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VECTOR BUNDLES OVER A REAL ELLIPTIC CURVE

INDRANIL BISWAS AND FLORENT SCHAFFHAUSER

Given a geometrically irreducible smooth projective curve of genus 1 de-
fined over the field of real numbers, and a pair of integers r and d, we
determine the isomorphism class of the moduli space of semistable vector
bundles of rank r and degree d on the curve. When r and d are coprime,
we describe the topology of the real locus and give a modular interpretation
of its points. We also study, for arbitrary rank and degree, the moduli space
of indecomposable vector bundles of rank r and degree d, and determine its
isomorphism class as a real algebraic variety.

1. Introduction

1A. Notation. In this paper, a real elliptic curve will be a triple (X, x0, σ ) where
(X, x0) is a complex elliptic curve (i.e., a compact connected Riemann surface of
genus 1 with a marked point x0) and σ : X→ X is an antiholomorphic involution
(also called a real structure). We do not assume that x0 is fixed under σ. In particular,
Xσ
:= Fix(σ ) is allowed to be empty.

The gcd of two integers r and d will be denoted by r ∧ d .
In the introduction, we omit the definitions of stability and semistability of vector

bundles, as well as that of real and quaternionic structures; all these definitions will
be recalled in Section 2.

1B. The case of genus zero. Vector bundles over a real Riemann surface of genus
g ≥ 2 have been studied from various points of view in the past few years: moduli
spaces of real and quaternionic vector bundles were introduced through gauge-
theoretic techniques in [Biswas et al. 2010], then related to the real points of
the usual moduli variety in [Schaffhauser 2012]. In genus 0, there are, up to
isomorphism, only two possible real Riemann surfaces: the only compact Riemann
surface of genus 0 is the Riemann sphere CP1 and it can be endowed either with
the real structure [z1 : z2] 7→ [z1 : z2] or with the real structure [z1 : z2] 7→ [−z2 : z1].
The real locus of the first real structure is RP1 while the real locus of the second
one is empty. Now, over CP1, two holomorphic line bundles are isomorphic if and
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only if they have the same degree and, by a theorem due to Grothendieck [1957],
any holomorphic vector bundle over the Riemann sphere is isomorphic to a direct
sum of line bundles. So, over CP1, the only stable vector bundles are the line
bundles, a semistable vector bundle is necessarily polystable, and any vector bundle
is isomorphic to a direct sum of semistable vector bundles, distinguished by their
respective slopes and ranks. In particular, if E is semistable of rank r and degree d ,
then r divides d and

E 'O(d/r)⊕ · · ·⊕O(d/r),

where O(1) is the positive degree generator of the Picard group of CP1 and O(k)
is its k-th tensor power. This means that the moduli space of semistable vector
bundles of rank r and degree d over CP1 is

MCP1(r, d)=
{
{pt} if r | d,
∅ if r - d.

Assume now that a real structure σ has been given on CP1. Then, if L is a
holomorphic line bundle of degree d over CP1, it is isomorphic to its Galois
conjugate σ ∗L, since they have the same degree. This implies that L is either real
or quaternionic. Moreover, this real or quaternionic structure is unique up to real or
quaternionic isomorphism, respectively; see Proposition 2.10. If the real structure
σ has real points, then quaternionic bundles must have even rank. Thus, when
Fix(σ ) 6=∅ in CP1, any line bundle (more generally, any direct sum of holomorphic
line bundles) admits a canonical real structure. Of course, given a real vector bundle
of the form (L⊕L, τ ⊕ τ), where τ is a real structure on the line bundle L, one
can also construct the quaternionic structure(

0 −τ
τ 0

)
on L⊕L. Note that the real vector bundle(

L⊕L,
(

0 τ

τ 0

))
is isomorphic to (L⊕L, τ ⊕ τ). When CP1 is equipped with its real structure with
no real points, a given line bundle L of degree k is again necessarily self-conjugate,
so it has to be either real or quaternionic, but now real line bundles must have even
degree and quaternionic line bundles must have odd degree [Biswas et al. 2010], so
L admits a canonical real structure if k is even and a canonical quaternionic structure
if k is odd. Consequently, when Fix(σ )=∅ in CP1, semistable holomorphic vector
bundles of rank r and degree d = rk over CP1 admit a canonical real structure if k
is even and a canonical quaternionic structure if k is odd.
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1C. Description of the results. The goal of the present paper is to analyze that
same situation in the case of real Riemann surfaces of genus one. In particular, we
completely identify the moduli space of semistable holomorphic vector bundles
of rank r and degree d as a real algebraic variety (Theorem 1.1 below). Our main
references are [Atiyah 1957b; Tu 1993]. In what follows, we denote by (X, x0)

a complex elliptic curve and by MX(r, d) the moduli space of semistable vector
bundles of rank r and degree d over X , i.e., the set of S-equivalence classes of
semistable holomorphic vector bundles of rank r and degree d over X [Seshadri
1967]. Since (X, x0) is an elliptic curve, the results of Atiyah show that any
holomorphic vector bundle on X is again (as in genus 0) a direct sum of semistable
vector bundles (see Theorem 3.3) but now there can be semistable vector bundles
which are not polystable (see (3-2)) and also there can be stable vector bundles
of rank higher than 1. Moreover, the moduli space MX(r, d) is a nonsingular
complex algebraic variety of dimension h := r ∧d . As a matter of fact, MX(r, d) is
isomorphic, as a complex algebraic variety, to the (r ∧ d)-fold symmetric product
Symr∧d(X) of the complex elliptic curve X , and it contains stable bundles if and
only if r ∧ d = 1, in which case all semistable bundles are in fact stable. Let now
σ : X→ X be a real structure on X (recall that the marked point x0 is not assumed
to be fixed under σ ). Then the map E 7→ σ ∗E induces a real structure, again denoted
by σ, on MX(r, d), since it preserves the rank, the degree, and the S-equivalence
class of semistable vector bundles [Schaffhauser 2012]. Our main result is then the
following, to be proved in Section 2C.

Theorem 1.1. Let h := r ∧ d. Then, as a real algebraic variety,

MX(r, d)'R


Symh(X) if Xσ

6=∅,
Symh(X) if Xσ

=∅ and d/h is odd,
Symh(Pic0

X ) if Xσ
=∅ and d/h is even.

We recall that Pic0
X is isomorphic to X over C (via the choice of x0) but not over R

when Xσ
=∅ because Pic0

X has the real point corresponding to the trivial line bundle.
In contrast, Pic1

X is always isomorphic to X over R, as we shall recall in Section 2A.
For any d ∈ Z, the real structure of Picd

X is induced by the map L 7→ σ ∗L, while
the real structure of the h-fold symmetric product Symh(Y ) of a real variety (Y, σ )
is induced by that of Y in the following way: [y1, . . . , yh] 7→ [σ(y1), . . . , σ (yh)].
Note that, if r ∧ d = 1, then by Theorem 1.1 we have MX(r, d)'R X if Xσ

6=∅
or d is odd, and MX(r, d)'R Pic0

X if Xσ
=∅ and d is even. This will eventually

imply the following results on the topology and modular interpretation of the set
of real points of MX(r, d), analogous to those of [Schaffhauser 2012] for real
curves of genus g ≥ 2 (see Section 2D for a proof of Theorem 1.2; we point out
that it will only be valid under the assumption that r ∧ d = 1, in which case all
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semistable bundles are in fact stable; in particular a real point of MX(r, d) is given
by either a real bundle or a quaternionic bundle, in an essentially unique way; see
Proposition 2.10).

Theorem 1.2. Assume that r ∧ d = 1.

(1) If Xσ
6= ∅, then MX(r, d)σ ' Xσ has either 1 or 2 connected components.

Points in either component correspond to real isomorphism classes of real
vector bundles of rank r and degree d over (X, σ ), and two such bundles
(E1, τ1) and (E2, τ2) lie in the same connected component if and only if
w1(Eτ1)= w1(Eτ2

2 ).

(2) If Xσ
=∅ and d = 2e+ 1, then MX(r, 2e+ 1)σ ' Xσ is empty.

(3) If Xσ
= ∅ and d = 2e, then MX(r, 2e)σ ' (Pic 0

X )
σ has two connected com-

ponents, one consisting of real isomorphism classes of real bundles, the other
consisting of quaternionic isomorphism classes of quaternionic bundles. These
two components become diffeomorphic under the operation of tensoring a
given bundle by a quaternionic line bundle of degree 0.

In cases (1) and (3), each connected component of MX(r, d)σ is diffeomorphic
to S1.

In particular, the formulae of Liu and Schaffhauser [2013] (see also [Baird 2014]),
giving the mod 2 Betti numbers of the connected components of MX(r, d)σ when
r ∧ d = 1 are still valid for g = 1. In contrast, when r ∧ d 6= 1, the formulae do not
seem to be interpretable in any way since, over an elliptic curve, the dimension of
MX(r, d) is r ∧ d , not r2(g− 1)+ 1.

In the third and final section of the paper, we investigate the properties of
indecomposable vector bundles over real elliptic curves. Recall that a holomorphic
vector bundle E over a complex curve X is said to be indecomposable if it is
not isomorphic to a direct sum of nontrivial holomorphic bundles. When X is
of genus 1, there exists a moduli variety IX(r, d) whose points are isomorphism
classes of indecomposable vector bundles of rank r and degree d: it was constructed
by Atiyah [1957b] and revisited by Tu [1993], as will be recalled in Theorems 3.2
and 3.4. We will then see in Section 3C that we can extend their approach to the
case of real elliptic curves and obtain the following characterization of IX(r, d) as
a real algebraic variety.

Theorem 1.3. Let (X, x0, σ ) be a real elliptic curve. Let IX(r, d) be the set of
isomorphism classes of indecomposable vector bundles of rank r and degree d and
set h := r ∧ d , r ′ := r/h, d ′ := d/h. Then

IX(r, d)'R MX(r ′, d ′)'R


X if Xσ

6=∅,
X if Xσ

=∅ and d ′ is odd,
Pic0

X if Xσ
=∅ and d ′ is even.
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By combining Theorems 1.2 and 1.3, we obtain the following topological de-
scription of the set of real points of IX(r, d), valid even when r ∧ d 6= 1.

Theorem 1.4. Denote by IX(r, d)σ the fixed points of the real structure E 7→ σ ∗E
in IX(r, d).

(1) If Xσ
6=∅, then IX(r, d)σ ' Xσ consists of real isomorphism classes of real

and indecomposable vector bundles of rank r and degree d. It has either one or
two connected components, according to whether Xσ has one or two connected
components, and these are distinguished by the Stiefel–Whitney classes of the
real parts of the real bundles that they contain.

(2) If Xσ
=∅ and d/(r ∧ d)= 2e+ 1, then IX(r, d)σ ' Xσ is empty.

(3) If Xσ
= ∅ and d/(r ∧ d) = 2e, then IX(r, d)σ ' (Pic0

X )
σ has two connected

components, one consisting of real isomorphism classes of vector bundles
which are both real and indecomposable and one consisting of quaternionic
isomorphism classes of vector bundles which are both quaternionic and inde-
composable. These two components become diffeomorphic under the operation
of tensoring a given bundle by a quaternionic line bundle of degree 0.

In cases (1) and (3), each connected component of the set of real points of IX(r, d)
is diffeomorphic to S1.

2. Moduli spaces of semistable vector bundles over an elliptic curve

2A. Real elliptic curves and their Picard varieties. The real points of Picard vari-
eties of real algebraic curves were studied, for instance, by Gross and Harris [1981].
We summarize here some of their results, specializing to the case of genus 1 curves.

Let X be a compact connected Riemann surface of genus 1. To each point
x ∈ X , there is associated a holomorphic line bundle L(x), of degree 1, whose
holomorphic sections have a zero of order 1 at x and no other zeros or poles. Since
X is compact, the map X → Pic1

X thus defined, called the Abel–Jacobi map, is
injective. And since X has genus 1, it is also surjective. The choice of a point
x0 ∈ X defines an isomorphism Pic0

X −→
∼ Pic1

X , obtained by tensoring by L(x0). In
particular, X ' Pic1

X is isomorphic to Pic0
X as a complex analytic manifold and

inherits, moreover, a structure of Abelian group with x0 as the neutral element.
If σ : X → X is a real structure on X , the Picard variety Picd

X , whose points
represent isomorphism classes of holomorphic line bundles of degree d, has a
canonical real structure, defined by L 7→ σ ∗L (observe that this antiholomorphic
involution, which we will still denote by σ, indeed preserves the degree). Since
L(σ (x))' σ ∗(L(x)), the Abel–Jacobi map X→ Pic1

X is defined over R, meaning
that it commutes with the real structures of X and Pic1

X . We also call such a
map a real map. If Xσ

6= ∅, we can choose x0 ∈ Xσ and then L(x0) will satisfy
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σ ∗L(x0)'L(x0) so the isomorphism Pic0
X −→
∼ Pic1

X obtained by tensoring by L(x0)

will also be defined over R. More generally, by tensoring by a suitable power of
L(x0), we obtain real isomorphisms Picd

X ' Pic1
X for any d ∈ Z. If now Xσ

=∅,
then we actually cannot choose x0 in such a way that L(σ (x0)) ' L(x0)— see
[Gross and Harris 1981] or Theorem 2.8 below; the reason is that such a line bundle
would be either real or quaternionic but, over a real curve of genus 1 with no real
points, real and quaternionic line bundles must have even degree — but we may
consider the holomorphic line bundle of degree 2 defined by the divisor x0+σ(x0),
call it L, say. Then σ ∗L' L and, by tensoring by an appropriate tensor power of it,
we have the real isomorphisms

Picd
X 'R

{
Pic1

X if d = 2e+ 1,
Pic0

X if d = 2e.

So, when the genus of X is 1, we have the following result:

Theorem 2.1. Let (X, x0, σ ) be a real elliptic curve.

(1) If Xσ
6=∅, then for all d ∈ Z,

Picd
X 'R X.

(2) If Xσ
=∅, then

Picd
X 'R

{
X if d = 2e+ 1,

Pic0
X if d = 2e.

2B. Semistable vector bundles. Let X be a compact connected Riemann surface
of genus g and recall that the slope of a nonzero holomorphic vector bundle E on
X is by definition the ratio µ(E) = deg(E)/ rk(E) of its degree by its rank. The
vector bundle E is called stable if for any nonzero proper subbundle F ⊂ E , one
has µ(F) < µ(E). Analogously, E is called semistable if µ(F) ≤ µ(E). By a
theorem of Seshadri [1967], any semistable vector bundle E of rank r and degree d
admits a filtration whose successive quotients are stable bundles of the same slope,
necessarily equal to d/r . Such a filtration, called a Jordan–Hölder filtration, is not
unique but the graded objects associated to any two such filtrations are isomorphic.
The isomorphism class thus defined is denoted by gr(E) and holomorphic vector
bundles which are isomorphic to direct sums of stable vector bundles of equal slope
are called polystable vector bundles. Moreover, two semistable vector bundles E1

and E2 are called S-equivalent if gr(E1)= gr(E2) and Seshadri proved in [Seshadri
1967] that, when g≥ 2, the set of S-equivalence classes of semistable vector bundles
of rank r and degree d admits a structure of complex projective variety of dimension
r2(g−1)+1 and is nonsingular when r∧d = 1 but usually singular when r∧d 6= 1
(unless, in fact, g = 2, r = 2, and d = 0). Finally, when g ≥ 2, there are always
stable bundles of rank r and degree d over X [Narasimhan and Seshadri 1965].
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These come from irreducible rank r unitary representations of a certain central
extension of π1(X) by Z, determined by d up to isomorphism). If now g = 1, then
the results of Atiyah [1957b] and Tu [1993] show that the set of S-equivalence
classes of semistable vector bundles of rank r and degree d admits a structure of
nonsingular complex projective variety of dimension r ∧ d (which is consistent
with the formula for g ≥ 2 only when r and d are coprime). But now stable vector
bundles of rank r and degree d can only exist if r ∧ d = 1, as Tu showed [1993,
Theorem A] following Atiyah’s results. In particular, the structure of polystable
vector bundles over a complex elliptic curve is rather special, as recalled next.

Proposition 2.2 (Atiyah–Tu). Let E be a polystable holomorphic vector bundle of
rank r and degree d over a compact connected Riemann surface X of genus 1. Set
h := r ∧ d, r ′ := r/h, and d ′ := d/h. Then E ' E1⊕ · · · ⊕ Eh where each Ei is a
stable holomorphic vector bundle of rank r ′ and degree d ′.

Proof. By definition, a polystable bundle of rank r and degree d is isomorphic to a
direct sum E1⊕· · ·⊕Ek of stable bundles of slope d/r = d ′/r ′. Since d ′∧r ′= 1 and
each Ei is stable of slope d ′/r ′, each Ei must have rank r ′ and degree d ′ (because
stable bundles over elliptic curves must have coprime rank and degree). Since
rk(E1⊕ · · ·⊕ Ek)= kr ′ = rk(E)= r , we have indeed k = h. �

To understand the moduli space MX(r, d) of semistable holomorphic vector
bundles of rank r and degree d over a complex elliptic curve X , one then has the
next two theorems.

Theorem 2.3 (Atiyah–Tu). Let X be a compact connected Riemann surface of
genus 1 and assume that r∧d=1. Then the determinant map det :MX(r, d)→Picd

X
is an isomorphism of complex analytic manifolds of dimension 1.

Note that, when r∧d = 1, any semistable vector bundle of rank r and degree d is
in fact stable (over a curve of arbitrary genus) and that, to prove Theorem 2.3, it is
in particular necessary to show that a stable vector bundle E of rank r and degree d
over a complex elliptic curve X satisfies E ⊗L' E if and only if L is an r -torsion
point in Pic0

X (i.e., L⊗r
'OX ), a phenomenon which only occurs in genus 1.

If now h := r ∧d ≥ 2, then we know, by Proposition 2.2, that a semistable vector
bundle of rank r and degree d is isomorphic to the direct sum of h stable vector
bundles of rank r ′ = r/h and degree d ′ = d/h. Combining this with Theorem 2.3,
one obtains:

Theorem 2.4 [Tu 1993, Theorem 1]. Let X be a compact connected Riemann
surface of genus 1 and denote by h := r ∧ d. Then there is an isomorphism of
complex analytic manifolds:

MX(r, d)−→∼ Symh(Picd/h
X ), E ' E1⊕ · · ·⊕ Eh 7→ [det Ei ]1≤i≤h .
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In particular, MX(r, d) has dimension h=r∧d . Since the choice of a point x0∈ X
provides an isomorphism Picd

X 'C X , we have indeed MX(r, d)'C Symh(X). In
the next section, we will analyze the corresponding situation over R. But first we
recall the basics about real and quaternionic vector bundles.

Let (X, σ ) be a real Riemann surface, i.e., a Riemann surface X endowed with
a real structure σ. A real holomorphic vector bundle over (X, σ ) is a pair (E, τ )
such that E → X is a holomorphic vector bundle over X and τ : E → E is an
antiholomorphic map such that

(1) the diagram
E1

τ
−−−→ E2y y

X
σ

−−−→ X
is commutative;

(2) the map τ is fiberwise C-antilinear: ∀v ∈ E , ∀λ ∈ C, τ(λv)= λ(v);

(3) τ 2
= IdE .

A quaternionic holomorphic vector bundle over (X, σ ) is a pair (E, τ ) satisfying
conditions (1) and (2) above, as well as a modified third condition:

(3′) τ 2
=− IdE .

A homomorphism ϕ : (E1, τ1)→ (E2, τ2) between two real or quaternionic vector
bundles is a holomorphic map ϕ : E1→ E2 such that

(1) the diagram
E1

ϕ
−−−→ E2y y

X X
is commutative;

(2) ϕ ◦ τ1 = τ2 ◦ϕ.

A real or quaternionic holomorphic vector bundle is called stable if for any
τ -invariant subbundle F ⊂ E , one has µ(F) < µ(E). It is called semistable if for
any such F, one has µ(F) ≤ µ(F). As shown in [Schaffhauser 2012], (E, τ ) is
semistable as a real vector bundle if and only E is semistable as a holomorphic
vector bundle but (E, τ ) may be stable as a real vector bundle while being only
polystable as a holomorphic vector bundle (when E is in fact stable, we will say
that (E, τ ) is geometrically stable). However, any semistable real vector bundle
admits real Jordan–Hölder filtrations (where the successive quotients can sometimes
be stable in the real sense only) and there is a corresponding notion of polystable
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real vector bundle, which turns out to be equivalent to being polystable and real.
Analogous results hold for quaternionic vector bundles. Real and quaternionic vector
bundles over a compact connected real Riemann surface (X, σ ) were topologically
classified in [Biswas et al. 2010]. If Xσ

6=∅, a real vector bundle (E, τ ) over (X, σ )
defines in particular a real vector bundle in the ordinary sense Eτ → Xσ; hence an
associated first Stiefel–Whitney class w1(Eτ ) ∈ H 1(Xσ

;Z/2Z)' (Z/2Z)n, where
n ∈ {0, . . . , g+ 1} is the number of connected components of Xσ. The topological
classification of real and quaternionic vector bundles then goes as follows.

Theorem 2.5 [Biswas et al. 2010]. Let (X, σ ) be a compact connected real Riemann
surface.

(1) If Xσ
6= ∅, real vector bundles over (X, σ ) are classified up to smooth iso-

morphism by the numbers r = rk(E), d = deg(E), and (s1, . . . , sn)= w1(Eτ ),
subject to the condition s1+· · ·+sn ≡ d (mod 2). Quaternionic vector bundles
must have even rank and degree in this case and are classified up to smooth
isomorphism by the pair (2r, 2d).

(2) If Xσ
= ∅, real vector bundles over (X, σ ) must have even degree and are

classified up to smooth isomorphism by the pair (r, 2d). Quaternionic vector
bundles are classified up to smooth isomorphism by the pair (r, d), subject
to the condition d + r(g− 1) ≡ 0 (mod 2). In particular, if g = 1, real and
quaternionic vector bundles alike must have even degree.

Theorem 2.5 will be useful in Section 2D, for the proof of Theorem 1.2.

2C. The real structure of the moduli space. Let first (X, σ ) be a real Riemann
surface of arbitrary genus g. Then the involution E 7→ σ ∗E preserves the rank and
the degree of a holomorphic vector bundle and the bundle σ ∗E is stable if and only
if E is. The analogous statement holds for semistable bundles. Moreover, if E is
semistable, a Jordan–Hölder filtration of E is mapped to a Jordan–Hölder filtration
of σ ∗E , so, for any g, the moduli space MX(r, d) of semistable holomorphic vector
bundles of rank r and degree d on X has an induced real structure. Assume now
that g = 1 and let us prove Theorem 1.1.

Proof of Theorem 1.1. Since, for any vector bundle E one has det(σ ∗E)= σ ∗(det E),
the map

MX(r, d)−→∼ Symh(Picd/h
X ), E ' E1⊕ · · ·⊕ Eh 7→ [det Ei ]1≤i≤h

of Theorem 2.4 is a real map. If Xσ
6=∅, then by Theorem 2.1 we have

Picd
X 'R Pic0

X 'R X,

so MX(r, d)'R Symh(X) in this case. And if Xσ
=∅, we distinguish between the
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cases d = 2e+ 1 and d = 2e to obtain, again by Theorem 2.1, that

MX(r, d)'R

{
Symh(X) if d/h is odd,
Symh(Pic0

X ) if d/h is even,

which finishes the proof of Theorem 1.1. �

Let us now focus on the case d = 0, where there is a nice alternate description
of the moduli variety in terms of representations of the fundamental group of
the elliptic curve (X, x0). Since π1(X, x0) ' Z2 is a free Abelian group on two
generators, a rank r unitary representation of it is entirely determined by the data of
two commuting unitary matrices u1, u2 in U(r) (in particular, such a representation
is never irreducible unless r = 1), and we may assume that these two matrices lie
in the maximal torus Tr ⊂ U(r) consisting of diagonal unitary matrices. The Weyl
group of Tr is Wr 'Sr , the symmetric group on r letters, and one has

(2-1) Hom(π1(X, x0);U(r))/U(r)' Hom(π1(X, x0); Tr )/Wr .

Note that since π1(X, x0) is Abelian, there is a well-defined action of σ on it even
if x0 /∈ Xσ : a loop γ at x0 is sent to the loop σ ◦γ at σ(x0) then brought back to x0

by conjugation by an arbitrary path between x0 and σ(x0). Combining this with the
involution u 7→ u of U(r), we obtain an action of σ on Hom(π1(X, x0);U(r)), de-
fined by sending a representation ρ to the representation σρσ. This action preserves
the subset Hom(π1(X, x0); Tr ) and is compatible with the conjugacy action of U(r)
in the sense that σ(Adu ρ)σ = Adσ(u)(σρσ−1), so it induces an involution on the
representation varieties Hom(π1(X, x0);U(r))/U(r) and Hom(π1(X, x0); Tr )/Wr

and the bijection (2-1) is equivariant for the actions just described. By the results
of Friedman, Morgan and Witten [Friedman et al. 1998] and Laszlo [1998], this
representation variety is in fact isomorphic to the moduli space MX(r, 0). Moreover,
the involution E 7→ σ ∗E on bundles corresponds to the involution ρ 7→ σρσ on
unitary representations. Moreover,

Tr ' U(1)× · · ·×U(1)︸ ︷︷ ︸
r times

' U(1)⊗Z Zr

as Abelian Lie groups, where Zr can be interpreted as π1(Tr ). In particular,
the Galois action induced on Zr by the complex conjugation on Tr is simply
(n1, . . . , nr ) 7→ (−n1, . . . ,−nr ) and the isomorphism Tr 'U(1)⊗Zr is equivariant
with respect to these natural real structures. Finally, the bijection

Hom(π1(X, x0); Tr )' Hom(π1(X, x0);U(1))⊗Zr

is also equivariant, and the representation variety Hom(π1(X, x0);U(1)) is isomor-
phic to Pic0

X as a real variety. We have thus proved the following result, which is
an analogue over R of one of the results in [Friedman et al. 1998; Laszlo 1998].
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Theorem 2.6. Let (X, x0, σ ) be a real elliptic curve. Then the map

(Pic0
X ⊗ZZr )' (Pic0

X )
r
→M(r, 0), (L1, . . . ,Lr ) 7→ L1⊕ · · ·⊕Lr

induces an isomorphism

MX(r, 0)'R (Pic0
X ⊗Zr )/Sr ,

where the symmetric group Sr acts on Zr by permutation.
When Xσ

6= ∅, one can further identify Pic0
X with X over R and obtain the

isomorphism
MX(r, 0)'R (X ⊗Zr )/Sr .

The results of Section 3 will actually give an alternate proof of Theorem 2.6, by
using the theory of indecomposable vector bundles over elliptic curves. We point
out that algebraic varieties of the form (X ⊗π1(T ))/WT for X a complex elliptic
curve have been studied for instance by Looijenga [1976], who identified them
with certain weighted projective spaces determined by the root system of T, when
the ambient group G ⊃ T is semisimple. Theorem 2.6 shows that, over R, it may
sometimes be necessary to replace X by Pic0

X .
To conclude on the case where d = 0, we recall that, on MX(r, 0), there exists

another real structure, obtained from the real structure E 7→ σ ∗E by composing it
with the holomorphic involution E 7→ E∗, which in general sends a vector bundle
of degree d to a vector bundle of degree −d, so preserves only the moduli spaces
MX(r, 0). Denote by

ηr :MX(r, 0)→MX(r, 0), E 7→ σ ∗E ∗

this new real structure on the moduli space MX(r, 0). In particular, we have

η1 : Pic0
X → Pic0

X , L 7→ σ ∗L ∗

and we note that η1 has real points because it fixes the trivial line bundle. The real
elliptic curve (Pic0

X , η1) is, in general, not isomorphic to (X, σ ), even when σ has
fixed points. We can nonetheless characterize the new real structure of the moduli
spaces MX(r, 0) in the following way:

Proposition 2.7. The real variety (MX(r, 0), ηr ) is isomorphic to the r-fold sym-
metric product of the real elliptic curve (Pic0

X , η1).

Proof. The proposition is proved in the same way as Theorem 2.6, changing only
the real structures under consideration. �

2D. Topology of the set of real points in the coprime case. In rank 1, the topology
of the set of real points of Picd

X is well understood and so is the modular interpretation
of its elements.
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Theorem 2.8 ([Gross and Harris 1981], case g = 1). Let (X, σ ) be a compact real
Riemann surface of genus 1 and let d ∈ Z.

(1) If Xσ
6= ∅, then (Picd

X )
σ
' Xσ has 1 or 2 connected components. Elements

of (Picd
X )
σ correspond to real isomorphism classes of real holomorphic line

bundles over (X, σ ) and two such real line bundles (L1, τ1) and (L2, τ2) lie in
the same connected component of (Picd

X )
σ if and only if w1(Lτ1

1 )= w1(Lτ2
2 ).

(2) If Xσ
=∅ and d = 2e+ 1, then (Picd

X )
σ
' Xσ is empty.

(3) If Xσ
=∅ and d = 2e, then (Picd

X )
σ
' (Pic0

X )
σ has 2 connected components,

corresponding to isomorphism classes of either real or quaternionic line bun-
dles of degree d, depending on the connected component of (Picd

X )
σ in which

they lie.

In cases (1) and (3), any given connected component of (Picd
X )
σ is diffeomorphic

to S1.

For real Riemann surfaces of genus g ≥ 2, the topology of (Picd
X )
σ, in particular

the number of connected components, is a bit more involved but also covered in
[Gross and Harris 1981], the point being that these components are indexed by
the possible topological types of real and quaternionic line bundles over (X, σ ).
For vector bundles of rank r ≥ 2 on real Riemann surfaces of genus g ≥ 2, a
generalization of the results of Gross and Harris was obtained in [Schaffhauser
2012]: we recall here the result for coprime rank and degree (in general, a similar
but more complicated result holds provided one restricts one’s attention to the stable
locus in MX(r, d)). The coprime case is the case that we will actually generalize to
genus 1 curves (where stable bundles can only exist in coprime rank and degree).

Theorem 2.9 [Schaffhauser 2012]. Let (X, σ ) be a compact real Riemann surface
of genus g ≥ 2 and assume that r ∧ d = 1. The number of connected component of
MX(r, d)σ is equal to:

(1) 2n−1 if Xσ has n > 0 connected components. In this case, elements of
MX(r, d)σ correspond to real isomorphism classes of real holomorphic vector
bundles of rank r and degree d and two such bundles (E1, τ1) and (E2, τ2) lie
in the same connected component if and only if w1(Eτ1)= w1(Eτ2

2 ).

(2) 0 if Xσ
=∅, d is odd and r(g− 1) is even.

(3) 1 if Xσ
= ∅, d is odd and r(g − 1) is odd, in which case the elements of

MX(r, d)σ correspond to quaternionic isomorphism classes of quaternionic
vector bundles of rank r and degree d.

(4) 1 if Xσ
= ∅, d is even and r(g − 1) is odd, in which case the elements of

MX(r, d)σ correspond to real isomorphism classes of real vector bundles of
rank r and degree d.
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(5) 2 if Xσ
= ∅, d is even and r(g − 1) is even, in which case there is one

component consisting of real isomorphism classes of real vector bundles of
rank r and degree d while the other consists of quaternionic isomorphism
classes of quaternionic vector bundles of rank r and degree d.

Now, using Theorem 1.1, we can extend Theorem 2.9 to the case g = 1. Indeed,
to prove Theorem 1.2, we only need to combine Theorem 2.8 and the coprime case
of Theorem 1.1 (i.e., h = 1), with the following result, for a proof of which we
refer to either [Biswas et al. 2010] or [Schaffhauser 2012].

Proposition 2.10. Let (X, σ ) be a compact connected real Riemann surface and
let E be a stable holomorphic vector bundle over X satisfying σ ∗E ' E . Then E
is either real or quaternionic and cannot be both. Moreover, two different real or
quaternionic structures on E are conjugate by a holomorphic automorphism of E .

Note that it is easy to show that two real or two quaternionic structures on E
differ by a holomorphic automorphism eiθ

∈ S1
⊂ C∗ ' Aut(E) but, in order to

prove that these two structures τ1 and τ2, say, are conjugate, we need to observe
that τ2( · )= eiθτ1( · )= eiθ/2τ1(e−iθ/2

· ). Then, to finish the proof of Theorem 1.2,
we proceed as follows:

Proof of Theorem 1.2. Recall that X here has genus 1. If Xσ
6= ∅, quater-

nionic vector bundles must have even rank and degree by Theorem 2.5, so, by
Proposition 2.10, points of MX(r, d)σ correspond in this case to real isomorphism
classes of geometrically stable real vector bundles of rank r and degree d. By
Theorem 1.1, one indeed has MX(r, d)σ ' (Picd

X )
σ
' Xσ in this case. Moreover,

since the diffeomorphism MX(r, d)σ ' (Picd
X )
σ is provided by the determinant map,

the connected components of MX(r, d)σ, or equivalently of (Picd
X )
σ are indeed

distinguished by the first Stiefel–Whitney class of the real part of the real bundles
that they parametrize, as in Theorem 2.8. If now Xσ

= ∅, then by Theorem 2.5,
real and quaternionic vector bundles must have even degree and we can again use
Theorem 2.8 to conclude: note that since the diffeomorphism MX(r, d)σ ' (Picd

X )
σ

is provided by the determinant map, when d is even r must be odd (because r is
assumed to be coprime to d), so the determinant indeed takes real vector bundles to
real line bundles and quaternionic vector bundles to quaternionic line bundles. �

Had we not assumed r ∧ d = 1, then the situation would have been more
complicated to analyze, because the determinant of a quaternionic vector bundle
of even rank is a real line bundle and also because, when h = r ∧ d is even, the
real space Symh(X) may have real points even if X does not (points of the form
[xi , σ (xi )]1≤i≤h/2 for xi ∈ X ).

2E. Real vector bundles of fixed determinant. Let us now consider spaces of
vector bundles of fixed determinant. By [Tu 1993, Theorem 3], one has, for any
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L∈ Picd
X , MX(r,L) := det−1({L})'C Ph−1

C
where d = deg(L) and h = r ∧d . This

is proved in the following way: under the identification MX(r, d) 'C Symh(X),
there is a commutative diagram

MX(r, d)
'
−−−→ Symh(X)ydet

yAJ

Picd
X

'
−−−→ Pich

X

where
AJ : Symh(X)→ Pich

X , (x1, . . . , xh) 7→ L(x1+ · · ·+ xh)

is the Abel–Jacobi map (taking a finite family of points (x1, . . . , xh) to the line
bundle associated to the divisor x1+· · ·+ xh) and the fiber of the Abel–Jacobi map
above a holomorphic line bundle L of degree h is the projective space P(H 0(X,L))
which, since deg(L)= h ≥ 1 and X has genus 1, is isomorphic to Ph−1

C
. Evidently,

the same proof will work over R whenever we can identify Picd
X and Pich

X as real
varieties, which happens in particular when Xσ

6=∅.

Theorem 2.11. Let (X, x0, σ ) be a real elliptic curve satisfying Xσ
6=∅ and let L

be a real line bundle of degree d on X. Then, for all r ≥ 1,

MX(r,L)'R Ph−1
R ,

where h = r ∧ d.

Proof. When Xσ
6=∅, we can choose x0 ∈ Xσ and use Theorem 2.1 to identify all

Picard varieties Pick
X over R, then reproduce Tu’s proof recalled above. �

3. Indecomposable vector bundles

3A. Indecomposable vector bundles over a complex elliptic curve. As recalled in
the introduction, a theorem of Grothendieck [1957] shows that any holomorphic
vector bundle on CP1 is isomorphic to a direct sum of holomorphic line bundles,
and this can be easily recast in modern perspective by using the notions of stability
and semistability of vector bundles over curves, introduced by Mumford [1963]
and first studied by himself and Seshadri [1967]: the moduli variety of semistable
vector bundles of rank r and degree d over CP1 is a single point if r divides
d and is empty otherwise. As for vector bundles over a complex elliptic curve,
the study was initiated by Atiyah [1957b], thus at a time when the notion of
stability was not yet available. Rather, Atiyah’s starting point is the notion of an
indecomposable vector bundle: a holomorphic vector bundle E over a complex
curve X is said to be indecomposable if it is not isomorphic to a direct sum of
nontrivial holomorphic bundles. In the present paper, we shall denote by IX(r, d)



VECTOR BUNDLES OVER A REAL ELLIPTIC CURVE 57

the set of isomorphism classes of indecomposable vector bundles of rank r and
degree d . It is immediate from the definition that a holomorphic vector bundle is a
direct sum of indecomposable ones. Moreover, one has the following result, which
is a consequence of the categorical Krull–Schmidt theorem, also due to Atiyah,
showing that the decomposition of a bundle into indecomposable ones is essentially
unique.

Proposition 3.1 [Atiyah 1956, Theorem 3]. Let X be a compact connected complex
analytic manifold. Any holomorphic vector bundle E over X is isomorphic to a direct
sum E1⊕· · ·⊕Ek of indecomposable vector bundles. If one also has E'E ′1⊕· · ·⊕E

′

l ,
then l = k and there exists a permutation σ of the indices such that E ′σ(i) ' Ei .

Going back to the case of a compact, connected Riemann surface X of genus 1,
Atiyah completely describes all indecomposable vector bundles on X . He first
shows [op. cit., Theorem 5] the existence, for any h ≥ 1, of a unique (isomorphism
class of) indecomposable vector bundle Fh of rank h and degree 0 such that

(3-1) dim H 0(X; Fh)= 1.

As a matter of fact, this is the only vector bundle of rank h and degree 0 over X
with a nonzero space of sections. Let us call Fh the Atiyah bundle of rank h and
degree 0. The construction of Fh is by induction, starting from F1 =OX , the trivial
line bundle over X , and showing the existence and uniqueness of an extension of
the form

(3-2) 0→OX → Fh→ Fh−1→ 0.

In particular, det(Fh) = OX . Moreover, Since Fh is the unique indecomposable
vector bundle with nonzero space of sections, one has [op. cit., Corollary 1]:

(3-3) F∗h ' Fh .

Note that Fh is an extension of semistable bundles so it is semistable. The associated
polystable bundle is the trivial bundle of rank h, which is not isomorphic to Fh (in
particular, Fh is not itself polystable).

Atiyah then shows that any indecomposable vector bundle E of rank h and
degree 0 is isomorphic to Fh⊗L for a line bundle L of degree 0 which is unique up
to isomorphism [op. cit., Theorem 5(ii)]. Since it follows from the construction of
Fh recalled in (3-2) that det(Fh)=OX , one has det E =Lh. This sets up a bijection

(3-4) Pic0
X → IX(h, 0), L 7→ Fh ⊗L.

Note that the map (3-4) is just the identity map if h = 1. Atiyah then uses a marked
point x0 ∈ X to further identify Pic0

X with X . In particular, the set IX(h, 0) inherits
a natural structure of complex analytic manifold of dimension 1.
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The next step in Atiyah’s characterization of indecomposable vector bundles is
to consider the case of vector bundles of nonvanishing degree. He shows [op. cit.,
Theorem 6] that, associated to the choice of a marked point x0 ∈ X , there is, for all
r and d , a unique bijection (subject to certain conditions)

(3-5) α
x0

r,d : IX (r ∧ d, 0)→ IX(r, d)

between the set of isomorphism classes of indecomposable vector bundles of rank
h := r ∧ d and degree 0 and the set of isomorphism classes of indecomposable
vector bundles of rank r and degree d. As a consequence, Atiyah can define a
canonical indecomposable vector bundle of rank r and degree d, namely

Fx0(r, d) := α x0
r,d(Fr∧d),

where Fr∧d is the indecomposable vector bundle of rank r ∧ d and degree 0 whose
construction was recalled in (3-2). We will call the bundle Fx0(r, d) the Atiyah
bundle of rank r and degree d (in particular Fx0(r, 0)= Fr ). Atiyah then obtains
the following description of indecomposable vector bundles:

Theorem 3.2 [Atiyah 1957b, Theorem 10]. Set h = r ∧d , r ′ = r/h, and d ′ = d/h.
Then every indecomposable vector bundle of rank r and degree d is isomorphic to a
bundle of the form Fx0(r, d)⊗L where L is a line bundle of degree 0. Moreover,
Fx0(r, d)⊗L' Fx0(r, d)⊗L′ if and only if (L′⊗L−1)r

′

'OX .

Thus, as a generalization to (3-4), Theorem 3.2 shows that there is a surjective
map Pic0

X → IX(r, d), whose fiber is isomorphic to the group Tr ′ of r ′-torsion
elements in Pic0

X . This in particular induces a bijection between the Riemann
surface Pic0

X /Tr ′ ' Pic0
X ' X and the set IX(r, d) for all r and d, and the set

IX(r, d) inherits in this way a natural structure of complex analytic manifold of
dimension 1.

3B. Relation to semistable and stable bundles. It is immediate to prove that stable
bundles (over a curve of arbitrary genus) are indecomposable. Moreover, over an
elliptic curve, we have the following result, proved in Tu’s paper:

Theorem 3.3 [Tu 1993, Appendix A]. Every indecomposable vector bundle of rank
r and degree d over a complex elliptic curve is semistable. It is stable if and only if
r ∧ d = 1.

In particular, the Atiyah bundles Fx0(r, d) are semistable (and stable if and only if
r∧d = 1) and, by Proposition 3.1, every holomorphic vector bundle over a complex
elliptic curve is isomorphic to a direct sum of semistable bundles. Next, there is a
very important relation between indecomposable vector bundles and stable vector
bundles, which will be useful in the next section.
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Theorem 3.4 (Atiyah–Tu). Set h = r ∧ d , r ′ = r/h, and d ′ = d/h. Then the map

MX(r ′, d ′)→ IX(r, d), E ′ 7→ E ′⊗ Fh

is a bijection: any indecomposable vector bundle of rank r and degree d is isomor-
phic to a bundle of the form E ′⊗ Fh where E ′ is a stable vector bundle of rank r ′

and degree d ′, unique up to isomorphism, and Fh is the Atiyah bundle of rank h and
degree 0.

In particular, IX(r, d) inherits in this way a structure of complex analytic manifold
of dimension r ′∧d ′= 1. This result, which generalizes (3-4) in a different direction
than Theorem 3.2, can be deduced from Atiyah and Tu’s papers but we give a proof
below for the sake of completeness. It is based on the following lemma.

Lemma 3.5 [Atiyah 1957b, Lemma 24]. The Atiyah bundles Fx0(r, d) and Fx0(r
′, d ′)

are related in the following way:

Fx0(r, d)' Fx0(r
′, d ′)⊗ Fh .

Proof of Theorem 3.4. Let E ∈ IX(r, d). By Theorem 3.2, there exists a line
bundle L of degree 0 such that E ' Fx0(r, d)⊗ L. By Lemma 3.5, Fx0(r, d) '
Fx0(r

′, d ′)⊗ Fh . Since r ′ ∧ d ′ = 1, Theorem 3.3 shows that Fx0(r
′, d ′), hence also

E ′ := Fx0(r
′, d ′)⊗L, are stable bundles of rank r ′ and degree d ′. And one has indeed

E ' E ′⊗ Fh . Let now E ′ and E ′′ be two stable bundles of rank r ′ and degree d ′ such
that E ′⊗Fh'E ′′⊗Fh . Since stable bundles are indecomposable, Theorem 3.2 shows
the existence of two line bundles L′ and L′′ of degree 0 such that E ′' Fx0(r

′, d ′)⊗L′

and E ′′ ' Fx0(r
′, d ′)⊗L′′. Tensoring by Fh and applying Lemma 3.5, we obtain that

Fx0(r, d)⊗L′ ' Fx0(r, d)⊗L′′, which, again by Theorem 3.2, implies that L′ and
L′′ differ by an r ′-torsion point of Pic0

X . But then a final application of Theorem 3.2
shows that Fx0(r

′, d ′)⊗L′ ' Fx0(r
′, d ′)⊗L′′, i.e., E ′ ' E ′′. �

Thus, the complex variety IX(r, d) 'MX(r ′, d ′) ' X is a 1-dimensional sub-
variety of the h-dimensional moduli variety MX(r, d)' Symh(X), and these two
nonsingular varieties coincide exactly when r and d are coprime. More explicitly,
under the identifications IX(r, d)' X and MX(r, d)' Symh(X), the inclusion map
IX(r, d) ↪→MX(r, d), implicit in Theorem 3.3, is simply the diagonal map

X→ Symh(X), x 7→ [x, . . . , x]

and it commutes to the determinant map, the latter being, on Symh(X), just the
Abel–Jacobi map [x1, . . . , xh] 7→ x1+ · · ·+ xh ; see [Tu 1993, Theorem 2].

3C. Indecomposable vector bundles over a real elliptic curve. Over a real elliptic
curve, the description of indecomposable vector bundles is a bit more complicated
than in the complex case, because the Atiyah map α x0

r,d defined in (3-5) is not a real
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map unless the point x0 is a real point, which excludes the case where Xσ
= ∅.

Of course the case Xσ
6=∅ is already very interesting and if we follow Atiyah’s

paper in that case, then the Atiyah map α x0
r,d is a real map and the Atiyah bundles

Fx0(r, d) are all real bundles. In particular, the description given by Atiyah of the
ring structure of the set of isomorphism class of all vector bundles (namely the way
to decompose the tensor product of two Atiyah bundles into a direct sum of Atiyah
bundles, see for instance [Tu 1993, Appendix A] for a concise exposition) directly
applies to the subring formed by isomorphism classes real bundles. (Note that, in
contrast, isomorphism classes of quaternionic bundles do not form a ring, as the
tensor product of two quaternionic bundles is a real bundle.) To obtain a description
of indecomposable bundles over a real elliptic curve which holds without assuming
that the curve has real points, we need to replace the Atiyah isomorphism

α
x0
r,d : IX (r ∧ d, 0)→ IX(r, d)

(which cannot be a real map when Xσ
= ∅) by the isomorphism IX(r, d) '

MX(r ′, d ′) of Theorem 3.4 and show that the latter is always a real map. The first
step is the following result, about the Atiyah bundle of rank h and degree 0, whose
definition was recalled in (3-2).

Proposition 3.6. Let (X, σ ) be a real Riemann surface of genus 1. For any h ≥ 1,
the indecomposable vector bundle Fh has a canonical real structure.

Proof. We proceed by induction. Since X is assumed to be real, OX has a canon-
ical real structure. So, if h = 1, then Fh is canonically real. Assume now that
h > 1 and that Fh−1 has a fixed real structure. Following again Atiyah [1957a],
extensions of the form (3-2) are parametrized by the sheaf cohomology group
H 1(X;HomOX (Fh−1;OX ))= H 1(X; F ∗h−1). The uniqueness part of the statement
in Atiyah’s construction above says that this cohomology group is a complex vector
space of dimension 1, which, in any case, can be checked by Riemann–Roch using
properties (3-1) and (3-3). Indeed, since deg(F ∗h−1)= 0 and X is of genus g = 1,
one has

h0(F ∗h−1)− h1(F ∗h−1)= deg(F ∗h−1)+ (rk F ∗h−1)(1− g)= 0,

where hi ( · ) = dim H i (X; · ), so h1(F ∗h−1) = h0(F ∗h−1) = 1. Now, since X and
Fh−1 have real structures, so does H 1(X; F ∗h−1) and the fixed point space of that
real structure corresponds to isomorphism classes of real extensions of Fh−1 by OX .
Since the fixed point space of the real structure of H 1(X; F ∗h−1) is a 1-dimensional
real vector space, the real structure of Fh is unique up to isomorphism. �

Thus, in contrast to Atiyah bundles of nonvanishing degree, Fh is always canoni-
cally a real bundle. In particular, σ ∗Fh ' Fh . It is then clear that the isomorphism

MX(r ′, d ′)→ IX(r, d), E ′ 7→ E ′⊗ Fh
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is a real map: σ ∗E ′ ⊗ Fh ' σ ∗E ′ ⊗ σ ∗Fh ' σ ∗(E ′⊗ Fh), which readily implies
Theorem 1.3. Moreover, one can make the following observation:

Proposition 3.7. Let E be an indecomposable vector bundle of rank r and degree d
over the real elliptic curve (X, x0, σ ) and assume that σ ∗E ' E . Then E admits
either a real or a quaternionic structure.

Proof. By Theorem 3.4, we can write E ' E ′⊗ Fh , with E ′ stable. Therefore,

σ ∗E ' σ ∗(E ′⊗ Fh)' σ ∗E ′⊗ σ ∗Fh ' σ ∗E ′⊗ Fh .

The assumption σ ∗E ' E then translates to σ ∗E ′⊗ Fh ' E ′⊗ Fh which, since the
map from Theorem 3.4 is a bijection, shows that σ ∗E ′ ' E ′. As E ′ is stable, the fact
that E ′ admits a real or quaternionic structure τ ′ follows from Proposition 2.10. If
τh denotes the real structure of Fh , we then have that τ ′⊗τh is a real or quaternionic
structure on E , depending on whether τ ′ is real or quaternionic. �
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