi j −6Ei j ). From Corollary 3.4, we know that

ai j ≥ 0 and we obtain

(3-3) ai j∇
2
i j u = ai j

(
φ∇2

i j R+ R∇2
i jφ+ 2∇i R∇ jφ

)
≥

1
12 R3φ+ Rφ′ai j∇

2
i jr + Rφ′′a(∇r,∇r)+ 2a(∇R,∇φ).

Now, let p0 be a maximum point of u and assume that p0 /∈ CO . If φ(p0)= 0, then
u ≡ 0 and then R ≡ 0 on B2s(O). Hence, from now on we will assume φ(p0) > 0.
Then, at p0, we have ∇u(p0)= 0 and ∇2

i j u(p0)≤ 0. In particular, at p0,

∇R(p0)=−
R(p0)

φ(p0)
∇φ(p0).

Moreover, since ai j ≥ 0, for every vector field X , a(X, X)≤ tr(a)|X |2 = 3R|X |2.
On the other hand, from the standard Hessian comparison theorem, since g has
nonnegative sectional curvature, we know that on M3

\CO , one has ∇2
i jr ≤

1
r gi j .

Thus, from (3-3), at p0, we get

0≥ 1
12

R3φ+ Rφ′ai j∇
2
i jr + Rφ′′a(∇r,∇r)− 2 R

φ
a(∇φ,∇φ)

≥
1
12

R3φ−
(
|φ′|

r
+ |φ′′| + 2(φ

′)2

φ

)
R tr(a)

≥
1
12

R3φ− 3
(
|φ′|

s
+ |φ′′| + 2(φ

′)2

φ

)
R2,

where, in the last inequality, we have used the fact that r ≥ s on B2s(O) \ Bs(O),
i.e., where φ′ 6= 0. From the assumptions on the cut-off function φ, we obtain, at
the maximum point p0,

0≥ 1
12

R2φ1/2
(

Rφ1/2
−

c′

s2

)
for some positive constant c′ > 0. Thus, we have proved that, if p0 /∈ CO , then for
every p ∈ B2s(O)

u(p)≤ u(p0)= R(p0)φ(p0)≤
c′

s2 .

If p0 ∈ CO we argue as follows (this trick is usually referred to Calabi). Let
γ : [0, L]→ M3, where L = d(p0, O), be a minimal geodesic joining O to p0, the
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maximum point of u. Let pε = γ (ε) for some ε > 0. Define now

uε(x)= R(x)φ
(
d(x, pε)+ ε

)
.

Since d(x, pε)+ ε ≥ d(x, O) and d(p0, pε)+ ε = d(p0, O), it is easy to see that
uε(p0)= u(p0) and

uε(x)≤ u(x) for all x ∈ M3,

since φ′ ≤ 0. Hence p0 is also a maximum point for uε. Moreover, p0 /∈ Cpε , so
the function d(x, pε) is smooth in a neighborhood of p0 and we can apply the
maximum principle argument as before to obtain an estimate for uε(p0) which
depends on ε. Taking the limit as ε→ 0, we obtain the desired estimate on u.

By letting s→+∞ we obtain u ≡ 0, so R ≡ 0. From (2-2) we have E ≡ 0 and
so Ric≡ 0 and Theorem 1.1 follows.
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ESTIMATES OF THE GAPS BETWEEN
CONSECUTIVE EIGENVALUES OF LAPLACIAN

DAGUANG CHEN, TAO ZHENG AND HONGCANG YANG

For the eigenvalue problem of the Dirichlet Laplacian on a bounded domain
in Euclidean space Rn, we obtain estimates for the upper bounds of the gaps
between consecutive eigenvalues which are the best possible in terms of the
orders of the eigenvalues. Therefore, it is reasonable to conjecture that this
type of estimate also holds for the eigenvalue problem on a Riemannian
manifold. We give some particular examples.

1. Introduction

Let � be a bounded domain in an n-dimensional complete Riemannian manifold M
with boundary (possible empty). Then the Dirichlet eigenvalue problem of the
Laplacian on � is given by

(1-1)
{
1u =−λu in �,
u = 0 on ∂�,

where 1 is the Laplacian on M . It is well known that the spectrum of (1-1) has the
real and purely discrete eigenvalues

(1-2) 0< λ1 < λ2 ≤ λ3 ≤ · · · ↗∞,

where each λi has finite multiplicity and is repeated according to its multiplicity.
The corresponding orthonormal basis of real eigenfunctions will be denoted {u j }

∞

j=1.
We go forward under the assumption that L2(�) represents the real Hilbert space
of real-valued L2 functions on �. We put λ0 = 0 if ∂�=∅.

An important aspect of estimating higher eigenvalues is to estimate as precisely
as possible the gaps between consecutive eigenvalues of (1-1). In this regard, we
will review some important results on the estimates of eigenvalue problem (1-1).

The work of Chen was partially supported by NSFC grants No. 11271213 and No. 11471180. The
work of Zheng was partially supported by the fundamental fund of Beijing Institute of Technology
No. 20131742009 and No. 20141742002, postdoctoral fund No. 2014M550620 and No. 2015T80040,
and NSFC grants No. 11401023 and No. 11471180. The work of Yang was partially supported by
NSFC grant No. 11471180 and SF of CAS.
MSC2010: primary 35P15, 58C40; secondary 58J50.
Keywords: Laplacian, consecutive eigenvalues, test function, Riemannian manifold, hyperbolic space.
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For the upper bound of the gap between consecutive eigenvalues of (1-1), when�
is a bounded domain in a 2-dimensional Euclidean space R2, Payne, Pólya and
Weinberger (see [Payne et al. 1955; 1956]) proved

(1-3) λk+1− λk ≤
2
k

k∑
i=1

λi .

C. J. Thompson [1969] extended (1-3) to the n-dimensional case and obtained

(1-4) λk+1− λk ≤
4

nk

k∑
i=1

λi .

Hile and Protter [1980] improved (1-4) to

(1-5)
k∑

i=1

λi

λk+1− λi
≥

nk
4
.

Yang (see [Yang 1991] and more recently [Cheng and Yang 2007]) has obtained a
sharp inequality:

(1-6)
k∑

i=1

(λk+1− λi )
(
λk+1−

(
1+ 4

n

)
λi

)
≤ 0.

From (1-6), one can infer

(1-7) λk+1 ≤
1
k

(
1+ 4

n

) k∑
i=1

λi .

The inequalities (1-6) and (1-7) are called Yang’s first inequality and second in-
equality, respectively (see [Ashbaugh 1999; 2002; Ashbaugh and Benguria 1996;
Harrell and Stubbe 1997]). Also we note that Ashbaugh and Benguria gave an
optimal estimate for k = 1 (see [Ashbaugh and Benguria 1991; 1992a; 1992b]).
From Chebyshev’s inequality, it is easy to prove that

(1-6)H⇒ (1-7)H⇒ (1-5)H⇒ (1-4).

From (1-6), Cheng and Yang [2005] obtained

(1-8) λk+1− λk ≤ 2
((

2
n

1
k

k∑
i=1

λi

)2

−

(
1+ 4

n

)1
k

k∑
i=1

(
λi −

1
k

k∑
j=1

λ j

)2)1
2

.

Cheng and Yang [2007], using their recursive formula, obtained

(1-9) λk+1 ≤ C0(n)k2/nλ1,
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where C0(n)≤ 1+ 4/n is a constant. From Weyl’s asymptotic formula (see [Weyl
1912]), we know that the upper bound (1-9) is best possible in terms of the order
on k.

For a complete Riemannian manifold M , from Nash’s theorem [1956], there
exists an isometric immersion

ψ : M→ RN,

where RN is Euclidean space. The mean curvature of the immersion ψ is denoted
by H and |H | denotes its norm. Define

8= {ψ | ψ is an isometric immersion from M into Euclidean space}.

When � is a bounded domain of a complete Riemannian manifold M , isometri-
cally immersed into a Euclidean space RN , Cheng and the first author [Chen and
Cheng 2008] (see also [El Soufi et al. 2009; Harrell 2007]) obtained

(1-10)
k∑

i=1

(λk+1− λi )
2
≤

4
n

k∑
i=1

(λk+1− λi )
(
λi +

1
4 n2 H 2

0
)
,

where

(1-11) H 2
0 = inf

ψ∈8
sup
�

|H |2.

In the same paper, using the recursive formula in [Cheng and Yang 2007], Cheng
and Chen also deduced

(1-12) λk+1+
1
4 n2 H 2

0 ≤ C0(n)k2/n(λ1+
1
4 n2 H 2

0
)
,

where H 2
0 and C0(n) are given by (1-11) and (1-9), respectively.

From (1-10), we can get the gaps between the consecutive eigenvalues of the
Laplacian:

(1-13) λk+1−λk ≤ 2
((

2
n

1
k

k∑
i=1

λi+
1
2 nH 2

0

)2

−

(
1+ 4

n

)1
k

k∑
i=1

(
λi−

1
k

k∑
j=1

λ j

)2)1
2

.

Remark 1.1. When � is an n-dimensional compact homogeneous Riemannian
manifold, a compact minimal submanifold without boundary and a connected
bounded domain in the standard unit sphere SN(1), and a connected bounded
domain and a compact complex hypersurface without boundary of the complex
projective space CPn(4) with holomorphic sectional curvature 4, many mathemati-
cians have studied the universal inequalities for eigenvalues and the difference of
the consecutive eigenvalues (see [Cheng and Yang 2005; 2006; 2009; Harrell 1993;
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Harrell and Michel 1994; Harrell and Stubbe 1997; Li 1980; Yang and Yau 1980;
Leung 1991; Sun et al. 2008; Chen et al. 2012]).

Remark 1.2. Another problem is the lower bound of the gap between the first two
eigenvalues. In general, there exists the famous fundamental gap conjecture for
the Dirichlet eigenvalue problem of the Schrödinger operator (see [Ashbaugh and
Benguria 1989; van den Berg 1983; Singer et al. 1985; Yau 1986; Yu and Zhong
1986] and the references therein). The fundamental gap conjecture was solved by
B. Andrews and J. Clutterbuck [2011].

From (1-8) and (1-13), it is not difficult to see that both Yang’s estimate for
the gap between consecutive eigenvalues of (1-1) implicit in [Yang 1991] and the
estimate from [Chen and Cheng 2008] are on the order of k3/(2n). However, by the
calculation of the gap between the consecutive eigenvalues of Sn with the standard
metric and Weyl’s asymptotic formula, the order of the upper bound of this gap
is k1/n . Therefore, we make a conjecture:

Conjecture 1.3. Let � be a bounded domain in an n-dimensional complete Rie-
mannian manifold M. For the Dirichlet problem (1-1), the upper bound for the gap
between consecutive eigenvalues of the Laplacian should be

(1-14) λk+1− λk ≤ Cn,�k1/n, k > 1,

where Cn,� is a constant dependent on � itself and the dimension n.

Remark 1.4. The famous Payne–Pólya–Weinberger conjecture (see [Payne et al.
1955; 1956; Thompson 1969; Ashbaugh and Benguria 1993a; 1993b]) states that,
when M = Rn , for the Dirichlet eigenvalue problem (1-1), one should have

(1-15)
λk+1

λk
≤
λ2

λ1

∣∣∣∣
Bn
=

(
jn/2,1

jn/2−1,1

)2

,

where Bn is the n-dimensional unit ball in Rn , and jp,k is the k-th positive zero
of the Bessel function Jp(t). From Weyl’s asymptotic formula and (1-15), the
order of the upper bound of the consecutive eigenvalues of (1-1) is k2/n. Therefore,
Conjecture 1.3 reflects the distribution of eigenvalues from another point of view.
From the order of the upper bound of the gap between the consecutive eigenvalues
of Sn , the estimate in (1-14) is best possible in terms of the order on k.

In the following, the constants Cn,� are allowed to be different in different cases.
When � is a bounded domain in Rn , for the Dirichlet eigenvalue problem (1-1),

we give an affirmative answer to Conjecture 1.3.

Theorem 1.5. Let �⊂ Rn be a bounded domain in Euclidean space Rn and λk be
the k-th (k > 1) eigenvalue of the Dirichlet eigenvalue problem (1-1). Then we have

(1-16) λk+1− λk ≤ Cn,�k1/n,
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where Cn,� = 4λ1
√

C0(n)/n and C0(n) is given by (1-9).

It is reasonable to conjecture that this type of estimate also holds on a Riemannian
manifold. We give some particular examples as follows.

Corollary 1.6. Let�⊂Hn(−1) be a bounded domain in hyperbolic space Hn(−1),
and λk be the k-th (k > 1) eigenvalue of the Dirichlet eigenvalue problem (1-1).
Then we have

(1-17) λk+1− λk ≤ Cn,�k1/n,

where Cn,� depends on � and the dimension n and is given by

(1-18) Cn,� = 4
(
C0(n)

(
λ1−

1
4(n− 1)2

)(
λ1+

1
4 n2 H 2

0
))1/2

,

where C0(n) and H 2
0 are the same as in (1-12).

In fact, by the comparison theorem for the distance function in a Riemannian
manifold, we have:

Corollary 1.7. Let M be an n-dimensional (n ≥ 3) simply connected complete
noncompact Riemannian manifold with sectional curvature Sec satisfying

−a2
≤ Sec≤−b2,

where a and b are constants with 0≤ b≤ a. Let �⊂ M be a bounded domain of M
and λk be the k-th (k > 1) eigenvalue of (1-1). Then we have

(1-19) λk+1− λk ≤ Cn,�k1/n,

where Cn,� depends on � and the dimension n and is given by

(1-20) Cn,� = 4
(
C0(n)

(
λ1−

1
4(n− 1)2b2

+
1
4(a

2
− b2)

)(
λ1+

1
4 n2 H 2

0
))1/2

,

where C0(n) and H 2
0 are the same as in (1-12).

2. Preliminaries

In this section, we first recall some basic concepts and a theorem of Chapter 10 in
[Kolmogorov and Fomin 1960], and then we prove a theorem which will be used
in the next section.

Define

H∞ =
{

x = (x j )
∞

j=1

∣∣∣∣ x j ∈ R,

( ∞∑
j=1

x2
j

)1
2

<+∞

}
and

H2
= {x = (x1, x2) | x1, x2 ∈ R, (x2

1 + x2
2)

1/2 <+∞}.
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The inner product 〈 · , · 〉∞ on H∞ is defined by

〈x, y〉∞ =
∞∑
j=1

x j y j , ∀ x = (x j )
∞

j=1, y = (y j )
∞

j=1.

The inner product 〈 · , · 〉2 on H2 can be defined similarly. Obviously, both H∞

and H2 are Hilbert spaces. The dual space of H2 is denoted by (H2)∗. It is well
known that (H2)∗ is isomorphic to H2 itself.

In order to prove our theorem, we need the following Lagrange multiplier theorem
for real Banach spaces (see Chapter 10, Section 3, paragraph 3 in [Kolmogorov and
Fomin 1960] or page 270 in [Zeidler 1995]).

Theorem 2.1. Let X and Y be real Banach spaces. Assume that F : x0∈U ⊂ X→R

and 8 : x0 ∈ U ⊂ X → Y are continuously Fréchet differentiable on an open
neighborhood of x0, where x0 ∈ 8

−1(0) = {x ∈ U | 8(x) = 0 ∈ Y }. If the set
{8′(x0)(x) ∈ Y | x ∈ X} is closed and x0 is an extremum (maximum or minimum)
of F on 8−1(0), then there exists λ0 ∈ R and a linear functional y∗ ∈ Y ∗, where

λ2
0+‖y

∗
‖

2
6= 0,

such that

(2-1) λ0 F ′(x0)+ (8
′(x0))

∗(y∗)= 0.

Moreover, if {8′(x0)(x) ∈ Y | x ∈ X} = Y , then we can take λ0 = 1.

Theorem 2.2. Assume that {µ j }
∞

j=1 is a nondecreasing sequence, i.e.,

0< µ1 ≤ µ2 ≤ · · · ≤ µk ≤ · · · ↗∞,

where each µi has finite multiplicity mi and is repeated according to its multiplicity.
Define

(2-2)

B =
∞∑
j=1

x2
j > 0,

A =
∞∑
j=1

µ2
j x

2
j , x = (x j )

∞

j=1 ∈H
∞.

If xm1 6= 0 and
∑
∞

j=1 µ j x2
j <
√

AB, under the conditions in (2-2), we have

(2-3)
∞∑
j=1

µ j x2
j ≤

A+µm1µm1+1 B
µm1 +µm1+1

.
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Proof. First, assume that {µ j }
∞

j=1 is a strictly increasing sequence, i.e.,

0< µ1 < µ2 < · · ·< µk < · · · ↗∞.

Suppose

F(x)=
∞∑
j=1

µ j x2
j ,

9(x)=
( ∞∑

j=1

x2
j − B,

∞∑
j=1

µ2
j x

2
j − A

)
∈H2, x ∈H∞.

Let x0 = (a j )
∞

j=1 be an extremum of F(x) on 8−1(0). Since ∀ h = (h j )
∞

j=1 ∈H
∞,

F ′(x0)h = 2
∞∑
j=1

µ j x j h j ,

9 ′(x0)h =
(

2
∞∑
j=1

x j h j , 2
∞∑
j=1

µ2
j x j h j

)
,

and
9 ′(x0)(H∞)=H2,

there exists y∗ ∈ (H2)∗ such that

(2-4) F ′(x0)h+ (9 ′(x0))
∗(y∗)h = 0.

Since H2
= (H2)∗, we can use some unique vector (µ, λ) ∈H2 to rewrite (2-4) as

(2-5)
∞∑
j=1

µ j a j h j +µ

∞∑
j=1

a j h j + λ

∞∑
j=1

µ2
j a j h j = 0.

Choosing
h j = δ jk, j = 1, 2, . . . ,

from (2-5), we obtain a system of equations

(2-6) µkak +µak + λµ
2
kak = 0, k = 1, 2, . . . .

Since {µk} is a strictly increasing sequence, and there are only two varieties µ
and λ, there are only two cases for x0.

Case 1. There is only one ak 6= 0, whether k = 1 or not. In this case, the critical
value of F(x) is given by

F(x0)=
√

AB,

which contradicts the assumption of the theorem.
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Case 2. There are only two nonzero components of x0, say ak and al (without loss
of generality, set k < l). In this case, we have

(2-7)
A = µ2

ka2
k +µ

2
l a2

l ,

B = a2
k + a2

l .

From (2-7), we have

F(x0)=
A+µkµl B
µk +µl

.

Since
A = µ2

ka2
k +µ

2
l a2

l > µ
2
k(a

2
k + a2

l )= µ
2
k B,

we have

(2-8) µk <
√

A/B.

Similarly, we can also deduce

(2-9) µl >
√

A/B.

Hence, we have

(2-10) F(x0)−
√

AB =
B
(
µk −

√
A/B

)(
µl −
√

A/B
)

µk +µl
< 0.

Since {µi } is a strictly increasing sequence, for µk fixed, from (2-8) and (2-9), we
know that the right side of (2-10) is strictly decreasing in µl , i.e.,

B
(
µk −

√
A/B

)(
µk+1−

√
A/B

)
µk +µk+1

>
B
(
µk −

√
A/B

)(
µk+2−

√
A/B

)
µk +µk+2

> · · · .

Hence, we know that

A+µkµk+1 B
µk +µk+1

, k = 1, 2, . . . ,

are local maximal values of F(x).
Since xm1 = x1 6= 0, k must be equal to m1 = 1 only. Finally, we have the global

maximum of F(x)
A+µ1µ2 B
µ1+µ2

.

Second, assume that {µ j }
∞

j=1 is an increasing sequence, i.e.,

0< µ1 ≤ µ2 ≤ · · · ≤ µk ≤ · · · ↗∞,

where each µi has finite multiplicity mi and is repeated according to its multiplicity.
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Replacing (2-7) by
A = mkµ

2
ka2

k +mlµ
2
l a2

l ,

B = mka2
k +mla2

l ,

and following the above steps almost word for word, we deduce that the local
maximal value of F(x) is

A+µmkµmk+1 B
µmk +µmk+1

and
µmk <

√
A/B, µmk+1 >

√
A/B.

Since xm1 6= 0, mk must be equal to m1 and the local maximal value of F(x) is the
global maximum. Since

A+µm1µm1+1 B
µm1 +µm1+1

−
√

AB =
B
(
µm1 −

√
A/B

)(
µmk+1−

√
A/B

)
µm1 +µm1+1

< 0,

we can obtain (2-3). �

3. Proofs of main results

In this section, we will give the proof of Theorem 1.5. In order to prove our main
results, we need the following key lemma and related corollaries of Theorem 2.2.

Lemma 3.1. For the Dirichlet eigenvalue problem (1-1), let uk be the orthonormal
eigenfunction corresponding to the k-th eigenvalue λk , i.e.,

1uk =−λkuk in �,

uk = 0 on ∂�,∫
�

ui u j = δi j .

Then for any complex-valued function g ∈ C3(�)∩C2(�) such that gui is not the
C-linear combination of

u1, . . . , uk+1,

and such that

ak+1 =

∫
�

gui uk+1 6= 0,

with λi < λk+1 < λk+2, k, i ∈ Z+, i ≥ 1, we have

(3-1)
(
(λk+1− λi )+ (λk+2− λi )

) ∫
�

|∇g|2u2
i

≤

∫
�

|2∇g · ∇ui + ui1g|2+ (λk+1− λi )(λk+2− λi )

∫
�

|gui |
2.
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Proof. Define

ai j =

∫
�

gui u j ,

bi j =

∫
�

(
∇ui · ∇g+ 1

2 ui1g
)
u j ,

where ∇ denotes the gradient operator. Obviously,

(3-2) ai j = a j i .

Then, from Stokes’ theorem, we get

λ j ai j =

∫
�

gui (−1u j )

=−

∫
�

(ui1g+ g1ui + 2∇g · ∇ui )u j

= λi

∫
�

gui u j − 2
∫
�

(
∇ui · ∇g+ 1

2 ui1g
)
u j ,

i.e.,

(3-3) 2bi j = (λi − λ j )ai j .

From Stokes’ theorem, we have

(3-4)
∫
�

|∇g|2u2
i =−2

∫
�

gui
(
∇ ḡ · ∇ui +

1
2 ui1ḡ

)
.

Since {uk}
∞

k=1 consists of a complete orthonormal basis of L2(�), by the defini-
tion of ai j and bi j , from (3-3), (3-4) and Parseval’s identity, we obtain∫

�

|gui |
2
=

∞∑
j=1

|ai j |
2,(3-5)

∫
�

|∇g|2u2
i = 2

∞∑
j=1

ai j bi j =

∞∑
j=1

(λ j − λi )|ai j |
2,(3-6)

∫
�

|2∇ ḡ · ∇ui + ui1ḡ|2 = 4
∞∑
j=1

|bi j |
2
=

∞∑
j=1

(λ j − λi )
2
|ai j |

2.(3-7)

From the Cauchy–Schwarz inequality, we have

(3-8)
( ∞∑

j=k+1

(λ j − λi )|ai j |
2
)2

≤

∞∑
j=k+1

(λ j − λi )
2
|ai j |

2
∞∑

j=k+1

|ai j |
2.
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From (3-5), (3-6), (3-7) and (3-8), we can deduce

(3-9)
(∫

�

|∇g|2u2
i −

k∑
j=1

(λ j − λi )|ai j |
2
)2

≤

(∫
�

|gui |
2
−

k∑
j=1

|ai j |
2
)(∫

�

|2∇g ·∇ui+ui1g|2−
k∑

j=1

(λ j−λi )
2
|ai j |

2
)
.

Define

B̃(i)=
∫
�

|gui |
2
−

k∑
j=1

|ai j |
2
=

∞∑
j=k+1

|ai j |
2 > 0, since

∫
�

gui uk+1 6= 0,

Ã(i)=
∫
�

|2∇g · ∇ui + ui1g|2−
k∑

j=1

(λ j − λi )
2
|ai j |

2

=

∞∑
j=k+1

(λ j − λi )
2
|ai j |

2
≥ 0,

C̃(i)=
∫
�

|∇g|2u2
i −

k∑
j=1

(λ j − λi )|ai j |
2
=

∞∑
j=k+1

(λ j − λi )|ai j |
2.

Since gui is not the C-linear combination of

u1, . . . , uk+1,

there exists some l > k+ 1 such that

al =

∫
�

gui ul 6= 0.

Since
λi < λk+1 < λk+2 ≤ λl,

the vector
(|ai j |)

∞

j=k+1

is not proportional to (
(λ j − λi )

2
|ai j |

)∞
j=k+1.

From the Cauchy–Schwarz inequality, we have

(3-10) C̃(i) <
√

Ã(i)B̃(i).

Since ak+1 6= 0, from (3-10) and Theorem 2.2, we have

(3-11) C̃(i)≤
Ã(i)+ (λk+2− λi )(λk+1− λi )B̃(i)

(λk+2− λi )+ (λk+1− λi )
.
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From (3-11) and the definition of Ã(i), B̃(i) and C̃(i), we obtain

(3-12)
(
(λk+2− λi )+ (λk+1− λi )

) ∫
�

|∇g|2u2
i

≤

∫
�

|2∇g · ∇ui + ui1g|2+ (λk+1− λi )(λk+2− λi )

∫
�

|gui |
2

−

k∑
j=1

(λk+1− λ j )(λk+2− λ j )|ai j |
2

≤

∫
�

|2∇g · ∇ui + ui1g|2+ (λk+1− λi )(λk+2− λi )

∫
�

|gui |
2. �

Corollary 3.2. Under the assumption of Lemma 3.1, for any nonconstant real-
valued function f ∈ C3(�)∩C2(�), we have

(3-13)
(
(λk+2− λi )+ (λk+1− λi )

) ∫
�

|∇ f |2u2
i

≤ 2

√(
(λk+2− λi )(λk+1− λi )

) ∫
�

|∇ f |4u2+

∫
�

(2∇ f · ∇ui + ui1 f )2.

Proof. Taking g = exp
(√
−1α f

)
, α ∈ R \ {0}, in (3-1), we have

(3-14) α2((λk+1− λi )+ (λk+2− λi )
) ∫

�

|∇ f |2u2
i

≤ α4
∫
�

|∇ f |4u2
i +α

2
∫
�

|2∇ f · ∇ui + ui1 f |2+ (λk+1− λi )(λk+2− λi ).

From (3-14), we have

(3-15)
(
(λk+1− λi )+ (λk+2− λi )

) ∫
�

|∇ f |2u2
i

≤ α2
∫
�

|∇ f |4u2
i +

1
α2 (λk+1− λi )(λk+2− λi )+

∫
�

|2∇ f · ∇ui + ui1 f |2.

Since the inequality (3-15) is valid for any α 6= 0 and

(λk+1− λi )(λk+2− λi ) 6= 0,
∫
�

|∇ f |4u2
i 6= 0,

we can choose

α2
=

(
(λk+1− λi )(λk+2− λi )∫

�
|∇ f |4u2

i

)1
2

to have (3-13). �
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Corollary 3.3. Under the assumption of Lemma 3.1, for any real-valued function
f ∈ C3(�)∩C2(�) with |∇ f |2 = 1, we have

(3-16) (λk+2− λk+1)
2

≤ 16
(∫

�

(∇ f · ∇ui )
2
−

1
4

∫
�

(1 f )2u2
i −

1
2

∫
�

(∇(1 f ) · ∇ f )u2
i

)
λk+2.

Furthermore, we have

(3-17) λk+2− λk+1 ≤ 4
(
λi −

1
4

∫
�

(1 f )2u2
i −

1
2

∫
�

(∇(1 f ) · ∇ f )u2
i

)1
2√
λk+2.

Proof. From Corollary 3.2 and |∇ f |2 = 1, we have

(
(λk+2−λi )+(λk+1−λi )

)
−2
√
(λk+2− λi )(λk+1− λi )≤

∫
�

(2∇ f ·∇ui+ui1 f )2,

that is, (√
λk+2− λi −

√
λk+1− λi

)2
≤

∫
�

(2∇ f · ∇ui + ui1 f )2.

By integration by parts, we have∫
�

(2∇ f · ∇ui + ui1 f )2 = 4
∫
�

(∇ f · ∇ui )
2
−

∫
�

(1 f )2u2
i − 2

∫
�

(∇(1 f ) · ∇ f )u2
i .

Hence, we have

(3-18)
(√
λk+2− λi −

√
λk+1− λi

)2
≤ 4

∫
�

(∇ f · ∇ui )
2
−

∫
�

(1 f )2u2
i − 2

∫
�

(∇(1 f ) · ∇ f )u2
i .

Multiplying (3-18) by
(√
λk+2− λi +

√
λk+1− λi

)2 on both sides, we can get

(λk+2− λk+1)
2
≤ 4

(∫
�

(∇ f · ∇ui )
2
−

1
4

∫
�

(1 f )2u2
i −

1
2

∫
�

(∇(1 f ) · ∇ f )u2
i

)
×
(√
λk+2− λi +

√
λk+1− λi

)2
≤ 16

(∫
�

(∇ f ·∇ui )
2
−

1
4

∫
�

(1 f )2u2
i −

1
2

∫
�

(∇(1 f )·∇ f )u2
i

)
λk+2,

which is the inequality (3-16).
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Since |∇ f |2 = 1, from (3-16), the Cauchy–Schwarz inequality and integration
by parts, we obtain

(λk+2− λk+1)
2
≤ 16

(∫
�

|∇ui |
2
−

1
4

∫
�

(1 f )2u2
i −

1
2

∫
�

(∇(1 f ) · ∇ f )u2
i

)
λk+2

= 16
(
λi −

1
4

∫
�

(1 f )2u2
i −

1
2

∫
�

(∇(1 f ) · ∇ f )u2
i

)
λk+2. �

Remark 3.4. If λk+1=λk+2, (3-17) also holds trivially. Hence, under the conditions
in Corollary 3.3, when i = 1, (3-17) holds for any k > 1.

Proof of Theorem 1.5. Since the inequality (3-20) always holds for λk+1 = λk+2,
without loss of generality, we assume that λk+1 < λk+2 in the following discussion.

Let {x1, x2, . . . , xn} be the standard coordinate functions in Rn . Taking

i = 1 and f = xl, l = 1, . . . , n,

in (3-16) and summing over l from 1 to n, we have

(3-19) n(λk+2− λk+1)
2
≤ 16λk+2

∫
�

n∑
l=1

(
∂u1

∂xl

)2

= 16λ1λk+2,

where we use |∇xl | = 1, l = 1, . . . , n.
From Theorem 3.1 in [Cheng and Yang 2007] (see also (1-9)) and from (3-19),

we deduce

(3-20) λk+2− λk+1 ≤ 4

√
λ1

n

√
λk+2 ≤ 4λ1

√
C0(n)

n
(k+ 1)1/2 = Cn,�(k+ 1)1/2,

where Cn,� = 4λ1
√

C0(n)/n and C0(n) is given by (1-9).
Therefore, (3-20) holds for arbitrary k > 1. �

Proof of Corollary 1.6. For convenience, we will use the upper-half-plane model of
hyperbolic space, i.e.,

Hn(−1)= {(x1, . . . , xn) ∈ Rn
| xn > 0}

with the standard metric

ds2
=
(dx1)

2
+ · · ·+ (dxn)

2

(xn)2
.

Taking r = log xn , we have

ds2
= (dr)2+ e−2r

n−1∑
i=1

(dxi )
2.
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Without loss of generality, we assume that λk+1 < λk+2. Taking f = r and i = 1
in (3-17), we have

(3-21) λk+2− λk+1 ≤ 4
(
λ1−

1
4

∫
�

(1r)2u2
i −

1
2

∫
�

(∇(1r) · ∇r)u2
1

)1
2√
λk+2

= 4
(
λ1−

1
4(n− 1)2

)1/2√
λk+2,

where |∇r | = 1 and 1r =−(n− 1) are used.
By (1-12) and (3-21), we have

(3-22) λk+2− λk+1 ≤ 4
(
λ1−

1
4(n− 1)2

)1/2√C0(n)
(
λ1+

1
4 n2 H 2

0

)
(k+ 1)1/n

= Cn,�(k+ 1)1/n,

where Cn,� is defined by (1-18). Therefore, we can deduce (3-22) for any k > 1. �

4. Proof of Corollary 1.7

Assume that (M, g) is an n-dimensional complete noncompact Riemannian mani-
fold with sectional curvature Sec satisfying −a2

≤ Sec≤−b2, where a and b are
constants with 0≤ b≤ a. Let� be a bounded domain of M . For a fixed point p /∈�,
the distance function ρ(x) is defined by ρ(x)= distance(x, p). From |∇ρ| = 1 and
Proposition 2.2 of [Schoen and Yau 1994], we have

(4-1) ∇ρ · ∇(1ρ)=−|Hess ρ|2−Ric(∇ρ,∇ρ).

Assume that h1, . . . , hn−1, with 0≤ h1 ≤ · · · ≤ hn−1, are the eigenvalues of Hess ρ.
We have

(4-2) 2|Hess ρ|2− (1ρ)2 = 2
n−1∑
i=1

h2
i −

( n−1∑
i=1

hi

)2

=

n−1∑
i=1

h2
i −

∑
i 6= j

hi h j

≤ h2
n−1+ h1h2+ · · ·+ hn−2hn−1−

∑
i 6= j

hi h j

= h2
n−1− h1h2− · · ·− hn−2hn−1−

∑
i 6= j

i, j≤n−2

hi h j

≤ h2
n−1− (n− 2)2h2

1.

From the Hessian comparison theorem (see [Wu et al. 1989]), we have

(4-3) a
cosh aρ
sinh aρ

≥ hn−1 ≥ · · · ≥ h1 ≥ b
cosh bρ
sinh bρ

.
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Since n ≥ 3 and a2/(sinh2 aρ) is a decreasing function of a, from (4-2) and (4-3),
we have

(4-4) 2|Hess ρ|2+ 2 Ric(∇ρ,∇ρ)− (1ρ)2

≤ a2 cosh2 aρ

sinh2 aρ
− (n− 2)2b2 cosh2 bρ

sinh2 bρ
− 2(n− 1)b2

= a2
+

a2

sinh2 aρ
− (n− 2)2b2

− (n− 2)2
b2

sinh2 bρ
− 2(n− 1)b2

≤−(n− 1)2b2
+ (a2

− b2)+
b2

sinh2 bρ
− (n− 2)2

b2

sinh2 bρ

≤−(n− 1)2b2
+ (a2

− b2).

Without loss of generality, we assume λk+1 < λk+2. By taking f = ρ and i = 1
in (3-17), we have

(4-5) λk+2− λk+1 ≤ 4
(
λ1−

1
4

∫
�

(1ρ)2u2
1−

1
2

∫
�

(∇(1ρ) · ∇ρ)u2
1

)1
2√
λk+2.

From (4-1) and (4-4), we obtain

(4-6) λ1−
1
4

∫
�

(1ρ)2u2
1−

1
2

∫
�

(∇(1ρ) · ∇ρ)u2
1

= λ1+
1
4

∫
�

(
2|Hess ρ|2+ 2 Ric(∇ρ,∇ρ)− (1ρ)2

)
u2

1

≤ λ1−
1
4(n− 1)2b2

+
1
4(a

2
− b2).

By (1-12), (4-5) and (4-6), we have

(4-7) λk+2− λk+1

≤ 4
(
λ1−

1
4(n− 1)2b2

+
1
4(a

2
− b2)

)1/2√C0(n)
(
λ1+

1
4 n2 H 2

0

)
(k+ 1)1/n

≤ Cn,�(k+ 1)1/n,

where Cn,� is defined by (1-20). Therefore, we can deduce (4-7) for any k > 1. �
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LIOUVILLE TYPE THEOREMS
FOR THE p-HARMONIC FUNCTIONS

ON CERTAIN MANIFOLDS

JINGYI CHEN AND YUE WANG

We show that for a certain range of p > n, the Dirichlet problem at in-
finity is unsolvable for the p-Laplace equation for any nonconstant con-
tinuous boundary data on an n-dimensional Cartan–Hadamard manifold
constructed from a complete noncompact shrinking gradient Ricci soliton.
Using the steady gradient Ricci soliton, we find an incomplete Riemann-
ian metric on R2 with positive Gauss curvature such that every positive p-
harmonic function must be constant for p ≥ 4.

1. Introduction

In this article, we study two questions about the p-Laplace equation on Riemannian
manifolds. The first one is the solvability of the Dirichlet problem at infinity on
a negatively curved complete noncompact manifold, and the second one is the
Liouville property for positive solutions on R2 equipped with an incomplete metric
with positive Gauss curvature. In both cases, the n-dimensional manifold M under
consideration is equipped with a Riemannian metric e2 f/(p−n)g where (M, g, f ) is
a complete gradient Ricci soliton which is shrinking for the first case and steady
for the second case.

On a Riemannian manifold, for a constant p > 1, a function v in W 1,p
loc ∩ L∞loc is

p-harmonic if it is a weak solution to the p-Laplacian equation

(1-1) div(|∇v|p−2
∇v)= 0.

It is known that p-harmonic functions are in C1,α (see [Tolksdorf 1984] and the
references therein).
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The behavior of harmonic and, more generally, p-harmonic functions depends
on the sign of the curvature of the manifold in an essential way. Therefore, we must
treat negatively curved and nonnegatively curved manifolds separately.

A Cartan–Hadamard manifold is a complete simply connected Riemannian
manifold with nonpositive sectional curvature everywhere. It is well-known that a
Cartan–Hadamard manifold M can be compactified by attaching a sphere M(∞)
at infinity. In the cone topology, the compactification is homeomorphic to a closed
Euclidean n-ball [Eberlein and O’Neill 1973]. The Dirichlet problem at infinity
for p-harmonic functions is to solve the p-Laplace equation (1-1) on M such that
v agrees with a given continuous function ϕ on M(∞). For p = 2, the Dirichlet
problem at infinity for harmonic functions is solvable if there are suitable lower and
upper bounds for the sectional curvature [Anderson 1983; Anderson and Schoen
1985; Choi 1984; Hsu 2003; Sullivan 1983]. Ancona [1994] constructed an example
showing that the Dirichlet problem is unsolvable if only a negative constant upper
bound is imposed. For p ∈ (1,∞), the Dirichlet problem at infinity is solvable
under similar curvature assumptions like those in the case p = 2; in particular, it is
solvable if the sectional curvature is bounded by

(1-2) −r2α−4−ε
≤ K ≤−α(α−1)

r2

near M(∞) where ε > 0 and α > 1, where r is the distance to a fixed point, and
for p ∈ (1, 1+ (n− 1)α) [Holopainen 2002; Holopainen and Vähäkangas 2007;
Pansu 1989].

Our first result is to show the unsolvability of the Dirichlet problem at infinity
on certain Cartan–Hadamard manifolds constructed from shrinking gradient Ricci
solitons, for a certain range of p > n. In particular, the unsolvability holds for
the shrinking Gaussian soliton (Rn, dx2, |x |2/4) for every p > n. It is interesting
to observe that the sectional curvature of the complete negatively curved metric
e|x |

2/(2(p−n))dx2 is not bounded above by −α(α− 1)/r2, for any constant α > 1, at
certain sections for sufficiently large r (see remark on page 319). This indicates
the upper bound in (1-2) is sharp in some sense for the solvability of the Dirichlet
problem at infinity.

Theorem 1.1. Suppose that (M, g, f ) is a simply connected n-dimensional com-
plete noncompact shrinking gradient Ricci soliton whose sectional curvatures are
bounded above by a constant K0 with 0< K0 < 1/(2(n− 1)). Then the Dirichlet
problem at infinity for the p-Laplace equation on (M, e2 f/(p−n)g) is unsolvable for
any nonconstant continuous boundary value ϕ and n < p < 1

K0
+ 2− n.

The proof relies on a Liouville type property (Proposition 2.1) for positive
solutions to the p-Laplace equation on (M, e−2 f/(n−p)g) for every p > 1, where
Cao and Zhou’s [2010] estimates on f and on the volume growth for gradient
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shrinking Ricci solitons are crucial as they imply that e− f is integrable on (M, g).
The advantage for considering the range p > n is that, under the conformal change
of metric, it yields a complete metric g̃ and it guarantees the negativity of the
curvature of g̃ under the curvature assumption K ≤ K0, while one does not have
such flexibility for p = 2.

However, the integration argument in the proof of Proposition 2.1 is no longer
valid for steady gradient Ricci solitons due to different behavior of f (typically
f tends to −∞ along a sequence of points xk that go to infinity [Munteanu and
Sesum 2013; Wu 2013]). Alternatively, a powerful way to prove Liouville type
theorems for positive harmonic functions on complete manifolds with nonnegative
Ricci curvature is via Yau’s gradient estimate [1975]. The p-harmonic version of
Yau’s estimate is established by Wang and Zhang [2011] (see [Sung and Wang
2014] for a sharp form of the estimate). For a positive p-harmonic function u in the
conformally changed metric g̃ = e−2 f/(n−p)g, we first derive a maximum principle
for |∇ log u| for steady (or shrinking) gradient Ricci solitons, via a Bochner type
formula. However, the required assumption on Ricci curvature for the gradient
estimates cannot hold globally for steady gradient Ricci solitons if dim M > 2
because it would imply that the scalar curvature of g possesses a positive constant
lower bound. But this is impossible as shown in [Munteanu and Sesum 2013; Wu
2013]. In dimension 2, we can combine the maximum principle (Proposition 3.3)
and the gradient estimate to prove a Liouville type result on the 2-plane with a
positively curved incomplete metric.

Theorem 1.2. Let (R2, g, f ) be Hamilton’s cigar soliton. Then there does not exist
any nonconstant positive p-harmonic function on (R2, g̃) for p ≥ 4.

Harmonic functions on the complete gradient Ricci solitons have been studied
by Munteanu and Sesum [2013] and Munteanu and Wang [2012] with applications
to the geometry and topology of the solitons. Moser [2007] observed an interesting
connection between the inverse mean curvature flow formulated as level sets in Rn

and 1-harmonic functions. Kotschwar and Ni [2009] generalize this to Riemannian
ambient manifolds. There is also recent work on gradient estimates for weighted
p-harmonic functions and the first p-eigenfunctions [Dung and Dat 2015].

2. The Dirichlet problem at infinity

In this section, the triple (M, g, f ) is assumed to be a complete noncompact
shrinking gradient Ricci soliton. We first establish the following Liouville property
for positive p-harmonic functions for p> 1 with no additional curvature assumption.

An n-dimensional Riemannian manifold (M, g) is a gradient Ricci soliton if

(2-1) Ric+∇∇ f + εg = 0
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for some smooth function f and ε =−1
2 , 0, 1

2 . Corresponding to the three values
of ε, the gradient Ricci soliton (M, g, f ) is shrinking, steady, or expanding [Chow
et al. 2006; Hamilton 1995].

Proposition 2.1. Let (M, g, f ) be a complete noncompact gradient shrinking
Ricci soliton. Then there is no nonconstant positive p-harmonic function on
(M, e−2 f/(n−p)g) for p > 1.

Proof. Since u is a p-harmonic function on (M, g̃) where g̃ = e−2 f/(n−p)g,

(2-2) divg̃
(
|∇̃w|

p−2
g̃ ∇̃w

)
= |∇̃w|

p
g̃

holds for w =−(p− 1) log u. For any smooth cut-off function φ ∈ C∞0 (M), in the
complete metric g, we require

φ = 1 on Bx0(ρ, g),
φ = 0 on M \ Bx0(2ρ, g),
0≤ φ ≤ 1 on M ,
|∇φ|2 ≤ C/ρ2 on M .

Here Bx0(r, g) stands for the geodesic ball centered at x0 with radius r in the metric
g in M . Multiplying (2-2) by φ2, then integrating and applying Stokes’ theorem,
we have∫

M
|∇̃w|

p
g̃ φ

2 dµg̃ =−2
∫

M
φ|∇̃w|

p−2
g̃ ∇̃w∇̃φ dµg̃

≤ 2
(∫

M
φ2
|∇̃w|

p
g̃ dµg̃

)(p−1)/p(∫
M
φ2
|∇̃φ|

p
g̃ dµg̃

)1/p

by the Cauchy–Schwarz inequality (p > 1). Therefore, we have∫
M
φ2
|∇̃w|

p
g̃ dµg̃ ≤ 2p

∫
M
φ2
|∇̃φ|

p
g̃ dµg̃.

Converting back to the metric g, we are led to

(2-3)
∫

M
φ2
|∇w|pe− f dµg ≤ 2p

∫
M
φ2
|∇φ|pe− f dµg.

By Theorem 1.1 in [Cao and Zhou 2010], the potential function f for a shrinking
gradient Ricci soliton satisfies the pointwise estimate

(2-4) 1
4(r(x)− c)2 ≤ f (x)≤ 1

4(r(x)+ c)2

for x ∈ M \ Bx0(1, g), where r(x) is the distance from x to a fixed point x0 in M
and c is a positive constant.
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Therefore, by (2-3) and (2-4),∫
B(x0,ρ)

|∇w|pe−(r+c)2/4 dµg ≤

∫
M
φ2
|∇w|pe− f dµg

≤
2pCe−(ρ−c)2/4

ρ p

∫
Bx0 (2ρ,g)\Bx0 (ρ,g)

dµg

≤
2pCe−(ρ−c)2/4

ρ p ρn

where the last inequality follows from the volume growth estimate (Theorem 1.2 in
[Cao and Zhou 2010]) on shrinking gradient Ricci solitons:

Vol(Bx0(ρ, g))≤ Cρn

for sufficiently large ρ and uniform constant C . Now letting ρ→∞, we conclude
|∇w| ≡ 0 on M , so u is a constant. �

Next, we show that (M, g̃) can be turned into a negatively curved manifold under
suitable assumptions on p and the sectional curvature K of (M, g).

Proposition 2.2. Let (M, g, f ) be a simply connected n-dimensional complete
noncompact shrinking gradient Ricci soliton whose sectional curvature is bounded
above by a constant K0 with 0 < K0 < 1/(2(n− 1)). Then (M, e−2 f/(n−p)g) is a
Cartan–Hadamard manifold for n < p ≤ 1

K0
+ 2− n.

Proof. When p > n, the metric g̃ = e−2 f/(n−p)g is complete since

−
2 f (x)
n− p

=
2 f (x)
p−n

≥
(r−c)2

2(p−n)

by [Cao and Zhou 2010] and completeness of g.
We use the conventions in [Chow et al. 2006] for curvatures. The Riemann

curvature tensor is written as

R
(
∂

∂x i ,
∂

∂x j

)
∂

∂xk = Rl
i jk

∂

∂x l

Ri jkl =

〈
R
(
∂

∂x i ,
∂

∂x j

)
∂

∂xk ,
∂

∂x l

〉
and if ∂/∂x1, . . . , ∂/∂xn is orthonormal at x0 ∈ M , then the sectional curvature of
the plane Pi j spanned by ∂/∂x i , ∂/∂x j at x0 is

K (Pi j )= Ri j j i

and the Ricci curvature at x0 is

R jk =

n∑
i=1

Ri
i jk .
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Under the conformal change of metric g̃ = e2 f/(p−n)g, the sectional curvature at x0

becomes

K̃ (Pi j )=
g̃
(
R̃s

i j j
∂
∂x s ,

∂
∂x i

)
g̃i i g̃ j j − g̃2

i j
(2-5)

= e4 f/(n−p) R̃i j j i

= e4 f/(n−p)
· e2 f/(p−n)

(
Ri j j i −

fi i+ f j j

p−n
−
|∇ f |2− f 2

i − f 2
j

(p−n)2

)
= e2 f/(n−p)

(
K (Pi j )−

fi i+ f j j

p−n
−
|∇ f |2− f 2

i − f 2
j

(p−n)2

)
(see p. 27 in [Chow et al. 2006]). On the gradient shrinking Ricci soliton, we
therefore have

K̃ (Pi j )≤ e2 f/(n−p)
(

K (Pi j )+
Ri i+R j j−1

p−n

)
by using the defining equation for shrinking gradient Ricci solitons and dropping
the last term above that is nonpositive for i 6= j .

From the assumption on K0 and p > n, it follows that

K (Pi j )+
Ri i+R j j−1

p−n
= K (Pi j )+

∑
s 6=i K (Pis)+

∑
s 6= j K (Ps j )− 1

p− n

≤

(
1+ 2(n−1)

p−n

)
K0−

1
p−n

≤
1

p−n
((p+ n− 2)K0− 1).

Therefore, we conclude that the sectional curvature K̃ of (M, e2 f/(p−n)g) is non-
positive since p+ n− 2≤ 1

K0
. �

Proof of Theorem 1.1. Suppose there is a solution u to the Dirichlet problem at
infinity and u = ϕ on M(∞) for some nonconstant function ϕ ∈ C0(M(∞)). Then
u is continuous on M ∪ M(∞), hence it is bounded. Then u − infM u + 1 is a
positive solution to the p-Laplace equation on (M, g̃), therefore it must be constant
from Proposition 2.1. Thus, u is constant on M and ϕ must be constant on M(∞).
The contradiction concludes the proof. �

When Rn is viewed as a shrinking gradient Ricci soliton with f (x)= |x |2/4, we
can take K0 = 0 and obtain the following corollary.

Corollary 2.3. The Dirichlet problem at infinity for the p-Laplace equation is
unsolvable on (Rn, e|x |

2/(2(p−n))dx2) for every p > n.
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Remark. The sectional curvature of g̃ = e2|x |2/(4(p−n))dx2 can be computed from
(2-5):

K̃ (Pi j )(x)=−e−|x |
2/(2(p−n))

( 1
p−n

+
|x |2−(x i )2−(x j )2

4(p−n)2
)

where Pi j (x) is the plane spanned by {∂/∂x i , ∂/∂x j
} at x ∈ Rn . The Riemannian

distance from x to the origin is

r(x)=
∫
|x |

0
es2/(4(p−n)) ds.

If we take x = (0, . . . , 0, x i , 0, . . . , 0), then |x |2− (x i )2− (x j )2 = 0 and

lim
|x |→∞

−K̃ (Pi j (x))r2(x)= lim
|x |→∞

(∫
|x |

0 es2/(4(p−n)) ds
)2

(p− n)e|x |2/(2(p−n))

=
1

p−n

(
lim
|x |→∞

2(p−n)
|x |

)2
= 0

by l’Hôpital’s rule. This in particular shows that there does not exist a constant
α > 1 for which

K (x)≤−α(α−1)
r2(x)

for all sections at x for large r(x).

3. A Liouville theorem on R2

with an incomplete metric with positive curvature

In this section, we consider the p-Laplace equation weighted by a smooth func-
tion f on a manifold (M, g), which is equivalent to the p-Laplace equation on
(M, e−2 f/(n−p)g), and derive a Bochner formula for its solutions. Specialized to the
shrinking or steady gradient Ricci solitons, the Bochner formula yields a maximum
principle, and this is applied to Hamilton’s cigar soliton.

A Bochner type formula for the weighted p-Laplace equation. Let g be a Rie-
mannian metric on an n-dimensional manifold M , and let f be a smooth real-
valued function on M . Consider the equation

(3-1) div(|∇u|p−2
∇u)− |∇u|p−2

〈∇ f,∇u〉 = 0

on M . This equation has a variational structure; in fact, it is the Euler–Lagrange
equation of the weighted p-energy functional

E p, f (u)=
∫

M
|∇u|pe− f dµg.

We call (3-1) the f -weighted p-Laplacian equation on (M, g).
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Proposition 3.1. Under a conformal change g̃ = e−2 f/(n−p)g, u is a solution to
(3-1) on (M, g) if and only if u is a solution to the p-Laplace equation (1-1)
on (M, g̃).

Proof. We write ∇ for ∇g and ∇̃ for ∇g̃. For any ϕ ∈ C∞0 (M),∫
M
〈∇̃ϕ, |∇̃u|p−2

g̃ ∇̃u〉g̃ dµg̃

=

∫
M
|∇̃u|p−2

g̃ 〈∇̃ϕ, ∇̃u〉g̃ dµg̃

=

∫
M

(
e(p−2) f/(n−p)

|∇u|p−2
g

)
e2 f/(n−p)

〈∇ϕ,∇u〉g e−n f/(n−p) dµg

=

∫
M
〈∇ϕ, |∇u|p−2

g ∇u〉g e− f dµg.

This shows that any weak solution to (3-1) on (M, g) is also a weak solution to
(1-1) on (M, g̃) and vice versa. �

Suppose u(x, t) is a positive solution of (3-1). Define

w =−(p− 1) log u,

h = |∇w|2.

We consider the symmetric n× n matrix

A = id+ (p− 2)∇w⊗∇w
h

.

Note that A is well defined whenever h > 0 and is positive definite for p > 1.
Arising from the linearized operator of the nonlinear p-harmonic equations, this
matrix was first introduced in [Moser 2007] and was used in [Kotschwar and Ni
2009; Wang and Zhang 2011] to study positive p-harmonic functions.

For the f -weighted p-Laplace equation (3-1), the linearized operator is

L(ψ)= div
(
h

p
2−1 A(∇ψ)

)
− h

p
2−1
〈∇ f, A(∇ψ)〉− ph

p
2−1
〈∇w,∇ψ〉

for smooth functions ψ on M , and the following Bochner type formula holds.

Proposition 3.2. Let u be a positive smooth solution to (3-1) in an open subset U
in M and assume h > 0 on U. Then

(3-2) div
(
h

p
2−1 A(∇h)

)
− h

p
2−1
〈∇ f, A(∇h)〉− ph

p
2−1
〈∇w,∇h〉

=
( p

2−1
)
|∇h|2h

p
2−2
+2h

p
2−1(
|∇∇w|2+Ric(∇w,∇w)+∇∇ f (∇w,∇w)

)
.
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Proof. Using (3-1), we first observe

(3-3) div(|∇w|p−2
∇w)− |∇w|p

=−(p− 1)p−1 div
(
|∇u|p−2

∇u
u p−1

)
− (p− 1)p |∇u|p

u p

=−(p− 1)p−1 |∇u|p−2
〈∇ f,∇u〉

u p−1

= |∇w|p−2
〈∇ f,∇w〉.

Then we calculate directly

div
(
h

p
2−1 A(∇h)

)
=
( p

2 − 1
)
h

p
2−2
|∇h|2+ h

p
2−11h+

( p
2 − 2

)
(p− 2)h

p
2−3
〈∇w,∇h〉2

+ (p− 2)h
p
2−2
〈∇w,∇h〉1w+ (p− 2)h

p
2−2
〈∇〈∇w,∇h〉,∇w〉.

Using the standard Bochner type formula for h = |∇w|2, namely

1h = 2|∇∇w|2+ 2 Ric(∇w,∇w)+ 2〈∇1w,∇w〉,

we have

(3-4) div
(
h

p
2−1 A(∇h)

)
=
( p

2 − 1
)
h

p
2−2
|∇h|2+ 2h

p
2−1(
|∇∇w|2+Ric(∇w,∇w)+〈∇1w,∇w〉

)
+
( p

2 − 2
)
(p− 2)h

p
2−3
〈∇w,∇h〉2+ (p− 2)h

p
2−2
〈∇w,∇h〉1w

+ (p− 2)h
p
2−2
〈∇〈∇w,∇h〉,∇w〉.

Rewrite (3-3) by using h = |∇w|2 as

(3-5) h
p
2−11w+

( p
2 − 1

)
h

p
2−2
〈∇h,∇w〉− h

p
2 = h

p
2−1
〈∇ f,∇w〉.

Taking the gradient of both sides of (3-5) and then taking the product with ∇w, we
are led to

(3-6)
( p

2 − 1
)( p

2 − 2
)
h

p
2−3
〈∇w,∇h〉2+

( p
2 − 1

)
h

p
2−2
〈∇〈∇w,∇h〉,∇w〉

+ h
p
2−1
〈∇1w,∇w〉+

( p
2 − 1

)
h

p
2−2
〈∇h,∇w〉1w− p

2 h
p
2−1
〈∇h,∇w〉

=
( p

2 − 1
)
h

p
2−2
〈∇ f,∇w〉〈∇h,∇w〉+ h

p
2−1
〈∇〈∇ f,∇w〉,∇w〉.

Adding (3-4) and twice (3-6) together and then simplifying, we have

(3-7) div
(
h

p
2−1 A(∇h)

)
− ph

p
2−1
〈∇h,∇w〉

=
( p

2 − 1
)
h

p
2−2
|∇h|2+ 2h

p
2−1
|∇∇w|2+ 2h

p
2−1 Ric(∇w,∇w)

+ (p− 2)h
p
2−2
〈∇ f,∇w〉〈∇h,∇w〉+ 2h

p
2−1
〈∇〈∇ f,∇w〉,∇w〉.



322 JINGYI CHEN AND YUE WANG

We also have

(3-8) 2h
p
2−1
〈∇〈∇ f,∇w〉,∇w〉

= 2h
p
2−1(∇∇ f )(∇w,∇w)+ 2h

p
2−1(∇∇w)(∇ f,∇w)

= 2h
p
2−1(∇∇ f )(∇w,∇w)+ h

p
2−1
〈∇ f,∇|∇w|2〉

= 2h
p
2−1(∇∇ f )(∇w,∇w)+ h

p
2−1
〈∇ f,∇h〉.

Moreover,

h
p
2−1
〈∇ f, A(∇h)〉 = h

p
2−1
〈∇ f,∇h〉+ (p− 2)h

p
2−2
〈∇ f, (∇w⊗∇w)∇h〉(3-9)

= h
p
2−1
〈∇ f,∇h〉+ (p− 2)h

p
2−2
〈∇ f,∇w〉〈∇h,∇w〉.

Now, (3-7)− (3-9)+ (3-8) yields the desired result. �

A maximum principle. When the triple (M, g, f ) is either shrinking or steady,
Proposition 3.2 can be used to prove the following maximum principle.

Proposition 3.3. Let u be a positive smooth solution to (3-1) in a bounded con-
nected open subset U in M with smooth boundary ∂U , p > 1. Suppose (M, g, f )
is a shrinking or steady gradient Ricci soliton. Then |∇u|/u attains its maximum
on ∂U.

Proof. Let h = (p− 1)2|∇u|2/u2. Assume maxU h >max∂U h. Then there exists
x0 ∈U such that h(x0)=maxU h > 0. Since u ∈ C1,α and u > 0, h is continuous.
Let

V = {x ∈U : h(x)= h(x0)}.

By the continuity of h, V is a closed subset of U and V does not intersect ∂U . In
fact, h is positive and hence smooth in a neighborhood of V . There exists a point
x1 ∈ V such that for some r0 the geodesic ball Bx1(r, g)⊂U is not contained in V
for any 0< r < r0, i.e., x1 is a boundary point of V . By the continuity of h again,
there is a geodesic ball Bx1(r1, g) in U on which h is positive. Observe that

RHS of (3-2)= p−2
2 |∇h|2h

p
2−2
+ 2h

p
2−1
|∇∇w|2+ 2h

p
2−1(Ric+∇∇ f )(∇w,∇w)

≥ 2h
p
2−1(Ric+∇∇ f )(∇w,∇w)

=

{
2h

p
2−1
|∇w|2 ≥ 0 if (M, g, f ) is a shrinking soliton,

0 if (M, g, f ) is a steady soliton,

where for the first inequality, we argue as

4h|∇∇w|2+ (p− 2)|∇h|2 ≥ 4|∇w|2|∇∇w|2− |∇|∇w|2|2

= 4|∇w|2(|∇∇w|2− |∇|∇w||2)

≥ 0
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by Kato’s inequality and p ≥ 1. Then it follows that the linear differential operator
L satisfies L(h) ≥ 0 on U . Next, since A is positive definite and symmetric on
Bx1(r1, g), so is h

p
2−1 A; therefore, L is uniformly elliptic on Bx1(r1, g). By Hopf’s

strong maximum principle (see Theorem 3.5 in [Gilbarg and Trudinger 1998]), h
must be a constant on Bx1(r1, g) since it attains its maximum at the interior point x1.
But this contradicts the maximality of V as Bx1(r1, g) contains points not in V . �

Gradient estimates. Let us first recall the following gradient estimate:

Theorem 3.4 [Wang and Zhang 2011]. Let (Mn, g) be a complete Riemannian
manifold with Ric ≥ −(n− 1)κ for some positive constant κ . Assume that v is a
positive p-harmonic function on the geodesic ball Bx0(R, g)⊂ M. Then

|∇v|

v
≤ C(p, n)

( 1
R
+
√
κ
)

on Bx0

( R
2 , g

)
for some constant C(p, n).

We now prove a gradient estimate for the f -weighted p-Laplacian equation.

Proposition 3.5. Let (Mn, g, f ) be a complete gradient Ricci soliton with

(3-10)
(2− p

n− p

)
Ric≥−(n− 1)κe−2 f/(n−p)g

−
2εg

n− p
−

Sg
n− p

− (d f ⊗ d f − |∇ f |2g) n−2
(n− p)2

,

where S is the scalar curvature of (M, g). Assume that u is a positive solution of
equation (3-1). Then there exists a constant C(p, n) such that

|∇u(x)|
u(x)

≤ C(p, n)
( 1

R
+
√
κ
)

e− f (x)/(n−p)

for x ∈ Bx0

( R
2 , e−2 f/(n−p)g

)
.

Proof. For a smooth function f , let∇ f be the gradient,1 f the Laplacian, and∇∇ f
the Hessian with respect to g. For the conformal change of metrics g̃= e−2 f/(n−p)g,
the Ricci tensors of g̃ and g are related by

(3-11) R̃ic= Ric−(n− 2)
(
−
∇∇ f
n− p

−
d f ⊗d f
(n− p)2

)
+

(
−
1 f

n− p
−

n−2
(n− p)2

|∇ f |2
)

g

(see [Anderson and Schoen 1985, p. 59]).
From the gradient Ricci soliton equation (2-1), the scalar curvature S of M

satisfies the two equations

S+1 f − nε = 0,(3-12)

S+ |∇ f |2+ ε f = 0(3-13)

(see [Besse 1987]).
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Putting (2-1) and (3-12) into (3-11), we have

R̃ic= Ric+(n− 2)
(
−Ric−εg

n− p
+

d f ⊗d f
(n− p)2

)
+

( S+nε
n− p

−
n−2
(n− p)2

|∇ f |2
)

g

=
2− p
n− p

Ric+ 2εg
n− p

+
Sg

n− p
+ (d f ⊗ d f − |∇ f |2g) n−2

(n− p)2
.

Therefore, the curvature assumption in Proposition 3.5 implies

R̃ic≥−(n− 1)κ.

By Proposition 3.1, we know that u is also a positive solution to (1-1) for the
metric g̃, hence by Theorem 3.4 we have

|∇u|g̃
u
≤ C(p, n)

( 1
R
+
√
κ
)

on Bx0

( R
2 , g̃

)
. This is equivalent to

|∇u(x)|
u(x)

≤ C(p, n)
( 1

R
+
√
κ
)

e− f (x)/(n−p)

for x ∈ Bx0

( R
2 , g̃

)
. �

A Liouville type theorem for the p-Laplace equation in dimension 2. For a steady
gradient Ricci soliton, the condition (3-10) on the Ricci curvature in Proposition 3.5
cannot hold globally when n ≥ 3 because it would imply, by taking the trace, that
the scalar curvature is bounded below by a positive constant, which is impossible.
However, the condition (3-10) is satisfied when n = 2 for p ≥ 4 or 1 < p < 2
because

Ric= 1
2 Sg ≥ 1

p−2 Sg,

since S ≥ 0 for any steady gradient Ricci soliton [Chen 2009] and κ = 0.
Note that Hamilton’s cigar soliton is the unique 2-dimensional nonflat complete

noncompact steady gradient Ricci soliton. The cigar soliton is R2 equipped with
the complete metric

g = dx2
+dy2

1+x2+y2

(see [Chow et al. 2006]) and the potential function

f (x, y)=− log(1+ x2
+ y2).

The conformally altered metric is

g̃ = e2 log(1+x2
+y2)/(2−p)g = (1+ x2

+ y2)p/(2−p)(dx2
+ dy2).
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In particular, g̃ is complete if 1< p < 2 and incomplete if p > 2. However, to use
the gradient estimate in proving a Liouville type result, we will need p ≥ 4. It is
straightforward to compute the Gauss curvature of g̃:

K̃ =−1
2
(1+ r2)p/(p−2)

(
∂2

rr +
1
r
∂r

)
log(1+ r2)−p/(p−2)

=
2p

p−2
(1+ r2)(p/(p−2))−2

=
2p

p−2
(1+ r2)−(p−4)/(p−2)

which is positive and tends to 0 as r→∞ if p > 4. When p = 4, the incomplete
metric (1+ x2

+ y2)−2(dx2
+ dy2) has constant curvature K̃ = 4.

Theorem 3.6. Let (R2, g, f ) be Hamilton’s cigar soliton. Then there does not exist
any nonconstant positive p-harmonic function on (R2, g̃) for p ≥ 4.

Proof. Let u be a positive solution to (3-1). For any point x0 ∈ M , the maximum
principle (Proposition 3.3) asserts

|∇u(x0)|

u(x0)
≤ max

x∈∂B0(R,g)

|∇u(x)|
u(x)

=
|∇u(xR)|

u(xR)

for some xR ∈∂B0(R, g)where x0∈ B0(R, g) and r(x0, 0)< R. From the discussion
above, when n= 2 and p≥ 4, the Ricci curvature condition (3-10) in Proposition 3.5
is satisfied. The diameter of (R2, g̃) is

2R0 = 2
∫
∞

0

dr
(1+r2)p/(2(p−2)) <∞.

It is clear that r(xR, 0)→∞ if and only if r̃(xR, 0)→ R0, where r̃ denotes the
distance function for the metric g̃. Let

rR =

∫
∞

R

dr
(1+r2)p/(2(p−2)) .

It follows from Proposition 3.5, applied on the ball BxR (rR, g̃), that

|∇u(xR)|

u(xR)
≤ C(n, p)

(rxR

2

)−1
e−2 log(1+|xR |

2)/(p−2)

= 2C(n, p)
(∫

∞

R

dr
(1+r2)p/(2(p−2)) (1+ R2)2/(p−2)

)−1

≤ 2C(n, p)
(
(1+ R2)2/(p−2)

∫
∞

R

dr
r p/(p−2)

)−1

= 2C(n, p)
( p−2

2
(1+ R2)2/(p−2)R−2/(p−2)

)−1
.
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Since p > 2, letting R→ 0 we conclude |∇u(x0)| = 0, hence u is constant as x0 is
arbitrary. �
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CARTAN–FUBINI TYPE RIGIDITY OF DOUBLE COVERING
MORPHISMS OF QUADRATIC MANIFOLDS

HOSUNG KIM

Let Z ⊂ PN be a Fano manifold whose Picard group is generated by the
hyperplane section class. Assume that Z is covered by lines and i(Z) ≥ 3.
Let φ : X Z → Z be a double cover, branched along a smooth hypersurface
section of degree 2m, 1≤m≤ i(Z)−2. We describe the defining ideal of the
variety of minimal rational tangents at a general point. As an application, we
show that if Z⊂PN is defined by quadratic equations and 2≤m≤ i(Z)−2,
then the morphism φ satisfies the Cartan–Fubini type rigidity property.

1. Introduction

Throughout the paper, we will work over the field of complex numbers. Let X be a
Fano manifold of Picard number 1. The index of X is the integer i(X) such that
−K X = i(X)L where L is the ample generator of the Picard group of X . For a
general point x ∈ X , a rational curve through x is called a minimal rational curve if
it has minimal K−1

X -degree among all rational curves through x . Denote by Kx the
normalized space of minimal rational curves through x . It is known (e.g., [Kollár
1996, II.3.11.5]) that Kx is a disjoint union of finitely many nonsingular projective
varieties of dimension i(X)− 2. The rational morphism Kx 99K PTx(X), sending a
member of Kx which is smooth at x to its tangent direction, can be extended to a
birational morphism τx :Kx→PTx(X); see [Hwang and Mok 2004; Kebekus 2002].
We denote the image of τx by Cx and call it the variety of minimal rational tangents
(VMRT) at x . The projective geometry of Cx ⊂ PTx(X) helps us to understand
the geometry of X . This is the motivation for the study of the VMRT for various
examples of X . For example, let φ : X → Pn be a double cover branched on a
smooth hypersurface of degree 2m, 2≤m ≤ n− 1. Then for a general point x ∈ X ,
the VMRT Cx ⊂PTx(X) is a complete intersection of multidegree (m+1, . . . , 2m),
and this description implies a certain rigidity property of φ [Hwang and Kim 2013].

This work was supported by the National Institute for Mathematical Sciences (NIMS) grant funded by
the Korea government (No. C21501).
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type rigidity.
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Let Z ⊂ PN be a Fano manifold whose Picard group is generated by the hyper-
plane section class. For each point y ∈ Z , we denote by Ly(Z)⊂PTy(Z) the space
of tangent directions of lines in Z through y. We say that Z ⊂ PN is covered by
lines if Ly(Z) is nonempty for each y ∈ Z . If Z ⊂ PN is covered by lines, then
minimal rational curves on Z are lines in PN contained in Z , and for general y ∈ Z ,
Ly(Z) ⊂ PTy(Z) coincides with the VMRT Cy ⊂ PTy(Z), which is smooth of
dimension i(Z)− 2; see [Hwang 2001, Proposition 1.5].

Our first result is the following theorem.

Theorem 1.1. Let Z ⊂PN be a Fano manifold whose Picard group is generated by
the hyperplane section class. Assume that Z is covered by lines and i(Z)≥ 3. Let
Y ⊂PN be a hypersurface of degree 2m, 1≤m≤ i(Z)−2, with smooth intersection
Y ∩Z. Let φ : X Z

→ Z be a double cover branched along Y ∩Z. Then for a general
point x ∈ X Z, the VMRT Cx is smooth of dimension i(Z)−m−2 and the differential
dφx :PTx(X Z )→PTφ(x)(Z) sends the VMRT Cx ⊂PTx(X Z ) isomorphically to an
intersection of Lφ(x)(Z)⊂PTφ(x)(Z) and m hypersurfaces in PTφ(x)(Z) of degrees
m+ 1, . . . , 2m respectively.

In order to prove the above theorem, we first show that for a certain choice of Y,
the statements in Theorem 1.1 hold by identifying minimal rational curves on X Z

with ECO (even contact order) lines with respect to Y (see Definition 2.4) contained
in Z . For arbitrary Y, we use a flatness argument.

We are going to show an application of Theorem 1.1. First, let us introduce the
definition of Cartan–Fubini type rigidity (CF-rigidity) which was initially defined
by Jun-Muk Hwang.

Definition 1.2 (Cartan–Fubini type rigidity). Let X1 and X2 be Fano manifolds
of Picard number 1 such that 2 ≤ dim X1 ≤ dim X2, and for general x1 ∈ X1

and x2 ∈ X2, 0 ≤ dimKx1 ≤ dimKx2 . We say that a morphism φ : X1 → X2 is
CF-rigid if for any connected open subset (in classical topology) U of X1 and
any biholomorphic immersion ψ : U → X2 such that for any member C of Kx ,
x ∈U, ψ(C ∩U ) is contained in a minimal rational curve of X2, then there exists
0 ∈ Aut(X2) such that ψ = 0 ◦φ|U .

The next theorem is on the CF-rigidity of the identity morphism, which was
essentially proved in [Hwang and Mok 2001].

Theorem 1.3 (Cartan–Fubini type extension theorem). Let X be a Fano manifold of
Picard number 1 and suppose that dimKx ≥ 1 for general x ∈ X. Then the identity
morphism on X is CF-rigid, i.e., for any connected open subset (in the standard
topology) U of X and any biholomorphic immersion ψ :U → X such that for any
member C of Kx , x ∈U, ψ(C ∩U ) is contained in a minimal rational curve of X ,
then there exists 0 ∈ Aut(X) such that ψ = 0|U .
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Let X be a Fano manifold of Picard number 1 and let φ : X→ Pn is a surjective
holomorphic map sending minimal rational curves on X to lines in Pn . [Hwang
and Kim 2013, Theorem 5.4] says that if the VMRT Cx ⊂ PTx(X) is not contained
in a hyperquadric, then φ : X→ Pn is CF-rigid. For example, the double covering
morphism φ : X→ Pn branched along a smooth hypersurface of degree 2m, with
2≤ m ≤ n− 1, is CF-rigid.

Next is an application of Theorem 1.1 on CF-rigidity.

Theorem 1.4. In the setting of Theorem 1.1, assume that Z ⊂ PN is a quadratic
manifold (i.e., scheme theoretically defined by quadratic equations) with i(Z)≥ 4,
and 2 ≤ m ≤ i(Z)− 2. Then φ : X Z

→ Z is CF-rigid. In other words, for any
connected open subset (in classical topology) U ⊂ X Z and any biholomorphic
immersion ψ : U → Z such that for any member C of Kx , x ∈ U, the image
ψ(C ∩U ) ⊂ Z is contained in a line in PN, there exists 0 ∈ Aut(Z) such that
ψ = 0 ◦φ|U .

The key point is that for Z ⊂ PN in Theorem 1.4, its VMRT Ly(Z)⊂ PTy(Z)
is also a quadratic manifold for a general point y ∈ Z ; see [Ionescu and Russo
2013, Theorem 2.4]. Using this observation and Theorem 1.3, we shall prove
Theorem 1.4.

The organization of this paper is as follows. In Section 2, we will review some
basic facts on ECO lines. In Section 3, we will study minimal rational curves on
double covers of certain Fano manifolds covered by lines. Theorem 1.1 will be
proved in Section 4. In the final section, we will prove Theorem 1.4 and present its
applications.

2. ECO lines

The aim of this section is to give a brief review of basic facts on ECO lines which
will be used in the proof of Theorem 1.1. For more details, see [Hwang and Kim
2013].

Definition 2.1. A homogeneous polynomial of degree 2m, m≥ 1, in the polynomial
ring C[s, t] with two variables s and t is an ECO (even contact order) polynomial if
it can be written as the square of a homogeneous polynomial of degree m in C[s, t].

Proposition 2.2 [op. cit., Proposition 3.3]. For each m > 0, there exist m unique
polynomials in the variables t1, . . . , tm ,

Ak(t1, . . . , tm) ∈ C[t1, . . . , tm], m+ 1≤ k ≤ 2m

with the following properties:

(i) Ak(t1, . . . , tm) is weighted homogeneous of degree k with respect to wt(ti )= i
for each i = 1, . . . ,m;
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(ii) the polynomial in two variables (s, t)

s2d
+ a1s2d−1t + · · ·+ a2d−1st2d−1

+ a2d t2d

is an ECO polynomial if and only if ak= Ak(a1, . . . , ad) for each d+1≤ k≤2d.
In particular, the polynomial

s2d
+ ad+1sd−1td+1

+ · · ·+ a2d−1st2d−1
+ a2d t2d

is an ECO polynomial if and only if ad+1 = · · · = a2d = 0.

Definition 2.3. Let f (t0, . . . , tN ) be a homogeneous polynomial of degree 2m in
variables t0, . . . , tN . Write

f (1, y1+ λz1, . . . , yN + λzN )= a f
0 (y; z)+ a f

1 (y; z)λ+ · · ·+ a f
2m(y; z)λ

2m,

where each a f
k (y; z)= a f

k (y1, . . . , yN ; z1, . . . , zN ) is a polynomial in 2N variables
y1, . . . , yN , z1, . . . , zN . Let Ak be as in Proposition 2.2 and set

B f
k (y; z) :=

a f
k (y; z)

a f
0 (y; z)

− Ak

(
a f

1 (y; z)

a f
0 (y; z)

, . . . ,
a f

m(y; z)

a f
0 (y; z)

)
.

We remark that for a fixed y, a f
k (y; z) is a homogeneous polynomial in variables

z1, . . . , zN of degree k. Furthermore for a fixed y with

a f
0 (y; z)= f (1, y1, . . . , yN ) 6= 0,

each B f
k (y; z) is a homogeneous polynomial of degree k in variables z1, . . . , zN .

Definition 2.4. Let Y ⊂ PN be a hypersurface of even degree 2m. A line `⊂ PN

is called an ECO (even contact order) line with respect to Y if ` 6⊂ Y and the local
intersection number at each point of `∩ Y is even. For each point y ∈ PN

\ Y, we
denote by EY

y ⊂ PTy(P
N ) the space of tangent directions of ECO lines with respect

to Y passing through y.

Proposition 2.5 [Hwang and Kim 2013, Proposition 3.8]. Choose a homogeneous
coordinate system t0, . . . , tN on PN. We denote by PN−1

∞
⊂ PN the hyperplane

defined by t0 = 0 and choose a homogeneous coordinate system z1, . . . , zN on
PN−1
∞

given by the restrictions of t1, . . . , tN respectively. Let f (t0, . . . , tN ) be a
homogeneous polynomial of degree 2m and let Y ⊂ PN be its associated hypersur-
face. For each point y = [1 : y1 : · · · : yN ] ∈ PN

\ Y ∪PN−1
∞

, define the projective
isomorphism

υy : P
N−1
∞
→ PTy(P

N )

by sending [z1 : · · · : zN ] ∈ PN−1
∞

to the tangent direction of the line

{(y1+ λz1, . . . , yN + λzN ) | λ ∈ C}
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at the point y. Then the variety υ−1
y (EY

y )⊂PN−1
∞

is set-theoretically the intersection

of m hypersurfaces in PN−1
∞

defined by polynomials in {B f
k (y; z) |m+1≤ k ≤ 2m}.

3. Minimal rational curves on double covers of prime Fano manifolds

Definition 3.1. Let Z ⊂ PN be a Fano manifold whose Picard group is generated
by the hyperplane section class H. Assume that Z is covered by lines and i(Z)≥ 3.
Let Y ⊂ PN be a hypersurface of degree 2m, 1≤ m ≤ i(Z)− 2, defining smooth
hypersurface section B := Y ∩ Z ⊂ Z . Let

φ : X Z
→ Z

be a double cover branched along B. From the adjunction formula

KX Z = φ∗
(
K Z +

1
2(B)

)
= φ∗

(
(−i(Z)+m)H

)
,

X Z is a Fano manifold of index i(X Z )= i(Z)−m and its Picard group is generated
by φ∗(H).

Proposition 3.2. In the setting of Definition 3.1, an irreducible reduced curve
C ⊂ X Z with φ(C) 6⊂ B is a minimal rational curve if and only if its image curve
φ(C) is an ECO line with respect to Y. Moreover for any minimal rational curve
C ⊂ X Z with φ(C) 6⊂ B, φ|C : C→ φ(C) is an isomorphism.

Proof. We fist observe:

Claim: An irreducible reduced curve C ⊂ X Z with φ(C) 6⊂ B has φ∗H -degree 1 if
and only if its image curve φ(C)⊂ Z is an ECO line with respect to Y. Moreover
for any φ∗H -degree 1 curve C ⊂ X Z with φ(C) 6⊂ B, φ|C : C → φ(C) is an
isomorphism.

Proof of the claim. Let C ⊂ X Z be an irreducible reduced curve such that the
image φ(C) is an ECO line with respect to Y. Suppose that φ|C : C → φ(C) is
not birational. For a point z ∈ φ(C)∩ Y, let t be a local uniformizing parameter
on φ(C) at z and let rz be the local intersection number of φ(C) and Y at z. Then
C is analytically defined by the equation s2

= trz . Since rz is even for any choice
of z ∈ φ(C)∩ Y, the composition of the normalization morphism C̃→ C and the
covering morphism φ|C : C→ φ(C) induces a morphism C̃→ φ(C) of degree 2
without ramification point, a contradiction. Thus φ|C : C→ φ(C) is birational and
C has φ∗H -degree 1.

Conversely, if C is an irreducible reduced curve of φ∗H -degree 1, then φ(C)⊂ Z
with φ(C) 6⊂ B and φ|C : C→ φ(C) must be birational. Thus φ−1(φ(C)) has an
irreducible component C ′ different from C with φ(C∩C ′)=φ(C)∩B. By the same
argument as before, if the local intersection number rz at z ∈ φ(C)∩ Y is odd, the
germ of φ−1(φ(C)) over z, defined by s2

= trz, is irreducible, a contradiction. Thus
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rz is even for all z ∈ φ(C)∩ Y which implies that φ(C) is an ECO line. Moreover,
C must be smooth and the morphism φ|C : C→ φ(C) is an isomorphism. �

Let us go back to the proof of our proposition. By the claim above, we only
need to show that for a general point x ∈ X Z, there exists a φ∗H -degree 1 curve
through x . From dimLφ(x)(Z)= i(Z)− 2≥ m and Proposition 2.5, it is induced
that there exists an ECO line ` with respect to Y through φ(x) and contained in Z .
Take one such ECO line `. The claim above shows that the inverse image φ−1(`)

consists of two smooth rational curves of degree 1 with respect to φ∗H . Clearly,
one of those two curves passes through x . �

4. Defining equations of VMRT

In order to find the defining ideal of the VMRT Cx ⊂ PTx(X Z ), we proceed in a
manner analogous to [Hwang and Kim 2013].

Notation 4.1. Let Y ⊂ PN be a hypersurface of even degree 2m, m ≥ 1, and let
Z ⊂ PN be a projective submanifold which is not contained in Y. For each point
y ∈ Z \ Z ∩ Y, we denote by EY

y (Z) ⊂ PTy(Z) the space of tangent directions of
ECO lines with respect to Y contained in Z .

Proposition 4.2. In the setting of Definition 3.1, for a general point x ∈ X Z, the
tangent morphism τx : Kx → PTx(X Z ), sending each member of Kx to its tangent
direction, is an embedding. In particular the VMRT Cx = Im(τx) ⊂ PTx(X Z )

is a nonsingular projective variety with finitely many components of dimension
i(Z)−m − 2, isomorphic to EY

φ(x)(Z) ⊂ PTφ(x)(Z) via the differential morphism
dφx : PTx(X Z )→ PTφ(x)(Z).

Proof. From Proposition 3.2, the differential dφx : PTx(X Z )→ PTφ(x)(Z) sends
the VMRT Cx ⊂ PTx(X Z ) isomorphically to the variety EY

φ(x)(Z)⊂ PTφ(x)(Z).
We note that τx : Kx → PTx(X Z ) is the normalization morphism of its image,

which is equal to Cx . Thus we only need to show that τx is an embedding because
Kx is a smooth projective variety of dimension i(X)− 2= i(Z)−m− 2.

Assume that there are two distinct members C1 and C2 of Kx such that τx([C1])=

τx([C2]). Thus φ(C1) and φ(C2) are lines on PN passing through φ(x) with the
same tangent direction at φ(x), which implies that φ(C1)= φ(C2) is a line; denote
it by `. Therefore φ−1(`) = C1 ∪C2, and hence C2 and C2 meets only over the
points on `∩ B, a contradiction because x ∈ C1 ∩C2 but φ(x) 6∈ B by the general
condition on x . Thus we have shown that τx is injective.

Since we know that Kx is nonsingular, to prove that τx is an embedding, it
remains to show that τx is an immersion. By [Hwang 2001, Proposition 1.4], this
is equivalent to showing that for any member C ⊂ X Z of Kx , the normal bundle
NC/X Z satisfies
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NC/X Z = OP1(1)i(Z)−m−2
⊕On+m−i(Z)+1

P1 .

By the generality of x , we can write

NC/X Z =OP1(a1)⊕ · · ·⊕OP1(an−1)

for integers a1 ≥ · · · ≥ an−1 ≥ 0 satisfying
∑

i ai = i(Z)− m − 2. Since φ is
unramified at general points of C and φ|C : C→ ` := φ(C) is an isomorphism, we
have an injective sheaf homomorphism

φ∗ : NC/X Z → N`/PN =O(1)N−1.

Thus a1 ≤ 1; hence, a1 = · · · = ai(Z)−m−2 = 1 and ai(Z)−m−1 = · · · = an−1 = 0. �

Proposition 4.3. Let Z ⊂PN be a Fano manifold whose Picard group is generated
by the hyperplane section class. Assume that Z is covered by lines and i(Z) ≥ 3.
Then for each m with 1 ≤ m ≤ i(Z)− 2, there exists a hypersurface Y of degree
2m with smooth Y ∩ Z such that for a general point y ∈ Z , EY

y (Z) ⊂ PTy(Z) is
scheme-theoretically the intersection of Ly(Z)⊂ PTy(Z) with m hypersurfaces in
PTy(Z) of degrees m+ 1, . . . , 2m, respectively.

Proof. Take a point ŷ ∈ Z such that Lŷ(Z) is smooth of dimension i(Z)−2. Choose
a homogeneous coordinate system t0, . . . , tN so that ŷ = [1 : 0 : · · · : 0] ∈ Z and
the hyperplane section Z ∩ (t0 = 0) is smooth. Choose homogeneous polynomials
{bk(t1, . . . , tN ) | m+ 1≤ k ≤ 2m} with deg bk = k so that each of the following is
smooth:

(i) the intersection of Z ∩ (t0 6= 0) with the hypersurface in PN defined by

1+ bm+1(t1, . . . , tN )+ · · ·+ b2m(t1, . . . , tN )= 0,

(ii) the intersection of Z ∩ (t0 = 0) with the hypersurface in PN defined by

b2m(t1, . . . , tN )= 0.

Set

f (t0, t1, . . . , tN ) := t2m
0 + tm−1

0 bm+1(t1, . . . , tN )

+ · · ·+ t0b2m−1(t1, . . . , tN )+ b2m(t1, . . . , tN ).

The assumptions (i) and (ii) imply that the hypersurface section of Z defined by
f (t0, . . . , tN ) is smooth. From Proposition 2.2(ii) we obtain the equalities

B f
k (y; z)= bk(z1, . . . , zN ), m+ 1≤ k ≤ 2m.

Since υ−1
y (Ly(Z)) is smooth of dimension i(Z)− 2 ≥ m, it follows that for gen-

eral {bk(z1, . . . , zN ) | m + 1 ≤ k ≤ 2m}, the scheme-theoretical intersection of
υ−1

y (Ly(Z)) and the m hypersurfaces defined by B f
k (y; z), m + 1 ≤ k ≤ 2m,
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is smooth of dimension i(Z) − m − 2. Therefore our proposition comes from
Proposition 2.5. �

Proof of Theorem 1.1. By Propositions 4.2 and 4.3, the theorem holds for a
general hypersurface Y ⊂ PN with smooth intersection Y ∩ Z . In order to prove
it for arbitrary hypersurface Y ⊂ PN with smooth intersection Y ∩ Z , choose a
deformation {Yt | |t | < ε} of Y = Y0 with smooth Yt ∩ Z such that for a Zariski
open subset Ut ⊂ Z \ Yt ∩ Z , the varieties EYt

y (Z)⊂ PTy(Z), y ∈Ut , are

(i) smooth of dimension i(Z)−m− 2 for any t , and

(ii) the intersection of m hypersurface sections of Ly(Z) ⊂ PTy(Z) defined by
hypersurfaces in PTy(Z) of degrees m + 1, . . . , 2m, respectively. (The inter-
section is scheme-theoretic for any t 6= 0 and set-theoretic for t = 0.)

By shrinking ε if necessary, the intersection
⋂

t Ut is nonempty. Let V be a Zariski
open subset of Z such that the variety Ly(Z) is smooth of dimension i(Z)−2. Pick
a point y ∈

(⋂
t Ut

)
∩V. We can construct a smooth family {φt : X Z

t → Z | |t |< ε}
of double covers of Z branched along the Z ∩ Yt . Choose xt ∈ φ

−1
t (y) in a

continuous way. The family {Kxt | |t |< ε} is a flat family of nonsingular projective
subvarieties; see, e.g., [Kollár 1996, II.3.11.5]. Via Proposition 4.2, this implies
that {EYt

y (Z) | |t | < ε} is a flat family of nonsingular projective subvarieties of
Ly(Z)⊂ PTy(Z). From condition (ii) and the flatness, we conclude that EY0

y (Z) is
also scheme-theoretically the intersection of Ly(Z)⊂PTy(Z) with m hypersurfaces
in PTy(Z) of degrees m+ 1, . . . , 2m, respectively. �

5. Rigidity and Extension

The following fact is obvious, but plays an important role in the proof of Theorem 1.4.

Lemma 5.1. Let R be the polynomial ring C[z1, . . . , zN ] in variables z1, . . . , zN .
Consider R as a graded ring with deg zi = 1. Let I, J, and K be homogeneous ideals
of R such that I and K are generated by homogeneous polynomials of degree 2,
and J is generated by homogeneous polynomials of degrees ≥ 3. If h : R→ R is an
automorphism of the graded ring R with h(K )⊂ I + J, then h(K )⊂ I .

Proof of Theorem 1.4. By shrinking U if necessary, we may assume that

• the restriction φ|U :U → Z is an embedding,

• for any x ∈U, Lφ(x)(Z)⊂PTφ(x)(Z) is a smooth quadratic manifold of dimen-
sion i(Z)− 2; see [Ionescu and Russo 2013, Theorem 2.4],

• for any x ∈ U, the space EY
φ(x) ⊂ PTφ(x)(Z) is scheme-theoretically the inter-

section of Lφ(x)(Z)⊂PTφ(x)(Z) and m hypersurfaces in PTφ(x)(Z) of degrees
m+ 1, . . . , 2m, respectively.
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Set U1 = φ(U ) and U2 = ψ(U ). Then we get a biholomorphism

γ := ψ ◦φ|−1
U :U1→U2.

We note that for any y ∈U1, the differential dγy :PTy(Z)→PTγ (y)(Z) is an isomor-
phism sending EY

y (Z)⊂PTy(Z) into Lγ (y)(Z)⊂PTγ (y)(Z). From Lemma 5.1 and
Theorem 1.1, it follows that dyγ (Ly(Z))⊂ Lγ (y)(Z). By shrinking U if necessary,
we may assume that Lγ (y) ⊂ PTγ (y)(Z) is also a smooth quadratic manifold of
dimension i(Z)− 2. Therefore it follows that dyγ (Ly(Z))= Lγ (y)(Z). We finish
the proof by applying [Hwang 2001, Theorem 3.2]. �

The next corollary is an algebraic version of Theorem 1.4

Corollary 5.2. In the setting of Theorem 1.4, let X̂ be a projective variety with
generically finite surjective morphisms g : X̂→ X Z and h : X̂→ Z such that for a
minimal rational curve C through a general point of X Z, there exists an irreducible
component C ′ of g−1(C) whose image h(C ′)⊂ Z ⊂ PN is a line. Then there exists
an automorphism 0 : Z→ Z such that h = 0 ◦φ ◦ g.

Next, Theorems 5.3 and 5.4 can be proved by the same arguments as in the proof
of Theorems 1.7 and 1.9 in [Hwang and Kim 2013], respectively. We include their
proof for the reader’s convenience.

Theorem 5.3. Let Z ⊂PN be a quadratic Fano manifold such that its Picard group
is generated by the hyperplane section class and i(Z)≥ 4. Let Y1, Y2 ⊂ PN, N ≥ 3,
be two hypersurfaces of degree 2(i(Z)− 2) with smooth intersections Y1 ∩ Z and
Y2 ∩ Z. Let φ1 : X1→ Z and φ2 : X2→ Z be double covers of Z branched along
Y1∩Z and Y2∩Z , respectively. Suppose there exists a finite morphism f : X1→ X2.
Then f is an isomorphism.

Proof. Put m = i(Z)− 2 in the proof of Proposition 4.2. Then minimal rational
curves on X i , i = 1, 2, have trivial normal bundles and rational curves through
general points with trivial normal bundles are minimal rational curves. By [Hwang
and Mok 2003, Proposition 6], for a general minimal rational curve C ⊂ X2, each
irreducible component of f −1(C) is a minimal rational curve in X1. In other words,
f sends minimal rational curves of X1 through a general point to those of X2.
Putting

X̂ = X1, X = X2, g = f, φ = φ2, and h = φ1

in Corollary 5.2, we see that φ1 = 0 ◦φ2 ◦ f for some automorphism 0 of Z . Thus
f must be birational, and hence an isomorphism. �

The next theorem is a stronger version of Theorem 1.3.

Theorem 5.4. Let Z ⊂PN be a quadratic Fano manifold such that its Picard group
is generated by the hyperplane section class and i(Z)≥ 4. Let Y1, Y2 ⊂ PN be two
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hypersurfaces of degree 2m, 2≤m ≤ i(Z)−2, with smooth Y1∩ Z and Y2∩ Z. Let
φ1 : X Z

1 → Z and φ2 : X Z
2 → Z be double covers of Z branched along Y1 ∩ Z and

Y2 ∩ Z respectively, and let U1 ⊂ X Z
1 and U2 ⊂ X Z

2 be two connected open subsets.
Suppose that we are given a biholomorphic map γ : U1→ U2 such that for any
minimal rational curve C1 ⊂ X Z

1 , there exists a minimal rational curve C2 ⊂ X Z
2

with γ (U1 ∩C1)=U2 ∩C2. Then we can find a biregular morphism 0 : X Z
1 → X Z

2
with 0|U1 = γ .

Sketch of the proof. Applying Theorem 1.4 to ψ := φ2 ◦ γ :U1→ φ2(U2)⊂ Z and
φ :=φ1, we have 0′ ∈Aut(Z) such that 0′◦φ1|U1 =φ2◦γ . By the assumption on γ
and Proposition 3.2, for a general point y ∈ φ1(U1), we have d0′(EY1

y ) = EY2
0′(y),

which implies that a general ECO line with respect to Y2 contained in Z should be
an ECO line with respect to Y ′.

Since the Picard group of Z is generated by the hyperplane section class and
0′∈Aut(Z), there exists a hypersurface Y ′⊂PN of degree 2m such that0′(Y1∩Z)=
Y ′ ∩ Z . Suppose Y ′ ∩ Z 6= Y2 ∩ Z . By the similar arguments in [Hwang and Kim
2013, Proposition 2.5], we can show that a general ECO line with respect to Y2

contained in Z cannot be an ECO line with respect to Y ′, a contradiction. Therefore
Y ′ ∩ Z = Y2 ∩ Z .

Thus replacing Y1 ∩ Z by 0(Y1 ∩ Z) and φ1 by 0′ ◦ φ1, we may assume that
Y1 ∩ Z = Y2 ∩ Z and φ1(U1)= φ2(U2). By the uniqueness of double covering, it
follows that there exists a biregular morphism 0 : X Z

1 → X Z
2 with 8|U1 = γ . �
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ON THE UNIFORM SQUEEZING PROPERTY
OF BOUNDED CONVEX DOMAINS IN Cn

KANG-TAE KIM AND LIYOU ZHANG

We prove that the bounded convex domains and the C2-smoothly bounded
strongly pseudoconvex domains in Cn admit the uniform squeezing prop-
erty. Moreover, we prove by the scaling method that the squeezing function
approaches 1 near the strongly pseudoconvex boundary points.

1. Introduction

The notion of holomorphic homogeneous regular, or equivalently, uniformly squeez-
ing for complex manifolds has been introduced in [Liu et al. 2004; 2005] and
[Yeung 2009], respectively. This concept is essential for the estimation of several
invariant metrics. See the above cited papers for details.

Let� be a complex manifold of dimension n. The squeezing function σ� :�→R

of � is defined in [Deng et al. 2012] as follows. For each p ∈�, let

F(p, �) := { f :�→ Bn
: f is 1-1 holomorphic, f (p)= 0},

where

• Bn(p; r)= {z ∈ Cn
: ‖z− p‖< r}, and

• Bn
= Bn(0; 1)= Bn((0, . . . , 0); 1).

Then define

σ�(p)= sup{r : Bn(0; r)⊂ f (�) for some f ∈ F(p, �)}.

Furthermore, the squeezing constant σ̂� for � is defined by

σ̂� := inf
p∈�

σ�(p).

Definition ([Liu et al. 2004; 2005; Yeung 2009]). A complex manifold � is called
holomorphic homogeneous regular (HHR), or equivalently uniformly squeezing, if
σ̂� > 0.

MSC2010: primary 32F45; secondary 32A25.
Keywords: squeezing function, convex domains, scaling method.
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Notice that the HHR property is preserved by biholomorphisms. The squeezing
function and squeezing constants are also biholomorphic invariants [Deng et al.
2012].

These concepts have been developed for the study of completeness and other
geometric properties such as the metric equivalence of the invariant metrics, in-
cluding the Carathéodory, Kobayashi–Royden, Teichmüller, Bergman, and Kähler–
Einstein metrics. It is obvious that the examples of HHR manifolds include bounded
homogeneous domains. In case the manifold is biholomorphic to a bounded domain
and the holomorphic automorphism orbits accumulate at every boundary point,
such as in the case of the Bers embedding of the Teichmüller space, again the HHR
property holds. A somewhat less obvious example are the bounded strongly convex
domains (as the majority of them do not possess any holomorphic automorphisms
except the identity map), proved by S.-K. Yeung [2009]. But there, some of the
most standard examples, such as the bounded convex domains and the bounded
strongly pseudoconvex domains, were left untouched.

Indeed, the starting point of this article is to show:

Theorem 1.1. All bounded convex domains in Cn (n ≥ 1) are HHR.

Note that we do not assume any additional conditions such as boundary smooth-
ness or “finite type” in the sense of D’Angelo in the above theorem. Nevertheless,
the concept of squeezing function σ� defined above plays an important role, and
moreover, it appeals to us that further investigations of this function would be
worthwhile. One immediate observation is that if σ�(p)= 1 for some p ∈�, then
� is biholomorphic to the unit open ball. In light of studies on the asymptotic
behavior of several invariant metrics of strongly pseudoconvex domains, perhaps it
is natural to ask, for a bounded strongly pseudoconvex domain � in Cn , whether
lim�3q→p σ�(q)= 1 holds for every boundary point p ∈ ∂�.

It was proved in [Deng et al. 2015] that the HHR property holds for all bounded
strongly pseudoconvex domains, using an improvement of the method in [Fridman
and Ma 1995]. In the present paper, by using a different approach — the scaling
method — we will prove:

Theorem 1.2. If � is a bounded domain in Cn with a C2 strongly convex boundary,
then lim�3q→p σ�(q)= 1 for every p ∈ ∂�.

Actually, we have a more general conclusion in Theorem 3.1, which implies
Theorem 1.2. The question posed above follows quickly from Theorem 3.1 and the
following remarkable theorem of Diederich, Fornaess, and Wold [2014].

Theorem 1.3 [Diederich et al. 2014, Theorem 1.1]. Let � ⊂ Cn be a bounded
domain which is locally convexifiable and has finite type 2k near a point p ∈ ∂�.
Assume further that ∂� is C∞-smooth near p, and that� has a Stein neighborhood
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basis. Then there exists a holomorphic embedding f :�→ Bn
k , where

Bn
k = {z ∈ C2

: |zn|
2
+ |z′|2k < 1},

such that f (p)= (0, . . . , 0, 1) and {z ∈� : f (z) ∈ ∂Bn
k } = {p}.

In particular, if ∂� is strongly pseudoconvex near p (i.e., k = 1), it is enough to
assume that ∂� is C2-smooth near p.

We mention here that the proof of Theorem 1.2 is of interest in its own right, and
also clarifies and simplifies some previously known theorems. These are mentioned
in the final section.

2. Bounded convex domains are HHR manifolds

The aim of this section is to establish Theorem 1.1 stated above. Not only does this
theorem cover the case left untreated in [Yeung 2009], but our method is different
(see also [Deng et al. 2012] on this matter). Our method uses a version of the
“scaling method in several complex variables” initiated by S. Pinchuk [1991]. In fact,
we use the version presented in [Kim 1992], modified for the purpose of studying
the asymptotic boundary behavior of holomorphic invariants.

Proof of Theorem 1.1. We proceed in 5 steps.

Step 1. Setup. Let � be a bounded convex domain in Cn . Suppose that � is not
HHR. Then there exists a sequence {q j } in � converging to a boundary point, say
q ∈ ∂�, such that

lim
j→∞

σ�(q j )= 0.

Needless to say, it suffices to show that such a sequence cannot exist.

Step 2. The j-th orthonormal frame. Let 〈 , 〉 represent the standard Hermitian
inner product of Cn , and let ‖v‖ =

√

〈v, v〉. For every q ∈ Cn and complex linear
subspace V of Cn , denote by

BV (q, r)= {p ∈ Cn
: p− q ∈ V and ‖p− q‖< r}.

Now let q ∈� and define the positive number λ(q, V ) by

λ(q, V )=max{r > 0 : BV (q, r)⊂�}.

This number is finite for each (q, V ), whenever dim V > 0, since � is Kobayashi
hyperbolic.

Fix the index j momentarily. Then we choose an orthonormal basis for Cn , with
respect to the standard Hermitian inner product 〈 , 〉. First consider

λ1
j := λ(q j ,Cn).



344 KANG-TAE KIM AND LIYOU ZHANG

There exists q1∗
j ∈ ∂� such that ‖q1∗

j − q j‖ = λ
1
j . Let

e1
j =

q1∗
j − q j

‖q1∗
j − q j‖

.

Then consider the complex span SpanC{e
1
j }, and let V 1 be its orthogonal complement

in Cn . Take
λ2

j := λ(q j , V 1)

and q2∗
j ∈ ∂� such that q2∗

j − q j ∈ V 1 and ‖q2∗
j − q j‖ = λ

2
j . Then let

e2
j :=

q2∗
j − q j

‖q2∗
j − q j‖

.

With e1
j , e2

j , . . . , e`∗j and λ1
j , λ

2
j , . . . , λ

`
j chosen, the next elements e`+1∗

j and
λ`+1

j are selected as follows. Denote by V ` the complex orthogonal complement of
SpanC{e

1
j , e2

j , . . . , e`j }. Then

λ`+1
j := λ(q j , V `)

and q`+1∗
j ∈ ∂� are such that q`+1∗

j − q j ∈ V ` and ‖q`+1∗
j − q j‖ = λ

`+1
j . Let

e`+1
j :=

q`+1∗
j − q j

‖q`+1∗
j − q j‖

.

By induction, this process yields an orthonormal set e1
j , . . . , en

j for Cn and the
positive numbers λ1

j , . . . , λ
n
j .

Step 3. Stretching complex linear maps. Let ê1, . . . , ên denote the standard or-
thonormal basis for Cn , i.e.,

ê1
= (1, 0, . . . , 0), ê2

= (0, 1, 0, . . . , 0), . . . , ên
= (0, . . . , 0, 1).

Define the stretching linear map L j : C
n
→ Cn by

L j (z)=
n∑

k=1

〈z− q j , ek
j 〉

λk
j

êk

for every z ∈ Cn . Note that for each j , L j maps � biholomorphically onto its
image.

Step 4. Supporting hyperplanes. Notice that

L j (q j )= 0= (0, . . . , 0), L j (q1∗
j )= ê1, . . . , L j (qn∗

j )= ên.

We shall consider the supporting hyperplanes, say 5k
j for k = 1, . . . , n, of L j (�)

at points L j (qk∗
j ) for k = 1, . . . , n, respectively.
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Substep 4.1. The supporting hyperplane 51
j . As noted above, L j (q1∗

j )= ê1. Due
to the choice of q1∗

j , the supporting hyperplane of � at q1∗
j must also support the

sphere tangent to the boundary ∂�. Consequently the supporting hyperplane 51
j of

L j (�) must support a smooth surface (an ellipsoid) tangent to L j (∂�) at ê1. Thus,
the equation for this hyperplane 51

j is

Re(z1− 1)= 0

(independently of j , being perpendicular to ê1). We also note that

L j (�)⊂ {(z1, . . . , zn) ∈ Cn
: Re z1 < 1}.

Substep 4.2. The rest of the supporting hyperplanes 5k
j , for k ≥ 2. First consider

the case k = 2. Then the supporting hyperplane 52
j passes through L j (q2∗

j )= ê2.
Since the restriction of � to V 1 contains the sphere in V 1 tangent to the restriction
of ∂� at the point ê2, the supporting hyperplane 52

j restricted to L j (V 1) takes the
equation {(z2, . . . , zn) ∈ Cn

: Re(z2− 1)= 0}. Hence

52
j = {(z1, . . . , zn) ∈ Cn

: Re(a2,1
j z1+ a2,2

j (z2− 1))= 0}

for some
(
a2,1

j , a2,1
j

)
∈C2 with

∣∣a2,1
j

∣∣2+ ∣∣a2,2
j

∣∣2= 1 and a2,2
j > 0. We also have that

L j (�)⊂ {(z1, . . . , zn) ∈ Cn
: Re(a2,1

j z1+ a2,2
j (z2− 1)) < 0}.

For k ∈ {3, . . . , n}, one deduces inductively that the supporting hyperplane 5k
j

passes through the point êk , and that

5k
j = {(z1, . . . , zn) ∈ Cn

: Re(ak,1
j z1+ · · ·+ ak,k−1

j zk−1+ ak,k
j (zk − 1))= 0},

with ak,k
j > 0 and

∑k
`=1

∣∣ak,`
j

∣∣2 = 1. Also,

L j (�)⊂ {(z1, . . . , zn) ∈ Cn
: Re(ak,1

j z1+ · · ·+ ak,k−1
j zk−1+ ak,k

j (zk − 1)) < 0}.

Substep 4.3. Polygonal envelopes. We add this small substep for convenience. From
the discussion so far in this step, we have the j-th polygonal envelope (of L j (�))

6 j := {(z1, . . . , zn) ∈ Cn
:Re z1 < 1,

Re(a2,1
j z1+ a2,2

j (z2− 1)) < 0,

...

Re(an,1
j z1+ · · ·+ an,n−1

j zn−1+ an,n
j (zn − 1)) < 0}.

Step 5. Bounded realization. Notice that, for every k ∈ {1, . . . , n}, the disc

Dk
j := {z = (z1, . . . , zn) ∈ Cn

: ‖z− q j‖< λ
k
j and ∀` 6= k, 〈z− q j , e`j 〉 = 0}
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is contained in�. Hence, every L j (�) contains the discs Dk
:={ζ êk

:ζ ∈C, |ζ |<1}
for every k = 1, . . . , n. Since � is convex and L j is linear, L j (�) is also convex.
Therefore, the “unit acorn”

A := {(z1, . . . , zn) ∈ Cn
: |z1| + · · · + |zn|< 1}

is contained in L j (�). This restricts the unit normal vectors

nk
j := (a

k,1
j , . . . , ak,k

j , 0, . . . , 0) ∈ Cn

for every k = 2, . . . , n. Namely, there is a positive constant δ > 0 independent of j
and k such that ak,k

j ≥ δ for every j, k.
Now taking a subsequence (of q j ), we may assume that the sequence of unit

vectors {nk
j }
∞

j=1 converges for every k ∈ {2, . . . , n}. Let us write

lim
j→∞

nk
j = nk

= (ak,1, . . . , ak,k, 0, . . . , 0)

for each k = 1, 2, . . . , n.
Consider the maps

B j (z1, . . . , zn)= (ζ1, . . . , ζn)

defined by

ζ1 = z1, ζ2 = a2,1
j z1+ a2,2

j z2, . . . , ζn = an,1
j z1+ · · ·+ an,n

j zn.

Then it follows that

B j ◦ L j (�)⊂ B j (6 j )

= {(ζ1, . . . , ζn) ∈ Cn
: Re ζ1 < 1,Re ζ2 < a2,2

j , . . . ,Re ζn < an,n
j }.

Now, for each j , we consider the Cayley transformation

8 j (z1, . . . , zn)=
( z1

2− z1
,

z2

2a2,2
j − z2

, . . . ,
zn

2an,n
j − zn

)
.

Then 8 j ◦ B j (6 j )⊂ Dn , where Dn denotes the unit polydisc in Cn centered at the
origin. Also, there exists a positive constant δ′ ∈ (0, δ) such that 8 j ◦ B j (6 j )⊂ Dn

contains the ball of radius δ′ centered at the origin 0.
Since 8 j ◦ B j ◦ L j (q j ) = (0, . . . , 0) for every j , we now conclude that the

squeezing function satisfies

σ�(q j )≥
δ′
√

n
.

This estimate, which holds for every sequence q j approaching the boundary, yields
the desired contradiction at last. Thus the proof is complete. �
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3. Boundary behavior of the squeezing function on strongly convex domains

Definition. Let � be a domain in Cn . A boundary point p ∈ ∂� is said to be
spherically extreme if

(1) the boundary ∂� is C2-smooth in an open neighborhood of p, and

(2) there exists a ball Bn(c(p); R) in Cn of some radius R, centered at some point
c(p) such that �⊂ Bn(c(p); R) and p ∈ ∂�∩ ∂Bn(c(p); R).

The main goal of this section is to establish the following theorem.

Theorem 3.1. If a domain � in Cn admits a spherically extreme boundary point p
in a neighborhood of which the boundary ∂� is C2-smooth, then

lim
�3q→p

σ�(q)= 1.

Since every boundary point of a C2 strongly convex bounded domain is spheri-
cally extreme, this theorem implies Theorem 1.2. The rest of this section is devoted
to the proof of Theorem 3.1.

Proof. The proof proceeds in seven steps.

Step 1. Sphere envelopes. Let � be a bounded domain in Cn with a boundary point
p ∈ ∂� such that

(i) ∂�∩Bn(p; r0) is C2-smooth for some r0 > 0, and

(ii) p is a spherically extreme boundary point of �.

Then there exist positive constants r1, r2, and R with r0 > r1 > r2 such that every
q ∈ �∩Bn(p; r2) admits points b(q) ∈ ∂�∩Bn(p; r1) and c(q) ∈ Cn satisfying
the conditions

(iii) ‖q − b(q)‖< ‖q − z‖ for any z ∈ ∂�−{b(q)}, and

(iv) ‖c(q)− b(q)‖ = R and �⊂ Bn(c(q); R).

p

b(q)
q

�

c(q)
c(p)

Figure 1. Sphere envelopes.
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See Figure 1. Notice that (iii) says that b(q) is the unique boundary point that
is the closest to q, and that the constant R in (iv) is independent of the choice
of q ∈ Bn(p; r2).

Step 2. Centering. In the following we shall use the familiar notation

(3-1)
z = (z1, . . . , zn), z′ = (z2, . . . , zn),

u = Re z1, v = Im z1.

For each q ∈�∩Bn(p; r2), choose a unitary transform Uq of Cn such that the map
Aq(z) :=Uq(z− b(q)), depicted in Figure 2, satisfies the following conditions:

(3-2) Aq(q)= (λq , 0, . . . , 0)

for some λq > 0, and

(3-3) Aq(�)⊂ Bn((R, 0, . . . , 0); R)= {z ∈ Cn
: |z1− R|2+‖z′‖2 < R2

}.

Then there exists a positive constant r3 < r2 such that

(3-4) z ∈ Aq(�)∩Bn(0; r3)

⇐⇒‖z‖< r3 and 2u > Hb(q)(z′)+Kb(q)(v, z′)+Rb(q)(v, z′),

where

• Hb(q) is a quadratic positive-definite Hermitian form such that there exists a
constant c0 > 0, independent of q, satisfying

(3-5) Hb(q)(z′)≥ c0‖z′‖2,

and

• there exists a constant C > 0, independent of q ∈ Bn(p; r3)∩�, such that

(3-6) |Kb(q)(v, z′)| ≤ C(|v|2+ |v|‖z′‖)

b(q)

p
q

�

Aq

Aq(b(q))=0

Aq(q)=(λq ,0′)

Aq(�)

Figure 2. The centering process.



THE UNIFORM SQUEEZING PROPERTY OF BOUNDED CONVEX DOMAINS IN Cn 349

whenever z ∈ Bn(0; r3). Furthermore, we have

|Rb(q)(v, z′)| = o(|v|2+‖z′‖2).

In particular, the choice of r3 can allow us the estimate

|Rb(q)(v, z′)| ≤ c0
2
(|v|2+‖z′‖2).

Notice that
lim

�3q→p
b(q)= p, lim

�3q→p
Hb(q)(z′)= Hp(z′),

and
lim

�3q→p
Aq = I (the identity map).

The latter limit and an inductive construction yield that for each integer m > 2 there
exists a strictly increasing integer-valued function k(m) such that

(3-7) Bn(0; r3/(2k(m))
)
⊂ Aq

(
Bn(p; r3/k(m))

)
⊂ Bn(0; r3/m)

whenever q ∈ Bn
(

p; r3/(2k(m))
)
.

Step 3. The Cayley transform. The Cayley transform considered here is the map

(3-8) κ(z) :=
(1−z1

1+z1
,

√
2z2

1+z1
, . . . ,

√
2zn

1+z1

)
,

well-defined except at points of Z = {z ∈ Cn
: z1 =−1}. Notice that this transform

maps the open unit ball Bn(0; 1) biholomorphically onto the Siegel half-space

(3-9) S0 := {z ∈ Cn
: 2 Re z1 > ‖z′‖2}.

Moreover, κ ◦ κ = 1 and consequently, κ(S0)= Bn(0; 1). Notice also that, for
1= (1, 0, . . .) and−1= (−1, 0, . . .), we have κ(1)= (0, . . . , 0), κ((0, . . . , 0))= 1,
κ(−1)=∞, and κ(∞)=−1.

Step 4. Stretching. Let q ∈ �∩Bn
(

p; r3/(2k(m))
)
. If we let m tend to infinity,

then of course Aq(q)= (λq , 0, . . . , 0) approaches Aq(b(q))= (0, . . . , 0), and so
λq approaches zero. For simplicity, we write λ= λq , suppressing the q but keeping
in mind that λ is still dependent upon q . Note that

(3-10) Aq(B
n(c(q); R))= {z ∈ Cn

: 2R ·Re z1 > ‖z‖2}.

Define the stretching map 3λ : Cn
→ Cn , first introduced in [Pinchuk 1991], by

(3-11) 3λ(z) :=
( z1
λ
,

z2
√
λ
, . . . ,

zn
√
λ

)
.
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Recall (3-6). The stretching map transforms Aq(�)∩Bn(0; r3/3) to the domain
3λ
(

Aq(�)∩Bn(0; r3/3)
)

so that

(3-12) z ∈3λ ◦ Aq(�)∩Bn
(

0; r3
√
λk(3)

)
⇐⇒‖z‖< r3

√
λk(3)

and

2u > Hb(q)(z′)+
1
λ

Kb(q)
(
λv,
√
λz′

)
+

1
λ
Rb(q)

(
λv,
√
λz′

)
.

On the other hand, notice that∥∥∥1
λ

Kb(q)
(
λv,
√
λz′

)∥∥∥≤ C
√
λ
(√
λ|v|2+ |v|‖z′‖

)
and that ∥∥∥1

λ
Rb(q)

(
λv,
√
λz′

)∥∥∥≤ 1
λ

o
((
|λv|2+‖

√
λz′‖2

))
=

1
λ

o(λ)

on Bn(0; ρ) for any fixed constant ρ > 0. Notice that both terms approach zero as
λ tends to zero. Thus, these terms can become sufficiently small if we limit q to
being contained in Bn

(
p; r3/(2k(m))

)
for some sufficiently large m.

Step 5. Set-convergence. This step is in part heuristic; the heuristics appearing in
this step, especially those which concern set convergences, are not used in the proof,
strictly speaking. We include this step because they seem to help us to grasp the
logical structure of the proof. On the other hand, the constructions in (3-13)–(3-15)
shall be used in the remainder of the proof, especially in Step 7.

The main role of the stretching map 3λ, as λ↘ 0, is to rescale the domains
successively, letting them converge to the set limits.

For instance, if one considers

3λ(Aq(�)∩Bn(0; r3)),

then one can see that 3λ(Bn(0; r3)) contains Bn
(
0; r3/

√
λ
)
, a very large ball

which exhausts Cn as λ approaches zero. In the meantime, within that large ball,
3λ(Aq(�)) is restricted only by the inequality

2u > Hb(q)(z′)+ K̃λ(v, z′),

where K̃λ = o(λ) is small enough to be negligible. One can imagine that indeed
the “limit domain” of this procedure should be

(3-13) �̂ := {z ∈ Cn
: 2u > Hp(z′)}.

Here, of course, Hp(z′) is the quadratic positive-definite Hermitian form which
appears in the defining inequality of � about the boundary point p (understood as
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the origin):
2 Re z1 > Hp(z′)+ o(| Im z1| + ‖z′‖2).

Notice that
κ(�̂)= {z ∈ Cn

: |z1|
2
+ Hp(z′) < 1},

and hence there is a C-linear isomorphism

(3-14) L : Cn
→ Cn

that maps κ(�̂) biholomorphically onto the unit ball Bn(0; 1) with L(1)= 1.
Before moving on to the next step we remark that, since � ⊂ Bn(c(q); R)

whenever q ∈ Bn(p; r2),

Aq(�)⊂ Aq(B
n(c(q); R))= Bn((R, 0, . . . , 0); R).

This in turn implies that

3λ ◦ Aq(�)⊂3λ
(
Bn((R, 0, . . . , 0); R)

)
(3-15)

⊂ E := {z ∈ Cn
: 2R ·Re z1 > ‖z′‖2}.

The last inclusion follows by (3-10).

Step 6. Auxiliary domains. Let δ > 0 be given. Consider the domains

Gδ := {z ∈ Cn
: 2u >−δ|v| + (1− δ)Hb(q)(z′)},(3-16)

Fδ := {z ∈ Cn
: 2u > δ|v| + (1+ δ)Hb(q)(z′)}, and(3-17)

Hq := {z ∈ Cn
: 2u > Hb(q)(z′)},(3-18)

in addition to �̂ and E introduced in (3-13) and (3-15).

Gδ
Fδ

Aq(�)

(1, 0, . . . , 0)
0

Figure 3. Auxiliary domains Gδ and Fδ.
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b(q)

p
q

�

Aq

0

Rez1 = 0

(λq ,0,...,0)
λ= λq

Aq(�)

3λ

�̂

Aq(�)

3λ◦Aq(�)
(1,0,...,0)

G

G(�)

G(q)= 0
L

κ(�̂) κ

κ◦3λ◦Aq (q)

= (0,...,0)

Figure 4. G(�)= L ◦ κ ◦3λ ◦ Aq(�) for q ∼ p.

A straightforward computation checks that the image κ(Gδ) of Gδ via the Cayley
transform κ introduced earlier is

(3-19) κ(Gδ)=
{
z ∈ Cn

: |z1|
2
−
δ

2
|z1− z̄1| + (1− δ)Hb(q)(z′) < 1

}
.

Hence, there exists δ0 > 0 such that, for every δ with 0< δ < δ0, κ(Gδ) is a bounded
domain. Notice also that this domain is arbitrarily close to the domain κ(Hb(q)) as
δ0 becomes arbitrarily small. It follows therefore that, for every ε > 0, there exists
δ0 > 0 such that

(3-20) L ◦ κ(Gδ)⊂ Bn(0; 1+ ε)

whenever 0< δ < δ0. Moreover, observe that the stretching map 3λ preserves all
such domains as

Fδ, Gδ, Hq , �̂, and E .

Let us now define the expression

(3-21) G(z) := L ◦ κ ◦3λ ◦ Aq(z)

for z ∈ Cn
− (3λ ◦ Aq)

−1(Z). (The set Z is defined in (3-8). Notice that this
expression G depends upon q ∈ Bn(0; r2); see Figure 3 for an illustration.) In
particular, this G maps� onto its image G(�) biholomorphically. See also Figure 4.

Step 7. Proof of Theorem 3.1. Our final goal is to establish the following claim.

Claim. For any ε with 0< ε < 1/2, there exists an integer m > 0 such that

(3-22) Bn(0; 1− ε)⊂ G(�)⊂ Bn(0; 1+ ε)

whenever q ∈�∩Bn
(

p; r3/(2k(m))
)
.
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Since G(q)= 0, this implies that the squeezing function σ� satisfies

σ�(q)≥
1−ε
1+ε

.

Notice that this completes the proof of Theorem 3.1. Therefore it remains only to
prove the claim.

Proof. Start with Bn(0; 1− ε). Notice first, by the definition of Fδ, that for every
δ > 0 there exists m1 > 0 such that

Fδ ∩Bn(0; r2/m)⊂ Aq(�)∩Bn(0; r2/m)

for any m > m1.
Also,

κ−1
◦ L−1(Bn(0; 1− ε))b κ−1

◦ L−1(Bn(0; 1))= �̂.

As discussed in (3-4)–(3-7), L ◦κ(Hq) is sufficiently close to L ◦κ(�̂), which is the
unit ball, whenever q ∈ Bn

(
p; r3/(2k(m))

)
and m is sufficiently large. Therefore

there exists an integer m2 > m1 such that (L ◦ κ)−1(Bn(0; 1− ε))bHq whenever
q ∈ Bn(p; r3/m2).

As in (3-19), a direct computation yields

(3-23) κ(Fδ)=
{
z ∈ Cn

: |z1|
2
+

1
2δ|z1− z̄1| + (1+ δ)Hb(q)(z′) < 1

}
.

Now, consider the set L ◦ κ ◦3λ(Fδ) for each δ > 0. (Recall that 3λ(Fδ) = Fδ
as remarked in the line below (3-20).) These domains increase monotonically as
δ↘ 0 (since the Fδ’s do) in such a way that the union

⋃
0<δ<δ0

L ◦κ ◦(Fδ) becomes
arbitrarily close to Bn(0; 1) for m sufficiently large. Consequently there exists a
constant δ > 0 such that Bn(0; 1− ε)b L ◦ κ ◦ (Fδ). Moreover there is an integer
m3 > m2 such that

(3-24) 3−1
λ

(
κ−1
◦ L−1(Bn(0; 1− ε)

)
⊂ Bn(0; r3/k(m1)),

as 3−1
λ scales down the compact subsets (for λ < r3/m2 sufficiently small) to a

small set near the origin. Hence, we have

3−1
λ

(
κ−1
◦ L−1(Bn(0; 1− ε))

)
⊂ Fδ ∩Bn(0; r3/k(m1))⊂�.

Consequently, as long as q ∈ Bn
(

p; r3/(2k(m3))
)
,

(3-25) Bn(0; 1− ε)⊂ L ◦ κ ◦3λ
(
Fδ ∩Bn(0; r3/k(m1))

)
⊂ L ◦ κ ◦3λ(Aq(�))

= G(�).
See Figure 5.
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b(q)

p �

Aq

Fδ 3λ

G

L

κ
Fδ

Figure 5. Bn(0; 1− ε)⊂ G(�).

Now we show that G(�)⊂ Bn(0; 1+ ε). Consider

�′ :=�−Bn(p; r2).

Notice that there exists an integer `� 1 such that

(3-26) Aq(�
′)⊂ Aq(�)−Bn(0; r2/`)⊂ E −Bn(0; r2/`).

Now, there is an integer m4>m3 such that, if m>m4 and q ∈Bn
(

p; r3/(2k(m))
)
,

then
3λ(E −Bn(0; r2/k))⊂

{
z ∈ E : Re z1 >

r2
r3
·

m4
`

}
.

This implies that there exists m4 such that

G(�′)⊂ L ◦ κ
({

z ∈ E : Re z1 >
r2
r3
·

m4
`

})
⊂ Bn(−1; ρ(m4))

for some ρ(m) which approaches zero as m tends to infinity; a direct computation
with the Cayley transform and the choice of L (see (3-14)) verify this immediately.
Therefore, choosing m4 sufficiently large, we arrive at

(3-27) G(�′)⊂ Bn(−1; ε),

as in Figure 6. For the ε given above, there exists δ such that

(3-28) L ◦ κ(Gδ)⊂ Bn(0; 1+ ε).

Fix this δ, and recall how the auxiliary domain Gδ was defined in (3-16). Given any
δ > 0, according to (3-4)–(3-6), there exists ρ > 0 such that

Aq(�)∩Bn(0; ρ)⊂ Gδ.
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Aq

3λ

G

L

κ

Figure 6. G(�′)⊂ Bn(−1; ε).

Aq

3λ

G

L

κ

Figure 7. G(�)⊂ Bn(0; 1+ ε).

On the other hand, we can go back to (3-26) and require that r2/` < ρ/2. Then we
have

(3-29) Aq(�)∩Bn(0; 2r2/`)⊂ Gδ.

Since there exists an integer m5 > 0 such that Aq(B
n(p; r2/`))⊂Bn(0; 2r2/`), we

have that

G(�−�′)⊂ L ◦ κ ◦3λ
(

Aq(�)∩Bn(0; 2r2/`)
)
.

This implies

(3-30) G(�−�′)⊂ L ◦ κ ◦3λ
(

Aq(�)∩Bn(0; 2r2/`)
)

⊂ L ◦ κ ◦3λ(Gδ) by (3-29)

⊂ L ◦ κ(Gδ) by the sentence following (3-20)

⊂ Bn(0; 1+ ε).
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By (3-27) and (3-30), as in Figure 7 we have that

G(�)⊂ Bn(0; 1+ ε).

This completes the proof of the claim, and therefore of Theorem 3.1. �

4. Remarks

In this final section we present several remarks.

On the spherically extreme points. Pertaining to the question in the introduction,
one of the naturally arising questions would be whether one may re-embed (the
closure of) the bounded strongly pseudoconvex domain so that the preselected
boundary point becomes spherically extreme. This question was answered affirma-
tively in by Diederich, Fornaess, and Wold in [Diederich et al. 2014]. Owing to
this new result, Theorem 3.1 now implies the following.

Theorem 4.1. If � is a bounded domain in Cn with a C2-smooth strongly pseudo-
convex boundary, then lim�3z→∂� σ�(z)= 1.

On the other hand, a more ambitious goal may be to re-embed the domain using
the automorphisms of Cn to achieve the same result. But this cannot work, as shown
by the following counterexample.

Example. Consider the domain U which is the open 1/10-tubular neighborhood
of the circle S := {(ei t , 0) ∈ C2

: t ∈ R}. This domain is strongly pseudoconvex.
Let p = (9/10, 0). Clearly p ∈ ∂U . If there were ψ ∈Aut(C2) which makes ψ(p)
spherically extreme for ψ(U ), then consider the analytic disc 6 := ψ(1) where
1 := {(z, 0) : |z| ≤ 1}). Since 1 crosses ∂U transversally at ψ(p), 6 crosses the
sphere envelope at ψ(p) and extends to the exterior of the sphere. On the other
hand, the boundary of 6 remains inside ψ(U ) and hence inside the sphere. Now
let the sphere expand radially from its center, stopping at the radius beyond which
it cannot intersect the holomorphic disc 6. Then the sphere is tangent to a point
to 6 at an interior point, keeping the whole disc inside the sphere. The maximum
principle now implies that 6 should be entirely on the sphere. But the boundary of
6 is strictly inside the sphere, which is a contradiction. This implies that p cannot
be made spherically extreme via any re-embedding by an automorphism of Cn .

Acknowledgement: This example was obtained after a valuable discussion between
Kim and Josip Globevnik. Kim would like to express his thanks to Josip Globevnik
for pointing out such a possibility.

On the exhaustion theorem by Fridman–Ma. The main theorem by Buma Frid-
man and Daowei Ma [1995] obtained the conclusion of Theorem 3.1 in the special
case � 3 q→ p transversely to the boundary ∂�. However, that is not sufficient
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to prove Theorem 3.1; it is indeed necessary to consider all possible sequences
approaching the boundary. Fridman and Ma [1995] did not need to consider the
point sequences approaching the boundary tangentially, as their interest was only on
the holomorphic exhaustion of the ball by the biholomorphic images of a bounded
strongly pseudoconvex domain. On the other hand, our proof of Theorem 3.1 gives
a proof to their theorem as well; we only need to use (1+ ε)−1G(z) instead of G.
(Recall that G depends upon q. Letting q converge to p and ε tend to zero, one
gets a sequence of maps that exhausts the unit ball holomorphically.)

Plane domain cases. For domains in C, several theorems have been obtained by
F. Deng, Q. Guan, and L. Zhang [Deng et al. 2012]. Theorem 3.1 obviously includes
many of those results, as every boundary point of a plain domain with C2-smooth
boundary is spherically extreme.
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LEFSCHETZ PENCILS AND FINITELY PRESENTED GROUPS

RYOMA KOBAYASHI AND NAOYUKI MONDEN

From the works of Gompf and Donaldson, it is known that every finitely
presented group can be realized as the fundamental group of the total space
of a Lefschetz pencil. We give an alternative proof of this fact by providing
the monodromy explicitly. In the proof, we give an alternative construction
of the monodromy of Gurtas’ fibration and a lift of that to the mapping class
group of a surface with two boundary components.

1. Introduction

There exist Lefschetz pencils (fibrations over S2 with (−1)-sections) whose total
spaces have a prescribed fundamental group. This follows as a corollary of the results
of Gompf [1995], who showed that every finitely presented group is realized as the
fundamental group of some closed symplectic 4-manifold, and of Donaldson [1999],
who showed that every closed symplectic 4-manifold admits a Lefschetz pencil.
Note that since we obtain a Lefschetz fibration with (−1)-sections by blowing up the
base locus of a Lefschetz pencil, and blowing up has no effect on the fundamental
groups of 4-manifolds, the above claim for Lefschetz fibrations with (−1)-sections
follows. Conversely, a 4-manifold admitting a Lefschetz pencil (fibration with fiber
genus greater than one) is symplectic (cf. [Gompf and Stipsicz 1999]).

Let 6b
g be a compact oriented surface of genus g with b boundary components

δ1, . . . , δb, and let Modb
g be the mapping class group of 6b

g . We denote by tc the
right-handed Dehn twist along a simple closed curve c in 6b

g . Then a relation∏b
j=1 tδ j =

∏m
i=1 tvi provides a genus-g Lefschetz pencil/fibration with b base

points/(−1)-sections. Conversely, given any Lefschetz pencil (fibration with (−1)-
sections), we obtain such a relation. However, the relations corresponding to the
above Lefschetz pencils/fibrations constructed based on the results of [Gompf 1995]
and [Donaldson 1999] are implicit. Our purpose is to provide the relation of such a
genus-g Lefschetz pencil explicitly, so this gives an alternative proof of the above
corollary using mapping class group arguments. To state our main result, we need
to introduce some notation.

MSC2010: primary 57R17; secondary 20F34.
Keywords: Lefschetz pencil, Lefschetz fibration, fundamental group, mapping class group.
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Definition 1.1. Let 0=〈x1, x2, . . . , xn |r1, r2, . . . , rk〉 be a finitely presented group
with n generators and k relations. For w ∈ 0, we define l(w), called the syllable
length of w, to be

l(w)=min{s | w = xm1
i1

xm2
i2
· · · xms

is
for 1≤ i j ≤ n and m j ∈ Z}.

Define l =max{l(ri ) | 1≤ i ≤ k}. If k = 0, we define l = 1 (note that l depends on
the presentation and that our definition of l differs from that of [Korkmaz 2009]).
We always assume that the relators ri are cyclically reduced.

In Section 5A, we give a relation tδ1 tδ2 = W g
2 (1, ψk) in Mod2

g using certain
substitution techniques, where W g

2 (1, ψk) is a product of right-handed Dehn twists.
Our main result is the following:

Theorem 1.2. If k ≥ 1 (resp. k = 0), then, for g ≥ 4(n + l − 1)+ k (resp. g ≥
4n+ 2), there exists a genus-g Lefschetz pencil/fibration with two base points/(−1)-
sections on a closed symplectic 4-manifold X such that tδ1 tδ2 = W g

2 (1, ψk) is the
corresponding relation and π1(X) is isomorphic to 0.

Theorem 1.2 gives an upper bound for the minimum g, denoted by gP(0), for
which there exists a genus-g Lefschetz pencil on X such that π1(X) is isomorphic
to 0. We describe it in Section 8. To give a better upper bound on gP(0), we
construct a lift of Gurtas’ positive relator (see [Gurtas 2004]), denoted by θ2, to
Mod2

g in Section 6 by combining a lift of a hyperelliptic involution and the relation
given in [Korkmaz 2009] to Mod2

g. On the other hand, Gurtas showed that the
positive word θ2 given in [Gurtas 2004] is a positive relator by checking the images
of certain cycles on 6g under θ . In this sense, our construction of the monodromy
of Gurtas’ fibration is different from that in [Gurtas 2004].

Here, we explain why we focus on Lefschetz fibrations with (−1)-sections. A
section of a Lefschetz fibration over S2 plays important roles in the total space.
The existence of a section σ of a Lefschetz fibration f : X→ S2 with a fiber F is
required to compute the fundamental group of X and to decide whether X is spin or
not (see [Gompf and Stipsicz 1999; Stipsicz 2001b]). In addition, the complement
of a regular neighborhood of F ∪ σ is a Stein filling of its boundary equipped with
the induced tight contact structure (see [Akbulut and Ozbagci 2002; Etnyre and
Honda 2002; Loi and Piergallini 2001]). Especially, a (−1)-section is important in
Lefschetz fibrations in the following senses.

(i) Blowing up of the base locus of a Lefschetz pencil yields a Lefschetz fibration
with (−1)-sections. Conversely, we can obtain a Lefschetz pencil by blowing
down of (−1)-sections of a Lefschetz fibration.

(ii) From given Lefschetz fibrations, we can construct a new Lefschetz fibration by
fiber summing them. If a Lefschetz fibration admits a (−1)-section, it cannot
be decomposed as any nontrivial fiber sum (see [Stipsicz 2001a; Smith 2001]).
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For these reasons, we can regard Lefschetz fibrations with (−1)-sections as “funda-
mental” and “prime” ones.

Note that we can express Gompf’s result in terms of Lefschetz fibrations over S2.
The article [Amorós et al. 2000] gave a construction of Lefschetz fibrations whose
total spaces have a given fundamental group without using Donaldson’s result.
However, their monodromies are implicit. The explicit monodromies of such
fibrations were given by Korkmaz [2009]. Akhmedov and Ozbagci [2013] gave a
new construction of such fibrations, and the first author [Kobayashi 2015] improved
the result of [Korkmaz 2009]. For technical reasons, the fibrations in [Korkmaz
2009; Akhmedov and Ozbagci 2013; Kobayashi 2015] have no (−1)-sections (see
Section 8), so we would like to emphasize that our result is different from the above
four results.

Here is an outline of this paper. In Section 2, we fix notation. In Section 3,
we introduce a substitution technique and the relation constructed by Korkmaz.
Section 4 reviews some standard facts on Lefschetz fibrations and pencils. In
Section 5, we prove the main results. In Section 6, we give an alternative construction
of the monodromy of Gurtas’ fibration and provide a lift of that to the mapping class
group of a surface with two boundary components. In Section 7, we introduce the
construction of a loop which is needed for the proof of Theorem 1.2. In Section 8,
we give an upper bound of gP(0) and some remarks.

2. Notation

Let 6g be the closed oriented surface of genus g standardly embedded in 3-space
as shown in Figure 1. We use the symbols a1, b1, . . . , ag, bg to denote the standard
generators of the fundamental group π1(6g) of 6g. For a and b in π1(6g), the
notation ab means that we first apply a then b.

Let c0, c1, c2, . . . , cg, a0, ag+1, a′0, a′g+1 be the simple loops in 6g depicted in
Figure 1. Note that in π1(6g), up to conjugation,

(1) ci = b−1
i · · · b

−1
1 (a1b1a−1

1 ) · · · (ai bi a−1
i ) for each 1≤ i ≤ g;

z
y

x

a0 a1 a2 a3 ag−1 ag
ag+1

a′0
a′g+1

b1 b2 b3 bg−1 bg

c0 c1 c2 c3 cg−1 cg

Figure 1. Generators a j , b j of the fundamental group and loops c j , a′0, a′g+1.
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as well as

c0 = cg = 1,(2)

a0 = ag+1 = a′0 = a′g+1 = 1.(3)

Then the fundamental group π1(6g) has the presentation

π1(6g)= 〈a1, b1, . . . , ag, bg | cg〉.

Let B0, B1, B2, . . . , Bg, a′1, . . . , a′g be the simple closed curves in 6g shown in
Figure 2. Suppose that g = 2r . Then it is easy to check that, up to conjugation, the
following equalities hold in π1(6g):

B2k−1 = akbkbk+1 · · · bg+1−kcg+1−kag+1−k for 1≤ k ≤ r ;(4)

B2k = akbk+1bk+2 · · · bg−kcg−kag+1−k for 0≤ k ≤ r ;(5)

a′k+1 = ckak+1 for 0≤ k ≤ g− 1.(6)

If g = 2r + 1, then B2k−1 satisfies the equality (4) for 1≤ k ≤ r + 1.
Let A1, . . . , A2g+1 be the simple closed curves on 6g shown in Figure 3. It is

easily seen that, up to conjugation, the following equalities hold in π1(6g):

A2k = bk for 1≤ k ≤ g;(7)

A2k+1 = aka−1
k+1 for 0≤ k ≤ g.(8)

Moreover, when we denote by D0, D1, D2, . . . , D2h1 and Eh1 the simple closed
curves on 6g indicated in Figure 3, it is immediate that, up to conjugation, the

cr Bg B2 B1 B0 ag+1

a′1 a′2 a′r a′r+1 a′g a′g+1

ar+1 Bg B2 B1 B0 ag+1

a′1 a′2 a′r+1 a′g a′g+1

Figure 2. The curves B0, B1, B2, . . . , Bg, a′1, . . . , a′g.
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2h1
a2h1+1

A4h1+2 A4h1+4
ag+1

D1 D2 D2h1 A4h1+3 A4h1+5 a′g+1
a′2h1+1

2h1
a2h1+1

A4h1+2 A4h1+4
ag+1

A1
A2

D0 Eh1 A4h1+3 A4h1+5 a′g+1
a′2h1+1

Figure 3. The curves A1, A2, . . . , A2g+1, D0, D1, . . . , D2h1 and Eh1 .

following equalities hold in π1(6g):

D0 = b1b2 · · · b2h1a−1
2h1+1;(9)

D2k−1 = akbkbk+1 · · · b2h1+1−kc2h1+1−ka2h1+1−ka−1
2h1+1 for 1≤ k ≤ h1;(10)

D2k = akbk+1bk+2 · · · b2h1−kc2h1−ka2h1+1−ka−1
2h1+1 for 1≤ k ≤ h1;(11)

Eh1 = ch1a2h1+1.(12)

Note that we can modify 6g and D0, D1, D2, . . . , D2h1, Eh1 by isotopy as in
Figure 4.

Throughout this paper, we use the same symbol for a loop and its homotopy
class. Similarly, we use the same symbol for a diffeomorphism and its isotopy class,
or a simple closed curve and its isotopy class. A simple loop and a simple closed
curve will even be denoted by the same symbol. It will cause no confusion as it
will be clear from the context which one we mean.

3. Mapping class groups

3A. Substitution techniques. Let 6b
g be a compact oriented surface of genus

g with b boundary components. The mapping class group of 6b
g , which we

denote by Modb
g, is the group of isotopy classes of orientation preserving self-

diffeomorphisms of 6b
g . We assume that diffeomorphisms and isotopies fix the

points of the boundary. To simplify notation, we write 6g =6
0
g and Modg =Mod0

g.
For φ1 and φ2 in Modb

g, the notation φ1φ2 means that we first apply φ2 then φ1

(Our notation differs from that of [Korkmaz 2009].) Let tc be the Dehn twist about
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D0 D1

D2
D2h1

Eh1

a2h1+1

a′2h1+1

A4h1+2 A4h1+4

A4h1+3 A4h1+5

ag+1

a′g+1

Figure 4. Modified surface 6g and modified curves
D0, D1, . . . , D2h1 and Eh1 .

a simple closed curve c in 6b
g . Note that tφ(c) = φtcφ−1 for an element φ in Modb

g
and tctd = td tc if c is disjoint from d .

Definition 3.1. A word % := tc1 tc2 · · · tcn in Modg is called a positive relator if %
satisfies % = 1.

We introduce a primary technique to construct new products of right-handed
Dehn twists in Modb

g from old ones.

Definition 3.2. Let φ be an element in Modb
g. Write

W = tc1 tc2 · · · tck , W φ
= tφ(c1)tφ(c2) · · · tφ(ck), V = td1 td2 · · · tdl .

If the relation V =W holds in Modb
g and φ(di )= di for all i , then by tφ(c)=φtcφ−1

we obtain the relation
V =W φ.

in Modb
g. Let % be a product of right-handed Dehn twists which includes V as a

subword:
% :=U1 · V ·U2,

where U1 and U2 are products of right-handed Dehn twists. Then we get a new
product ς(φ) of right-handed Dehn twists

ς(φ) :=U1 ·W φ
·U2,

and ς(φ) is said to be obtained by applying a W φ-substitution of V to %.
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Remark 3.3. Fuller introduced the above operation for φ = id. Auroux [2006b;
2006a] introduced the operation to obtain ς(φ) from ς(id), called a “partial conju-
gation” by φ. In a previous paper, we call the operation in Definition 3.2 a “twisted
substitution”. As B. Ozbagci and R. I. Baykur kindly pointed out to us, the twisted
substitution is a combination of these two operations.

3B. The word W g
2 . In this section, we introduce a word W g

2 in Mod2
g. We denote

by 62
g the surface of genus g with two boundary components obtained from 6g by

removing two disjoint open disks bounded by ag+1 and a′g+1 (cf. Figure 1 and 2),
so ag+1 and a′g+1 are the boundary curves of 62

g . Set

W g
2 :=

{
(tB0 tB1 tB2 · · · tBg tcr )

2 if g = 2r ,(
tB0 tB1 tB2 · · · tBg t2

ar+1
t2
a′r+1

)2 if g = 2r + 1.

Korkmaz [2009] gave the following relation:

Lemma 3.4 [Korkmaz 2009]. We have tag+1 ta′g+1
=W g

2 in Mod2
g.

Although Korkmaz does not prove Lemma 3.4, we can prove it by applying
the same argument as in Section 2 of [Korkmaz 2001]. In Section 6A, we give a
very short outline of the proof. Since the simple closed curves ag+1 and a′g+1 are
null-homotopic in 6g, it follows that tag+1 = ta′g+1

= 1 in Modg. Therefore, the word
W g

2 in Modg is a positive relator. This positive relator for g = 2 was discovered
by Matsumoto [1996], and its generalization was constructed independently by
Cadavid [1998] and Korkmaz [2001].

4. Lefschetz pencils and fibrations

We recall the definition and basic properties of Lefschetz pencils and fibrations.
More details can be found in [Gompf and Stipsicz 1999].

Definition 4.1. Let X be a closed, connected, oriented smooth 4-manifold, and let
B = {b1, . . . , bm} and C = {p1, . . . , pn} be finite, disjoint subsets of X .

Let f : X \ B→ S2 be a smooth map satisfying the following three conditions:

(a) For each bi ∈ B, called the base point, there are orientation-preserving complex
coordinate charts on which f is of the form f (z1, z2)= z1/z2.

(b) C is the set of critical points of f , and for each pi and f (pi ), there are complex
local coordinate charts agreeing with the orientations of X and S2 on which f
is of the form f (z1, z2)= z1z2.

(c) For q ∈ S2
− f (C), the set f −1(q)∪ B ⊂ X is diffeomorphic to 6g.

Then f is called a genus-g Lefschetz pencil if B is a nonempty set, and f is called
a genus-g Lefschetz fibration if B is the empty set.
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The set B is called the base locus, and for each q ∈ S2, the set f (q)−1
∪ B is

called the fiber of f . We assume that f is injective on C and that f is relatively
minimal (i.e., no fiber contains a sphere with self-intersection number −1). A fiber
containing a critical point is called a singular fiber. Each singular fiber is obtained
by collapsing a simple closed curve, called the vanishing cycle, in the regular fiber
to a point.

Once we fix an identification of 6g with the fiber over a base point of S2
− f (C),

we can characterize the Lefschetz fibration f : X → S2 by its monodromy rep-
resentation π1(S2

− f (C)) → Modg. Note that in this paper, this map is an
antihomomorphism. Let γ1, . . . , γn be an ordered system of generating loops for
π1(S2

− f (C)), such that each γi encircles only f (pi ) and γ1γ2 · · · γn is homo-
topically trivial. Thus, since the monodromy of the fibration along each of the
loops γi is a right-handed Dehn twist along the corresponding vanishing cycle, the
monodromy of f comprises a positive relator

tvn · · · tv2 tv1 = 1 ∈Modg,

where the vi are the corresponding vanishing cycles of the singular fibers. Con-
versely, for any positive relator % ∈Modg, we can construct a genus-g Lefschetz
fibration over S2 whose monodromy is %. Therefore, we denote a genus-g Lefschetz
fibration associated to a positive relator % in Modg by f% : X%→ S2.

Definition 4.2. For a Lefschetz fibration f : X→ S2, a map σ : S2
→ X is called

a k-section of f if f ◦ σ = idS2 and the self-intersection number of the homology
class [σ(S2)] in H2(X;Z) is equal to k.

When a Lefschetz fibration X → S2 admits a section, we can compute the
fundamental group of X as follows.

Lemma 4.3 (cf. [Gompf and Stipsicz 1999]). Let % be a positive relator given by
tvn · · · tv2 tv1 = 1 in Modg. Suppose that a genus-g Lefschetz fibration f% : X%→ S2

admits a section σ . Then the fundamental group π1(X%) is isomorphic to the
quotient of π1(6g) by the normal subgroup generated by v1, . . . , vn .

From the definitions of Lefschetz fibrations and pencils, blowing up all points of
B = {q1, . . . , qb} of a genus-g Lefschetz pencil yields a genus-g Lefschetz fibration
with b disjoint (−1)-sections. Let δ1, δ2, . . . , δb be b boundary curves of 6b

g . Then
a lift of a positive relator % in Modg, namely tvn · · · tv2 tv1 = 1, to Modb

g as

tv′n · · · tv′2 tv′1 = tδ1 tδ2 · · · tδb

shows the existence of b disjoint (−1)-sections of f%. Here, v′i is a simple closed
curve mapped to vi under 6b

g → 6g. Conversely, such a relation determines a
genus-g Lefschetz fibration with m disjoint (−1)-sections and a genus-g Lefschetz
pencil by blowing these sections down.
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5. Proof of Theorem 1.2

For a finitely presented group 0= 〈x1, x2, . . . , xn | r1, r2, . . . , rk〉 with n generators
and k relators, let l =max{l(ri ) | 1≤ i ≤ k}, where l(ri ) is the syllable length of ri .
In this section, we denote by h1 and h2 two integers satisfying h1 ≥ n+ l − 1 and
2(h2− 1)≥ k, respectively.

5A. Construction of a word W g
2 (1, ψi ). In this subsection, we construct a key

relation in Mod2
g.

Let us consider 62
g obtained from 6g by removing two disjoint open disks

surrounded by ag+1 and a′g+1 (see Section 2 and Figures 1–3). Write r =2h1+h2−1
and g = 2r or 2r + 1. For h2− 1≥ 1, we set

X = tA4h1+2 tA4h1+3 · · · tA2r ,

X = tA2r · · · tA4h1+3 tA4h1+2,

Y = (tD0 tD1 · · · tD2h1
)2.

Moreover, we define words V1 and V2 to be

V1 = tEh1
Xtar ta′r XtEh1

ta′r XYXta′r ,

V2 = tEh1
Xtar ta′r XtEh1

tA2r+1 XYXtA2r+1 .

Then we obtain the relations in the following proposition.

Proposition 5.1. We have tcr = V1 and tar+1 ta′r+1
= V2 in Mod2

g.

We postpone the proof of Proposition 5.1 until Section 6 (see Proposition 6.1).
Let h1 ≥ n+ l − 1 and 2(h2− 1)≥ k. The next proposition is needed to prove

Theorem 1.2.

Proposition 5.2. Let Fn be the subgroup of π1(6g) generated by the generators
a1, . . . , an , i.e., Fn is a free group of rank n. Let r1, . . . , rk be k elements in Fn

represented as words in a1, . . . , an . Let l = max1≤i≤k{l(ri )}, where l(ri ) is the
syllable length of ri . Then there are simple loops R1, . . . , Rk in 6g (see Figure 5)
with the property that, for 4h1+ 2≤ j ≤ 4h1+ 2h2− 2 and 1≤ i ≤ k,

(a) Ri is disjoint from A2h1+1, . . . , A4h1, c2h1+h2−1(= cr ).

(b) R1 intersects a2h1+h2−1 at one point and does not intersect A j for any j .

(c) Ri intersects A4h1+2h2−i at one point and intersects neither a2h1+h2−1 nor A j

for any j 6= 4h1+ 2h2− i and i ≥ 2.

(d) 8([Ri ])= ri , where [Ri ] ∈ π1(6g) is the homotopy class of the loop Ri , and
8 : π1(6g)→ π1(6n) is the map defined by 8(am)= am for 1 ≤ m ≤ n and
8(α)= 1 for α ∈ {an+1, . . . , ag, b1, . . . , bg}.
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an+l−1 2h1 a2h1+1
R2

a2h1+h2−1

R1

R3

ag+1

a′g+1

h1 h2− 1
c2h1+h2−1

Figure 5. Curves R1, . . . , Rk in 6g.

In Section 7, we prove Proposition 5.2 by constructing simple loops R1, . . . , Rk

explicitly. We also consider the loops R1, . . . , Rk as simple loops on 62
g by remov-

ing two disjoint open disks surrounded by ag+1, a′g+1 from 6g (see Figure 5).
For i = 0, 1, . . . , k, we define an element ψi in Mod2

g to be

ψ0 = tah1
tbh1+1 tbh1+2 · · · tb2h1

,

ψi = tRk+1−i tRk+2−i · · · tRkψ0,

where the Ri are the loops on 62
g described above. From Proposition 5.2, for each i ,

we see that ψi (cr ) = cr if g = 2r , while ψ1(ar+1) = ar+1 and ψ1(a′r+1) = a′r+1
if g = 2r + 1.

If g = 2r , then we can find two tcr in the word W g
2 . By Proposition 5.1, we can

apply V id
1 -substitution for one tcr and Vψi

1 -substitution for the other.
If g = 2r + 1, then since t2

ar+1
t2
a′r+1
= (tar+1 ta′r+1

)2, we can find four tar+1 tta′r+1
in

the word W g
2 . By Proposition 5.1, we can apply V id

2 -substitution for one tar+1 ta′r+1

and Vψi
2 -substitution for the other.

If we set

W g
2 (1, ψi ) := (tB0 tB1 tB2 · · · tBg V1)(tB0 tB1 tB2 · · · tBg Vψi

1 )

if g = 2r , and

W g
2 (1, ψi ) := (tB0 tB1 tB2 · · · tBg tar+1 ta′r+1

V2)(tB0 tB1 tB2 · · · tBg tar+1 ta′r+1
Vψi

2 )

if g = 2r + 1, then we get the next lemma.

Lemma 5.3. We have tag+1 ta′g+1
=W g

2 (1, ψi ) in Mod2
g.

Since tag+1 = 1 and ta′g+1
= 1 in Modg, the word W g

2 (1, ψi ) in Modg is a pos-
itive relator. Therefore, we obtain a genus-g Lefschetz fibration fW g

2 (1,ψi )
with

two disjoint (−1)-sections (and genus-g Lefschetz pencil with two base points
corresponding to W g

2 (1, ψi )). Then, we have the following results which we prove
in Section 5B and in Section 5C.
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Theorem 5.4. Suppose that k = 0. We denote by Fn a free group of rank n. If
g ≥ 2(2n+ 1), then we have

π1(XW g
2 (1,ψ0)

)∼= Fn.

Theorem 5.5. Suppose that k > 0. If g ≥ 4(n+ l − 1)+ k, then we have

π1(XW g
2 (1,ψk)

)∼= 0.

Combining Theorem 5.4 and 5.5, we obtain Theorem 1.2.

5B. Proof of Theorem 5.4. In this section, we prove Theorem 5.4. We begin with
a lemma.

Lemma 5.6. Let r = 2h1+ h2− 1. Let 〈S〉 be the normal closure of the elements
of the set S of simple closed curves on 6g defined by

S = {B0, B1, . . . , Bg, D0, D1, . . . , D2h1, Eh1, A4h1+2, . . . , A2r , ar , a′r }

if g = 2r , and by

S={B0,B1, . . . ,Bg, ar+1, a′r+1,D0,D1, . . . ,D2h1,Eh1, A4h1+2, . . . , A2r+1, ar , a′r }

if g=2r+1. Then π1(6g)/〈S〉 has a presentation with generators a1, b1, . . . , ag, bg

and with relations

ai ag+1−i = bi ag+1−i bg+1−i a−1
g+1−i = 1 for 1≤ i ≤ r ,

a2h1+k = b2h1+k = 1 for 1≤ k ≤ h2− 1,

a j a2h1+1− j = b j a2h1+1− j b2h1+1− j a−1
2h1+1− j = 1 for 1≤ j ≤ h1,

ch1 = 1

if g = 2r , and

ai ag+1−i = bi ag+1−i bg+1−i a−1
g+1−i = 1 for 1≤ i ≤ r ,

a2h1+k = b2h1+k = 1 for 1≤ k ≤ h2− 1,

a j a2h1+1− j = b j a2h1+1− j b2h1+1− j a−1
2h1+1− j = 1 for 1≤ j ≤ h1,

ar+1 = ch1 = 1

if g = 2r + 1.

Proof. Suppose that g = 2r . From the equalities (4) and (5) in Section 2, in
π1(6g)/〈S〉 we have

(13) ai ag+1−i = 1.
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This gives

1= B2i−1 = bi bi+1 · · · bg+1−i cg+1−i for 1≤ i ≤ r ,

1= B2i = bi+1bi+2 · · · bg−i cg−i for 1≤ i ≤ r

in π1(6g)/〈S〉. From these two equalities, we have bi c−1
g−i bg+1−i cg+1−i = 1 for

each 1≤ i ≤ r and

(14) cr = 1.

Note that cg+1−i = b−1
g+1−i cg−i (ag+1−i bg+1−i a−1

g+1−i ) from the equality (1). There-
fore, by bi c−1

g−i bg+1−i cg+1−i = 1, we obtain

(15) bkag+1−i bg+1−i a−1
g+1−i = 1.

From ar = 1, Al = 1 for 4h1 + 2 ≤ l ≤ 2r and the equalities (7) and (8), we
obtain

(16) a2h1+k = b2h1+k = 1

for 1≤ k ≤ h2− 1. From a′r = 1 and the equalities (6), (14), (1) and (16), we have

(17) cr−1 = c2h1 = 1.

By a2h1+1 = 1, c2h1 = 1 and the equalities (9), (10) and (11), an argument similar
to the proofs of the relations (13) and (15) gives

(18) a j a2h1+1− j = b j a2h1+1− j b2h1+1− j a−1
2h1+1− j = 1 and ch1 = 1

for 1≤ j ≤ 2h1.
From the equalities (13), (14), (15), (16), (17) and (18), we see that π1(6g)/〈S〉

has a presentation with generators a1, b1, . . . , ag, bg and with relations

ai ag+1−i = bi ag+1−i bg+1−i a−1
g+1−i = 1 for 1≤ i ≤ r ,

a2h1+k = b2h1+k = 1 for 1≤ k ≤ h2− 1,

a j a2h1+1− j = b j a2h1+1− j b2h1+1− j a−1
2h1+1− j = 1 for 1≤ j ≤ h1,

cg = cr = cr−1 = c2h1 = ch1 = 1.

Then by the equalities (1), (16) and (18), we can delete from the above the relations
cg = cr = cr−1 = c2h1 = 1. This is our claim.

Suppose now that g = 2r + 1. Since ar+1 = a′r+1 = 1 and a′r+1 = cr ar+1, we
have cr = 1. A similar argument as in the case g = 2r shows that π1(6g)/〈S〉 has
the desired presentation. This completes the proof. �

We can now prove Theorem 5.4.
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Proof of Theorem 5.4. Let h1 ≥ n and h2− 1 ≥ 1. For simplicity of notation, we
write G instead of π1(XW g

2 (1,ψ0)
).

Suppose that g = 2(2h1+ h2− 1) and let r = 2h1+ h2− 1. Note that G has a
presentation with generators a1, b1, . . . , ag, bg and with relations

cg = 1,

Bi = 1 for 0≤ i ≤ g,

ar = a′r = Eh1 = 1,

D j = Ak = 1 for 0≤ j ≤ 2h1, 4h1+ 2≤ k ≤ 4h1+ 2h2− 2,

ψ0(ar )= ψ0(a′r )= ψ0(Eh1)= 1,

ψ0(D j )= ψ0(Ak)= 1 for 0≤ j ≤ 2h1, 4h1+ 2≤ k ≤ 4h1+ 2h2− 2.

It is easily seen that, up to conjugation, we have the equalities

ψ0(D0)= ah1 · · · an+2an+1 D0,

ψ0(D2l−1)= b−1
2h1−l+1ah1 · · · an+2an+1 D2l−1 for 1≤ l ≤ n,

ψ0(D2l)= b−1
2h1−l+1ah1 · · · an+2an+1 D2l for 1≤ l ≤ n

in π1(6g). Thus, by D0 =ψ0(D0)= D j =ψ0(D j )= 1 for 1≤ j ≤ 2h1, we obtain

b2h1−l+1 = 1 for 1≤ l ≤ n.

Similarly, we have the following equalities (up to conjugation) in π1(6g):

ψ0(D2l−1)= b−1
2h1−l+1ah1 · · · al+1al D2l−1 for n+ 1≤ l ≤ r − 1,

ψ0(D2l)= b−1
2h1−l+1ah1 · · · al+2al+1 D2l−1 for n+ 1≤ l ≤ r − 1,

ψ0(D2h1−1)= b−1
h1+1ah1 D2h1−1,

ψ0(D2h1)= b−1
h1+1 B2h1 .

By D j = 1 for 1≤ j ≤ 2h1 and ψ0(D2l−1)= ψ0(D2l)= 1 for n+ 1≤ l ≤ h1, we
obtain

al = 1 for n+ 1≤ l ≤ h1.

Moreover, by ψ0(D2l) = ψ0(D2l+1) = ψ0(D2h1) = 1 for n + 1 ≤ l ≤ h1 − 1, we
have

b2h1−l+1 = 1 for n+ 1≤ l ≤ h1.

Here, sinceψ0(ar )=ar ,ψ0(a′r )=a′r ,ψ0(Eh1)= Eh1 andψ0(Ak)= Ak in π1(6g)

for each 4h1 + 2 ≤ k ≤ 4h1 + 2h2 − 2, we can delete the relations ψ0(ar ) = 1,
ψ0(a′r )= 1, ψ0(Eh1)= 1 and ψ0(AK )= 1 from the above presentation of G.
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From the above arguments and Lemma 5.6, we see that G has a presentation
with generators a1, b1, . . . , ag, bg and with relations

ai ag+1−i = bi ag+1−i bg+1−i a−1
g+1−i for 1≤ i ≤ r ,

a2h1+k = b2h1+k = 1 for 1≤ k ≤ h2− 1,

a j a2h1+1− j = b j a2h1+1− j b2h1+1− j a−1
2h1+1− j = 1 for 1≤ j ≤ h1,

ch1 = 1,

an+1 = an+2 = · · · = ah1 = 1,

bh1 = bh1+1 = · · · = b2h1 = 1.

It is easily shown that this is a presentation of the free group of rank n with free
basis a1, . . . , an , that is, G is isomorphic to Fn .

The proof for g= 2r+1 is similar. This completes the proof of Theorem 5.4. �

5C. Proof of Theorem 5.5. We now prove Theorem 5.5. The proof is inspired by
[Korkmaz 2009] and that of Proposition 13 in [Akhmedov and Ozbagci 2013]. For
simplicity, we write G ′ instead of π1(XW g

2 (1,ψ1)
).

Proof of Theorem 5.5. Suppose that g = 2(2h1 + h2 − 1). Since R1 intersects
a2h1+h2−1 at one point and does not intersect A j for j = 4h1+2, . . . , 4h1+2h2−2,
and a2h1+h2−1 is disjoint from an+1, . . . , ah1, bh1+1, . . . , b2h1 and R2, . . . , Rk , we
see that in π1(6g), up to conjugation,

ψk(a2h1+h2−1)= tR1(a2h1+h2−1)= a2h1+h2−1 Rε1,

where ε is equal to 1 or −1. Since a2h1+h2−1 = 1 in G ′, we may replace the relator
ψk(a2h1+h2−1)= 1 by R1 = 1.

Let c be an element of the set of the vanishing cycles of fW g
2 (1,ψk)

. If R1 is disjoint
from ψk−1(c), then we have ψk(c) = tR1(ψk−1(c)) = ψk−1(c). If R1 intersects
ψk−1(c) at t points, then it is easily seen that there are elements x1, . . . , xt+1 in
π1(6g) such that ψk−1(c)= x1x2 · · · xt+1 and that

tR1(ψk−1(c))= x1 Rζ1
1 x2 Rζ2

1 · · · xt Rζt
1 xt+1

(up to conjugacy), where each ζs is equal to 1 or −1. From R1 = 1, we obtain
ψk(c) = tR1(ψk−1(c)) = ψk−1(c) in G ′. Therefore, we may replace the relator
ψk(c)= 1 by ψk−1(c)= 1.

By repeating this argument for each i = k − 1, . . . , 1, we see that we may
replace the relators ψk(A4h1+2h2−(k+1−i)) = 1 and ψk(c) = 1 by Rk+1−i = 1 and
ψ0(c)= 1, respectively. In particular, since for each j = 4h1+2, . . . , 4h1+2h2−2,
a2h1+h2−1 = 1 and A j = 1 in G ′ and a2h1+h2−1 = ψ0(a2h1+h2−1) and A j = ψ0(A j )

in π1(6g) (up to conjugation), we can delete the relators ψk(a2h1+h2−1) = 1 and
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ψk(A j ) = 1. Therefore, from the proof of Theorem 5.4, we see that G ′ has a
presentation with generators a1, b1, . . . , ag, bg and with relations

ai ag+1−i = bi ag+1−i bg+1−i a−1
g+1−i for 1≤ i ≤ r ,

a2h1+k = b2h1+k = 1 for 1≤ k ≤ h2− 1,

a j a2h1+1− j = b j a2h1+1− j b2h1+1− j a−1
2h1+1− j = 1 for 1≤ j ≤ h1,

ch1 = 1,

an+1 = an+2 = · · · = ah1 = 1,

bh1 = bh1+1 = · · · = b2h1 = 1,

R1 = R2 = · · · = Rk = 1.

We note that the element [Ri ] ∈π1(6g) is contained in the subgroup generated by
a1, b1, . . . , ah1, bh1 and a2h1+1, b2h1+1, . . . , a2h1+h2−1, b2h1+h2−1. Since from this
presentation, we see that as = 1 for s = n+ 1, . . . , h1, 2h1+ 1, . . . , 2h1+ h2− 1
and b j = 1 for j = 1, . . . , h1, 2h1+1, . . . , 2h1+h2−1, we get a word representing
the element ri by Proposition 5.2. Therefore, G ′ is isomorphic to 0.

A similar argument works for g = 2(2h1 + h2 − 1)+ 1. Since fW g
2 (1,ψk)

has
at least two disjoint (−1)-sections, by blowing down one of them we obtain the
required genus-g Lefschetz pencil. This completes the proof of Theorem 5.5 and
therefore, as discussed in Section 5A, also of Theorem 1.2. �

6. Construction of a lift of Gurtas’ positive relator

In this section, we prove Proposition 5.1 and give a lift to Mod2
g of the positive

relator in Modg given by Gurtas [2004].

6A. Outline of the proof of Lemma 3.4. We now give an outline of the proof of
Lemma 3.4, which is needed to prove Proposition 5.1.

Outline of the proof of Lemma 3.4. We define 10 =10 = 1. Moreover, for each
k = 1, . . . , 2g+ 1, we define 1k and 1k to be the words

1k = tA1 tA2 · · · tAk and 1k = tAk · · · tA2 tA1 .

For each k = 0, 1, . . . , g, the words βk and β are defined by

βk =1k12g+1−k1
−1
2g−k1

−1
k and β =1g+1

g .

Then by applying the argument from Section 2 of [Korkmaz 2001] with σi (which
is the standard generator of the braid group B2g+2 on 2g+ 2 strings) replaced by
tAi , we have the relation

(19) β0β1β2 · · ·βgβ
2
=12g+112g · · ·131211.
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It is easy to check that 1k12g−k(A2g+1−k)= Bk . This gives

tBk = (1k12g−k)tA2g+1−k (1k12g−k)
−1
=1k12g+1−k1

−1
2g−k1

−1
k = βk .

Therefore, from the relation (19), we have

tB0 tB1 tB2 · · · tBg (1g)
2g+2
=12g+112g · · ·131211.

Using the chain relations 12g+2
g = tcr when g = 2r and 1g+1

g = tar+1 ta′r+1
when

g = 2r + 1, we have

(20) 12g+112g · · ·131211 =

{
tB0 tB1 tB2 · · · tBg tcr for g = 2r ,

tB0 tB1 tB2 · · · tBg tar+1 ta′r+1
for g = 2r + 1.

If we prove that tag+1 ta′g+1
= (12g+112g · · ·131211)

2 in Mod2
g, the assertion

follows. Note that the chain relation 12g+2
2g+1 = tag+1 ta′g+1

, and tAk1m =1m tAk−1 if
1< k ≤ m (see [Korkmaz 2001, Lemma 2.1(a)]), hold in Mod2

g. Then we have

1
2g+2
2g+1 =12g+112gtA2g+112g+11

2g−1
2g+1

=12g+112g12g+1tA2g1
2g−1
2g+1

=12g+112g12g−1(tA2g tA2g+1)tA2g1
2g−1
2g+1

=12g+112g12g−112g+1(tA2g−1 tA2g )tA2g−11
2g−2
2g+1

=12g+112g12g−112g−2(tA2g−1 tA2g tA2g+1)(tA2g−1 tA2g )tA2g−11
2g−2
2g+1

·
·
·

=12g+112g · · ·11(tA2 tA3 · · · tA2g+1)(tA2 tA3 · · · tA2g ) · · · (tA2 tA3)tA212g+1

=12g+112g · · ·1112g+112g · · ·11,

and the proof is complete. �

6B. Proof of Proposition 5.1. In this section, we prove Proposition 6.1 instead
of Proposition 5.1. Note that if we set g = r in the notation of Proposition 6.1
and consider an embedding 62

r ↪→ 62
g (resp. 61

r ↪→ 62
g) mapping (ar+1, a′r+1)

(resp. ar+1) in Proposition 6.1 to (ar+1, a′r+1) (resp. cr ) in Proposition 5.1, then we
get Proposition 5.1. Therefore, it is sufficient to prove Proposition 6.1.

Proposition 6.1. Let 62
g (resp. 61

g) be the compact oriented surface of genus g
with two boundary components (resp. one boundary component) obtained from 6g

by removing two disjoint open disks (resp. one open disk). Let ag+1, a′g+1 = cgag+1

(resp. ag+1) be the boundary curves of 62
g (resp. the boundary curve of 61

g). Then
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the relations

tag+1 ta′g+1
= tEh1

tA4h1+2 · · · tA2g tag ta′g tA2g · · · tA4h1+2 tEh1
(21)

· tA2g+1 tA2g · · · tA4h1+2 · (tD0 tD1 · · · tD2h1
)2 · tA4h1+2 · · · tA2g tA2g+1,

tag+1 = tEh1
tA4h1+2 · · · tA2g tag ta′g tA2g · · · tA4h1+2 tEh1

(22)

· ta′g tA2g · · · tA4h1+2 · (tD0 tD1 · · · tD2h1
)2 · tA4h1+2 · · · tA2g ta′g

hold in Mod2
g and Mod1

g, respectively.

In order to prove Proposition 6.1, we prepare Lemma 6.2 and Proposition 6.3.

Lemma 6.2. Suppose that g = 2r . In the notation of Lemma 3.4, let c′r be the
separating simple closed curve defined by ag+1(br+1 · · · bg)a′g+1(br+1 · · · bg)

−1cr

(cf. Figure 6(a)). We modify 62
g and B0, . . . , Bg, cr , c′r by isotopy as shown in

Figure 6(b) and (c). Then in Mod2
g, the following relation holds:

tag+1 ta′g+1
= tcr tc′r (tB0 tB1 · · · tBg )

2.

Proof. It is easily seen that for each i = 1, . . . , g, we have

12g+1 · · ·1211(Ai )= A2g+2−i .

This gives the relation

12g+1 · · ·1211tAi = tA2g+i12g+1 · · ·1211

for each i = 1, . . . , 2r . Therefore, we have

12g+1 · · ·1211(1g)
−(2g+2)

= (tAg+2 · · · tA2g+1)
−(2g+2)12g+1 · · ·1211.

B2 B1 B0

crBg

a2g+1

c′r
a′2g+1

a2g+1B2 B1 B0

crBg a′2g+1
c′r

a′2g+1a2g+1
B2 B1 B0

cr Bg c′r

A1
A2 Ar

Ar+1 Ar+2
cr

a2g+1

c′r
a′2g+1

(a)

a2g+1

A1
A2 Ar

Ar+1 Ar+2
cr a′2g+1

c′r
(b)

a′2g+1 a2g+1

A1
A2 Ar

Ar+1 Ar+2
cr c′r

(c)

Figure 6. Modified surface 62
g and curves B0, . . . , Bg, cr , c′r .



376 RYOMA KOBAYASHI AND NAOYUKI MONDEN

Since

tB0 tB1 tB2 · · · tBg (1g)
2g+2
=12g+1 · · ·1211 (= tB0 tB1 tB2 · · · tBg tcr )

from the proof of Lemma 3.4, we have

(tAg+2 · · · tA2g+1)
2g+2tB0 tB1 tB2 · · · tBg =12g+1 · · ·1211

(= tB0 tB1 tB2 · · · tBg tcr ).

By the chain relation, we obtain tc′r = (tAg+2 · · · tA2g+1)
2g+2. Therefore,

tag+1 ta′g+1
= tc′r tB0 tB1 · · · tBg · tB0 tB1 · · · tBg tcr

follows by Lemma 3.4. By conjugation by tcr , we have

tag+1 ta′g+1
= tcr tc′r (tB0 tB1 · · · tBg )

2. �

Proposition 6.3 was shown by Hamada [≥ 2016] based on the argument of
[Tanaka 2012]. Its statement concerns a′0, a null-homotopic simple closed curve in
6g defined by a′0 = c0a0.

Proposition 6.3 [Hamada ≥ 2016]. Let 64
g be the compact oriented surface of

genus g with four boundary components obtained from6g by removing four disjoint
open disks surrounded by a0, a′0, ag+1 and a′g+1. Then the following relation in
Mod4

g holds:

ta0 ta′0 tag+1 ta′g+1
= tA2g+1 · · · tA2 ta1 ta′1 tA2 · · · tA2g+1 · tA1 · · · tA2g tag ta′g tA2g · · · tA1 .

Proof. The proof is by induction on the genus.
Suppose that g = 1. The four-holed torus relation,

ta0 ta′0 ta2 ta′2 = (tA1 tA3 tA2 ta1 ta′1 tA2)
2,

was constructed by Korkmaz and Ozbagci [2008, Section 3.4]. Since a0, a′0, a2, a′2
are disjoint from A1 and A1 is disjoint from A3, by conjugation by tA1 , we have

ta0 ta′0 ta2 ta′2 = tA3 tA2 ta1 ta′1 tA2 tA1 · tA3 tA2 ta1 ta′1 tA2 tA1

= tA3 tA2 ta1 ta′1 tA2 tA3 · tA1 tA2 ta1 ta′1 tA2 tA1 .

Hence, the conclusion of the proposition holds for g = 1.
Next we assume, inductively, that the relation holds in Mod4

g−1. Since then
a0, a′0, ag, a′g are disjoint from A1, . . . , A2g−1, we have the relation

ta0 ta′0 tag ta′g = tA2g−2 · · · tA1 · tA2g−1 · · · tA2 ta1 ta′1 tA2 · · · tA2g−1 · tA1 · · · tA2g−2 tag−1 t ′ag−1

in Mod4
g by conjugation by tA2g−2 · · · tA1 . Since ag−1, a′g−1, ag+1, a′g+1 are disjoint

from A2g−1, A2g, A2g+1, ag, a′g, by the four-holed torus relation

tag−1 ta′g−1
tag+1 ta′g+1

= (tA2g−1 tA2g+1 tA2g tag ta′g tA2g )
2
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and conjugation by tA2g−1 tA2g+1 tA2g , we have the relation

t−1
ag

t−1
a′g

tag+1 ta′g+1
= t−1

a′g−1
t−1
ag−1

tA2g tA2g−1 tA2g+1 tA2g tag ta′g tA2g tA2g−1 tA2g+1 tA2g .

By combining these relations, we have

ta0 ta′0 tag+1 ta′g+1
= tA2g−2 · · · tA1 · tA2g−1 · · · tA2 ta1 ta′1 tA2 · · · tA2g−1 · tA1 · · · tA2g−2

· tA2g tA2g−1 tA2g+1 tA2g · tag ta′g tA2g tA2g−1 tA2g+1 tA2g .

Note that A1, . . . , A2g+1 are disjoint from a0, a′0, ag+1, a′g+1. Moreover, A2g and
A2g+1 are disjoint from A1, . . . , A2g−2 and A1, . . . , A2g−1, respectively. Therefore,
by conjugation by tA2g−2 · · · tA1 and tA2g+1 tA2g , we have

ta0 ta′0 tag+1 ta′g+1
= tA2g−2 · · · tA1 · tA2g−1 · · · tA2 ta1 ta′1 tA2 · · · tA2g−1 · tA1 · · · tA2g−2

· tA2g tA2g−1 tA2g+1 tA2g · tag ta′g tA2g tA2g−1 tA2g+1 tA2g

= tA2g+1 tA2g · tA2g−1 · · · tA2 ta1 ta′1 tA2 · · · tA2g−1 · tA2g tA2g+1 · tA1 · · · tA2g−2

· tA2g−1 tA2g · tag ta′g tA2g tA2g−1 tA2g−2 · · · tA1 .

This completes the proof of Proposition 6.3. �

We now prove Proposition 6.1.

Proof of Proposition 6.1. Let c′h1
be the separating simple closed curve as shown in

Figure 7. By Lemma 6.2 and Proposition 6.3, we have

tah1+1 ta′h1+1
= tch1

tc′h1
(tD0 tD1 · · · tD2h1

)2,

tch1
tc′h1

tag+1 ta′g+1
= tag tA2g · · · tA4h1+2 tEh1

tEh1
tA4h1+2 · · · tA2g ta′g

· tA2g+1 · · · tA4h1+2 tah1+1 ta′h1+1
tA4h1+2 · · · tA2g+1 .

Since ch1 and c′h1
are disjoint from A2h1+2, . . . , A2g, Eh1, ah1+1, a′h1+1, it follows

that

t−1
c′h1

t−1
ch1
· tah1+1 ta′h1+1

= (tD0 tD1 · · · tD2h1
)2,

tag+1 ta′g+1
= tag tA2g · · · tA4h1+2 tEh1

tEh1
tA4h1+2 · · · tA2g ta′g

· tA2g+1 · · · tA4h1+2 · t
−1
c′h1

t−1
ch1
· tah1+1 ta′h1+1

· tA4h1+2 · · · tA2g+1 .

Combining these relations gives the relation (21) in Proposition 6.1.
In 61

g , A2g+1 is homotopic to a′g, and (22) follows, completing the proof. �
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D0 D1

ch1

Eh1

c′h1

a2h1+1

a′2h1+1

A4h1+2 A4h1+4

A4h1+3 A4h1+5

Figure 7. The curve c′h1
on 62

g .

6C. A lift of Gurtas’ positive relator. Since ag+1 and a′g+1 are null-homotopic in
6g, we have tag+1 = ta′g+1

= 1 in Modg, so the relation in Proposition 6.1 is a positive
relator in Modg. Then we note that A2g+1 and a′g are homotopic to ag. On the other
hand, Gurtas [2004] gave the positive relator

(tA4h1+2 · · · tA2g tag tag tA2g · · · tA4h1+2 tD0 tD1 · · · tD2h1
tEh1

)2 = 1.

in Modg. Using the following theorem of Kas [1980] and Matsumoto [1996], we
show that the relation in Proposition 6.1 gives a lift of Gurtas’ positive relator in
Modg to Mod2

g.

Theorem 6.4 [Kas 1980; Matsumoto 1996]. If g ≥ 2, then the isomorphism class
of a Lefschetz fibration is determined by a positive relator modulo simultaneous
conjugations

tvn · · · tv2 tv1 ∼ tφ(vn) · · · tφ(v2)tφ(v1) for any φ ∈ 0g

and elementary transformations

tvn · · · tvi+2 tvi+1 tvi tvi−1 tvi−2 · · · tv1 ∼ tvn · · · tvi+2 tvi tt−1
vi (vi+1)

tvi−1 tvi−2 · · · tv1,

tvn · · · tvi+2 tvi+1 tvi tvi−1 tvi−2 · · · tv1 ∼ tvn · · · tvi+2 tvi+1 ttvi (vi−1)tvi tvi−2 · · · tv1 .

The aim of this section is to prove the following proposition. This proposition
applied to Proposition 6.1 gives the above mentioned lift.
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Proposition 6.5. In Modg, the following relation holds:

tEh1
tA4h1+2 · · · tA2g tag tag tA2g · · · tA4h1+2 tEh1

· tag tA2g · · · tA4h1+2 · (tD0 tD1 · · · tD2h1
)2 · tA4h1+2 · · · tA2g tag

∼ (tA4h1+2 · · · tA2g tag tag tA2g · · · tA4h1+2 tD0 tD1 · · · tD2h1
tEh1

)2.

In order to prove this, we need a lemma.

Lemma 6.6. We deform 62
g as shown in Figure 8(a) and (b). Let E and E ′ be the

simple closed curves in62
g as in Figure 8(a) and (b), and let a be the arc connecting

the boundary components of 62
g as in the figure. Then

tB0 tB1 · · · tBg (E)= E ′,(23)

tB0 tB1 · · · tBg tE(a)= tag+1 ta′g+1
(a).(24)

Proof. From the equality (20), we see that

tB0 tB1 · · · tBg =12g+1 · · ·1211t−1
cr
.

By drawing corresponding curves and applying the corresponding Dehn twist, we
find that

12g+1 · · ·1211t−1
cr
(E)= E ′ and 12g+1 · · ·1211t−1

cr
tE(a)= tag+1 ta′g+1

(a).

This proves the lemma. �

E
a2g+1

E ′

A1
A2 Ar

a′2g+1

Ar+2

a′2g+1 a2g+1

A1
A2 Ar

E ′

E
Ar+2

a2g+1

A1
A2 Ar

a

Ar+2

a′2g+1

(a)

a′2g+1 a2g+1

A1
A2 Ar

a

Ar+2

cr c′r

(b)

Figure 8. The curves E, E ′ and the arc a.
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Proof of Proposition 6.5. For simplicity of notation, we write

τ := tA4h1+2 · · · tA2g tag and τ := tag tA2g · · · tA4h1+2 .

Note that for each i = 2h1+ 2, . . . , 2g, we find that

tEh1
ττ tEh1

(Ai )= Ai and tEh1
ττ tEh1

(ag)= ag.

This gives

tEh1
ττ tEh1

· tAi ∼ tAi · tEh1
ττ tEh1

and tEh1
ττ tEh1

· tag∼ tag · tEh1
ττ tEh1

,

so we obtain the relation

tEh1
ττ tEh1

· τ ∼ τ · tEh1
ττ tEh1

.

Therefore, applying elementary transformations (including cyclic permutations)
gives

(25) tEh1
ττ tEh1

· τ(tD0 tD1 · · · tD2h1
)2 · τ ∼ tEh1

ττ tEh1
· τ · τ(tD0 tD1 · · · tD2h1

)2.

Since by drawing corresponding curves, applying the corresponding Dehn twist
and (24) in Lemma 6.6, we have

(ττ )−1(Eh1)= ta2h1+1 ta′2h1+1
(Eh1)= tD0 tD1 · · · tD2h1

(Eh1),

we thus obtain

ττ · tD0 tD1 · · · tD2h1
· tEh1
∼ tEh1

· ττ · tD0 tD1 · · · tD2h1
.

Therefore, by using this relation, we have

(26) tEh1
ττ tEh1

· ττ · (tD0 tD1 · · · tD2h1
)2

∼ tEh1
ττ · ττ · tD0 tD1 · · · tD2h1

· tEh1
· tD0 tD1 · · · tD2h1

.

By drawing corresponding curves, applying the corresponding Dehn twist and
(23) in Lemma 6.6, we obtain

(ττ )−1(A4h1+2)= tD0 tD1 · · · tD2h1
tEh1

(A4h1+2).

Therefore, we have

ττ · tD0 tD1 · · · tD2h1
tEh1
· tA4h1+2∼ tA4h1+2 · ττ · tD0 tD1 · · · tD2h1

tEh1
.

Note that for each i = 4h1+ 3, . . . , 2g, we find that

ττ(Ai )= Ai and ττ(ag)= ag.
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Moreover, since A4h1+3, . . . , A2g and ag are disjoint from D0, . . . , D2h1, Eh1 , we
therefore obtain, for each i = 2h1+ 3, . . . , 2g,

ττ tD0 tD1 · · · tD2h1
tEh1
· tAi ∼ tAi · tττ tD0 tD1 · · · tD2h1

tEh1
,

ττ tD0 tD1 · · · tD2h1
tEh1
· tag∼ tag · ττ tD0 tD1 · · · tD2h1

tEh1
.

This gives

ττ · ττ tD0 tD1 · · · tD2h1
tEh1
∼ ττ tD0 tD1 · · · tD2h1

tEh1
· ττ .

From this relation, applying elementary transformations (including cyclic permuta-
tions) gives

(27) tEh1
ττ · ττ · tD0 tD1 · · · tD2h1

tEh1
· tD0 tD1 · · · tD2h1

∼ ττ · tD0 tD1 · · · tD2h1
tEh1
· ττ · tD0 tD1 · · · tD2h1

· tEh1
.

Proposition 6.5 follows from the relations (25)–(27). �

7. Construction of simple loops R1, . . . , Rk

In this section, we prove Proposition 5.2. This was based on Korkmaz’s work [2009]
and the argument in [Akhmedov and Ozbagci 2013]. In Proposition 4.3 of [Korkmaz
2009], he defined l as l = l(r1)+ · · ·+ l(rk). However, in this paper, it is sufficient
to consider l as l =max1≤i≤k{l(ri )}. Before providing the simple loops in 6g in
Proposition 5.2, we need the following proposition about simple loops R1, . . . , Rk

in 6n+l−1.

Proposition 7.1. Let Fn be the subgroup of π1(6n) generated by a1, . . . , an , i.e.,
Fn is a free group of rank n. Let r1, . . . , rk be k arbitrary elements in Fn represented
as words in a1, . . . , an . Let l =max1≤i≤k{l(ri )}, where l(ri ) is the syllable length
of ri . Then there are simple loops R1, . . . , Rk in 6n+l−1 with the property that for
each 1≤ i ≤ k:

(a) Ri is freely homotopic to a simple closed curve which intersects an+l−1 trans-
versely at only one point.

(b) 8([Ri ]) = ri , where [Ri ] ∈ π1(6n+l−1) is the homotopy class of Ri , and
8 : π1(6n+l−1)→ π1(6n) is the map defined by 8(a j ) = a j for 1 ≤ j ≤ n
and 8(α)= 1 for α ∈ {an+1, . . . , an+l−1, b1, . . . , bn+l−1}.

Proof. Let us consider the surface 6n embedded in R3 as shown in Figure 1 such
that for each 1≤ j ≤ n, a simple closed curve b′j in 6n which is isotopic to b j lies
on the plane x = 0. Write ri = am1

i1
· · · amd

id
, where d = l(ri ) is the syllable length

of ri . We denote by ξ a constant such that the base point lies in the plane z = ξ .
Let L be an arc in 6n which lies in the half plane {z = ξ} ∩ {x ≥ 0}.
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γ1 γ1 γ2 γ−3 γ−1

B2 B1 B3 B5 B4
A2 A1 A3 A5 A4 L

(a)

δ1 δ4

δ2 δ3

δ′

δ′′

(b)

δ̃1

δ̃2 δ̃3
δ̃4

δ′

δ′′

(c)

Figure 9. Construction of Ri on 6n+d−1 for ri = a2a1a2
2a−1

5 a−3
4

and for n = 5.

For 1≤ t ≤ d , let αt be a loop in 6n which is isotopic to ait . If js = js′ for some
s < s ′, then we assume that αs′ is to the right of αs and that αs′ is disjoint from αs .
Here, right means the positive direction of the y-axis. Let At (resp. Bt ) be points
on L lying to the left (resp. right) of αt such that there are no As (resp. Bs) between
αt and At (resp. Bt ).

Let γmt = t−mt
αt

(ζt), where ζt is the subarc of L from the point A j to the point B j .
For each 1 ≤ j ≤ d − 1, let δ j denote the subarc of L from the point B j to the
point A j+1. Then we can define an arc β in 6n connecting A1 to Bd to be

β = γm1? δ1 ? γm2 ? δ2 ? · · · ? δd−1 ? γmd ,

where γ ? δ denotes an arc γ followed by an arc δ. Let δ0 be the subarc of L
from the base point to A1, and δd the subarc from Bd to the base point. Then
δ0 ? β ? δd represents ri (cf. Figure 9(a)). After perturbing β slightly, we assume
that δ1, . . . , δd−1 are pairwise disjoint and lie parallel to the plane x = 0. Note that
all self-intersection points of δ0 ? β ? δd lie on δ0 ∪ δ1 ∪ · · · ∪ δd .
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Let δ′ and δ′′ be arcs from the base point to A1 and from Bd to the base point,
respectively, which are disjoint from α1, α2, . . . , αd and b′1, b′2, . . . , b′n and lie in
the space {z ≤ ξ}. Suppose that the interiors of δ′, δ′′ and β are pairwise disjoint.
Then the loop δ′? β ? δ′′ represents

b1b2 · · · bi1−1ri b−1
id
· · · b−1

2 b−1
1

in π1(6n) (cf. Figure 9(b)).
Let D1, D′1, . . . , Dd−1, D′d−1 be pairwise disjoint disks in 6n such that for each

1≤ t ≤ d−1, Int(Dt) and Int(D′t) are disjoint from δ′, β and δ′′, and At ∈ ∂Dt and
Bt ∈ ∂D′t . We remove 2d − 2 open disks Int(Dt) and Int(D′t) from 6n . Then for
each 1≤ t ≤ d − 1, by attaching an annulus, denote by At , to the surface

6n \

d−1⋃
t=1

(
Int(Dt)∪ Int(D′t)

)
along ∂Dt and ∂D′t , we obtain the closed oriented surface(

6n \

d−1⋃
t=1

(
Int(Dt)∪ Int(D′t)

))
∩

( d−1⋃
t=1

At

)
of genus n+ d − 1, denoted by 6n+d−1. An orientation on 6n+d−1 is given by the
orientation on 6n .

We define a loop Ri in 6n+d−1 as follows. For each 1 ≤ t ≤ d − 1, let δ̃t be a
simple arc in At from the point Bt to the point At+1 such that δ̃t lies parallel to the
plane x = 0. Then by “replacing” δt in δ′? β ? δ′′ by δ̃t , we obtain the loop

R = δ′ ? γm1 ? δ̃1 ? γm2 ? δ̃2 ? · · · ? δ̃d−1 ? γmd ? δ
′′.

In particular, Ri is simple in 6n+d−1 (cf. Figure 9(c)).
Note that from construction, δ̃t ? δt is a simple closed curve in 6n+d−1. If we

collapse each At onto the arc δt , then we obtain a map 6n+d−1→6n . The induced
map π1(6n+d−1)→ π1(6n) takes [R] to

b1b2 · · · bi1−1ri b−1
id
· · · b−1

2 b−1
1 ,

which in turn is mapped to ri under the map π1(6n)→ π1(6n) sending a j to a j

and b j to 1 for all j .
Let h = n + l − 1, where l = max1≤i≤k{l(ri )}. For each 1 ≤ i ≤ k, we now

construct a loop Ri in 6h as follows. First, by sliding A1, . . . ,Al(ri )−1, we deform
the surface 6n+l(ri )−1 into the standard position as shown in Figure 1 in such a way
that the simple loop δ̃t ? δt becomes isotopic to bn+t and the boundary curves of
At become isotopic to an+t (cf. Figure 10(a), (b) and (c)). If l(r j )= l for some j ,
then we see that the simple closed curve ah intersects R j transversely at one point.
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(a) (b)

(c)

6h

(d)

61
h

(e)

6g

Figure 10. Construction of Ri for ri = a−1
3 a−1

2 in the case n = 3
and g = 8.

Therefore, we assume that l(ri ) < l. Next, we remove a small open disk from the
deformed surface near an+l(ri )−1 and disjoint from Ri (cf. Figure 10(d)). Thus, we
obtain a surface of genus n + l(ri )− 1 with one boundary component, denoted
by 61

n+l(ri )−1. We embed 61
n+l(ri )−1 into the standard surface 6h in such a way

that for each 1 ≤ t ≤ n + l(ri )− 1, simple loops at , bt in 61
n+l(ri )−1 correspond

to the simple loops at , bt in 6h (cf. Figure 10(e)). Finally, we replace Ri with
a simple representative of [Ri ]

(
(b1b2 · · · bh−1)(b1b2 · · · bh)

−1
)ε , where ε = ±1

(cf. Figure 10(d)). Then we see that the resulting simple loop Ri intersects ah

transversely at one point.
From the above construction, 8 : π1(6h)→ π1(6n) maps [Ri ] to ri for each

i = 1, . . . , k. This gives the required simple loops R1, . . . , Rk . �

Proof of Proposition 5.2. Consider a surface 6n+l−1 and the loops R1, . . . , Rk con-
structed in Proposition 7.1. We remove a small open disk from 6n+l−1 near an+l−1

and disjoint from all Ri (cf. Figure 11(a)). Denote by61
n+l−1 the resulting surface of

genus n+ l−1 with one boundary component. We embed 61
n+l−1 into the standard

surface6g in such a way that for each 1≤ t ≤n+l−1, simple loops at , bt in61
n+l−1

correspond to the simple loops at , bt in 6g (cf. Figure 11(b)). Then we can modify
R1, . . . , Rk so that each Ri (i = 1, . . . , k) satisfies the property of Proposition 5.2
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an+l−1

R2

R1
R3

n+ l − 1

(a)

an+l−1 2h1 a2h1+1 a2h1+h2−1

R2

R1
R3

h1 h2− 1
c2h1+h2−1

(b)

Figure 11. Modified curves R1, . . . , Rk in 6g.

by replacing Ri with a simple representative of [Ri ](b2h1+1b2h2+2 · · · b2h1+h2−i )
ε

if i is odd, and [Ri ]aε2h1+h2−i if i is even, where ε =±1 (cf. Figure 5). Therefore,
we obtain the required simple loops R1, . . . , Rk . �

8. Remarks

The results of [Gompf 1995; Donaldson 1999; Gompf and Stipsicz 1999] men-
tioned in the introduction naturally raise the following two basic questions, which
remain open.

Question 8.1 (cf. [Korkmaz and Stipsicz 2009]). Given a symplectic 4-manifold,
what is the minimal genus g for which it has a genus-g Lefschetz pencil?

Question 8.2. Given a finitely presented group 0, what is the minimal genus,
denoted by gP(0), for which there exists a genus-g Lefschetz pencil on a symplectic
4-manifold with fundamental group 0?

Although these two questions remain open, for Question 8.2, we can give an
upper bound for gP(0) as a corollary of Theorem 1.2.

Corollary 8.3. We have gP(0)≤ 4(n+ l− 1)+ k for k ≥ 1, and gP(Fn)≤ 4n+ 2.

However, this upper bound for gP(0) may not be sharp. In fact, since CP2

admits a genus-0 Lefschetz pencil, gP(0)= 0 if 0 is the trivial group. When we
replace the relations in Proposition 5.1 and the map ψk in Section 5A by another
relation and map, we can improve the upper bound of gP(0). For example, for
every positive integer n, the article [Hamada et al.≥ 2016] gave a genus-g Lefschetz
pencil on a 4-manifold Xn such that π1(Xn) ∼= Z⊕ Zn for every g ≥ 4 using a
similar construction to this paper. Therefore, gP(Z⊕Zm)≤ 4.
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We expect that by a combination of substitution techniques and partial conjugation
techniques, we could obtain results for Lefschetz fibrations with (−1)-sections
analogous to those obtained by fiber sum operations. The articles [Ozbagci and
Stipsicz 2000; Korkmaz 2001; Monden 2014] gave examples of nonholomorphic
Lefschetz fibrations by fiber sum operations (and lantern substitutions). By a similar
technique to this paper (and a lantern substitution), two kinds of nonholomorphic
Lefschetz fibrations with (−1)-sections were constructed in [Hamada et al. ≥ 2016].
One is a Lefschetz fibration with noncomplex total space, and the other is a Lefschetz
fibration violating the “slope inequality”.

Finally, we explain why the Lefschetz fibrations constructed in [Korkmaz 2009;
Akhmedov and Ozbagci 2013; Kobayashi 2015] do not have (−1)-sections. In
[Korkmaz 2009; Kobayashi 2015], twisted fiber sum operations were adopted,
and the fibrations in [Akhmedov and Ozbagci 2013] were obtained by performing
Luttinger surgeries and knot surgeries on the symplectic sum of certain symplectic
4-manifolds. The fiber sum of Lefschetz fibrations has no (−1)-sections (see
[Stipsicz 2001a], and also [Smith 2001]). In particular, the symplectic sum of
symplectic 4-manifolds is minimal, that is, it does not contain any (−1)-spheres
(see [Usher 2006], and also [Sato 2006; Baykur 2015]), and Luttinger surgery
and knot surgery preserve minimality of symplectic 4-manifolds from the result of
[Usher 2006]. Therefore, we see that the fibrations in [Korkmaz 2009; Akhmedov
and Ozbagci 2013; Kobayashi 2015] do not have any (−1)-sections.
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KNOT HOMOTOPY IN SUBSPACES OF THE 3-SPHERE

YUYA KODA AND MAKOTO OZAWA

We discuss an extrinsic property of knots in a 3-subspace of the 3-sphere
S3 to characterize how the subspace is embedded in S3. Specifically, we
show that every knot in a subspace of the 3-sphere is transient if and only if
the exterior of the subspace is a disjoint union of handlebodies, i.e., regular
neighborhoods of embedded graphs, where a knot in a 3-subspace of S3 is
said to be transient if it can be moved by a homotopy within the subspace to
the trivial knot in S3. To show this, we discuss the relation between certain
group-theoretic and homotopic properties of knots in a compact 3-manifold,
which can be of independent interest. Further, using the notion of transient
knots, we define an integer-valued invariant of knots in S3 that we call the
transient number. We then show that the union of the sets of knots of un-
knotting number one and tunnel number one is a proper subset of the set of
knots of transient number one.

Introduction

In the list [Eilenberg 1949] of problems edited by Eilenberg, Fox proposed a program
to distinguish 3-manifolds by the differences in their “knot theories”. Following the
program, Brody [1960] reobtained the topological classification of the 3-dimensional
lens spaces using knot-theoretic invariants, which are the Alexander polynomials
of knots suitably factored out so that it depends only on the homology classes of
the knots. Bing’s recognition theorem [1958] can be regarded as another example
of works that follow Fox’s program. The theorem asserts that a closed, connected
3-manifold M is homeomorphic to the 3-sphere if and only if every knot in M
can be moved by an isotopy to lie within a 3-ball. We note here that if we replace
isotopy in this statement by homotopy, the assertion implies the Poincaré conjecture,
which was proved by Perelman [2002; 2003a; 2003b]. Bing’s recognition theorem
was generalized by Hass and Thompson [1989] and Kobayashi and Nishi [1994]
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proving that a closed, connected 3-manifold M admits a genus-g Heegaard splitting
if and only if there exists a genus-g handlebody V embedded in M such that every
knot in M can be moved by an isotopy to lie within V . We note that, as mentioned
in [Nakamura 2015], the homotopy version of this statement holds when g = 1,
again by the Poincaré conjecture, whereas the higher genus case fails in general. A
result of Brin, Johannson, and Scott [Brin et al. 1985] can also be regarded as a work
following Fox’s program. This result asserts that if every knot in M can be moved
by a homotopy to lie within a collar neighborhood of the boundary ∂M , then there
exists a component F of ∂M such that the natural map π1(F)→ π1(M) induced
by the inclusion is surjective. In particular, for a compact, connected, orientable,
irreducible, boundary-irreducible 3-manifold M , they proved that if every knot in M
can be moved by a homotopy to lie within a collar neighborhood of ∂M , then M is
homeomorphic to the 3-ball or the product6×[0, 1], where6 is a closed, orientable
surface of genus at least one. In the present paper, we will consider a relative version
of Fox’s program. Namely, we discuss “(extrinsic) knot theories” in 3-subspaces of
the 3-sphere S3 in order to characterize how the 3-subspaces are embedded in S3.

Let M be a compact, connected, proper 3-submanifold of S3. We say that M is
unknotted if its exterior is a disjoint union of handlebodies. A famous theorem of
Fox [1948] says that each M can be reembedded in S3 so that its image is unknotted.
A reembedding satisfying this property is called a Fox reembedding. Intuitively
speaking, unknottedness of M ⊂ S3 implies that M is embedded in S3 in one of
the “simplest” ways. We note that if M is a handlebody, an unknotted M in S3 is
actually unique up to isotopy [Waldhausen 1968]. The uniqueness up to isotopy and
a reflection holds for each knot exterior by a celebrated result of Gordon and Luecke
[1989]. However, in other cases M usually admits many mutually nonisotopic Fox
reembeddings into S3.

The unknottedness of a 3-submanifold, and so the existence of a Fox reembedding,
can be considered for an arbitrary closed, connected 3-manifold. Scharlemann and
Thompson [2005] generalized the above theorem of Fox by proving that any compact,
connected, proper 3-submanifold of an irreducible non-Haken 3-manifold N admits
a Fox reembedding into N or S3. Another generalization is given by Nakamura
[2015] who proved that a compact, connected, proper 3-submanifold M of a closed,
connected 3-manifold N admits a Fox reembedding into N if every knot in N can
be moved by an isotopy to lie within M . Here we remark that the property that
every knot in N can be moved by an isotopy to lie within M does not imply that
M itself is unknotted in N . This can be seen for example by considering the case
where N = S3 and M is not unknotted. In this paper, we will show that the property
of a compact, connected, proper 3-submanifold M of S3 that every knot in M can be
moved by a homotopy in M to be the trivial knot in S3 implies that M is unknotted
in S3. Following [Letscher 2012], we say that a knot K in M is transient in M if
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K can be deformed by a homotopy in M to be the trivial knot in S3; K is said to be
persistent in M otherwise. Using this terminology, we can state our main theorem:

Theorem 3.2. Let M be a compact, connected, proper 3-submanifold of S3. Then
every knot in M is transient in M if and only if M is unknotted.

Roughly speaking, the above theorem implies that a (homotopic) property of
knots in M deduces an isotopic property of M inside S3. We remark that the property
that a given knot K ⊂ M is transient is extrinsic with respect to the embedding
M ↪→ S3, in the sense that it depends not only on the pair (M, K ) but also on
the way M is embedded in S3. Indeed, we can find a persistent knot in a certain
genus-two handlebody V embedded in S3 in such a way that there exists another
embedding of V into S3 such that the reembedded knots in the reembedded V is
transient. See Section 3. Now, we can say a little more precisely what is the relative
version of Fox’s program; we expect that extrinsic properties for knots in a compact,
connected, proper 3-submanifold of S3 distinguish the isotopy class of M inside S3.
Our main theorem is a first step for the program. To obtain the theorem, we discuss
the relation between certain group-theoretic and homotopic properties of knots in a
compact 3-manifold, which can be of independent interest. See Section 1.

Given a knot K in a compact, connected, proper 3-submanifold M of S3, it is
actually difficult in general to detect if K is persistent in M . One method provided by
Letscher [2012] uses what he calls the persistent Alexander polynomial. In Section 4,
we provide examples of persistent knots in a 3-subspace of S3 whose persistence
are shown by using the notion of persistent lamination and accidental surface.

In Section 5, we will introduce an integer-valued invariant, the transient number
of knots in S3, whose definition is related to Theorem 3.2 as follows. Given a
knot K in S3, we may consider a system of simple arcs in S3 with their endpoints
in K such that K is transient in a regular neighborhood of the union of K and the
arcs. The transient number tr(K ) is then defined to be the minimal number of simple
arcs in such a system. By an easy observation, we see that the transient number is
bounded from above by both the unknotting number and the tunnel number. Further,
we will give a knot K that attains tr(K )= 1 while u(K )= t (K )= 2, where u(K )
and t (K ) are the unknotting number and the tunnel number of K , respectively (see
Proposition 5.2). In other words, the union of the sets of knots of unknotting number
one and tunnel number one is actually a proper subset of the set of knots of transient
number one. Section 6 contains some concluding remarks and open questions.

Throughout this paper, we will work in the piecewise linear category.

Notation. Let X be a subset of a given polyhedral space Y . We will denote
the interior of X by Int X . We will use Nbd(X; Y ) to denote a closed regular
neighborhood of X in Y . If the ambient space Y is clear from the context, we denote
it briefly by Nbd(X). Let M be a 3-manifold. Let L ⊂ M be a submanifold with or
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without boundary. When L is 1- or 2-dimensional, we write E(L)=M \Int Nbd(L).
When L is 3-dimensional, we write E(L)=M \Int L . We shall often say “surfaces”,
“compression bodies”, etc., in an ambient manifold to mean their isotopy classes.

1. Knots filling up a handlebody

Let Fg be a free group of rank g with a basis Xg = {x1, x2, . . . , xg}. We set

X±g = Xg ∪ {x1
−1, x2

−1, . . . , xg
−1
}.

A word on Xg is a finite sequence of letters of X±g . For an element x of a group G,
we denote by cG(x) (or simply by c(x)) its conjugacy class in G.

Let G be a group with a decomposition G = G1 ∗ G2. Then G1 and G2 are
called free factors of G. In particular, if G2 6= 1, then G1 is called a proper free
factor of G. Following [Lyon 1980], we say that an element x of G binds G if x is
not contained in any proper free factor of G. Thus, for example, an element of Z

binds Z if and only if it is nontrivial. We can also see that an element of a rank-2
free group F2 = 〈x1, x2〉 binds F2 if and only if it is not a power of a primitive
element, where an element of a free group is said to be primitive if it is a member
of some free basis of the free group. For example x1x2x1x2 does not bind F2, while
x1x2x1x2

3 binds F . See, e.g., [Osborne and Zieschang 1981] and [Cho and Koda
2015]. Primitive elements of the rank-2 free group have been well understood
by, e.g., Osborne and Zieschang [1981] and Cohen, Metzler, and Zimmermann
[Cohen et al. 1981], whereas their classification in a free group of higher rank
is known to be a hard problem. See [Puder and Wu 2014] (and also [Shpilrain
2005]) and [Puder and Parzanchevski 2015] for some of the deepest results on
this problem. On the contrary, an algorithm to detect if a given element x of a
free group Fg binds Fg is given by Stallings [1999] using the combinatorics of its
Whitehead graph. See (2) in Section 6. It follows immediately from the definition
that if x binds G, then any element of its conjugacy class c(x) binds G. In fact,
if x lies in G1 for a decomposition G = G1 ∗G2, then a−1xa lies in a−1G1a and
F = (a−1G1a) ∗ (a−1G2a) is also a decomposition of G for any a ∈ G.

Let K be an oriented knot in a 3-manifold M . We denote by cπ1(M)(K ) (or
simply by c(K )) the conjugacy class in π1(M) defined by the homotopy class of K .
Here we recall that two oriented knots K and K ′ in M are homotopic in M if and
only if

cπ1(M)(K )= cπ1(M)(K
′).

We say that K binds π1(M) if an element (and so every element) of c(K ) binds
π1(M). It is clear by definition that, if K̄ is the knot K with the reversed orientation,
K binds π1(M) if and only if K̄ also does. For this reason, we can say whether or
not a knot K binds π1(M), while ignoring the orientation of K .
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Let M be a compact 3-manifold and F a subsurface of ∂M , or a surface properly
embedded in M . Here we note that F is possibly disconnected. Recall that F is
said to be compressible if

(1) there exists a component of F that bounds a 3-ball in M , or

(2) there exists an embedded disk D in M , called a compression disk for F , such
that D ∩ F = ∂D and such that ∂D is an essential simple closed curve on F .

Otherwise, F is said to be incompressible. A 3-manifold is said to be irreducible if it
contains no incompressible 2-spheres and boundary-irreducible if its boundary is in-
compressible. The following lemma is a generalization of [Lyon 1980, Corollary 1].

Lemma 1.1. Let M be a compact, connected, orientable, irreducible 3-manifold
with nonempty boundary. Let K be an oriented simple closed curve in the boundary
of M. Then ∂M \ K is incompressible in M if and only if K binds π1(M).

Proof. We fix an orientation and a base point v of K .
Suppose first that K does not bind π1(M, v). Then there exists a decomposition

π1(M, v)= G1 ∗G2 with G2 6= 1 and [K ] ∈ G1. Let X i be a K (Gi , 1)-space, and
let p be a point not in X1 ∪ X2. We define X̂1 and X̂2 to be the mapping cylinders
of maps from p into X1 and X2, respectively. Let X denote the space obtained by
identifying the copy of p in X̂1 with that of p in X̂2. By the construction, we have
π1(X)= G1 ∗G2 and π2(X1)= π2(X2)= 0. Thus there exists a continuous map
f : M→ X satisfying the following properties:

(1) f (v)= p,

(2) the induced map f∗ :π1(M)→π1(X) is an isomorphism with f∗(Gi )=π1(X i )

for i ∈ {1, 2}, and

(3) f −1(p) consists of a finite number of compression disks for ∂M .

Here we use the assumption that M is irreducible. We may assume that | f −1(p)∩K |
is minimal among all continuous maps M→ X satisfying (1)–(3). Suppose that
f −1(p)∩ K is nonempty. Then f (K ) is a loop in X with base point p that can be
decomposed as

f (K )= α1 ∗α2 ∗ · · · ∗αr ,

where each αi lies in X̂1 or X̂2, and αi , αi+1 do not lie in one of X̂1 and X̂2 at
the same time. We note that r > 1. Suppose that no [αi ] is trivial in G1 or G2.
Then [α1], [α2], . . . , [αr ] is a reduced sequence, that is, [αi ] is in G1 or G2, and
[αi ], [αi+1] do not lie in one of G1 and G2 at the same time. On the other hand,
[ f (K )] lies in G1 by the assumption. This contradicts the uniqueness of reduced
sequences; see Theorem 4.1 of Magnus, Karrass, and Solitar’s book [Magnus et al.
1976]. Thus at least one of [α1], [α2], . . . , [αr ] is trivial. Consequently, there exists
a subarc α of K such that
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• α ∩ f −1(p)= ∂α,

• f (α)⊂ X is a contractible loop, and

• α is essential in ∂M cut off by ∂ f −1(p).

Then using a standard technique as in [Lyon 1980, Theorem 2], f can be deformed
by a homotopy to be a continuous map f ′ :M→ X satisfying the above (1)–(3) and
| f ′−1(p)∩ K |< | f −1(p)∩ K |. This contradicts the minimality of | f −1(p)∩ K |.
Thus we have f −1(p)∩ K =∅. This implies that ∂M \ K is compressible in M .

Next suppose that there exists a compression disk D for ∂M \ K in M . Suppose
that D separates M into two components M1 and M2, where K lies in M1. Then
π1(M) can be decomposed as π1(M)= π1(M1)∗π1(M2), where [K ] ∈ π1(M1). If
π1(M2)= 1, then M2 ∼= B3 by the Poincaré conjecture proved by Perelman [2002;
2003a; 2003b]. This is a contradiction. Hence π1(M2) 6= 1, which implies that
K does not bind π1(M). Suppose that D does not separate M . Let M ′ be M cut
off by D. Then we have π1(M) = π1(M ′) ∗ Z and [K ] ∈ π1(M ′). Hence, again,
K does not bind π1(M). �

Let M be a compact, connected 3-manifold. Let K and K ′ be knots in M . We
write K ∼M K ′ if K and K ′ are homotopic in M . Let K be a knot in the interior
of M . We say that K fills up M if, for any knot K ′ in the interior of M such that
K ∼M K ′, the exterior E(K ′) is irreducible and boundary-irreducible.

Example. The knot K1 shown on the left-hand side in Figure 1 does not fill up
the handlebody V (because there exists a compression disk D for ∂V in V \ K1 as
shown), while the knot K2 shown on the right-hand side fills up V (see Lemma 1.5).

By a graph, we mean the underlying space of a (possibly disconnected) finite
1-dimensional simplicial complex. A handlebody is a 3-manifold homeomorphic
to a closed regular neighborhood of a connected graph embedded in the 3-sphere.
The genus of a handlebody is defined to be the genus of its boundary surface. For a
handlebody V , a spine is defined to be a graph 0 embedded in V so that V collapses
onto 0. By a 1-vertex spine we mean a spine with a single vertex. In other words,

V V

K1
K2

D

Figure 1. The knot K1 does not fill up V , while K2 fills up V .
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a 1-vertex spine is a spine of a handlebody that is homeomorphic to a rose, i.e., a
wedge of circles.

In the remainder of the section we fix the following:

• A handlebody V of genus g at least 1 with a base point v0.

• A 1-vertex spine 00 of V having the vertex at v0.

• A standard basis X = {x1, x2, . . . , xg} of π1(00, v0) ∼= π1(V, v0); that is, we
can assign names e0

1, e0
2, . . . , e0

g and orientations to the edges of 00 so that
xi corresponds to the oriented edge e0

i for each i ∈ {1, 2, . . . , g}.

In this setting, we identify π1(V )= π1(V, v0) with the free group F with basis X .
Let {y1, y2, . . . , yg} be a basis of F , where each yi is a word on the standard

basis X . We say that a 1-vertex spine 0 of V having the vertex at v0 is compatible
with the basis {y1, y2, . . . , yg} if we can assign names e1, e2, . . . , eg and orientations
to the edges of 0 so that a word on X corresponding to the oriented edge ei is yi

for each i ∈ {1, 2, . . . , g}.

Lemma 1.2. For each basis Y = {y1, y2, . . . , yg} of F , there exists a 1-vertex spine
of V with the vertex at v0 that is compatible with Y .

Proof. Let ϕ be the automorphism of F that maps xi to yi for each i ∈ {1, 2, . . . , g}.
By [Nielsen 1924], the map ϕ can be factored into a composition ϕn ◦ · · · ◦ϕ2 ◦ϕ1,
where each ϕj is an elementary Nielsen transformation. Here we recall that an
elementary Nielsen transformation is one of the four automorphisms ν1, ν2, ν3, ν4

of F , where

• ν1 switches x1 and x2,

• ν2 cyclically permutes x1, x2, . . . , xg to x2, . . . , xg, x1,

• ν3 replaces x1 with x1
−1, and

• ν4 replaces x1 with x1x2.

We refer the reader to [Magnus et al. 1976] for details. For each ϕi (i ∈ {1, 2, 3, 4}),
it is easy to see that there exists a homeomorphism gi of V such that gi fixes v0

and gi (00) is compatible with the basis {νi (x1), νi (x2), . . . , νi (xg)}. Let gj be one
of f1, f2, f3, f4 corresponding to ϕj . Then it is clear from the definition that
gn ◦ · · · ◦ g2 ◦ g1(00) is a required 1-vertex spine of V . �

Let M be a compact, connected, orientable, irreducible 3-manifold with nonempty
boundary and base point v. We say that M satisfies the strong bounded Kneser
conjecture (SBKC) if, whenever we have subgroups G1, G2 of π1(M, v) with
G1 ∩G2 = 1, π1(M, v) = G1 ∗G2 and Gi � 1 (i = 1, 2), there exists a properly
embedded disk D in M containing v such that D separates M into two components
M1 and M2 with ιi ∗(π1(Mi , v))= Gi (i = 1, 2), where ιi : Mi ↪→ M is the natural
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embedding. As we will see in the remark after the proof of Lemma 1.4, there exists
a 3-manifold that does not satisfy the SBKC. It follows directly from Lemma 1.2
that a genus-g handlebody V satisfies the SBKC. In fact, for each decomposition
π1(V, v0) = G1 ∗ G2, we have a 1-vertex spine 0 of V having the vertex at v0

that is compatible with the basis {y1, y2, . . . , yg}, where {y1, y2, . . . , yg1} is a basis
of G1 and {yg1+1, yg1+2, . . . , yg} is a basis of G2. Using the spine 0, we have the
required disk D. We note that a sufficient condition for a manifold to satisfy the
SBKC was given by Jaco as follows.

Lemma 1.3 [Jaco 1969]. Let M be a compact, connected, orientable, irreducible
3-manifold with nonempty, connected boundary. Suppose that π1(M) is freely
reduced, that is, if we have a decomposition G = G1 ∗ G2 then neither of G1

and G2 is a free group. Then M satisfies the SBKC.

Lemma 1.4. Let M be a compact, connected, orientable, irreducible 3-manifold
with nonempty boundary. Let K be an oriented knot in the interior of M. If K
binds π1(M), then K fills up M. Moreover, the converse is true when M satisfies
the SBKC.

Proof. Suppose that K does not fill up M . Then there exists an incompressible
sphere or a compression disk D for ∂M in M \K ′, where K ′ is a knot with K∼M K ′.
By the same argument as in the second half of the proof of Lemma 1.1, using K ′

instead of K in the proof, we can show that K does not bind π1(M).
Next, suppose that M satisfies the SBKC and that K does not bind π1(M). We fix

an orientation and a base point v of K . There exist subgroups G1, G2 of π1(M, v)
with G1 ∩G2 = 1, π1(M, v)= G1 ∗G2, G2 � 1, and [K ] ∈ G1. If G1 = 1, then
K is contractible and thus we are done. Suppose that G1 � 1. Then by the SBKC,
there exists a properly embedded disk D in M containing v such that D separates
M into two components M1 and M2 with ιi ∗(π1(Mi , v))= Gi (i ∈ {1, 2}), where
ιi : Mi ↪→ M is the natural embedding. We may assume that K is moved by a
homotopy fixing v so that |K ∩D| is minimal. If |K ∩D| = 0, we are done. Suppose
that |K ∩ D|> 0. Then [K ] can be decomposed into a product x1x2 · · · xr , where
xi is in G1 or G2, and xi , xi+1 do not lie in one of G1 and G2 at the same time.
We note that r > 1. Since [K ] ⊂ G1, at least one, say xi0 , of x1, x2, . . . , xr is
trivial. Then moving a neighborhood of the subarc of K corresponding to xi0 by a
homotopy, we can reduce |K ∩ D|. This contradicts the minimality of |K ∩ D|. �

We remark that the converse of Lemma 1.4 is not true. This can be seen as
follows. Let 6 be a closed orientable surface of genus at least one. Let M be
a 3-manifold obtained by attaching a 1-handle H to 6 × [0, 1] so as to connect
D × {0} and D × {1} and so that the resulting manifold M is orientable, where
D is a disk in 6. See Figure 2. Clearly, M is compact, connected, orientable
and irreducible. Let K ⊂ M be the knot obtained by extending the core of H
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6×[0, 1]

H

K E

Figure 2. The manifold M .

along a vertical arc {∗}× [0, 1] in 6× [0, 1]. We fix a base point v in K and an
orientation of K . Then the fundamental group π1(M, v) can be naturally identified
with π1(6) ∗Z, and under this identification [K ] is contained in the factor Z. This
implies that K does not bind π1(M). On the contrary, it is easy to see that the
cocore E of the 1-handle H is the unique compression disk for ∂M up to isotopy.
The algebraic intersection number of K and E is ±1 after giving an orientation
of E . This implies that after deforming K by any homotopy in M , K intersects E ,
whence K fills up M . We note that M does not satisfy the SBKC.

Lemma 1.5. Let V be a handlebody. Then there exists a knot in the interior of V
that fills up V .

Proof. Let K be a simple closed curve in ∂V such that ∂V \ K is incompressible
in V . Such a simple closed curve does exist. In fact, the simple closed curve shown
in Figure 3 satisfies this condition (see for instance [Wu 1996, Section 1]). Then
by Lemma 1.1 K binds π1(V ). It follows from Lemma 1.4 that a knot obtained by
moving K by an isotopy to lie in the interior of V fills up V . �

2. Knots filling up a 3-subspace of the 3-sphere

Let V be a handlebody. A (possibly disconnected) subgraph of a spine of V is called
a subspine if it does not contain a contractible component. A compression body W is
the complement of an open regular neighborhood of a (possibly empty) subspine 0

V

K

Figure 3. The surface ∂V \ K is incompressible in V .
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(i) (ii) (iii) (iv)

Figure 4

of a handlebody V . The component ∂+W = ∂V is called the exterior boundary
of W , and ∂−W = ∂W \∂+W = ∂ Nbd(0) is called the interior boundary of W . We
remark that the interior boundary is incompressible in W ; see [Bonahon 1983].

For a compression body W , a spine is defined to be a graph 0 embedded in W
such that

(1) 0 ∩ ∂W = 0 ∩ ∂−W consists only of vertices of valence one, and

(2) W collapses onto 0 ∪ ∂−W .

We note that this is a generalization of a spine of a handlebody. We also note that if V
is a handlebody and 0 is a subspine of 0̂ of V such that W ∼=V \Int Nbd(0; V ), then
0̂ \ Int Nbd(0; V ) is a spine of W . As a generalization of the case of handlebodies,
a 1-vertex spine of a compression body W is defined to be a (possibly empty)
connected spine 0 such that

(1) 0 is homeomorphic to the empty set, an interval, a circle, or a graph with a
single vertex of valence at least 3,

(2) 0 intersects each component of ∂−W in a single univalent vertex, and

(3) 0 has no univalent vertices in the interior of W .

If 0 is an interval or a circle, we regard it as a graph containing a unique vertex of
valence 2. The spines shown in Figure 4(i)–(iii) are 1-vertex spines while the one
shown in Figure 4(iv) is not so because it has a univalent vertex in the interior of
the illustrated compression body. We call a vertex of valence at least 2 the interior
vertex. We note that every 1-vertex spine has a unique interior vertex. This is the
reason why it is named so.

Let W be a compression body. Suppose that ∂−W consists of n closed surfaces
61, 62, . . . , 6n . A (possibly empty) set D={D1,D2, . . . ,Dm,E61,E62, . . . ,E6n }

of pairwise disjoint compression disks for ∂+W is called a cut-system for W if

(1) each E6i separates from W a component that is homeomorphic to 6i ×[0, 1]
and contains 6i ,

(2) W cut off by E61∪E62∪· · ·∪E6n has at most one handlebody component V, and

(3) D1 ∪ D2 ∪ · · · ∪ Dm cuts off V into a single 3-ball.
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E61

E62
D1 D2

D3

61

62

Figure 5. A cut system.

∂−W =6 ∂−W =6

W W

0
D

E6

Figure 6. Poincaré–Lefschez duality.

See Figure 5. We note that if W = 6 × [0, 1], where 6 is a closed orientable
surface, then m = n = 0. If W is a handlebody, then n is 0 and m is its genus.

By virtue of Poincaré–Lefschez duality, we have a one-to-one correspondence
between the 1-vertex spines and cut-systems of a compression body W modulo iso-
topy (see Figure 6). The correspondence can be described as follows. The 1-vertex
spine 0 dual to a given cut-system D for a compression body W is obtained by
regarding a regular neighborhood of each disk D in D as a 1-handle with D as the
cocore, and then extending the core arcs of the 1-handles in each component W0 of
the exterior of the union of the disks in D in such a way that

(1) if W0 is a 3-ball, then the extension is given by radial arcs, and

(2) if W0 is the product of a closed surface with an interval, then the extension is
given by a vertical arc.

By conversing the construction, we get the cut-system dual to a 1-vertex spine of W .
Let V be a handlebody of genus g and 0 a subspine of V . Assume that each

component of 0 is a rose. A cut-system for the pair (V, 0) is a cut-system for V
dual to a spine 0̂, where 0̂ is obtained by contracting a maximal subtree of a spine
0′ of V that contains 0 as a subgraph. See Figure 7.

Lemma 2.1. Let W be a compression body. Let D be a compression disk for ∂+W .
Then there exists a cut-system for W disjoint from D.
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0 0′

0̂

Figure 7. A cut-system for (V, 0) is a cut-system for V dual to a spine 0̂.

Proof. We may identify W with a genus-g handlebody V with an open regular
neighborhood of a subspine 0 removed. Further, we may assume that each com-
ponent of 0 is a rose. Let 01, 02, . . . , 0n be the components of 0. Choose a
cut-system {D1, D2, . . . , Dg} for the pair (V, 0) so that |D∩ (D1∪D2∪· · ·∪Dg)|

is minimal among all cut-systems for (V, 0). We note here that each component of
the intersection D∩ (D1 ∪ D2 ∪ · · · ∪ Dg) is an arc, for simple closed curves of the
intersection can be eliminated by a standard argument.

Suppose for a contradiction that D ∩ (D1 ∪ D2 ∪ · · · ∪ Dg) 6= ∅. Choose an
outermost subdisk δ of D cut off by D1 ∪ D2 ∪ · · · ∪ Dg. We may assume that
δ∩D1 6=∅. Let D′1 and D′′1 be the disks obtained from D1 by surgery along δ. Then
exactly one of {D′1, D2, . . . , Dg} and {D′′1 , D2, . . . , Dg}, say {D′1, D2, . . . , Dg}, is
a cut-system for the handlebody V . We note that D′′1 separates the handlebody V cut
off by D2∪D3∪· · ·∪Dg. Recall that D1 intersects 0 in at most one point. If D1 does
not intersect 0, then it follows that {D′1, D2, . . . , Dg} is a cut-system for the pair
(V, 0) with |D∩(D′1∪D2∪· · ·∪Dg)|< |D∩(D1∪D2∪· · ·∪Dg)|. This contradicts
the minimality of |D ∩ (D1 ∪ D2 ∪ · · · ∪ Dg)|. Suppose that D1 intersects 0. If D′′1
intersects 0, then D′′1 cannot separate the handlebody V cut off by D2∪D3∪· · ·∪Dg.
This is a contradiction. Thus D′1 intersects 0. This implies that {D′1, D2, . . . , Dg}

is a cut-system for the pair (V, 0). This contradicts, again, the minimality of
|D∩(D1∪D2∪· · ·∪Dg)|. Thus, we have D∩(D1∪D2∪· · ·∪Dg)=∅ and D∩0=∅.

From now on, we assume that each of D1, D2, . . . , Dm does not intersect 0,
while each of Dm+1, Dm+2, . . . , Dg does so. Let B be the 3-ball obtained by cutting
V along D1 ∪ D2 ∪ · · · ∪ Dg. Then B ∩0i is a cone on an even number of points.
We note that D is a separating disk in B disjoint from the cones B ∩0. For each
i ∈ {1, 2, . . . ,m} let D+i and D−i be the disks on the boundary of B coming from Di .
Then there exists a set {E61, E62, . . . , E6n } of mutually disjoint disks properly
embedded in B such that

(1) E61 ∪ E62 ∪ · · · ∪ E6n is disjoint from 0 ∪ D ∪ D±1 ∪ D±2 ∪ · · · ∪ D±g , and

(2) E6i separates from B a 3-ball Bi such that Bi ∩ (D±1 ∪ D±2 ∪ · · · ∪ D±m )=∅
and Bi ∩0 = B ∩0i .

Now {D1, D2, . . . , Dm, E61, E62, . . . , E6n } is a required cut-system for W . �
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Let M be a compact, connected, orientable, irreducible 3-manifold with con-
nected boundary. Following [Bonahon 1983], a characteristic compression body W
of M is defined to be a compression body embedded in M such that

(1) ∂+W = ∂M , and

(2) the closure of M \W is boundary-irreducible.

We remark that, for a given characteristic compression body W of M , by the
irreducibility of M , every compression disk for ∂M can be moved by an isotopy to
lie in W .

Theorem 2.2 [Bonahon 1983]. A compact, connected, orientable, irreducible
3-manifold with connected boundary has a unique (up to isotopy) characteristic
compression body.

Lemma 2.3. Let M be a compact, connected, orientable 3-manifold with connected
boundary. Let W be a compression body in M such that ∂M = ∂+W . Let K be a
knot in the interior of W . If K fills up M , then K fills up W . Further, when M is
irreducible and W is the characteristic compression body, then K fills up M if and
only if K fills up W .

Proof. Since any knot K ′ in the interior of W with K ∼W K ′ satisfies K ∼M K ′, it
follows immediately from the definition that if K fills up M , then K fills up W .

Suppose M is irreducible, W is the characteristic compression body, and K is a
knot in W that fills up W . We will show that K fills up M . If M is a handlebody, then
we have M =W and there is nothing to prove. Suppose that M is not a handlebody.
Then M can be decomposed as M =W ∪ X , where W ∩ X = ∂−W = ∂X and X is
the union of boundary-irreducible 3-manifolds. The interior boundary ∂−W consists
of a finite number of closed surfaces 61, 62, . . . , 6n of genus at least 1. Let gi

be the genus of 6i (i ∈ {1, 2, . . . , n}). We recall that each 6i is incompressible
in M . Suppose for a contradiction that there exists a knot K ′ in the interior of M
with K∼M K ′ such that ∂M is compressible in M \K ′. Let D be a compression disk
for ∂M in M \ K ′. We may assume that D is contained in W .

Suppose first that D does not separate W . By Lemma 2.1, there exists a cut-
system for W disjoint from D. By replacing a suitable disk in the system with D, we
obtain a cut-system D={D1, D2, . . . , Dm, E61, E62, . . . , E6n }where D=D1. Let
0 be the 1-vertex spine of W dual to D. Fix a presentation of the fundamental group
of each surface 6i as π1(6i ) = 〈ai, j , bi, j ( j ∈ {1, 2, . . . , gi }) |

∏gi
j=1[ai, j , bi, j ]〉,

where we take the base point at 0 ∩6i .
Let v0 be the interior vertex of 0. Let V be the unique component of W cut

off by the union of disks in D that is homeomorphic to a handlebody. We fix a
generating set {x1, x2, . . . , xm} of π1(V, v0) so that an element xi is defined by
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the loop in 0 dual to Di . Then by the Seifert–van Kampen theorem, π1(W, v0) is
generated by the xi , ai, j and bi, j . Set

G={xi
±1
| i ∈{1, 2, . . . ,m}}∪{ai, j

±1, bi, j
±1 ( j ∈{1, 2, . . . , gi }) | i ∈{1, 2, . . . , n}}.

Let H1, H2, . . . , Hl be 1-handles in X attached to ∂−W so that the closure of
M \(W ∪H1∪H2∪· · ·∪Hl) is the union of handlebodies. Let h1, h2, . . . , hl be the
element of π1(M, v0) corresponding to the core of the 1-handles H1, H2, . . . , Hl ,
respectively. We set

Ĝ = G ∪ {hi
±1
| i ∈ {1, 2, . . . , l}}.

We note that the elements of Ĝ generate the group π1(M, v0). In other words, any
element of π1(M, v0) can be represented by a word on Ĝ.

Since each 6i is incompressible in M , π1(W, v0) is a subgroup of π1(M, v0).
Consider the conjugation class cπ1(W,v0)(K ). Since K fills up W , every word w
on G representing an element of cπ1(W,v0)(K ) contains x±1

1 .
By the existence of K ′, there exists a word w′ on Ĝ \ {x1

±1
} representing an

element of cπ1(M,v0)(K ). Let u be a word on Ĝ such that u−1wu represents the same
element as w′ in π1(M, v0). Let ϕ : π1(M, v0)→ π1(W, v0) be the epimorphism
obtained by adding the relations hi = 1 for each i ∈ {1, 2, . . . , l}. For a word v,
we denote by ϕ(v) the word on G obtained from v by replacing each hi

± in the
word with ∅. Then ϕ(u−1wu)= ϕ(u)−1wϕ(u) represents an element contained in
cπ1(W,v0)(K ). It follows that ϕ(w′) is a word on G \ {x1

±
} representing an element

of cπ1(W,v0)(K ). This is a contradiction.
Next, suppose D separates W into two components W1 and W2. By Lemma 2.1,

there exists a cut-system D={D1, D2, . . . , Dm, E61, E62, . . . , E6n } for W disjoint
from D. Without loss of generality, we can assume that the set of disks of D con-
tained in W1 is {D1, D2, . . . , Dm1, E61, E62, . . . , E6n1

}, where m1 ∈ {1, 2, . . . ,m}
and n1 ∈ {0, 1, . . . , n}. Here we set n1 = 0 if none of {E61, E62, . . . , E6n } is
contained in W1.

Let 0 be the 1-vertex spine of W dual to D. Using the spine 0, fix generating sets

G={xi
±1
| i ∈ {1, 2, . . . ,m}}∪{ai, j

±1, bi, j
±1
| i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , gi }}

of π1(W, v0) and
Ĝ = G ∪ {hi

±1
| i ∈ {1, 2, . . . , l}}.

of π1(M, v0) and an epimorphism ϕ : π1(M, v0)→ π1(W, v0) as above.
If m1 6= m, then, by the existence of K ′, there exists a word w′ on Ĝ \ {x1

±1
}

or Ĝ \ {xm
±1
} representing an element of cπ1(M,v0)(K ). By the same argument as

in the case where D is nonseparating, this is a contradiction. If m1 = m, then
n1 6= n. Hence, by the existence of K ′, there exists a word w′ on Ĝ \ {x1

±1
} or
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Ĝ \ {an, j
±1, bn, j

±1
| j ∈ {1, 2, . . . , gn}} representing an element of cπ1(M,v0)(K ). It

follows that ϕ(w′) is a word on G\{x1
±1
} or G\{an, j

±1, bn, j
±1
| j ∈{1, 2, . . . , gn}}

representing an element of cπ1(W,v0)(K ). However, this is again a contradiction
because the fact that K fills up W implies that every word on G representing an
element of cπ1(W,v0)(K ) contains both one of {an, j

±1, bn, j
±1
| j ∈ {1, 2, . . . , gn}}

and one of x±1
1 . This completes the proof. �

Theorem 2.4. Let M be a compact, connected, orientable, irreducible 3-manifold
with connected boundary. Then there exists a knot K in the interior of M that fills
up M. Moreover, such a knot K can be taken to lie in Nbd(∂M;M).

Proof. If M is a handlebody, the assertion follows from Lemma 1.5. Suppose
that M is not a handlebody. Let W be the characteristic compression body of M .
We may identify W with the complement of an open regular neighborhood of a
subspine 0 of a handlebody V . Let K be a knot in the interior of V that fills up V .
Since K can be taken not to intersect a spine of V containing 0 as a subgraph, we
may assume that K lies in a collar neighborhood of ∂+W = ∂M . By Lemma 2.3,
K fills up W . Thus, again by Lemma 2.3, K fills up M . �

3. Transient knots in a subspace of the 3-sphere

Let M be a compact, connected, proper 3-submanifold of S3. A knot K in M ⊂ S3

is said to be transient in M if K can be deformed by a homotopy in M to be the
trivial knot in S3. Otherwise, K is said to be persistent in M .

Example. The knot K1 described on the left-hand side in Figure 8 is transient in
the handlebody V1 in S3, while the knot K2 described on the right-hand side is
persistent in V2.

The next lemma follows straightforwardly from the definition.

Lemma 3.1. Let M be a compact, connected, proper 3-submanifold of S3 and let
N be a compact, connected 3-submanifold of M. If a knot K in N is persistent
in M , then it is also persistent in N.

V1 V2

K1 K2

Figure 8. The knot K1 is transient in V1, while K2 is persistent in V2.
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A compact, connected, proper 3-submanifold M of S3 is said to be unknotted if
the exterior E(M) is a disjoint union of handlebodies. Otherwise M is said to be
knotted. We recall that a theorem of Fox [1948] says that any compact, connected,
proper 3-submanifold of S3 can be reembedded in S3 in such a way that its image
is unknotted. See [Scharlemann and Thompson 2005] and [Ozawa and Shimokawa
2015] for certain generalizations and refinements of Fox’s theorem.

Remark. As mentioned in the introduction, M usually admits many nonisotopic
embeddings into S3 with the unknotted image. The uniqueness holds for a handle-
body by [Waldhausen 1968]. Here the uniqueness is up to isotopy for subsets of S3,
where we recall that two subsets M1 and M2 of S3 are isotopic if and only if there
exists an orientation-preserving homeomorphism f of S3 carrying M1 onto M2. If
we consider isotopies not between the embedded subsets but between embeddings,
it is far from being unique even for a handlebody. This can be explained under a
general setting as follows. Let M be a compact, connected 3-submanifold M that can
be embedded in S3. Then its mapping class group MCG+(M) is defined to be the
group of isotopy classes of orientation-preserving homeomorphisms of M . We fix an
embedding ι0 :M→ S3. Let Gι0(M)=MCG+(S3, ι0(M)) be the mapping class group
of the pair (S3, ι0(M)), that is, the group of isotopy classes of orientation-preserving
homeomorphisms of S3 that preserve ι0(M). See [Koda 2015] for details of this
group when M is a knotted handlebody. We can define an injective homomorphism
ι∗0 : Gι0(M) ↪→MCG+(M) by assigning to each homeomorphism ϕ ∈ Gι0(M) a unique
element f of MCG+(M) satisfying ϕ ◦ ι0 = ι0 ◦ f . Then the set of embeddings
of M into S3 with the same image up to isotopy can be identified with the right
cosets ι∗0(Gι0(M))\MCG+(M), where the identification is given by assigning to
f ∈MCG+(M) the embedding ι0◦ f :M→ S3. When M is a handlebody of genus at
least two, it is clear that this is an infinite set. We note that, when ι0(M) is an unknot-
ted handlebody of genus two, the group Gι0(M) is called the genus-two Goeritz group
of S3 and studied in [Goeritz 1933; Scharlemann 2004; Akbas 2008; Cho 2008].

Let K be a knot in M . Let f be contained in the coset ι∗0(Gι0(M)) idM . By the
observation above and the definition of the persistence of knots in M ⊂ S3, it
follows immediately that ι0 ◦ f (K ) is persistent in M if and only if K is. We note
that if f is not contained in the coset ι∗0(Gι0(M)) idM , then the knot ι0 ◦ f (K ) is not
necessarily persistent in M even if K is persistent in M . See Figure 9. Be that
as it may be, we discuss in this paper extrinsic properties of knots embedded in
submanifolds of S3, not intrinsic ones.

Theorem 3.2. Let M be a compact, connected, proper 3-submanifold of S3. Then
every knot in M is transient if and only if M is unknotted.

Proof. Suppose first that M is unknotted, i.e., M = S3
\ Int Nbd(0), where 0 is a

graph embedded in M . Let K be a knot in M . Considering a diagram of the spatial
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M
ι0

ι0 ◦ f

ι0 ◦ f (M)

K

ι0 ◦ f (K )

f

Figure 9. Persistence is an extrinsic property.

M

Y Y

N

W

X6

Figure 10. The configurations of M , N , W , 6, X and Y .

graph K ∪0, we easily see that K can be converted into the trivial knot in S3 by a
finite number of crossing changes of K itself. This implies that K is transient in M .

Next suppose that M is knotted. Then there exists a component N of the exterior
of M that is not a handlebody. Let W be the characteristic compression body of N .
We note that if N is boundary-irreducible, then W is a collar neighborhood of ∂N
in N . Since W is not a handlebody, we can take a nonempty component 6 of ∂−W .
Then6 separates S3 into two components X and Y so that X is boundary-irreducible
and Y contains M ∪W . See Figure 10.

By Theorem 2.4, there exists a knot K lying in Nbd(∂Y ; Y ) that fills up Y . In
particular K lies in W . Thus by an isotopy we can move K to lie within M . Let
K ′ ⊂ M be an arbitrary knot with K∼M K ′. Since K fills up Y , 6 is incompressible
in Y \ K ′. Thus 6 is incompressible in S3

\ K ′. This implies that K ′ is not the
trivial knot in S3. Therefore K is persistent in M . �

Remark. Let M be a compact, connected, knotted, proper 3-submanifold of S3. In
the proof of Theorem 3.2, we explained how to obtain a knot in M that is persistent
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V

K

Figure 11. The knot K fills up V , whereas K is transient in V .

in M . In the process, some readers may have guessed that if a knot K ⊂ M filled
up M , then K would already be persistent. If so, the process to consider the
characteristic compression body of a nonhandlebody component of the exterior in
the proof would not be necessary. However, the guess is not true in fact. Let K be
the knot in the genus-two knotted handlebody V ⊂ S3 as shown in Figure 11. Then
we see that K fills up V by the same reason as in the proof of Lemma 1.5 (see also
(2) in Section 6, whereas K is apparently transient in V .

4. Construction of persistent knots

Persistent laminations and persistent knots. Let M be a compact, connected,
proper 3-submanifold of S3 whose exterior consists of boundary-irreducible 3-
manifolds. It is easy to see that every knot filling up M is persistent in M . Indeed,
if a knot K in M fills up M , then each component of ∂M will be an incompressible
surface in the exterior of any knot K ′ homotopic to K in V , hence K ′ is not the
trivial knot in S3. However, the converse is false in general as we see now:

Proposition 4.1. There exists a genus-two handlebody V embedded in S3 with
the boundary-irreducible exterior such that there exists a knot K ⊂ V which is
persistent in V , and which does not fill up V .

Proof. Let V be the genus-two handlebody in S3 and K the knot in V as shown in
Figure 12. We note that the handlebody V is the exterior of Brittenham’s branched
surface [1999] constructed from a disk spanning the trivial knot in S3. In particular,
the exterior of V is boundary-irreducible. We note that K does not fill up V since
there exists a compression disk D for ∂V in V \ K as shown in the figure.

We will show that K is persistent in V . As illustrated in the figure, there are
meridian disks D1, D2 of V each of which intersects K once and transversely.
Let K ′ be any knot homotopic to K in V . Then K ′ intersects each of D1 and D2

at least once. By [Hirasawa and Kobayashi 2001] or [Lee and Oh 2002], which
generalizes the result of [Brittenham 1999], in the exterior of V there exists a
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V

K

D D1 D2

Figure 12. A handlebody V in S3 with the boundary-irreducible
exterior such that there exists a knot K ⊂ V which is persistent
in V , and which does not fill up V .

persistent lamination, that is, an essential lamination that remains essential after
performing any nontrivial Dehn surgeries along K ′. This implies that K ′ is not the
trivial knot. Thus K is persistent in V . �

Accidental surfaces and persistent knots. A closed essential surface 6 in the
exterior of a knot K in the 3-sphere is called an accidental surface if there exists an
annulus A, called an accidental annulus, embedded in the exterior E(K ) such that

• the interior of A does not intersect 6 ∪ ∂E(K ),

• A∩6 6=∅ and A∩ ∂E(K ) 6=∅, and

• A ∩6 and A ∩ ∂E(K ) are essential simple closed curves in 6 and ∂E(K ),
respectively.

In [Ichihara and Ozawa 2000] it is shown that, for each accidental surface in
the exterior of a knot in S3, the boundary curves of accidental annuli determine a
unique slope on the boundary of a regular neighborhood of the knot. This slope
is called an accidental slope for 6. By the work of Culler, Gordon, Luecke, and
Shalen [Culler et al. 1987], an accidental slope is either meridional or integral.

Proposition 4.2. Let M be a compact, connected, proper 3-submanifold of S3 with
connected boundary such that the exterior of M is boundary-irreducible. Let K
be a knot in M such that ∂M is incompressible in M \ K . If ∂M is an accidental
surface with integral accidental slope in the exterior of K , then K is persistent in
the submanifold M of S3 bounded by 6 and containing K .

Proof. Let A⊂M be an accidental annulus connecting K and a simple closed curve
in ∂M . Using this annulus, we move K to a knot K ∗ lying in ∂M by an isotopy.
Since ∂M is incompressible in E(K ), ∂M \ K ∗ is incompressible in M . Thus by
Lemma 1.1 K ∗ binds π1(M), and so does K . By Lemma 1.4, K fills up M . Let
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K ′ ⊂ M be an arbitrary knot lying in the interior of M with K ∼M K ′. Since K fills
up M , ∂M is incompressible in M \K ′. Thus ∂M is incompressible in S3

\K ′. This
implies that K ′ is not the trivial knot in S3. Therefore, K is persistent in M . �

5. Transient number of knots

Let K be a knot in S3. A crossing move on a knot K is the operation of passing one
strand of K through another. The unknotting number u(K ) of K , which was first
defined by Wendt [1937], is then the minimal number of crossing moves required
to convert the knot into the trivial knot. We note that to each crossing move we
can associate a simple arc α in S3 such that α ∩ K = ∂α and such that the crossing
move is performed in Nbd(α).

An unknotting tunnel system for K is a set {γ1, γ2, . . . , γn} of mutually disjoint
simple arcs in S3 such that γi ∩ K = ∂γi for each i ∈ {1, 2, . . . , n} and such that
the exterior of the union K ∪γ1∪γ2∪ · · ·∪γn is a handlebody. The tunnel number
t (K ) of K , first defined in [Clark 1980], is the minimal number of arcs in any of
the unknotting tunnel systems for K .

We introduce a new invariant for a knot in the 3-sphere that is strongly related to
the above two classical invariants. We define a transient system for K to be a set
{τ1, τ2, . . . , τn} of mutually disjoint simple arcs in S3 such that τi ∩ K = ∂τi for
each i ∈ {1, 2, . . . , n} and such that K is transient in Nbd(K ∪ τ1 ∪ τ2 ∪ · · · ∪ τn).
The transient number tr(K ) of K is defined to be the minimal number of arcs in
any of the transient systems for K .

Proposition 5.1. Let K be a knot in S3. Then tr(K )6 u(K ) and tr(K )6 t (K ).

Proof. Suppose that u(K )= m. Let {α1, α2, . . . , αm} be a set of mutually disjoint
simple arcs associated to m crossing moves that convert K into the trivial knot.
Then K is transient in the handlebody Nbd(K ∪α1∪α2∪· · ·∪αm). In other words,
{α1, α2, . . . , αm} is a transient tunnel system for K . This implies that tr(K )6 m.

Suppose that t (K ) = n. Let {γ1, γ2, . . . , γn} be an unknotting tunnel system
for K . Since the handlebody Nbd(K ∪γ1∪γ2∪· · ·∪γn) is unknotted, K is transient
in Nbd(K ∪ γ1 ∪ γ2 ∪ · · · ∪ γn) by Theorem 3.2. This implies that tr(K )6 n. �

Proposition 5.2. There exists a knot K in S3 with tr(K )= 1 and u(K )= t (K )= 2.

Proof. Let K be the satellite knot of the figure-eight knot shown in Figure 13.
Clearly, the genus of K is one. The transient number of K is one because K admits
a transient tunnel as shown in the figure. In [Kobayashi 1989] and [Scharlemann
and Thompson 1989], it is proved that the only knots of genus one and unknotting
number one are the doubled knots. It follows that the unknotting number of K is at
least two. It is then straightforward to see that the unknotting number is exactly two.
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K

τ

Figure 13. A knot K with tr(K )= 1 and u(K )= t (K )= 2.

It is proved in [Morimoto and Sakuma 1991] that the only nonsimple knots
having unknotting tunnels are certain satellites of torus knots. It follows that the
tunnel number of K is at least two. It is then straightforward to see that the tunnel
number is exactly two. �

6. Concluding remarks

(1) Let M be a compact, connected, proper 3-submanifold of S3. Let K be a knot
in the interior of M . In the earlier sections, we have introduced various homotopic
properties of knots in M . We summarize their relations. We say that K is accidental
in M if K can be moved to a knot K ′ in ∂M by a homotopy in M so that ∂M \ K ′

is incompressible in M . Then we have the following:

(a) If K is accidental, then K binds π1(M) (see Lemma 1.1).

(b) If K binds π1(M), then K fills up M (see Lemma 1.4).

(c) By (a) and (b), if K is accidental, then K fills up M .

The converse of each of these is false. To see this, suppose that M is the exterior of
a nontrivial knot in S3. We note that π1(M) is freely indecomposable by the Kneser
conjecture. Let K be a knot in M that cannot be moved by any homotopy in M to lie
in ∂M . Such a knot K always exists by, for instance, the work of Brin, Johannson,
and Scott [Brin et al. 1985]. This implies that K binds π1(M), whereas K is not
accidental in M . A somewhat more subtle example is shown on the left in Figure 14.
In the figure, the knot K lies in a genus-two handlebody V , and thus K can be moved
by homotopy to lie within a collar neighborhood of ∂V . If K is accidental, then by
attaching a 2-handle to V we obtain a 3-manifold M with toroidal boundary whose
fundamental group has the presentation 〈x, y | xyx−2 y−1

〉. This group is called the
Baumslag–Solitar group, BS(1), and is known not to be a 3-manifold group; see
the work of Aschenbrenner, Friedl, and Wilton [Aschenbrenner et al. 2015]. This
implies that K is not accidental in V . On the other hand, it follows straightforwardly
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V

K

Figure 14. The knot K binds V and is not accidental in V .

from Theorem 6.1 that K binds V since the corresponding Whitehead graph, shown
on the right in Figure 14, is connected and contains no cut vertex.

The remark after the proof of Lemma 1.4 shows that the converse of Lemma 1.4
is false. However, the 3-manifold M introduced in the example is not embeddable
in S3. To have a counterexample of the converse of (b), let 6 be a closed orientable
surface of genus at least one. Let M be an orientable 3-manifold obtained by
attaching a 1-handle to each component of ∂(6×[0, 1]). We note that M can be
embedded in S3. Let D0 and D1 be the cocore of the 1-handles. Then we can easily
show as in the remark that there exists a knot K in M , intersecting each of D0

and D1 once and transversely, that fills up M , whereas K does not bind π1(M).
The relations of these three intrinsic properties are shown on the left-hand side
in Figure 15. It is worth noting that, to show that a given knot K in M ⊂ S3 is
persistent, we have used an intrinsic property of K in a subset of S3 containing M .
See Theorem 3.2 and Propositions 4.1 and 4.2.

(2) Let Fg be a rank-g free group. As mentioned in Section 1, an algorithm to detect
whether a given element x of a free group Fg binds Fg is described by Stallings
using the combinatorics of its Whitehead graph. In fact, the following is proved:

Theorem 6.1 [Stallings 1999]. Let x be a cyclically reduced word on the set
Xg = {x1, x2, . . . , xg}. If the Whitehead graph of x is connected and contains no
cut vertex, then x binds Fg.

For a simple closed curve in the boundary of a handlebody, this can be seen
clearly as follows. Let x be an element of the rank-g free group Fg. We identify

accidental

fills up binds

persistent
transient

(M, K ) (S3,M, K )

intrinsic extrinsic

(a)

(b)

(c)

Figure 15. Correlation diagrams of extrinsic and intrinsic properties.
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Fg with the fundamental group of a genus-g handlebody. In the case of M = Vg in
Lemma 1.1, which is actually [Lyon 1980, Corollary 1], we have seen that if x can
be represented by an oriented simple closed curve K in ∂Vg, then x binds Fg if and
only if ∂Vg \ K is incompressible. On the other hand, Starr [1992] (see also [Wu
1996, Theorem 1.2]) showed that ∂Vg \ K is incompressible if and only if there is a
complete meridian disk system D1, D2, . . . , Dg of Vg such that the planar graph
with “fat” vertices obtained by cutting ∂Vg along

⋃g
i=1 Di is connected and contains

no cut vertex. This graph is actually nothing else but the Whitehead graph of x . (As
explained in [Stallings 1999], we can obtain a geometric interpretation of this for
an arbitrary element of Fg if we consider the connected sum of g copies of S2

× S1

instead of Vg.)

(3) Let M be a compact, connected, proper 3-submanifold of S3. In the proofs
of Theorem 3.2 and Propositions 4.1 and 4.2, we provided a way to show that a
given knot K ⊂ M is persistent in M . The key idea is to find an essential surface
(or lamination) in the exterior of M that is also essential in the exterior of any knot
K ′ homotopic to K in M . As mentioned in the introduction, another way to show
persistence was provided by Letscher [2012] and uses what he calls the persistent
Alexander polynomial.

Problem 1. Provide more methods for detecting whether a knot K ⊂M is persistent.

(4) As we have summarized in Figure 15, the only extrinsic property of knots in a 3-
subspace of S3 we have considered in the present paper is transience (or persistence).
Using this property, we have actually gotten an “if and only if” condition for a
3-subspace of S3 being unknotted in Theorem 3.2. This is a first step for a relative
version of Fox’s program and further progress will be expected.

Problem 2. Consider other extrinsic properties of knots in M ⊂ S3 in order to
characterize how M is embedded in S3.

We note that the case where M is a handlebody is already a very interesting
problem. See, e.g., [Ishii 2008; Koda 2015; Koda and Ozawa 2015].

(5) As mentioned in the introduction, the unknottedness of a 3-submanifold can be
considered for an arbitrary closed, connected 3-manifold. Thus it is natural to ask:

Question 1. Can Theorem 3.2 be generalized for M in an arbitrary 3-manifold N?

(6) Finally, in Section 5, we defined an integer-valued invariant tr(K ), the transient
number, for a knot K in S3. This invariant is nice in the sense that it shows the knots
of unknotting number 1 and those of tunnel number 1 from the same perspective
as we have seen in Proposition 5.1. However, it remains unknown whether there
exists a knot whose transient number is more than 1.

Question 2. Can the transient number tr(K ) be arbitrarily large?
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ON THE RELATIONSHIP OF
CONTINUITY AND BOUNDARY REGULARITY IN

PRESCRIBED MEAN CURVATURE DIRICHLET PROBLEMS

KIRK E. LANCASTER AND JARON MELIN

In 1976, Leon Simon showed that if a compact subset of the boundary of a
domain is smooth and has negative mean curvature, then the nonparametric
least area problem with Lipschitz continuous Dirichlet boundary data has
a generalized solution which is continuous on the union of the domain and
this compact subset of the boundary, even if the generalized solution does
not take on the prescribed boundary data. Simon’s result has been extended
to boundary value problems for prescribed mean curvature equations by
other authors. In this note, we construct Dirichlet problems in domains with
corners and demonstrate that the variational solutions of these Dirichlet
problems are discontinuous at the corner, showing that Simon’s assumption
of regularity of the boundary of the domain is essential.

1. Introduction

For n ∈ N with n ≥ 2, suppose � is a bounded, open set in Rn with locally
Lipschitz boundary ∂�. Fix H ∈ C2(Rn

×R) such that H is bounded and H(x, t)
is nondecreasing in t for x ∈�. Consider the prescribed mean curvature Dirichlet
problem of finding a function f ∈ C2(�)∩C0(�) which satisfies

div(T f )= H(x, f ) in �,(1)

f = φ on ∂�,(2)

where φ ∈ C0(∂�) is a prescribed function and

T f = ∇ f√
1+|∇ f |2

;

such a function f , if it exists, is a classical solution of the Dirichlet problem. It has
long been known (e.g., Bernstein in 1912) that some type of boundary curvature
condition (which depends on H ) must be satisfied in order to guarantee that a
classical solution exists for each φ ∈C0(∂�) (e.g., [Jenkins and Serrin 1968; Serrin
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Keywords: prescribed mean curvature, nonconvex corner, Dirichlet problem.
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1969]). When H ≡ 0 and ∂� is smooth, this curvature condition is that ∂� must
have nonnegative mean curvature (with respect to the interior normal direction of�)
at each point [Jenkins and Serrin 1968]. However, Leon Simon [1976] has shown
that if 00 ⊂ ∂� is smooth (i.e., C4), the mean curvature 3 of ∂� is negative on 00,
and 0 is a compact subset of 00, then the minimal hypersurface z = f (x), x ∈�,
extends to �∪0 as a continuous function, even though f may not equal φ on 0.
Since [Simon 1976] appeared, the requirement that H ≡ 0 has been eliminated
and the conclusion remains similar to that which Simon reached (see, for example,
[Bourni 2011; Lau and Lin 1985; Lin 1987]).

How important is the role of boundary smoothness in the conclusions reached in
[Simon 1976]? We shall show, by constructing suitable domains � and Dirichlet
data φ, that the existence of a “nonconvex corner” P in 0 can cause the unique
generalized (e.g., variational) solution to be discontinuous at P even if 0 \ {P}
is smooth and the generalized mean curvature 3∗ (i.e., [Serrin 1969]) of 0 at P
is −∞; this shows that some degree of smoothness of 0 is required to obtain the
conclusions in [Simon 1976]. We shall prove the following.

Theorem 1. Let n ∈N, n≥ 2, and assume there exists λ> 0 such that |H(x, t)| ≤ λ
for x ∈ Rn and t ∈ R. Then there exist a domain �⊂ Rn and a point P ∈ ∂� such
that

(i) ∂� \ {P} is smooth (C∞),

(ii) there is a neighborhood N of P such that 3(x) < 0 for x ∈ N ∩ ∂� \ {P},
where 3 is the mean curvature of ∂�, and

(iii) 3∗(P)=−∞, where 3∗ is the generalized mean curvature of ∂�,

and there exists Dirichlet boundary data φ ∈ C∞(Rn) such that the minimizer
f ∈ BV(�) of

(3) J (u)=
∫
�

|Du| +
∫
�

∫ u

0
H(x, t) dtdx +

∫
∂�

|u−φ| dHn−1, u ∈ BV(�),

exists and satisfies (1), f ∈C2(�)∩C0(�\{P})∩ L∞(�), f /∈C0(�), and f 6= φ
in a neighborhood of P in ∂�.

Since there are certainly many examples of Dirichlet problems which have con-
tinuous solutions even though their domains fail to satisfy appropriate smoothness
or boundary curvature conditions (e.g., by restricting to a smaller domain a classical
solution of a Dirichlet problem on a larger domain), the question of necessary or
sufficient conditions for the continuity at P of a generalized solution of a particular
Dirichlet problem is of interest and the examples here suggest (to us) that a “Concus–
Finn” type condition might yield necessary conditions for the continuity at P of
solutions (see Section 5).
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We view this note as analogous to other articles (e.g., [Shi and Finn 2004; Huff
and McCuan 2006; 2009; Korevaar 1980]) which enhance our knowledge of the
behavior of solutions of boundary value problems for prescribed mean curvature
equations by constructing and analyzing specific examples. One might also compare
Theorem 1 with the behavior of generalized solutions of (1)–(2) when ∂� \ {P} is
smooth and |H(x, φ(x))|≤ (n−1)3(x) for x ∈ ∂�\{P} (e.g., [Elcrat and Lancaster
1986; Lancaster 1985; 1988]) and with capillary surfaces (e.g., [Lancaster and Siegel
1996]).

2. Nonparametric minimal surfaces in R3

In this section, we will assume n = 2 and H ≡ 0; this allows us to use explicit
comparison functions and illustrate our general procedure. Let � be a bounded,
open set in R2 with locally Lipschitz boundary ∂� such that a point P lies on ∂�
and there exist distinct rays l± starting at P such that ∂� is tangent to l+∪ l− at P .
By rotating and translating the domain, we may assume P = (0, 1) and there exists
a σ ∈

(
−
π
2 ,

π
2

)
such that

l− = {(r cos(σ ), 1+ r sin(σ )) : r ≥ 0},

l+ = {(r cos(π − σ), 1+ r sin(π − σ)) : r ≥ 0},

�∩ B(P, δ)= {(r cos(θ), 1+ r sin(θ)) : 0< r < δ, θ−(r) < θ < θ+(r)}(4)

for some δ > 0 and functions θ± ∈ C0([0, δ)) which satisfy θ− < θ+, θ−(0)= σ
and θ+(0)= π − σ ; here B(P, δ) is the open ball in R2 centered at P of radius δ.
If we set α = π

2 − σ , then α ∈ (0, π) and the angle at P in � of ∂� has size 2α.
As σ < 0 goes to zero, 2α > π goes to π and the (upper) region between l− and l+

becomes “less nonconvex” and approaches a half-plane through P . We will show
that for each choice of σ ∈

(
−
π
2 , 0

)
, there is a domain � as above and a choice

of Dirichlet data φ ∈ C∞(∂�) such that the solution of (1)–(2) for � and φ is
discontinuous at P .

Fix σ ∈
(
−
π
2 ,−

π
4

)
. Let ε be a small, fixed parameter, say ε ∈ (0, 0.5), and let

a = a(σ ) ∈ (1, 2) be a parameter to be determined. Set τ = (1+ ε) cot(−σ) and
r1 =
√

τ 2
+ (1+ ε)2. Define h2/π ∈ C2

(
(0, 2)× (−1, 1)

)
by

h2/π (x1, x2)=
2
π

ln
(

cos
(
πx2

2

)
sin
(
πx1

2

) ).
Notice that the graph of h2/π is part of Scherk’s first surface, so div(T h2/π )= 0 on
(0, 2)× (−1, 1), and h2/π (t, t − 1) = 0 for each t ∈ (0, 2). A computation using
L’Hospital’s Rule shows

(5) lim
t→0+

h2/π
(
(t cos(θ), 1+ t sin(θ))

)
=

2
π

ln(− tan(θ)), θ ∈
(
−
π
2 , 0

)
.
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Figure 1. �.

Let D = B(O, 1)∩ B((τ,−ε), r1)∩ B((−τ,−ε), r1) be the intersection of three
open disks and let E ⊂ D be a strictly convex domain such that {x ∈ ∂E : x2 < 1}
is a C∞ curve, E ∩ {x2 ≥ 0} = D ∩ {x2 ≥ 0}, E is symmetric with respect to the
x2-axis, and (0,−1) ∈ ∂E ; here O denotes (0, 0). Define

�= B(O, a) \ E

(see Figure 1); notice that P ∈ ∂� and (4) holds with the choice of σ above. If
we set C = {(x1, x2) ∈ R2

: 0 < x1 < 1, x1 − 1 < x2 < 1− x1}, then (5) implies
supx∈C∩∂E h2/π (x) <∞.

Let

m >max
{

r1 cosh−1
(

2+
√
τ 2+ε2

r1

)
, sup

x∈C∩∂E
h2/π (x)

}
.

Notice that m is independent of the parameter a. Define φ ∈ C∞(∂�) by φ = 0
on ∂B(O, a) and φ = m on ∂E . Let f be the variational solution of (1)–(2) with φ
as given here (e.g., [Gerhardt 1974; Giusti 1978]). Since φ ≥ 0 on ∂� and φ > 0
on ∂E , f ≥ 0 in � (e.g., Lemma 2 (with h ≡ 0)) and so f > 0 in � (e.g., the Hopf
boundary point lemma). Notice that h2/π = 0 < f on �∩ ∂C and h2/π < φ on
C ∩ ∂E = C ∩ ∂�, and therefore h2/π < f on �∩C (see Figure 2). Together with
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Figure 2. �∩C , the domain of the comparison function for (6).

(5), this implies

(6) lim inf
�∩C3x→P

f (x)≥ 2
π

ln(tan(−σ)) > 0.

Set W = B(O, a) \ B(O, 1) (see Figure 3); then W ⊂ �. Define the function
g ∈C∞(W )∩C0(W ) by g(x)= cosh−1(a)−cosh−1(|x |) and notice that the graph
of g is part of a catenoid, where g = 0 on ∂B(O, a) and g = cosh−1(a) on ∂B(O, 1).
It follows from the general comparison principle (e.g., [Finn 1986, Theorem 5.1])
that f ≤ g on W and therefore

(7) f ≤ cosh−1(a) on W .

If we select a > 1 so that cosh−1(a) < 2
π

ln(tan(−σ)), then (6) and (7) imply that
f cannot be continuous at P . Notice that [Simon 1976] implies f ∈ C0(� \ {P}).

This example illustrates the procedure we shall use in Section 4; a somewhat
similar approach was used in [Shi and Finn 2004; Korevaar 1980; Lancaster and
Siegel 1996; Serrin 1969]. The case σ ∈

[
−
π
4 , 0

)
has a similar proof with the

changes that D is the intersection of the open disk B(O, 1) with the interiors of two
ellipses, and a Scherk surface with rhomboidal domain [Nitsche 1989, pp. 70–71]
is used as a comparison surface to obtain the analog of (6); the details can be found
in [Melin 2013].
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Figure 3. W , the domain of the comparison function for (7).

3. Lemmata

Lemma 1. Let � be a bounded open set in Rn , n ≥ 2, with locally Lipschitz
boundary and let 0 be an open C2 subset of ∂�. Let φ ∈ L∞(∂�) ∩ C1,β(0).
Suppose g ∈ C2(�)∩ L∞(�) is the variational solution of (1)–(2) and g < φ on 0.
Then

ν ≡
(∇g,−1)√
1+|∇g|2

∈ C0(�∪0)

and ν · η = 1 on 0, where η(x) ∈ Sn−1 is the exterior unit normal to 0 at x.

Proof. Since g minimizes the functional J in (3) over BV(�), g also minimizes
the functional K (u)= J (u)−

∫
0
φ dHn−1. Notice

K (u)=
∫
�

|Du| +
∫
�

∫ u

0
H(x, t) dtdx +

∫
∂�\0

|u−φ| dHn−1
−

∫
0

u dHn−1

for each u ∈ BV(�) with tr(u) ≤ φ on 0; in particular, this holds when u = g.
Therefore, for each x ∈ 0, there exists ρ > 0 such that ∂�∩ Bn(x, ρ)⊂ 0, and the
lemma follows as in [Korevaar and Simon 1996]. �

Lemma 2. Let � be a bounded open set in Rn , n ≥ 2, with locally Lipschitz
boundary, φ,ψ ∈ L∞(∂�) with ψ ≤ φ on ∂�, H0 ∈ C2(�× R) with H0(x, t)
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nondecreasing in t for x ∈�, and H0 ≥ H on �×R. Consider the boundary value
problem

div(T f )= H0(x, f ) in �,(8)

f = ψ on ∂�.(9)

Suppose g ∈ C2(�)∩ L∞(�) is the variational solution of (1)–(2) and either

(i) h ∈ C2(�)∩ L∞(�) is the variational solution of (8)–(9), or

(ii) ψ ∈ C0(∂�), h ∈ C2(�)∩C0(�), and h satisfies (8)–(9).

Then h ≤ g in �.

Proof. Let A= {x ∈� : h(x) > g(x)}. In case (i), let f = hI�\A+gIA, where IB is
the characteristic function of a set B; then a simple calculation using J (g)≤ J ( f )
shows that J1( f )≤ J1(h) and therefore f = h and A =∅, where

J1(u)=
∫
�

|Du| +
∫
�

∫ u

0
H0(x, t) dtdx +

∫
∂�

|u−ψ | dHn−1, u ∈ BV(�),

is the functional which h minimizes. In case (ii), the conclusion follows from
Lemma 1 of [Williams 1978]. �

Lemma 3. Let � ⊂ {x ∈ R2
: x2 > 0} be a bounded open set, n ∈ N with n ≥ 2,

and g ∈ C2(�). Set �̃ = {(x1, x2ω) ∈ Rn
: (x1, x2) ∈ �,ω ∈ Sn−2

} and define
g̃ ∈ C2(�̃) by g̃(x1, x2ω)= g(x1, x2) for (x1, x2) ∈�,ω ∈ Sn−2. Then, for

x = (x1, . . . , xn)= (x1, rω) ∈ �̃

with r =
√

x2
2 + · · ·+ x2

n , ω = 1
r (x2, . . . , xn), and (x1, r) ∈�, we have

div
(

∇ g̃√
1+|∇ g̃|2

)
(x)= div

(
∇g√

1+|∇g|2

)
(x1, r)+

n−2
r

gx2(x1, r)√
1+|∇g(x1, r)|2

.

In particular, if H ≥ 0, R > 0, �⊂ {x ∈ R2
: x2 ≥ R}, and

div
(

∇g√
1+|∇g|2

)
≥ H + n−2

R
on �,

then

div
(

∇ g̃√
1+|∇ g̃|2

)
≥ H on �̃.
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Proof. Notice that

1+ |∇ g̃|2 = 1+ |∇g|2,(
1+ |∇ g̃|2

)
4g̃ =

(
1+ |∇g|2

)(
4g+ n−2

r
gx2

)
,

n∑
i, j=1

∂ g̃
∂xi

∂ g̃
∂x j

∂2g̃
∂xi∂x j

=

(
∂g
∂x1

)2 ∂2g
∂x2

1
+ 2 ∂g

∂x1

∂g
∂x2

∂2g
∂x1∂x2

+

(
∂g
∂x2

)2 ∂2g
∂x2

2
,

and so(
1+ |∇ g̃|2

)
4g̃−

n∑
i, j=1

∂ g̃
∂xi

∂ g̃
∂x j

∂2g̃
∂xi∂x j

=
(
1+ g2

x2

)
gx1x1 − 2gx1 gx2 gx1x2 +

(
1+ g2

x1

)
gx2x2 +

n−2
r
(
1+ g2

x1
+ g2

x2

)
gx2 .

The lemma follows from this. �

4. The n-dimensional case

Let Bk(x, r) denote the open ball in Rk centered at x ∈ Rk with radius r > 0 and
Ok = (0, . . . , 0) ∈ Rk , for k ∈ N. Now consider n ≥ 2 and set

λ = sup
(x,t)∈Rn×R

|H(x, t)|;

if λ= 0, replace it with a positive constant. For each a ∈
(
0, n

λ

)
and Q ∈ Rn , we

have

(10)
∫

Bn(Q,a)
λn dx < nnωn.

By translating our problem in Rn , we may (and will) assume Q = On . By Proposi-
tion 1.1 and Theorem 2.1 of [Giusti 1976], we see that if � is a bounded, connected,
and open set in Rn with Lipschitz-continuous boundary, � ⊂ Bn

(
On,

n
λ

)
, and

φ ∈ L1(∂�), then the functional J in (3) has a minimizer f ∈ BV(�), f ∈ C2(�)

satisfying (1).
The proof in Section 4.1 consists of setting some parameters (e.g., p, r1, r2, m0,

b, c, τ , σ , a), determining the domain �, finding different comparison functions
(e.g., g1, g[u], k±, k2, k3, k4), and mimicking (6) and (7) to show that the variational
solution f of (1)–(2) is discontinuous at a nonconvex corner. In particular, we use
a torus (i.e., ja) to obtain (21), unduloids (i.e., k±, k2) to obtain (24) (an analog of
(7)), and nodoids (i.e., g1, g[u]), unduloids (i.e., k±, k4), and a helicoidal function
(i.e., h2) to obtain (30) (an analog of (6)) and prove that f is discontinuous at
P = (0, p, 0, . . . , 0) ∈ Rn

∈ ∂�.
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4.1. Codimension 1 singular set. In this section, we will obtain a domain � as
above and φ ∈ C∞(Rn) such that P ∈ ∂�, the minimizer f of (3) is discontinuous
at P , ∂� \ T is smooth (C∞), and f ∈ C2(�)∩C0(� \ T ), where T is a smooth
set of dimension n − 2 (i.e., T has codimension 1 in ∂�). We will use portions
of nodoids, unduloids, and helicoidal surfaces with constant mean curvature as
comparison functions. For the convenience of the reader, we will denote functions
whose graphs are subsets of nodoids with the letter g (e.g., g1(x1, x2)), subsets of
CMC helicoids with the letter h, and subsets of unduloids (or onduloids) with the
letter k.

Let N1 ⊂ R3 be a nodoid which is symmetric with respect to the x3-axis and has
mean curvature 1 (when N1 is oriented “inward”, so that the unit normal ENN1 to N1

points toward the x3-axis at the points of N1 which are furthest from the x3-axis).
Let s1 = inf(x,t)∈N1 |x | be the inner neck size of N1 and let s3 satisfy the condition
that the unit normal to N1 is vertical (i.e., parallel to the x3-axis) at each point
(x, t) ∈R2

×R of N1 at which |x | = s3; then s1 < s3. Let s2 ∈ (s1, s3). (Notice that
we can assume s2/s1 is close to s3/s1 if we wish.)

Let us fix 0 < p < 1
λ

and set w = (0, p) ∈ R2, P = (0, p, 0, . . . , 0) ∈ Rn .
Let m0 = λ/2+ (n− 2)/(p/3). We shall assume r2 = s2/m0 < p/3; if necessary,
we may increase m0 to accomplish this. Let r1 = s1/m0 and r3 = s3/m0. Let
N = {(m0)

−1 X ∈ R3
: X ∈ N1}; then N is a nodoid with mean curvature m0. Set

11 = {x ∈ R2
: r1 < |x |< r2}. Fix b ∈

(
0, 1

4m0

(
1+ 2m0 p−

√

1+ 4m2
0 p2

))
.

Define g1 ∈ C∞(11)∩C0(11) to be a function whose graph is a subset of N on
which ENN = (n1, n2, n3) satisfies n3 ≥ 0; then

(11) div
(

∇g1√
1+|∇g1|2

)
= m0 ≥ λ+

2(n−2)
p/3

.

By moving N vertically, we may assume g1(x) = 0 when |x | = r2; then g1 > 0
in 11. Notice that ∂g1

∂x1
(r1, 0)=−∞ and ∂g1

∂x1
(r2, 0) < 0; then there exists a β0 > 0

such that, for each θ ∈ R,

(12) ∂

∂r
(g1(r2)) <−β0 for r1 < r < r2,

where 2= (cos(θ), sin(θ)). Fix β ∈ (0, β0). Let

(13) 0< τ <min
{

pr1
√

r2
2−r2

1

,
2(1− pλ)
λ(2− pλ)

,
b(4p−b)
4(2p−b)

}
.

Consider σ ∈
(
−
π
2 , 0

)
. Notice that the distance between L and the point (0, p−r2)

is r2 cos(σ ), where L is the closed sector given by

L = {(r cos(θ), p+ r sin(θ)) : r ≥ 0, σ ≤ θ ≤ π − σ }.
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Define r4 =
√

p2
+ τ 2 and

M = B2((τ, 0), r4)∩ B2((−τ, 0), r4).

Notice that
τ <

b(4p−b)
4(2p−b)

and therefore B2
(
O2,

1
2(a+ p)− b

)
⊂ M if p < a < p+ b.

Set σ =− arctan(τ/p); then cos(σ ) > r1/r2, since

τ <
p
√

r2
2 − r2

1
r1

,

and L ∩ B2 = ∅, where B2 = B2((0, p− r2), r1). Therefore there exists a δ1 > 0
such that if u = (u1, u2) ∈ ∂B2(O2, p) with |u−w|< δ1, then

(14) B2

( p−r2
p

u, r1

)
⊂ M.

Since
τ <

2(1− pλ)
λ(2− pλ)

,

we have τ−
( 2
λ
−r4

)
<−p and so B2(O2, p)⊂ B2

(
(τ, 0), 2

λ
−r4

)
(see Figure 8, right).

Notice that

(15) M \ {(0,±p)} = {(r cos(θ), p+ r sin(θ)) : 0< r < 2p, θ−(r) < θ < θ+(r)}

for some θ± ∈ C0([0, δ)) satisfying θ−< θ+, θ−(0)=−π − σ , and θ+(0)= σ .
Let a > p and set

T=
{(( 1

2(a+ p)+b cos v
)

cos u,
( 1

2(a+ p)+b cos v
)

sin u, b sin v+c
)
: (u, v)∈ R

}
,

where R=[0, 2π ]×[−π, 0] and 0<c<b; since b< 1
4m0

(
1+2m0 p−

√

1+ 4m2
0 p2

)
,

we see that
1
2(a+ p)− 2b

4b
( 1

2(a+ p)− b
) > m0

for all a ≥ p. We shall assume

(16) a ∈
(

p,min
{

p+ b, 1
λ

})
and c =

√
b2−

( 1
2(a− p)

)2. Notice that T is the lower half of a torus whose mean
curvature (i.e., one half of the trace of the shape operator) at each point is greater
than m0. Let T be the graph of a function ja over

1a =
{

x ∈ R2
:

1
2(a+ p)− b ≤ |x | ≤ 1

2(a+ p)+ b
}
;
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(−τ, 0)

−σ

(0, p)

Figure 4. The domain of ja .

Figure 5. Left: 51, j (�) for 2≤ j ≤ n. Right: 5i, j (�) for 2≤ i < j ≤ n.

then ja(x) = 0 on |x | = a and |x | = p, ja(x) < 0 on p < |x | < a, and ja(x) > 0
on 1

2(a + p)− b ≤ |x | < p and a < |x | ≤ 1
2(a + p)+ b for x ∈ R2. Notice that

| ja(x)|< 1
2m0

for all x ∈1a .
Set

(17) �= Bn(On, a) \M,

where M= M̃ = {(x1, x2ω) ∈ Rn
: (x1, x2) ∈ M, ω ∈ Sn−2

}. If we define

5i, j (A)= {(xi , x j ) : (x1, . . . , xn) ∈ A, xk = 0 for k 6= i, j}

for A ⊂ Rn and 1 ≤ i < j ≤ n, then 51, j (�) = B2(O2, a) \M for 2 ≤ j ≤ n and
5i, j (�)= B2(O2, a) \ B2(O2, 1) for 2≤ i < j ≤ n (see Figure 5).

We wish to select a helicoidal surface in R3 (e.g., [do Carmo and Dajczer 1982])
with constant mean curvature m0, axis {w}×R, and pitch−β (recall−β ∈ (−β0, 0)),
which we will denote S; then, for each t ∈R, kt(S)=S, where kt :R

3
→R3 is the

helicoidal motion given by kt(x1, x2, x3)= (lt(x1, x2), x3−βt) with lt : R
2
→ R2

given by

lt(x1, x2)= (x1 cos(t)+ (x2− p) sin(t), p− x1 sin(t)+ (x2− p) cos(t)).

Set c0 =
1
4βσ < 0. By vertically translating S, we may assume that there is an

open c0-level curve L0 of S with endpoints w = (0, p) and b = (b1, b2) such that
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Figure 6. R.

L0 ⊂ (0,∞)×R, L= L0 is tangent to the (horizontal) line R×{p} at w, and the
slope mv of the tangent line to L at v satisfies |mv|< tan(−σ/5) for each v ∈ L0;
then L× {c0} ⊂ S and the curves lt(L0), −7π

8 < t < 7π
8 , are mutually disjoint.

Notice that the set

R=
{
lt(L0) : −

7π
8 < t < 7π

8

}
=

⋃
−

7π
8 <t< 7π

8

lt(L0)

is an open subset of R2
\ ((−∞, 0]× {p}) (see Figure 6), w ∈R, and S implicitly

defines the smooth function h2 on R given by h2(x) =
β

4 (σ − 4t) if x ∈ lt(L0)

for some t ∈
(
−
π
2 ,

π
2

)
. Notice that B2(w, b1) ∩ {x1 > 0} ⊂ R. Now we have

lt(L0)∩M =∅ for t ∈
( 3σ

4 ,
σ
4

)
and, by making b1 > 0 sufficiently small, we may

assume that

(18) lt(L0)⊂ B2(O2, p) \M for each t ∈
( 3σ

4 ,
σ
4

)
.

Notice that h2 < β(2σ 2
−π)/(8σ) on lt(L0) for −π2 < t < 7π

8 .
Let us fix u = (u1, u2) ∈ ∂B2(O2, p) such that |u−w|<min{δ1, b1} and u1 > 0.

Then there exists θu ∈
(
0, π2

)
such that u = (p cos(θu), p sin(θu)). Define

g[u](x)= g1

(
x + r2− p

p
u
)

and notice that g[u](u)= g1
( r2

p u
)
= 0, since

∣∣ r2
p u
∣∣= r2. Note that the domain

D[u] =
{

x + p−r2
p

u : x ∈11

}
= B2

( p−r2
p

u, r2

)
\ B2

( p−r2
p

u, r1

)
of g[u] is contained in B2(O2, p) since ∂B2

( p−r2
p u, r2

)
and ∂B2(O2, p) are tangent

circles at u and r2 < p (see Figure 7). Notice that

(19) h2(r cos(θu), r sin(θu)) < g[u](r cos(θu), r sin(θu))

when p− r2+ r1 ≤ r ≤ p, because h2(u) < 0= g[u](u), β < β0, and (12) holds.
Let

N± ⊂ {x ∈ R2
: r4 ≤ |(x1± τ, x2)| ≤

2
λ
− r4}×R
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Figure 7. D[u]; �∩D̃[u] is the domain of the comparison
function for (28).

Figure 8. Left: B2(O2, p) * B2
(
(−τ, 0), 2

λ
− r4

)
.

Right: B2(O2, p)⊂ B2
(
(−τ, 0), 2

λ
− r4

)
.

be unduloids in R3 with mean curvature λ
2 such that {(∓τ, 0)}×R are the respective

axes of symmetry; the minimum and maximum radii (or “neck” and “waist” sizes)
of both unduloids are r4 and 2

λ
− r4, respectively. Set

1± = B2
(
(∓τ, 0), 2

λ
− r4

)
\ B2((∓τ, 0), r4)

and define k± ∈ C∞(1±) so that the graphs of k± are subsets of N±, respectively,

div(T k±)=−λ in 1±,

∂
∂r

(
k±((∓p, 0)+r2)

)∣∣
r=r4
=−∞ and ∂

∂r

(
k±((∓p, 0)+r2)

)∣∣
r=2/λ−r4

=−∞ for
each θ ∈ R, where 2 = (cos(θ), sin(θ)). We may vertically translate N± so that
k±(x)= 0 for x ∈R2 with |(x1±τ, x2)|=

2
λ
−r4. Notice that k+(0, p)= k−(0, p)=

sup1+ k+ = sup1− k−.
Let N⊂

{
x ∈ R2

: p ≤ |x | ≤ 2
λ
− p

}
×R be an unduloid with mean curvature λ

2
such that the x3-axis is the axis of symmetry and the minimum and maximum radii
(or “neck” and “waist” sizes) are p and 2

λ
− p, respectively. Set

12 = B2
(
O2,

2
λ
− p

)
\ B2(O2, p)
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Figure 9. B2(O2, a) \ B2(O2, p): (22).

and define k2 ∈ C∞(12) so that the graph of k2 is a subset of N, div(T k2) = −λ

in 12, and ∂
∂r

(
k2(r2)

)∣∣
r=p =

∂
∂r

(
k2(r2)

)∣∣
r=2/λ−p = −∞ for each θ ∈ R, where

2= (cos(θ), sin(θ)).
Define φ ∈ C∞(Rn) so that φ = 0 on ∂Bn(On, a) and φ = m on ∂M, where

(20) m >max
{
g1(0, r1),

1
2m0
, k+(0, r4− τ)+ k2(0, p)− k2

(
0, 2

λ
− p

)}
;

recall then that m > ja
( 1

2(a+ p)− b
)
. Let f be the variational solution of (1)–(2)

with � and φ as given here; that is, let f minimize the functional given in (3) and
notice that the existence of f follows from (10), (16), §1.D of [Giusti 1976], and
[Gerhardt 1974; Giusti 1978]. (Notice that there exists w : B2(O2, a)\M→R such
that f = w̃.) The comparison principle implies ja(x) ≤ f (x) for x ∈ �, and so
f (x)≥ ja(x)≥ 0 if x ∈� with |x | ≤ p (recall (16) holds). In particular,

(21) f (x)≥ 0 when x ∈� with |x | ≤ p.

Set W = (B2(O2, a) \ B2(O2, p))×Rn−2. Now

�⊂ B2(O2, a)×Rn−2
⊂ B2

(
O2,

2
λ
− p

)
×Rn−2

(see Figure 9). Define k3(x)= k2(x1, x2)− k2(0, a) for x = (x1, x2, . . . , xn) ∈W .
Notice that f = 0≤ k3 on W ∩ ∂Bn(On, a),

div(T f )= H(x, f (x))≥−λ= div(T k3) in �∩W ,

and ∂
∂r (k2(r2))|r=p = −∞ (so that limW3y→x T k3(y) · ξ(x) = 1, for ξ the unit

exterior normal to ∂W and x ∈ ∂B2(O2, p) × Rn−2). The general comparison
principle (e.g., [Finn 1986, Theorem 5.1]) then implies

(22) f ≤ k3 in �∩W
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Figure 10. (23): W and Bn(On, a) \ Bn(On, p) when n = 3.

and, in particular,

(23) lim sup
�∩W3y→x

f (y)≤ k3(x) for x ∈ ∂�∩W

(see Figure 10). By rotating the axis of symmetry of W through all lines in Rn

containing On (or, equivalently, keeping W fixed and rotating � about On), we see
that

(24) sup{ f (x) : x ∈ Bn(On, a) \ Bn(On, p)} ≤ k2(0, p)− k2(0, a).

Now define k4 ∈ C∞(1+×Rn−2)∩C0(1+×Rn−2) by

k4(x)= k+(x1, x2)+ k2(0, p)− k2(0, a), x = (x1, x2, . . . , xn) ∈1+×Rn−2.

Combining (1) and (24) with the facts that div(T k4) = −λ in 1+ × Rn−2 and
lim1+×Rn−23y→x T k4(y) · ξ+(x)= 1 for x ∈ ∂B2((−τ, 0), r4)×Rn−2, where ξ+ is
the inward unit normal to ∂B2((−τ, 0), r4)×Rn−2, we see that

(25) f ≤ k4 in �∩ (1+×Rn−2).

(If Figure 8 (left) held, then (25) would not be valid.) Now let L : Rn
→ Rn be any

rotation about On which satisfies L(�)=�, notice that f ◦ L satisfies (1)–(2), and
apply the previous argument to obtain f ◦ L ≤ k4 in �∩ (1+×Rn−2) and therefore

(26) sup{ f (x) : x ∈ ∂M} ≤ k4(p, 0) < m.

From Lemma 1, we see that the downward unit normal Nf to the graph of f
satisfies Nf = (ν, 0) on ∂M \ {(0, pω) : ω ∈ Sn−2

} and

(27) lim
�3y→x

T f (y) · ν(x)= 1 for x ∈ ∂M \ {(0, pω) : ω ∈ Sn−2
}.



430 KIRK E. LANCASTER AND JARON MELIN

Figure 11. A: (29).

Let us write B= B2
( p−r2

p u, r2
)
; then g̃[u]=0≤ f on�∩∂B̃ and g̃[u]≤ g1(r1, 0)<φ

on B̃ ∩ ∂M . It follows from (1), (11), and Lemma 3 that

(28) g̃[u] < f on �∩ D̃[u] =�∩ B̃.

Set U = {r(cos(θ), sin(θ)ω) ∈� : r ∈ (0, p), θ ∈ (0, θu), ω ∈ Sn−2
}. If we write

∂1U = {(p cos(θ), p sin(θ)ω) : θ ∈ (0, θu], ω ∈ Sn−2
},

∂2U = ∂M∩ ∂U,

∂3U = {(r cos(θu), r sin(θu)ω) ∈� : r ∈ [0, p], ω ∈ Sn−2
},

then ∂U = ∂1U ∪ ∂2U ∪ ∂3U , h̃2 ≤ 0≤ f on ∂1U \ {P}, and h̃2 < g̃[u] < f on ∂3U
(see (19)); then (27) and the general comparison principle imply

(29) h̃2 < f in U = Ã,

where A={r(cos(θ), sin(θ))∈ B2(O2, p)\M :r ∈ (0, p), θ ∈ (0, θu)} (see Figure 11).
Set R2 =

⋃2σ/4
t=3σ/4 lt(L0). Now (18) implies R̃2 ⊂U and so

(30) f > h̃2 ≥−
βσ

4
on R2.

Using (24) and (30), we see that if a ∈
(

p, 2
λ
− p

)
is close enough to p, then

k2(0, p)− k2(0, a) < −βσ4 and therefore f cannot be continuous at P or at any
point of T = {(0, pω) ∈Rn

:ω ∈ Sn−2
}. Note that f ∈C0(�\T ) (e.g., [Lin 1987]).

4.2. One singular point. In this section, we obtain a domain � and φ ∈ C∞(Rn)

such that P ∈ ∂�, the minimizer f of (3) is discontinuous at P , ∂�\{P} is smooth
(C∞), and f ∈ C0(� \ {P}). This is accomplished by replacing M by a convex
set G such that ∂G \ {P} is smooth (C∞) and G ⊂ Bn(On, p). We shall use the
notation of Section 4.1 throughout this section. We assume p ∈

(
0, 1

λ

)
and set

P = (0, p, 0, . . . , 0). (We will no longer require Figure 8 (right) to hold.)
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Figure 12. An illustration of R2 (blue region) and A (green and
blue regions).

x

y

x

z

Figure 13. Left: X
(
θ, π2 , 1

)
. Right: X

(
θ, 1

2 arccos(1− sec(θ) sec(2θ)), 1
)
.

Let α > 1, n ≥ 3, and Y :
[
−

π
2α ,

π
2α

]
×[0, π]× Sn−3

→ Rn be defined by

Y (θ, φ, ω)= 2 cos(αθ) sin(φ)
(
cos(θ) sin(φ), sin(θ) sin(φ), cos(φ)ω

)
.

Let F : Rn
→ Rn be given by

F(x1, . . . , xn)=
( x2

p ,
1−x1

p , x3
p , . . . ,

xn
p

)
and define X (θ, φ, ω) = F(Y (θ, φ, ω)) for − π

2α ≤ θ ≤
π
2α , 0 ≤ φ ≤ π , ω ∈ Sn−3

(see Figures 13 and Figure 14 with n = 3, α = 2; the axes are labeled x, y, z for
x1, x2, x3, respectively). Let G be the open, convex set whose boundary is the image
of X ; that is,

∂G=
{

X (θ, φ, ω) : − π
2α ≤ θ ≤

π
2α , 0≤ φ ≤ π,ω ∈ Sn−3}.

Notice that ∂G \ {P} is a C∞ hypersurface in Rn and ∂G⊂ Bn(On, p).
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Let τ satisfy

0< τ <min
{

pr1
√

r2
2−r2

1

,
b(4p−b)
4(2p−b)

}
.

Set σ =− arctan(τ/p) and α= π/(π+2σ). Then the tangent cones to ∂G and ∂M

at P are identical, cos(σ ) > r1/r2, and (14) holds for u = (u1, u2) ∈ ∂B2(O2, p)
with |u − w| < δ1. By making τ > 0 smaller if necessary, we may assume
Bn
(
On,

1
2(a+ p)− b

)
⊂ G if p < a < p+ b.

Now pick a ∈
(

p,min
{

p+ b, 1
λ

})
such that k2(0, p)− k2(0, a) < −βσ4 , as in

(30), and define

(31) �= Bn(On, a) \G.

Let

m >max
{

g1(0, r1),
1

2m0
,
β(2σ 2

−π)

8σ

}
and define φ ∈ C∞(Rn) so that φ = 0 on ∂Bn(On, a) and φ = m on ∂G, and let
f be the variational solution of (1)–(2). Notice that f ∈ C2(�) satisfies (1) and
f ∈ C0(� \ {P}) (e.g., [Lin 1987]).

As in (28), let B = B2
( p−r2

p u, r2
)
. Set U0 = {x ∈ � : x ∈ B̃, x1 > 0} and

U = {r(cos(θ), sin(θ)ω) ∈� : r ∈ (0, p), θ ∈ (0, θu), ω ∈ Sn−2
}. Now g̃[u] = 0 on

∂U0 ∩ ∂B̃ and g̃[u] ≤ g1(0, r1) < m on ∂U0 ∩ ∂G and so Lemma 2, Lemma 3, and
(1) imply g̃[u] ≤ f in U0 since f minimizes the functional in (3).

As before, set

∂1U =
{(

p cos(θ), p sin(θ)ω
)
: θ ∈ [0, θu], ω ∈ Sn−2},

∂2U = ∂G∩ ∂U,

∂3U =
{(

r cos(θu), r sin(θu)ω
)
∈� : r ∈ [0, p], ω ∈ Sn−2}.

Then f ≥ 0 on ∂1U \{P}, ∂U = ∂1U ∪∂2U ∪∂3U , h̃2≤ 0≤ f on ∂1U , h̃2 <m = φ
on ∂2U , and h̃2 < g̃[u] < f on ∂3U ; Lemma 2 implies that (30) continues to hold.
Then (24) and (30) imply f is discontinuous at P since k2(0, p)− k2(0, a) <−βσ4 .

5. The Concus–Finn conjecture

For the moment, assume n = 2. Around 1970, Paul Concus and Robert Finn
conjectured that if κ ≥ 0, � ⊂ R2 has a corner at P ∈ ∂� of (angular) size 2α,
α ∈

(
0, π2

)
, γ : ∂� \ {P} → [0, π], and

∣∣π
2 − γ0

∣∣> α, where

(32) lim
∂�3x→P

γ (x)= γ0,
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x

y

x

z

Figure 14. Left: 51,2(�). Right: 51,3(�).

then a function f ∈ C2(�)∩C1(� \ {P}) which satisfies

div(T f )= κ f in �,(33)

T f · η = cos(γ ) on ∂� \ {P}(34)

must be discontinuous at P ; here η(x) is the exterior unit normal to� at x ∈∂�\{P}.
In the situation above with α ∈

(
π
2 , π

)
, the “nonconvex Concus–Finn conjecture”

states that if
∣∣π

2 − γ0
∣∣> π −α, then the capillary surface f with contact angle γ

must be discontinuous at P . A generalization (including the replacement of (33) by
(1)) of this extension of the Concus–Finn conjecture in the case γ0 ∈ (0, π) was
proven in [Lancaster 2012]. Both [Lancaster 2010] and [Lancaster 2012] include
the possibility of differing limiting contact angles; that is, the limits

lim
∂+�3x→P

γ (x)= γ1 and lim
∂−�3x→P

γ (x)= γ2

exist, γ1, γ2 ∈ (0, π), and γ1 6= γ2. Here ∂+� and ∂−� are the two components
of ∂� \ {P, Q}, where Q ∈ ∂� \ {P}. When γ1 6= γ2, the necessary and sufficient
(when α ≤ π

2 ) or necessary (when α > π
2 ) conditions for the continuity of f at P

become slightly more complicated.
The cases where γ0 = 0, γ0 = π , min{γ1, γ2} = 0, and max{γ1, γ2} = π remain

unresolved. If we suppose for a moment that the nonconvex Concus–Finn conjecture
with limiting contact angles of 0 or π is proven, then the discontinuity of f at P
in Section 2 follows immediately from the fact that f < φ in a neighborhood in
∂�\ {P} of P , since then Lemma 1 implies γ0 = 0 and therefore

∣∣π
2 −γ0

∣∣>π −α.
In this situation (i.e., the solution f of a Dirichlet problem satisfies a 0 (or π ) contact
angle boundary condition near P), establishing the discontinuity of f at P would
be much easier and a much larger class of domains � with a nonconvex corner
(i.e., α > π

2 ) at P would have this property. For example, if � is a bounded locally
Lipschitz domain in R2 for which (4) holds, f ∈ C2(�) is a generalized solution
of (1)–(2) (and H need not vanish), and φ is large enough near P (depending
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on H and the maximum of φ outside some neighborhood of P) that f < φ on
∂� \ {P} near P , then the fact that γ0 = 0 (Lemma 1) together with the nonconvex
Concus–Finn conjecture would imply that f is discontinuous at P .

Now consider n ∈N with n≥ 3. Formulating generalizations of the Concus–Finn
conjecture in the “convex corner case” (i.e.,�∩Bn(P, r)⊂{X ∈Rn

: (X−P)·µ>0}
for some µ ∈ Sn−1, P ∈ ∂� and r > 0) and in other cases where ∂� is not smooth
at a point P ∈ ∂� may be complicated because the geometry of ∂� \ {P} is much
more interesting when n > 2. Establishing the validity of a generalization of the
Concus–Finn conjecture for solutions of (1) and (34) when n > 2 is probably
significantly harder than doing so when n = 2.

Suppose we knew that a solution f of (1) and (34) is necessarily discontinuous
at a “nonconvex corner” P ∈ ∂� when γ0 = 0, where γ0 is given by (32). In this
case, a necessary condition for the continuity of f at P would be that

lim sup
∂�3X→P

T f (X) · η(X) > 0,

lim inf
∂�3X→P

T f (X) · η(X) < π.

Then the arguments in Section 4 could be made more easily and the conclusion
that f is discontinuous at P would hold in a much larger class of domains �; here,
of course, we use the ridge point P in Section 4 as an example of a “nonconvex
corner” of a domain in Rn . The primary difficulty in proving in Section 4 that f is
discontinuous at P is establishing (30); a more “natural” generalization of �⊂ R2

in Section 2 would be

�∗ = {(xω1, y, ω2, . . . , ωn−1) ∈ Rn
: (x, y) ∈ B2(O2, a) \M, ω ∈ Sn−1

}.

However, the use of Lemma 3 to help establish (30) in�∗ is highly problematic. On
the other hand, an n-dimensional “Concus–Finn theorem” for a nonconvex conical
point (e.g., P ∈ ∂�∗) would only require an inequality like (26) to prove that f <φ
on ∂� \ {P} near P , and hence that f is discontinuous at P; the replacement of
(17) by (31) in order to obtain � such that ∂� \ {P} is C∞ would be unnecessary.
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BRIDGE SPHERES FOR THE UNKNOT
ARE TOPOLOGICALLY MINIMAL

JUNG HOON LEE

Topologically minimal surfaces were defined by Bachman as topological
analogues of geometrically minimal surfaces, and one can associate a topo-
logical index to each topologically minimal surface. We show that an (n+1)-
bridge sphere for the unknot is a topologically minimal surface of index at
most n.

1. Introduction

Let S be a closed orientable separating surface embedded in a 3-manifold M . The
structure of the set of compressing disks for S, such as how a pair of compressing
disks on opposite sides of S intersects, reveals some topological properties of M .
For example, if S is a minimal genus Heegaard surface of an irreducible manifold M
and S has a pair of disjoint compressing disks on opposite sides, then M contains
an incompressible surface [Casson and Gordon 1987].

The disk complex D(S) of S is a simplicial complex defined as follows.

• Vertices of D(S) are isotopy classes of compressing disks for S.

• A collection of k + 1 vertices forms a k-simplex if there are representatives
for each that are pairwise disjoint.

The disk complex of an incompressible surface is empty. A surface S is strongly
irreducible if S compresses to both sides and every compressing disk for S on one
side intersects every compressing disk on the opposite side. So the disk complex of
a strongly irreducible surface is disconnected. Extending these notions, Bachman
[2010] defined topologically minimal surfaces, which can be regarded as topological
analogues of (geometrically) minimal surfaces.

A surface S is topologically minimal if D(S) is empty or πi (D(S)) is nontrivial
for some i . The topological index of S is 0 if D(S) is empty, and the smallest n
such that πn−1(D(S)) is nontrivial, otherwise.

Topologically minimal surfaces share some useful properties. For example, if an
irreducible manifold contains a topologically minimal surface and an incompressible
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Keywords: disk complex, topologically minimal surface, bridge splitting, unknot.
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surface, then the two surfaces can be isotoped so that any intersection loop is
essential in both surfaces. There exist topologically minimal surfaces of arbitrarily
high index [Bachman and Johnson 2010], and see also [Lee 2015] for possibly high
index surfaces in (closed orientable surface)× I . In this paper we consider bridge
splittings of 3-manifolds, and show that the simplest bridge surfaces, bridge spheres
for the unknot in S3, are topologically minimal. The main idea is to construct a
retraction from the disk complex of a bridge sphere to Sn−1 as in [Bachman and
Johnson 2010] and [Lee 2015].

Theorem 1.1. An (n+ 1)-bridge sphere for the unknot is a topologically minimal
surface of index at most n.

In particular, the topological index of a 3-bridge sphere for the unknot is two.
We conjecture that the topological index of an (n+ 1)-bridge sphere for the unknot
is n. There is another conjecture that the topological index of a genus n Heegaard
surface of S3 is 2n− 1. This correspondence may be due to the fact that a genus n
Heegaard splitting of S3 can be obtained as a 2-fold covering of S3 branched along
an unknot in (n+ 1)-bridge position.

2. Bridge splitting

For a closed 3-manifold M , a Heegaard splitting M = V+∪S V− is a decomposition
of M into two handlebodies V+ and V− with ∂V+ = ∂V− = S. The surface S is
called a Heegaard surface of the Heegaard splitting.

Let K be a knot in M such that V± ∩ K is a collection of n boundary-parallel
arcs {a±1 , . . . , a±n } in V±. Each a±i is called a bridge. The decomposition

(M, K )= (V+, V+ ∩ K )∪S (V−, V− ∩ K )

is called a bridge splitting of (M, K ), and we say that K is in n-bridge position
with respect to S. A bridge a±i cobounds a bridge disk 1±i with an arc in S. We
can take the bridge disks 1+i (i = 1, . . . , n) to be mutually disjoint, and similarly
for 1−i (i = 1, . . . , n). By a bridge surface, we mean S− K . The set of vertices of
D(S− K ) consists of compressing disks for S− K in V+− K and V−− K .

Two bridge surfaces S − K and S′ − K are equivalent if they are isotopic in
M−K . An n-bridge position of the unknot in S3 is unique for every n [Otal 1982],
so for n ≥ 2 it is perturbed, i.e., there exists a pair of bridge disks 1+i and 1−j such
that the arcs 1+i ∩ S and 1−j ∩ S intersect at one endpoint. The uniqueness also
holds for 2-bridge knots [Scharlemann and Tomova 2008] and torus knots [Ozawa
2011]. However, there are 3-bridge knots that admit multiple 3-bridge spheres
[Birman 1976; Montesinos 1976].
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Figure 1. Bridges and bridge disks.

3. Proof of Theorem 1.1

Let S3 be decomposed into two 3-balls B+ and B− with common boundary S.
Let K be an unknot in S3 which is in (n + 1)-bridge position with respect to S.
Then K ∩ B± is a collection of n + 1 bridges a±i (i = 1, . . . , n + 1) in B±. We
assume that the bridges are arranged with a±1 adjacent to a∓1 and a∓2 , with a±i
adjacent to a∓i−1 and a∓i+1 for 2 ≤ i ≤ n, and with a±n+1 adjacent to a∓n and a∓n+1.
Let {1±i } be a collection of disjoint bridge disks 1±i for a±i with 1±i ∩ S = b±i . We
assume that int b+i ∩ int b−j =∅ for any i and j . See Figure 1 for an example.

Let P be the (2n+2)-punctured sphere S−K . We define compressing disks D±i
(i = 1, . . . , n) for P in B±− K as follows. Let D+1 be a disk in B+− K such that
∂D+1 = ∂N (b+1 ), where N (b+1 ) is a neighborhood of b+1 taken in S. Similarly, other
disks are defined so as to satisfy the following.

∂D−1 = ∂N (b−1 ),

∂D+2 = ∂N (b+1 ∪ b−1 ∪ b+2 ),

∂D−2 = ∂N (b−1 ∪ b+1 ∪ b−2 ),
...

∂D+i = ∂N (b+1 ∪ b−1 ∪ · · · ∪ b+i−1 ∪ b−i−1 ∪ b+i ),

∂D−i = ∂N (b−1 ∪ b+1 ∪ · · · ∪ b−i−1 ∪ b+i−1 ∪ b−i ),
...

∂D+n = ∂N (b+1 ∪ b−1 ∪ · · · ∪ b+n−1 ∪ b−n−1 ∪ b+n ),

∂D−n = ∂N (b−1 ∪ b+1 ∪ · · · ∪ b−n−1 ∪ b+n−1 ∪ b−n ).

The ∂D±i ’s in P are depicted in Figure 2.
Now we define subsets C±i (i = 1, . . . , n) of the set of vertices of D(P) as
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Figure 2. ∂D±i (i = 1, . . . , n) in P .

follows. For odd i , let

C+i = {D
+

i },

C−i = {essential disks in B−− K that intersect D+i
and are disjoint from D+1 , D+3 , . . . , D+i−2}.

For even i , let

C+i = {essential disks in B+− K that intersect D−i
and are disjoint from D−2 , D−4 , . . . , D−i−2},

C−i = {D
−

i }.

Note that for all i , D±i belongs to C±i .

Lemma 3.1. The collection {C±i } (i = 1, . . . , n) is a partition of the set of essential
disks in B±− K .

Proof. First we show that {C+i } (i = 1, . . . , n) is a partition of the set of essential
disks in B+− K . We show that any essential disk in B+− K belongs to one and
only one C+i .

An essential disk in B+−K that intersects D−2 belongs to C+2 by definition. Let
E2 = N (b−1 ∪ b+1 ∪ b−2 ) be the disk in S such that ∂E2 = ∂D−2 .

Claim 1. If an essential disk D in B+− K is disjoint from D−2 and ∂D is in E2,
then D is isotopic to D+1 ∈ C+1 .

Proof of Claim 1. We assume that D intersects D+1 transversely and minimally, so
D ∩ D+1 consists of arc components. Let E1 = N (b+1 ) be the disk in S such that
∂E1 = ∂D+1 . See Figure 3. Suppose that D ∩ D+1 6= ∅. Consider an outermost
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Figure 3. D+1 in C+1 .

disk 1 of D cut off by an outermost arc of D∩D+1 . By the minimality of |D∩D+1 |,
1 cannot lie in the 3-ball B bounded by D+1 ∪ E1 containing a+1 . So 1 lies outside
of B. Let D be one of the disks obtained from D+1 by surgery along1 such that ∂D
bounds a disk E in E2− E1. Let p be the point a+2 ∩ (E2− E1) and q be the point
a+3 ∩ (E2− E1).

Suppose E contains p. Then the sphere D∪E intersects a+2 ∪b+2 in a single point
after a slight isotopy of int b+2 into B−, a contradiction. So E does not contain p,
and by similar reasoning E does not contain q. Then E is an inessential disk in
E2− E1− K , so we can reduce |D ∩ D+1 |, a contradiction.

Hence D∩D+1 =∅. Let E be the disk in E2 such that ∂E = ∂D. If ∂E is in E1,
then D is isotopic to D+1 . Suppose ∂E is in E2− E1. Then E contains neither p
nor q, since otherwise D ∪ E intersects a+2 ∪ b+2 or a+3 ∪ b+3 in a single point as
above. So we get the conclusion that D is isotopic to D+1 . �

Therefore if an essential disk in B+− K is disjoint from D−2 and its boundary is
in S− E2, then it belongs to one of C+3 , . . . ,C+n .

An essential disk in B+− K that is disjoint from D−2 and intersects D−4 belongs
to C+4 by definition. Let E4= N (b−1 ∪b+1 ∪· · ·∪b−3 ∪b+3 ∪b−4 ) be the disk in S such
that ∂E4 = ∂D−4 . Let D be an essential disk in B+− K that is disjoint from D−2
and D−4 and such that ∂D ⊂ S− E2.

Claim 2. If ∂D is in E4 (hence in E4− E2), then D is isotopic to D+3 ∈ C+3 .

Proof of Claim 2. We assume that |D ∩ D+3 | is minimal up to isotopy, so D ∩ D+3
consists of arc components. Let E3 = N (b+1 ∪ b−1 ∪ b+2 ∪ b−2 ∪ b+3 ) be the disk in S
such that ∂E3 = ∂D+3 . See Figure 4.

Suppose that D ∩ D+3 6= ∅. Consider an outermost disk 1 of D cut off by an
outermost arc of D ∩ D+3 . Without loss of generality, we assume that ∂1∩ S lies
in E3− E2. Let D be one of the disks obtained from D+3 by surgery along 1 such
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Figure 4. D+3 in C+3 .

that ∂D bounds a disk E in E3− E2. Let p be the point a+2 ∩ (E3− E2) and q be
the point a+3 ∩ (E3− E2).

Suppose E contains p. Then the sphere D∪E intersects a+2 ∪b+2 in a single point
after a slight isotopy, a contradiction. So E does not contain p, and similarly E
does not contain q . Then E is an inessential disk in E3− E2−K , so we can reduce
|D ∩ D+3 |, a contradiction. Hence D ∩ D+3 = ∅. Then, reasoning as we did for
Claim 1, we see that D is isotopic to D+3 . �

Therefore if an essential disk in B+ − K is disjoint from D−2 and D−4 and its
boundary is in S− E4, then it belongs to one of C+5 , . . . ,C+n .

In general, let E2i = N (b−1 ∪ b+1 ∪ · · · ∪ b−2i−1 ∪ b+2i−1 ∪ b−2i ) be the disk in S
such that ∂E2i = ∂D−2i . Let D be an essential disk in B+− K that is disjoint from
D−2 , D−4 , . . . , D−2i−2 and such that ∂D ⊂ S− E2i−2.

• If ∂D ⊂ E2i − E2i−2, then D is isotopic to D+2i−1 ∈ C+2i−1.

• If D intersects D−2i , then D belongs to C+2i by definition.

• If ∂D ⊂ S− E2i , then D belongs to one of C+2i+1, . . . ,C+n .

An inductive argument in this way leads to the conclusion that any essential disk
in B+− K belongs to one and only one C+i . A similar argument shows that {C−i }
(i = 1, . . . , n) is a partition of the set of essential disks in B−− K . �

The collection of disks {D+1 , D−1 , . . . , D+n , D−n } spans an (n− 1)-sphere Sn−1

in D(P). There is no edge in D(P) connecting C+i and C−i by definition. There
exists an edge in D(P) connecting C±i and C±j for i 6= j , e.g., an edge between D±i
and D±j , and there exists an edge in D(P) connecting C+i and C−j for i 6= j , e.g.,
an edge between D+i and D−j . Hence if we define a map r̄ from the set of vertices
of D(P) to the set of vertices of Sn−1 by

r̄(v)= D±i if v ∈ C±i ,
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then r̄ extends to a continuous map from the 1-skeleton of D(P) to the 1-skeleton
of Sn−1. Since higher-dimensional simplices of D(P) are determined by 1-simplices,
the map r̄ can be extended to a retraction r :D(P)→ Sn−1. Hence πn−1(D(P)) 6= 1,
and the topological index of P is at most n.
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ON THE GEOMETRIC CONSTRUCTION
OF COHOMOLOGY CLASSES FOR

COCOMPACT DISCRETE SUBGROUPS
OF SLn(R) AND SLn(C)

SUSANNE SCHIMPF

We construct nontrivial cohomology classes for certain cocompact discrete
subgroups of SLn(R) and SLn(C) using a geometric method. The discrete
subgroups are of arithmetic nature, i.e., they arise from arithmetic sub-
groups of suitably chosen algebraic groups. In certain cases, we show the
nonvanishing of automorphic representations as a consequence.

1. Introduction

This paper contributes to the research on cohomology of arithmetic groups by
providing a nonvanishing result for the cohomology of certain families of cocom-
pact discrete subgroups of the real Lie groups SLn(R) and SLn(C). The discrete
subgroups are of arithmetic nature, i.e., they arise from arithmetic subgroups of
suitably chosen algebraic groups. Our approach is via a geometric argument.

The main result. Let G be a semisimple real Lie group with finite center. Denote by
K a maximal compact subgroup and by 0 a torsion-free discrete subgroup of G. The
action of 0 on the symmetric space X := K\G is smooth, proper and free, and the
quotient X/0 is a K (0, 1)-space. In particular, one has H∗(0,C)= H∗(X/0;C),
i.e., the group cohomology of 0 with respect to the trivial 0-module C equals the
singular cohomology of X/0 with complex coefficients.

A particularly interesting case is the situation where the discrete subgroup 0 is
cocompact, i.e., the locally symmetric space X/0 is compact. General results by
Borel [1963] and Borel and Harder [1978] imply that such cocompact subgroups
can be constructed as arithmetic subgroups of suitable algebraic groups defined
over some algebraic number field. One can then use geometric methods to study
the cohomology of the compact locally symmetric space X/0. Assuming the space

The author was supported by the FWF Austrian Science Fund, grant P 21090-N13.
MSC2010: primary 11F75; secondary 11F70, 11E57.
Keywords: cohomology, arithmetic subgroup, special linear group, geometric cycle, automorphic
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X/0 is orientable, one approach is to construct certain oriented, totally geodesic sub-
manifolds (so-called geometric cycles) and show that their fundamental homology
classes contribute nontrivially to the cohomology of X/0 via Poincaré duality. Such
methods have been successfully applied to discrete subgroups of several classical
and exceptional Lie groups including SO(p, q), SU(p, q), SU∗(2n) and G2; see
[Millson and Raghunathan 1981; Schwermer and Waldner 2011; Waldner 2010].
In this work, we deal with the special linear group over the real and the complex
numbers. We obtain a result of the following form (see Theorems 5.6 and 6.5).

Theorem. Let n ∈ N, n ≥ 2.

(1) Let X := SO(n)\SLn(R) denote the symmetric space attached to the real Lie
group SLn(R). If n is even, there exists a discrete cocompact arithmetically
defined subgroup 0 ⊂ SLn(R) such that H k(X/0;C) contains nontrivial
cohomology classes for all k of the form

k = pq and k = 1
2(p

2
+ q2
+ n)− 1,

where p and q are positive integers with p+ q = n, and, if n 6= 2, for

k = 1
4(n

2
+ 2n) and k = 1

4 n2
− 1.

(2) Let X := SU(n)\SLn(C) denote the symmetric space attached to the real
Lie group SLn(C). There exists a discrete cocompact arithmetically defined
subgroup 0 ⊂ SLn(C) such that H k(X/0;C) contains nontrivial cohomology
classes for all k of the form

k = 2pq and k = p2
+ q2
− 1,

where p and q are positive integers with p+ q = n, and for

k = 1
2(n

2
− n) and k = 1

2(n
2
+ n)− 1.

Moreover, if n is even and n 6= 2, there are nontrivial cohomology classes in
the degrees

k = 1
2(n

2
+ n), k = 1

2(n
2
− n)− 1, k = 1

2 n2
− 1 and k = 1

2 n2.

When H∗(X/0,C) is interpreted as the cohomology of the de Rham complex
�∗(X/0,C), the constructed classes are not represented by SLn(R)- or SLn(C)-
invariant differential forms on X.

A geometric method. The geometric method we are using to obtain our result was
developed by Millson and Raghunathan [1981] and is based on an earlier result of
Millson [1976] about the nonvanishing of the first Betti number of certain compact
hyperbolic manifolds.
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Their approach applies to the situation where the Lie group G is the group of
real points of a reductive algebraic Q-group and 0 is a cocompact torsion-free
arithmetic subgroup of this algebraic group. Under the assumption that the space
X/0 is orientable, they consider so-called geometric cycles, orientable totally
geodesic submanifolds of X/0. Then the approach of Millson and Raghunathan is
based on finding two such geometric cycles of complementary dimension in X/0
that intersect transversally and with positive multiplicity in all points of intersec-
tion. Under this assumption, the fundamental classes of the two submanifolds
have nontrivial intersection number, and hence they contribute nontrivially to the
cohomology of X/0. In 1993, Rohlfs and Schwermer found a way to generalize
the method in such a way that it also applies to nontransversal intersections, by
using the theory of so-called excess bundles. Their work involves the investigation
of deep orientability questions.

As the proof of our result is heavily based on the method of Rohlfs and Schwermer,
we give an overview of the relevant notions and their main theorem in Section 3.
Then, Section 4 is devoted to introducing the framework of algebraic groups in
which the construction of geometric cycles and the associated cohomology classes
is carried out: for our groups of interest, SLn(R) and SLn(C), the algebraic group
to start with is the special unitary group

G := SUm(h, D, σ )

defined over an algebraic number field F , where D is a division algebra with
involution σ and h denotes a σ -hermitian form on Dm . Under certain assumptions,
the associated real Lie group G∞ is isomorphic to SLn(R) or SLn(C) up to compact
factors and can be used for the construction of cocompact discrete subgroups. In
this setting, the construction of geometric cycles and the application of the method
of Rohlfs and Schwermer to obtain nontrivial cohomology classes is carried out
in Sections 5 and 6, for the real and complex case, respectively. The main results
are stated as Theorems 5.6 and 6.5.

Automorphic representations. Nonvanishing results for the cohomology of cocom-
pact discrete subgroups can be applied to the theory of automorphic representations
using a well-known result of Matsushima that allows one to interpret the cohomology
of X/0 in terms of the relative Lie algebra cohomology of irreducible unitary
representations of G. Thus, we have devoted Section 7 to the study of representa-
tions with nontrivial (g, K )-cohomology occurring in Matsushima’s formula for
the group G = SLn(C). Making explicit general results of Enright [1979] and
Delorme [1979] for simply connected complex Lie groups for the case of SLn(C),
we obtain a complete classification of the equivalence classes of irreducible unitary
representations with nontrivial (g, K )-cohomology. By comparing the occurring
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degrees in which X/0 may possibly have nontrivial cohomology with those detected
by special cycles, we can identify specific automorphic representations of G with
respect to 0 for small values of n.

2. Notation

• For an algebraic number field k, we let V = V (k) and V∞ = V∞(k) denote its set
of places and archimedean places, respectively. For a place v ∈ V , we denote by kv
the completion of k at v.

• All algebraic groups are assumed to be linear, i.e., they can be considered as
smooth affine algebraic group schemes. We denote algebraic groups by bold letters
(G, H , . . . ). For an algebraic group G defined over a number field k, we set
G∞ :=

∏
v∈V∞G(kv).

• Lie groups are denoted by standard Roman letters (G, H , . . . ). Whenever we
speak of a semisimple Lie group, we assume that it has finite center and finitely
many connected components.1 We use the notion of a reductive Lie group as in
[Knapp 1996, Section VII.2].

• For a semisimple Lie group G, we denote by Ĝ the unitary dual of G, that is, the
set of unitary equivalence classes of irreducible unitary representations.

• Lie algebras are denoted by small German letters (g, h, . . . ) and can be real or
complex depending on context. If g is a real Lie algebra, we will denote by gC its
complexification and if g is complex we write gR for the real Lie algebra underlying
g. In general, we denote the Lie algebra of a Lie group G by g and consider it as a
real or complex Lie algebra depending on whether G is a real or a complex group.

• Let R be a ring and let n ∈ N. We denote by In the n× n unity matrix in Mn(R)
and by Ip,q the matrix diag(Ip,−Iq) ∈ Mn(R), for p+ q = n. For even n, we set
Jn :=

( 0
In/2

−In/2
0

)
.

3. A geometric method

This section gives a brief summary of the method of Rohlfs and Schwermer [1993]
for the geometric construction of nontrivial cohomology classes.

3.1. Special cycles. Let G be a connected reductive algebraic group defined over Q

and write G for its group of real points G(R). Then G is a real reductive Lie group
with a maximal compact subgroup K ⊂G and we can form the associated symmetric
space X := K\G. Let now 0 ⊂ G(Q) be a torsion-free arithmetic subgroup. Then

1This is to ensure that the semisimple groups are also reductive in the sense of [Knapp 1996]. Lie
groups arising as the groups of real or complex points of semisimple algebraic groups will always
have this property.
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0 is a discrete subgroup of G and it acts on the symmetric space X by right
translations. This action is smooth, proper and free, and the quotient X/0 is a
Riemannian locally symmetric space.

Let µ be a Q-rational automorphism of G and assume that K and 0 are
invariant under µ. Then the fixed point group Fix(µ, G) is a reductive sub-
group of G and we can associate with it the locally symmetric space C(µ, 0) :=
Fix(µ, K )\Fix(µ, G)(R)/Fix(µ, 0). This is a connected, totally geodesic sub-
manifold of X/0 and is called the special cycle associated with µ.

Let us now assume that 2 is the group generated by two commuting Q-rational
automorphisms τ1, τ2 of G of finite order and that K and 0 are 2-invariant.2

In general, the locally symmetric space X/0 and its special cycles need not be
orientable. However, it was shown by Rohlfs and Schwermer [1993] that by passing
to a suitable subgroup of finite index in 0, one can always assume that the manifolds
X/0, C(τ1, 0), C(τ2, 0) and the (finitely many) connected components of their
intersection are orientable.

Let us denote by [C(τi , 0)] the fundamental homology class of C(τi , 0) in
H∗(C(τi , 0)) and for simplicity also its image in H∗(X/0), for i ∈ {1, 2}. If we
assume in addition that the two cycles are of complementary dimension in X/0,
we can look at their intersection number [C(τ1, 0)][C(τ2, 0)].

Since these submanifolds need not necessarily intersect transversally, the de-
termination of their intersection number is a complicated issue. It involves the
computation of Euler numbers of a certain excess bundle. Under certain assumptions
connected to deep orientability questions for the involved manifolds, Rohlfs and
Schwermer have come up with a nonvanishing result for the intersection number:

Theorem 3.2 [Rohlfs and Schwermer 1993, Theorem 4.11]. Let G be a reductive
algebraic Q-group, let τ1 and τ2 be Q-rational automorphisms of G of finite
order, and let 0 be a torsion-free, 〈τ1, τ2〉-stable, cocompact arithmetic subgroup
of G such that X/0, C(τ1, 0), C(τ2, 0) and all connected components of their
intersection are orientable. Suppose that the associated cycles C(τ1) and C(τ2)

are of complementary dimension. Assume that

(i) the real Lie groups G(R), Fix(τ1, G)(R) and Fix(τ2, G)(R) act orientation-
preservingly on X , X (τ1) and X (τ2), respectively, and

(ii) the group Fix(〈τ1, τ2〉, G)(R) is compact.

Then there exists a 〈τ1, τ2〉-stable normal subgroup 0′ ⊂ 0 of finite index such that

[C(τ1, 0
′)][C(τ2, 0

′)] 6= 0.

2Such a choice of K and 0 is always possible without loss of generality. For K , this follows from
[Helgason 1978, Theorem 13.5]. For 0, set 0′ :=

⋂
θ∈2θ(0). Then 0′ is of finite index in 0 and

stable under 2 since the elements of 2 are automorphisms of finite order.
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Remark. Condition (i) is quite restricting and we will see below natural choices
for G, τ1 and τ2 where it is not met. Note that the condition is satisfied if G(R),
Fix(τ1, G)(R) and Fix(τ2, G)(R) are connected.

Clearly, the nonvanishing of the intersection number implies the nonvanishing of
the homology classes [C(τi , 0

′)] in H∗(X/0′,C) and of the respective cohomology
classes obtained via Poincaré duality, for i ∈ {1, 2}.

For a compact quotient X/0, it is well-known that there exists an injective
homomorphism β∗0 : H

∗(Xu,C)→ H∗(X/0,C), where Xu denotes the compact
dual symmetric space of X . When interpreting H∗(X/0,C) in terms of de Rham co-
homology, the classes in the image of this map can be identified with the G-invariant
differential forms on X . It was shown by Millson and Raghunathan [1981] that
under certain conditions the classes constructed with Theorem 3.2 are new in the
sense that they do not lie in the image of β0:

Theorem 3.3. Let G, τ1, τ2 and 0 satisfy the assumptions of Theorem 3.2 and
suppose moreover that τ1 and τ2 are of order two. Then there exists a 〈τ1, τ2〉-stable
subgroup 0′′ of 0′ of finite index such that the nontrivial cohomology classes defined
by [C(τ1, 0

′′)] and [C(τ2, 0
′′)] via Poincaré duality are not in the image of β∗0′′ .

Example 3.4. Consider the real Lie group G = SO(p, q) with maximal compact
subgroup K = S(O(p)×O(q)). The group K (and hence also G) is not connected
but has two connected components that are distinguished by the determinant of
the upper left (p× p)-block. One can show that the action of G on the quotient
X := K\G by left translations is orientation-preserving if and only if n = p+ q
is even. Note that G is the fixed point group of the involution x 7→ Ip,q(x t)−1 Ip,q

in the connected real Lie group SLn(R). Hence, for odd n, this is an example of a
fixed point group that does not meet the orientability condition (i) in Theorem 3.2.

A similar argument also applies to the real Lie group G = S(GLp(R)×GLq(R))

with maximal compact subgroup K = S(O(p)× O(q)).

4. The setup: the construction of discrete cocompact subgroups
of SLn(R) and SLn(C)

In this section we will see how to construct cocompact discrete subgroups of SLn(R)

or SLn(C) using an arithmetic method based on the compactness criterion by Borel
and Harish-Chandra. The starting point is the special unitary group over a division
algebra.

Let E be an algebraic number field and D a central division algebra over E of
degree d endowed with an involution σ of the first or second kind. Recall that if σ is
of the second kind, there exists a subfield F of E of index 2 such that σ |F = id and
σ |E = ι, where ι is the nontrivial Galois automorphism of E over F . For simplicity
of notation, we set F := E and ι := id in case σ is an involution of the first kind.
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Let m be a natural number and let h be a σ -hermitian (or σ -skew-hermitian) form
on Dm . Then the special unitary group of rank m over D is defined as

SUm(h, D, σ ) := {x ∈ SLm(D) | h(xv, xw)= h(v,w) for all v,w ∈ Dm
},

where SLm(D) denotes the group of matrices in Mm(D) with reduced norm 1.
It is well-known that there exists a simply connected semisimple algebraic group

defined over F , whose F-rational points coincide with SUm(h, D, σ ). We denote
this group by SUm(h, D, σ ). Indeed, on the algebraic F-group ResE/F SLm(D)
we can define an F-rational morphism ψ that is given on the F-rational points by
ψ(x)= H−1σ(x t)−1 H , where H is the matrix of h with respect to a chosen basis,
and we have SUm(h, D, σ )= Fix(ψ,ResE/F SLm(D)).

Being an F-rational algebraic group, we can look at the real Lie group of
Fv-rational points of SUm(h, D, σ ) for any archimedean place v ∈ V∞(F). The
nature of this real Lie group depends on the properties of the place v and the splitting
behavior of D at v. Recall that for a quadratic extension E/F a place v ∈ V (F) is
said to be decomposed in E if there are exactly two places w ∈ V (E) such that w | v,
and nondecomposed otherwise. We denote by ρ the involution on Mm(D) given
by ρ(x) := H−1σ(x)t H . The following result can be obtained as an application of
results from the theory of algebras with involutions and some easy computations.

Proposition 4.1. (1) Let σ be an involution of the first kind on D and assume that
D splits at all real places of E. Let w ∈ V∞(E) be an archimedean place of E.
Then there are the following possibilities:

• If w is a complex place, we have

SUm(h, D, σ )(Ew)∼=
{

SO(n,C) if ρ is of orthogonal type,
Sp(n,C) if ρ is of symplectic type.

• If w is a real place, we have

SUm(h, D, σ )(Ew)∼=
{

SO(p, q) if ρ is of orthogonal type,
Sp(n,R) if ρ is of symplectic type,

for suitable nonnegative integers p and q with p+ q = n.

(2) Let σ be an involution of the second kind on D and consider an archimedean
place v ∈ V∞(F). Then there are the following possibilities:

• If v is a complex place, we have SUm(h, D, σ )(Fv)∼= SLn(C).

• If v is a nondecomposed real place, we have SUm(h, D, σ )(Fv) ∼= SU(p, q)
for nonnegative integers p, q with p+ q = n.
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• If v is a decomposed real place and w1 | v and w2 | v are the real places of E
lying above v, we have

SUm(h, D, σ )(Fv)∼=
{

SLn(R) if D splits at w1 and w2,

SLn/2(H) if D ramifies at w1 and w2.

Using this result, we can now find certain conditions on the number fields E
and F , the involution σ and the division algebra D such that arithmetic subgroups
of SUm(h, D, σ ) give rise to cocompact discrete subgroups of either SLn(R) or
SLn(C). An involution σ of the second kind on D is called definite if for every real
nondecomposed place v of F we have an isomorphism (D, σ )v∼= (Md(C),

∗), where
x 7→ x∗ = x̄ t denotes the conjugate-transpose involution on Md(C). In general,
an involution of the second kind need not be definite. However, if there exists an
involution of the second kind on D, there is also a definite one (see [Scharlau 1985,
Chapter 10, Remark 6.11]).

Theorem 4.2. Let ` be an archimedean local field and let n ∈ N be fixed.

(1) If ` = R, let F be a totally real number field with [F : Q] ≥ 2, let E/F be
a quadratic extension such that there is exactly one place v ∈ V∞(F) that is
decomposed in E , and let D be a division algebra of degree d | n over E that
splits at the places w1 and w2 of E lying above v. Moreover, assume that there
is a definite involution σ of the second kind on D.

(2) If `= C, let F be an algebraic number field with [F :Q] ≥ 3 that has exactly
one complex place v, and let E/F be a quadratic extension such that all real
places of F are nondecomposed in E. Let D be a division algebra of degree
d | n over E that admits a definite involution σ of the second kind.

Let m ∈N be such that dm = n. Then one can choose a σ -hermitian form h on Dm

such that any arithmetic subgroup 0 ⊂ SUm(h, D, σ )(F) gives rise to a discrete
cocompact subgroup of SLn(`).

Proof. Choose a hermitian form h in such a way that the matrix of h at each nonde-
composed place v′ of F has only positive eigenvalues (take the trivial hermitian
form, for example). Set G′ := SUm(h, D, σ ). Then, using Proposition 4.1 and the
fact that σ is definite, it follows that

G′(Fv′)∼= SU(dm, 0)= SU(n)

for all nondecomposed real places of F ; in particular, these groups are compact.
By our choice of E and F there is at least one such nondecomposed place and thus
the group G′ is anisotropic over F . On the other hand, at the decomposed place v
we have G′(Fv)∼= SLn(`) by Proposition 4.1 and the fact that D is split at w1 and
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w2 if `= R. In particular, we have

G′
∞
:=

∏
v∈V∞(F)

G′(Fv)∼= SLn(`)×
∏

v′∈V∞(F)
real, nondecomposed

SU(n).

Let 0 ⊂ G′(F) be an arbitrary arithmetic subgroup of G′. The image of 0 in G′
∞

under the diagonal embedding (still denoted by 0) is a discrete subgroup. Since G′

is semisimple and anisotropic over F , it follows from a well-know compactness
criterion due to Borel and Harish-Chandra [1962] and Mostow and Tamagawa
[1962] that the quotient G′

∞
/0 is compact. Moreover, the image of 0 under the

projection onto the noncompact factor of G′
∞

is a discrete cocompact subgroup of
G′(Fv)∼= SLn(`). �

5. Geometric cycles for SLn(R)

Let F be a totally real number field of degree r ≥ 2, and let E/F be a quadratic
extension such that there is exactly one archimedean place v ∈ V∞(F) that is
decomposed in E and all other archimedean places of F are nondecomposed. Let
us denote the nontrivial Galois automorphism of E/F by ι. Let D be a central
division algebra of degree d over E with a definite involution σ of the second kind.

In this section we will restrict to the cases where D is either the field E itself
(with σ = ι) or a quaternion division algebra over E that splits at the places w1

and w2 of E lying above v and admits a definite involution σ of the second kind.
In the latter case, we may assume by a theorem of Albert (see [Knus et al. 1998,
Proposition 2.22]) that

D = Q(a, b | F)⊗F E = Q(a, b | E)

for some a, b ∈ F× and that σ = τc,0⊗ ι, where τc,0 denotes the conjugation on
the quaternion algebra Q(a, b | F).

Let m ∈ N be arbitrary and set n := dm. Then D, E , F , σ and m satisfy the
conditions of Theorem 4.2(1) and we can find a hermitian form h such that any
arithmetic subgroup of G′ := SUm(h, D, σ ) gives rise to a discrete cocompact
subgroup of SLn(R). For technical reasons, we assume that the matrix H of h is a
diagonal matrix in Mm(F) that is positive definite under the embedding correspond-
ing to the decomposed place v. If D = E and if m is even, we assume in addition
that H is a symplectic matrix, that is, it commutes with the matrix Jm .3

In order to construct special cycles for SLn(R) we will now define suitable
morphisms of finite order. To do this, we need a preparatory lemma. Recall that,

3Such a choice of H clearly exists: take the identity matrix, for example.
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for each basis element e 6= 1 of a quaternion algebra, there exists an orthogonal
involution τe that sends e to −e and fixes all other basis elements.

Lemma 5.1. Let E be a number field and Q := Q(a, b | E) a quaternion algebra
that splits at a real place w of E. Then there exist orthogonal involutions τ and
τ(1,−1) and an isomorphism Q(a, b | Ew)→ M2(R) such that

(Q(a, b | Ew), τ ⊗ id)∼= (M2(R), x 7→ x t),

and

(Q(a, b | Ew), τ(1,−1)⊗ id)∼=
(
M2(R), x 7→

( 1
0

0
−1

)
x t( 1

0
0
−1

))
.

Proof. Let aw and bw denote the images of a and b under the embedding corre-
sponding to w. Since D splits at w, exactly one of the elements aw, bw and −awbw
is negative, i.e., there exists exactly one basis element e0 ∈ {i, j, k} such that e2

0
is negative. Denote the remaining nontrivial basis elements by e1 and e2. We set
τ := τe0 and τ(1,−1) := τe1 .

Now let ϕ be the R-linear map given on the basis of Q(a, b | Ew) by 1 7→ I2 and

e0⊗1 7→

(
0

√

−e2
0

−

√

−e2
0 0

)
, e1⊗1 7→

(
0
√

e2
1√

e2
1 0

)
, e2⊗1 7→

(√
e2

2 0
0 −

√

e2
2

)
.

Then ϕ : Q(a, b | Ew)→M2(R) is a well-defined isomorphism under which τe0⊗ id
goes over to x 7→ x t and τe1 ⊗ id goes over to x 7→

( 1
0

0
−1

)
x t
( 1

0
0
−1

)
. �

Remark. Note that the two orthogonal involutions τ and τ(1,−1) commute and
that we have τ ◦ τ(1,−1) = τ(1,−1) ◦ τ = Int(e2). Moreover, τ commutes with the
conjugation τc of Q and we have τ ◦ τc = Int(e0).

Let us return to our specific choice of a division algebra D = Q(a, b | F)⊗F E
as described above. Applying Lemma 5.1 to D, we get the existence of orthogonal
involutions τ and τ(1,−1) that are mapped to x 7→ x t and x 7→

( 1
0

0
−1

)
x t
( 1

0
0
−1

)
under

a suitable splitting isomorphism at the real place w1.
Using these involutions, we can now define the following automorphisms of

order two on SLm(D):

θ : SLm(D)→ SLm(D),

θ(x)=
{

H−1(x t)−1 H if D = E,
H−1(τ (x)t)−1 H if D = Q(a, b | E),

µ : SLm(D)→ SLm(D),

µ(x)=
{

H−1 Jm(x t)−1 J−1
m H if D = E and m > 2 even,

H−1(τc(x)t)−1 H if D = Q(a, b | E) and m > 1.
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Moreover, for certain positive integers p and q such that p+ q = n, we define a
family of automorphisms νp,q : SLm(D)→ SLm(D) by

νp,q(x)=


H−1 Ip,q((x)t)−1 Ip,q H if D = E,
H−1 Ip/2,q/2(τ (x)t)−1 Ip/2,q/2 H if D = Q(a, b | E) and p, q even,
H−1(τ(1,−1)(x)t)−1 H if D = Q(a, b | E)

and p = q = n/2 is odd.

Note that θ commutes with any of the other automorphisms.

5.2. To avoid case distinctions, we put in place the following general assumptions.
Whenever we deal with the maps νp,q it should be understood that the parameters
p and q are nonzero natural numbers satisfying p+ q = n. Moreover, if D is a
quaternion algebra, we assume that both p and q are even or that p = q = n/2.
Furthermore, statements involving the map µ are only applicable when n is even
and n > 2.

The maps θ , νp,q and µ are basically built out of E-linear maps (involutions
of the first kind on SLm(D)) and the group inversion, so they define E-rational
morphisms θ , νp,q and µ on the algebraic E-group SLm(D) and F-rational automor-
phisms ResE/F θ , ResE/F νp,q and ResE/F µ on ResE/F SLm(D) by restriction of
scalars. A straightforward computation shows that these maps commute with the
morphism ψ whose fixed points in ResE/F SLm(D) define the group G′ and can
thus be restricted to G′.

The fixed points of these morphisms define algebraic subgroups of G′ whose
Fv-rational points are certain Lie subgroups of G′(Fv)∼=SLn(R). We will now deter-
mine these subgroups. Recall the definition GL(1)r (C) :={g ∈ GLr (C), |det(g)| = 1}
for a natural number r .

Proposition 5.3. Let F be a totally real number field. For G′ defined as above, we
have G′(Fv)∼= SLn(R). The fixed points of the morphisms ResE/F θ , ResE/F νp,q ,
ResE/F (νp,q ◦ θ), ResE/F µ and ResE/F (µ ◦ θ) define the following subgroups
of SLn(R):

Fix(ResE/F θ , G′)(Fv)∼= SO(n),

Fix(ResE/F νp,q, G′)(Fv)∼= SO(p, q),

Fix(ResE/F (νp,q ◦ θ), G′)(Fv)∼= S(GLp(R)×GLq(R)),

Fix(ResE/F µ, G′)(Fv)∼= Sp(n,R),

Fix(ResE/F (µ ◦ θ), G′)(Fv)∼= GL(1)n/2(C).

In particular, ResE/F θ induces a Cartan involution on SLn(R).
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Proof. We start with a general observation. Let ϕ denote an E-rational morphism
of SLm(D) such that ResE/F ϕ commutes with ψ . Then ϕ can be restricted to G′

and we have

Fix(ResE/F ϕ, G′)= Fix(ResE/F ϕ,ResE/F SLm(D))∩ G′

as a subgroup of ResE/F SLm(D). At the Fv-rational points, there exists an isomor-
phism

ResE/F (SLm(D))(Fv)∼= SLm(D)(E ⊗F Fv)
∼= SLm(D)(Ew1 ⊕ Ew2)

∼= SLn(R)×SLn(R).

Moreover,

Fix(ResE/F ϕ,ResE/F SLm(D))(Fv)
= ResE/F Fix(ϕ,SLm(D))(Fv)

= Fix(ϕ,SLm(D))(Ew1)×Fix(ϕ,SLm(D))(Ew2)

⊂ SLn(R)×SLn(R).

On the other hand, the defining condition of G′ identifies the two copies of SLn(R)

(see Proposition 4.1). Thus we can restrict to one of the components (we choose
the first one without loss of generality) and get

Fix(ResE/F ϕ, G′)(Fv)= Fix(ResE/F ϕ,ResE/F SLm(D))(Fv)∩G′(Fv)
∼= Fix(ϕ,SLm(D))(Ew1)⊂ SLn(R).

Let us now specify ϕ to be one of the above morphisms. For ϕ = θ or ϕ = νp,q ,
the group Fix(ϕ,SLm(D)) is a special unitary group with respect to a hermit-
ian form and an orthogonal involution. Therefore, by Proposition 4.1, we have
Fix(ϕ,SLm(D))(Ew1)

∼= SO(p′, q ′) for suitable p′, q ′ ∈ N. Since H is positive
definite at the place v, it does not influence the signature (p′, q ′). When D = E
it is clear from the definitions of θ and νp,q that the signature comes from the
matrices Ip,q . When D= Q(a, b | E), we can conclude from Lemma 5.1 that, under
a suitable splitting at the place w1, the involution τ t is mapped to x 7→ x t on Mn(R)

and τ t
(1,−1) is mapped to x 7→ Int(In/2,n/2)(x t). Moreover, the matrices Ip/2,q/2 are

mapped to Ip,q at the place w1. Therefore, for both choices of D, we get

Fix(ResE/F (θ), G′)(Fv)= Fix(θ ,SLm(D))(Ew1)
∼= SO(n)

and

Fix(ResE/F (νp,q), G′)(Fv)= Fix(νp,q,SLm(D))(Ew1)
∼= SO(p, q).
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In particular, ResE/F θ induces a Cartan involution on SLn(R), as the group of
Fv-rational points of its fixed point group is isomorphic to SO(n), a maximal
compact subgroup of SLn(R).

For ϕ = νp,q ◦ θ one can easily see from the definition of νp,q that

νp,q ◦ θ =


Int(Ip,q) if D = E,
Int(Ip/2,q/2) if D = Q(a, b | E) and p, q even,
Int(diag(e2, . . . , e2)) if D = Q(a, b | E) and p = q = n/2.

Here, we use the notation of Lemma 5.1 and its remark for the statement in the last
line. Under a suitable splitting isomorphism at the place w1 of E , these morphisms
go over to Int(Ip,q) on SLn(R) (to see this in the third case, use the isomorphism
given in Lemma 5.1). Therefore, we have

Fix(ResE/F (νp,q ◦ θ), G′)(Fv)= Fix(νp,q ◦ θ ,SLm(D))(Ew1)

∼= {x ∈ SLn(R) | Ip,q x Ip,q = x}
∼= S(GLp(R)×GLq(R)).

Let now ϕ = µ. The group Fix(ϕ,SLm(D)) is either a special unitary group
with respect to a skew-hermitian form and an orthogonal involution (when D = E ,
the matrix H−1 Jm occurring in the definition of µ is skew-symmetric and hence it
describes a skew-hermitian form over E) or a special unitary group with respect
to a hermitian form and a symplectic involution (when D is a quaternion algebra,
H is a diagonal matrix with entries in F and thus τc-invariant). In both cases,
Proposition 4.1 implies

Fix(ResE/F (µ), G′)(Fv)= Fix(µ,SLm(D))(Ew1)
∼= Sp(n,R).

Finally, we consider ϕ=µ◦θ . If D= E , we have (µ◦θ)(E)= Int Jm . In the case
D= Q(a, b | E), we note that (µ◦θ)(E)= τc ◦τ = Int diag(e0, . . . , e0) on Mm(D),
by the remark following Lemma 5.1. Under a suitable splitting isomorphism,
diag(e0, . . . , e0) is mapped to Jn at the place w1 of D (see Lemma 5.1). Therefore,
for both choices of D, we have

Fix(ResE/F (µ ◦ θ), G′)(Fv)= Fix(µ ◦ θ ,SLm(D))(Ew1)

∼= {x ∈ SLn(R) | Jnx J−1
n = x}

∼= GL(1)n/2(C). �

5.4. Now that we have defined certain F-rational morphisms on G′ and studied their
fixed point groups, we are ready to define the corresponding special cycles. To do
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this, we pass to the algebraic Q-group G :=ResF/Q G′. We have G(Q)∼=G′(F) and

G(R)∼= G′(R⊗Q F)=
∏

v′∈V∞(F)

G′(Fv′)= SLn(R)×
∏
v′∈V∞
v′ 6=v

SU(n).

Moreover, there exist Q-rational morphisms θ , νp,q and µ of order two on G that are
induced from the corresponding morphisms of G′. Let 0 ⊂ G(Q) be an arithmetic
subgroup of G. The image of 0 under the isomorphism G(Q) ∼= G′(F) is an
arithmetic subgroup of G′ and thus it gives rise to a discrete cocompact subgroup
of SLn(R) that we will still denote by 0 for simplicity of notation.4 Let K ′ denote
a maximal compact subgroup of G(R) and X := K ′\G(R) the symmetric space
attached to G(R). Since G(R) is a product of SLn(R) and compact factors, X is
isomorphic to SO(n)\SLn(R) and 0 acts on X by right translations. Note that X
is a symmetric space of dimension

dim X = dim(SLn(R))− dim(SO(n))= n2
− 1− 1

2 n(n− 1)= 1
2 n(n+ 1)− 1.

Let now 0 ⊂ G(Q) be a torsion-free arithmetic subgroup of G and assume that
0 and K ′ are invariant under the morphisms θ , νp,q and µ.5 Then these morphisms
induce certain special geometric cycles in X/0, as explained in Section 3.1.

Theorem 5.5. The morphisms νp,q and νp,q ◦ θ of G induce a family of pairs
of special geometric cycles C(νp,q), C(νp,q ◦ θ) in X/0, for positive integers p
and q with p+ q = n if G comes from a special unitary group over an algebraic
number field, and for positive integers p and q with p+ q = n and p and q even
or p = q = n/2 if G comes from a special unitary group over a quaternion algebra.
If n is even and n > 2, the morphisms µ and µ◦ θ induce a pair of geometric cycles
C(µ), C(µ◦θ) in X/0. Some properties of these cycles are summarized in Table 1.

Proof. The existence of the cycles is clear from Section 3.1. The isomorphisms
in the second column of Table 1 follow from Proposition 5.3 and the fact that
G(R) ∼= G′(Fv) up to compact factors. The dimensions of the cycles can be
computed as the dimensions of the associated symmetric spaces, using the dimen-
sions of the occurring real Lie groups and their maximal compact subgroups (for
a list of dimensions of classical Lie groups, see, e.g., [Helgason 1978, Table IV,
p. 516]). Note that both SO(p, q) and S(GLp(R)×GLq(R)) have maximal compact

4To be precise, the arithmetic subgroup 0 ⊂ G(Q) can be regarded as a subgroup of G(R) =
SLn(R)× compact factors, and the discrete cocompact subgroup is in fact the projection of 0 to the
noncompact factor of G(R).

5Such a choice of K ′ is possible by [Helgason 1978, Theorem 13.5]
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C = C(ϕ) Fix(ϕ, G)(R)∼= dim C

C(νp,q) SO(p, q) pq

C(νp,q ◦ θ) S(GLp(R)×GLq(R))
1
2(p

2
+ q2
+ n)− 1

C(µ) Sp(n,R) 1
4(n

2
+ 2n)

C(µ ◦ θ) GL(1)n/2(C)
1
4 n2
− 1

Table 1. Geometric cycles in SO(n)\SLn(R)/0: the isomorphism
in the second column is up to compact factors and the lower half
of the table is only applicable if n is even and n > 2.

subgroup S(O(p)× O(q)) and that both Sp(n,R) and GL(1)n/2(C) have maximal
compact subgroup isomorphic to U (n/2).6 �

Finally, we can apply Theorem 3.2 to the constructed cycles to obtain a nonvanish-
ing result for the cohomology of X/0. As before, we denote by Xu∼=SO(n)\SU(n)
the compact dual symmetric space of X .

Theorem 5.6. Let n ∈ N be even.

(1) There exists a cocompact discrete subgroup 01 of SLn(R) that arises from an
arithmetic subgroup of a special unitary group over an algebraic number field,
such that H k(X/01,C) contains nontrivial cohomology classes for

k = pq and k = 1
2(p

2
+ q2
+ n)− 1,

where p and q are positive integers with p+ q = n, and, if n 6= 2, for

k = 1
4(n

2
+ 2n) and k = 1

4 n2
− 1.

(2) There exists a cocompact discrete subgroup 02 of SLn(R) that arises from an
arithmetic subgroup of a special unitary group over a quaternion algebra, such
that H k(X/02,C) contains nontrivial cohomology classes for

k = pq and k = 1
2(p

2
+ q2
+ n)− 1,

where p and q are positive, even integers with p+q = n or p = q = n/2, and,
if n 6= 2, for

k = 1
4(n

2
+ 2n) and k = 1

4 n2
− 1.

In both cases, these classes are not in the image of the respective injective map

β∗0i
: H∗(Xu,C)→ H∗(X/0i ,C),

i.e., they are not represented by SLn(R)-invariant forms on X.
6Here U (n/2) is considered as a subgroup of Sp(n) via the embedding φ : GLn/2(C)→ GLn(R),

X = A+ i B 7→
( A

B
−B
A
)
, for A, B ∈ GLn/2(R).
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Proof. We give a detailed proof of (1), then (2) follows analogously.
Let G denote the algebraic Q-group whose real points are isomorphic to SLn(R)

up to compact factors and which is defined via a special unitary group over an
algebraic number field. Set 9 := {νp,q | p+ q = n, p 6= 0 6= q} ∪ {µ} and let 0 be
a torsion-free arithmetic subgroup of G that is stable under the group generated
by 9 ∪ {θ}. If we choose τ1 ∈ 9 and set τ2 := τ1 ◦ θ , the pair (τ1, τ2) is a pair
of commuting morphisms of order two and it defines a pair of geometric cycles
on X/0, whose properties are given in Theorem 5.5. As discussed in Section 3 we
may assume that the cycles and the connected components of their intersection are
orientable. Moreover, it follows from Table 1 and the fact that τ1 ◦τ2 = θ induces a
Cartan involution on SLn(R) that the cycles C(τ1) and C(τ2) are of complementary
dimension and satisfy condition (ii) of Theorem 3.2.

To apply Theorem 3.2, it remains to check condition (i). It suffices to look at
the action of the noncompact factor of Fix(τ1, G)(R) and Fix(τ2, G)(R) on the
respective symmetric space.

For τ1 = µ, we have Fix(τ1, G)(R)∼= Sp(n,R) and Fix(τ2, G)(R)∼=GL(1)n/2(C)

up to compact factors (see Table 1). These are connected Lie subgroups of
SLn(R) and hence they act orientation-preservingly on the respective symmetric
spaces. For τ1 = νp,q , we have Fix(τ1, G)(R) ∼= SO(p, q) and Fix(τ2, G)(R) ∼=
S(GLp(R)×GLq(R)) up to compact factors, where p+ q = n. Since n is even, it
follows from Example 3.4 that these groups act orientation-preservingly on their
associated symmetric spaces.

We conclude that, for any choice of τ1 ∈ 9, the pair (τ1, τ2) meets all as-
sumptions of Theorem 3.2. Therefore, for each such τ1, we can find a normal,
〈τ1, τ2〉-stable subgroup 0τ1 ⊂ 0 of finite index such that H k(X/0τ1,C) 6= 0 for
k ∈ {dim C(τ1), dim C(τ2)}. Moreover, 0τ1 can be chosen such that the nontrivial
cohomology classes detected by C(τ1) and C(τ2) are not represented by SLn(R)-
invariant differential forms on X , as follows from Theorem 3.3. Set

0′ :=
⋂
τ1∈9

0τ1 and 01 :=
⋂
τ1∈9

τ1(0
′)∩ τ2(0

′).

Then 01 is a cocompact discrete subgroup of SLn(R) that is of finite index in each
0τ1 and 〈τ1, τ2〉-stable for each τ1 ∈9. The group 01 admits nontrivial cohomology
classes in all degrees k ∈ {dim C(τ1), dim C(τ2)} for possible pairs (τ1, τ2) with
τ1 ∈9, and these classes are not represented by SLn(R)-invariant differential forms
on X .7 The exact dimensions can be read off from Table 1. �

Remark. (1) We do not get any result in the case where n is odd. The morphism µ

is not defined in this case, so we are left with the cycles C(νp,q) and C(νp,q ◦ θ).

7Here we use the fact that the results of Theorems 3.2 and 3.3 carry over to finite index subgroups
of 0.
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dim X/0 Cycle Subgroup Contributing Occurs for
of SLn(R) to degree 0 = 01 0 = 02

n = 2 2 C(ν1,1) SO(1, 1) 1 × ×

C(ν1,1 ◦ θ) S(GL1×GL1) 1 × ×

C(ν1,3 ◦ θ) S(GL1×GL3) 3 ×

C(µ) Sp(4,R) 3 × ×

n = 4 9 C(ν2,2 ◦ θ) S(GL2×GL2) 4 × ×

C(ν2,2) SO(2, 2) 5 × ×

C(µ ◦ θ) GL(1)2 (C) 6 × ×

C(ν1,3) SO(1, 3) 6 ×

Table 2. Real case: degrees in H∗(X/0) in which we have non-
trivial cohomology classes coming from special cycles.

These are indeed of complementary dimension and Fix(〈νp,q, νp,q ◦ θ〉, G)(R) is
compact. However, the cycles do not satisfy condition (i) in Theorem 3.2 (see
Example 3.4). Therefore, the result of Rohlfs and Schwermer is not applicable
and we cannot deduce any statement about the intersection number of C(νp,q) and
C(νp,q ◦ θ). It is still an open question whether or not this number is nontrivial.

(2) Ash and Ginzburg [1994] show a part of our result in Theorem 5.6(1) to use it in
the proof of their Lemma 5.4.2. More precisely, in the case where n is even and G is
the algebraic group associated with a special unitary group over a number field, they
construct the pair of special cycles C(νn/2,n/2), C(νn/2,n/2 ◦ θ) (in our notation).
Then, using the result of Rohlfs and Schwermer, they show that the intersection
number of these cycles is nonzero and deduce the existence of a nonvanishing
homology class.

Example 5.7. Let 0 be a cocompact discrete subgroup of SLn(R) chosen as in
Theorem 5.6(1) or (2). In Table 2 we give an overview of the occurring cycles,
the associated subgroups of SLn(R) and the degrees in the cohomology of X/0
to which these cycles contribute,8 for some choices of n. The last two columns
indicate if the respective cycle exists for the choice of 0 as in Theorem 5.6(1) or (2).

Remark. Using the method of crosswise intersection (see [Waldner 2010]), one
can show that for n = 2 the two cohomology classes contributing to degree 1 are
linearly independent. Unfortunately, for n > 2 we do not get a result on the linear
independence of the constructed cohomology classes using this technique.

8Note that these degrees are not the dimensions of the cycles but their complements, since we are
looking at the cohomology classes obtained via Poincaré duality.
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6. Geometric cycles for SLn(C)

We will work in the following general setting. Let F0 be a totally real number field
and let E/F0 be a totally complex biquadratic extension.9 Assume that there is a
quadratic extension F/F0 such that F is a subfield of E with exactly one complex
place v and denote by v0 the real place of F0 with v | v0. Moreover, let L and L ′

denote the other two intermediate fields of the extension E/F0. Then L is a quadratic
extension of F0 that has two real places v1, v2 lying above v0 and only complex
archimedean places otherwise, and L ′ is a totally complex quadratic extension of F0.
This is to say, we have F = F0(

√
D1), L = F0(

√
D2) and L ′ = F0(

√
D1 D2) for

D1, D2 ∈ F0 such that none of D1, D2 and D1 D2 is a square in F0 and such that
(D1)v0 < 0, (D2)v0 > 0 and (D1)v′ > 0> (D2)v′ for v′ ∈ V∞(F0) and v′ 6= v0. We
write ι and ω for the nontrivial Galois automorphisms of E/F and E/L , respectively.
Then ι and ω generate the Galois group of E/F0 and the third nontrivial element
ι ◦ω = ω ◦ ι is the nontrivial Galois automorphism of E over L ′. Moreover, we
note that ι|L is the nontrivial Galois automorphism of the quadratic extension L/F0,
ω|F is the one of F/F0 and ι|L ′=ω|L ′ is the one of L ′/F0. The field extension E/F0,
its intermediate subfields and the nontrivial Galois automorphisms corresponding
to each extension are illustrated in the following diagram:

E

F

ι

L

ω

L ′

ι◦ω=ω◦ι

F0

ω|L′=ι|L′
ι|L

ω|F

Now we let D be a division algebra of degree d over E with an involution σ of the
second kind. Again we will restrict to the cases where D is either the field E itself
and σ = ι or D is a quaternion division algebra over E constructed in the following
way. Let D′ over L ′ be a quaternion division algebra that does not split over E and
that admits an involution γ of the second kind (with respect to the subfield F0⊂ L ′).
Without loss of generality, we may assume that γ is definite. Moreover, by Albert’s
theorem, we find a quaternion division algebra D0 = Q(a, b | F0) over F0 with
a, b ∈ F×0 such that (D′, γ ) ∼= (D0 ⊗F0 L ′, τc,0 ⊗ ω|L ′), where τc,0 denotes the
conjugation on D0. Now set D := D0⊗F0 E = D′⊗L ′ E . By our choice of D′, this
is a quaternion division algebra over E that admits the two involutions σ := τc,0⊗ ι

and σ ′ := τc,0⊗ω, both of the second kind. Note that σ is trivial on the subfield

9A biquadratic extension of a number field F0 is an extension of degree 4 with Galois group
Gal(E/F0)∼= Z/2Z×Z/2Z.
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F of E , and σ ′ is trivial on the subfield L of E . Moreover, it follows from the
choice of γ that both involutions are definite. For simplicity of notation, we will
set D0 := F0, D′ = L ′, γ := ω|L ′ = ι|L ′ and σ ′ := ω when D = E .

Let m ∈ N be arbitrary and set n := 2m. Then D, E , F , σ and m satisfy the
conditions of Theorem 4.2(2), and we can choose a hermitian form h on Dm such
that each arithmetic subgroup of G′ := SUm(h, D, σ ) gives rise to a cocompact
discrete subgroup of SLn(C). As above, h can be chosen such that its diagonal
representation H is an element of Mm(F0) and we will restrict to this situation
for technical reasons. Moreover, we suppose that H is positive definite under the
embedding corresponding to the real place v0 of F0.

We can now define some automorphisms of order two on SLm(D):

θ : SLm(D)→ SLm(D),

θ(x)= H−1(σ ′(x)t)−1 H,

η : SLm(D)→ SLm(D),

η(x)=
{

H−1(x t)−1 H if D = E,
H−1(τk(x)t)−1 H if D = Q(a, b | E),

µ : SLm(D)→ SLm(D),

µ(x)=
{

H−1 Jm(x t)−1 J−1
m H if D = E and m > 2 even,

H−1(τc(x)t)−1 H if D = Q(a, b | E) and m > 1.

Moreover, for certain positive integers p and q such that p+ q = n, we define a
family of automorphisms νp,q : SLm(D)→ SLm(D) by

νp,q(x)=
{

H−1 Ip,q(σ
′(x)t)−1 Ip,q H if D = E,

H−1 Ip/2,q/2(σ
′(x)t)−1 Ip/2,q/2 H if D = Q(a, b | E) and p, q even.

Again, θ commutes with each of the other automorphisms.

6.1. As in Section 5.2, we will assume from now on that p and q are positive
integers such that p+ q = n and that p and q are both even, whenever we deal
with the case where D is a quaternion algebra. Statements involving the map µ
will again only be applicable if n is even and n > 2.

The maps η and µ are built out of E-linear maps (involutions of the first kind
on SLm(D)) and the group inversion, and hence they define E-rational morphisms
η and µ on the algebraic E-group SLm(D), as expected. However, the maps
θ and νp,q involve involutions of the second kind with respect to the subfield
L of E , and therefore they only define L-rational morphisms θ and νp,q of the
algebraic L-group ResE/L SLm(D). On the other hand, the morphism ψ defining
the algebraic group G′ is an F-rational morphism of the group ResE/F SLm(D). To
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work with all of these morphisms simultaneously, we need to pass to an algebraic
group over the common subfield F0 of F , L and E .10 Using restriction of scalars
with respect to the field F0, the morphisms η, µ, θ and νp,q give rise to F0-rational
morphisms on ResE/F0 SLm(D). An easy computation shows that these morphisms
commute with ResF/F0 ψ and can thus be restricted to the group G′′ :=ResF/F0 G′=
Fix(ResF/F0 ψ,ResE/F0 SLm(D)).

Their fixed points define algebraic subgroups of G′′ whose F0,v0-rational points
are certain Lie subgroups of SLn(C). We now determine these subgroups.

Proposition 6.2. The algebraic F0-group G′′ satisfies G′′(F0,v0)
∼= SLn(C). The

fixed points of (certain compositions of ) the above-defined F0-rational morphisms
define the following subgroups of SLn(C):

Fix(ResL/F0 θ , G′′)(F0,v0)
∼= SU(n),

Fix(ResE/F0 η, G′′)(F0,v0)
∼= SO(n,C),

Fix(ResE/F0 η ◦ResL/F0 θ , G′′)(F0,v0)
∼= SL(n,R),

Fix(ResE/F0 µ, G′′)(F0,v0)
∼= Sp(n,C),

Fix(ResE/F0 µ ◦ResL/F0 θ , G′′)(F0,v0)
∼= SU∗(n),

Fix(ResL/F0 νp,q, G′′)(F0,v0)
∼= SU(p, q),

Fix(ResL/F0(νp,q ◦ θ), G′′)(F0,v0)
∼= S(GLp(C)×GLq(C)),

Fix(ResE/F0(η ◦µ), G′′)(F0,v0)
∼= S(GLn/2(C)×GLn/2(C)),

Fix(ResE/F0(η ◦µ) ◦ResL/F0 θ , G′′)(F0,v0)
∼= SU(n/2, n/2).

In particular, ResL/F0 θ induces a Cartan involution on SLn(C).

Proof. We have G′′(F0,v0) = G′(Fv) ∼= SLn(C) by construction of the algebraic
group G′. To determine the fixed points of the morphisms, we need to study each
map separately. We start with the morphism θ . The F0-group Fix(ResL/F0 θ , G′′)
is defined by the equations θ(x)= x = ψ(x) on SLm(D)= ResE/F0 SLm(D)(F0).
We have

Fix(ResL/F0 θ , G′′)(F0)

= {x ∈ SLm(D) | θ(x)= x = ψ(x)}

= {x ∈ SLm(D) | H−1(σ ′(x)t)−1 H = x = H−1(σ (x)t)−1 H}

= {x ∈ SLm(D) | (σ ′ ◦ σ)(x)= x and x = H−1(σ (x)t)−1 H}

= {x ∈ SLm(D′) | x = H−1(γ (x)t)−1 H},

10The reason for this additional complication is that we want the map θ to define a Cartan
involution of SLn(C). Unlike in the real case, this involves complex conjugation and can hence not be
defined by an E-rational morphism.
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which yields Fix(ResL/F0 θ , G′′)=SUm(h|D′, D′, γ ). Now Proposition 4.1 implies

Fix(ResL/F0 θ , G′′)(F0,v0)
∼= SU(n),

since the real place v0 of F0 is nondecomposed in L ′, the map γ is a definite invo-
lution on D′ and the matrix H ∈ Mm(F0) is chosen positive definite at the place v0.
In particular, this shows that ResL/F0 θ induces a Cartan involution on SLn(C).

Next, we consider the maps ResL/F0 νp,q and ResL/F0(νp,q ◦ θ). On SLm(D) we
have νp,q = Int(Ip,q)◦θ and νp,q ◦θ = Int(Ip,q) if D= E , and νp,q = Int(Ip/2,q/2)◦θ

and νp,q ◦θ = Int(Ip/2,q/2) if D= Q(a, b | E).11 However, in the latter case, the ma-
trices Ip/2,q/2 are mapped to Ip,q under a suitable splitting of Mm(D)⊗C→Mn(C),
and therefore these maps induce the groups

Fix(ResL/F0 νp,q, G′′)(F0,v0)
∼= {x ∈ SLn(C) | Ip,q(x∗)−1 Ip,q = x} ∼= SU(p, q)

and

Fix(ResL/F0(νp,q ◦ θ), G′′)(F0,v0)
∼= {x ∈ SLn(C) | Ip,q x Ip,q = x}
∼= S(GLp(C)×GLq(C))

for both choices of D.
To deal with the maps ResE/F0 η, ResE/F0 µ and ResE/F0(η ◦µ) we proceed as

in the proof of Proposition 5.3. In fact, for any E-rational morphism ϕ on SLm(D)
such that ResE/F ϕ commutes with ψ , we have

Fix(ResE/F0 ϕ, G′′)(F0,v0)= Fix(ResE/F ϕ, G′)(Fv)
∼= Fix(ϕ,SLm(D))(Ew1)⊂ SLn(C).

Here, the isomorphism is chosen as in the proof of Proposition 5.3. However,
since v is now a complex place of F , we obtain a subgroup of SLn(C) instead of
SLn(R). The result then follows from the determination of Fix(ϕ,SLm(D))(Ew1)

for ϕ ∈ {η,µ, η ◦µ}, where we use in the third case the fact that η ◦µ is mapped
to Int(In/2,n/2) under a suitable splitting isomorphism Mm(D)⊗C→ Mn(C).

For the remaining morphisms ResE/F0 η ◦ResL/F0 θ , ResE/F0 µ ◦ResL/F0 θ and
ResE/F0(η ◦µ) ◦ResL/F0 θ , the result follows from straightforward calculations if
D= E . Thus, we only deal with the more complicated case where D= Q(a, b | E).

Recall that D = D0⊗F0 E . One can show that D0 ramifies at all archimedean
places of F0 since the involution γ = τc,0⊗ω|L ′ on D0⊗F0 L ′ is definite and all
real places of F0 are nondecomposed in L ′. In particular, we have av0 < 0 and
bv0 < 0. Moreover, recall that F = F0(

√
D1) for some square-free element D1 ∈ F0

such that D1 is negative under the embedding corresponding to the place v0 of F0.
Therefore, the quaternion algebra Q0 := Q(D1a, D1b | F0) is a division algebra

11Recall that in the case of a quaternion algebra the maps νp,q are only defined for even p and q .
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that splits at the place v0 of F0. Note that x ∈ (Q0⊗F0 L) if and only if x ∈ D and
(τk ◦ τc)(x)= (id⊗ω)(x). With the help of these observations, we can describe the
fixed points of η ◦ θ in G′′(F0) with the equation

Fix(ResE/F0 η ◦ResL/F0 θ , G′′)(F0)

= {x ∈ SLm(D) | (η ◦ θ)(x)= x = ψ(x)}

= {x ∈ SLm(D) | (τr ◦ (τc,0⊗ω))(x)= x = H−1(σ (x)t)−1 H}

= {x ∈ SLm(D) | (τr ◦ τc)(x)= (id⊗ω)(x) and x = H−1((τc,0⊗ ι)(x)t)−1 H}

= {x ∈ SLm(Q0⊗F0 L) | x = H−1((τc,Q0 ⊗ ι|L)(x)
t)−1 H},

where τc,Q0 denotes the canonical symplectic involution of Q0. This implies

Fix(ResE/F0 η ◦ResF/F0 θ , G′′)= SUm(h|Q0⊗F0 L, Q0⊗F0 L, τc,Q0 ⊗ ι|L),

and hence by Proposition 4.1

Fix(ResE/F0 η ◦ResF/F0 θ , G′′)(F0,v0)
∼= SLn(R),

since the real place v0 of F0 is decomposed in L and Q0 splits at v0.
A similar calculation for the other two morphisms leads to

Fix(ResE/F0 µ ◦ResF/F0 θ , G′′)= SUm(h|D0⊗F0 L, D0⊗F0 L, τc,0⊗ ι|L)

and

Fix(ResE/F0(η ◦µ) ◦ResL/F0 θ , G′′)= SUm(h|Q0⊗F0 L′, Q0⊗F0 L′, τc,Q0 ⊗ ι|L′).

For the first group, Proposition 4.1 implies

Fix(ResE/F0 µ ◦ResF/F0 θ , G′′)(F0,v0)
∼= SLn/2(H)∼= SU∗(n),

since the real place v0 of F0 is decomposed in L and D0 ramifies at v0. For the
second group, we note that the involution τc,Q0 ⊗ ι|L ′ of the second kind cannot be
definite on Q0⊗F0 L ′ because Q0 does not ramify at the real place v0 of F0 that is
nondecomposed in L ′. This means we get a signature of (n/2, n/2) when passing
to the F0,v0-rational points:

Fix(ResE/F0(η ◦µ) ◦ResL/F0 θ)(F0,v0)
∼= SU(n/2, n/2). �

6.3. In this section, we study the geometric cycles defined by the various morphisms
on G′′. To do this, we pass to the algebraic Q-group G := ResF0/Q G′′. This is an
algebraic group over Q with G(Q)∼= G′′(F0) and

G(R)∼= G′′(R⊗Q F0)= G′(R⊗Q F)=
∏

v′∈V∞(F)

G′(Fv′)= SLn(C)×
∏
v′∈V∞
v′ 6=v

SU(n).
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Moreover, we have Q-rational morphisms θ , νp,q , η and µ of order two on G that
are induced from the corresponding morphisms of G′′.

Let 0 ⊂ G(Q) be an arithmetic subgroup of G. In analogy to the real case,
0 gives rise to a discrete cocompact subgroup of SLn(C) that we still denote by 0
for simplicity of notation. Let K ′ denote a maximal compact subgroup of G(R) and
X := K ′\G(R) the symmetric space attached to G(R). Since G(R) is a product of
SLn(C) and compact factors, X is isomorphic to SU(n)\SLn(C) and 0 acts on X
by right translations. Note that X is a symmetric space of real dimension

dim X = dim(SLn(C))− dim(SU(n))= 2n2
− 2− (n2

− 1)= n2
− 1.

Let now 0 ⊂ G(Q) be a torsion-free arithmetic subgroup of G and assume that
0 and K ′ are invariant under θ , νp,q , η and µ. Then these morphisms induce certain
special geometric cycles in X/0, as explained in Section 3:

Theorem 6.4. The pair of morphisms (η, η ◦ θ) and, if n is even and n > 2, the
pairs (µ,µ ◦ θ) and (η ◦µ, (η ◦µ) ◦ θ) induce pairs of special geometric cycles
C(η), C(η ◦ θ), C(µ), C(µ ◦ θ) and C(η ◦µ), C((η ◦µ) ◦ θ) in X/0. Moreover,
the morphisms νp,q and νp,q ◦ θ induce a family of pairs of special geometric cycles
C(νp,q), C(νp,q ◦ θ) in X/0, for positive integers p and q with p+ q = n if G
is induced from a special unitary group over an algebraic number field, and for
positive, even integers p and q with p+q = n if G is induced from a special unitary
group over a quaternion algebra. The properties of these cycles are summarized
in Table 3.

Proof. This is proved completely analogously to Theorem 5.5. �

C = C(ϕ) Fix(ϕ, G)(R)∼= dim C

C(νp,q) SU(p, q) 2pq

C(νp,q ◦ θ) S(GLp(C)×GLq(C)) p2
+ q2
− 1

C(η) SO(n,C) 1
2(n

2
− n)

C(η ◦ θ) SLn(R)
1
2(n

2
+ n)− 1

C(µ) Sp(n,C) 1
2(n

2
+ n)

C(µ ◦ θ) SU∗(n) 1
2(n

2
− n)− 1

C(η ◦µ) S(GLn/2(C)×GLn/2(C))
1
2 n2
− 1

C((η ◦µ) ◦ θ) SU(n/2, n/2) 1
2 n2

Table 3. Geometric cycles in SU(n)\SLn(C)/0: the isomorphism
in the second column is up to compact factors and the bottom half
of the table is only applicable if n is even and n > 2.
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Theorem 6.5. Let n ∈ N be arbitrary.

(1) There exists a cocompact discrete subgroup 01 of SLn(C) that arises from an
arithmetic subgroup of a special unitary group over an algebraic number field,
such that H k(X/01,C) contains nontrivial cohomology classes for

k = 2pq and k = p2
+ q2
− 1,

where p and q are positive integers with p+ q = n, and for

k = 1
2(n

2
− n) and k = 1

2(n
2
+ n)− 1.

Moreover, if n is even and n 6= 2, there are nontrivial cohomology classes in
the degrees

k = 1
2(n

2
+ n), k = 1

2(n
2
− n)− 1, k = 1

2 n2
− 1 and k = 1

2 n2.

(2) If n is even, there exists a discrete, cocompact subgroup 02 of SLn(C) that
arises from an arithmetic subgroup of a special unitary group over a quaternion
algebra, such that H k(X/02,C) contains nontrivial cohomology classes for

k = 2pq and k = p2
+ q2
− 1,

where p and q are positive, even integers with p+ q = n, and for

k = 1
2(n

2
− n) and k = 1

2(n
2
+ n)− 1.

Moreover, if n 6= 2, there exist nontrivial cohomology classes in the degrees

k = 1
2(n

2
+ n), k = 1

2(n
2
− n)− 1, k = 1

2 n2
− 1 and k = 1

2 n2.

In both cases these classes are not in the image of the respective injective map

β∗0i
: H∗(Xu,C)→ H∗(X/0i ,C),

i.e., they are not represented by SLn(C)-invariant forms on X.

Proof. The proof is completely analogous to the proof of Theorem 5.6; details are
left to the reader. In contrast to the real case, orientability questions are not an issue
here, as all occurring fixed point groups are connected Lie subgroups of SLn(C). �

Example 6.6. Table 4 summarizes the occurring cycles and the degrees in which
they contribute to the cohomology for small values of n. The group 0 denotes a
cocompact discrete subgroup of SLn(C) chosen as in Theorem 6.5(1) or (2).

Remark. (1) Looking at these examples, the question arises of whether the degrees
in which we have constructed nontrivial cohomology classes exhaust all degrees
in the cohomology of X/0 in which there is cohomology that is not coming from
the compact dual symmetric space. In general, this is not the case, as we will see in
Section 7 using methods from representation theory. For certain choices of n, this
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dim X/0 Cycle Subgroup Contributing Occurs for
of SLn(C) to degree 0 = 01 0 = 02

C(ν1,1) SU(1, 1) 1 ×

n = 2 3 C(η ◦ θ) SL2(R) 1 × ×

C(ν1,1 ◦ θ) S(GL1×GL1) 2 ×

C(η) SO(2,C) 2 × ×

C(η ◦ θ) SL3(R) 3 ×

n = 3 8 C(ν1,2) SU(1, 2) 4 ×

C(ν1,2 ◦ θ) S(GL1×GL2) 4 ×

C(η) SO(3,C) 5 ×

Table 4. Complex case: degrees in H∗(X/0) in which we have
nontrivial cohomology classes coming from special cycles.

can also be seen using the Euler characteristic: it is a consequence of the Gauss–
Bonnet formula that for compact quotients X/0, where X = SU(n)\SLn(C) and
n≥2, the Euler characteristic of X/0 is always 0. This implies that the sum over the
Betti numbers in even degrees equals the sum over the Betti numbers in odd degrees.

Now for certain choices of n (in fact, whenever n ≥ 2 and n ≡ 1 (mod 4)) the
cohomology classes constructed in Theorem 6.5 all contribute to even degrees in the
cohomology of X/0. Therefore, the vanishing of the Euler characteristic implies
the existence of at least one nontrivial cohomology class in an odd degree that does
not lie in the image of the cohomology of the compact dual symmetric space.

The smallest n to which our argumentation applies is n = 5. For this case, one
can easily read off from Theorem 6.5 that the constructed cycles do indeed only
contribute to even degrees.

(2) Again, by using the technique of intersecting crosswise, one can show that
when n = 2 and 0 = 01 the two cohomology classes in each of the degrees 1 and 2
are linearly independent. However, for the case n = 3 it remains an open question
whether or not the two classes in degree 4 are linearly independent.

7. Representation theory and Matsushima’s formula

Let G be a connected semisimple Lie group (with finite center), K a maximal
compact subgroup, X := K\G the associated symmetric space and 0 ⊂ G a
discrete, cocompact subgroup. By a well-known result of Matsushima [1962],
the cohomology of X/0 decomposes as a finite algebraic sum over the set of
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equivalence classes of irreducible unitary representations of G,

H∗(X/0,C)=
⊕
π∈Ĝ

m(π, 0)H∗(g, K ; H∞π,K ),

where the m(π, 0) are nonnegative integers and we denote by H∞π,K the Harish-
Chandra module of K-finite, smooth vectors associated with an element π ∈ Ĝ.
Moreover, m(C, 0)= 1, i.e., there is an injection of the (g, K )-cohomology of the
trivial representation into H∗(X/0,C).

The unitary representations with nonvanishing (g, K )-cohomology contribut-
ing to the right-hand side of Matsushima’s formula are classified by the work of
Enright [1979] (for complex groups) and Vogan and Zuckerman [1984] (for real
groups). Note that, by a well-known result of Wigner (see [Borel and Wallach
2000, Theorem 5.3(ii)]), the representations π with H∗(g, K ;C⊗ H∞π,K ) 6= 0 are
only those with trivial infinitesimal character. Representations occurring with a
nontrivial multiplicity are called automorphic representations of G with respect to 0.
In general, given an irreducible unitary representation π of G, it is still an open
question whether the corresponding multiplicity m(π, 0) is nontrivial or not. For
groups admitting discrete series representations, there are nonvanishing results by
DeGeorge and Wallach [1978], Wallach [1990], Langlands [1966], and others (see
[Schwermer 1990]). We point out that for our cases of interest (i.e., G = SLn(R)

or G = SLn(C)), there is no discrete series except for the case G = SL2(R).
Against this background, the result from Section 6 can be interpreted as a result

in the theory of automorphic representations. To make a precise statement and
possibly identify one (or several) automorphic representations explicitly, we will
devote this section to the classification of all irreducible unitary representations
with nonvanishing (g, K )-cohomology of the group SLn(C) and the determination
of their cohomology.

7.1. First we need to fix some notation. Let G be a complex simply connected
semisimple Lie group with Lie algebra g. Considered as a real Lie algebra, g has a
Cartan involution θ and a corresponding Cartan decomposition g = k⊕ p. Let h
denote a θ -stable Cartan subalgebra of g. Then h admits the structure of a complex
Lie algebra and we denote by 8(g, h) and 8+(g, h) the set of roots and a system of
positive roots of the pair (g, h), respectively. We denote by q0 the minimal parabolic
subalgebra of g associated with the system of positive roots 8+ and by q⊃ q0 a
standard parabolic subalgebra of g. Let l denote the Levi factor of q and s= [l, l]

its derived Lie algebra. Then h∩ s is a Cartan subalgebra of s and we can identify
the root system 8s of s with respect to h ∩ s with the set of roots in 8 that are
trivial on the center Z l of l. Using this identification, we can set 8+s :=8s ∩8

+

and this is a system of positive roots for 8s.
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On the other hand, we may consider q as a real parabolic subalgebra of g and
as such it has a Langlands decomposition of the form q=m⊕ a⊕ n. We denote
by Q0, Q, L , S, M , A and N the connected Lie subgroups of G with Lie algebras
q0, q, l, s, m, a and n, respectively.

The irreducible unitary representations of G with trivial infinitesimal character
have been completely classified by the work of Delorme and Enright. They have
shown that one can associate with each standard parabolic subgroup Q ⊃ Q0 a
principal series representation πQ that has the desired properties and that these
representations exhaust the set of irreducible unitary representations of G with
trivial infinitesimal character up to unitary equivalence. Being principal series
representations, the (g, K )-cohomology of the πQ can be computed with the help
of a well-known theorem [Borel and Wallach 2000]. This leads to the following
general result.

Theorem 7.2. Let G be a connected, simply connected complex Lie group. The
correspondence Q↔ πQ is a bijective correspondence between the standard par-
abolic subgroups Q ⊃ Q0 of G and the set of equivalence classes of irreducible
unitary representations of G with trivial infinitesimal character.

The relative Lie algebra cohomology of the representations πQ is given by

(1) H k+dQ (g, K ; H∞πQ ,K )=
⊕

r+s=k

(
H r (m, KQ;C)⊗

∧saC

)
,

where KQ := K ∩ Q and dQ := |8
+(g, h)| − |8+s |.

12

7.3. Let us apply the above result to the case G = SLn(C). On sln(C) considered
as a real Lie algebra, we have a Cartan involution θ : X 7→ −X t . The subalgebra
h := {X ∈ sln(C) | X = diag(x1, . . . , xn)} of diagonal matrices is a θ -stable Cartan
subalgebra of sln(C) and, with the usual choice of positive roots, the algebra q0 of
upper triangular matrices is a Borel subalgebra in sln(C). Then the standard para-
bolic subalgebras of g are in bijective correspondence with the set of compositions
of n; with a composition n = `1+ · · ·+ `m we associate the parabolic subalgebra

q= q`1,...,`m =

{
X ∈ g

∣∣X =
X1 ∗ ∗

. . . ∗

0 Xm

,where X j ∈ GL`j (C), 1≤ j ≤ m
}
.

The Levi component of q is given by the subalgebra of block diagonal matrices
l = {X ∈ q | X = diag(X1, . . . , Xm)} and it decomposes into its semisimple part

12Note that KQ = K ∩ Q ⊂ M and that KQ is a maximal compact subgroup of M by [Borel and
Wallach 2000, Section 0.1.6], so taking the relative Lie algebra cohomology of m with respect to KQ
is defined.
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and its center, given respectively by s= {X ∈ l | tr(X j )= 0 for all 1≤ j ≤m} and
Z l = {X ∈ l | X j = x j I`j for some x j ∈ C, 1≤ j ≤ m}.

Considering q as a real Lie algebra, it also has a Langlands decomposition of
the form q=m⊕ a⊕ n, where

m= {X ∈ q | X = diag(X1, . . . , Xm), tr(X j ) ∈ i ·R for all 1≤ j ≤ m},

a= {X ∈ q | X = diag(X1, . . . , Xm), X j = x j I`j for some x j ∈ R, 1≤ j ≤ m}

and

n=

{
X ∈q

∣∣X=
0 ∗ ∗

. . . ∗

0 0

,where the j-th diagonal 0-block is of size `j×`j

}
.

We use capital letters to denote the connected Lie subgroups of SLn(C) correspond-
ing to these Lie algebras.

Theorem 7.4. The equivalence classes of irreducible unitary representations of
SLn(C) with trivial infinitesimal character are in one-to-one correspondence with
the standard parabolic subgroups Q ⊃ Q0 of SLn(C); a standard parabolic sub-
group corresponds to the induced representation πQ . The (g, K )-cohomology of the
representation πQ is given by the Poincaré polynomial

PH∗(g,K ;H∞πQ ,K
)(t)= td

·

(m−1∑
k=0

(m−1
k

)
tk
)
·

m∏
j=1
`j 6=1

`j∏
k=2

(1+ t2k−1),

where m denotes the number of blocks of Q, `j denotes the length of the j-th block
and

d := 1
2 n(n− 1)−

m∑
j=1

1
2`j (`j − 1).

Proof. The first part of the theorem is a direct application of Theorem 7.2 to the
connected simply connected complex Lie group SLn(C).

To compute the cohomology of the representations πQ , we use the formula from
Theorem 7.2. Note that, in terms of Poincaré polynomials, this formula says

(2) PH∗(g,K ;H∞πQ ,K
)(t)= tdQ ·PH∗(m,KQ;C)(t) ·P

∧
(aC)(t).

Therefore, it suffices to determine the number dQ and the Poincaré polynomials of
H∗(m, KQ;C) and

∧
(aC).
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(1) The Poincaré polynomial of
∧
(aC): From the structure of a given above we

conclude that aC has complex dimension m− 1, and thus

P∧(aC)(t)=
m−1∑
k=0

(m−1
k

)
tk

by the general formula for the Poincaré polynomial of the exterior algebra of a
complex vector space.

(2) The Poincaré polynomial of H∗(m, KQ;C): First, we consider Q = Q0. The
group Q0 has the Langlands decomposition Q0 = M0 A0 N0, where M0 is compact.
This implies KQ0 = K ∩M0 = M0, so in fact we consider the relative Lie algebra
cohomology H∗(m0,M0;C). By the definition of relative Lie algebra cohomology,
this is one-dimensional in degree 0 and trivial in all higher degrees. In particular,

PH∗(m0,KQ0 ;C)
(t)= 1.

Now let Q 6=Q0. The Lie algebra m is reductive, has semisimple part s and center
Zm⊂ k. Using the Künneth rule (see [Borel and Wallach 2000, Section I.1.3]) and the
fact that KQ and KQ∩S are connected, we obtain H∗(m,KQ;C)= H∗(s,KQ ∩ S;C),
so we can restrict to the semisimple part. From the structure of s given above we de-
duce that S ∼=

∏m
j=1SL`j (C), which is clearly the group of real points of a reductive

algebraic R-group. Therefore, by [Vogan 1997, Theorem 2.10], H∗(s, KQ ∩ S;C)
equals the cohomology of the compact symmetric space

∏m
j=1SU(`j ), the compact

dual symmetric space of S. For `j ≥ 2, the Poincaré polynomial of H∗(SU(`j );C)

is given by

PH∗(SU(`j );C)(t)=
`j∏

k=2

(1+ t2k−1)

(see [Greub et al. 1976, Theorem VI.X]). For `j = 1, we have SU(1)= S1, so the
Poincaré polynomial is given by PH∗(SU(1),C)(t)= 1. Putting everything together,
we obtain the formula

PH∗(m,KQ;C)(t)=
m∏

j=1

PH∗(SU(`j ),C)(t)=
m∏

j=1
`j 6=1

`j∏
k=2

(1+ t2k−1),

where we have used the Künneth rule for singular cohomology in the first step.
(3) Determination of dQ : Recall from Theorem 7.2 that dQ = |8

+
|−|8+s |. From

the structure of the set of positive roots 8+(g, h) and the definition of 8s as given
above, we conclude that

dQ =
1
2 n(n− 1)−

m∑
j=1

1
2`j (`j − 1). �
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(`1, . . . , `m) PH∗(g,K ;πQ`1,...,`m
)(t)

(1, 1, 1) t3
+ 2t4

+ t5

(1, 2) t2
+ t3
+ t5
+ t6

(2, 1) t2
+ t3
+ t5
+ t6

(3) 1+ t3
+ t5
+ t8

Table 5. Poincaré polynomials of the irreducible unitary represen-
tations of SL3(C) with nontrivial (g, K )-cohomology.

Example 7.5. Let’s look at some examples for small values of n.
In the case n = 2, SL2(C) only has two standard parabolic subgroups, corre-

sponding to the compositions 2 = 1+ 1 and 2 = 2 of 2. These are the minimal
parabolic subgroup Q = Q0 and the whole group Q = G, with associated represen-
tations πQ0 and πG (the latter being the trivial representation). An application of
Theorem 7.4 gives us the Poincaré polynomials of the (g, K )-cohomology of these
representations:

PH∗(g,K ;πQ0 )
(t)= t + t2, PH∗(g,K ;πG)(t)= 1+ t3.

For n = 3, the situation is more complicated and we will give the results in
Table 5. We denote a composition n = `1+ · · ·+ `m by the m-tuple (`1, . . . , `m)

and the associated parabolic subgroup by Q`1,...,`m .

7.6. Let us relate our findings to the results of Theorem 6.5. Assume we are given a
cocompact discrete subgroup 0 ⊂ SLn(C). The irreducible unitary representations
with trivial infinitesimal character that we have classified in the previous sections
are exactly the representations that can possibly contribute to the cohomology of
X/0 via Matsushima’s formula. In general, the question of whether or not a given
representation π ∈ Ĝ does actually contribute to the cohomology, i.e., m(0, π) 6= 0,
is still open. However, the nonvanishing results for the cohomology in Theorem 6.5
imply the existence of (at least) one nontrivial automorphic representation for
SLn(C) with respect to 0. For small values of n, we can even identify explicit
representations with nonvanishing multiplicity. If for one of the degrees for which
we have constructed nontrivial cohomology classes in Theorem 6.5 there is exactly
one representation π with nontrivial (g, K )-cohomology that contributes in that
degree, we can deduce that the corresponding multiplicity m(π, 0) is not zero.

To be able to compare the degrees in which we have cohomology coming
from geometric cycles and the degrees to which our representations can possibly
contribute, we summarize this information in Tables 6 and 7 for n = 2, 3. As above,
we denote a representation πQ by the associated tuple (`1, . . . , `m).
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0 1 2 3

Cycles × ×

Trivial representation × ×

(1, 1) × ×

Table 6. Complex case: contribution to the cohomology of X/0, n = 2.

0 1 2 3 4 5 6 7 8

Cycles × × ×

Trivial representation × × × ×

(1, 1, 1) × × ×

(2, 1) × × × ×

(1, 2) × × × ×

Table 7. Complex case: contribution to the cohomology of X/0, n = 3.

Corollary 7.7. Let n ∈ {2, 3} and let Q0 denote the minimal parabolic subgroup
of upper triangular matrices of SLn(C). Then there exists a cocompact discrete
subgroup 0 ⊂ SLn(C) such that the multiplicity m(0, πQ0) is not 0.

Proof. We choose 0 as in Theorem 6.5 for n = 2 or n = 3. Then the result can
be read off from Tables 6 and 7: when n = 2, we have cycles contributing to the
cohomology in degrees 1 and 2, and πQ0 is the only unitary representation that has
cohomology in these degrees. Therefore, we conclude m(0, πQ0) 6= 0. Similarly,
for n = 3, we have cycles contributing to degree 4, and πQ0 is the only unitary
representation of SL3(C) that has cohomology in degree 4. �

Remark. Unfortunately, for bigger n the situation is more complicated and this
reasoning is not successful anymore. Already in the case n = 4 one can easily see
(by looking at a similar table) that there is no degree in the cohomology of X/0
in which we have a nontrivial class coming from a cycle and to which only one
representation can contribute.
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ON BLASCHKE’S CONJECTURE

XIAOLE SU, HONGWEI SUN AND YUSHENG WANG

Blaschke’s conjecture asserts that if a complete Riemannian manifold M
satisfies diam(M) = Inj(M) = π

2 , then M is isometric to Sn( 1
2

)
or to the

real, complex, quaternionic or octonionic projective plane with its canonical
metric. We prove that the conjecture is true under the assumption that
secM ≥ 1.

Introduction

The projective spaces KPn (considered with their canonical metric, induced from
the unit sphere) and the sphere Sn

( 1
2

)
are the only known examples of complete

Riemannian manifolds M satisfying

(0-1) diam(M)= Inj(M)= π
2 .

Here diam(M) and Inj(M) are the diameter and injective radius of M , and K is
one of the division algebras R,C,H or Ca, with n ≤ 2 if K = Ca. A longstanding
conjecture, whose history is reviewed in [Besse 1978; Berger 2003; Bougas 2013],
asserts that these are the only possibilities:

Blaschke’s Conjecture. If a complete Riemannian manifold M satisfies (0-1), then
M is isometric to Sn

( 1
2

)
or a KPn endowed with the canonical metric.

(See (1-1) below for the reason why it is called Blaschke’s conjecture.) Up to
now, the conjecture is still almost open (there are only some partial answers to it)
although (0-1) is an extremely strong condition. Note that the conjecture has no
restriction on the curvature. The main purpose of the present paper is to give a
positive answer to the conjecture under the additional assumption secM ≥ 1, which
is stated as follows.

Main Theorem. If a complete Riemannian manifold M satisfies (0-1) and secM ≥1,
then M is isometric to Sn

( 1
2

)
or a KPn endowed with the canonical metric.

If the curvature has an upper bound, we have the following result of Rovenskii
and Toponogov [1998] (see also [Shankar et al. 2005]).
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Theorem 0.1. If a complete, simply connected Riemannian manifold M satisfies
(0-1) and secM ≤ 4, then M is isometric to Sn

( 1
2

)
or a KPn (K 6= R) endowed with

the canonical metric.

From our Main Theorem and Theorem 0.1, one can see how beautiful the
following Berger’s rigidity theorem [Cheeger and Ebin 1975] is.

Theorem 0.2. Let M be a complete, simply connected Riemannian manifold with
1 ≤ secM ≤ 4. If diam(M) = π

2 , then M is isometric to Sn
( 1

2

)
or a KPn (K 6= R)

endowed with the canonical metric.

In fact, “1≤ secM ≤ 4” and “simply connected” imply that Inj(M)≥ π
2 [Cheeger

and Gromoll 1980], so “diam(M)= π
2 ” implies that M (in Theorem 0.2) satisfies

(0-1) (note that Inj(M)≤diam(M)). Hence, the Main Theorem implies Theorem 0.2
in the premise of (0-1) (as does Theorem 0.1). (Of course, “secM ≥ 1” implies
that diam(M)≤ π , and the maximal diameter theorem asserts that if diam(M)= π ,
then M is isometric to Sn(1), so Theorem 0.2 is also called the minimal diameter
theorem. Moreover, inspired by Theorem 0.2, Grove and Shiohama, Gromoll and
Grove, and Wilhelm supply some beautiful (but not purely isometric) classifications
under the conditions “secM ≥ 1 and diam(M)≥ π

2 or Rad(M)≥ π
2 ” [Gromoll and

Grove 1987; Wilhelm 1996].)
Moreover, from the proof in [Cheeger and Ebin 1975] for Theorem 0.2, it is not

hard to see the following.

Theorem 0.3. Let M be a complete Riemannian manifold satisfying (0-1) and
1≤ secM ≤ 4. Then M is isometric to Sn

( 1
2

)
or a KPn endowed with the canonical

metric.

We end this section with the idea of our proof of the Main Theorem. We first
prove that for any p ∈ M , denoting by |pq| the distance between p and q ,

{p}=π/2 ,
{
q ∈ M | |pq| = π

2

}
is a complete totally geodesic submanifold in M . Then using Theorem 1.3 below
and Toponogov’s comparison theorem, we derive by induction that 1≤ secM ≤ 4,
and thus the proof is done by Theorem 0.3. (We would like to point out that, in the
premise of Theorem 1.3, we can use the method in [Gromoll and Grove 1987; 1988;
Wilhelm 1996] to give the proof (which involves many significant classification
results). By comparison, however, our proof is much more direct.)

1. Blaschke manifolds

A closed Riemannian manifold M is called a Blaschke manifold if it is Blaschke at
each point p ∈ M , i.e., ⇑p

q is a great sphere in 6q M for any q in the cut locus of p
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[Besse 1978], where

6q M , {v ∈ Tq M | |v| = 1},

⇑
p
q , {the unit tangent vector at q of a minimal geodesic from q to p}.

On a Blaschke manifold, one can get the following not so obvious fact (p. 137 in
[Besse 1978]).

Proposition 1.1. For a Blaschke manifold M , we have that diam(M)= Inj(M).

A much more difficult observation is the following (p. 138 in [Besse 1978]).

Proposition 1.2. Given a closed Riemannian manifold M and a point p ∈ M , if
|pq| is a constant for all q in the cut locus of p, then M is Blaschke at p.

Obviously, it follows from Propositions 1.1 and 1.2 that

(1-1) a closed Riemannian manifold M is Blaschke⇔ diam(M)= Inj(M).

Up to now, Blaschke’s conjecture has been solved only for spheres.

Theorem 1.3 [Besse 1978; Berger 2003]. If a Blaschke manifold is homeomorphic
to a sphere, then it is isometric to the unit sphere (up to a rescaling).

2. Proof of the Main Theorem

We first give our main tool of the paper: Toponogov’s comparison theorem.

Theorem 2.1 [Petersen 1998; Grove and Markvorsen 1995]. Let M be a complete
Riemannian manifold with secM ≥ κ , and let S2

κ be the complete, simply connected
2-manifold of curvature κ .

(i) To any p ∈ M and minimal geodesic [qr ] ⊂ M , we associate p̃ and a minimal
geodesic [q̃r̃ ] in S2

κ with | p̃q̃| = |pq|, | p̃r̃ | = |pr | and |r̃ q̃| = |rq|. Then for
any s ∈ [qr ] and s̃ ∈ [q̃r̃ ] with |qs| = |q̃ s̃|, we have that |ps| ≥ | p̃s̃|.

(ii) To any minimal geodesics [qp] and [qr ] in M , we associate minimal geodesics
[q̃ p̃] and [q̃r̃ ] in S2

κ with |q̃ p̃| = |qp|, |q̃r̃ | = |qr | and 6 p̃q̃r̃ = 6 pqr. Then we
have that | p̃r̃ | ≥ |pr |.

(iii) If equality in (ii) (or in (i) for some s in the interior part of [qr ]) holds, then
there exists a minimal geodesic [pr ] such that the triangle formed by [qp],
[qr ] and [pr ] bounds a surface which is convex1 and can be isometrically
embedded into S2

κ .

1We say that a subset A is convex (resp. totally convex) in M if, between any x ∈ A and y ∈ A,
some minimal geodesic [xy] (resp. all minimal geodesics) belongs to A.
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In the rest of this paper, M always denotes the manifold in the Main Theorem,
and N denotes {p}=π/2,

{
q ∈M | |pq|= π

2

}
for an arbitrary fixed point p∈M . We

first give an easy observation following from (0-1) (i.e., Inj(M)= diam(M)= π
2 ),

namely that

(2-1) for any x ∈ M ,

there is a minimal geodesic [pq] with q ∈ N such that x ∈ [pq].

Lemma 2.2. N is a complete totally geodesic submanifold in M ; if dim(N ) = 0,
then N consists of a single point.

Remark 2.3. Since secM ≥ 1, it follows from (i) of Theorem 2.1 that

{p}≥π/2 ,
{
q ∈ M | |pq| ≥ π

2

}
is totally convex in M . Note that N = {p}≥π/2 because diam(M)= π

2 , and that N
is closed in M . On the other hand, since M is a Blaschke manifold, we know that
N is a submanifold in M [Besse 1978]. It then follows that N is a totally geodesic
submanifold in M . This proof is short because we apply the proposition that N is a
submanifold in M , which is a significant property of a Blaschke manifold [Besse
1978]. Here, in order to show the importance of “secM ≥ 1”, we will supply a proof
only based on the definition of a Blaschke manifold.

Proof of Lemma 2.2. From Remark 2.3, we know that N is totally convex in M ,
which implies that N consists of a single point if dim(N ) = 0. Hence, we can
assume that dim(N ) > 0; for any geodesic γ (t)|t∈[0,`] ⊂ N , we need only to show
that its prolonged geodesic γ (t)|t∈[0,`+ε] in M also belongs to N for some small
ε > 0. Note that, without loss of generality, we can assume that there is a unique
minimal geodesic between γ (0) and γ (`+ ε). Due to (2-1), we can select q ∈ N
such that γ (`+ ε) ∈ [pq]. Observe that q 6= γ (0) (otherwise, γ (`) ∈ [pq] must
hold, contradicting γ (`) ∈ N ). Let [qγ (0)] be a minimal geodesic in N (note that
N is convex in M). By the first variation formula, it is easy to see that

| ↑
γ (0)
q ξ | ≥ π

2 in 6q M , for any ξ ∈ ⇑p
q .

On the other hand, ⇑p
q is a great sphere in 6q M because M is Blaschke at p (see

Proposition 1.2). It follows that in fact

| ↑
γ (0)
q ξ | = π

2 for any ξ ∈ ⇑p
q .

Then by (iii) of Theorem 2.1, there is a minimal geodesic [pγ (0)] such that
the triangle formed by [qγ (0)], [pq] and [pγ (0)] bounds a surface (containing
[γ (0)γ (`+ ε)]) which is convex and can be isometrically embedded into S2(1). It
then has to hold that [γ (0)γ (`+ ε)] = [γ (0)q] because [γ (0)γ (`)] belongs to N ,
and so [γ (0)γ (`+ ε)] ⊂ N . �
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Since N is a complete totally geodesic submanifold in M , for any q ∈ N , any
minimal geodesic [pq] is perpendicular to N at q , i.e.,

(2-2) ⇑
p
q ⊆ (6q N )=π/2 in 6q M .

Then from the proof of Lemma 2.2, we have the following corollary.

Corollary 2.4. For any minimal geodesics [pq] and [qq ′] ⊂ N , there is a minimal
geodesic [pq ′] such that the triangle formed by [pq], [qq ′] and [pq ′] bounds a
surface which is convex and can be isometrically embedded into S2(1).

Moreover, the “⊆” in (2-2) can in fact be changed to “=”.

Lemma 2.5. For any q ∈ N , we have that ⇑p
q = (6q N )=π/2 in 6q M.

Proof. According to (2-2), it suffices to show that for any ζ ∈ (6q N )=π/2 there is
a minimal geodesic [qp] such that ↑p

q = ζ . Note that there is a minimal geodesic
[qx] (x ∈ M) such that ↑x

q = ζ , and we can assume that there is a unique geodesic
between q and x . It follows from (2-1) that there is a minimal geodesic [pqx ] with
qx ∈ N such that x ∈ [pqx ]. Hence, we need only to show that qx = q. If this is
not true, then by Corollary 2.4 there are minimal geodesics [pq] and [qqx ] ⊂ N
such that the triangle formed by [pq], [pqx ] and [qqx ] bounds a surface D which
is convex and can be isometrically embedded into S2(1). Note that [qx] belongs
to D. This is impossible because both [qp] (see (2-2)) and [qx] are perpendicular
to [qqx ] at q (in D). �

Now we give the proof of our Main Theorem.

Proof of the Main Theorem. Note that, according to Theorem 0.3, we need only to
show that

(2-3) 1≤ secM ≤ 4.

We will apply induction on dim(N ).

• dim(N )= 0: By Lemma 2.2, N consists of a point, so M is homeomorphic to a
sphere (because M consists of minimal geodesics between p and N ). It follows
from Theorem 1.3 that M is isometric to Sn

( 1
2

)
(which implies (2-3)).

• dim(N )= 1: Note that N is a closed geodesic of length π . Let q1 and q2 be two
antipodal points of N (i.e., |q1q2| =

π
2 ). It follows that there are only two minimal

geodesics between q1 and q2 (note that N is totally convex in M). Similarly, we
consider L , {q2}

=π/2 containing p and q1, which is a totally geodesic submanifold
in M of dimension > 0 by Lemma 2.2. Then similar to Lemma 2.5, we have that

⇑
q2
p = (6p L)=π/2 = (6q1 L)=π/2 =⇑q2

q1
.
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This implies that there are only two minimal geodesics between p and any q ∈ N
(by Lemma 2.5). It is then easy to see that secM ≡ 1 by Corollary 2.4 (in fact, M is
isometric to RP2 with the canonical metric).

• dim(N ) > 1: Since N is a complete totally geodesic submanifold in M (see
Lemma 2.2), (0-1) implies that

(2-4) diam(N )= Inj(N )= π
2 .

By the inductive assumption on N , we have that

(2-5) 1≤ secN ≤ 4.

On the other hand, we claim:

Claim. For any q ∈ N ,

S(p, q), {the point on a minimal geodesic between p and q}

is totally geodesic in M and is isometric to Sm
( 1

2

)
, where m = dim(M)− dim(N ).

Note that (2-3) is implied by the claim, (2-5), Lemma 2.5, Corollary 2.4 and
Lemma 2.2. Hence, in the rest of the proof, we need only to verify the claim.

By (2-4), we can select r ∈ N such that |qr | = π
2 . Similarly, we consider

K , {r}=π/2 containing p and q , which is a complete totally geodesic submanifold
in M with dim(K ) > 0; moreover, we have that

⇑
r
p = (6p K )=π/2,

and ⇑r
p is isometric to a unit sphere by Lemma 2.5. On the other hand, note that ⇑p

r

is isometric to Sm−1(1) by Lemma 2.5, and that ⇑p
r is isometric to ⇑r

p. Therefore,
it is easy to see (again from Lemma 2.5 on K ) that

dim(K )= dim(N ).

Hence, by the inductive assumption on K (similar to on N ), K is isometric to Sl
( 1

2

)
or a KPl endowed with the canonical metric, which implies the claim above. �
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THE ROLE OF THE JACOBI IDENTITY IN SOLVING THE
MAURER–CARTAN STRUCTURE EQUATION

ORI YUDILEVICH

We describe a method for solving the Maurer–Cartan structure equation
associated with a Lie algebra that isolates the role of the Jacobi identity as
an obstruction to integration. We show that the method naturally adapts
to two other interesting situations: local symplectic realizations of Poisson
structures, in which case our method sheds light on the role of the Poisson
condition as an obstruction to realization; and the Maurer–Cartan struc-
ture equation associated with a Lie algebroid, in which case we obtain an
explicit formula for a solution to the equation which generalizes the well-
known formula in the case of Lie algebras.

Introduction

Realization problem for Lie algebras. Any Lie group G carries a canonical 1-form
with values in the tangent space to the identity g,

φ ∈�1(G; g),

known as the Maurer–Cartan form of G. Actually, the Lie group structure is
encoded, in some sense, in the 1-form and its properties; this is in fact Cartan’s
approach to Lie’s infinitesimal theory. The two main properties of the Maurer–
Cartan form are that it satisfies the so-called Maurer–Cartan structure equation1

and that it is pointwise an isomorphism (the latter is often phrased as the property
that the components of the 1-form with respect to some basis form a coframe). The
Maurer–Cartan structure equation reveals a Lie algebra structure on g. Of course,
the resulting Lie algebra is the same one obtained in the more common approach
of using invariant vector fields.

Conversely, if we begin with an n-dimensional Lie algebra g, we can formulate
the following problem, known as the realization problem for Lie algebras: find a

MSC2010: 22A22, 22E60, 53D17.
Keywords: Maurer–Cartan equation, symplectic realization, Maurer–Cartan form, Jacobi identity,

structure equations, Lie algebroid, Lie algebra, Poisson structure.
1This paper deals with the classical Maurer–Cartan equation. To avoid confusion with the Maurer–

Cartan equation that appears in the context of differential graded Lie algebras and other areas, we use
the term Maurer–Cartan structure equation.
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g-valued 1-form φ ∈�1(U ; g) defined on some open neighborhood U ⊂ g of the
origin such that φ is pointwise an isomorphism and satisfies the Maurer–Cartan
structure equation

(1) dφ+ 1
2 [φ, φ] = 0.

A solution to the problem induces a local Lie group structure on some open subset
of U (see [Greub et al. 1973, pp. 368–369]) and, therefore, we can think of this
realization problem as the problem of locally integrating Lie algebras.

A solution to this problem is obtained by supposing that the Lie algebra integrates
to a Lie group, and pulling back the canonical Maurer–Cartan form on the Lie group
by the exponential map. This produces the following g-valued 1-form φ ∈�1(g; g),
whose defining formula refers only to data coming from the Lie algebra and not
from the Lie group:

(2) φx(y)=
∫ 1

0
e−t adx y dt, x ∈ g, y ∈ Txg.

This formula defines a solution to (1), as can be verified directly, and since it is
equal to the identity at the origin, it is pointwise an isomorphism in a neighborhood
of the origin. See [Duistermaat and Kolk 2000; Sternberg 2004] for more details.

Observe that neither (1) nor (2) rely on the Jacobi identity; they make perfect sense
if we replace the Lie algebra with the weaker notion of a pre-Lie algebra, namely
a vector space g equipped with an antisymmetric bilinear map [ · , · ] : g× g→ g.
However, (2) is a solution of (1) if and only if g is a Lie algebra, which is not
difficult to show. This leads to the natural question, what is the precise role of the
Jacobi identity? Put differently, at what point in the integration process does the
Jacobi identity appear?

In Section 1 we present a two-step method for solving the realization problem for
Lie algebras which answers this question. The method can be outlined as follows.

• Step 1 (Theorem 1.2): we formulate a weaker version of the realization problem,
which admits a unique solution given any pre-Lie algebra.

• Step 2 (Theorem 1.4): we show that the solution of the weak realization
problem is a solution of the complete realization problem if and only if the
Jacobi identity is satisfied.

Two nice features of the method:

• Step 1 produces an explicit formula for a solution.

• Step 2 gives an explicit relation between the Maurer–Cartan structure equation
and the Jacobi identity. Loosely speaking, one is the derivative of the other.
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Similar phenomenon: Poisson realizations. There is a striking similarity between
the phenomenon we just observed and a phenomenon that occurs in the story of
symplectic realizations of Poisson manifolds. Recall that a Poisson manifold (M, π)
is a manifold M equipped with a bivector π which satisfies the Poisson equation
[π, π] = 0 (of course, the Poisson equation is equivalent to the condition that the
induced Poisson bracket satisfy the Jacobi identity). A symplectic realization of a
Poisson manifold (M, π) is a symplectic manifold (S, ω) together with a surjective
submersion p : S→ M that satisfies the equation

(3) dp(ω−1)= π.

It was shown in [Crainic and Mărcut, 2011] that for any Poisson manifold (M, π),
a symplectic realization is explicitly given by the cotangent bundle T ∗M equipped
with the symplectic form

(4) ω =

∫ 1

0
(ϕt)

∗ωcan dt

together with the projection

p : T ∗M→ M.

Here, ωcan is the canonical symplectic form and ϕt is the flow associated with a
choice of a contravariant spray on T ∗M . See [Crainic and Mărcut, 2011] for more
details.

As in the realization problem of Lie algebras, we observe that neither (3) nor (4)
depend on the Poisson equation; they make perfect sense when replacing π with
any bivector. And as before, there is the natural question as to the precise role of
the Poisson equation in the existence of symplectic realizations, a question which
was raised in [Crainic and Mărcut, 2011] (see the last paragraph of that paper).

An explicit relation between the symplectic realization equation and the Maurer–
Cartan structure equation was observed by Alan Weinstein [1983] in his pioneering
work on Poisson manifolds. Weinstein showed that, locally, (3) is equivalent to
a Maurer–Cartan structure equation associated with an infinite-dimensional Lie
algebra, and exploited this to prove the existence of local symplectic realizations by
using a heuristic argument to solve this Maurer–Cartan structure equation, producing
an explicit local solution of the type (4).

In Section 3, we apply our method to solve the Maurer–Cartan structure equation
which Weinstein formulated. As with Lie algebras, we do this by identifying a
weaker version of the equation that admits a unique solution given any bivector,
not necessarily Poisson, and proceed to show that the solution is a local symplectic
realization if and only if the bivector satisfies the Poisson equation. We obtain
an explicit relation between the Poisson equation and the symplectic realization
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condition, thus pinpointing the role of the Poisson equation in the problem of
existence of local symplectic realizations.

The Lie algebroid case. In addition to local symplectic realizations, we believe
that our method can be adapted to various other situations which generalize or
resemble the classical Lie algebra case. One important generalization, which we
treat in Section 3, is the realization problem of a Lie algebroid. Although extra
difficulties do arise, it is remarkable that the procedure continues to work in this
case, despite the fact that the simple-to-handle bilinear bracket of a Lie algebra is
replaced by a more cumbersome bidifferential operator. This is largely facilitated
by the presence of certain flows, known as infinitesimal flows, associated with
time-dependent sections of the Lie algebroid.

As we noted in Step 1 above, our method produces an explicit solution. In
the Lie algebra case, this is the well-known formula (2), whereas the formula we
obtain in the Lie algebroid case does not appear in the literature to the best of
our knowledge (see Theorem 3.3). Having this explicit formula at hand can prove
to be useful; in particular, one can attempt to use it to explicitly integrate Lie
algebroids locally (as an indication of feasibility, in [Coste et al. 1987] a symplectic
realization of a Poisson manifold was used to integrate the associated Lie algebroid
to a local symplectic groupoid; see also the discussion starting at the bottom of
page 504).

Final remark. We end the introduction with a historical remark and briefly describe
our motivation for reopening this classical problem. The Maurer–Cartan structure
equation originates in the work of Élie Cartan [1904; 1937] under the name of
“structure equations”. In his work on Lie pseudogroups, Cartan associates the
equation with a Lie pseudogroup, and subsequently extracts out of the equation
the Lie pseudogroup’s “structure functions”, i.e., its infinitesimal data. The reverse
direction, the problem of finding and classifying the solutions to the structure
equations associated with given infinitesimal data, is known as the realization
problem, two special cases of which we discussed above (the Lie algebra case and
the Lie algebroid case).

This work arose as part of a larger project aimed at understanding Cartan’s
original work on Lie pseudogroups in a global, more geometric and coordinate-
free fashion, and in particular, the realization problem. Since Cartan’s realization
problem involves infinitesimal structures that fail to satisfy the Jacobi identity, we
first tried to understand the role of the Jacobi identity in the integration process
of structures for which the Jacobi identity is satisfied, namely Lie algebras and
Lie algebroids. The method and the results that we came across and that we are
presenting here seemed to have relevance beyond the realization problem itself, and
we, therefore, decided to present it in an independent fashion.
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1. The Maurer–Cartan structure equation of a Lie algebra

In this section, we present the two-step method for solving the realization problem
for a Lie algebra which was outlined in the Introduction. Let us first recall the
necessary definitions.

Definition 1.1. A pre-Lie algebra is a vector space g equipped with an antisymmet-
ric bilinear map [ · , · ] : g× g→ g. A Lie algebra is a pre-Lie algebra that satisfies
the Jacobi identity:

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0 ∀ x, y, z ∈ g.

Associated with a pre-Lie algebra is the adjoint map ad : g→ End(g), where
adx(y)= [x, y], and the Jacobiator

(5) Jac ∈ Hom(33g, g), Jac(x, y, z)= [[x, y], z] + [[y, z], x] + [[z, x], y].

The space of g-valued differential forms on g is denoted by �∗(g; g). This space
is equipped with the de Rham differential d : �∗(g; g)→ �∗+1(g; g) and with a
bracket, [ · , · ] :�p(g; g)×�q(g; g)→�p+q(g; g), that plays the role of the wedge
product on g-valued forms and is defined by the analogous formula:

(6) [ω, η](X1, . . . , X p+q)

=

∑
σ∈Sp,q

sgn(σ )[ω(Xσ(1), . . . , Xσ(p)), η(Xσ(p+1), . . . , Xσ(p+q))],

where Sp,q is the set of (p, q)-shuffles.
Of course, given any open subset U ⊂ g, we also have the space of g-valued

forms �∗(U ; g) on U equipped with a differential and a bracket, defined in the
same manner. Given any φ ∈ �1(U ; g), the Maurer–Cartan 2-form associated
with φ is defined by

MCφ := dφ+ 1
2 [φ, φ] ∈�

2(U ; g),

and the Maurer–Cartan structure equation is

MCφ = 0,

or more explicitly,

(MCφ)x(y, z)= 0 ∀ x ∈U, y, z ∈ g.

Note that in the last equation, and throughout the paper, we identify the tangent
spaces of a vector space with the vector space itself without further mention.

Recall the realization problem for Lie algebras: find a 1-form φ ∈ �1(U ; g)
on some open neighborhood U ⊂ g of the origin such that φ is pointwise an
isomorphism and satisfies the Maurer–Cartan structure equation.
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We now present our method for solving this realization problem.

Step 1. We show that a weaker version of the realization problem admits a solution
given any pre-Lie algebra. We accomplish this by imposing a boundary condition
which transforms the equation into a simple ODE that can be easily solved.

Theorem 1.2. Given any pre-Lie algebra g, the equation

(7) (MCφ)x(x, y)= 0 ∀ x, y ∈ g

admits a solution in �1(g; g) which is pointwise an isomorphism at the origin
(and thus on some open neighborhood of the origin). Moreover, if we impose the
boundary condition

(8) φx(x)= x ∀ x ∈ g,

then the solution is unique and is given by the formula

(9) φx(y)=
∫ 1

0
e−t adx y dt.

Remark 1.3. To get a geometric feel for the equations, note that (7) is the restriction
of the Maurer–Cartan structure equation to all two-dimensional subspaces of g,
and (8) is the condition that φ restricts to the identity on all one-dimensional
subspaces.

Proof. First note that (8) implies that φ0 = id, and in particular, φ is pointwise an
isomorphism at the origin.

Let φ ∈�1(g; g) be a solution of (7) and (8). We will show that φ must be of
the form given by (9), which implies uniqueness. Conversely, as we will explain at
the end of the proof, reading the steps in the reverse direction will imply that (9) is
a solution, thus proving existence.

By linearity, (7) and (8) are equivalent to (MCφ)t x(x, y)= 0 and φt x(x)= x for
all t ∈ (0, 1) and x, y ∈ g. In particular, by continuity, this implies that

(10) (MCφ)0(x, y)= 0 and φ0(x)= x ∀ x, y ∈ g.

Fix x, y ∈ g. The solution φ satisfies

(11)
(
dφ+ 1

2 [φ, φ]
)

t x(x, t y)= 0

for all t ∈ (0, 1).
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To compute (dφ)t x(x, t y), consider the map f : (0, 1)× (−δ, δ)→ g, where
f (t, ε)= t (x + εy). Then

(dφ)t x(x, t y)= ( f ∗dφ)(t,0)
(
∂

∂t
,
∂

∂ε

)
= (d f ∗φ)(t,0)

(
∂

∂t
,
∂

∂ε

)
=
∂

∂t

(
( f ∗φ)

(
∂

∂ε

))∣∣∣
(t,0)
−
∂

∂ε

(
( f ∗φ)

(
∂

∂t

))∣∣∣
(t,0)

=
∂

∂t
(φt (x+εy)(t y))

∣∣∣
(t,0)
−
∂

∂ε
(φt (x+εy)(x + εy))

∣∣∣
(t,0)

=
∂

∂t
(φt x(t y))− y,

where, in the last equality, we have used that (8) implies φt (x+εy)(x + εy)= x + εy.
To compute

( 1
2 [φ, φ]

)
t x(x, t y), we use (8) again:(1

2 [φ, φ]
)

t x(x, t y)= [φt x(x), φt x(t y)] = [x, φt x(t y)] = adx(φt x(t y)).

Thus for a φ that satisfies (8), equation (11) is equivalent to

∂

∂t
(φt x(t y))− y+ adx(φt x(t y))= 0,

which is equivalent to

(12) ∂

∂t
(et adxφt x(t y))= et adx y.

Integrating from 0 to t ′,

(13) φt ′x(t ′y)=
∫ t ′

0
e(t−t ′) adx y dt =

∫ 1

0
e−t adt ′x (t ′y) dt.

Setting t ′ = 1 proves that φ coincides with (9) .
Next, we show that φ defined by (9) is a solution. Note that φx(x)=

∫ 1
0 e−t adx x dt

=
∫ 1

0 x dt = x , and thus (8) is satisfied. Equation (9) is equivalent to (13), which is
a solution of (12), and since φ satisfies (8), it is a solution of (11). In particular,
setting t = 1 implies that (MCφ)x(x, y)= 0, and thus (7) is satisfied. �

Step 2. By obtaining explicit equations relating the Maurer–Cartan 2-form with
the Jacobiator, we show that the solution obtained in the previous step is a solution
of the Maurer–Cartan structure equation if and only if the Jacobiator vanishes.

Theorem 1.4. Let g be a pre-Lie algebra and φ ∈ �1(g; g) the solution of (7)
and (8). Then

MCφ = 0 ⇐⇒ Jac= 0,
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or, more precisely,

Jac(x, y, z)=−3 d
dt
(MCφ)t x(y, z)

∣∣∣
t=0
,(14)

(MCφ)x(y, z)=−
∫ 1

0
e(t−1) adx Jac(x, φt x(t y), φt x(t z)) dt.(15)

Proof. Equations (14) and (15) imply that MCφ = 0 if and only if Jac= 0. Let us
derive these equations. Fix x, y, z ∈ g. We will compute

(16) d(MCφ)t x(x, t y, t z),

with t ∈ (0, 1), in two different ways.

1. Consider the map f : (0, 1)× (−δ, δ)2→ g, f (t, ε, ε′)= t (x + εy+ ε′z). Then

(dMCφ)t x(x, t y, t z)= ( f ∗dMCφ)(t,0,0)
(
∂

∂t
,
∂

∂ε
,
∂

∂ε′

)
= (d f ∗MCφ)(t,0,0)

(
∂

∂t
,
∂

∂ε
,
∂

∂ε′

)
=

d
dt
(MCφ)t x(t y, t z).

In the last equality, terms containing (MCφ)t x(x, t y) and (MCφ)t x(x, t z) vanish
by (7).

2. On the other hand,

(dMCφ)t x(x, t y, t z)=
(
d 1

2 [φ, φ]
)

t x(x, t y, t z)

= ([dφ, φ])t x(x, t y, t z)

= [(dφ)t x(x, t y), φt x(t z)] + [(dφ)t x(t z, x), φt x(t y)]
+ [(dφ)t x(t y, t z), φt x(x)]

= −[[x, φt x(t y)], φt x(t z)] − [[φt x(t z), x], φt x(t y)]
+ [(MCφ)t x(t y, t z)− [φt x(t y), φt x(t z)], x]

= −[x, (MCφ)t x(t y, t z)] − Jac(x, φt x(t y), φt x(t z)).

In the fourth equality, we have used (7) and (8). In particular, (8) implies that
(dφ)t x(x, y)+ [φt x(x), φt x(y)] = 0 and (dφ)t x(x, z)+ [φt x(x), φt x(z)] = 0.

Then (16) becomes

Jac(x, φt x(t y), φt x(t z))=−
( d

dt
+ adx

)
(MCφ)t x(t y, t z),

or equivalently,

(17) et adx Jac(x, φt x(t y), φt x(t z))=− d
dt
(et adx n(MCφ)t x(t y, t z)).
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Integrating from 0 to 1 produces (15), while multiplying both sides of the equation
by 1/t2, taking the limit as t→ 0 and using the fact that (MCφ)0(y, z)= 0 (see (10))
produces (14). �

Remark 1.5. The method we present here was inspired by the method used in
[Sternberg 2004, Sections 1.3–1.5] to compute the differential of the exponential map
of a Lie group and to derive the Baker–Campbell–Hausdorff formula of a Lie algebra.

2. The Maurer–Cartan structure equation and local symplectic realizations
of Poisson structures

In this section, we apply the method from the previous section to the problem of
existence of symplectic realizations of Poisson manifolds. The role of the Poisson
equation becomes manifest, in the same way that the role of the Jacobi identity was
made manifest in the Lie algebra case.

Definition 2.1. A pre-Poisson manifold (M, π) is a manifold M together with a
choice of a bivector field π ∈ X2(M). A Poisson manifold (M, π) is a pre-Poisson
manifold with the extra condition that π satisfies the Poisson equation [π, π] = 0
(where [ · , · ] is the Schouten–Nijenhuis bracket).

Equivalently, a pre-Poisson manifold is a manifold M equipped with an R-bilinear
antisymmetric operation { , } : C∞(M)×C∞(M)→ C∞(M) (called the Poisson
bracket) that satisfies the Leibniz identity, { f g, h} = f {g, h} + { f, h}g for all
f, g, h ∈ C∞(M). A bivector π induces a bracket by { f, g}(m)= πm(d f, dg) for
all m ∈M , f, g ∈C∞(M), and vice versa. The Poisson equation is equivalent to the
Jacobi identity, i.e., to the condition Jac= 0, where Jac is the Jacobiator associated
with { , } (defined as in the previous section).

By the Leibniz identity, a function f ∈C∞(M) induces a vector field X f ∈X(M),
the Hamiltonian vector field associated with f , by the condition X f (g) = { f, g}
for all g ∈ C∞(M), or equivalently, X f (g)= π(d f, dg) for all g ∈ C∞(M).

Poisson manifolds can be localized; i.e., if (M, π) is a Poisson manifold and
U ⊂ M is an open subset, then (U, π |U ) is a Poisson manifold.

A symplectic realization of a Poisson manifold (M, π) is a symplectic manifold
(S, ω) together with a surjective submersion p : S→ M such that p is a Poisson
map; i.e., the bivector ω−1 induced by the symplectic form ω is p-projectable to
the bivector π . That is to say,

dp(ω−1)= π.

A local symplectic realization of (M, π) around a point m ∈ M is a symplectic
realization of (U, π |U ), where U is some open neighborhood of m.
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In the problem of existence of local symplectic realizations it is enough to
consider Poisson manifolds of the type (O, π), where

O ⊂ V

is an open subset of a vector space V . The following proposition was proven by
Alan Weinstein [1983, Section 9]. To be more precise, Weinstein proved it for
the case that (O, π) is a Poisson manifold; however, the arguments do not rely
on the Jacobi identity and the proposition also holds for the case that (O, π) is a
pre-Poisson manifold.

Proposition 2.2. Let (O, π) be a pre-Poisson manifold. Let φ ∈�1(V ∗;C∞(O))
be defined by

(18) φξ (ζ )=

∫ 1

0
(ϕ−t

Xξ )
∗ζ dt ∀ ξ, ζ ∈ V ∗.

Here ξ and ζ are interpreted as linear functionals on V , Xξ is the corresponding
Hamiltonian vector field and ϕXξ is its flow.

Let φ̃ ∈ �1(O × V ∗) be the induced 1-form on O × V ∗ = T ∗O defined by
φ̃(x,ξ)(y, ζ ) := φξ (ζ )(x).

Then, the 2-form dφ̃ is symplectic on some neighborhood U ⊂ O× V ∗ of the
zero section and, writing p :O× V ∗→O for the projection,

p|U : (U, dφ̃)→ (O, π) is a symplectic realization ⇐⇒ dφ+ 1
2{φ, φ} = 0.

Remark 2.3. The 1-form φ defined by (18) and the induced 1-form φ̃ are only
well defined on some open neighborhood of the zero section of O× V ∗, namely
on all points (x, ξ) such that ϕXξ (x) is defined up to time 1. This does not pose
a problem, since, in the end, we are only interested in the symplectic form dφ̃ in
some neighborhood of the zero section.

Weinstein’s remarkable observation was that the symplectic realization condition
can be locally rephrased as a Maurer–Cartan structure equation. This equation
lives in the space �∗(V ∗;C∞(O)) consisting of differential forms with values in
C∞(O), where a 1-form φ ∈�1(V ∗;C∞(O)) is smooth if the map O× V ∗→ R,
(x, ξ) 7→ φξ (ζ )(x), is smooth for all ζ ∈ V ∗, and similarly for higher degree forms.
This space is equipped with the de Rham differential d defined as usual, and a
bracket { , } defined as in (6) (with the Lie bracket replaced by the Poisson bracket);
thus, one can make sense of the Maurer–Cartan 2-form associated with a 1-form
φ ∈�1(V ∗;C∞(O)):

MCφ := dφ+ 1
2{φ, φ} ∈�

2(V ∗;C∞(O)).

Weinstein proceeded to show that if (O, π) is a Poisson manifold, then the
1-form given by (18) satisfies the Maurer–Cartan structure equation, thus proving
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the existence of local symplectic realizations. Of course, the fact that the Poisson
bracket satisfies the Jacobi identity is used in the proof, but its precise role is
somewhat obscure, appearing as a “mere step” in the calculation (see [Weinstein
1983, p. 547]).

The following two theorems shed further light on the role of the Jacobi identity
as an obstruction in this problem. The first of the two theorems, an analog of Step 1
of the previous section, demonstrates how close dφ̃ induced by (18) is from being
a symplectic realization, regardless of the Jacobi identity.

Theorem 2.4. Let (O, π) be a pre-Poisson manifold. The 1-form

φ ∈�1(V ∗;C∞(O))

defined by (18) satisfies the equation

(19) (MCφ)ξ (ξ, ζ )= 0 ∀ ξ, ζ ∈ V ∗.

Moreover, it is the unique solution of (19) together with the boundary condition

(20) φξ (ξ)= ξ ∀ ξ ∈ V ∗.

Proof. The proof is essentially the same as the proof of Theorem 1.2. One must
only make the following exchanges:

• g with V ∗ (and accordingly x, y with ξ, ζ ),

• the Lie bracket [ , ] with the Poisson bracket { , },

• et adξ with (ϕt
Xξ )
∗,

and while making the last of the three adjustments, one notes that derivatives of
matrix-valued functions of t become derivatives of flows. �

The next theorem, an analog of Step 2 of the previous section, gives an explicit
relation between Jac and MCφ which translates into a precise relation between the
failure of the Poisson equation and the failure of dφ̃ to be a symplectic realization.
Of course, it follows that if the Poisson equation is satisfied, then dφ̃ is a symplectic
realization.

Theorem 2.5. Let φ ∈�1(V ∗;C∞(O)) be a solution to (19) and (20). Then

Jac= 0 ⇐⇒ MCφ = 0,

or more precisely,

Jac(ξ, ζ, η)=−3 d
dt
(MCφ)tξ (ζ, η)

∣∣∣
t=0
,

(MCφ)ξ (ζ, η)=−
∫ 1

0
(ϕt−1

Xξ )
∗ Jac(ξ, φtξ (tζ ), φtξ (tη)) dt.
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Proof. The proof is essentially the same as the proof of Theorem 1.4 after making
the necessary adjustments as in the proof of the previous theorem, and using the
fact that by the Leibniz identity, the vanishing of the Jacobiator on linear functions
implies that it vanishes. �

Remark 2.6. Theorems 1.2 and 1.4 are in fact special cases of Theorems 2.4
and 2.5. Recall that a linear Poisson structure on the vector space g∗ is a Poisson
bracket on C∞(g∗) satisfying the property that it restricts to a Lie bracket on the
linear functions g⊂ C∞(g∗). This defines a one-to-one correspondence between
linear Poisson structures on g∗ and Lie algebra structures on g. In the case of linear
Poisson structures, the Hamiltonian vector field on g∗ associated with an element
x ∈ g = (g∗)∗ is simply the transpose (adx)

∗ of the linear map adx : g→ g. The
flow of (adx)

∗ is the transpose of the linear map et adx , and the pullback by the flow
is precisely et adx . This implies that the solution (18) takes values in g⊂ C∞(g∗),
and it follows that Theorems 2.4 and 2.5 for linear Poisson structures coincide with
Theorems 1.2 and 1.4.

3. The Maurer–Cartan structure equation of a Lie algebroid

In this section, we generalize our method from the Lie algebra case to the Lie
algebroid case. We will begin by recalling the basic definitions and discussing
the realization problem for Lie algebroids, after which we will state and prove
Theorems 3.3 and 3.5, which generalize Theorems 1.2 and 1.4.

Definition 3.1. A pre-Lie algebroid A π
−→M is a vector bundle A over M equipped

with a vector bundle map (the “anchor”) ρ : A→ T M and an antisymmetric bilinear
map (the “bracket”) [ · , · ] : 0(A)×0(A)→ 0(A) satisfying

[α, fβ] = f [α, β] +Lρ(α)( f )β ∀α, β ∈ 0(A), f ∈ C∞(M),

ρ([α, β])= [ρ(α), ρ(β)] ∀α, β ∈ 0(A).

A pre-Lie algebroid A→M is called a Lie algebroid if it further satisfies the Jacobi
identity

[[α, β], γ ] + [[β, γ ], α] + [[γ, α], β] = 0 ∀α, β, γ ∈ 0(A).

Associated with a pre-Lie algebroid is the Jacobiator tensor Jac∈Hom(33 A, A),
defined at the level of sections by

Jac(α, β, γ )= [[α, β], γ ] + [[β, γ ], α] + [[γ, α], β] ∀α, β, γ ∈ 0(A),

and easily checked to be C∞(M)-linear in all slots.
The notions of A-connections, A-paths, geodesics and infinitesimal flows that

appear in the context of Lie algebroids remain unchanged when we give up on the
Jacobi identity and pass to pre-Lie algebroids. We will assume familiarity with
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these notions, and otherwise refer the reader to the Appendix (and to [Crainic and
Fernandes 2003] for more details).

Let A→ M be a pre-Lie algebroid equipped with an A-connection ∇. To every
point a ∈ A we associate the unique maximal geodesic ga : Ia→ A that satisfies
ga(0)= a. We denote its base curve by γa : Ia→M . Let A0⊂ A be a neighborhood
of the zero section such that ga is defined up to at least time 1 for all a ∈ A0. On A0

we have the exponential map exp : A0 → A, a 7→ ga(1), and the target map
τ = π ◦exp : A0→ M . Let �∗π (A0; τ

∗A) be the space of foliated differential forms
(foliated with respect to the foliation by π -fibers) with values in τ ∗A. Throughout
this section we will use the canonical identification between the vertical bundle
of A0 and the pullback of A to A0, i.e., Ta A0 ∼= Ax for all a ∈ (A0)x . Thus, given a
1-form φ ∈�1

π (A0; τ
∗A), we will write φa(b) with a ∈ (A0)x , b ∈ Ax .

A 1-form φ ∈�1
π (A0; τ

∗A) is said to be anchored if ρ ◦φ = dτ . Given a vector
bundle connection ∇ :X(M)×0(A)→0(A), we define the Maurer–Cartan 2-form
associated with an anchored 1-form φ ∈�1

π (A0; τ
∗A) to be

MCφ := dτ ∗∇φ+ 1
2 [φ, φ]∇ ∈�

2
π (A0; τ

∗A).

The differential-like map dτ ∗∇ and bracket on �∗π (A0; τ
∗A) are defined in the usual

way (see the Appendix). The anchored condition implies that MCφ is independent
of the choice of connection (Proposition A.2). The auxiliary connection ∇ should
not be confused with the A-connection ∇, which is part of the data we fix.

Of course, given any open subset U⊂ A0, we have the space of forms�∗π (U ; τ
∗A)

equipped with a differential-like operator and a bracket in the same manner, and
anchored 1-forms have associated Maurer–Cartan 2-forms. The realization problem
for Lie algebroids can now be stated: find an anchored 1-form φ ∈ �1

π (U ; τ
∗A)

on some open neighborhood of the zero section of A0 such that φ is pointwise an
isomorphism and satisfies the Maurer–Cartan structure equation:

(21) MCφ = 0.

Remark 3.2. A solution of the Maurer–Cartan structure equation can also be
interpreted as a Lie algebroid map: a 1-form φ ∈�1

π (A0; τ
∗A) can be viewed as a

vector bundle map from the Lie algebroid T π A0→ A0 (the vertical bundle, a Lie
subalgebroid of T A0→ A0) to the Lie algebroid A→ M covering τ , the anchored
condition on φ is equivalent to the vector bundle map commuting with the anchors,
and φ satisfies the Maurer–Cartan structure equation if and only if the vector bundle
map is a Lie algebroid map (see [Crainic and Fernandes 2011] or [Fernandes and
Struchiner 2014] for more details). From this point of view, the Maurer–Cartan
structure equation is a special case of the generalized Maurer–Cartan equation
for vector bundle maps between Lie algebroids which commute with the anchors
studied in [Fernandes and Struchiner 2014, Section 3.2].
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As in the case of Lie algebras (see the Introduction), one can find a solution
to the realization problem by assuming that the Lie algebroid integrates to a Lie
groupoid and pulling back the canonical Maurer–Cartan 1-form on the Lie groupoid
by the exponential map. The resulting formula will not depend on the Lie groupoid,
and one can verify directly that the formula is indeed a solution, and, therefore, not
have to require that the Lie algebroid be integrable.

Let us explain this in more detail. Let G⇒ M be a Lie groupoid with source/target
map s/t . The canonical Maurer–Cartan 1-form φMC ∈ �

1
s (G; t∗A) is a foliated

differential 1-form on G (foliated with respect to the foliation by s-fibers) with
values in t∗A. It is defined precisely as in the case of Lie groups,

(22) (φMC)g = (d Rg−1)g ∀ g ∈ G,

the difference being that the right multiplication map Rg−1 is only defined on
s−1(s(g)). For this reason, the resulting form is foliated. The Maurer–Cartan form
satisfies the anchored property ρ((φMC)g(X))= (dt)g(X) and the Maurer–Cartan
structure equation

dt∗∇φMC+
1
2 [φMC, φMC]∇ = 0

(for more details, see [Fernandes and Struchiner 2014, Section 4]).
The exponential map Exp := Exp

∇
: A0→ G on a Lie groupoid requires a choice

of an A-connection ∇ on A, where A0 is as above. Such a choice induces a normal
connection on each s-fiber and the exponential map is then defined in the usual
way. This choice of an A-connection also gives rise to an exponential on the Lie
algebroid, as we saw above, and the two satisfy the relations

exp(a)= (d RExp(a)−1)Exp(a)
d
dt

Exp(ta)
∣∣∣
t=1
,(23)

π ◦ exp= t ◦Exp,(24)

π = s ◦Exp.

If we pull back the Maurer–Cartan form by the exponential map, the resulting form
will be an element of �1

π (A0; τ
∗A). It will be anchored as a result of (24). It is now

not difficult to verify that the fact that φMC satisfies the Maurer–Cartan structure
equation on the Lie groupoid implies that Exp∗φMC satisfies the Maurer–Cartan
structure equation on the Lie algebroid, i.e., satisfies (21).

In the following two theorems we will obtain a solution by taking a different
path, namely by generalizing our method from Section 1. The first theorem is a
generalization of Step 1: a weaker version of the realization problem which admits
a unique solution for any pre-Lie algebroid. The theorem gives an explicit formula
for a solution to the realization problem of Lie algebroids. In Corollary 3.4 we
show that our solution coincides with Exp∗φMC.
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Theorem 3.3. Let A→M be a pre-Lie algebroid equipped with an A-connection∇.
The equations

(MCφ)a(a, b)= 0 ∀ x ∈ M, a ∈ (A0)x , b ∈ Ax ,(25)

ρ ◦φ = dτ(26)

admit a solution in �1
π (A0; τ

∗A) which is pointwise an isomorphism on a small
enough neighborhood of the zero section of A0. Moreover, if we impose the bound-
ary condition

(27) φa(a)= exp(a) ∀ a ∈ A0,

then the solution is unique and can be described as follows. Let

ξ : [0, 1]× (−δ, δ)×M→ A

be a smooth map such that ξ t
ε = ξ(t, ε, · ) is a section of A and ξ t

ε(γa+εb(t)) =
ga+εb(t) for all (t, ε) ∈ [0, 1]× (−δ, δ), and let ψξ0 be the infinitesimal flow associ-
ated with the time-dependent section ξ0 (see the Appendix). The solution is given by

(28) φa(b)=
∫ 1

0
ψ

1,t
ξ0

d
dε

∣∣∣
ε=0
ξ t
ε(γa(t)) dt.

Proof. Equation (27) implies that a solution φ is equal to the identity on the zero
section of A and thus pointwise an isomorphism on a small enough neighborhood
of the zero section.

Let φ ∈�1
π (A0; τ

∗A) be a solution of (25), (26) and (27). In this proof we show
that φ must be given by (28). The remaining arguments are precisely as in the proof
of Theorem 1.2.

By (27), φa(a) = exp(a) = ga(1) for all a ∈ A0. This implies that φta(ta) =
gta(1)= tga(t), by using (38), and by linearity,

(29) φta(a)= ga(t)

for all t ∈ (0, 1). Equation (29) is thus equivalent to (27).
Fix x ∈ M , a ∈ (A0)x and b ∈ Ax . Let ∇ be a vector bundle connection on A.

Equation (25) implies that

(30)
(
dτ ∗∇φ+ 1

2 [φ, φ]∇
)

ta(a, tb)= 0

for all t ∈ (0, 1). We will compute this equation for a fixed t ′ ∈ (0, 1).
To compute (dτ ∗∇φ)t ′a(a, t ′b), consider the map f : (0, 1)× (−δ, δ)→ (A0)x ,

f (t, ε)= t (a+εb). The composition τ ◦ f restricted to ε= 0 is the curve t 7→ τ(ta),
which is precisely γa , the base curve of the geodesic ga , and τ ◦ f restricted to
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t = t ′ is the curve γε : (−δ, δ)→ M , ε 7→ τ(t ′(a+ εb)). Then

(dτ ∗∇φ)t ′a(a, t ′b)= ( f ∗dτ ∗∇φ)(t ′,0)
(
∂

∂t
,
∂

∂ε

)
= (d f ∗τ ∗∇ f ∗φ)(t ′,0)

(
∂

∂t
,
∂

∂ε

)
= ( f ∗τ ∗∇) ∂

∂t
( f ∗φ)

(
∂

∂ε

)∣∣∣
(t ′,0)
− ( f ∗τ ∗∇) ∂

∂ε
( f ∗φ)

(
∂

∂t

)∣∣∣
(t ′,0)

= (∇)γ̇aφta(tb)|t=t ′ − (∇)γ̇εga+εb(t ′)|ε=0.

In the second equality we have used Lemma A.1 to commute the pullback with dτ ∗∇
and in the last equality we have used (29), which is equivalent to (27). The two
terms in the final expression are covariant derivatives of paths, which make sense
because γa is the base curve of the curve t 7→ φta(tb) and γε is the base curve of
ε 7→ ga+εb(t ′).

To compute
( 1

2 [φ, φ]∇
)

t ′a(a, t ′b), let ξ be the map as in the theorem statement
and let η be a time-dependent section of A satisfying ηt(γa(t))= φta(tb). Then( 1

2 [φ, φ]∇
)

t ′a(a, t ′b)= [ξ t ′
0 , η

t ′
]∇(γa(t ′))

= [ξ t ′
0 , η

t ′
](γa(t ′))−∇ρ(ξ t ′

0 )
ηt ′(γa(t ′))+∇ρ(ηt ′ )ξ

t ′
0 (γa(t ′))

=
d
dt

∣∣∣
t=t ′
ψ

t ′,t
ξ0
ηt ′(γa(t))−∇γ̇aη

t ′(γa(t ′))+∇γ̇εξ
t ′
0 (γa(t ′)).

In the last equality, we have used the defining property (37) of the infinitesimal
flow for the first term, ρ(ξ t ′

0 (γa(t ′)))= ρ(ga(t ′))= γ̇a(t ′) for the second term, and

ρ(ηt ′(γa(t ′)))= ρ(φt ′a(t ′b))

= (dτ)t ′a(t ′b)

= d(π ◦ exp)t ′a(t ′b)

=
d
dε

∣∣∣
ε=0
(π(exp(t ′a+ εt ′b)))

=
d
dε

∣∣∣
ε=0
(π(gt ′(a+εb)(1)))

=
d
dε

∣∣∣
ε=0
(π(t ′g(a+εb)(t ′)))

= γ̇ε(0)

for the third term, where we have used the anchored property (26) in the second
equality.

Thus for φ that satisfies (27), equation (30) is equivalent to

d
dt

∣∣∣
t=t ′
ψ

t ′,t
ξ0
ηt ′(γa(t))+

d
dt

∣∣∣
t=t ′
ηt(γa(t ′))=

d
dε

∣∣∣
ε=0
ξ t ′
ε (γa(t ′)),
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where we have used the characterization (36) of covariant derivatives of curves.
Applying ψ1,t ′

ξ0
to both sides and using the product rule, the latter equation is

equivalent to

d
dt
ψ

1,t
ξ0
ηt(γa(t))= ψ

1,t
ξ0

d
dε

∣∣∣
ε=0
ξ t
ε(γa(t)).

Integrating t ′ from 0 to 1, and using the definition of η and the property ψ1,1
ξ0
= id,

we obtain (28). �

Corollary 3.4. The pullback of the canonical Maurer–Cartan form of a Lie groupoid
by the exponential map Exp∗φMC is equal to the 1-form defined by (28).

Proof. We saw already in the text preceding the last theorem that the 1-form
Exp∗φMC ∈ �

1
π (A0; τ

∗A) is anchored and satisfies the Maurer–Cartan structure
equation, and, in particular, it satisfies (25). Moreover, the initial condition (27)
is satisfied since it is precisely the relation (23) when written out explicitly. The
corollary now follows from the uniqueness assertion in the theorem. �

The second theorem is a generalization of Step 2 from Section 1. It shows that the
solution from the previous theorem is indeed a solution of the realization problem.

Theorem 3.5. Let A be a pre-Lie algebroid and φ∈�1
π (A0; τ

∗A) a solution of (25),
(26) and (27). Choose A0 to be small enough so that φ is pointwise an isomorphism.
Then MCφ = 0 if and only if Jac= 0, or more precisely,

Jac(a, b, c)=−3 d
dt
(ψ

0,t
ξ (MCφ)ta(b, c))

∣∣∣
t=0
,(31)

(MCφ)a(b, c)=−
∫ 1

0
ψ

1,t
ξ Jac

(1
t

exp(ta), φta(tb), φta(tc)
)

dt,(32)

where ξ is a time-dependent section of A satisfying ξ t(γa(t)) = ga(t) for all
t ∈ (0, 1).

Proof. The proof goes along the same lines as the proof of Theorem 1.4. As in
Theorem 1.4, we will compute

(33) dτ ∗∇(MCφ)ta(a, tb, tc)

in two different ways, where t ∈ (0, 1), x ∈ M , a ∈ (A0)x , y, z ∈ Ax and ∇ is some
vector bundle connection on A.
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1. Consider the map f : (0, 1)× (−δ, δ)2→ g, f (t, ε, ε′)= t (a+εb+ε′c). Recall
that γa is the base curve of the geodesic ga that satisfies γa(t)= τ(ta). Then

(dτ ∗∇MCφ)ta(a, tb, tc)= ( f ∗dτ ∗∇MCφ)(t,0,0)
(
∂

∂t
,
∂

∂ε
,
∂

∂ε′

)
= (d f ∗τ ∗∇ f ∗MCφ)(t,0,0)

(
∂

∂t
,
∂

∂ε
,
∂

∂ε′

)
=∇γ̇a (MCφ)ta(tb, tc),

where the last expression is the covariant derivative of the curve t 7→ (MCφ)ta(tb, tc)
covering γa .

2. Since φ ∈ �1
π (A0; τ

∗A) is a pointwise isomorphism, it induces a linear map
φ−1
: 0(A)→X(A0). Let ξ be as in the statement of the theorem, let ηb and ηc be

time-dependent sections of A satisfying ηt
b(γa(t))=φta(tb) and ηt

c(γa(t))=φta(tc)
and let σ be a time-dependent section of A satisfying σ t(γa(t))= (MCφ)ta(tb, tc).
Let ã, b̃, c̃ be time-dependent vector fields on A0 defined by ãt

= φ−1(ξ t), b̃t
=

φ−1(ηt
b), c̃t

= φ−1(ηt
c). Then

(dτ ∗∇MCφ)ta(a, tb, tc)

= (dτ ∗∇MCφ)(ã, t b̃, t c̃)ta

=∇γ̇aσ
t(γa(t))− [[ξ t , ηt

b], η
t
c]ta − [[η

t
c, ξ

t
], ηt

b]ta + [σ
t
− [ηt

b, η
t
c], ξ

t
]ta

=∇γ̇aσ
t(γa(t))−

d
ds

∣∣∣
s=t
ψ

t,s
ξ σ

t(γa(s))− Jac
(1

t
exp(ta), φta(tb), φta(tc)

)
.

The second equality is a slightly messy yet straightforward computation. It involves
expanding MCφ with respect to the chosen connection, using the choices we made
above of time-dependent sections, and using (25), (27) and (26). In particular, it
is used that (25) implies that φta([ã, b̃]) = [ξ t , ηt

b]γa(t), φta([ã, c̃]) = [ξ t , ηt
c]γa(t).

Furthermore, (MCφ)ta(b, c)=−φta([b̃, c̃])+[ηt
b, η

t
c]γa(t). In the last equality we

express the bracket [ξ t , σ t
] using the infinitesimal flow; see (37).

After equating the two expressions obtained, using characterization (36) of
covariant derivatives of curves and applying ψ1,t

ξ , (33) becomes

(34) ψ
1,t
ξ Jac

(1
t

exp(ta), φta(tb), φta(tc)
)
=−

d
dt
(ψ

1,t
ξ (MCφ)ta(tb, tc)).

The remaining arguments are identical to those in the proof of Theorem 1.4. �

The Poisson case vs. the Lie algebroid case. Given the well-known relations be-
tween Poisson manifolds and Lie algebroids, it is natural to wonder as to the relation
between the instances of the Maurer–Cartan structure equation associated with
these structures, i.e., as to the relation between Section 2 and Section 3 of this paper.
Let us briefly touch upon this.
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In one direction, any Lie algebroid A→M induces a Poisson structure on the total
space of the dual vector bundle A∗→ M known as a linear Poisson structure (see
[Mackenzie 2005]). This generalizes the construction of a linear Poisson structure
on the dual of a Lie algebra. At the level of the associated Maurer–Cartan structure
equations, it is not hard to verify that, locally and under obvious identifications, the
Maurer–Cartan structure equations as well as the solutions are one and the same
on both sides of this correspondence. In particular, trivializing A and computing
the 1-form (28) will produce the same result as that obtained by computing the
1-form (18) associated with the induced trivialization of A∗. This is, of course, a
generalization of the case of a Lie algebra which was discussed in Remark 2.6.

In the opposite direction, any Poisson manifold (M, π) induces a Lie algebroid
structure on the cotangent bundle T ∗M→ M , as originally shown in [Coste et al.
1987]. In that same paper, the authors proved that the local symplectic realization
constructed by Weinstein [1983] (and discussed in Section 2 above) has a canonically
induced local symplectic groupoid structure on its total space whose associated Lie
algebroid is (the restriction of) T ∗M→ M . This same phenomenon occurs at the
level of the Maurer–Cartan structure equations. Using the notation of Section 2, the
local solution of the Maurer–Cartan structure equation associated with the Poisson
manifold (O, π), with O ⊂ V , induces a local solution to the Maurer–Cartan
structure equation associated with the Lie algebroid

T ∗O =O× V ∗ π
−→O

by differentiation of the coefficients, or more precisely, by the map

(35) �1(V ∗;C∞(O))→�1
π ((T

∗O)0; τ ∗(T ∗O)), φ 7→ φ̂,

with φ̂x,ξ (ζ )= d(φξ (ζ ))τ(x) for all x ∈O, ξ, ζ ∈ V ∗.
Note that whereas in the Lie algebroid case we are able to obtain a “wide”

solution, i.e., on an open neighborhood of the zero section of T ∗M→ M , in the
Poisson case we only obtain a local one around a point in M . It would be interesting
to further investigate the relation given by (35) to see if a wide solution of the Lie
algebroid case induces a wide solution of the Poisson case, thus producing yet
another proof for the existence of global symplectic realizations.

Appendix: Facts on (pre-)Lie algebroids

In this appendix, various notions are recalled which are needed in Section 3 for
the formulation of the Maurer–Cartan structure equation on a Lie algebroid and its
solution. For more details, the reader is referred to [Crainic and Fernandes 2003].
Note that all the notions that appear here and that are presented in [Crainic and
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Fernandes 2003] do not require the Jacobi identity and are therefore as valid for
pre-Lie algebroids as they are for Lie algebroids.

Let A → M be a pre-Lie algebroid (see Section 3 for the definition). An
A-connection on a vector bundle E→ M is an R-bilinear map ∇ :0(A)×0(E)→
0(E) satisfying the connection-like properties

∇ f αs = f∇αs and ∇α( f s)= f∇αs+Lρ(α)( f )s

for all α ∈ 0(A), s ∈ 0(E), f ∈ C∞(M).
For the remainder of the appendix, let A→ M be a pre-Lie algebroid equipped

with an A-connection ∇. Note that there will be two different connections that will
play a role in this appendix (and in Section 3): an A-connection∇ on A that is part of
the data, and an auxiliary vector bundle connection∇ on A that is used to write down
the Maurer–Cartan structure equation globally, and which is not part of the data.

Time-dependent sections. A time-dependent section ξ of A is a map ξ : I×M→ A,
(t, x) 7→ ξ t(x) (with I some open interval), such that ξ t is a section of A for all t ∈ I .

If ∇ : X(M)×0(A)→ 0(A) is a vector bundle connection, then given a base
curve γ : I → M and a curve u : I → A covering γ , the covariant derivative
(∇γ̇ u)(t)= ((γ ∗∇)∂/∂t u)(t) can be characterized using time-dependent sections as
follows: choose a time-dependent section ξ of A satisfying ξ t(γ (t))= u(t) for all
t ∈ I ; then

(36) (∇γ̇ u)(t)= (∇γ̇ ξ t)(x)+ dξ t

dt
(x),

where x = γ (t).
We will also use time-dependent sections to express the bracket of a pre-Lie

algebroid in a Lie derivative-like fashion, as one does for the bracket of vector fields.
This involves the notion of an infinitesimal flow. Let ξ be a time-dependent section
of A and ρ(ξ) the corresponding time-dependent vector field on M . Let ϕt,s

ρ(ξ)

denote the flow of ρ(ξ) from time s to t . The infinitesimal flow,

ψ
t,s
ξ : Ax → Aϕt,s

ρ(ξ)
, x ∈ M,

is the unique linear map satisfying the properties ψu,t
ξ ◦ψ

t,s
ξ = ψ

u,s
ξ , ψ s,s

ξ = id and

d
dt

∣∣∣
t=s
ψ

s,t
ξ α(ϕ

t,s
ρ(ξ)(x))= [ξ

s, α]x ∀α ∈ 0(A), x ∈ M.

Defining the pullback of sections by the infinitesimal flow as (ψ t,s
ξ )
∗(α)(x) =

ψ
s,t
ξ α(ϕ

t,s
ρ(ξ)(x)) for all α ∈ 0(A), x ∈ M , the previous equation can be expressed

in the more familiar form

(37) d
dt

∣∣∣
t=s
(ψ

t,s
ξ )
∗α = [ξ s, α] ∀α ∈ 0(A).
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For more on infinitesimal flows and their global counterparts, and flows along invari-
ant time-dependent vector fields on Lie groupoids, see [Crainic and Fernandes 2003].

Geodesics. An A-path is a curve g : I → A with base curve γ : I → M , where
γ (t)= π(g(t)), such that

ρ(g(t))= γ̇ (t) ∀ t ∈ I.

Let g be an A-path with base curve γ , and let u : I → A be another curve
covering γ . The covariant derivative of u with respect to g is the curve∇gu : I→ A,
which is defined in analogy to the usual covariant derivative described above: choose
a time-dependent section ξ of A satisfying ξ t(γ (t))= u(t) for all t ∈ I ; then

(∇gu)(t)= (∇gξ
t)(x)+ dξ t

dt
(x),

where x = γ (t).
A geodesic is a curve g : I → A satisfying the geodesic equation ∇gg = 0.

Geodesics are A-paths. Given any point a ∈ A, there is a unique maximal geodesic
ga : Ia → A satisfying ga(0) = a with domain Ia . The base curve of ga will be
denoted by γa . Geodesics satisfy the basic property

(38) gsa(t)= sga(st) ∀ a ∈ A, s, t ∈ R, t ∈ Isa,

which can be easily verified by checking that the curve t 7→ sga(st) satisfies the
geodesic equation and then by noting that by uniqueness it must be equal to gsa

since at time 0 it takes the value sa.
Let A0 ⊂ A be a neighborhood of the zero section such that ga is defined up to

time 1 for all a ∈ A0. The exponential map is defined as exp : A0→ A, a 7→ ga(1).
The point π(exp(a)) ∈ M will be called the target of a and τ = π ◦ exp : A0→ M
the target map.

The Maurer–Cartan 2-form. Let �∗π (A0; τ
∗A) denote the space of foliated differ-

ential forms on A0 (foliated with respect to the foliation by π-fibers) which take
values in τ ∗A.

Let ∇ :X(M)×0(A)→ 0(A) be a vector bundle connection on A. The torsion
[ · , · ]∇ ∈ Hom(32 A, A) of ∇ is defined at the level of sections by

[α, β]∇ = [α, β] −∇ρ(α)β +∇ρ(β)α ∀α, β ∈ 0(A),

and is easily checked to be C∞(M)-linear in both slots. The torsion induces a
bracket [ · , · ]∇ :�

p
π (A0; τ

∗A)×�q
π (A0; τ

∗A)→�
p+q
π (A0; τ

∗A) which plays the
role of the wedge product on A-valued forms, and similarly to the wedge product,
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it is defined by the formula

[ω, η]∇(X1, . . . , X p+q)a

=

∑
σ∈Sp,q

sgn(σ )[ω(Xσ(1), . . . , Xσ(p))a, η(Xσ(p+1), . . . , Xσ(p+q))a]∇

for all a ∈ A0, where Sp,q is the set of (p, q)-shuffles.
In general, a connection ∇ on a vector bundle E → M induces a differential-

like map d∇ : �∗(M; E)→ �∗+1(M; E) by the usual Koszul-type formula. For
example, if φ ∈�1(M; E),

d∇φ(X, Y )=∇Xφ(Y )−∇Yφ(X)−φ([X, Y ]) ∀ X, Y ∈ X(M).

The map d∇ squares to zero if and only if the connection is flat. If M has a
foliation F and �∗F (M; E) are the foliated forms, then the map d∇ descends to a
map of foliated forms d∇ :�∗F (M; E)→�∗+1

F (M; E). We will need the following
property, whose proof is elementary and will be left out.

Lemma A.1. Let E → M be a vector bundle equipped with a connection ∇ and
let f : N ↪→ M be a submanifold. Then

f ∗d∇φ = d f ∗∇ f ∗φ

for any φ ∈�∗(M; E). If N and M are foliated and f is a foliated map, then the
property holds for φ ∈�∗F (M; E).

In our particular case, the induced pull-back connection τ ∗∇ on the vector bundle
τ ∗A→ A0 induces a differential-like map

dτ ∗∇ :�∗π (A0; τ
∗A)→�∗+1

π (A0; τ
∗A).

A 1-form φ ∈ �1
π (A0; τ

∗A) is said to be anchored if ρ ◦ φ = dτ , or more
explicitly, if ρ(φa(b)) = (dτ)a(b) for all a ∈ (A0)x , b ∈ Ax (where we are using
the canonical identification Ta A0 ∼= Ax ).

Proposition A.2. Let φ ∈�1
π (A0; τ

∗A). If φ is anchored, then the 2-form

(39) dτ ∗∇φ+ 1
2 [φ, φ]∇ ∈�

2
π (A0; τ

∗A)

is independent of the choice of connection ∇.

Proof. Let ∇ and ∇ ′ be two connections. Then by the defining properties of a
connection, ω := ∇−∇ ′ ∈�1(M;Hom(A, A)). Let a ∈ A0 and X, Y ∈ Ta A0 such
that dπ(X)= dπ(Y )= 0. On the one hand,

(dτ ∗∇φ− dτ ∗∇ ′φ)(X, Y )= ωτ(a)((dτ)a(X))(φa(Y ))−ωτ(a)((dτ)a(Y ))(φa(X)).
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On the other hand,( 1
2 [φ, φ]∇ −

1
2 [φ, φ]∇ ′

)
(X, Y )
=−ωτ(a)(ρ(φa(X)))(φa(Y ))+ωτ(a)(ρ(φa(Y )))(φa(X)).

The sum of these two equations vanishes if φ is anchored. �

We call the 2-form given by (39) the Maurer–Cartan 2-form and denote it
by MCφ .
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